WO2018107721A1 - 风力发电机组偏航电动机的驱动控制装置及方法 - Google Patents

风力发电机组偏航电动机的驱动控制装置及方法 Download PDF

Info

Publication number
WO2018107721A1
WO2018107721A1 PCT/CN2017/090569 CN2017090569W WO2018107721A1 WO 2018107721 A1 WO2018107721 A1 WO 2018107721A1 CN 2017090569 W CN2017090569 W CN 2017090569W WO 2018107721 A1 WO2018107721 A1 WO 2018107721A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw motor
yaw
contactor
wind power
power generator
Prior art date
Application number
PCT/CN2017/090569
Other languages
English (en)
French (fr)
Inventor
姜永强
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP17849894.5A priority Critical patent/EP3361622A4/en
Priority to US15/769,005 priority patent/US10998845B2/en
Priority to KR1020187011743A priority patent/KR102127582B1/ko
Priority to AU2017332958A priority patent/AU2017332958B2/en
Publication of WO2018107721A1 publication Critical patent/WO2018107721A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the technical field of wind power, and in particular relates to a driving control device and method for a yaw motor of a wind power generator set.
  • the yaw system also known as the windward device, is part of the wind turbine nacelle. Its function is to quickly and smoothly align the wind direction when the direction of the wind speed vector changes, so that the wind wheel can obtain the maximum wind energy.
  • FIG. 1 is a circuit structure diagram of a driving control device for a yaw motor of a wind power generator in a conventional yaw system.
  • two yaw motors are taken as an example, and a plurality of yaw motors can be controlled as needed.
  • Most of the drive control devices for wind turbine yaw motors use the circuit structure shown in Figure 1.
  • the circuit structure includes a contactor and a yaw motor protection switch connected to the yaw motor, such as the contactor -K1 in the figure.
  • Motor protection switch-Q1 such a circuit structure is prone to common faults such as damage to the main and auxiliary contacts of the contactor, burning of the coil, no suction or release of the suction mechanism, and generally cause the drive control device to emit a drive bias.
  • the command of the air motor does not operate the yaw motor, or the yaw motor does not stop running in an uncontrolled manner, thereby causing the yaw mechanism to continuously rotate and causing a fault such as a twisting of the cable that is twisted by the yaw mechanism.
  • FIG. 2 is a circuit structural diagram of a drive control device for a yaw motor of a wind power generator in another conventional yaw system. Similar to FIG. 1, FIG. 2 also takes two yaw motors as an example, and the actual traverse can be more The yaw motor is controlled.
  • a part of the drive control device for the wind turbine yaw motor adopts a circuit structure as shown in FIG. 2, which includes a soft starter STR1, a contactor-K3 connected in parallel with the soft starter STR1, and a soft parallel connection. Starter - STR1 and contactor - K3 are connected in series with each other in contact with each other - K1 and contactor - K2.
  • the soft starter has only a slow start and slow stop function for the control of the yaw motor, and has a single function. Because it does not have the ability to control the forward and reverse rotation of the yaw motor, it also needs the contactor assisted commutation to control the positive and negative of the yaw motor. turn. In addition, in order to avoid the problem that the soft starter is easy to cause damage during long-term operation, the soft starter needs to be bypassed after the soft starter is started, so the overall control system is complicated, and the fault point is more than the contactor control mode. many.
  • Embodiments of the present invention provide a driving control device and method for a yaw motor of a wind power generator, which can solve the problem of low reliability of driving control of a yaw motor of a wind power generator.
  • a drive control device for a wind turbine yaw motor including a frequency converter, a fault cut-out contactor, and a contactor.
  • the frequency converter is used for driving control of the yaw motor;
  • the fault cut-out contactor is connected in series between the frequency converter and the yaw motor, and is used to disconnect when the frequency converter fails to isolate the faulty frequency converter; contactor and frequency conversion
  • the faulty cut-out contactor is connected in parallel and connected to the yaw motor for continuing to drive the yaw motor after the fault cut-out contactor is disconnected; wherein the yaw motor is at least two.
  • a driving control method for a yaw motor of a wind power generator comprising: a step of monitoring a fault condition of the frequency converter; and after detecting a fault of the frequency converter, controlling the fault cut-off contactor to disconnect to occur in isolation
  • the faulty inverter or the step of directly issuing a stop command to the inverter to stop the inverter; sending a control command to the contactor to continue the drive control of the yaw motor through the contactor after the inverter stops working.
  • the driving control device and method for the yaw motor of the wind power generator improves the driving control of the yaw motor of the wind power generator by simultaneously driving and controlling the yaw motor of the wind power generator by using the frequency converter and the contactor Redundancy and reliability.
  • FIG. 1 is a circuit configuration diagram of a drive control device for a yaw motor of a wind power generator in a conventional yaw system
  • FIG. 2 is a circuit configuration diagram of a driving control device for a yaw motor of a wind power generator in another conventional yaw system
  • FIG. 3 is a circuit configuration diagram of a drive control device for a wind turbine yaw motor in a newer form of yaw system
  • FIG. 4 is a block diagram showing the structure of a drive control device for a yaw motor of a wind power generator according to an embodiment of the present invention
  • FIG. 5 is a circuit configuration diagram of a drive control device for a yaw motor of a wind power generator according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a method of driving control of a wind turbine yaw motor according to an embodiment of the present invention.
  • FIG. 3 is a circuit configuration diagram of a drive control device for a yaw motor of a wind turbine generator set in a relatively new form, with respect to the drive control devices of the two types of wind turbine yaw motors shown in FIGS. 1 and 2.
  • the driving control device of the wind turbine yaw motor includes a frequency converter -VF1 and a yaw motor protection switch -Q1 which are sequentially connected with the yaw motor, wherein the frequency converter -VF1 is separately biased to the wind power generator set The air motor is controlled.
  • this circuit structure avoids the limitation of the contactor type control device being easy to malfunction, the system redundancy is insufficient, and the yaw function of the wind power generator fails when the inverter is faulty.
  • the traditional control methods of the yaw motor of the wind turbine generally have the disadvantages of poor system reliability, incomplete protection function, incomplete development of the inverter function, unreasonable control parameter setting, and insufficient yaw function.
  • Due to the low reliability and insufficient protection function of the drive control device of the traditional wind turbine yaw motor once the drive control device fails, it will cause downtime and loss of power generation, and the yaw motor will burn out.
  • the problem of cable breakage In the case of high reliability requirements, such as offshore wind turbines, in the event of these failures, power generation losses and maintenance costs will increase significantly.
  • the drive control device of the wind turbine yaw motor fails, the safe wind yaw command cannot be executed, which will bring more serious damage to the wind turbine.
  • embodiments of the present invention provide a drive control device and method for a wind turbine yaw motor.
  • the drive control device 400 of the wind turbine yaw motor includes a frequency converter 410, a fault cut-out contactor 420, and a contactor 430.
  • the frequency converter 410 is used for driving control of the yaw motor; the fault cut-out contactor 420 is connected in series between the frequency converter 410 and the yaw motor for disconnecting the inverter 410 when the inverter 410 fails.
  • the contactor 430 is coupled in parallel with the frequency converter 410 and the faulty cut contactor 420 and is coupled to the yaw motor for continuing to drive the yaw motor after the faulty cut contactor 420 is opened.
  • Fig. 5 is a circuit configuration diagram of a drive control device for a yaw motor of a wind power generator according to an embodiment of the present invention.
  • the driving control device for the wind turbine yaw motor includes a fault cut-out contactor-K4 and a frequency converter-VF1 which are sequentially connected in series with the yaw motor-M1, -M2, and a fault cut-out after the series connection Contactor - K4 and inverter - VF1 in parallel with contactors - K1 and -K2.
  • Figure 5 only lists the case of two yaw motors. Different wind turbines may have three, four or more yaw motors, but the yaw motor does not need more.
  • the contactor controls the yaw motor and still only needs two contactors - K1 and -K2 to control the forward and reverse rotation of the yaw motor, respectively.
  • the faulty inverter-VF1 is isolated by the faulty cut-out contactor -K4, that is, the inverter-VF1 is isolated from the yaw motors -M1 and -M2, and the contact is used instead.
  • the K1 and K2 are used to control the yaw motor-M1 and -M2 to positive and negative, respectively.
  • the frequency converter -VF1 may include a normally closed contact, and when the frequency converter -VF1 fails, the normally closed contact changes from a closed state to an open state.
  • the closed/open state signal of the normally closed contact of the frequency converter-VF1 is transmitted to the controller of the wind turbine yaw motor control device, which is, for example, a PLC, which can be installed as an auxiliary controller in the wind turbine In the main control system, it can also be set separately from the main control system and communicate with the main control system.
  • the normally closed contact of the inverter-VF1 is in the closed state (ie, the inverter VF1 is working normally)
  • the inverter-VF1 receives the forward rotation, reverse rotation, or stop command from the controller.
  • the yaw motor-M1 and -M2 are controlled to rotate, reverse, or stop.
  • the forward and reverse rotations of the yaw motors -M1 and -M2 are respectively made by the contactor K1.
  • K2 control, the contactors K1, K2 receive the drive and stop commands from the controller, and then control the yaw motor to rotate, reverse, or stop. Since the contactors K1, K2 are the standby control elements of the yaw motors -M1 and -M2, the redundancy of the drive control of the wind turbine yaw motor is improved.
  • the drive control device of the wind turbine yaw motor may further include a reactor disposed at both ends of the frequency converter.
  • reactors L1 and L2 are installed in the incoming and outgoing positions of the inverter-VF1 to protect the inverter-VF1, yaw motor and cable. Due to the addition of reactors L1 and L2 at both ends of the inverter-VF1 and the faulty contactor K4, the drive control device of the yaw motor of the wind turbine can effectively avoid the inverter fault caused by the incoming power quality problem. Impact damage to cables and yaw motors, and damage to the inverter due to reverse power transmission at the output end of the inverter.
  • the drive control device of the wind turbine yaw motor may further include a twisted cable contactor connected in series between the power source and the parallel node of the contactor and the frequency converter, Stop/trip when the drive control unit or yaw motor fails.
  • the twisted cable contactor -K3 is placed upstream of the inverter -VF1 and the contactors K1, K2 closer to the power inlet -ABC, and can be used as a redundant control device for the power control loop of the yaw motor -M1 and -M2 .
  • the twisted cable contactor can cut off the power supply to all yaw motors including the out of control fault point.
  • the drive control device of the wind turbine yaw motor may further include a twisted cable switch connected to the twisted cable contactor for detecting the yaw of the yaw motor The extreme position and a fault signal is sent to the twisted cable contactor to trigger the twist cable contactor stop/trip upon detecting the yaw motor yaw to the extreme position.
  • the twist cable switch can be disposed in a cam structure that is comprised of a yaw ring gear such that the cam can trigger the twist cable switch when the yaw motor is yawed to the extreme position.
  • the twist-twist switch may be a sensor that detects the extreme position of the yaw motor for yaw, may be mounted near the yaw large ring gear, and drive a set of gears through a pinion that meshes with the yaw large ring gear.
  • the motion of the yaw is the movement of the cam capable of triggering the switching action of the internal contact of the twisted cable switch, and the rotation angle of the cam is set such that when the yaw of the yaw motor is at the extreme position, the cam triggers the internal touch of the twisted cable switch Point switching action.
  • the twist cable switch can employ a multi-contact trigger structure and provide a normally closed contact.
  • the twist cable switch sends a fault signal to the twisted cable contactor to trigger the twisted cable contactor to stop/trip.
  • the twisted cable switch can adopt a double contact structure, and the contact can be a normally closed contact, so as to avoid the problem of line disconnection and virtual connection.
  • the drive control device of the wind turbine yaw motor may further include a safety relay connected in series between the twisted cable switch and the twisted cable contactor for receiving the twisted cable
  • the fault signal from the switch is stopped/tripped to disconnect the power supply loop of the twisted cable contactor, thereby triggering the twisted cable contactor to stop/trip.
  • the closed/open status signal of the twisted cable switch can be transmitted to the safety relay.
  • the safety relay can generate a stop/trip action, and the power supply circuit of the twisted cable contactor is disconnected.
  • the twisted cable contactor is stopped/tripped to protect the twisted cable of the yaw mechanism.
  • the drive control device of the wind turbine yaw motor may issue a yaw limit alarm to the operator to remind the maintenance personnel to check and repair the yaw runaway cause of issue.
  • the drive control device of the wind turbine yaw motor may further include a thermal relay connected in series with the yaw motor for overloading or phase loss of the yaw motor Disconnected and signaled a fault. That is, the thermal relay has an overload protection and a phase loss protection function of the yaw motor.
  • the thermal relays -F1 and -F2 in Figure 5 may include normally closed contacts, where the normally closed contacts change from a closed state when the thermal relays -F1 and -F2 detect a yaw motor overload or phase loss. Disconnected state.
  • the closed/open status signals of the normally closed contacts of thermal relays -F1 and -F2 may be uploaded to the controller.
  • the controller can
  • the VF1/contactors K1, K2 issue a stop/trip command to protect the yaw motor.
  • the controller also After the stop/trip command is issued to the inverter/contactor, an alarm of overload/phase loss of the yaw motor may be issued to the operator to remind the maintenance personnel to inspect and repair the yaw motor.
  • the windings of the yaw motor may be coupled to its drive control via a star or delta connection.
  • the winding of the yaw motor can be connected to its drive control device by a star connection.
  • the drive control device of the wind turbine yaw motor may further include a yaw motor protection switch for detecting a current in a control circuit of the yaw motor, and when the detected current appears Disconnected when abnormal, and a fault signal is issued.
  • a yaw motor protection switch Q1 is disposed at the uppermost end of the main incoming line, and has an overload and overcurrent protection function.
  • the yaw motor protection switch Q1 can include a normally closed contact.
  • the normally closed contact changes from the closed state to the open state.
  • the closed/open status signal of the yaw motor protection switch Q1 can be uploaded to the controller.
  • the controller can operate The personnel issued an alarm for the tripping fault of the yaw motor protection switch Q1, reminding the maintenance personnel to inspect and repair the main circuit.
  • the drive control device of the wind turbine yaw motor may further include a yaw motor temperature protection switch for detecting a winding temperature of the yaw motor, and detecting the yaw motor The fault signal is issued when the winding temperature is greater than the preset temperature.
  • the yaw motor temperature protection switch can be placed inside the yaw motor.
  • the yaw motor temperature protection switch may include a normally closed contact, and when the yaw motor temperature protection switch detects that the yaw motor winding temperature exceeds the limit, the normally closed contact changes from the closed state to the open state. The closing/opening signal of the normally closed contact of the yaw motor temperature protection switch can be transmitted to the controller.
  • the controller can issue a stop/trip command to the inverter/contactor to protect Yaw motor. For example, the controller can also issue an alarm to the operator at the same time that the yaw motor winding temperature is high, and remind the maintenance personnel to check and repair the yaw motor.
  • FIG. 6 is a flow chart of a method of driving control of a wind turbine yaw motor according to an embodiment of the present invention.
  • the drive control method for the wind turbine yaw motor is used for the controller of the drive control device for the wind turbine yaw motor.
  • the driving control method for the yaw motor of the wind power generator may include: S610, monitoring the fault condition of the frequency converter; S620, when detecting the fault of the frequency converter, controlling the fault cut-out contact Disconnect to isolate the faulty inverter from the yaw motor or directly send a stop command to the inverter to stop the inverter; S630, send a control command to the contactor to continue through the contactor after the inverter stops working The yaw motor is driven and controlled.
  • the faulty cut-out contactor can be controlled to disconnect the faulty inverter and the yaw motor.
  • the forward and reverse rotations of the yaw motor are respectively controlled by the contactor, and the contactor receives the driving and stopping commands from the controller to control the yaw motor to rotate, reverse, or stop. Since the contactor can continue to control the yaw motor in the event of a fault in the frequency converter, the redundancy of the drive control of the wind turbine yaw motor is increased.
  • the driving control method of the wind turbine yaw motor may further include: detecting a fault condition of the yaw motor, and controlling the twisted cable contactor when the drive control device or the yaw motor fails Stop/trip.
  • the driving control method of the wind turbine yaw motor may further include: detecting a yaw time of the yaw motor, and determining that the yaw motor is faulty when the yaw time is greater than a preset value .
  • the preset value can be set according to the maximum yaw time allowed. The timing is started when the drive control of the yaw motor is started, and the twisted cable contactor is stopped/tripped when the yaw action timeout is detected to protect the cable twisted by the yaw mechanism.
  • the driving control method of the wind turbine yaw motor may further include: receiving a fault signal from the thermal relay and/or the yaw motor temperature protection switch; and receiving the thermal relay and ⁇ Or when the yaw motor temperature protection switch sends a fault signal, send a stop working signal to the inverter or contactor to stop the yaw motor.
  • the driving control method of the wind turbine yaw motor according to an embodiment of the present invention may further include: receiving a fault signal from the yaw motor protection switch. In some examples, the driving control method of the wind turbine yaw motor according to an embodiment of the present invention may further include: issuing an alarm signal when it is determined that the yaw motor or the drive control device is malfunctioning. For example, it is also possible to issue a yaw timeout alarm to the operator at the same time, reminding the maintenance personnel to check and repair the cause of the yaw timeout failure.
  • the driving control method of the wind turbine yaw motor may further include: receiving one or more of the following signals of the wind power generator: an overhead load signal, a whole machine vibration signal, and a yaw The mechanical noise signal; comparing one or more of the above signals with a preset value, and adjusting the rotational speed of the yaw motor by comparing the results. For example, set the inverter's speed output to three segments, namely: higher speed, normal speed, lower speed, to adjust the yaw speed to meet the current load requirements.
  • the driving control method of the wind turbine yaw motor may further include: receiving a current signal output by the tower top load sensor, the whole machine vibration sensor, or the yaw mechanical noise sensor, which may be The signals are set to a plurality of predetermined values, such as three large, normal, and small.
  • a control command may be issued to the yaw motor, and the yaw motor is controlled by the frequency converter to operate at a lower speed, where the specific speed may be It is determined by the unit load simulation software; when the current value corresponding to all the signals is less than the predetermined small value, the yaw motor can be given a control command to control the yaw motor to operate at a higher speed, for example, the higher speed is the unit safety.
  • the signals outputted by the tower top load sensor, the whole machine vibration sensor, and the yaw mechanical noise sensor are generally different, and these signals can be represented by the same feature quantity, for example, by current value or voltage value.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some port, device or unit, or an electrical, mechanical or other form of connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种风力发电机组偏航电动机的驱动控制装置及方法,该驱动控制装置(400)包括变频器(410)、故障切出接触器(420)和接触器(430);变频器用于对偏航电动机(M1、M2)进行驱动控制;故障切出接触器串联在变频器与偏航电动机之间,用于在变频器发生故障时断开以隔离发生故障的变频器;接触器与变频器和故障切出接触器并联连接并与偏航电动机相连,用于在故障切出接触器断开后继续驱动偏航电动机。该驱动控制装置及方法能够解决偏航电动机的驱动控制的可靠性低的问题。

Description

风力发电机组偏航电动机的驱动控制装置及方法 技术领域
本发明属于风电技术领域,尤其涉及一种风力发电机组偏航电动机的驱动控制装置及方法。
背景技术
偏航系统,又称对风装置,是风力发电机机舱的一部分,其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能。
图1是一种传统的偏航系统中风力发电机组偏航电动机的驱动控制装置的电路结构图,图中以两台偏航电动机为例,实际依需要可对多台偏航电动机进行控制。风力发电机组偏航电动机的驱动控制装置大多采用如图1所示的电路结构,该电路结构包括与偏航电动机相连接的接触器和偏航电动机保护开关,例如图中的接触器‐K1和接触器‐K2、电动机保护开关‐Q1,这样的电路结构易出现接触器主辅触点损坏、线圈烧毁、吸合机构不吸合或不释放等常见故障,一般会造成驱动控制装置发出驱动偏航电动机的指令但偏航电动机不动作、或偏航电动机不受控制地不停运转从而带动偏航机构连续旋转进而造成随偏航机构扭转的电缆扭断等故障。
图2是另一种传统的偏航系统中风力发电机组偏航电动机的驱动控制装置的电路结构图,与图1类似,图2同样以两台偏航电动机为例,实际依需要可对多台偏航电动机进行控制。风力发电机组偏航电动机的驱动控制装置有一部分采用如图2所示的电路结构,该电路结构包括软启动器‐STR1、与软启动器‐STR1并联的接触器‐K3、以及与并联的软启动器‐STR1和接触器‐K3相串联的相互并联的接触器‐K1和接触器‐K2。软启动器对于偏航电动机的控制只有缓启动、缓停止功能,功能单一,且因其不具备偏航电动机正反转控制的能力,还需接触器辅助换向来控制偏航电动机正反 转。此外,为了避免软启动器长期工作易导致损坏的问题,在软启动器启动完毕后需要旁路接触器来切出软启动器,因此整体控制系统复杂,故障点比接触器控制的方式还要多。
发明内容
本发明实施例提供了一种风力发电机组偏航电动机的驱动控制装置及方法,能够解决风力发电机组偏航电动机的驱动控制的可靠性低的问题。
第一方面,提供了一种风力发电机组偏航电动机的驱动控制装置,包括变频器、故障切出接触器和接触器。变频器用于对偏航电动机进行驱动控制;故障切出接触器串联在变频器与偏航电动机之间,用于在变频器发生故障时断开,以隔离发生故障的变频器;接触器与变频器和故障切出接触器并联连接并与偏航电动机相连,用于在故障切出接触器断开后继续驱动偏航电动机;其中,偏航电动机至少为两台。
第二方面,提供了一种风力发电机组偏航电动机的驱动控制方法,包括:监测变频器的故障情况的步骤;当监测到变频器发生故障后,控制故障切出接触器断开以隔离发生故障的变频器或直接向变频器发出停止指令以使变频器停止工作的步骤;发送控制指令至接触器,以在变频器停止工作后通过接触器继续对偏航电动机进行驱动控制的步骤。
根据本发明实施例的风力发电机组偏航电动机的驱动控制装置及方法,通过同时采用变频器和接触器对风力发电机组偏航电动机进行驱动控制,提高了风力发电机组偏航电动机的驱动控制的冗余度和可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种传统的偏航系统中风力发电机组偏航电动机的驱动控制装置的电路结构图;
图2是另一种传统的偏航系统中风力发电机组偏航电动机的驱动控制装置的电路结构图;
图3是一种较新形式的偏航系统中风力发电机组偏航电动机的驱动控制装置的电路结构图;
图4是根据本发明实施例的风力发电机组偏航电动机的驱动控制装置的结构框图;
图5是根据本发明实施例的风力发电机组偏航电动机的驱动控制装置的电路结构图;
图6是根据本发明实施例的风力发电机组偏航电动机的驱动控制方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。本发明决不限于下面所提出的任何具体配置和算法,而是在不脱离本发明的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本发明造成不必要的模糊。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中,为了清晰,可能夸大了区域和层的 厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本发明的主要技术创意。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
相对于图1和图2所示的两种风力发电机组偏航电动机的驱动控制装置,图3是一种较新形式的风力发电机组偏航电动机的驱动控制装置的电路结构图。如图3所示,该风力发电机组偏航电动机的驱动控制装置包括依次与偏航电动机相连接的变频器‐VF1和偏航电动机保护开关‐Q1,其中变频器‐VF1单独对风力发电机组偏航电动机进行控制。这种电路结构虽然避免了接触器类控制器件易出故障的局限,但系统冗余度不足,在变频器发生故障时风力发电机组的偏航功能即失效。
可见,风力发电机组偏航电动机的传统控制方式普遍存在系统可靠性差、保护功能不全面、变频器功能开发不深入、控制参数设置不合理、偏航功能不够丰富等缺点。由于传统的风力发电机组偏航电动机的驱动控制装置的可靠性低、保护功能不足,所以一旦驱动控制装置出现故障,轻则会引起停机、损失发电量的问题,重则会引起偏航电动机烧毁、电缆拗断的问题。在有高可靠性要求的场合,比如,海上风力发电机组,一旦出现这些故障,发电量损失和维修成本将大幅增加。另外,在台风天气下,如果风力发电机组偏航电动机的驱动控制装置发生故障,则不能执行安全避风偏航指令,会给风力发电机组带来更严重的危害。
鉴于图1至图3示出的风力发电机组偏航电动机的驱动控制装置具有的一个或多个上述缺陷中,本发明实施例提供了一种风力发电机组偏航电动机的驱动控制装置和方法。
图4是根据本发明实施例的风力发电机组偏航电动机的驱动控制装置的结构框图。如图4所示,风力发电机组偏航电动机的驱动控制装置400包括变频器410、故障切出接触器420和接触器430。变频器410用于对偏航电动机进行驱动控制;故障切出接触器420串联在变频器410与偏航电动机之间,用于在变频器410发生故障时断开以隔离发生故障的变频器410和偏航电动机;接触器430与变频器410和故障切出接触器420并联连接并与偏航电动机相连,用于在故障切出接触器420断开后继续驱动偏航电动机。通过同时采用变频器410和接触器430对风力发电机组偏航电动机进行驱动控制,提高了风力发电机组偏航电动机的驱动控制的冗余度和可靠性。
图5是根据本发明实施例的风力发电机组偏航电动机的驱动控制装置的电路结构图。如图5所示,该风力发电机组偏航电动机的驱动控制装置包括与偏航电动机-M1、-M2依次串联的故障切出接触器-K4和变频器-VF1、与串联后的故障切出接触器-K4和变频器-VF1相并联的接触器-K1和-K2。
需要说明的是,图5只列举了两台偏航电动机的情况,不同的风力发电机组可能会有三台、四台或更多的偏航电动机,但偏航电动机的增加,不需要更多个接触器对偏航电动机进行控制,仍然只需要两个接触器-K1和-K2分别控制偏航电动机的正转和反转。
在变频器-VF1发生故障时,通过故障切出接触器-K4来隔离出发生故障的变频器-VF1,即,将变频器-VF1与偏航电动机-M1和-M2隔离,转而使用接触器K1、K2来分别控制偏航电动机-M1和-M2正、反转。
在一些示例中,变频器-VF1可以包括常闭触点,当变频器-VF1发生故障时,常闭触点从闭合状态变为断开状态。变频器-VF1的常闭触点的闭合/断开状态信号传到风力发电机组偏航电动机控制装置的控制器,该控制器为例如PLC,可以作为一个辅助的控制器设置在风力发电机组的主控系统中,也可以与主控制系统分离的进行设置,并与主控制系统保持通信。具体地,当变频器-VF1的常闭触点处于闭合状态(即,变频器VF1正常工作)时,变频器-VF1接收来自控制器的正转、反转、或者停止指令,进 而控制偏航电动机-M1和-M2正转、反转、或停止。当变频器-VF1的常闭触点从闭合状态变为断开状态(即,变频器-VF1发生故障)时,偏航电动机-M1和-M2的正转及反转分别由接触器K1、K2控制,接触器K1、K2接收来自控制器的驱动、停止指令,进而控制偏航电动机正转、反转、或停止。由于接触器K1、K2是偏航电动机-M1和-M2的备用控制元件,因此使得风力发电机组偏航电动机的驱动控制的冗余度提高。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括设置在变频器两端的电抗器。例如,电抗器L1、L2分别安装在变频器-VF1的进线和出线位置,用来保护变频器-VF1、偏航电动机及电缆。由于变频器-VF1两端的电抗器L1、L2及故障切出接触器K4的增设,使得风力发电机组偏航电动机的驱动控制装置能够有效避免因进线电源质量问题导致的变频器故障、变频器对电缆和偏航电动机的冲击损伤、以及由于变频器出口端反送电烧毁变频器的情况。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括扭缆接触器,该扭缆接触器串联在电源和接触器与变频器的并联节点之间,用于在驱动控制装置或偏航电动机发生故障时停止/跳闸。例如,扭缆接触器-K3设置在变频器-VF1和接触器K1、K2的上游更靠近电源入口-A-B-C的地方,可以作为偏航电动机-M1和-M2的动力控制回路的冗余控制器件。在变频器-VF1和接触器K1、K2的偏航电动机控制回路失控的情况下,扭缆接触器能切断包含失控故障点在内的所有偏航电动机的供电。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括扭缆开关,该扭缆开关与扭缆接触器相连接,用于检测偏航电动机进行偏航的极限位置,并且在检测到偏航电动机偏航到极限位置时向扭缆接触器发出故障信号以触发扭缆接触器停止/跳闸。
在一些示例中,扭缆开关可以设置在由偏航齿圈构成的凸轮结构中,使得当偏航电动机偏航到极限位置时凸轮能够触发扭缆开关。例如,扭缆开关可以是检测偏航电动机进行偏航的极限位置的传感器,可以安装在偏航大齿圈附近,通过一个与偏航大齿圈啮合的小齿轮带动一套传动机构把 偏航的运动传导为能够触发扭缆开关的内部触点的开关动作的凸轮的运动,对凸轮旋转角度整定,使得在偏航电动机的偏航处于极限位置时,凸轮触发扭缆开关的内部触点的开关动作。
在一些示例中,扭缆开关可以采用多触点触发结构并设置常闭触点。当扭缆开关中的任意触点断开时,扭缆开关向扭缆接触器发出故障信号以触发扭缆接触器停止/跳闸。例如,为保障扭缆开关可靠地输出故障信号,扭缆开关可以采用双触点结构,并且触点可以选用常闭触点,这样可以避免线路断线和虚接的问题。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括安全继电器,该安全继电器串联在扭缆开关与扭缆接触器之间,用于在接收到扭缆开关发出的故障信号后停止/跳闸以断开扭缆接触器的供电回路,从而触发扭缆接触器停止/跳闸。例如,可将扭缆开关的闭合/断开状态信号传到安全继电器。当扭缆开关的任意一个常闭触点从闭合状态变为断开状态时,即,代表偏航电动机处于极限位置,安全继电器可以产生停止/跳闸动作,断开扭缆接触器的供电回路,使得扭缆接触器停止/跳闸,从而保护偏航机构扭转的电缆。
在一些示例中,在扭缆接触器停止/跳闸后,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置可以向操作人员发出偏航极限报警,提醒维修人员检查、维修偏航失控故障原因。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括热继电器,该热继电器与偏航电动机串联连接,用于在偏航电动机发生过载或缺相故障时断开,并发出故障信号。即,热继电器具有偏航电动机的过载保护和缺相保护功能。例如,图5中的热继电器-F1和-F2可以包括常闭触点,在热继电器-F1和-F2检测到偏航电动机过载或缺相时,其中的常闭触点从闭合状态变为断开状态。在一个示例中,热继电器-F1和-F2的常闭触点的闭合/断开状态信号可以上传至控制器。当热继电器-F1或-F2的常闭触点从闭合状态变为断开状态时,即代表与之相连的偏航电动机-M1或-M2出现了过载或缺相故障,控制器可以向-VF1/接触器K1、K2发出停止/跳闸命令,以保护偏航电动机。例如,控制器还 可以在向变频器/接触器发出停止/跳闸命令后向操作人员发出偏航电动机出现过载/缺相故障的报警,提醒维修人员检查、维修偏航电动机。
在一些示例中,偏航电动机的绕组可以通过星型接法或三角形接法与其驱动控制装置相连接。例如,为了使热继电器提供更可靠的过载与缺相保护,偏航电动机的绕阻可以采用星型接法与其驱动控制装置相连接。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括偏航电动机保护开关,用于检测偏航电动机的控制回路中的电流,并且当检测到的电流出现异常时断开,并发出故障信号。例如,在图5中,偏航电动机保护开关Q1设置在主进线的最上端,具有过载和过流保护功能。
在一些示例中,偏航电动机保护开关Q1可以包括常闭触点。在偏航电动机保护开关Q1检测到主电路过流(例如,短路引起的电流快速上升的情况)或过载而跳闸时,常闭触点从闭合状态变为断开状态。例如,偏航电动机保护开关Q1的闭合/断开状态信号可以上传到控制器。当偏航电动机保护开关Q1从闭合状态变为断开状态时,即代表偏航电动机保护开关Q1到偏航电动机-M1和-M2之间的主回路出现短路或过载故障,控制器可以向操作人员发出偏航电动机保护开关Q1跳闸故障的报警,提醒维修人员检查、维修主回路。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制装置还可以包括偏航电动机温度保护开关,用于检测偏航电动机的绕阻温度,并且在检测到的偏航电动机的绕阻温度大于预设温度时发出故障信号。在一些示例中,偏航电动机温度保护开关可以设置在偏航电动机里面。偏航电动机温度保护开关可以包括常闭触点,在偏航电动机温度保护开关检测到偏航电动机绕组温度超限时,其常闭触点从闭合状态变为断开状态。偏航电动机温度保护开关的常闭触点的闭合/断开信号可以传到控制器。当偏航电动机温度保护开关的常闭触点从闭合状态变为断开状态时,即代表偏航电动机的绕组温度超限,控制器可以向变频器/接触器发出停止/跳闸命令,以保护偏航电动机。例如,控制器还可以同时向操作人员发出偏航电动机绕组温度高的报警,提醒维修人员检查、维修偏航电动机。
图6是根据本发明实施例的风力发电机组偏航电动机的驱动控制方法的流程图。该风力发电机组偏航电动机的驱动控制方法,用于上述风力发电机组偏航电动机的驱动控制装置的控制器。
如图6所示,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法可以包括:S610,监测变频器的故障情况;S620,当监测到变频器发生故障时,控制故障切出接触器断开以隔离发生故障的变频器与偏航电动机或直接向变频器发出停止指令以使变频器停止工作;S630,发送控制指令至接触器,以在变频器停止工作后通过接触器继续对偏航电动机进行驱动控制。
例如,当变频器的常闭触点从闭合状态变为断开状态时,即代表变频器发生故障,可以控制故障切出接触器断开以隔离发生故障的变频器与偏航电动机,也可以向变频器发送正转、反转、或者停止指令,进而控制偏航电动机正转、反转、或停止。在变频器故障时,偏航电动机的正转及反转分别由接触器来控制,接触器接收来自控制器的驱动、停止指令,控制偏航电动机正转、反转、或停止。由于在变频器发生故障时,接触器可以继续对偏航电动机进行控制,因此使得风力发电机组偏航电动机的驱动控制的冗余度提高。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:检测偏航电动机的故障情况,并且在驱动控制装置或偏航电动机发生故障时控制扭缆接触器停止/跳闸。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:检测偏航电动机的偏航时间,并在偏航时间大于预设值时判定偏航电动机发生故障。例如,预设值可以根据允许最大偏航时间来设定。当开始进行偏航电动机的驱动控制时开始计时,并在检测到偏航动作超时时控制扭缆接触器停止/跳闸,以保护偏航机构扭转的电缆。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:接收热继电器和\或偏航电动机温度保护开关发来的故障信号;并且在接收到热继电器和\或偏航电动机温度保护开关发来的故障信号时,发送停止工作信号至变频器或接触器以使偏航电动机停止工作。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:接收偏航电动机保护开关发来的故障信号。在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:当判定偏航电动机或驱动控制装置发生故障时,发出告警信号。例如,还可以同时向操作人员发出偏航超时报警,提醒维修人员检查、维修偏航超时故障原因。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:接收风力发电机组的以下一项或多项信号:塔顶载荷信号、整机振动信号和偏航机械噪音信号;将上述一项或多项信号分别与预设值比较,通过比较的结果调整偏航电动机的转速。例如,设定变频器的转速输出为三段,分别为:较高速度、正常速度、较低速度,从而调节偏航速度,以适应当前的载荷要求。
在一些示例中,根据本发明实施例的风力发电机组偏航电动机的驱动控制方法还可以包括:接收塔顶载荷传感器、整机振动传感器、或偏航机械噪音传感器输出的电流信号,可以为每个信号设置多个预定值,例如大、正常、小三个。例如,当任意一个信号对应的特征量,例如电流值,大于标识大的预定值时,可以向偏航电动机发出控制指令,通过变频器控制偏航电动机以较低速度运行,这里的具体速度可以由机组载荷模拟软件确定;当全部信号对应的电流值小于标识小的预定值时,可以向偏航电动机发出控制指令,控制偏航电动机以较高速度运行,例如,该较高速度为机组安全运行允许的较高速度;当所有信号对应的电流值介于标识大的预定值和标识小的预定值之间时,可以向偏航电动机发出控制指令,控制偏航电动机以正常速度运行。针对塔顶载荷传感器、整机振动传感器、偏航机械噪音传感器输出的信号一般是不同,这些信号可以用相同的特征量进行表示,例如用电流值或电压值表示。通过上述驱动控制方法,不仅增加了变频器功能、提高了变频器的利用率,同时使得偏航控制功能更丰富,避免了对变频器资源的浪费。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合 来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些端口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种风力发电机组偏航电动机的驱动控制装置,其特征在于,包括:
    变频器,用于对所述偏航电动机进行驱动控制;
    故障切出接触器,所述故障切出接触器串联在所述变频器与所述偏航电动机之间,用于在所述变频器发生故障时断开,以隔离发生故障的所述变频器;
    接触器,所述接触器与所述变频器和故障切出接触器并联连接并与所述偏航电动机相连,用于在所述故障切出接触器断开后继续驱动所述偏航电动机;
    其中,所述偏航电动机至少为两台。
  2. 根据权利要求1所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括扭缆接触器,所述扭缆接触器串联在电源和所述接触器与所述变频器的并联节点之间,用于在所述驱动控制装置或所述偏航电动机发生故障时停止/跳闸。
  3. 根据权利要求2所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括:扭缆开关,所述扭缆开关与所述扭缆接触器相连,用于检测所述偏航电动机进行偏航的极限位置,并且在检测到所述偏航电动机偏航到极限位置时向所述扭缆接触器发出故障信号以触发所述扭缆接触器停止/跳闸。
  4. 根据权利要求3所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,所述扭缆开关设置在由偏航齿圈构成的凸轮结构中,使得当所述偏航电动机偏航到所述极限位置时所述凸轮能够触发所述扭缆开关。
  5. 根据权利要求4所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,所述扭缆开关采用多触点触发结构并设置常闭触点,当所述扭缆开关的任意触点断开时,所述扭缆开关向所述扭缆接触器发出故障信 号以触发所述扭缆接触器停止/跳闸。
  6. 根据权利要求2至5中任一项所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括:安全继电器,所述安全继电器串联在所述扭缆开关与所述扭缆接触器之间,用于在接收到所述扭缆开关发出的故障信号后停止/跳闸,以断开所述扭缆接触器的供电回路,从而触发所述扭缆接触器停止/跳闸。
  7. 根据权利要求1所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括:热继电器,与所述偏航电动机串联连接,用于在所述偏航电动机发生过载或缺相故障时断开,并发出故障信号。
  8. 根据权利要求1所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括:偏航电动机保护开关,用于检测所述偏航电动机的控制回路中的电流,并且在检测到的所述电流出现异常时断开,并发出故障信号。
  9. 根据权利要求1所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括:偏航电动机温度保护开关,用于检测所述偏航电动机的绕阻温度,并且在检测到的所述偏航电动机的绕阻温度大于预设温度时发出故障信号。
  10. 根据权利要求1所述的风力发电机组偏航电动机的驱动控制装置,其特征在于,还包括:设置在所述变频器两端的电抗器。
  11. 一种风力发电机组偏航电动机的驱动控制方法,其特征在于,所述方法包括:
    监测变频器的故障情况;
    当监测到所述变频器发生故障后,控制故障切出接触器断开以隔离发生故障的所述变频器或直接向所述变频器发出停止指令以使所述变频器停 止工作;
    发送控制指令至接触器,以在所述变频器停止工作后通过所述接触器继续对所述偏航电动机进行驱动控制。
  12. 根据权利要求10所述的风力发电机组偏航电动机的驱动控制方法,其特征在于,还包括:
    检测所述偏航电动机的故障情况,并且在驱动控制装置或所述偏航电动机发生故障时控制扭缆接触器停止/跳闸。
  13. 根据权利要求12所述的风力发电机组偏航电动机的驱动控制方法,其特征在于,所述检测所述偏航电动机的故障情况,并且在驱动控制装置或所述偏航电动机发生故障时控制扭缆接触器停止/跳闸的步骤还包括:
    检测所述偏航电动机的偏航时间,并且在所述偏航时间大于预设值时判定所述偏航电动机发生故障。
  14. 根据权利要求11所述的风力发电机组偏航电动机的驱动控制方法,其特征在于,还包括:
    接收热继电器和\或偏航电动机温度保护开关发来的故障信号;并且
    当接收到所述热继电器和\或所述偏航电动机温度保护开关发来的故障信号时,发送停止工作信号至所述变频器或所述接触器以使所述偏航电动机停止工作。
  15. 根据权利要求11所述的风力发电机组偏航电动机的驱动控制方法,其特征在于,还包括:接收所述偏航电动机保护开关发来的故障信号。
  16. 根据权利要求11所述的风力发电机组偏航电动机的驱动控制方法,其特征在于,还包括:
    接收所述风力发电机组的以下一项或多项信号:塔顶载荷信号、整机振动信号和偏航机械噪音信号;
    将所述一项或多项信号分别与预设值比较,并基于所述比较的结果调整所述偏航电动机的转速。
PCT/CN2017/090569 2016-12-12 2017-06-28 风力发电机组偏航电动机的驱动控制装置及方法 WO2018107721A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17849894.5A EP3361622A4 (en) 2016-12-12 2017-06-28 DRIVE CONTROL DEVICE AND METHOD FOR A LACET ELECTRIC MOTOR OF A WIND POWER GENERATING ARRANGEMENT
US15/769,005 US10998845B2 (en) 2016-12-12 2017-06-28 Drive control apparatus and method for yaw motor of wind turbine
KR1020187011743A KR102127582B1 (ko) 2016-12-12 2017-06-28 풍력 터빈의 요 모터를 위한 구동 제어 장치 및 방법
AU2017332958A AU2017332958B2 (en) 2016-12-12 2017-06-28 Drive control apparatus and method for yaw motor of wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611140888.4A CN106787973B (zh) 2016-12-12 2016-12-12 风力发电机组偏航电动机的驱动控制装置及方法
CN201611140888.4 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018107721A1 true WO2018107721A1 (zh) 2018-06-21

Family

ID=58880258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090569 WO2018107721A1 (zh) 2016-12-12 2017-06-28 风力发电机组偏航电动机的驱动控制装置及方法

Country Status (6)

Country Link
US (1) US10998845B2 (zh)
EP (1) EP3361622A4 (zh)
KR (1) KR102127582B1 (zh)
CN (1) CN106787973B (zh)
AU (1) AU2017332958B2 (zh)
WO (1) WO2018107721A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787973B (zh) 2016-12-12 2019-08-23 北京金风科创风电设备有限公司 风力发电机组偏航电动机的驱动控制装置及方法
CN107359828A (zh) * 2017-07-28 2017-11-17 沈阳华创风能有限公司 一种偏航驱动系统保护装置及方法
CN108035846B (zh) * 2017-11-21 2019-06-28 明阳智慧能源集团股份公司 一种解决风力发电机组偏航空开跳闸的偏航控制方法
CN108880402B (zh) * 2018-06-22 2021-11-19 卧龙电气集团辽宁荣信电气传动有限公司 一种大功率九相电机缺相并网方法
CN110529338B (zh) * 2019-09-10 2020-11-10 上海电气风电集团股份有限公司 基于偏航速度预判的偏航马达保护故障穿越方法及系统
CN110821752A (zh) * 2019-10-30 2020-02-21 大唐吉林风力发电股份有限公司 一种风电机组制动系统控制保护装置
CN111022253B (zh) * 2019-12-05 2021-05-28 中国船舶重工集团海装风电股份有限公司 风力发电机组偏航过载保护的冗余控制方法、设备及介质
CN111077842B (zh) * 2019-12-12 2022-12-13 首钢京唐钢铁联合有限责任公司 一种转炉炉后合金电振故障的自动切换控制系统
CN111664061B (zh) * 2020-06-15 2021-12-17 三一重能有限公司 风力发电机组中偏航系统的故障诊断方法及装置
CN113530759A (zh) * 2021-08-27 2021-10-22 上海电气风电集团股份有限公司 偏航电机回路连接装置、风机偏航系统及风力发电机组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175472A (ja) * 1998-10-01 2000-06-23 Mitsubishi Electric Corp 巻上機制御装置
CN104092287A (zh) * 2014-07-22 2014-10-08 安徽鑫辰电气设备有限公司 一种具有快速切换功能的风机变频柜
CN106787973A (zh) * 2016-12-12 2017-05-31 北京金风科创风电设备有限公司 风力发电机组偏航电动机的驱动控制装置及方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296436A (ja) * 1997-04-25 1998-11-10 Matsushita Electric Ind Co Ltd 糸はんだ送給装置
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
JP3506590B2 (ja) * 1997-10-03 2004-03-15 三菱電機株式会社 モータの非常停止装置
KR100823124B1 (ko) * 2007-05-18 2008-04-18 주식회사 준마엔지니어링 풍력 발전 장치의 나셀 제어회로
EP2037119B1 (en) * 2007-09-12 2011-10-26 Siemens Aktiengesellschaft Controller for wind turbine yaw system and method for reducing the loads acting on such a yaw system
US8362632B2 (en) * 2007-11-30 2013-01-29 Vestas Wind Systems A/S Wind turbine, a method for controlling a wind turbine and use thereof
JP4696146B2 (ja) * 2008-06-27 2011-06-08 株式会社日立製作所 断線検出方法および電力変換装置
US7780412B2 (en) * 2009-05-28 2010-08-24 General Electric Company Operating a wind turbine at motor over-temperature conditions
CN201486779U (zh) * 2009-08-28 2010-05-26 广东明阳风电技术有限公司 一种扭曲限位开关触发装置
US8471514B2 (en) * 2010-09-30 2013-06-25 Rockwell Automation Technologies, Inc. Adaptive harmonic reduction apparatus and methods
CN102777319B (zh) * 2011-05-12 2015-01-21 苏州特谱风能技术有限公司 用于风力发电的偏航控制系统及其控制方法
US20130235494A1 (en) * 2011-09-06 2013-09-12 Kent Jeffrey Holce Integrated Bypass Apparatus, System, and/or Method for Variable-Frequency Drives
US9014861B2 (en) 2011-12-20 2015-04-21 General Electric Company Method and system for noise-controlled operation of a wind turbine
CN102602860A (zh) * 2011-12-20 2012-07-25 青岛四方车辆研究所有限公司 架车机升降控制系统
CN202737481U (zh) * 2012-06-30 2013-02-13 广东明阳风电产业集团有限公司 一种变频控制风力发电系统的拓扑结构
EP2754887B1 (en) * 2013-01-14 2016-01-06 ALSTOM Renewable Technologies Method of operating a wind turbine rotational system and wind turbine rotational system
CN104265567B (zh) * 2014-09-26 2016-09-28 沈阳华创风能有限公司 带自动偏离风向保护的偏航系统及其控制方法
CN105909467A (zh) * 2016-05-19 2016-08-31 青岛华创风能有限公司 风力发电机组紧急偏航控制装置
CN205779469U (zh) * 2016-05-19 2016-12-07 青岛华创风能有限公司 风力发电机组紧急偏航控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175472A (ja) * 1998-10-01 2000-06-23 Mitsubishi Electric Corp 巻上機制御装置
CN104092287A (zh) * 2014-07-22 2014-10-08 安徽鑫辰电气设备有限公司 一种具有快速切换功能的风机变频柜
CN106787973A (zh) * 2016-12-12 2017-05-31 北京金风科创风电设备有限公司 风力发电机组偏航电动机的驱动控制装置及方法

Also Published As

Publication number Publication date
AU2017332958B2 (en) 2019-02-28
CN106787973B (zh) 2019-08-23
US20200244209A1 (en) 2020-07-30
KR20180088797A (ko) 2018-08-07
KR102127582B1 (ko) 2020-06-26
AU2017332958A1 (en) 2018-06-28
EP3361622A4 (en) 2019-05-15
EP3361622A1 (en) 2018-08-15
CN106787973A (zh) 2017-05-31
US10998845B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2018107721A1 (zh) 风力发电机组偏航电动机的驱动控制装置及方法
CN103089541B (zh) 风力发电机组安全链控制系统
CN102418662B (zh) 风力发电机安全运行控制系统
US20120070285A1 (en) independent, distributed protection and safety system with fiber optic communication for wind turbines
CN106685271B (zh) 无刷双馈电机的运行状态控制方法
CN103629048A (zh) 一种风电机组智能变桨系统及变桨方法
CN108873832B (zh) 一种发电机故障联锁跳闸定子冷却水泵的逻辑系统及装置
WO2022088376A1 (zh) 一种风力发电机组预防飞车自动应急偏航控制系统及方法
CN101571104A (zh) 安全链控制系统
CN103225586A (zh) 一种风力发电机组防飞车安全控制方法
CN201197086Y (zh) 一种用于汽轮机数字式电液调节系统的冗余电源
CN114856910A (zh) 多驱动变桨系统及风机
CN109149626B (zh) 发电机组的运行控制方法、装置及系统
CN104047803B (zh) 一种电动顺桨控制方法
CN201372895Y (zh) 安全链控制系统
CN203098147U (zh) 风力发电机组安全链控制系统
CN203835620U (zh) 大型风力发电机组的过转速保护装置
CN202545111U (zh) 永磁变桨风力发电机组失电顺桨控制系统
CN103490502B (zh) 一种智能备自投装置控制方法
CN207538974U (zh) 一种直流变桨控制系统安全控制装置
WO2019076152A1 (zh) 一种安全保护光伏系统的方法及系统
CN211975275U (zh) 一种降低pmc故障率的装置
CN110630439A (zh) 一种偏航电机的安全控制系统及控制方法
CN104061120B (zh) 一种电动顺桨控制方法
CN110805522A (zh) 风力发电机组防飞车增强和趋势预警装置及预警方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187011743

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017332958

Country of ref document: AU

Date of ref document: 20170628

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE