WO2018107965A1 - 一种双频段微带天线及应用该天线的无人机 - Google Patents

一种双频段微带天线及应用该天线的无人机 Download PDF

Info

Publication number
WO2018107965A1
WO2018107965A1 PCT/CN2017/113381 CN2017113381W WO2018107965A1 WO 2018107965 A1 WO2018107965 A1 WO 2018107965A1 CN 2017113381 W CN2017113381 W CN 2017113381W WO 2018107965 A1 WO2018107965 A1 WO 2018107965A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
microstrip
antenna
dual
microstrip antenna
Prior art date
Application number
PCT/CN2017/113381
Other languages
English (en)
French (fr)
Inventor
孙忆业
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP17857670.8A priority Critical patent/EP3503297B1/en
Priority to US15/950,546 priority patent/US20180233810A1/en
Publication of WO2018107965A1 publication Critical patent/WO2018107965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a dual-band microstrip antenna and a drone using the same.
  • the microstrip antenna is an antenna formed by attaching a conductor patch to a dielectric substrate having a grounding plate, and is fed by a coaxial wire to excite an electromagnetic field between the conductor patch and the ground plate, and radiates outward through the slit.
  • Dual-band (eg, 900 MHz and 2.4 GHz) microstrip antennas have better omnidirectional patterns.
  • the 3dB wave width of the dual-band antenna on the elevation plane is generally about 80 degrees, but since the antenna is usually used obliquely during the actual use, the narrow 3dB wave on the elevation plane is used when the antenna is tilted.
  • a wide (for example, 80 degrees) will cause a large change in the signal on the horizontal plane, poor signal stability, and even affect the normal use of the device.
  • the technical problem to be solved by the present invention is to broaden the wave width of the dual-frequency microstrip antenna on the elevation plane, and the signal remains stable when the antenna is tilted.
  • an embodiment of the present invention provides a dual-frequency end microstrip antenna comprising: a substrate having a front surface and a reverse side opposite to the front surface;
  • a first frequency band microstrip antenna disposed on a front surface of the substrate for generating a first frequency band resonance
  • a second frequency band microstrip antenna disposed on a reverse side of the substrate for generating a second-band resonance and a second-order resonance high-order resonance, wherein the second-band resonance high-order resonance is used for resonance superposition with the first frequency band;
  • a coaxial feed line disposed on the substrate for feeding the first frequency band microstrip antenna and the second frequency band microstrip antenna.
  • the first frequency band microstrip antenna comprises a first grounding plate and a first radio frequency module; the first grounding plate is electrically connected to the grounding end of the coaxial feeding wire, and the feeding end of the first RF module and the coaxial feeding wire is electrically connection.
  • the first radio frequency module includes: a first microstrip feed line electrically connected to the feed end of the coaxial feed line, an impedance conversion feed line electrically connected to the first microstrip feed line, and an impedance conversion feed electrical connection The first vibrator arm.
  • the first radio frequency module further includes: a first microstrip line electrically connected to the first vibrator arm, where the first microstrip line is used to expand a bandwidth of the first frequency band microstrip antenna.
  • the first vibrator arm includes two parallel portions disposed in parallel and a vertical portion disposed between and connected to the lateral portions, the first microstrip line It is disposed in parallel with the vertical portion and connected to the two lateral portions.
  • the first microstrip line includes a first portion electrically connected to one of the lateral portions and a second portion electrically connected to the other of the lateral portions, the first portion being opposite to the second portion Interval setting.
  • the first vibrator arm is a vibrator arm of a symmetrical structure.
  • the second frequency band microstrip antenna includes a second ground plate and a second radio frequency module; the substrate is provided with a conductive through hole penetrating the first ground plate and the second ground plate, and the second ground plate is electrically conductive The hole is electrically connected to the first ground plate.
  • the second radio frequency module includes: a second microstrip feed line electrically connected to the second ground plane, a second microstrip line electrically connected to the second microstrip feed line, and a second electrical connection with the second microstrip line Vibrator arm.
  • the second microstrip line is a curved microstrip line.
  • the first frequency band microstrip antenna is a monopole form structure antenna, a dipole form structure antenna or a ring structure antenna
  • the second band microstrip antenna is a monopole form structure antenna, a dipole form structure antenna or Ring structure antenna.
  • the first band microstrip antenna is a 2.4 GHz band antenna; and the second band microstrip antenna is a 900 MHz band antenna.
  • an embodiment of the present invention provides a drone including: a body, a landing gear disposed under the fuselage, and the dual-band microstrip antenna as described in any of the first aspects.
  • the dual band microstrip antenna is disposed in a landing gear.
  • a dual-band microstrip antenna provided by the embodiment of the present invention generates a first frequency band resonance through a first frequency band microstrip antenna, and a second frequency band microstrip antenna generates a second frequency band resonance and a second frequency band high-order resonance, and the second frequency band is high.
  • the order resonance is used to resonate with the first frequency band.
  • FIG. 1 is a schematic structural diagram of a dual-band microstrip antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another embodiment of a first microstrip line in a dual-band microstrip antenna according to an embodiment of the present disclosure
  • FIG. 3 is a diagram showing a test result of a scattering parameter of a dual-band microstrip antenna according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a test result of a pattern of a first-band microstrip antenna in a dual-band microstrip antenna according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a test result of a pattern of a second-band microstrip antenna in a dual-band microstrip antenna according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a drone provided by an embodiment of the present invention.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • orientations or positional relationships of the terms “center”, “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inside”, “outside”, etc. are based on The orientation or positional relationship shown in the drawings is merely for the convenience of the description of the present invention and the description of the present invention, and is not intended to indicate or imply that the device or component referred to has a specific orientation, is constructed and operated in a specific orientation, and therefore cannot be understood as Limitations of the invention.
  • first”, “second”, etc. are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • the embodiment of the invention provides a dual-frequency microstrip antenna, as shown in FIG. 1 , including:
  • the substrate 10 is configured to carry a dual-band microstrip antenna having a front side and a reverse side opposite to the front side;
  • a first frequency band microstrip antenna 20 disposed on a front surface of the substrate 10 for generating a first frequency band resonance
  • the second frequency band microstrip antenna 30 is disposed on the reverse side of the substrate 10 for generating high frequency resonance of the second frequency band resonance and the second frequency band resonance, and the high frequency resonance of the second frequency band resonance is used for resonance superposition with the first frequency band;
  • the coaxial feed line 40 is configured to feed the first band microstrip antenna 20 and the second band microstrip antenna 30.
  • the coaxial feed line 40 may include a feed end 41 and a ground end 42 wrapped around the feed end 41 and coaxial with the feed end 41.
  • the structures of the first frequency band microstrip antenna 20 and the second frequency band microstrip antenna 30 include any one of the following structures: a monopole form structure antenna, a dipole form structure antenna, and a ring structure antenna.
  • the specific structure of the first band microstrip antenna 20 and the second band microstrip antenna 30 is not limited.
  • the first frequency band microstrip antenna 20 and/or the second frequency band microstrip antenna 30 may be a dipole form structure antenna, a monopole form structure antenna, or a ring structure antenna, or It is an antenna of any other structure.
  • the dual-band microstrip antenna is implemented by combining antenna structures of two different frequency bands.
  • the first frequency band microstrip antenna 20 is disposed on the front surface of the substrate 10, and the second frequency band microstrip antenna 30 is disposed on the substrate 10.
  • the dual band microstrip antenna may be attached to the front and back sides of the substrate 10 in the form of an antenna patch.
  • the material of the antenna patch can be metal, and the common one is copper.
  • the first frequency band microstrip antenna 20 generates a first frequency band resonance
  • the second frequency band microstrip antenna 30 generates a second frequency band resonance, which is accompanied by generation of a second frequency band high order resonance, usually, a second frequency band microstrip
  • the frequency of the higher-order resonance of the antenna 30 is Slightly higher than the resonant frequency of the first frequency band, for example, the frequency of the second frequency band resonance is 900 MHz, the frequency of the high frequency resonance of the second frequency band is usually 2.7 GHz, and the frequency of the first frequency band resonance is 2.4 GHz.
  • the frequency of the second-order high-order resonance that is, to reduce the frequency of the second-order high-order resonance to the frequency of the first-band resonance. It can be understood that due to the influence of external factors such as signals or currents, it is difficult to ensure that the same frequency is exactly the same in practice, and there may be an error between the two frequencies.
  • the second-order high-order resonance is superimposed on the first-band resonance, which broadens the bandwidth of the dual-band microstrip antenna on the elevation plane, so that the antenna can maintain a stable signal when it is tilted.
  • the first frequency band microstrip antenna 20 is a monopole structure and may include a first ground plate 25 and a first RF module 26 .
  • the first ground plate 25 is connected to the ground terminal 42 of the coaxial feed line 40, and the first RF module 26 is connected to the feed end 41 of the coaxial feed line 40.
  • the coaxial feed line 40 is thereby fed to the first band microstrip antenna 20.
  • the first radio frequency module 26 includes: a first microstrip feed line 24 connected to the feed end 41 of the coaxial feed line 40, and an impedance conversion feed line connected to the first microstrip feed line 24. 23.
  • the first vibrator arm 21 may be a monopole oscillator arm of a symmetrical structure.
  • the first vibrator arm 21 may be a dipole vibrator arm of a symmetrical structure.
  • the configuration of the first vibrator arm 21 may be a U-shaped structure as shown in FIG. 1.
  • the first vibrator arm 21 includes two lateral portions 211 which are disposed at relatively spaced intervals and are disposed between the two lateral portions 211. And a vertical portion 212 connected to the lateral portion 211.
  • the first vibrator arm 21 may also be a semi-circular structure or other first vibrator arm 21 capable of cooperating with the first microstrip feed line 24 and the impedance conversion feed belt 23 to generate a first frequency band resonance.
  • the structure is applicable to this embodiment.
  • the first radio frequency module 26 may further include: a first microstrip line 22 connected to the first vibrator arm 21, and the first microstrip line 22 is used to expand the bandwidth of the first band microstrip antenna 20. .
  • both ends of the first microstrip line 22 are electrically connected to the two lateral portions 211 of the first vibrator arm 21, respectively, and are spaced apart from the vertical portion 212 of the first vibrator arm 21.
  • the position of the first microstrip line 22 can be adjusted along the lateral portion 211 of the first vibrator arm 21 in accordance with the requirements for bandwidth expansion.
  • the first microstrip line 22 may be an intermediate disconnect or a gap.
  • the first microstrip line 22 includes a first portion 221 and a second portion 222 that is spaced apart from the first portion 221.
  • One end of the first portion 221 is electrically connected to one of the lateral portions 211 of the first vibrator arm 21, and one end of the second portion 222 is electrically connected to the other lateral portion 211 of the first vibrator arm 21, and the other end of the first portion 221 and the second portion A gap is provided between the other ends of the portion 222.
  • the first portion 221 and the second portion 222 are each disposed in parallel with the vertical portion 212 of the first vibrator arm 21.
  • the first microstrip line 22 may also be a plurality of, and the plurality of first microstrip lines 22 are spaced apart on the first vibrator arm 21. Different numbers of the first microstrip lines 22 have different bandwidth extensions, and the number of suitable first microstrip lines 22 can be selected according to actual needs.
  • the second frequency band microstrip antenna 30 is also a monopole form structure antenna, and the second frequency band microstrip antenna 30 may include a second ground plate 33 and a second radio frequency module. 35.
  • Conductive conduction through the first ground plate 25 and the second ground plate 33 is formed on the substrate 10
  • the through hole 60 and the second ground plate 33 are connected to the first ground plate 25 through the conductive via 60.
  • the feeding end 41 of the coaxial feed line 40 is connected to the first RF module 26 to implement the feeding of the first RF module 26 by the coaxial feed line 40, through the first RF module 26 and the second
  • the coupling of the RF module 35 enables the feeding of the second RF module 35.
  • the grounding end 42 of the coaxial feeding line 40 is connected to the first grounding plate 25, and the first grounding plate 25 and the first grounding plate 33 pass through the conductive through hole 60.
  • the first frequency band microstrip antenna 20 and the second frequency band microstrip antenna 30 share the grounding end 42 of the coaxial feed line 40, so that the coaxial feed line 40 can be realized for the first frequency band microstrip antenna 20 and the second The band microstrip antenna 30 is simultaneously fed.
  • the conductive vias 60 may be metallized vias or vias of other conductive media.
  • the conductive vias 60 may be disposed at any position of the second ground plate 33, and may be one or more.
  • the second RF module 35 may include: a second microstrip feed line 32 connected to the second ground plane 33, a second microstrip line 31 connected to the second microstrip feed line 32, and The second vibrator arm 34 is connected to the second microstrip line 31.
  • the second microstrip line 31 may be a curved microstrip line. Setting the second microstrip line 31 in a curved form has an advantage in that the size of the second band microstrip antenna 30 can be greatly reduced, thereby saving space of the substrate 10.
  • the curved microstrip line shown in FIG. 1 is taken as an example. Other forms of curved microstrip lines are also possible, and are not limited herein.
  • the second microstrip line 31 is used to adjust the high-order resonance of the second frequency band such that the high-order resonant frequency of the second frequency band is the same as the frequency of the first frequency band.
  • the first microstrip line 31 can reduce the frequency of the high-order resonance of the second frequency band such that the high-order resonant frequency of the second frequency band matches the frequency of the first frequency band resonance.
  • the feed end 41 of the coaxial feed line 40 can be directly connected to the second microstrip feed line 32, and the ground end 42 of the coaxial feed line 40 can be directly connected to the second ground plate 33, and then
  • the way in which the conductive via and the RF portion are coupled is such that the first band microstrip antenna 20 and the second band microstrip antenna 30 share the coaxial feed line 40 for feeding.
  • the impedance transform feed band 23 and the first vibrator arm 21 are coupled to the second microstrip feed line 32, respectively.
  • the projection of the second microstrip feed line 32 in a direction perpendicular to the substrate 10 overlaps with the projection of the impedance conversion feed belt 23 and the first vibrator arm 21 in a direction perpendicular to the substrate 10, so that the second microstrip The feeder 32 is coupled to the impedance conversion feed belt 23 and the first vibrator arm 21.
  • the electric field formed by the coupling between the two bands can change the electric field distribution between the first band microstrip antenna 20 and the second band microstrip antenna 30, so that the first band microstrip antenna 20 and the second band microstrip antenna 30 electromagnetic coupling cancellation, which can improve impedance matching and bandwidth, and adjust the two frequency bands of the antenna.
  • the first RF module 26 is provided with the first microstrip line 22, the impedance conversion feed band 23, the first vibrator arm 21 and the first microstrip line 22 are respectively coupled with the second microstrip feed line 32.
  • the first microstrip line 22 is coupled to the second microstrip feed line 32 to further adjust the two frequency bands of the antenna.
  • the test effect of the dual-band microstrip antenna of the present embodiment is described by taking the first frequency band as 2.4 GHz and the second frequency band as 900 MHz as an example.
  • FIG. 3 shows the Scattering parameters (S-parameter) test effect of the embodiment of the present invention.
  • the S11 is less than -10dB with a bandwidth of 890MHz to 940MHz and 2.26GHz to 2.56GHz.
  • the bandwidth is 50MHz and 300MHz respectively, which can meet the coverage of the commonly used 900MHz and 2.4GHz bands.
  • FIG. 4 and FIG. 5 show an antenna pattern according to an embodiment of the present invention, wherein FIG. 3 is a 2.4 GHz antenna pattern test effect diagram, and FIG. 4 is a 900 MHz antenna pattern test effect diagram.
  • the antenna can achieve omnidirectional coverage at both 900 MHz and 2.4 GHz.
  • the 3 dB width of the antenna is close to 120 degrees, compared to a general omnidirectional antenna. 80 to 90 degrees, the wave width has been significantly improved.
  • the substrate 10 has a length of 86 mm, a width of 9 mm, and a thickness of 0.8 mm;
  • the 2.4 GHz microstrip antenna 20 is in the form of a symmetrical monopole, the length of the first ground plate 25 is 21 mm, and the width of the first microstrip feed line 24 is 1mm, the width of the impedance conversion feed belt 23 is 2.5 mm, and the length of the single side of the first vibrator arm 21 is 20 mm, wherein the first vibrator arm 21 has a loop width of 1 mm, and the first microstrip line 22 has a size of 1 mm.
  • 900MHz microstrip antenna 30 is in the form of a monopole
  • the size of the second microstrip feed line 32 is 25mm * 1mm
  • the size of the curved portion of the second microstrip line 31 is 8.5mm * 2.5mm
  • the second vibrator arm 34 It is a T-shaped structure in which the first portion of the second vibrator arm 34 connected to the second microstrip line 31 has a size of 15 mm * 1 mm
  • the second portion of the second vibrator arm 34 has a size of 9 mm * 1.5 mm.
  • two coaxial feed lines can be used to replace one coaxial feed line, that is, the first ground plate 25 and the first RF module 26 of the first band microstrip antenna 20 are connected by a coaxial feed line.
  • the first band microstrip antenna 20 is fed; the second ground plate 33 and the second microstrip feed line 32 of the second band microstrip antenna 30 are connected by another coaxial feed line for the second band microstrip antenna 30. Feeding.
  • the dual-band microstrip antenna may be a combination of two antennas of 900 MHz and 2.4 GHz, or a combination of two antennas of 2.4 GHz and 5.8 GHz, or a combination of antennas of other two frequency bands, which is not limited in this embodiment. .
  • a dual-band microstrip antenna provided by the embodiment of the present invention generates a first frequency band resonance through a first frequency band microstrip antenna, and a second frequency band microstrip antenna generates a second frequency band resonance and a second frequency band high-order resonance, and the second frequency band is high.
  • the order resonance is used to resonate with the first frequency band.
  • the embodiment of the present invention further provides a drone, as shown in FIG. 6, the drone includes a fuselage 51, a landing gear 52 disposed under the fuselage 51, and the dual band described in any of the above embodiments.
  • Microstrip antenna 53 in an embodiment of the invention, a dual band microstrip antenna 53 is disposed in the landing gear 52.
