WO2018107591A1 - SiC逆变式等离子切割电源 - Google Patents

SiC逆变式等离子切割电源 Download PDF

Info

Publication number
WO2018107591A1
WO2018107591A1 PCT/CN2017/076416 CN2017076416W WO2018107591A1 WO 2018107591 A1 WO2018107591 A1 WO 2018107591A1 CN 2017076416 W CN2017076416 W CN 2017076416W WO 2018107591 A1 WO2018107591 A1 WO 2018107591A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
module
capacitor
resistor
switching device
Prior art date
Application number
PCT/CN2017/076416
Other languages
English (en)
French (fr)
Inventor
王振民
朱磊
范文艳
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to SG11201807606TA priority Critical patent/SG11201807606TA/en
Priority to US16/082,972 priority patent/US10807184B2/en
Publication of WO2018107591A1 publication Critical patent/WO2018107591A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/006Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/013Arc cutting, gouging, scarfing or desurfacing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1012Power supply characterised by parts of the process

Definitions

  • the invention relates to the field of high frequency inverter thermal cutting technology, and more particularly to a SiC inverter plasma cutting power source.
  • the Si-based power rectifier diode has a conductance modulation effect, and there is a very obvious reverse recovery effect in the turn-off process, which is prone to high voltage spikes and endangers the working safety of the main circuit;
  • the no-load voltage of the arc-cutting power supply is very high, and the transient current impact at the moment of arc-cutting cutting is very large; the above factors lead to the reliability of the high-power inverter plasma cutting power supply has not been well solved, and industrial production still Very lack of medium and high power inverter plasma cutting power supply.
  • the object of the present invention is to overcome the shortcomings and deficiencies in the prior art and to provide a SiC inverter plasma cutting power source.
  • the power inverter has high frequency, small size, light weight, saving manufacturing raw materials, high energy efficiency, obvious energy saving effect, and excellent dynamic characteristics, and can be applied to small power applications as well as stable and reliable for medium and high power cutting. occasion.
  • a SiC inverter plasma cutting power supply comprising: a main circuit and a closed loop control circuit; the main circuit includes a noise suppression module sequentially connected Frequency rectification filter module, SiC inverse conversion flow module, power transformer and SiC rectification and smoothing module, and non-contact arc-ignition module; wherein, the noise suppression module is connected with the AC input power source; the SiC rectification and smoothing module and the non-contact arc-trigger module respectively Connected to the load;
  • the closed-loop control circuit includes a human-machine interaction module, a DSC controller, a fault diagnosis protection module, a SiC high-frequency drive module, and a load electrical signal detection module; the human-machine interaction module, a fault diagnosis protection module, a SiC high-frequency drive module, The load electrical signal detecting module and the non-contact arc striking module are respectively connected with the DSC controller; the fault diagnosis protection module is also respectively connected with the SiC inverse transform stream module and the power transformer; and the SiC high frequency driving module is further connected with the SiC inverse transform stream module.
  • the load electrical signal detection module is also connected to the SiC rectification and smoothing module.
  • the power frequency rectification filtering module comprises a rectifier BR1, an inductor L1 and a capacitor C11;
  • the SiC inverse conversion stream module includes a SiC power switching device Q1, a SiC power switching device Q2, a SiC power switching device Q3, a SiC power switching device Q4, a resistor R1, a resistor R2, a resistor R3, a resistor R4, a capacitor C1, and a capacitor C2.
  • the power transformer includes a transformer T1, a capacitor C12, and a resistor R12;
  • the SiC rectification and smoothing module comprises a SiC rectifier diode D1, a SiC rectifier diode D2, a SiC rectifier diode D3, an SiC rectifier diode D4, a capacitor C5, a capacitor C6, a capacitor C7, a capacitor C8, a capacitor C9, a capacitor C10, a resistor R5, and a resistor.
  • the noise suppression module is connected to the input end of the rectifier BR1; the inductor L1 and the capacitor C11 are connected in series, and then connected in parallel to the output end of the rectifier BR1;
  • the capacitor C11 is connected in parallel with the series circuit composed of the SiC power switching device Q1 and the SiC power switching device Q2, and is connected in parallel with the series circuit composed of the SiC power switching device Q3 and the SiC power switching device Q4; the resistor R1 and the capacitor C1 are connected in series and then connected in parallel to the SiC power.
  • the resistor R2 and the capacitor C2 are connected in series and then connected in parallel to the SiC power switching device Q2;
  • the resistor R3 and the capacitor C3 are connected in series and connected in parallel to the SiC power switching device Q3;
  • the resistor R4 and the capacitor C4 are connected in series and then connected in parallel to the SiC power switching device.
  • connection point of the SiC power switching device Q1 and the SiC power switching device Q2 is connected by the connection point of the capacitor Cr and the transformer T1 to the connection point of the SiC power switching device Q3 and the SiC power switching device Q4; the capacitor C12 and the resistor R12 are connected in series and then connected in parallel.
  • the non-contact arc-trigger module includes a trigger of the type IC1 555, a SiC-type field effect transistor Q110, a step-up transformer T103, a rectifier bridge B101, a discharger 101, a discharger 102, and a high-voltage charging capacitor C106, among others.
  • Peripheral auxiliary circuit includes a trigger of the type IC1 555, a SiC-type field effect transistor Q110, a step-up transformer T103, a rectifier bridge B101, a discharger 101, a discharger 102, and a high-voltage charging capacitor C106, among others.
  • Peripheral auxiliary circuit Peripheral auxiliary circuit.
  • the SiC high frequency driving module comprises a field effect transistor M201, a field effect transistor M202, a field effect transistor M203, a field effect transistor M204, a transformer T201, a transformer T202, and four SiC driving circuits, and other peripheral auxiliary circuits.
  • the load electrical signal detecting module comprises a current sampling circuit and a voltage dividing sampling circuit;
  • the current sampling circuit comprises a Hall current sensor, a chip U301 of the type AD629, and a chip U302 of the type OP177, and other peripherals.
  • the auxiliary voltage circuit includes a voltage dividing unit composed of a resistor R401 and a resistor 402, a chip U401 of the type LF353, and a chip U402 of the type HCNR201, and other peripheral auxiliary circuits.
  • the fault diagnosis protection module comprises an overvoltage and undervoltage monitoring circuit, a phase loss detecting circuit and an overheat detecting circuit;
  • the overvoltage and undervoltage monitoring circuit comprises a bridge composed of a resistor R513, a resistor R514, a resistor R517 and a resistor R518.
  • the phase loss detection circuit includes comparator U503 and optocoupler U514, and other peripheral auxiliary circuits.
  • the noise suppression module comprises a three-phase common mode inductance Lcm, a three-phase differential mode inductance L dm , an X capacitance, a Y capacitance and a bleeder resistance.
  • the DSC controller includes a DSC microprocessor embedded in the FREERTOS system, a power supply unit, an external clock oscillating unit, a reset unit, and a JTAG debug interface.
  • the basic principle of the innovative design of the power supply of the invention is as follows: First, the switching speed of the SiC power device is fast and the switching loss is low, so the UHF inverter technology based on the SiC power device can greatly improve the inverter frequency of the power supply, thereby making the power supply
  • the magnetic power device and the smoothing filter component of the main circuit are greatly reduced in volume and weight, and the energy transfer efficiency is further improved.
  • the SiC power device has almost no conductance modulation effect, it has no reverse recovery effect in the switching process, and is not easy to generate. Large voltage The peak of the flow, the working stress environment of the device is greatly improved, and the reliability is improved.
  • the SiC power device has better heat resistance, not only the reliability is improved, but also the volume and weight of the heat sink can be greatly reduced, and the volume is also reduced. Smaller, lighter weight, higher power density, lower overall manufacturing cost; finally, due to the increased operating frequency, the dynamic characteristics of the power supply have been significantly improved, making the power supply control the cutting current more refined, and it is easy to improve the cutting quality. .
  • the working principle of the power supply of the invention is as follows: the three-phase/single-phase AC input power source is rectified and filtered by the power frequency rectification and filtering module to form a direct current, and the ultra-high frequency switch is performed by the SiC inverse conversion stream module, and converted into a high frequency alternating square wave of 200 kHz or higher.
  • the pulse is rectified and smoothed by the SiC rectification and smoothing module after high-frequency conversion isolation of the power transformer to a DC power source suitable for plasma cutting.
