WO2020249087A1 - 一种双频天线及飞行器 - Google Patents
一种双频天线及飞行器 Download PDFInfo
- Publication number
- WO2020249087A1 WO2020249087A1 PCT/CN2020/095840 CN2020095840W WO2020249087A1 WO 2020249087 A1 WO2020249087 A1 WO 2020249087A1 CN 2020095840 W CN2020095840 W CN 2020095840W WO 2020249087 A1 WO2020249087 A1 WO 2020249087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- dual
- radiation
- patch
- feeding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/285—Aircraft wire antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/10—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
Definitions
- This application relates to the technical field of communication equipment, and in particular to a dual-frequency antenna and an aircraft.
- microstrip antenna is an antenna formed by pasting conductor patches on a dielectric substrate with a grounding plate. It uses coaxial line feed to excite the electromagnetic field between the conductor patch and the grounding plate.
- External radiation after decades of development, microstrip antennas have been widely used in many fields. They have the advantages of low profile, small size, light weight, low cost, flexible and diversified designs, and can be combined with active devices. .
- the two microstrip antennas of the existing dual-band antenna are fed simultaneously on the front and back sides of the substrate with two feeding coaxial lines, which makes the feeding structure of the antenna complicated, and the feeding network needs at least two Each port is connected to the antenna, which increases the burden on the radio frequency end, and the antenna structure is complicated.
- the main purpose of the present invention is to provide a dual-band antenna and aircraft, aiming to simplify the feed structure to achieve better dual-band radiation.
- the present invention provides a dual-frequency antenna, which includes:
- a substrate, a first radiation patch, a second radiation patch, a coaxial line and a radiation tube, the first radiation patch and the second radiation patch are arranged on the surface of the substrate;
- the coaxial wire includes an inner wire and an outer wire insulated from the inner wire;
- the first radiating patch is provided with a feeding point, and the inner wire is electrically connected to the first radiating patch through the feeding point to feed the first radiating patch;
- the second radiation patch is provided with a ground point, one end of the outer wire is electrically connected to the second radiation patch through the ground point, and the outer wire is electrically connected to the radiant tube.
- the second radiation patch is provided with a first slit, and the first slit extends to one side of the first radiation patch;
- the first radiation patch includes a feeding arm and a first vibrator arm, the feeding arm is arranged in the first gap, and a feeding point is provided on a side of the feeding arm away from the first vibrator arm ,
- the inner wire is electrically connected to the first radiation patch through the feeding point;
- the first vibrator arm is exposed to the first gap and is electrically connected to the feeding arm.
- the first vibrator arm includes a power feeding portion and a vibrator portion, and the power feeding portion is disposed between the vibrator portion and the power feeding arm.
- the power feeding part is triangular, trapezoidal or elliptical.
- the vibrator part is provided with a feeding slit.
- the feeding slot is rectangular or elliptical.
- the vibrator part is rectangular, trapezoidal, U-shaped or tapered.
- the second radiating patch includes a grounding arm, and a grounding point is provided on a side of the grounding arm away from the first radiating patch, and the outer wire is connected to the second radiating patch through the grounding point. It is electrically connected, and the first gap is provided in the ground arm.
- the second radiation patch further includes a second vibrator arm and a third vibrator arm, the second and third vibrator arms are respectively disposed on opposite sides of the extending direction of the first slit, And electrically connected to the ground arm;
- a second gap is provided between the second vibrator arm and the ground arm;
- a third gap is provided between the third vibrator arm and the ground arm.
- the extension direction of the second vibrator arm and the extension direction of the first slit are opposite to each other;
- the third vibrator arm and the second vibrator arm extend in the same direction and are symmetrically arranged on opposite sides of the first gap.
- the dual-frequency antenna can generate resonance in the first radiation frequency band and resonance in the second radiation frequency band; the first radiation frequency band is 2.35 GHz-2.55 GHz; and the second radiation frequency band is 880 MHz-940 MHz.
- the present invention also provides an aircraft that includes a fuselage, an arm connected to the fuselage, a power device provided on the arm, a landing gear provided on the fuselage, and the aforementioned dual-frequency antenna ,
- the dual-frequency antenna is arranged in the landing gear.
- the dual-frequency antenna provided by the present invention has the following advantages:
- the inner wire of the coaxial line is electrically connected with the first radiating patch to feed the dual-frequency antenna, and the outer wires of the coaxial line are respectively It is electrically connected to the second radiating patch and the radiating tube, so that the radiating tube and the second radiating patch are used together as a radiating component, which simplifies the feeding structure and optimizes the radiator structure of the antenna, making the overall structure of the antenna smaller and more compact. Realize the single-feed dual-frequency radiation of the antenna.
- the feeding arm of the first radiating patch is arranged in the first slit and electrically connected to the feeding arm
- the first vibrator arm is exposed and arranged in the first gap, and the stripline structure is used for center feeding, so that the dual-frequency antenna structure is more compact and compact.
- the dual-frequency antenna has better high-frequency characteristics and achieves better omnidirectionality in a limited space.
- Fig. 1 is a schematic structural diagram of a dual-frequency antenna provided by the present invention
- FIG. 2 is a schematic diagram of the structure of the first radiating patch and the second radiating patch of the dual-frequency antenna
- 3A is a schematic diagram of a deformed structure of the first dipole arm of the first radiation patch
- 3B is a schematic diagram of a deformed structure of the first dipole arm of the first radiation patch
- 3C is a schematic diagram of a deformed structure of the first vibrator arm of the first radiation patch
- 3D is a schematic diagram of a deformed structure of the first vibrator arm of the first radiation patch
- FIG. 4 is a schematic diagram of the structure of the second radiating patch and the first radiating patch of the dual-frequency antenna
- Figure 5 is the S curve parameter diagram of the dual-frequency antenna
- Fig. 6A is a directivity diagram of a dual-frequency antenna at 900MHz
- Figure 6B is a pattern of the dual-frequency antenna at 2.45GHz
- FIG. 7 is a schematic top view of the structure of an aircraft provided by the second embodiment of the present invention.
- the first embodiment of the present invention provides a dual-frequency antenna 100.
- the dual-frequency antenna 100 includes a substrate 10, a first radiating patch 20, a second radiating patch 30, a coaxial line 40, and a radiating tube 50.
- the substrate 10 is made of insulating materials such as plastic or glass fiber for carrying the first radiation patch 20 and the second radiation patch 30.
- the substrate 10 includes a first surface and a second surface that are oppositely disposed.
- the patch 20 is disposed on the first surface or the second surface.
- the second radiation patch 30 and the first radiation patch 20 are arranged on the same surface of the substrate 10 or on the first and second opposite surfaces of the substrate 10, respectively.
- the second radiation patch 30 and the first The radiation patch 20 is provided on the same surface of the substrate 10 as an example for description.
- the first radiating patch 20 is fed through the inner wire 401 of the coaxial line 40, that is, is electrically connected to the feeding device or the feeding network through the inner wire 401.
- the second radiating patch 30 and the radiating tube 50 are electrically connected by the outer wire 402 of the coaxial line 40, so that the radiating tube 50 and the second radiating patch 30 are used together as a radiation component to enhance the radiation performance of the dual-band antenna 100.
- the dual-frequency antenna 100 can generate resonance in the first radiation frequency band and resonance in the second radiation frequency band.
- the first radiation frequency band is 2.35GHz-2.55GHz
- the second radiation frequency band is 880MHz-940MHz.
- the radiation tube 50 is a copper tube with a cylindrical or tapered sleeve structure, that is, a sleeve structure, and the length of the radiation tube 50 is 1/8-3/4 of the low-frequency resonance wavelength.
- the length D of the outer wire 402 between the radiation tube 50 and the first radiation patch 20 is greater than zero and less than 1/4 of the low-frequency resonance wavelength.
- the inner wire 401 of the coaxial line 40 is electrically connected to the first radiating patch 20 to feed the dual-frequency antenna 100
- the outer wire 402 of the coaxial line 40 is electrically connected to the second radiating patch 20 and the radiating tube 50, respectively
- the radiating tube 50 and the second radiating patch 30 are used together as the radiating component, which simplifies the feeding structure, while optimizing the radiating structure of the dual-frequency antenna 100, realizes the single-feed dual-frequency radiation of the antenna, and makes the low-frequency antenna
- the directional pattern has better performance and the standing wave bandwidth.
- the radiant tube 50 adopts a sleeve or sleeve structure, that is, a through hole 501 is provided in the radiant tube 50, and the inner wire 401 or the coaxial wire 40 of the coaxial line 40 passes through the through hole 501 to
- the stability of the electrical connection between the radiant tube 50 and the coaxial line 40 is better.
- the second radiating patch 30 is provided with a first slit 301, and the first slit 301 extends to the side where the first radiating patch 20 is located.
- the first radiating patch 20 includes a feeding arm 201 and a first vibrator arm 202.
- the feeding arm 201 is arranged in a strip structure in the first gap 301, and the feeding arm 201 is provided with a feeding arm on the side away from the first vibrator arm 202.
- the electric point 2011, the inner wire 401 is electrically connected to the first radiating patch 202 through the feeding point 2011.
- the first vibrator arm 202 is exposed from the first gap 301 and is electrically connected to the feeding arm 202.
- the feeding arm 201 of the first radiation patch 20 is placed in the first slit 301, and the feeder
- the first vibrator arm 202 electrically connected to the electric arm 201 is exposed and disposed in the first slot 301, so that the dual-frequency antenna structure is more compact and compact, and achieves better omnidirectionality in a limited space.
- the first vibrator arm 202 includes a power feeding portion 2023 and a vibrator portion 2021.
- the feeding part 2023 is arranged between the dipole part 2021 and the feeding arm 201, which can be used as the radiation structure of the first dipole arm 202 and can adjust the impedance of the dual-frequency antenna 100 to increase the radiation of the first radiation patch 20
- the bandwidth of the frequency band makes the performance of the dual-frequency antenna 100 more stable.
- the power feeding portion 2023 is triangular, trapezoidal or elliptical, so that the dual-frequency antenna 100 has better stability.
- the vibrator portion 2021 has a rectangular shape, a trapezoidal shape, a cone shape, a U shape, or a curved shape with multiple bends, as shown in FIGS. 3A-3B.
- the extension length of the first vibrator arm 202 in the first direction is 1/8 to 3/4 of the high-frequency resonance wavelength, which is the extension direction of the first slot.
- the extension length of the first radiation patch 20 in the first direction is 1/8 to 3/4 of the low-frequency resonance wavelength.
- the vibrator portion 2021 is provided with a feeding slot 2023, and the feeding slot 2023 may be rectangular, elliptical or triangular.
- the second radiating patch 30 includes a grounding arm 302.
- the grounding arm 302 is provided with a grounding point 3021 on the side away from the first radiating patch 20.
- the outer wire 402 is electrically connected to the second radiating patch 30 through the grounding point 3021 , And the first gap 301 is disposed in the ground arm 302.
- the second radiation patch 30 also includes a second dipole arm 304 and a third dipole arm 305, the second dipole arm 304 and the third dipole arm 305 are respectively disposed on opposite sides of the extending direction of the first slit 301, and One end of the second vibrator arm 304 and one end of the third vibrator arm 305 are both electrically connected to the ground arm 302.
- a second gap 306 is provided between the second vibrator arm 304 and the ground arm 302
- a third gap 307 is provided between the third vibrator arm 305 and the ground arm 302
- the second vibrator arm 304 and the third vibrator arm 305 is symmetrically arranged on opposite sides of the feeding arm 201.
- the second vibrator arm 304 and/or the third vibrator arm 305 has an "L" shape, and the extension length in the first direction is 1/8 to 3/4 of the high-frequency resonance wavelength.
- the extension length of the second radiation patch 30 in the first direction is 1/8 to 3/4 of the low-frequency resonance wavelength.
- the ground arm 302 of the second radiation patch 30 is provided with a first gap 301
- the feeding arm 201 is disposed in the first gap 301
- the first vibrator arm 202 is exposed to the first gap.
- the second vibrator arm 304 and the third vibrator arm 305 are respectively disposed on opposite sides of the extending direction of the first slot 301.
- a second gap 306 is provided between the second dipole arm 304 and the ground arm 302
- a third gap 307 is provided between the third dipole arm 305 and the ground arm 302, so that the high frequency of the dual-frequency antenna 100 Better features.
- the first dipole arm 202 of the first radiation patch 20 and the second dipole arm 304 and the third dipole arm 305 of the second radiation patch 30 can generate resonance in the first radiation frequency band, that is, high frequency resonance .
- the radiation tube 50 and the first radiation patch 20 can generate resonance in the second radiation frequency band, that is, low-frequency resonance.
- the first dipole arm 202 is shared by low-frequency radiation and high-frequency radiation, effectively reducing the size of the antenna, using the stripline structure for center feeding, the antenna pattern performance is better, and the standing wave bandwidth.
- the dual-band antenna 100 can work at 880MHz ⁇ 940MHz and 2.35GHz ⁇ 2.55GHz, with bandwidths of 60MHz (5.5%) and 200MHz (8.0%) respectively, meeting the commonly used 900MHz and 2.45GHz frequency bands Coverage.
- the dual-band antenna 100 can achieve omnidirectional coverage at 900 MHz, and the maximum antenna radiation direction is in the horizontal direction.
- the dual-band antenna 100 can achieve omnidirectional coverage at 2.45 GHz, and the maximum radiation direction is in the horizontal direction.
- a second embodiment of the present invention provides an aircraft 200.
- the aircraft 200 includes a fuselage 60, an arm 70 connected to the fuselage 60, a power device 80 provided on the arm 70, and a fuselage 60.
- the power device 80 is used to provide flight power for the aircraft 200, and the dual-frequency antenna 100 is arranged in the landing gear 90.
- the bottom view of the aircraft is taken as an example to schematically show the installation position of the dual-frequency antenna 100.
- the installation position of the dual-frequency antenna 100 in this embodiment is not limited to the installation position shown in FIG.
- the installation position of the dual-frequency antenna 100 that can better meet the requirements of signal transmission and reception is also acceptable.
- the dual-frequency antenna 100 provided in the landing gear 90 of the aircraft 200 widens the wave width of the dual-frequency antenna 100 on the elevation plane, and the signal remains stable when the antenna is tilted. In this way, during the flight of the aircraft, the influence of the flight posture of the aircraft on communication is reduced, and the communication of the aircraft 200 during the flight is ensured.
- the dual-frequency antenna provided by the present invention has the following advantages:
- the inner wire of the coaxial line is electrically connected with the first radiating patch to feed the dual-frequency antenna, and the outer wires of the coaxial line are respectively It is electrically connected to the second radiating patch and the radiating tube, so that the radiating tube and the second radiating patch are used together as a radiating component, which simplifies the feeding structure and optimizes the radiator structure of the antenna, making the overall structure of the antenna smaller and more compact. Realize the single-feed dual-frequency radiation of the antenna.
- the feeding arm of the first radiating patch is arranged in the first slit and electrically connected to the feeding arm
- the first vibrator arm is exposed and arranged in the first gap, and the stripline structure is used for center feeding, so that the dual-frequency antenna structure is more compact and compact.
- the dual-frequency antenna has better high-frequency characteristics and achieves better omnidirectionality in a limited space.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
一种双频天线及飞行器,其中的双频天线包括基板(10)、第一辐射贴片(20)、第二辐射贴片(30)、同轴线(40)以及辐射管(50),第一辐射贴片(20)、第二辐射贴片(30)设置于基板(10)的表面;第一辐射贴片(20)设置有馈电点(2011),同轴线(40)的内导线(401)通过馈电点(2011)与第一辐射贴片(20)电连接;第二辐射贴片(30)设置有接地点(3021),同轴线(40)的外导线(402)的一端通过接地点(3021)与第二辐射贴片(30)电连接,且外导线(402)与辐射管(50)电连接。
Description
本申请要求于2019年6月14日提交中国专利局、申请号为201910515959.1、申请名称为“一种双频天线及飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信设备技术领域,尤其涉及一种双频天线及飞行器。
随着无线通信的飞速发展,各种数据业务的需求,天线设计主要朝着小型化、多频段及宽频带发展,小型化要求天线缩小自身尺寸,以适应通信设备集成度不断提高、体积越来越小的发展趋势,微带天线是在带有接地板的介质基板上贴导体贴片所构成的天线,利用同轴线馈电,使导体贴片和接地板间激励起电磁场,利用缝隙向外辐射,微带天线经过几十年的发展,已经在很多领域内广泛应用,其具有剖面低、尺寸小、重量轻、成本低、设计灵活多样化等优点,并且可以和有源器件结合设计。
现有的该部分双频天线的两个微带天线分别用两根馈电同轴线在基板的正反面同时进行馈电,使得天线的馈电结构复杂,在应用中馈电网络需要至少两个端口和天线进行连接,增加了射频端的负担,且天线结构复杂。
发明内容
本发明的主要目的在于提供一种双频天线及飞行器,旨在简化馈电结构实现较佳的双频段辐射。
为实现上述目的,本发明提供一种双频天线,所述双频天线包括:
基板、第一辐射贴片、第二辐射贴片、同轴线以及辐射管,所述第一辐射贴片、第二辐射贴片设置于所述基板的表面;
所述同轴线包括内导线以及与所述内导线绝缘隔离的外导线;
所述第一辐射贴片设置有馈电点,所述内导线与通过所述馈电点与所述第一辐射贴片电连接,以为所述第一辐射贴片馈电;
所述第二辐射贴片设置有接地点,所述外导线的一端通过所述接地点与所述第二辐射贴片电连接,且所述外导线与所述辐射管电连接。
优选地,所述第二辐射贴片开设有第一缝隙,所述第一缝隙向所述第一辐射贴片一侧延伸;
所述第一辐射贴片包括馈电臂和第一振子臂,所述馈电臂设置于所述第一缝隙内,所述馈电臂远离所述第一振子臂一侧设置有馈电点,所述内导线通过所述馈电点与所述第一辐射贴片电连接;
所述第一振子臂外露于所述第一缝隙并与所述馈电臂电连接。
优选地,所述第一振子臂包括馈电部和振子部,所述馈电部设置于所述振子部和所述馈电臂之间。
优选地,所述馈电部为三角形、梯形或椭圆形。
优选地,所述振子部开设有馈电缝隙。
优选地,所述馈电缝隙为矩形、椭圆形。
优选地,所述振子部呈矩形、梯形、U形或锥形。
优选地,所述第二辐射贴片包括接地臂,所述接地臂远离所述第一辐射贴片一侧设置有接地点,所述外导线通过所述接地点与所述第二辐射贴片电连接,且所述第一缝隙设置于所述接地臂。
优选地,所述第二辐射贴片还包括第二振子臂和第三振子臂,所述第二振子臂和第三振子臂分别设置于所述第一缝隙延伸方向的相对两侧,并与所述接地臂电连接;
所述第二振子臂和所述接地臂之间设置有第二缝隙;
所述第三振子臂和所述接地臂之间设置有第三缝隙。
优选地,所述第二振子臂的延伸方向与所述第一缝隙的延伸方向互为相反;
所述第三振子臂和所述第二振子臂延伸方向相同,且对称设置于所述第一缝隙的相对两侧。
优选地,所述双频天线可以产生第一辐射频段的谐振和第二辐射频段的谐振;所述第一辐射频段为2.35GHz-2.55GHz;所述第二辐射频段为880MHz-940MHz。
本发明还提供一种飞行器,所述飞行器包括机身、与所述机身相连的机臂、设于所述机臂的动力装置、设于所述机身的起落架以及前述的双频天线,所述双频天线设置在所述起落架中。
与现有设计相比,本发明提供的双频天线具有以下优点:
1、通过在基板上设置第一辐射贴片和第二辐射贴片,利用同轴线的内导线与第一辐射贴片电连接,为该双频天线馈电,同轴线的外导线分别与第二辐射贴片和辐射管电连接,以将辐射管和第二辐射贴片共同作为辐射组件,简化馈电结构,优化了天线的辐射体结构,使得天线整体结构更为小巧,同时可以实现天线的单馈电双频辐射。
2、通过在第二辐射贴片设置朝向第一辐射贴片一侧延伸的第一缝隙,将第一辐射贴片的馈电臂设置于该第一缝隙内,并使与馈电臂电连接的第一振子臂外露设置于该第一缝隙,利用带状线结构中心馈电,从而使得该双频天线结构更为小巧紧凑。
同时,通过将第二振子臂和第三振子臂分别设置在馈电臂的相对两侧,并在该第二振子臂和接地臂之间设置有第二缝隙,第三振子臂和接地臂之间设置有第三缝隙,以使得该双频天线的高频特性更优,并在有限空间下实现较优的全方向性。
图1为本发明提供的双频天线的结构示意图;
图2为双频天线的第一辐射贴片与第二辐射贴片配合的结构示意图;
图3A为第一辐射贴片的第一振子臂的一种变形结构示意图;
图3B为第一辐射贴片的第一振子臂的一种变形结构示意图;
图3C为第一辐射贴片的第一振子臂的一种变形结构示意图;
图3D为第一辐射贴片的第一振子臂的一种变形结构示意图;
图4为双频天线的第二辐射贴片与第一辐射贴片配合的结构示意图;
图5为双频天线的S曲线参数图;
图6A为双频天线在900MHz的方向图;
图6B为双频天线在2.45GHz的方向图;
图7为本发明第二实施例提供的一种飞行器的俯视结构示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明第一实施例提供一种双频天线100,该双频天线100包括基板10、第一辐射贴片20、第二辐射贴片30、同轴线40以及辐射管50。其中,基板10为塑胶或玻璃纤维等绝缘材料制成,用于承载第一辐射贴片20和第二辐射贴片30,该基板10包括相对设置的第一表面和第二表面,第一辐射贴片20设置于第一表面或第二表面。
第二辐射贴片30和第一辐射贴片20设置于基板10的同一表面或分别设置于基板10相对的第一表面和第二表面,本实施例中以第二辐射贴片30和第一辐射贴片20设置于基板10的同一表面为例进行说明。第一辐射贴片20通过同轴线40的内导线401进行馈电,也即通过内导线401与馈电装置或馈电网络电连接。第二辐射贴片30和辐射管50通过同轴线40的外导线402电连接,以将辐射管50和第二辐射贴片30共同作为辐射组件,增强双频天线100的辐射性能。馈电时,双频天线100可以产生第一辐射频段的谐振和第二辐射频段的谐振。其中,第一辐射频段为2.35GHz-2.55GHz,第二辐射频段为880MHz-940MHz。
优选地,该辐射管50为铜管,其形状为圆柱形或锥形的套筒结构,也即套管结构,该辐射管50的长度为低频谐振波长的1/8-3/4。
优选地,辐射管50和第一辐射贴片20之间的外导线402的长度D大于零且小于低频谐振波长的1/4。
通过同轴线40的内导线401与第一辐射贴片20电连接,为该双频天线100馈电,同轴线40的外导线402分别与第二辐射贴片20和辐射管50电连接,以将辐射管50和第二辐射贴片30共同作为辐射组件,简化了馈电结构,同时优化了双频天线100的辐射结构,实现天线的单馈电双频辐射,并使得低频的天线方向图性能较佳,驻波带宽。
优选地,辐射管50采用套筒或套管结构,也即该辐射管50内设置有贯穿的通孔501,同轴线40的内导线401或同轴线40穿过该通孔501,以使辐射管50与同轴线40的电连接稳定性更优。
请参阅图2,第二辐射贴片30开设有第一缝隙301,第一缝隙301向第一辐射贴片20所在一侧延伸。第一辐射贴片20包括馈电臂201和第一振子臂202。201馈电臂呈带状结构设置于第一缝隙301内,且馈电臂201远离第一振子臂202一侧设置有馈电点2011,内导线401通过馈电点2011与第一辐射贴片202电连接。第一振子臂202外露于第一缝隙301并与馈电臂202电连接。
通过在第二辐射贴片30设置朝向第一辐射贴片30一侧延伸的第一缝隙301,将第一辐射贴片20的馈电臂201设置于该第一缝隙301内,并使与馈电臂201电连接的第一振子臂202外露设置于该第一缝隙301,从而使得该双频天线结构更为小巧紧凑,并在有限空间下实现较优的全方向性。
具体地,第一振子臂202包括馈电部2023和振子部2021。其中,馈电部2023设置于振子部2021和馈电臂201之间,可作为第一振子臂202的辐射结构并可以调节该双频天线100的阻抗,以增加第一辐射贴片20的辐射频段的带宽,使得该双频天线100的性能更稳定。
优选地,馈电部2023为三角形,梯形或椭圆形,使得该双频天线100的稳定性更优。
优选地,振子部2021为矩形、梯形、锥形、U形或多道弯折的弯曲形,如图3A-3B所示。
优选地,第一振子臂202在第一方向的延伸长度为高频谐振波长的1/8~3/4,该第一方向即第一缝隙的延伸方向。
优选地,第一辐射贴片20在第一方向的延伸长度为低频谐振波长的1/8~3/4。
请参阅图3C-3D,振子部2021开设有馈电缝隙2023,该馈电缝隙2023可以是矩形、椭圆形或三角形。
请参阅图4,第二辐射贴片30包括接地臂302,接地臂302远离第一辐射贴片20一侧设置有接地点3021,外导线402通过接地点3021与第二辐射贴片30电连接,且第一缝隙301设置于接地臂302。
第二辐射贴片30还包括第二振子臂304和第三振子臂305,该第二振子臂304和第三振子臂305分别设置于第一缝隙301延伸方向的相对两侧,并且第二振子臂304的一端和第三振子臂305的一端均与接地臂302电连接。
该第二振子臂304和接地臂302之间设置有第二缝隙306,第三振子臂305和接地臂302之间设置有第三缝隙307,且第二振子臂304和第三振子臂305对称设置于馈电臂201的相对两侧。
优选地,第二振子臂304和/或第三振子臂305呈“L”形,且在第一方向的延伸长度为高频谐振波长的1/8~3/4。
优选地,第二辐射贴片30在第一方向的延伸长度为低频谐振波长的1/8~3/4。
进一步,通过在第二辐射贴片30的接地臂302开设有第一缝隙301,馈电臂201设置于该第一缝隙301内,并使第一振子臂202外露于该第一缝隙。同时,将第二振子臂304和第三振子臂305分别设置于第一缝隙301延伸方向的相对两侧。同时,该第二振子臂304和接地臂302之间设置有第二缝隙306,第三振子臂305和接地臂302之间设置有第三缝隙307,以使得该双频天线100的高频特性更优。
馈电时,第一辐射贴片20的第一振子臂202以及第二辐射贴片30的第二振子臂304、第三振子臂305可以产生第一辐射频段的谐振,也即高频谐振。辐射管50和第一辐射贴片20可以产生第二辐射频段的谐 振,也即低频谐振。通过低频辐射和高频辐射共用第一振子臂202,有效降低天线尺寸,利用带状线结构中心馈电,天线方向图性能较佳,驻波带宽。
如图5所示,由图可知,双频天线100可工作在880MHz~940MHz及2.35GHz~2.55GHz,带宽分别为60MHz(5.5%)及200MHz(8.0%),满足常用的900MHz和2.45GHz频段的覆盖。
如图6A所示,由图可知,双频天线100在900MHz可实现全方向覆盖,并且天线辐射方向最大值在水平方向。
如图6B所示,由图可知,双频天线100在2.45GHz可实现全方向覆盖,并且辐射方向最大值在水平方向。
请参阅图7,本发明第二实施例提供一种飞行器200,该飞行器200包括机身60、与机身60相连的机臂70、设于机臂70的动力装置80、设于机身60的起落架90以及双频天线100。其中,动力装置80用于为飞行器200提供飞行动力,双频天线100设置在起落架90中。
本实施例中,以飞行器的仰视图为例示意性的示出了双频天线100的安装位置,本实施例中双频天线100的安装位置并不仅限于附图7示出的安装位置,其他能够较好的满足信号收发的双频天线100的安装位置亦可。
在飞行器200的起落架90中设置的双频天线100,拓宽了双频天线100在俯仰面的波宽,在天线倾斜时信号保持稳定。从而使飞行器在飞行过程,减小飞行器的飞行姿势对通信的影响,保障飞行器200在飞行过程中的通信。
与现有技术相比,本发明提供的双频天线具有以下优点:
1、通过在基板上设置第一辐射贴片和第二辐射贴片,利用同轴线的内导线与第一辐射贴片电连接,为该双频天线馈电,同轴线的外导线分别与第二辐射贴片和辐射管电连接,以将辐射管和第二辐射贴片共同作为辐射组件,简化馈电结构,优化了天线的辐射体结构,使得天线整体结构更为小巧,同时可以实现天线的单馈电双频辐射。
2、通过在第二辐射贴片设置朝向第一辐射贴片一侧延伸的第一缝 隙,将第一辐射贴片的馈电臂设置于该第一缝隙内,并使与馈电臂电连接的第一振子臂外露设置于该第一缝隙,利用带状线结构中心馈电,从而使得该双频天线结构更为小巧紧凑。
同时,通过将第二振子臂和第三振子臂分别设置在馈电臂的相对两侧,并在该第二振子臂和接地臂之间设置有第二缝隙,第三振子臂和接地臂之间设置有第三缝隙,以使得该双频天线的高频特性更优,并在有限空间下实现较优的全方向性。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (12)
- 一种双频天线,其特征在于,所述双频天线包括:基板、第一辐射贴片、第二辐射贴片、同轴线以及辐射管,所述第一辐射贴片、第二辐射贴片设置于所述基板的表面;所述同轴线包括内导线以及与所述内导线绝缘隔离的外导线;所述第一辐射贴片设置有馈电点,所述内导线与通过所述馈电点与所述第一辐射贴片电连接,以为所述第一辐射贴片馈电;所述第二辐射贴片设置有接地点,所述外导线的一端通过所述接地点与所述第二辐射贴片电连接,且所述外导线与所述辐射管电连接。
- 如权利要求1所述的双频天线,其特征在于:所述第二辐射贴片开设有第一缝隙,所述第一缝隙向所述第一辐射贴片一侧延伸;所述第一辐射贴片包括馈电臂和第一振子臂,所述馈电臂设置于所述第一缝隙内,所述馈电臂远离所述第一振子臂一侧设置有馈电点,所述内导线通过所述馈电点与所述第一辐射贴片电连接;所述第一振子臂外露于所述第一缝隙并与所述馈电臂电连接。
- 如权利要求2所述的双频天线,其特征在于:所述第一振子臂包括馈电部和振子部,所述馈电部设置于所述振子部和所述馈电臂之间。
- 如权利要求3所述的双频天线,其特征在于:所述馈电部为三角形、梯形或椭圆形。
- 如权利要求3所述的双频天线,其特征在于:所述振子部开设有馈电缝隙。
- 如权利要求5所述的双频天线,其特征在于:所述馈电缝隙为矩形、椭圆形。
- 如权利要求3所述的双频天线,其特征在于:所述振子部呈矩形、梯形、U形或锥形。
- 如权利要求2所述的双频天线,其特征在于:所述第二辐射贴片包括接地臂,所述接地臂远离所述第一辐射贴片一侧设置有接地点,所述外导线通过所述接地点与所述第二辐射贴片电连接,且所述第一缝隙设置于所述接地臂。
- 如权利要求8所述的双频天线,其特征在于:所述第二辐射贴片还包括第二振子臂和第三振子臂,所述第二振子臂和第三振子臂分别设置于所述第一缝隙延伸方向的相对两侧,并与所述接地臂电连接;所述第二振子臂和所述接地臂之间设置有第二缝隙;所述第三振子臂和所述接地臂之间设置有第三缝隙。
- 如权利要求9所述的双频天线,其特征在于:所述第二振子臂的延伸方向与所述第一缝隙的延伸方向互为相反;所述第三振子臂和所述第二振子臂延伸方向相同,且对称设置于所述第一缝隙的相对两侧。
- 如权利要求1-10任一项所述的双频天线,其特征在于:所述双频天线可以产生第一辐射频段的谐振和第二辐射频段的谐振;所述第一辐射频段为2.35GHz-2.55GHz;所述第二辐射频段为880MHz-940MHz。
- 一种飞行器,其特征在于,所述飞行器包括机身、与所述机身相连的机臂、设于所述机臂的动力装置、设于所述机身的起落架以及如权利要求1-11任一项所述的双频天线,所述双频天线设置在所述起落架中。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910515959.1A CN110277631A (zh) | 2019-06-14 | 2019-06-14 | 一种双频天线及飞行器 |
CN201910515959.1 | 2019-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020249087A1 true WO2020249087A1 (zh) | 2020-12-17 |
Family
ID=67960797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/095840 WO2020249087A1 (zh) | 2019-06-14 | 2020-06-12 | 一种双频天线及飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110277631A (zh) |
WO (1) | WO2020249087A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110277631A (zh) * | 2019-06-14 | 2019-09-24 | 深圳市道通智能航空技术有限公司 | 一种双频天线及飞行器 |
CN110808452A (zh) * | 2019-10-22 | 2020-02-18 | 深圳市道通智能航空技术有限公司 | 双频天线以及无人飞行器 |
CN110808460A (zh) * | 2019-10-22 | 2020-02-18 | 深圳市道通智能航空技术有限公司 | 双频天线和飞行器 |
CN110931965B (zh) * | 2019-10-25 | 2022-05-17 | 深圳市道通智能航空技术股份有限公司 | 双频天线和飞行器 |
CN110828990A (zh) * | 2019-10-31 | 2020-02-21 | 深圳市道通智能航空技术有限公司 | 一种天线 |
WO2021104012A1 (zh) * | 2019-11-27 | 2021-06-03 | 深圳市道通智能航空技术股份有限公司 | 一种天线及飞行器 |
CN113823905A (zh) * | 2021-08-26 | 2021-12-21 | 四川数字交通科技股份有限公司 | 一种物联网用电子标签 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070030199A1 (en) * | 2005-08-03 | 2007-02-08 | Wistron Neweb Corp. | Monopole antennas |
CN201438503U (zh) * | 2009-07-14 | 2010-04-14 | 深圳市共进电子有限公司 | 一种印刷板式内置天线装置 |
CN202121060U (zh) * | 2011-07-26 | 2012-01-18 | 广东盛路通信科技股份有限公司 | 小型化多频段移动固定台全向天线 |
CN205583125U (zh) * | 2016-04-28 | 2016-09-14 | 深圳市道通智能航空技术有限公司 | 一种无人机 |
CN207116684U (zh) * | 2017-06-23 | 2018-03-16 | 深圳市仁丰电子科技有限公司 | 一种套筒式lte宽频微带全向天线 |
CN110277631A (zh) * | 2019-06-14 | 2019-09-24 | 深圳市道通智能航空技术有限公司 | 一种双频天线及飞行器 |
CN110808452A (zh) * | 2019-10-22 | 2020-02-18 | 深圳市道通智能航空技术有限公司 | 双频天线以及无人飞行器 |
-
2019
- 2019-06-14 CN CN201910515959.1A patent/CN110277631A/zh active Pending
-
2020
- 2020-06-12 WO PCT/CN2020/095840 patent/WO2020249087A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070030199A1 (en) * | 2005-08-03 | 2007-02-08 | Wistron Neweb Corp. | Monopole antennas |
CN201438503U (zh) * | 2009-07-14 | 2010-04-14 | 深圳市共进电子有限公司 | 一种印刷板式内置天线装置 |
CN202121060U (zh) * | 2011-07-26 | 2012-01-18 | 广东盛路通信科技股份有限公司 | 小型化多频段移动固定台全向天线 |
CN205583125U (zh) * | 2016-04-28 | 2016-09-14 | 深圳市道通智能航空技术有限公司 | 一种无人机 |
CN207116684U (zh) * | 2017-06-23 | 2018-03-16 | 深圳市仁丰电子科技有限公司 | 一种套筒式lte宽频微带全向天线 |
CN110277631A (zh) * | 2019-06-14 | 2019-09-24 | 深圳市道通智能航空技术有限公司 | 一种双频天线及飞行器 |
CN110808452A (zh) * | 2019-10-22 | 2020-02-18 | 深圳市道通智能航空技术有限公司 | 双频天线以及无人飞行器 |
Non-Patent Citations (1)
Title |
---|
CHI, PEILING ET AL.: "Integrated Antennas and Diplexers for Dual-Band Wireless Local Area Network (WLAN) System", 2005 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS, 20 March 2006 (2006-03-20), pages 1 - 4, XP010902369 * |
Also Published As
Publication number | Publication date |
---|---|
CN110277631A (zh) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020249087A1 (zh) | 一种双频天线及飞行器 | |
WO2021078260A1 (zh) | 双频天线和飞行器 | |
US7589686B2 (en) | Small ultra wideband antenna having unidirectional radiation pattern | |
US7151497B2 (en) | Coaxial antenna system | |
US6917334B2 (en) | Ultra-wide band meanderline fed monopole antenna | |
EP3127186B1 (en) | Dual-band printed omnidirectional antenna | |
US20180233810A1 (en) | Dual-band microstrip antenna and unmanned aerial vehicle using same | |
WO2011154954A2 (en) | Directive antenna with isolation feature | |
WO2018082558A1 (zh) | 天线及通信终端 | |
US7554507B2 (en) | UWB antenna with unidirectional radiation pattern | |
TWI506853B (zh) | 天線及包含其之通訊裝置 | |
WO2021082807A1 (zh) | 一种天线 | |
US7567210B2 (en) | Small size ultra-wideband antenna | |
CN111370858B (zh) | 定向uhf天线及电子设备 | |
CN210111029U (zh) | 一种双频天线及飞行器 | |
CN212648490U (zh) | 一种双频天线及iot设备 | |
TWI426657B (zh) | Double V-type dual-band antenna | |
US11095035B2 (en) | Broad band dipole antenna | |
KR102126581B1 (ko) | 초광대역 평면 안테나 | |
WO2021078200A1 (zh) | 双频天线和飞行器 | |
US9331383B2 (en) | Antenna structure and the manufacturing method therefor | |
TWI515960B (zh) | 天線與其通訊裝置 | |
JP2000183631A (ja) | 電磁界結合型ループアンテナ | |
TWI467853B (zh) | 雙頻天線及應用該雙頻天線之無線通訊裝置 | |
CN112635982B (zh) | 短路共平面波导馈入双极化宽带天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20822083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20822083 Country of ref document: EP Kind code of ref document: A1 |