  • the installation position of the dual-band microstrip antenna 53 is schematically illustrated in FIG. 5 by taking the bottom view of the drone as an example.
  • the installation position of the dual-band microstrip antenna 53 in the embodiment of the present invention is not limited to FIG. 5 .
  • the mounting position shown, other mounting positions of the dual-band microstrip antenna 53 that can better satisfy the signal transmission and reception may also be used.
  • the dual-band microstrip antenna set in the landing gear on the drone widens the width of the dual-frequency microstrip antenna on the elevation plane, and the signal remains stable when the antenna is tilted. Thereby, the UAV is in the process of flying, reducing the influence of the flight posture of the UAV on the communication of the UAV, and ensuring the communication of the UAV during the flight.
  • the dual-band microstrip antenna provided by the embodiment of the present invention can be applied not only to the UAV, but also to the two frequency bands of the first frequency band (such as 2.4 GHz) and the second frequency band (such as 900 MHz). In other scenarios, this embodiment is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种双频段微带天线及应用该天线的无人机,其中,双频段微带天线包括:基板,第一频段微带天线,设置在基板的正面,用于产生第一频段谐振;第二频段微带天线,设置在基板的反面,用于产生第二频段谐振及第二频段高阶谐振,所述第二频段谐振的高阶谐振用于与所述第一频段谐振叠加;同轴馈电线,用于给第一频段微带天线和第二频段微带天线馈电。本发明实施例可以拓宽双频段微带天线在第一频段谐振的俯仰面波宽以使天线处于倾斜状态时能够保持稳定的信号。

Description

一种双频段微带天线及应用该天线的无人机 技术领域
本发明涉及通信技术领域,具体涉及到一种双频段微带天线及应用该天线的无人机。
背景技术
随着无线通信的飞速发展,各种数据业务的需求,天线设计主要朝着小型化、多频段及宽频带发展。小型化要求天线缩小自身尺寸,以适应通信设备集成度不断提高、体积越来越小的发展趋势。微带天线是在带有接地板的介质基板上贴导体贴片所构成的天线,利用同轴线馈电,使导体贴片和接地板间激励起电磁场,利用缝隙向外辐射。微带天线经过几十年的发展,已经在很多领域内广泛应用,其具有结构简单、尺寸小、重量轻、成本低、设计灵活多样化等优点。
双频段(例如900MHz和2.4GHz)微带天线的方向图具有较好全方向性。目前,双频段天线在俯仰面的3dB波宽一般为80度左右,但由于在实际使用的过程中,天线通常会有倾斜使用的情况,在天线倾斜时,较窄的在俯仰面的3dB波宽(例如80度)会使得水平面上的信号变化较大,信号的稳定性差,甚至会影响到设备的正常使用。
因此,如何拓宽双频微带天线在俯仰面波宽,以使天线处于倾斜状态时能够保持稳定的信号成为亟待解决的问题。
发明内容
本发明要解决的技术问题在于拓宽双频微带天线在俯仰面波宽,在天线倾斜时,信号保持稳定。
为此,根据第一方面,本发明实例提供了一种双频端微带天线,包括:基板,具有正面和与所述正面相对的反面;
第一频段微带天线,设置在所述基板的正面,用于产生第一频段谐振;
第二频段微带天线,设置在所述基板的反面,用于产生第二频段谐振及调第二频段谐振的高阶谐振,第二频段谐振的高阶谐振用于与第一频段谐振叠加;
同轴馈电线,设置在所述基板上,用于给所述第一频段微带天线和所述第二频段微带天线馈电。
可选地,第一频段微带天线包括第一接地板和第一射频模块;第一接地板与同轴馈电线的接地端电连接,第一射频模块与同轴馈电线的馈电端电连接。
可选地,第一射频模块包括:与同轴馈电线的馈电端电连接的第一微带馈线、与第一微带馈线电连接的阻抗变换馈电带、与阻抗变换馈电带电连接的第一振子臂。
可选地,第一射频模块还包括:第一微带线,与第一振子臂电连接,第一微带线用于扩展第一频段微带天线的带宽。
可选地,所述第一振子臂包括两平行间隔设置的横向部分以及设置在两所述横向部分之间并与所述横向部分相连的竖直部分,所述第一微带线 与所述竖直部分平行间隔设置并与两所述横向部分相连。
可选地,所述第一微带线包括与其中一所述横向部分电连接的第一部分以及与另一所述横向部分电连接的第二部分,所述第一部分与所述第二部分相对间隔设置。
可选地,所述第一振子臂为对称结构的振子臂。
可选地,第二频段微带天线包括第二接地板和第二射频模块;基板上开设有贯通所述第一接地板与所述第二接地板导电通孔,第二接地板通过导电通孔与第一接地板电连接。
可选地,第二射频模块包括:与第二接地板电连接的第二微带馈线、与第二微带馈线电连接的第二微带线、与第二微带线电连接的第二振子臂。
可选地,第二微带线为弯曲微带线。
可选地,阻抗变换馈电带和第一振子臂在垂直于基板的方向上的投影分别与第二微带馈线在垂直于基板的方向上的投影重叠,使得阻抗变换馈电带和第一振子臂分别与第二微带馈线形成耦合。
可选地,第一频段微带天线为单极子形式结构天线、偶极子形式结构天线或者环形结构天线;第二频段微带天线为单极子形式结构天线、偶极子形式结构天线或者环形结构天线。
可选地,第一频段微带天线为2.4GHz频段天线;第二频段微带天线为900MHz频段天线。
根据第二方面,本发明实施例提供了一种无人机,包括:机身、设于机身下方的起落架以及如第一方面任一项描述的双频段微带天线。
可选地,所述双频段微带天线设置在起落架中。
本发明实施例提供的一种双频段微带天线,通过第一频段微带天线产生第一频段谐振,第二频段微带天线产生第二频段谐振及第二频段高阶谐振,第二频段高阶谐振用于与第一频段谐振叠加。从而,可以拓宽双频段微带天线在第一频段俯仰面的波宽以使天线处于倾斜状态时能够保持稳定的信号。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提供的双频段微带天线的结构示意图;
图2示出了本发明实施例提供的双频段微带天线中第一微带线另一实施例的结构示意图;
图3示出了本发明实施例提供的双频段微带天线散射参数测试效果图;
图4示出了本发明实施例提供的双频段微带天线中第一频段微带天线的方向图测试效果示意图;
图5示出了本发明实施例提供的双频段微带天线中第二频段微带天线的方向图测试效果示意图;
图6示出了本发明实施例提供的无人机示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“垂直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例提供了一种双频微带天线,如图1所示,包括:
基板10,用于承载双频段微带天线,具有正面和与正面相对的反面;
第一频段微带天线20,设置在基板10的正面,用于产生第一频段谐振;
第二频段微带天线30,设置在基板10的反面,用于产生第二频段谐振及第二频段谐振的高阶谐振,第二频段谐振的高阶谐振用于与第一频段谐振叠加;
同轴馈电线40,用于给第一频段微带天线20和第二频段微带天线30馈电。
在本实施例中,同轴馈电线40可以包括馈电端41和包裹在馈电端41外部与馈电端41同轴不导通的接地端42。在本实施例中,第一频段微带天线20和第二频段微带天线30的结构包括一下结构中的任意一种:单极子形式结构天线,偶极子形式结构天线,环形结构天线。在本实施例中,对第一频段微带天线20和第二频段微带天线30的具体结构不予限定。例如,第一频段微带天线20和/或第二频段微带天线30,可以是偶极子形式结构天线,也可以是单极子形式结构天线,还可以是环形结构天线,或者,还可以是其它任意结构的天线。
在本发明的一实施例中,双频段微带天线通过两个不同频段的天线结构组合实现,第一频段微带天线20设置在基板10的正面,第二频段微带天线30设置在基板10的反面。在本发明的一实施例中,双频段微带天线可以以天线贴片的形式附着在基板10的正反两面。其中,天线贴片的材质可以为金属的,常见的为铜片。第一频段微带天线20产生第一频段谐振,第二频段微带天线30产生第二频段谐振,伴随第二频段谐振的产生会附带产生第二频段高阶谐振,通常,第二频段微带天线30的高阶谐振的频率都 略高于第一频段谐振频率,例如,第二频段谐振的频率为900MHz,第二频段高阶谐振的频率通常为2.7GHz,而第一频段谐振的频率为2.4GHz。为了能够使得第二频段高阶谐振与第一频段谐振叠加,需要对第二频段高阶谐振的频率进行调整,即降低第二频段高阶谐振的频率至第一频段谐振的频率。可以理解的是,由于信号或电流等外界因素的影响,所称频率相同在实际中难以保证完全相同,两个频率之间可以存在误差。第二频段高阶谐振叠加到第一频段谐振,拓宽了双频段微带天线在俯仰面的带宽,以使天线在处于倾斜状态时能够保持稳定的信号。
请参阅图1,在本发明的一实施例中,第一频段微带天线20为单极子形式结构,可以包括第一接地板25和第一射频模块26。第一接地板25与同轴馈电线40的接地端42连接,第一射频模块26与同轴馈电线40的馈电端41连接。从而使得同轴馈电线40为第一频段微带天线20进行馈电。
在本发明的一实施例中,第一射频模块26包括:与同轴馈电线40的馈电端41连接的第一微带馈线24、与第一微带馈线24连接的阻抗变换馈电带23、与阻抗变换馈电带23连接的第一振子臂21。在本发明的一实施例中,第一振子臂21可以为对称结构的单极子振子臂。当第一频段微带天线20为偶极子形式结构时,则第一振子臂21可以为对称结构的偶极子振子臂。在本发明的实施例中,第一振子臂21的构造可以如图1所示的U形结构,第一振子臂21包括两相对平行间隔设置的横向部分211和设置在两横向部分211之间并与横向部分211相连的竖直部分212。
在其他可能的实施例中,第一振子臂21也可以是半圆形结构或其他能够与第一微带馈线24、阻抗变换馈电带23配合产生第一频段谐振的第一振子臂21的结构都适用于本实施例。
在可选的实施例中,第一射频模块26还可以包括:第一微带线22,与第一振子臂21连接,第一微带线22用于扩展第一频段微带天线20的带宽。在本发明的实施例中,第一微带线22的两端分别与第一振子臂21的两横向部分211电连接,并且与第一振子臂21的竖直部分212平行间隔设置。第一微带线22的位置可以根据对带宽拓展的要求沿第一振子臂21的横向部分211进行调整。需要说明的是,第一微带线22可以为中间断开或缺口,缺口的位置和大小同样影响对带宽的扩展,也可以根据实际需要选择断开或缺口。例如,如图2所示,在本发明的另一实施例中,第一微带线22包括第一部分221和与第一部分221相对间隔设置的第二部分222。第一部分221的一端与第一振子臂21的其中一横向部分211电连接,第二部分222的一端与第一振子臂21的另一横向部分211电连接,第一部分221的另一端以及第二部分222的另一端之间设有间隙。第一部分221和第二部分222均与第一振子臂21的竖直部分212平行间隔设置。在其他可能的实施例中,第一微带线22还可以为多根,多根第一微带线22间隔设置在第一振子臂21上。不同数量的第一微带线22对带宽的拓展不同,可以根据实际需要选择合适的第一微带线22的根数。
如图1所示,在本发明的一实施例中,第二频段微带天线30也为单极子形式结构天线,第二频段微带天线30可以包括第二接地板33和第二射频模块35。在基板10上开设有贯穿第一接地板25和第二接地板33的导电 通孔60,第二接地板33通过导电通孔60与第一接地板25连接。在本实施例中,同轴馈电线40的馈电端41与第一射频模块26连接,以实现同轴馈电线40对第一射频模块26的馈电,通过第一射频模块26与第二射频模块35的耦合,实现对第二射频模块35的馈电,同轴馈电线40的接地端42与第一接地板25连接,第一接地板25与第一接地板33通过导电通孔60连接,可以实现第一频段微带天线20与第二频段微带天线30共用同轴馈电线40的接地端42,从而,可以实现同轴馈电线40对第一频段微带天线20和第二频段微带天线30同时进行馈电。优选的,导电通孔60可以为金属化通孔,也可以为其他导电介质的通孔。导电通孔60可以设置在第二接地板33的任意位置,可以为一个或多个。
在本发明的一实施例中,第二射频模块35可以包括:与第二接地板33连接的第二微带馈线32、与第二微带馈线32连接的第二微带线31、与第二微带线31连接的第二振子臂34。优选的,第二微带线31可以为弯曲微带线。将第二微带线31设置为弯曲形式,其优势在于能够大大减小第二频段微带天线30的尺寸,从而节省基板10的空间。在本实施例中,以图1所示的弯曲微带线为例进行说明,其他形式的弯曲微带线也是可行的,这里不作限定。优选的,第二微带线31用于调整第二频段高阶谐振,以使第二频段高阶谐振频率与第一频段谐振的频率相同。在本实施例中,第一微带线31可以降低第二频段高阶谐振的频率,使得第二频段高阶谐振频率与第一频段谐振的频率匹配。
可以理解的是,同轴馈电线40的馈电端41可以与第二微带馈线32直接连接,同轴馈电线40的接地端42可以与第二接地板33直接连接,再通 过导电通孔和射频部分耦合的方式使得第一频段微带天线20和第二频段微带天线30共用同轴馈电线40进行馈电。
在可选的实施例中,阻抗变换馈电带23和第一振子臂21分别与第二微带馈线32形成耦合。具体的,第二微带馈线32在垂直于基板10的方向上的投影与阻抗变换馈电带23和第一振子臂21在垂直于基板10的方向上的投影有重叠,使得第二微带馈线32与阻抗变换馈电带23和第一振子臂21形成耦合。在具体的实施例中,两者耦合形成的电场可以改变第一频段微带天线20与第二频段微带天线30之间电场分布,使第一频段微带天线20与第二频段微带天线30的电磁耦合抵消,从而可以改善阻抗匹配及带宽,对天线的两个频段进行调节。此外,当第一射频模块26设置有第一微带线22时,阻抗变换馈电带23、第一振子臂21和第一微带线22三者分别与第二微带馈线32形成耦合。第一微带线22与第二微带馈线32耦合,进一步对天线的两个频段进行调节。
以第一频段为2.4GHz,第二频段为900MHz为例对本实施的双频段微带天线的测试效果进行说明,图3示出了本发明实施例的散射参数(Scattering parameters,S参数)测试效果图,S11小于-10dB的带宽为890MHz至940MHz以及2.26GHz~2.56GHz,带宽分别为50MHz及300MHz,可以满足常用的900MHz和2.4GHz频段的覆盖。
图4和图5示出了本发明实施例的天线方向图,其中,图3为2.4GHz天线方向图测试效果图,图4为900MHz天线方向图测试效果图。由图3和图4可知,天线在900MHz和2.4GHz均可实现全方向覆盖。在2.4GHz天线方向图中,天线的3dB波宽为接近120度,相对于一般全向性天线的 80~90度,波宽有了明显的提高。
优选的,基板10的长度为86mm,宽度为9mm,厚度为0.8mm;2.4GHz微带天线20为对称单极子形式,第一接地板25的长度为21mm,第一微带馈线24的宽度为1mm,阻抗变换馈电带23的宽度为2.5mm,第一振子臂21的单边长度为20mm,其中,第一振子臂21的环宽为1mm,第一微带线22的尺寸为1mm*9mm;900MHz微带天线30为单极子形式,第二微带馈线32的尺寸为25mm*1mm,第二微带线31的弯曲部的尺寸为8.5mm*2.5mm,第二振子臂34为T型结构,其中,与第二微带线31连接的第二振子臂34的第一部分的尺寸为15mm*1mm,第二振子臂34的第二部分的尺寸为9mm*1.5mm。
可选的,可以用两根同轴馈电线取代一根同轴馈电线,即利用一根同轴馈电线连接第一频段微带天线20的第一接地板25和第一射频模块26,为第一频段微带天线20进行馈电;利用另一根同轴馈电线连接第二频段微带天线30的第二接地板33和第二微带馈线32,为第二频段微带天线30进行馈电。
可选的,双频段微带天线除可以为900MHz与2.4GHz两天线的组合外,也可以是2.4GHz与5.8GHz两天线的组合,或者为其他两频段的天线的组合,本实施例不作限定。
本发明实施例提供的一种双频段微带天线,通过第一频段微带天线产生第一频段谐振,第二频段微带天线产生第二频段谐振及第二频段高阶谐振,第二频段高阶谐振用于与第一频段谐振叠加。从而,可以拓宽双频段微带天线在俯仰面的波宽以使天线处于倾斜状态时能够保持稳定的信号。
本发明实施例还提供了一种无人机,如图6所示,该无人机包括机身51、设于机身51下方的起落架52以及上述实施例中任一项描述的双频段微带天线53,在本发明的一实施例中,双频段微带天线53设置在起落架52中。在附图5中以无人机的仰视图为例示意性的示出了双频段微带天线53的安装位置,本发明实施例中双频段微带天线53的安装位置并不仅限于附图5示出的安装位置,其他能够较好的满足信号收发的双频段微带天线53的安装位置亦可。
在无人机上的起落架中设置的双频段微带天线,拓宽了双频微带天线在俯仰面的波宽,在天线倾斜时,信号保持稳定。从而,使得无人机在飞行过程,减小无人机的飞行姿势对无人机通信的影响,保障无人机在飞行过程中的通信。
可以理解的是,本发明实施例提供的双频段微带天线不仅可以应用在无人机上,也可以应用于同时使用第一频段(如2.4GHz)和第二频段(如900MHz)两个频段的其他场景中,本实施例不作限定。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (15)

  1. 一种双频段微带天线,其特征在于,包括:
    基板(10),具有正面和与所述正面相对的反面;
    第一频段微带天线(20),设置在所述基板(10)的正面,用于产生第一频段谐振;
    第二频段微带天线(30),设置在所述基板(10)的反面,用于产生第二频段谐振及所述第二频段谐振的高阶谐振,所述第二频段谐振的高阶谐振用于与所述第一频段谐振叠加;
    同轴馈电线(40),设置在所述基板(10)上,用于给所述第一频段微带天线(20)和所述第二频段微带天线(30)馈电。
  2. 如权利要求1所述的双频段微带天线,其特征在于,所述第一频段微带天线(20)包括第一接地板(25)和第一射频模块(26);
    所述第一接地板(25)与所述同轴馈电线(40)的接地端(42)电连接,所述第一射频模块(26)与所述同轴馈电线(40)的馈电端(41)电连接。
  3. 如权利要求2所述的双频段微带天线,其特征在于,所述第一射频模块(26)包括:
    与所述同轴馈电线(40)的馈电端(41)电连接的第一微带馈线(24)、与所述第一微带馈线(24)电连接的阻抗变换馈电带(23)、与所述阻抗变换馈电带(23)电连接的第一振子臂(21)。
  4. 如权利要求3所述的双频段微带天线,其特征在于,所述第一射频模块(26)还包括:
    第一微带线(22),与所述第一振子臂(21)电连接,所述第一微带线(22)用于扩展所述第一频段微带天线(20)的带宽。
  5. 根据权利要求4所述的双频段微带天线,其特征在于,所述第一振子臂(21)包括两平行间隔设置的横向部分(211)以及设置在两所述横向部分(211)之间并与所述横向部分相连的竖直部分(212),所述第一微带线(22)与所述竖直部分(212)平行间隔设置并与两所述横向部分(211)相连。
  6. 根据权利要求5所述的双频段微带天线,其特征在于,所述第一微带线(22)包括与其中一所述横向部分(211)电连接的第一部分以及与另一所述横向部分(211)电连接的第二部分,所述第一部分与所述第二部分相对间隔设置。
  7. 如权利要求3-6任一项所述的双频段微带天线,其特征在于,所述第一振子臂(21)为对称结构的振子臂。
  8. 如权利要求3-7任一项所述的双频段微带天线,其特征在于,所述第二频段微带天线(30)包括第二接地板(33)和第二射频模块(35);
    所述基板(10)上开设有贯通所述第一接地板(25)与所述第二接地板(33)导电通孔(60),所述第二接地板(33)通过所述导电通孔(60)与所述第一接地板(25)电连接。
  9. 如权利要求8所述的双频段微带天线,其特征在于,所述第二射频模块(35)包括:
    与所述第二接地板(33)电连接的第二微带馈线(32)、与所述第二微带馈线(32)电连接的第二微带线(31)、与所述第二微带线(31)电连接 的第二振子臂(34)。
  10. 如权利要求9所述的双频段微带天线,其特征在于,所述第二微带线(31)为弯曲微带线。
  11. 如权利要求9或10所述的双频段微带天线,其特征在于,
    所述阻抗变换馈电带(23)和所述第一振子臂(21)在垂直于所述基板(10)的方向上的投影分别与所述第二微带馈线(32)在垂直于所述基板(10)的方向上的投影重叠,使得所述阻抗变换馈电带(23)和所述第一振子臂(21)分别与所述第二微带馈线(32)形成耦合。
  12. 如权利要求1-11任一项所述的双频段微带天线,其特征在于,
    所述第一频段微带天线(20)为单极子形式结构天线、偶极子形式结构天线或者环形结构天线;
    所述第二频段微带天线(30)为单极子形式结构天线、偶极子形式结构天线或者环形结构天线。
  13. 如权利要求1-12任一项所述的双频段微带天线,其特征在于,
    所述第一频段微带天线(20)为2.4GHz频段天线;
    所述第二频段微带天线(30)为900MHz频段天线。
  14. 一种无人机,其特征在于,包括机身、设于所述机身下方的起落架以及如权利要求1-13任一项所述的双频段微带天线。
  15. 根据权利要求14所述的无人机,其特征在于,所述双频带微带天线设置在所述起落架中。
PCT/CN2017/113381 2016-12-14 2017-11-28 一种双频段微带天线及应用该天线的无人机 WO2018107965A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17857670.8A EP3503297B1 (en) 2016-12-14 2017-11-28 Dual-frequency-band micro-strip antenna and unmanned aerial vehicle using same
US15/950,546 US20180233810A1 (en) 2016-12-14 2018-04-11 Dual-band microstrip antenna and unmanned aerial vehicle using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621380704.7 2016-12-14
CN201621380704.7U CN206907920U (zh) 2016-12-14 2016-12-14 一种双频段微带天线及应用该天线的无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/950,546 Continuation US20180233810A1 (en) 2016-12-14 2018-04-11 Dual-band microstrip antenna and unmanned aerial vehicle using same

Publications (1)

Publication Number Publication Date
WO2018107965A1 true WO2018107965A1 (zh) 2018-06-21

Family

ID=61294734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113381 WO2018107965A1 (zh) 2016-12-14 2017-11-28 一种双频段微带天线及应用该天线的无人机

Country Status (4)

Country Link
US (1) US20180233810A1 (zh)
EP (1) EP3503297B1 (zh)
CN (1) CN206907920U (zh)
WO (1) WO2018107965A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767434A (zh) * 2018-08-20 2018-11-06 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN112582791A (zh) * 2020-11-13 2021-03-30 西安交通大学 一种含有类同轴结构的微带馈电网络结构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630715B (zh) 2018-01-22 2022-06-17 京瓷株式会社 天线、自行车、显示设备及无人航空器
CN108598688B (zh) * 2018-02-14 2020-07-24 深圳市道通智能航空技术有限公司 无人机内置天线及无人机
CN116799501A (zh) * 2018-02-14 2023-09-22 深圳市道通智能航空技术股份有限公司 无人机内置双频天线及无人机
WO2020019147A1 (zh) * 2018-07-24 2020-01-30 深圳市大疆创新科技有限公司 无人飞行器及其天线
GB2575974A (en) * 2018-07-27 2020-02-05 Airbus Operations Ltd Aircraft landing
CN113993778B (zh) 2019-07-24 2023-04-21 京瓷株式会社 制动杆以及变速器
CN210430091U (zh) * 2019-09-23 2020-04-28 深圳市安拓浦科技有限公司 一种天线振子和平面天线
CN111204450B (zh) * 2020-04-23 2020-08-11 北京智芯微电子科技有限公司 无人机起落架及无人机
CN111585010B (zh) * 2020-06-29 2021-07-13 歌尔科技有限公司 一种天线及可穿戴设备
CN112216970B (zh) * 2020-09-25 2023-02-24 杭州泛利科技有限公司 一种小型化高增益柔性无人机天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525597A (zh) * 2003-02-28 2004-09-01 友讯科技股份有限公司 平面式双l型双频天线
US20070146213A1 (en) * 2005-12-28 2007-06-28 Fujitsu Limited Antenna, method of adjusting resonance frequency thereof, and wireless communication device
CN101533947A (zh) * 2009-04-16 2009-09-16 旭丽电子(广州)有限公司 双馈入天线
CN201392882Y (zh) * 2009-03-25 2010-01-27 智捷科技股份有限公司 双频天线
TW201328016A (zh) * 2011-12-27 2013-07-01 Acer Inc 通訊電子裝置及其天線結構
CN106184707A (zh) * 2016-07-27 2016-12-07 深圳市天鼎微波科技有限公司 一种具有天线装置的无人机结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229782A (en) * 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
DE69832696T2 (de) * 1998-06-30 2006-08-17 Lucent Technologies Inc. Phasenverzögerungsleitung für kollineare Gruppenantenne
US6014112A (en) * 1998-08-06 2000-01-11 The United States Of America As Represented By The Secretary Of The Army Simplified stacked dipole antenna
DE10023016B4 (de) * 2000-05-05 2009-10-08 UMS Umwelt-Meßflug-Systeme GmbH Luftfahrzeug sowie Antriebssystem und Steuerungsverfahren
US6337666B1 (en) * 2000-09-05 2002-01-08 Rangestar Wireless, Inc. Planar sleeve dipole antenna
US6747605B2 (en) * 2001-05-07 2004-06-08 Atheros Communications, Inc. Planar high-frequency antenna
US9493235B2 (en) * 2002-10-01 2016-11-15 Dylan T X Zhou Amphibious vertical takeoff and landing unmanned device
US6765539B1 (en) * 2003-01-24 2004-07-20 Input Output Precise Corporation Planar multiple band omni radiation pattern antenna
KR20070112413A (ko) * 2005-03-28 2007-11-23 야마하하쓰도키 가부시키가이샤 무인 헬리콥터
US9573683B2 (en) * 2014-04-28 2017-02-21 Arch-Aerial, Llc Collapsible multi-rotor UAV
EP3509172B1 (en) * 2014-06-26 2022-03-16 SZ DJI Technology Co., Ltd. An aerial vehicle and a signal line protection assembly thereof
CA2911998A1 (en) * 2014-11-26 2016-05-26 Gilles Daigle Unmanned aerial vehicle
CN204424449U (zh) * 2015-02-09 2015-06-24 深圳市大疆创新科技有限公司 双频段微带天线
CN205583125U (zh) * 2016-04-28 2016-09-14 深圳市道通智能航空技术有限公司 一种无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525597A (zh) * 2003-02-28 2004-09-01 友讯科技股份有限公司 平面式双l型双频天线
US20070146213A1 (en) * 2005-12-28 2007-06-28 Fujitsu Limited Antenna, method of adjusting resonance frequency thereof, and wireless communication device
CN201392882Y (zh) * 2009-03-25 2010-01-27 智捷科技股份有限公司 双频天线
CN101533947A (zh) * 2009-04-16 2009-09-16 旭丽电子(广州)有限公司 双馈入天线
TW201328016A (zh) * 2011-12-27 2013-07-01 Acer Inc 通訊電子裝置及其天線結構
CN106184707A (zh) * 2016-07-27 2016-12-07 深圳市天鼎微波科技有限公司 一种具有天线装置的无人机结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767434A (zh) * 2018-08-20 2018-11-06 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108767434B (zh) * 2018-08-20 2024-04-19 深圳市道通智能航空技术股份有限公司 天线及无人飞行器
CN112582791A (zh) * 2020-11-13 2021-03-30 西安交通大学 一种含有类同轴结构的微带馈电网络结构

Also Published As

Publication number Publication date
EP3503297A4 (en) 2019-10-23
CN206907920U (zh) 2018-01-19
US20180233810A1 (en) 2018-08-16
EP3503297B1 (en) 2021-02-17
EP3503297A1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
WO2018107965A1 (zh) 一种双频段微带天线及应用该天线的无人机
EP3065218B1 (en) Electronic device including patch antenna assembly having capacitive feed points and spaced apart conductive shielding vias and related methods
US9716312B2 (en) Multiple-input multiple-output ultra-wideband antennas
US9917370B2 (en) Dual-band printed omnidirectional antenna
CA2803197C (en) A broadband monopole antenna with dual radiating structures
EP2493015B1 (en) Mobile communication device and antenna structure thereof
WO2020249087A1 (zh) 一种双频天线及飞行器
CN208315766U (zh) 天线和天线系统
WO2018082558A1 (zh) 天线及通信终端
WO2021078260A1 (zh) 双频天线和飞行器
WO2020029060A1 (zh) 一种天线
WO2020087390A1 (zh) 螺旋天线及通信设备
US11431093B2 (en) Unmanned aerial vehicle built-in dual-band antenna and unmanned aerial vehicle
CN107994321B (zh) 一种带开口谐振环的双频偶极子天线
EP3518344B1 (en) Antenna device
EP3314697B1 (en) Dual band slot antenna
TWI566474B (zh) 多頻天線
CN210111029U (zh) 一种双频天线及飞行器
TWI609526B (zh) 高效率天線
WO2021078200A1 (zh) 双频天线和飞行器
KR20180123804A (ko) 초광대역 평면 안테나
CN109075452B (zh) 宽带背腔式开槽天线
TWI453988B (zh) 一種內藏式耦合型寬頻天線
TWM444619U (zh) 多頻寄生耦合天線及具有多頻寄生耦合天線的無線通訊裝置
Joseph et al. Broadband square slot antenna for circular polarization with separated L-probes and stubs in the slot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE