WO2018107316A1 - 一种超高碳型轴承钢的热处理方法 - Google Patents

一种超高碳型轴承钢的热处理方法 Download PDF

Info

Publication number
WO2018107316A1
WO2018107316A1 PCT/CN2016/109410 CN2016109410W WO2018107316A1 WO 2018107316 A1 WO2018107316 A1 WO 2018107316A1 CN 2016109410 W CN2016109410 W CN 2016109410W WO 2018107316 A1 WO2018107316 A1 WO 2018107316A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
temperature
furnace
bearing steel
cooled
Prior art date
Application number
PCT/CN2016/109410
Other languages
English (en)
French (fr)
Inventor
马飞
Original Assignee
马飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马飞 filed Critical 马飞
Priority to PCT/CN2016/109410 priority Critical patent/WO2018107316A1/zh
Publication of WO2018107316A1 publication Critical patent/WO2018107316A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces

Definitions

  • the invention relates to the technical field of bearing steel, in particular to a heat treatment method for ultra-high carbon bearing steel.
  • Bearing steel is steel used to make balls, rollers and bearing rings. Bearing steels have high and uniform hardness and wear resistance, as well as high elastic limits. The uniformity of the chemical composition of the bearing steel, the content and distribution of non-metallic inclusions, and the distribution of carbides are all very strict, and it is one of the most demanding steel grades in all steel production.
  • bearing steel The physical properties of bearing steel are mainly based on inspection of microstructure, decarburization layer, non-metallic inclusions and low-fold structure. In general, it is delivered by hot rolling annealing and cold drawing annealing. The delivery status should be stated in the contract.
  • the low-magnification of steel must be free of shrinkage, subcutaneous bubbles, white spots and microscopic pores.
  • the center is loose, generally loose, no more than 1.5, and segregation must not exceed 2.
  • the annealed structure of the steel should be a uniformly distributed fine-grained pearlite. Decarburization depth, non-metallic inclusions and carbide non-uniformity shall comply with the relevant national standards.
  • the strength and hardness of bearing steel can prolong the rolling contact fatigue life of bearing steel.
  • high-performance trains, large-scale wind power equipment and precision machining require high-performance bearing steel.
  • the existing bearing steel is in strength and hardness.
  • the anti-fire softening ability has yet to be improved. For this reason, we have proposed a heat treatment method for ultra-high carbon bearing steel to solve the above problems.
  • the present invention proposes an ultra high carbon bearing Heat treatment method for steel.
  • the invention discloses a heat treatment method for ultra-high carbon bearing steel, wherein the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 1.5% - 2.5%; Mn: 0.6% - 1.2%; : 0.01% - 0.1%; B: 0.1% - 1.0%; Be: 0.1% - 0.24%; Ni: 0.2% - 1.8%; Si: 1.2% - 1.8%; Ti: 0.4% - 0.8%; W: 0.05 %-0.08%; Cr: 2.5%-4.5%; Al: 0.12%-0.16%; Re: 0.05%-0.16%; the balance is Fe;
  • the heat treatment method includes the following steps:
  • the steel is placed in a medium temperature salt bath furnace, and is kept at a temperature of 800-850 °C for 18-22 min, then transferred to a reverberatory furnace, and 4-7% of BaCO 3 is selected as a penetration agent for solid carburizing. Control the uniformity of the furnace temperature, take out the steel after completion, quickly quench it into the oil of 160-200 °C, and take it out when the temperature of the steel is lowered to 200-250 °C, then air-cooled;
  • S4 secondary quenching: the steel of S3 is placed in a refining furnace, and is kept at a temperature of 830-840 ° C for 10-20 min, and then the steel is taken out and quenched into oil of 160-180 ° C to be cooled;
  • tempering put the steel into the furnace, heat the tempering furnace to 150-190 ° C, keep warm for 1-3 h, and then complete the heat treatment of the bearing steel after taking out.