  • the non-contact arc-trigger module is used to generate high-frequency high-voltage electric pulses, penetrate the air gap between the plasma cutting gun and the workpiece to achieve reliable arc ignition;
  • the load electric signal detection module is mainly used for real-time detection of the current output of the plasma cutting power supply and
  • the voltage waveform is provided to the DSC controller;
  • the human-computer interaction module mainly implements functions such as presets of process parameters and status display;
  • the DSC controller mainly provides feedback based on the preset value of the human-computer interaction module and the load electrical signal detection module.
  • the current and voltage values generate appropriate PWM control signals and are converted into PWM drive signals suitable for SiC power switching devices in the SiC inverse converter module by the SiC high frequency drive module to realize UHF drive modulation;
  • the fault diagnosis protection module mainly detects the main The circuit is overheated, overvoltage, undervoltage, and lack of equal faults, and the status information is fed back to the DSC controller to achieve power supply security protection.
  • the present invention has the following advantages and benefits:
  • the power cutting quality of the invention is better; all power switching devices adopt a new generation of power electronic devices based on SiC, and the inverter frequency exceeds 200 kHz, which is more than ten times that of the existing IGBT inverter plasma cutting power supply, and the whole machine has more Excellent dynamic characteristics, can achieve fine control of plasma cutting arc, cutting quality is better; can be applied to small power applications, but also can be used stably in medium and high power cutting occasions;
  • the power supply of the invention has higher reliability; the SiC power switching device has almost no conductance modulation effect, low working stress, and has higher heat resistance and stronger withstand voltage than the current common Si-based MOSFET/IGBT.
  • the performance and the forbidden band range are wider, so the reliability under high pressure plasma cutting conditions is more easily guaranteed;
  • the integrated manufacturing cost of the power supply of the invention is lower; in the invention, the power switching device has less loss, the energy efficiency can exceed 96%, and the required heat sink volume is smaller; meanwhile, as the inverter frequency increases, the main circuit
  • the volumetric weight of the magnetic device and the smoothing filter member is also greatly reduced; therefore, the power density of the present invention is higher, the overall manufacturing cost is lower, and the cost performance is high.
  • Figure 1 is a block diagram showing the principle of the system of the power supply of the present invention
  • Figure 2 is a schematic diagram of the main circuit of the power supply of the present invention.
  • FIG. 3 is a block diagram showing the principle of a closed loop control circuit of the power supply of the present invention.
  • FIG. 4 is a circuit schematic diagram of a non-contact arc striking module in the power supply of the present invention.
  • FIG. 5 is a circuit schematic diagram of a SiC high frequency driving module in the power supply of the present invention.
  • FIG. 6(a) is a circuit schematic diagram of a current sampling circuit of a load electrical signal detecting module in the power supply of the present invention
  • 6(b) is a circuit schematic diagram of a voltage divider sampling circuit of a load electrical signal detecting module in the power supply of the present invention
  • FIG. 7(a) is a circuit schematic diagram of an overvoltage and undervoltage monitoring circuit of the fault diagnosis protection module in the power supply of the present invention
  • 7(b) is a circuit schematic diagram of a phase loss detecting circuit of the fault diagnosis and protection module in the power supply of the present invention.
  • FIG. 7(c) is a circuit schematic diagram of an overheat detection circuit of the fault diagnosis protection module in the power supply of the present invention.
  • Figure 8 is a circuit schematic diagram of a noise suppression module in the power supply of the present invention.
  • the SiC inverter plasma cutting power supply of the embodiment includes a main circuit and a closed loop control circuit.
  • the main circuit includes a noise suppression module, a power frequency rectification filter module, a SiC inverse conversion flow module, a power transformer and an SiC rectification and smoothing module, and a non-contact arc-ignition module, wherein the noise suppression module is connected to the AC input power source;
  • the rectification and smoothing module and the non-contact arcing module are respectively connected to the load.
  • the closed-loop control circuit includes human-computer interaction module, DSC controller, fault diagnosis protection module, SiC high-frequency drive module and load electrical signal detection module; human-computer interaction module, fault diagnosis protection module, SiC high-frequency drive module, load electric signal detection Module and non-contact arc ignition module and DSC controller respectively
  • the fault diagnosis protection module is also respectively connected with the SiC inverse conversion flow module and the power transformer; the SiC high frequency drive module is also connected with the SiC inverse conversion flow module; the load electrical signal detection module is also connected with the SiC rectification and smoothing module.
  • the power frequency rectification and filtering module includes a rectifier BR1, an inductor L1 and a capacitor C11;
  • the SiC inverse converter module includes a SiC power switching device Q1, a SiC power switching device Q2, a SiC power switching device Q3, a SiC power switching device Q4, and a resistor.
  • SiC rectification and smoothing module includes SiC rectifier diode D1, SiC Rectifier diode D2, SiC rectifier diode D3, SiC rectifier diode D4, capacitor C5, capacitor C6, capacitor C7, capacitor C8, capacitor C9, capacitor C10, resistor R5, resistor R6, resistor R7, resistor R8, resistor R9, varistor YR1, varistor YR2, varistor YR3, varistor YR4 and inductor L2;
  • the noise suppression module is connected to the input end of the rectifier BR1; the inductor L1 and the capacitor C11 are connected in series, and then connected in parallel at the output end of the rectifier BR1; the capacitor C11 is connected in parallel with the series circuit composed of the SiC power switching device Q1 and the SiC power switching device Q2, and is connected with SiC
  • the series circuit composed of the power switching device Q3 and the SiC power switching device Q4 is connected in parallel; the resistor R1 and the capacitor C1 are connected in series and then connected in parallel to the SiC power switching device Q1; the resistor R2 and the capacitor C2 are connected in series and then connected in parallel to the SiC power switching device Q2; the resistor R3
  • the capacitor C3 is connected in series and then connected in parallel to the SiC power switching device Q3; the resistor R4 and the capacitor C4 are connected in series and then connected in parallel to the SiC power switching device Q4; the connection point of the SiC power switching device Q1 and the SiC power switching device Q2 passes
  • the primary is connected with the connection point of the SiC power switching device Q3 and the SiC power switching device Q4; the capacitor C12 and the resistor R12 are connected in series and connected in parallel to the transformer T1 primary; the transformer T1 secondary is connected with the SiC rectifier diode D1 and the SiC rectifier diode D2 Parallel, and in parallel with a series circuit composed of SiC rectifier diode D3 and SiC rectifier diode D4; capacitor C5 and resistor R5 in series It is connected in parallel with SiC rectifier diode D1 and varistor YR1; resistor R6 and capacitor C6 are connected in series with SiC rectifier diode D2 and varistor YR2 respectively; capacitor C7 and resistor R7 are connected in series with SiC rectifier diode D3 and varistor respectively.
  • YR3 is connected in parallel; resistor R8 and capacitor C8 are connected in series and connected in parallel with SiC rectifier diode D4 and varistor YR4; the junction of SiC rectifier diode D1 and SiC rectifier diode D2 passes through inductor L2 and capacitor C9 and SiC rectifier diode D3 and SiC rectifier diode
  • the connection point of D4 is connected; the resistor R9 and the capacitor C10 are respectively connected in parallel to the capacitor C9; one end of the capacitor C10 is connected to the positive end of the load, and the other end of the capacitor C10 is passed.
  • the primary of the coupling transformer T2 is connected to the negative end of the load; the secondary of the coupling transformer T2 is connected to the non-contact pilot arc module.
  • the resistor R1, the resistor R2, the resistor R3, and the resistor R4 may have zero resistance.
  • the DSC controller includes a DSC microprocessor embedded in the FREERTOS system, a power supply unit, an external clock oscillating unit, a reset unit, and a JTAG debug interface.
  • the power supply of the invention may adopt a single main circuit, or may adopt a plurality of main circuit parallel manners to further enhance the output power, as shown in FIG. 3;
  • FIG. 3 is a structural block diagram of the closed-loop control circuit system when the dual main circuit is connected in parallel according to the present invention.
  • the closed-loop control circuit is mainly composed of a DSC controller, a human-machine interaction module, a fault diagnosis protection module, a load electrical signal detection module 1, a load electrical signal detection module 2, a SiC high-frequency drive mode 1 and a SiC high-frequency drive mode 2, and an extended
  • the relay interface and the CAN bus interface are configured; wherein the extended relay interface is mainly used for controlling the start and stop of the non-contact arc-rising module and the auxiliary air supply device, the cooling device, etc.; the CAN bus interface is mainly used for devices such as robots Digital cooperative communication control; DSC controller digitally communicates with human-computer interaction module through UART port, receives preset process parameter information, and displays real-time status information of power supply system on human-computer interaction module; advanced timer of DSC controller TIMER1 simultaneously generates multi-channel digital PWM signals, which are input to SiC high-frequency driving mode 1 and SiC high-frequency driving mode 2 to drive main circuit 1 and main circuit 2 respectively; load electric signal detecting module
  • the non-contact arcing module includes a trigger of the type IC1 555, a SiC type field effect transistor Q110, a step-up transformer T103, a rectifier bridge B101, a discharger 101, a discharger 102, and a high voltage charging capacitor C106, and other peripheral auxiliary circuits.
  • the DSC controller controls the input of the rectifier bridge B101 through the relay interface;
  • the trigger of the model IC1 555 is the core pulse trigger circuit to control the fast switching of the SiC type field effect transistor Q110; the high frequency pulse signal of the primary side of the step-up transformer T103 is obtained.
  • the primary inductance L of T2 forms an RLC oscillation, which generates a high-frequency high-voltage signal.
  • the signal is applied between the electrode and the nozzle through the secondary T2-1 and T2-2 of the coupling transformer T2 to form a plasma arc arcing path, thereby achieving non-contact. Lead arc.
  • the SiC high frequency driving module includes a field effect transistor M201, a field effect transistor M202, a field effect transistor M203, a field effect transistor M204, a transformer T201, a transformer T202, and four SiC driving circuits, and other peripheral auxiliary circuits.
  • the PWM signal generated by the DSC controller is isolated and amplified, and then input to the connector P201, and directly drives a push-pull output circuit composed of a field effect transistor M201, a field effect transistor M202, a field effect transistor M203, and a field effect transistor M204 through a current limiting resistor.
  • the push-pull output circuit drives the transformer T201 and the transformer T202, and generates four IGBT drive signals through four SiC drive circuit conversions.
  • the resistor R227, the resistor R235, the diode D217, and the capacitor C212 in the first SiC driving circuit constitute a "slow-on fast-off" network of SiC; the resistor R215 with a large resistance limits the charging current when the SiC is turned on, thereby increasing SiC.
  • the resistor R246 is the gate resistance of SiC, and its introduction avoids the erroneous triggering of SiC caused by the charge storage of the gate parasitic capacitance of the SiC in the off state, and plays a protective role.
  • the load electrical signal detecting module includes a current sampling circuit and a voltage dividing sampling circuit.
  • the current sampling circuit includes a Hall current sensor, a chip U301 of the type AD629, and a chip U302 of the type OP177, and other peripheral auxiliary circuits.
  • the Hall current is directly input to the connector P301.
  • the voltage division sampling circuit includes a voltage dividing unit composed of a resistor R401 and a resistor 402, a chip U401 of the type LF353, and a chip U402 of the type HCNR201, and other peripheral auxiliary circuits.
  • the fault diagnosis protection module includes an overvoltage and undervoltage monitoring circuit, a phase loss detection circuit and an overheat detection circuit.
  • the overvoltage and undervoltage monitoring circuit includes a bridge circuit composed of a resistor R513, a resistor R514, a resistor R517 and a resistor R518, a VCC DC source, a comparator U501, a comparator U502, an optocoupler U515 and an optocoupler U516, and other peripheral auxiliary circuits.
  • the VCC DC source is the DC voltage signal after the transformer step-down rectification and filtering, and then the bridge circuit composed of the resistor R513, the resistor R514, the resistor R517 and the resistor R518 is proportionally reduced to different voltage values, and then input to the comparator U501 and compared respectively.
  • the inverting and non-inverting input of U502 is compared with the set reference voltage VREF. When an overvoltage and undervoltage condition occurs, the optocoupler is turned on, triggering the interrupt port of the DSC microprocessor, and calling the fault handling task.
  • the phase loss detection circuit includes a comparator U503 and an optocoupler U514, as well as other peripheral auxiliary circuits.
  • the resistor R569 and the resistor R570 have high voltage at both ends, and the optocoupler U514 input terminal is regulated to 15V through D512. At this time, the output is high level, and then divided by VREF after being divided by resistors R568 and R512.
  • the comparator U503 outputs a high level signal. When one of the phase circuits is out of phase, the optocoupler U514 does not work, and the output is approximately zero level.
  • the comparator U503 outputs a low level signal, and the low level signal is input to the interrupt port of the DSC controller through the optocoupler isolation circuit.
  • the fault protection interrupt subroutine is triggered, and the PWM output is turned off to stop the cutting power supply for protection purposes.
  • the overheat detection circuit is mainly composed of a temperature control switch, a resistor R541, a resistor R550, a capacitor C547, a capacitor C548, an inductor L502, and an optocoupler U510.
  • the temperature control switch input connector P504 the temperature control switch detects the temperature of the power transformer and the heat sink of the SiC power switch device in real time; when the actual temperature exceeds the preset threshold, the temperature control switch is closed, and the optocoupler U510 is turned on,
  • the GPIO port pin (PC3-IN-OH-2) level signal of the DSC controller is pulled low, triggering the overheat protection interrupt subroutine to achieve overheat protection.
  • the noise suppression module includes a three-phase common mode inductance Lcm, a three-phase differential mode inductance L dm , an X capacitance C x , a Y capacitance C y , and a bleeder resistance R.
  • A, B, C are connected to AC input power
  • A', B', C' are connected to power frequency rectification and filtering module
  • X capacitor C x is mainly used to filter common mode noise
  • Y capacitor C y is mainly used to filter out difference Mode noise
  • three-phase common mode inductance L cm is mainly used to filter common mode noise
  • three-phase differential mode inductance L dm is mainly used to filter differential mode noise.
  • the basic principle of the innovative design of the power supply of the invention is as follows: First, the switching speed of the SiC power device is fast and the switching loss is low, so the UHF inverter technology based on the SiC power device can greatly improve the inverter frequency of the power supply, thereby making the power supply.
  • the magnetic power device and the smoothing filter component of the main circuit are greatly reduced in volume and weight, and the energy transfer efficiency is further improved.
  • the SiC power device has almost no conductance modulation effect, it has no reverse recovery effect in the switching process, and is not easy to generate. Large voltage and current spikes, the working stress environment of the device is greatly improved, and the reliability is improved.
  • the SiC power device has better heat resistance, not only the reliability is improved, but also the volume and weight of the heat sink can be greatly improved. Lower, smaller, lighter weight, higher power density, lower overall manufacturing cost; finally, due to the increased operating frequency, the dynamic characteristics of the power supply are significantly improved, making the power supply control the cutting current more refined and easy. Improve the quality of the cut.
  • the AC input power source is first converted into a smooth DC power by the noise suppression module and the power frequency rectification filter module, and the DSC controller transmits the preset value transmitted by the human-machine interaction module and the actual output value detected by the load electrical signal detection module.
  • the digital PWM signal of duty cycle and frequency is isolated and amplified by the SiC high-frequency driving module to drive the SiC power switching device in the SiC inverse conversion current module to perform high-frequency switching according to a preset commutation mode, and convert the direct current into super
  • the high frequency AC square wave pulse is isolated, depressurized and transmitted by the power transformer, and then converted into a smooth direct current by the SiC rectification and smoothing module and sent to the arc load.
  • the non-contact arc-trigger module is turned off, and the cutting power supply enters the normal control flow; the fault diagnosis protection module is real-time. Detect the working state of the power supply. In the event of overvoltage, undervoltage, phase loss, overheating, etc., trigger the fault interrupt task of the DSC controller to achieve system security protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种SiC逆变式等离子切割电源,包括主电路和闭环控制电路;主电路包括依次连接的噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器和SiC整流与平滑模块以及非接触引弧模块;噪声抑制模块与交流输入电源连接,SiC整流与平滑模块和非接触引弧模块分别与负载连接,闭环控制电路包括人机交互模块、DSC控制器、故障诊断保护模块、SiC高频驱动模块以及负载电信号检测模块;该电源切割频率高,重量轻,能效高,并具有优异的动特性,既可以应用于小功率场合,也能稳定可靠地应用中大功率切割场合。

Description

SiC逆变式等离子切割电源 技术领域
本发明涉及高频逆变热切割技术领域,更具体地说,涉及一种SiC逆变式等离子切割电源。
背景技术
目前,在小功率切割电源领域已经普遍采用高效节能、体积小巧的MOSFET或者IGBT逆变式等离子切割电源;而在中大功率领域,由于其工艺所需要的电压高、功率强,目前仍以整流或者斩波方式的等离子切割电源为主,虽然工作相对可靠,技术上也比较成熟,但设备体积庞大、笨重、能耗低、效率低,且由于其结构原因,动静态特性均不够理想,限制了切割质量的进一步提高;同时,Si基功率整流二极管存在电导调制效应,在关断过程存在非常明显的反向恢复效应,易于出现很高的电压尖峰,危及主电路的工作安全;此外,等离子弧切割电源的空载电压很高,在引弧切割瞬间的瞬态电流冲击非常大;上述因素导致大功率逆变式等离子切割电源的可靠性还未能得到很好的解决,工业生产中还非常缺乏中大功率的逆变式等离子切割电源。
发明内容
本发明的目的在于克服现有技术中的缺点与不足,提供一种SiC逆变式等离子切割电源。该电源逆变频率高,体积小巧,重量轻,节约制造原材料,能效高,节能效果明显,并具有优异的动特性,既可以应用于小功率场合,也能稳定可靠地应用于中大功率切割场合。
为了达到上述目的,本发明通过下述技术方案予以实现:一种SiC逆变式等离子切割电源,其特征在于:包括主电路和闭环控制电路;所述主电路包括依次连接的噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器和SiC整流与平滑模块,以及非接触引弧模块;其中,噪声抑制模块与交流输入电源连接;SiC整流与平滑模块和非接触引弧模块分别与负载连接;
所述闭环控制电路包括人机交互模块、DSC控制器、故障诊断保护模块、SiC高频驱动模块以及负载电信号检测模块;所述人机交互模块、故障诊断保护模块、SiC高频驱动模块、负载电信号检测模块和非接触引弧模块分别与DSC控制器连接;所述故障诊断保护模块还分别与SiC逆变换流模块和功率变压器连接;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与SiC整流与平滑模块连接。
优选地,所述工频整流滤波模块包括整流器BR1、电感L1和电容C11;
所述SiC逆变换流模块包括SiC功率开关器件Q1、SiC功率开关器件Q2、SiC功率开关器件Q3、SiC功率开关器件Q4、电阻R1、电阻R2、电阻R3、电阻R4、电容C1、电容C2、电容C3、电容C4和电容Cr;
所述功率变压器包括变压器T1、电容C12和电阻R12;
所述SiC整流与平滑模块包括SiC整流二极管D1、SiC整流二极管D2、SiC整流二极管D3、SiC整流二极管D4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、压敏电阻YR1、压敏电阻YR2、压敏电阻YR3、压敏电阻YR4和电感L2;
所述噪声抑制模块与整流器BR1的输入端连接;电感L1和电容C11串联,之后并联在整流器BR1的输出端;
电容C11与SiC功率开关器件Q1和SiC功率开关器件Q2组成的串联电路并联,并且与SiC功率开关器件Q3和SiC功率开关器件Q4组成的串联电路并联;电阻R1和电容C1串联后并联在SiC功率开关器件Q1上;电阻R2和电容C2串联后并联在SiC功率开关器件Q2上;电阻R3和电容C3串联后并联在SiC功率开关器件Q3上;电阻R4和电容C4串联后并联在SiC功率开关器件Q4上;SiC功率开关器件Q1和SiC功率开关器件Q2的连接点通过电容Cr和变压器T1初级与SiC功率开关器件Q3和SiC功率开关器件Q4的连接点连接;电容C12和电阻R12串联后并联在变压器T1初级上;变压器T1次级与SiC整流二极管D1和SiC整流二极管D2组成的串联电路并联,并且与SiC整流二极管D3和SiC整流二极管D4组成的串联电路并联;电容C5和电阻R5串联后分别与SiC整流二极管D1和压敏电阻YR1并联;电阻R6和电容C6串联后分别与SiC整流二极管D2和压敏电阻YR2并联;电容C7和电阻R7串联后分别与SiC整流二极管D3和压敏电阻YR3并联;电阻R8和电容C8串联 后分别与SiC整流二极管D4和压敏电阻YR4并联;SiC整流二极管D1和SiC整流二极管D2的连接点通过电感L2和电容C9与SiC整流二极管D3和SiC整流二极管D4的连接点连接;电阻R9和电容C10分别并联在电容C9上;电容C10的一端与负载的正端连接,电容C10的另一端通过耦合变压器器T2初级与负载的负端连接;耦合变压器器T2次级与非接触引弧模块连接。
优选地,所述非接触引弧模块包括型号为IC1 555的触发器、SiC型场效应晶体管Q110、升压变压器T103、整流桥B101、放电器101、放电器102和高压充电电容C106,以及其它外围辅助电路。
优选地,所述SiC高频驱动模块包括场效应管M201、场效应管M202、场效应管M203、场效应管M204、变压器T201、变压器T202和四个SiC驱动电路,以及其它外围辅助电路。
优选地,所述负载电信号检测模块包括电流采样电路和电压分压采样电路;所述电流采样电路包括包括霍尔电流传感器、型号为AD629的芯片U301和型号为OP177的芯片U302,以及其它外围辅助电路;所述电压分压采样电路包括由电阻R401和电阻402组成的分压单元、型号为LF353的芯片U401和型号为HCNR201的芯片U402,以及其它外围辅助电路。
优选地,所述故障诊断保护模块包括过压欠压监测电路、缺相检测电路和过热检测电路;所述过压欠压监测电路包括由电阻R513、电阻R514、电阻R517和电阻R518组成的桥式电路、VCC直流源、比较器U501、比较器U502、光耦U515和光耦U516,以及其它外围辅助电路;所述缺相检测电路包括比较器U503和光耦U514,以及其它外围辅助电路。
优选地,所述噪声抑制模块包括三相共模电感Lcm、三相差模电感Ldm、X电容、Y电容和泄放电阻。
优选地,所述DSC控制器包括内嵌FREERTOS系统的DSC微处理器、电源单元、外部时钟振荡单元、复位单元和JTAG调试接口。
本发明电源创新设计的基础原理为:首先,SiC功率器件的开关速度快,开关损耗低,因此基于SiC功率器件的超高频逆变技术能够大幅度地提高电源的逆变频率,从而使得电源主电路的磁性功率器件以及平滑滤波器件的体积和重量大幅降低,能量传递效率进一步提高;其次,由于SiC功率器件几乎不存在电导调制效应,使得它在开关过程不存在反向恢复效应,不易产生大的电压电 流尖峰,器件工作应力环境大为改善,提高了可靠性;然后,SiC功率器件具有更好的热耐受性,不仅可靠性提高,而且散热器的体积和重量也可以大幅度地降低,体积更小,重量更轻,功率密度更高,综合制造成本更低;最后,由于工作频率提高,电源的动特性得到了明显提高,使得电源对切割电流的控制更为精细化,易于提高切割质量。
本发明电源的工作原理为:三相/单相交流输入电源经工频整流滤波模块实现整流滤波形成直流电,通过SiC逆变换流模块进行超高频开关,转换成200kHz以上的高频交流方波脉冲,经功率变压器高频变换隔离后由SiC整流与平滑模块进行整流平滑为适合于等离子切割用的直流电源。
非接触引弧模块用于产生高频高压电脉冲,击穿等离子切割枪与工件之间的空气间隙,实现可靠引弧;负载电信号检测模块主要用于实时检测等离子切割电源输出的电流和电压波形,并提供给DSC控制器;人机交互模块主要实现工艺参数的预设、状态的显示等功能;DSC控制器主要根据人机交互模块的预设值与负载电信号检测模块提供的反馈电流电压值,产生合适的PWM控制信号,并通过SiC高频驱动模块转换成适合SiC逆变换流模块中SiC功率开关器件的PWM驱动信号,实现超高频驱动调制;故障诊断保护模块主要检测主电路的过热、过压、欠压、缺相等故障,并将状态信息反馈给DSC控制器,实现电源的安全保护。
与现有技术相比,本发明具有如下优点与有益效果:
1、本发明电源切割质量更好;所有功率开关器件全部采用基于SiC的新一代电力电子器件,逆变频率超过200kHz,是现有IGBT逆变式等离子切割电源的十倍以上,整机具备更优异的动特性,可以实现等离子切割弧的精细控制,切割质量更好;既可以应用于小功率场合,也能稳定可靠地应用于中大功率切割场合;
2、本发明电源可靠性更高;SiC功率开关器件几乎不存在电导调制效应,工作应力低,同时还拥有比目前通用的Si基MOSFET/IGBT更高的热耐受性、更强的耐压性能、禁带范围更宽,因此在高压等离子切割工况下的可靠性更易于得到保障;
3、本发明电源综合制造成本更低;本发明中功率开关器件损耗少,能效可超过96%以上,所需要的散热器体积更小;同时,随着逆变频率的提高,主电路 磁性器件和平滑滤波器件的体积重量也大幅度减少;因此本发明的功率密度更高,综合制造成本低更低,性价比高。
附图说明
图1是本发明电源的系统原理方框图;
图2是本发明电源的主电路原理图;
图3是本发明电源的闭环控制电路原理框图;
图4是本发明电源中非接触引弧模块的电路原理图;
图5是本发明电源中SiC高频驱动模块的电路原理图;
图6(a)是本发明电源中负载电信号检测模块的电流采样电路的电路原理图;
图6(b)是本发明电源中负载电信号检测模块的电压分压采样电路的电路原理图;
图7(a)是本发明电源中故障诊断保护模块的过压欠压监测电路的电路原理图;
图7(b)是本发明电源中故障诊断保护模块的缺相检测电路的电路原理图;
图7(c)是本发明电源中故障诊断保护模块的过热检测电路的电路原理图;
图8是本发明电源中噪声抑制模块的电路原理图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述。
实施例
如图1~图8所示,本实施例SiC逆变式等离子切割电源,包括主电路和闭环控制电路。主电路包括依次连接的噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器和SiC整流与平滑模块,以及非接触引弧模块;其中,噪声抑制模块与交流输入电源连接;SiC整流与平滑模块和非接触引弧模块分别与负载连接。
闭环控制电路包括人机交互模块、DSC控制器、故障诊断保护模块、SiC高频驱动模块以及负载电信号检测模块;人机交互模块、故障诊断保护模块、SiC高频驱动模块、负载电信号检测模块和非接触引弧模块分别与DSC控制器 连接;故障诊断保护模块还分别与SiC逆变换流模块和功率变压器连接;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与SiC整流与平滑模块连接。
主电路中,工频整流滤波模块包括整流器BR1、电感L1和电容C11;SiC逆变换流模块包括SiC功率开关器件Q1、SiC功率开关器件Q2、SiC功率开关器件Q3、SiC功率开关器件Q4、电阻R1、电阻R2、电阻R3、电阻R4、电容C1、电容C2、电容C3、电容C4和电容Cr;功率变压器包括变压器T1、电容C12和电阻R12;SiC整流与平滑模块包括SiC整流二极管D1、SiC整流二极管D2、SiC整流二极管D3、SiC整流二极管D4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、压敏电阻YR1、压敏电阻YR2、压敏电阻YR3、压敏电阻YR4和电感L2;
噪声抑制模块与整流器BR1的输入端连接;电感L1和电容C11串联,之后并联在整流器BR1的输出端;电容C11与SiC功率开关器件Q1和SiC功率开关器件Q2组成的串联电路并联,并且与SiC功率开关器件Q3和SiC功率开关器件Q4组成的串联电路并联;电阻R1和电容C1串联后并联在SiC功率开关器件Q1上;电阻R2和电容C2串联后并联在SiC功率开关器件Q2上;电阻R3和电容C3串联后并联在SiC功率开关器件Q3上;电阻R4和电容C4串联后并联在SiC功率开关器件Q4上;SiC功率开关器件Q1和SiC功率开关器件Q2的连接点通过电容Cr和变压器T1初级与SiC功率开关器件Q3和SiC功率开关器件Q4的连接点连接;电容C12和电阻R12串联后并联在变压器T1初级上;变压器T1次级与SiC整流二极管D1和SiC整流二极管D2组成的串联电路并联,并且与SiC整流二极管D3和SiC整流二极管D4组成的串联电路并联;电容C5和电阻R5串联后分别与SiC整流二极管D1和压敏电阻YR1并联;电阻R6和电容C6串联后分别与SiC整流二极管D2和压敏电阻YR2并联;电容C7和电阻R7串联后分别与SiC整流二极管D3和压敏电阻YR3并联;电阻R8和电容C8串联后分别与SiC整流二极管D4和压敏电阻YR4并联;SiC整流二极管D1和SiC整流二极管D2的连接点通过电感L2和电容C9与SiC整流二极管D3和SiC整流二极管D4的连接点连接;电阻R9和电容C10分别并联在电容C9上;电容C10的一端与负载的正端连接,电容C10的另一端通过 耦合变压器器T2初级与负载的负端连接;耦合变压器器T2次级与非接触引弧模块连接。
根据SiC功率开关器件Q1、SiC功率开关器件Q2、SiC功率开关器件Q3和SiC功率开关器件Q4的不同换流方式,电阻R1、电阻R2、电阻R3和电阻R4可以为零电阻。
DSC控制器包括内嵌FREERTOS系统的DSC微处理器、电源单元、外部时钟振荡单元、复位单元和JTAG调试接口。
本发明电源可以采用单一的主电路,也可以采用多个主电路并联方式进一步增强输出功率,如图3所示;图3为本发明采用双主电路并联输出时的闭环控制电路系统结构框图。闭环控制电路主要由DSC控制器、人机交互模块、故障诊断保护模块、负载电信号检测模块1、负载电信号检测模块2、SiC高频驱动模1和SiC高频驱动模2,以及扩展的继电器接口和CAN总线接口等构成;其中,扩展的继电器接口主要用于控制非接触引弧模块以及辅助的供气装置、冷却装置等的启动与停止;CAN总线接口主要用于与机器人等装置的数字协同通信控制;DSC控制器通过UART端口与人机交互模块进行数字通信,接收预设工艺参数信息,并将电源系统的实时状态信息在人机交互模块上显示;DSC控制器的高级定时器TIMER1同时产生多路数字PWM信号,输入给SiC高频驱动模1和SiC高频驱动模2,分别驱动主电路1和主电路2;负载电信号检测模块1和负载电信号检测模块2分别采集主电路1和主电路2的电流电压信号,并反馈回DSC控制器,从而对两个主电路分别形成了闭环控制回路;故障诊断保护模块同时检测过压、欠压、缺相以及每个主电路的过热情况,只要出现一种故障,故障诊断保护模块的输出电平就会发生翻转,并输入DSC控制器的GPIO端口,触发中断任务,关断PWM输出,实现电源整机的保护。
非接触引弧模块包括型号为IC1 555的触发器、SiC型场效应晶体管Q110、升压变压器T103、整流桥B101、放电器101、放电器102和高压充电电容C106,以及其它外围辅助电路。DSC控制器通过继电器接口控制整流桥B101的输入;型号为IC1 555的触发器为核心的脉冲触发电路控制SiC型场效应晶体管Q110的快速开关;使得升压变压器T103的原边得到高频脉冲信号,然后升压之后给C106充电,直到达到放电器P101和P102的击穿电压;空气间隙击穿后火花放电器放电,放电器P101和P102的等效电阻R、充放电电容C106、耦合变压器 T2的初级电感L形成RLC振荡,产生高频高压信号,该信号通过耦合变压器T2的次级T2-1和T2-2加载到电极与喷嘴之间,形成等离子弧引弧通路,进而实现非接触引弧。
SiC高频驱动模块包括场效应管M201、场效应管M202、场效应管M203、场效应管M204、变压器T201、变压器T202和四个SiC驱动电路,以及其它外围辅助电路。DSC控制器产生的PWM信号经隔离放大后输入连接器P201,经过限流电阻直接驱动由场效应管M201、场效应管M202、场效应管M203和场效应管M204组成的推挽输出电路。推挽输出电路驱动变压器T201和变压器T202,经过四路SiC驱动电路变换产生四路IGBT驱动信号。第一路SiC驱动电路中的电阻R227、电阻R235、二极管D217、电容C212构成了SiC的“慢开快关”网络;阻值较大的电阻R215限制SiC导通时的充电电流,从而增加SiC建立导通电压的时间,达到慢开的效果,抑制开通过程的du/dt;电容C217充电以及二极管D209、电阻R219构成的低阻回路加快了SiC关断时寄生电容电荷释放速度,实现SiC的快速关断;这种“慢开快关”的措施在一定程度上减少了SiC的开关损耗,而且SiC工作频率越高,这种积极作用越明显。电阻R246为SiC的栅极电阻,其引入避免了SiC在关断状态下栅极寄生电容的电荷储存而造成SiC的误触发,起到一种保护作用。
负载电信号检测模块包括电流采样电路和电压分压采样电路。电流采样电路包括包括霍尔电流传感器、型号为AD629的芯片U301和型号为OP177的芯片U302,以及其它外围辅助电路。霍尔电流直接输入连接器P301。电压分压采样电路包括由电阻R401和电阻402组成的分压单元、型号为LF353的芯片U401和型号为HCNR201的芯片U402,以及其它外围辅助电路。
故障诊断保护模块包括过压欠压监测电路、缺相检测电路和过热检测电路。过压欠压监测电路包括由电阻R513、电阻R514、电阻R517和电阻R518组成的桥式电路、VCC直流源、比较器U501、比较器U502、光耦U515和光耦U516,以及其它外围辅助电路。VCC直流源为变压器降压整流滤波后的直流电压信号,再经过电阻R513、电阻R514、电阻R517和电阻R518组成的桥式电路按比例降低至不同电压值后,分别输入至比较器U501和比较器U502的反相、同相输入端,并与设定的参考电压VREF比较,一旦出现过压欠压情况,则光耦导通,触发DSC微处理器的中断端口,调用故障处理任务。
缺相检测电路包括比较器U503和光耦U514,以及其它外围辅助电路。三相平衡时,电阻R569和电阻R570两端都有高电压,光耦U514输入端经过D512被稳压为15V,此时输出高电平,再经过电阻R568和R512分压后与VREF进行比较,比较器U503输出高电平信号。当其中一相电路缺相时,光耦U514不工作,输出近似零电平,此时比较器U503输出低电平信号,低电平信号再经过光耦隔离电路输入到DSC控制器的中断端口,触发故障保护中断子程序,关闭PWM输出,使切割电源停止运行,起到保护目的。
过热检测电路主要由温控开关、电阻R541、电阻R550、电容C547、电容C548、电感L502以及光耦U510组成。其中,温控开关输入连接器P504;温控开关实时检测功率变压器和SiC功率开关器件的散热器的温度;当实际温度超过预设的阀值时,温控开关闭合,光耦U510导通,DSC控制器的GPIO口管脚(PC3-IN-OH-2)电平信号被拉低,触发过热保护中断子程序,实现过热保护。
噪声抑制模块包括三相共模电感Lcm、三相差模电感Ldm、X电容Cx、Y电容Cy和泄放电阻R。其中,A、B、C接交流输入电源,A’、B’、C’接工频整流滤波模块;X电容Cx主要用于滤除共模噪声,Y电容Cy主要用于滤除差模噪声;三相共模电感Lcm主要用来滤除共模噪声,三相差模电感Ldm主要用来滤除差模噪声。
本发明电源创新设计的基础原理为:首先,SiC功率器件的开关速度快,开关损耗低,因此基于SiC功率器件的超高频逆变技术能够大幅度地提高电源的逆变频率,从而使得电源主电路的磁性功率器件以及平滑滤波器件的体积和重量大幅降低,能量传递效率进一步提高;其次,由于SiC功率器件几乎不存在电导调制效应,使得它在开关过程不存在反向恢复效应,不易产生大的电压电流尖峰,器件工作应力环境大为改善,提高了可靠性;然后,SiC功率器件具有更好的热耐受性,不仅可靠性提高,而且散热器的体积和重量也可以大幅度地降低,体积更小,重量更轻,功率密度更高,综合制造成本更低;最后,由于工作频率提高,电源的动特性得到了明显提高,使得电源对切割电流的控制更为精细化,易于提高切割质量。
应用本发明时,交流输入电源首先经过噪声抑制模块、工频整流滤波模块转换成平滑的直流电,DSC控制器将人机交互模块传送的预设值与负载电信号检测模块检测到的实际输出值进行比较,按照预设的算法进行运算,获得相应 占空比和频率的数字PWM信号,并经SiC高频驱动模块的隔离放大后去驱动SiC逆变换流模块中SiC功率开关器件按照预设的换流模式进行高频开关,将直流电转换成超高频交流方波脉冲,并经过功率变压器隔离、降压和传递功率,然后经过SiC整流与平滑模块转换成平滑的直流电,输送给电弧负载。DSC控制器一旦检测到切割启动指令,会首先控制非接触引弧模块动作,实现非接触引弧,引弧成功后关闭非接触引弧模块,切割电源进入正常的控制流程;故障诊断保护模块实时检测电源的工作状态,一旦出现过压、欠压、缺相、过热等故障,则触发DSC控制器的故障中断任务,实现系统的安全保护。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种SiC逆变式等离子切割电源,其特征在于:包括主电路和闭环控制电路;所述主电路包括依次连接的噪声抑制模块、工频整流滤波模块、SiC逆变换流模块、功率变压器和SiC整流与平滑模块,以及非接触引弧模块;其中,噪声抑制模块与交流输入电源连接;SiC整流与平滑模块和非接触引弧模块分别与负载连接;
    所述闭环控制电路包括人机交互模块、DSC控制器、故障诊断保护模块、SiC高频驱动模块以及负载电信号检测模块;所述人机交互模块、故障诊断保护模块、SiC高频驱动模块、负载电信号检测模块和非接触引弧模块分别与DSC控制器连接;所述故障诊断保护模块还分别与SiC逆变换流模块和功率变压器连接;SiC高频驱动模块还与SiC逆变换流模块连接;负载电信号检测模块还与SiC整流与平滑模块连接。
  2. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述工频整流滤波模块包括整流器BR1、电感L1和电容C11;
    所述SiC逆变换流模块包括SiC功率开关器件Q1、SiC功率开关器件Q2、SiC功率开关器件Q3、SiC功率开关器件Q4、电阻R1、电阻R2、电阻R3、电阻R4、电容C1、电容C2、电容C3、电容C4和电容Cr;
    所述功率变压器包括变压器T1、电容C12和电阻R12;
    所述SiC整流与平滑模块包括SiC整流二极管D1、SiC整流二极管D2、SiC整流二极管D3、SiC整流二极管D4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、压敏电阻YR1、压敏电阻YR2、压敏电阻YR3、压敏电阻YR4和电感L2;
    所述噪声抑制模块与整流器BR1的输入端连接;电感L1和电容C11串联,之后并联在整流器BR1的输出端;
    电容C11与SiC功率开关器件Q1和SiC功率开关器件Q2组成的串联电路并联,并且与SiC功率开关器件Q3和SiC功率开关器件Q4组成的串联电路并联;电阻R1和电容C1串联后并联在SiC功率开关器件Q1上;电阻R2和电容C2串联后并联在SiC功率开关器件Q2上;电阻R3和电容C3串联后并联在SiC功率开关器件Q3上;电阻R4和电容C4串联后并联在SiC功率开 关器件Q4上;SiC功率开关器件Q1和SiC功率开关器件Q2的连接点通过电容Cr和变压器T1初级与SiC功率开关器件Q3和SiC功率开关器件Q4的连接点连接;电容C12和电阻R12串联后并联在变压器T1初级上;变压器T1次级与SiC整流二极管D1和SiC整流二极管D2组成的串联电路并联,并且与SiC整流二极管D3和SiC整流二极管D4组成的串联电路并联;电容C5和电阻R5串联后分别与SiC整流二极管D1和压敏电阻YR1并联;电阻R6和电容C6串联后分别与SiC整流二极管D2和压敏电阻YR2并联;电容C7和电阻R7串联后分别与SiC整流二极管D3和压敏电阻YR3并联;电阻R8和电容C8串联后分别与SiC整流二极管D4和压敏电阻YR4并联;SiC整流二极管D1和SiC整流二极管D2的连接点通过电感L2和电容C9与SiC整流二极管D3和SiC整流二极管D4的连接点连接;电阻R9和电容C10分别并联在电容C9上;电容C10的一端与负载的正端连接,电容C10的另一端通过耦合变压器器T2初级与负载的负端连接;耦合变压器器T2次级与非接触引弧模块连接。
  3. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述非接触引弧模块包括型号为IC1 555的触发器、SiC型场效应晶体管Q110、升压变压器T103、整流桥B101、放电器101、放电器102和高压充电电容C106,以及其它外围辅助电路。
  4. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述SiC高频驱动模块包括场效应管M201、场效应管M202、场效应管M203、场效应管M204、变压器T201、变压器T202和四个SiC驱动电路,以及其它外围辅助电路。
  5. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述负载电信号检测模块包括电流采样电路和电压分压采样电路;所述电流采样电路包括包括霍尔电流传感器、型号为AD629的芯片U301和型号为OP177的芯片U302,以及其它外围辅助电路;所述电压分压采样电路包括由电阻R401和电阻402组成的分压单元、型号为LF353的芯片U401和型号为HCNR201的芯片U402,以及其它外围辅助电路。
  6. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述故障诊断保护模块包括过压欠压监测电路、缺相检测电路和过热检测电路;所述过压欠压监测电路包括由电阻R513、电阻R514、电阻R517和电阻R518组 成的桥式电路、VCC直流源、比较器U501、比较器U502、光耦U515和光耦U516,以及其它外围辅助电路;所述缺相检测电路包括比较器U503和光耦U514,以及其它外围辅助电路。
  7. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述噪声抑制模块包括三相共模电感Lcm、三相差模电感Ldm、X电容、Y电容和泄放电阻。
  8. 根据权利要求1所述的SiC逆变式等离子切割电源,其特征在于:所述DSC控制器包括内嵌FREERTOS系统的DSC微处理器、电源单元、外部时钟振荡单元、复位单元和JTAG调试接口。
PCT/CN2017/076416 2016-12-12 2017-03-13 SiC逆变式等离子切割电源 WO2018107591A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201807606TA SG11201807606TA (en) 2016-12-12 2017-03-13 Sic inverted plasma cutting power supply
US16/082,972 US10807184B2 (en) 2016-12-12 2017-03-13 SiC inverted plasma cutting power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611138699.3A CN106513956B (zh) 2016-12-12 2016-12-12 SiC逆变式等离子切割电源
CN201611138699.3 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018107591A1 true WO2018107591A1 (zh) 2018-06-21

Family

ID=58343085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076416 WO2018107591A1 (zh) 2016-12-12 2017-03-13 SiC逆变式等离子切割电源

Country Status (4)

Country Link
US (1) US10807184B2 (zh)
CN (1) CN106513956B (zh)
SG (1) SG11201807606TA (zh)
WO (1) WO2018107591A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181532A (zh) * 2019-12-30 2020-05-19 河北建材职业技术学院 一种阻挡式高频脉冲电流产生电路
CN113507201A (zh) * 2021-06-03 2021-10-15 北京自动化控制设备研究所 一种伺服系统并联SiC-MoS驱动电路

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181071B (zh) * 2018-01-09 2024-04-05 上海千黎电气科技有限公司 电动振动台的功率放大器、功率控制系统及方法
CN108127239B (zh) * 2018-03-02 2023-12-01 华南理工大学 铝合金机器人变极性等离子弧智能穿孔焊接系统
PL241018B1 (pl) * 2018-08-10 2022-07-18 Instytut Napedow I Masz Elektrycznych Komel System ochrony układu izolacyjnego transformatora
CN109194144A (zh) * 2018-08-10 2019-01-11 合肥华耀电子工业有限公司 一种交错并联双正激式升压电路
CN110000449A (zh) * 2019-04-30 2019-07-12 华南理工大学 基于SiC功率器件的双脉冲MIG焊接电源
CN110076421A (zh) * 2019-05-29 2019-08-02 华南理工大学 基于SiC的快频脉冲TIG焊接电源数字化控制电路
CN113067484A (zh) * 2019-12-31 2021-07-02 中车永济电机有限公司 变流器
CN113726189A (zh) * 2021-05-28 2021-11-30 苏州申成电子科技有限公司 高能离子杀菌系统
CN113399782B (zh) * 2021-05-31 2023-03-28 深圳市佳士科技股份有限公司 引弧电路和电焊机
CN116191906B (zh) * 2023-03-07 2023-11-07 东莞市晟鼎精密仪器有限公司 一种双脉冲等离子电源智能监控系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201002169Y (zh) * 2006-12-08 2008-01-09 华南理工大学 一种lgk式逆变等离子切割电源
CN101391336A (zh) * 2008-10-24 2009-03-25 广东火电工程总公司 嵌入式数字化控制的管板全位置自动焊接逆变电源
WO2016073146A1 (en) * 2014-11-07 2016-05-12 Illinois Tool Works Inc. Method and apparatus including a balanced dc bus for providing power in an arc welder
CN106392262A (zh) * 2016-08-15 2017-02-15 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN205967754U (zh) * 2016-08-15 2017-02-22 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292273A (ja) * 1986-06-13 1987-12-18 Hitachi Seiko Ltd プラズマア−ク用電源
JPS6434580A (en) * 1987-07-29 1989-02-06 Kiya Seisakusho Kk Controller for plasma fusing and welding machine
CN201002167Y (zh) * 2006-12-08 2008-01-09 华南理工大学 一种nbj集装箱专用气体保护焊弧焊电源
CN201102120Y (zh) * 2007-11-15 2008-08-20 华南理工大学 基于arm的嵌入式数字化多功能逆变式软开关弧焊电源
JP5766495B2 (ja) * 2010-05-18 2015-08-19 株式会社日立ハイテクノロジーズ 熱処理装置
CN103551716B (zh) * 2013-10-25 2016-06-22 华南理工大学 全数字强功率等离子弧精细化切割系统
CN106457450B (zh) * 2014-03-31 2019-08-20 海别得公司 用于等离子切割系统的电力供应器组合件及相关制造方法
CN206614131U (zh) * 2016-12-12 2017-11-07 华南理工大学 SiC逆变式等离子切割电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201002169Y (zh) * 2006-12-08 2008-01-09 华南理工大学 一种lgk式逆变等离子切割电源
CN101391336A (zh) * 2008-10-24 2009-03-25 广东火电工程总公司 嵌入式数字化控制的管板全位置自动焊接逆变电源
WO2016073146A1 (en) * 2014-11-07 2016-05-12 Illinois Tool Works Inc. Method and apparatus including a balanced dc bus for providing power in an arc welder
CN106392262A (zh) * 2016-08-15 2017-02-15 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN205967754U (zh) * 2016-08-15 2017-02-22 华南理工大学 基于DSC的全数字SiC逆变式多功能氩弧焊电源

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181532A (zh) * 2019-12-30 2020-05-19 河北建材职业技术学院 一种阻挡式高频脉冲电流产生电路
CN111181532B (zh) * 2019-12-30 2023-07-25 河北建材职业技术学院 一种阻挡式高频脉冲电流产生电路
CN113507201A (zh) * 2021-06-03 2021-10-15 北京自动化控制设备研究所 一种伺服系统并联SiC-MoS驱动电路

Also Published As

Publication number Publication date
CN106513956A (zh) 2017-03-22
US10807184B2 (en) 2020-10-20
US20190084073A1 (en) 2019-03-21
CN106513956B (zh) 2018-09-14
SG11201807606TA (en) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2018107591A1 (zh) SiC逆变式等离子切割电源
WO2018032755A1 (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN104660022B (zh) 为电源变换器提供过流保护的系统和方法
WO2019080400A1 (zh) 基于SiC功率器件的全桥LLC谐振型等离子体电源
US20220152719A1 (en) Digitized Variable-Polarity Welding Power Source Based on SiC IGBT
CN205967754U (zh) 基于DSC的全数字SiC逆变式多功能氩弧焊电源
CN203840210U (zh) 交流逆变电路
CN202679770U (zh) 一种逆变升压脉冲激光电源
CN209787042U (zh) 开关电源充电电路
CN205792229U (zh) 一种中大功率场合高功率因数直流电源
CN107052527B (zh) 一种大功率SiC埋弧焊接电源
CN106026702A (zh) 一种大功率直流等离子体电源
CN104052326A (zh) 一种大功率单逆变螺柱焊机
CN105811785A (zh) 基于变压器分布参数的lcc谐振式静电除尘高频高压电源
CN206850409U (zh) 一种带过压过温保护的电源适配器
CN206614131U (zh) SiC逆变式等离子切割电源
CN202940740U (zh) 一种大功率pwm型开关稳压电源
CN202424283U (zh) 一种基于单片三端top22x集成芯片的充电器
CN208461691U (zh) 一种电容隔离谐振式功率因数校正变换器
CN105576840A (zh) 用于智能电网传感装置的自感应取电电路
CN104128680A (zh) 基于sopc技术的电解加工高频脉冲电源
CN203933438U (zh) 一种大功率单逆变螺柱焊机
TWI519052B (zh) 具短路保護的橋式電路及其方法
CN111843117A (zh) 一种用于焊机的多电压输入转换控制电路及装置
CN207910691U (zh) 一种新型大功率半桥式输出可调开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17881300

Country of ref document: EP

Kind code of ref document: A1