  • the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 1.7%-2.0%; Mn: 0.8%-1.0%; V: 0.05%-0.07%; B: 0.5%-0.8 %; Be: 0.14% - 0.2%; Ni: 0.6% - 1.4%; Si: 1.4% - 1.6%; Ti: 0.5% - 0.7%; W: 0.06% - 0.07%; Cr: 3% - 4%; Al: 0.13% - 0.15%; Re: 0.07% - 0.14%; the balance is Fe.
  • the composition of the ultra-high carbon bearing steel comprises the following weight percentages of raw materials: C: 1.8%; Mn: 0.9%; V: 0.06%; B: 0.7%; Be: 0.18%; Ni: 0.9%; Si: 1.5%; Ti: 0.6%; W: 0.065%; Cr: 3.5%; Al: 0.14%; Re: 0.09%;
  • the steel material is kept at 800 ° C for 5 h, the temperature is cooled to 730 ° C at a rate of 30 ° C / h, and the temperature is kept for 1.5 h, and the temperature is cooled to 600 ° C at a rate of 20 ° C / h, and the temperature is kept for 1.5 h. After the air is released.
  • the steel material is placed in a medium temperature salt bath furnace, and after being kept at a temperature of 825 ° C for 20 minutes, it is transferred to a reverberatory furnace, and 6% of BaCO 3 is selected as a penetration agent to perform solid carburizing, and the furnace temperature is strictly controlled. Uniformity, after the completion of the steel, the steel is quickly quenched into 180 ° C oil to cool, when the steel temperature is reduced to 225 ° C, and then air cooled.
  • the oil is oil, spindle oil, transformer oil or diesel oil.
  • annealing is a preliminary heat treatment process commonly used in production, which is to heat the steel to a suitable temperature, keep it for a certain period of time, and then slowly cool to obtain a heat treatment process close to the equilibrium structure, the purpose of which is to eliminate or reduce casting, forging and welding.
  • the internal stress of the piece and the structural non-uniformity of the chemical composition; quenching and tempering of the bearing steel is an important and widely used process in the heat treatment process, and quenching can significantly increase the strength and hardness of the steel, if different Tempering of temperature can eliminate or reduce the internal stress of quenching, and can get the combination of strength, hardness and toughness to meet different requirements.
  • the stepwise decrement method is used to cool down, which is beneficial to better balance the organization. Then, secondary quenching is carried out, the temperature and time of the treatment are strictly controlled, and solid carburizing treatment is performed to ensure the comprehensive performance of the bearing steel and improve the service life of the bearing steel.
  • the heat treatment method of the invention can ensure that the bearing steel does not decrease. Under the condition of hardness, the toughness is improved, and the contact fatigue life is remarkably improved.
  • the invention discloses a heat treatment method for ultra-high carbon bearing steel, wherein the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 1.5%; Mn: 0.6%; V: 0.01%; B: 0.1%; Be: 0.1%; Ni: 0.2%; Si: 1.2%; Ti: 0.4%; W: 0.05%; Cr: 2.5%; Al: 0.12%; Re: 0.05%;
  • the heat treatment method includes the following steps:
  • the steel is placed in a medium temperature salt bath furnace, and after being kept at 800 °C for 18 minutes, it is transferred to a reverberatory furnace, and 4% of BaCO 3 is selected as a penetration agent to carry out solid carburizing, and the furnace temperature uniformity is strictly controlled. After completion, the steel is taken out and rapidly quenched into oil at 160 ° C for cooling. When the temperature of the steel is lowered to 200 ° C, it is taken out, followed by air cooling;
  • tempering put the steel into the furnace, heat the tempering furnace to 150 ° C, keep warm for 1 h, and then complete the heat treatment of the bearing steel after taking out.
  • the invention discloses a heat treatment method for ultra-high carbon bearing steel, wherein the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 1.7%; Mn: 0.8%; V: 0.05%; B: 0.5%; Be: 0.14%; Ni: 0.6%; Si: 1.4%; Ti: 0.5%; W: 0.06%; Cr: 3%; Al: 0.13%; Re: 0.07%;
  • the heat treatment method includes the following steps:
  • the steel is placed in a medium temperature salt bath furnace, and after being kept at 810 ° C for 19 min, it is transferred to a reverberatory furnace, and 5% of BaCO 3 is selected as a penetration agent to carry out solid carburizing, and the furnace temperature uniformity is strictly controlled. After completion, the steel is taken out, rapidly quenched into oil at 170 ° C for cooling, and taken out when the temperature of the steel is lowered to 210 ° C, followed by air cooling;
  • tempering put the steel into the tempering furnace, raise the tempering furnace to 160 ° C, keep warm for 1.5 h, and then complete the heat treatment of the bearing steel after taking out.
  • the invention discloses a heat treatment method for ultra-high carbon bearing steel, wherein the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 1.8%; Mn: 0.9%; V: 0.06%; B: 0.7%; Be: 0.18%; Ni: 0.9%; Si: 1.5%; Ti: 0.6%; W: 0.065%; Cr: 3.5%; Al: 0.14%; Re: 0.09%;
  • the heat treatment method includes the following steps:
  • the steel is placed in a medium temperature salt bath furnace, and after being kept at 825 ° C for 20 min, it is transferred to a reverberatory furnace, and 6% of BaCO 3 is selected as a penetration agent to carry out solid carburizing, and the furnace temperature uniformity is strictly controlled. After completion, the steel is taken out, rapidly quenched into oil at 180 ° C, and taken out when the temperature of the steel is lowered to 225 ° C, followed by air cooling;
  • tempering put the steel into the tempering furnace, raise the tempering furnace to 170 ° C, keep warm for 2 h, and then complete the heat treatment of the bearing steel after taking out.
  • the invention discloses a heat treatment method for ultra-high carbon bearing steel, wherein the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 2.0%; Mn: 1.0%; V: 0.07%; B: 0.8%; Be: 0.2%; Ni: 1.4%; Si: 1.6%; Ti: 0.7%; W: 0.07%; Cr: 4%; Al: 0.15%; Re: 0.14%;
  • the heat treatment method includes the following steps:
  • the steel is placed in a medium temperature salt bath furnace, and after being kept at 840 ° C for 20 min, it is transferred to a reverberatory furnace, and 7% of BaCO 3 is selected as a penetration agent to carry out solid carburizing, and the furnace temperature uniformity is strictly controlled. After completion, the steel is taken out, quickly quenched into oil at 190 ° C for cooling, and taken out when the temperature of the steel is lowered to 240 ° C, followed by air cooling;
  • tempering put the steel into the furnace, heat the tempering furnace to 180 ° C, keep warm for 2.5 h, and then complete the heat treatment of the bearing steel after taking out.
  • the invention discloses a heat treatment method for ultra-high carbon bearing steel, wherein the composition of the ultra-high carbon bearing steel comprises the following raw materials by weight: C: 2.5%; Mn: 1.2%; V: 0.1%; B: 1.0%; Be: 0.24%; Ni: 1.8%; Si: 1.8%; Ti: 0.8%; W: 0.08%; Cr: 4.5%; Al: 0.16%; Re: 0.16%; Is Fe;
  • the heat treatment method includes the following steps:
  • the steel is placed in a medium temperature salt bath furnace, and after being kept at 850 ° C for 22 min, it is transferred to a reverberatory furnace, and 7% of BaCO 3 is selected as a penetration agent to carry out solid carburizing, and the furnace temperature uniformity is strictly controlled. After completion, the steel is taken out, quickly quenched into 200 ° C oil and cooled, and the steel is taken out when the temperature drops to 250 ° C, and then air cooled;
  • tempering put the steel into the tempering furnace, raise the tempering furnace to 190 ° C, keep warm for 3 h, and then complete the heat treatment of the bearing steel after taking out.
  • the heat treatment method of the present invention can ensure that the toughness of the bearing steel is improved without lowering the hardness, and the contact fatigue life is remarkably improved.

Abstract

一种超高碳型轴承钢的热处理方法,成分为:C:1.5%-2.5%;Mn:0.6%-1.2%;V:0.01%-0.1%;B:0.1%-1.0%;Be:0.1%-0.24%;Ni:0.2%-1.8%;Si:1.2%-1.8%;Ti:0.4%-0.8%;W:0.05%-0.08%;Cr:2.5%-4.5%;Al:0.12%-0.16%;Re:0.05%-0.16%;余量为Fe;热处理方法包括:退火,正火,一次淬火,二次淬火,回火。该热处理方法不降低轴承钢硬度并提高韧性,提高接触疲劳寿命。

Description

一种超高碳型轴承钢的热处理方法 技术领域
本发明涉及轴承钢技术领域,尤其涉及一种超高碳型轴承钢的热处理方法。
背景技术
轴承钢是用来制造滚珠、滚柱和轴承套圈的钢。轴承钢有高而均匀的硬度和耐磨性,以及高的弹性极限。对轴承钢的化学成分的均匀性、非金属夹杂物的含量和分布、碳化物的分布等要求都十分严格,是所有钢铁生产中要求最严格的钢种之一。
轴承钢的物理性能主要以检查显微组织、脱碳层、非金属夹杂物、低倍组织为主。一般情况下均以热轧退火、冷拉退火交货。交货状态应在合同中注明。钢材的低倍组织必须无缩孔、皮下气泡、白点及显微孔隙。中心疏松、一般疏松不得超过1.5级,偏析不得超过2级。钢材的退火组织应为均匀分布的细粒状珠光体。脱碳层深度、非金属夹杂物和碳化物不均匀度应符合相应有关国家标准规定。
轴承钢的基体强度、硬度可以延长轴承钢滚动接触疲劳寿命,且目前的高速列车、大型风力发电设备以及精密加工等领域都需要更高性能的轴承钢,现有的轴承钢在强度、硬度和抗火软化能力还有待提高,为此我们提出了一种超高碳型轴承钢的热处理方法,用来解决上述问题。
发明内容
基于背景技术存在的技术问题,本发明提出了一种超高碳型轴承 钢的热处理方法。
本发明提出的一种超高碳型轴承钢的热处理方法,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.5%-2.5%;Mn:0.6%-1.2%;V:0.01%-0.1%;B:0.1%-1.0%;Be:0.1%-0.24%;Ni:0.2%-1.8%;Si:1.2%-1.8%;Ti:0.4%-0.8%;W:0.05%-0.08%;Cr:2.5%-4.5%;Al:0.12%-0.16%;Re:0.05%-0.16%;余量为Fe;
热处理方法包括以下步骤:
S1,退火:钢材在780-820℃保温3-7h,将温度以20-40℃/h的速度冷至700-760℃,保温1-2h,将温度以10-30℃/h的速度冷至550-650℃,保温1-2h后出炉空冷;
S2,正火:将炉内的温度升至900-980℃,放入钢材,保温2-3h,分散空冷;
S3,一次淬火:钢材置于中温盐浴炉中,在800-850℃温度下保温18-22min后转移至反射炉,选取4-7%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入160-200℃的油中冷却,待钢材温度降至200-250℃时取出,随后空冷;
S4,二次淬火:将S3的钢材置于精炼炉,在830-840℃温度下保温10-20min,然后取出钢材淬入160-180℃的油中冷却;
S5,回火:将钢材放入回火炉,将回火炉升温至150-190℃,保温1-3h,取出后即可完成轴承钢的热处理。
优选地,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.7%-2.0%;Mn:0.8%-1.0%;V:0.05%-0.07%;B:0.5%-0.8%;Be:0.14%-0.2%;Ni:0.6%-1.4%;Si:1.4%-1.6%;Ti:0.5%-0.7%;W:0.06%-0.07%;Cr:3%-4%;Al:0.13%-0.15%;Re:0.07%-0.14%;余量为Fe。
优选地,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.8%;Mn:0.9%;V:0.06%;B:0.7%;Be:0.18%;Ni:0.9%;Si:1.5%;Ti:0.6%;W:0.065%;Cr:3.5%;Al:0.14%;Re:0.09%;余量为Fe。
优选地,所述S1中,钢材在800℃保温5h,将温度以30℃/h的速度冷至730℃,保温1.5h,将温度以20℃/h的速度冷至600℃,保温1.5h后出炉空冷。
优选地,所述S3中,钢材置于中温盐浴炉中,在825℃温度下保温20min后转移至反射炉,选取6%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入180℃的油中冷却,待钢材温度降至225℃时取出,随后空冷。
优选地,所述S4中,油为机油、锭子油、变压器油或柴油。
本发明中,退火是生产中常用的预备热处理工艺,是把钢加热到适当温度,保温一定时间,然后缓慢冷却,以获得接近平衡组织的热处理工艺,其目的是消除或减少铸、锻及焊件的内应力与化学成分的组织不均匀性;轴承钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序,淬火能显著提高钢的强度和硬度,如果再配以不同 温度的回火,即可消除或减轻淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求,在退火过程中,采用阶梯递减方式进行降温,有利于更好的获得平衡组织,之后进行二次淬火,严格控制处理的温度和时间,并进行固体渗碳处理,保证了轴承钢的综合性能,提高了轴承钢的使用寿命,本发明的热处理方法可以保证轴承钢在不降低硬度的条件下,韧性得到提高,并且其接触疲劳寿命得到显著提高。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
实施例一
本发明提出的一种超高碳型轴承钢的热处理方法,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.5%;Mn:0.6%;V:0.01%;B:0.1%;Be:0.1%;Ni:0.2%;Si:1.2%;Ti:0.4%;W:0.05%;Cr:2.5%;Al:0.12%;Re:0.05%;余量为Fe;
热处理方法包括以下步骤:
S1,退火:钢材在780℃保温3h,将温度以20℃/h的速度冷至700℃,保温1h,将温度以10℃/h的速度冷至550℃,保温1h后出炉空冷;
S2,正火:将炉内的温度升至900℃,放入钢材,保温2h,分散空冷;
S3,一次淬火:钢材置于中温盐浴炉中,在800℃温度下保温18min后转移至反射炉,选取4%的BaCO3作为催渗剂,进行固体渗碳, 严格控制炉温均匀性,完成后将钢材取出,迅速淬入160℃的油中冷却,待钢材温度降至200℃时取出,随后空冷;
S4,二次淬火:将S3的钢材置于精炼炉,在830℃温度下保温10min,然后取出钢材淬入160℃的油中冷却;
S5,回火:将钢材放入回火炉,将回火炉升温至150℃,保温1h,取出后即可完成轴承钢的热处理。
实施例二
本发明提出的一种超高碳型轴承钢的热处理方法,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.7%;Mn:0.8%;V:0.05%;B:0.5%;Be:0.14%;Ni:0.6%;Si:1.4%;Ti:0.5%;W:0.06%;Cr:3%;Al:0.13%;Re:0.07%;余量为Fe;
热处理方法包括以下步骤:
S1,退火:钢材在790℃保温4h,将温度以25℃/h的速度冷至710℃,保温1.2h,将温度以15℃/h的速度冷至570℃,保温1.2h后出炉空冷;
S2,正火:将炉内的温度升至920℃,放入钢材,保温2.2h,分散空冷;
S3,一次淬火:钢材置于中温盐浴炉中,在810℃温度下保温19min后转移至反射炉,选取5%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入170℃的油中冷却,待钢材温度降至210℃时取出,随后空冷;
S4,二次淬火:将S3的钢材置于精炼炉,在832℃温度下保温 12min,然后取出钢材淬入165℃的油中冷却;
S5,回火:将钢材放入回火炉,将回火炉升温至160℃,保温1.5h,取出后即可完成轴承钢的热处理。
实施例三
本发明提出的一种超高碳型轴承钢的热处理方法,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.8%;Mn:0.9%;V:0.06%;B:0.7%;Be:0.18%;Ni:0.9%;Si:1.5%;Ti:0.6%;W:0.065%;Cr:3.5%;Al:0.14%;Re:0.09%;余量为Fe;
热处理方法包括以下步骤:
S1,退火:钢材在800℃保温5h,将温度以30℃/h的速度冷至730℃,保温1.5h,将温度以15℃/h的速度冷至575℃,保温1.5h后出炉空冷;
S2,正火:将炉内的温度升至940℃,放入钢材,保温2.5h,分散空冷;
S3,一次淬火:钢材置于中温盐浴炉中,在825℃温度下保温20min后转移至反射炉,选取6%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入180℃的油中冷却,待钢材温度降至225℃时取出,随后空冷;
S4,二次淬火:将S3的钢材置于精炼炉,在835℃温度下保温15min,然后取出钢材淬入170℃的油中冷却;
S5,回火:将钢材放入回火炉,将回火炉升温至170℃,保温2h,取出后即可完成轴承钢的热处理。
实施例四
本发明提出的一种超高碳型轴承钢的热处理方法,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:2.0%;Mn:1.0%;V:0.07%;B:0.8%;Be:0.2%;Ni:1.4%;Si:1.6%;Ti:0.7%;W:0.07%;Cr:4%;Al:0.15%;Re:0.14%;余量为Fe;
热处理方法包括以下步骤:
S1,退火:钢材在810℃保温6h,将温度以35℃/h的速度冷至750℃,保温1.8h,将温度以25℃/h的速度冷至625℃,保温1.8h后出炉空冷;
S2,正火:将炉内的温度升至960℃,放入钢材,保温2.8h,分散空冷;
S3,一次淬火:钢材置于中温盐浴炉中,在840℃温度下保温20min后转移至反射炉,选取7%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入190℃的油中冷却,待钢材温度降至240℃时取出,随后空冷;
S4,二次淬火:将S3的钢材置于精炼炉,在838℃温度下保温18min,然后取出钢材淬入175℃的油中冷却;
S5,回火:将钢材放入回火炉,将回火炉升温至180℃,保温2.5h,取出后即可完成轴承钢的热处理。
实施例五
本发明提出的一种超高碳型轴承钢的热处理方法,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:2.5%;Mn:1.2%;V: 0.1%;B:1.0%;Be:0.24%;Ni:1.8%;Si:1.8%;Ti:0.8%;W:0.08%;Cr:4.5%;Al:0.16%;Re:0.16%;余量为Fe;
热处理方法包括以下步骤:
S1,退火:钢材在820℃保温7h,将温度以40℃/h的速度冷至760℃,保温2h,将温度以30℃/h的速度冷至650℃,保温2h后出炉空冷;
S2,正火:将炉内的温度升至980℃,放入钢材,保温3h,分散空冷;
S3,一次淬火:钢材置于中温盐浴炉中,在850℃温度下保温22min后转移至反射炉,选取7%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入200℃的油中冷却,待钢材温度降至250℃时取出,随后空冷;
S4,二次淬火:将S3的钢材置于精炼炉,在840℃温度下保温20min,然后取出钢材淬入180℃的油中冷却;
S5,回火:将钢材放入回火炉,将回火炉升温至190℃,保温3h,取出后即可完成轴承钢的热处理。
为了检验本发明的轴承钢的力学性能,通过实验分别检测本发明中实施例1-5的轴承钢,并检查人市场上普通的轴承钢,结果如下表:
组别 HRC 冲击力/J
实施例一 63.1 9.8
实施例二 62.8 10.2
实施例三 64.9 11.4
实施例四 64.1 10.4
实施例五 63.5 9.9
普通轴承钢 52.1 5.4
由上表可知,本发明的热处理方法可以保证轴承钢在不降低硬度的条件下,韧性得到提高,并且其接触疲劳寿命得到显著提高。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种超高碳型轴承钢的热处理方法,其特征在于,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.5%-2.5%;Mn:0.6%-1.2%;V:0.01%-0.1%;B:0.1%-1.0%;Be:0.1%-0.24%;Ni:0.2%-1.8%;Si:1.2%-1.8%;Ti:0.4%-0.8%;W:0.05%-0.08%;Cr:2.5%-4.5%;Al:0.12%-0.16%;Re:0.05%-0.16%;余量为Fe;
    热处理方法包括以下步骤:
    S1,退火:钢材在780-820℃保温3-7h,将温度以20-40℃/h的速度冷至700-760℃,保温1-2h,将温度以10-30℃/h的速度冷至550-650℃,保温1-2h后出炉空冷;
    S2,正火:将炉内的温度升至900-980℃,放入钢材,保温2-3h,分散空冷;
    S3,一次淬火:钢材置于中温盐浴炉中,在800-850℃温度下保温18-22min后转移至反射炉,选取4-7%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入160-200℃的油中冷却,待钢材温度降至200-250℃时取出,随后空冷;
    S4,二次淬火:将S3的钢材置于精炼炉,在830-840℃温度下保温10-20min,然后取出钢材淬入160-180℃的油中冷却;
    S5,回火:将钢材放入回火炉,将回火炉升温至150-190℃,保温1-3h,取出后即可完成轴承钢的热处理。
  2. 根据权利要求1所述的一种超高碳型轴承钢的热处理方法, 其特征在于,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.7%-2.0%;Mn:0.8%-1.0%;V:0.05%-0.07%;B:0.5%-0.8%;Be:0.14%-0.2%;Ni:0.6%-1.4%;Si:1.4%-1.6%;Ti:0.5%-0.7%;W:0.06%-0.07%;Cr:3%-4%;Al:0.13%-0.15%;Re:0.07%-0.14%;余量为Fe。
  3. 根据权利要求1所述的一种超高碳型轴承钢的热处理方法,其特征在于,所述超高碳型轴承钢的成分包括以下重量百分比的原料:C:1.8%;Mn:0.9%;V:0.06%;B:0.7%;Be:0.18%;Ni:0.9%;Si:1.5%;Ti:0.6%;W:0.065%;Cr:3.5%;Al:0.14%;Re:0.09%;余量为Fe。
  4. 根据权利要求1所述的一种超高碳型轴承钢的热处理方法,其特征在于,所述S1中,钢材在800℃保温5h,将温度以30℃/h的速度冷至730℃,保温1.5h,将温度以20℃/h的速度冷至600℃,保温1.5h后出炉空冷。
  5. 根据权利要求1所述的一种超高碳型轴承钢的热处理方法,其特征在于,所述S3中,钢材置于中温盐浴炉中,在825℃温度下保温20min后转移至反射炉,选取6%的BaCO3作为催渗剂,进行固体渗碳,严格控制炉温均匀性,完成后将钢材取出,迅速淬入180℃的油中冷却,待钢材温度降至225℃时取出,随后空冷。
  6. 根据权利要求1所述的一种超高碳型轴承钢的热处理方法,其特征在于,所述S4中,油为机油、锭子油、变压器油或柴油。
PCT/CN2016/109410 2016-12-12 2016-12-12 一种超高碳型轴承钢的热处理方法 WO2018107316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109410 WO2018107316A1 (zh) 2016-12-12 2016-12-12 一种超高碳型轴承钢的热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109410 WO2018107316A1 (zh) 2016-12-12 2016-12-12 一种超高碳型轴承钢的热处理方法

Publications (1)

Publication Number Publication Date
WO2018107316A1 true WO2018107316A1 (zh) 2018-06-21

Family

ID=62557793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109410 WO2018107316A1 (zh) 2016-12-12 2016-12-12 一种超高碳型轴承钢的热处理方法

Country Status (1)

Country Link
WO (1) WO2018107316A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910051A (zh) * 2020-06-16 2020-11-10 天津国际邮轮母港有限公司 一种牵引工具的热处理工艺
CN112251572A (zh) * 2020-08-31 2021-01-22 伊莱特能源装备股份有限公司 高性能风力发电机轴承保持架锻件的制作方法
CN112430713A (zh) * 2019-08-24 2021-03-02 兰州兰石集团有限公司铸锻分公司 一种适用于低温条件的矿用车架的热处理工艺
CN114635104A (zh) * 2022-03-22 2022-06-17 天津丰东热处理有限公司 一种风电齿圈渗氮工艺
CN114990292A (zh) * 2021-11-22 2022-09-02 上海亿舜模具科技有限公司 一种用于热作模具钢的热处理方法
CN115261590A (zh) * 2022-08-08 2022-11-01 常州市阳光铸造有限公司 一种风机主轴新型热处理制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279935A (ja) * 1993-03-30 1994-10-04 Kawasaki Steel Corp 繰り返し応力負荷によるミクロ組織変化の遅延特性に優れた軸受鋼
CN103352111A (zh) * 2013-06-24 2013-10-16 湖北鸣利来冶金机械科技有限公司 三牙轮钻头牙爪的热处理方法
CN104862460A (zh) * 2015-05-22 2015-08-26 人本集团有限公司 高碳铬轴承钢的复合热处理工艺
CN106555131A (zh) * 2016-12-02 2017-04-05 机械科学研究总院青岛分院 一种超高碳型轴承钢的热处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279935A (ja) * 1993-03-30 1994-10-04 Kawasaki Steel Corp 繰り返し応力負荷によるミクロ組織変化の遅延特性に優れた軸受鋼
CN103352111A (zh) * 2013-06-24 2013-10-16 湖北鸣利来冶金机械科技有限公司 三牙轮钻头牙爪的热处理方法
CN104862460A (zh) * 2015-05-22 2015-08-26 人本集团有限公司 高碳铬轴承钢的复合热处理工艺
CN106555131A (zh) * 2016-12-02 2017-04-05 机械科学研究总院青岛分院 一种超高碳型轴承钢的热处理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430713A (zh) * 2019-08-24 2021-03-02 兰州兰石集团有限公司铸锻分公司 一种适用于低温条件的矿用车架的热处理工艺
CN111910051A (zh) * 2020-06-16 2020-11-10 天津国际邮轮母港有限公司 一种牵引工具的热处理工艺
CN112251572A (zh) * 2020-08-31 2021-01-22 伊莱特能源装备股份有限公司 高性能风力发电机轴承保持架锻件的制作方法
CN114990292A (zh) * 2021-11-22 2022-09-02 上海亿舜模具科技有限公司 一种用于热作模具钢的热处理方法
CN114990292B (zh) * 2021-11-22 2024-03-29 上海亿舜模具科技有限公司 一种用于热作模具钢的热处理方法
CN114635104A (zh) * 2022-03-22 2022-06-17 天津丰东热处理有限公司 一种风电齿圈渗氮工艺
CN115261590A (zh) * 2022-08-08 2022-11-01 常州市阳光铸造有限公司 一种风机主轴新型热处理制造工艺

Similar Documents

Publication Publication Date Title
WO2018107316A1 (zh) 一种超高碳型轴承钢的热处理方法
WO2018103079A1 (zh) 一种提高轴承钢韧性的热处理工艺
CN107267864B (zh) 一种高强度弹簧钢
WO2021022542A1 (zh) 轧制-等温球化退火处理制备GCr15轴承钢的方法
CN113430461B (zh) 一种Nb、V微合金化齿轮钢及其制备方法、热处理方法、渗碳处理方法和渗碳齿轮钢
WO2018103080A1 (zh) 一种高碳铬轴承钢热处理工艺
CN106967929B (zh) 一种动车组制动盘锻造用低碳钢及其热处理方法
CN109536689B (zh) 一种轴承钢制零件的热加工工艺方法
CN113416899B (zh) 一种Nb、B微合金化齿轮钢及其制备方法、热处理方法、渗碳处理方法和渗碳齿轮钢
US20230332261A1 (en) Method for manufacturing equal-hardness cr5 back up roll
CN104120341A (zh) 一种轧制极薄材料的Cr5型锻钢工作辊及其制备方法
CN102534133A (zh) 一种轴承钢的热处理工艺
CN106555131B (zh) 一种超高碳型轴承钢的热处理方法
CN108486468A (zh) 一种高碳低合金轴承钢套圈及其热处理工艺方法
CN105331890B (zh) 一种在线淬火生产高韧性5Ni钢中厚板的方法
CN109695003B (zh) 一种具有优良韧性的高耐磨钢球及其制造方法
CN113862561A (zh) 一种长寿命高碳轴承钢管材及其制备方法和应用
CN107794348A (zh) 一种提高Cr12MoV钢综合性能的热处理工艺
CN106555132B (zh) 一种高碳铬轴承钢热处理工艺
CN108251757B (zh) 一种含镱的高性能轴承钢电渣锭及其一火成材工艺
CN102212664A (zh) 一种不锈钢牵引销的热处理方法
CN111876663B (zh) 一种针织面板用合金结构钢板及其制造方法
CN111101077B (zh) 一种低成本高耐磨的张减径辊及其热处理工艺
CN106244782B (zh) 一种45钢危险尺寸零件的热处理方法
CN108342658B (zh) 一种轴类和齿轮用钢及其热处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923729

Country of ref document: EP

Kind code of ref document: A1