WO2018105656A1 - ルールセットを選択可能な推論エンジンを有するプログラム記録媒体、装置及び方法 - Google Patents

ルールセットを選択可能な推論エンジンを有するプログラム記録媒体、装置及び方法 Download PDF

Info

Publication number
WO2018105656A1
WO2018105656A1 PCT/JP2017/043817 JP2017043817W WO2018105656A1 WO 2018105656 A1 WO2018105656 A1 WO 2018105656A1 JP 2017043817 W JP2017043817 W JP 2017043817W WO 2018105656 A1 WO2018105656 A1 WO 2018105656A1
Authority
WO
WIPO (PCT)
Prior art keywords
category
engine
rule
machine learning
target data
Prior art date
Application number
PCT/JP2017/043817
Other languages
English (en)
French (fr)
Inventor
尚三 竹岡
Original Assignee
たけおかラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by たけおかラボ株式会社 filed Critical たけおかラボ株式会社
Priority to US16/464,752 priority Critical patent/US11443199B2/en
Publication of WO2018105656A1 publication Critical patent/WO2018105656A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/042Backward inferencing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/107Computer-aided management of electronic mailing [e-mailing]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/027Frames

Definitions

  • the present invention relates to a configuration technology of an inference engine.
  • AI Artificial Intelligence
  • machine learning engines as statistical analysis intelligence such as support vector machines and computational intelligence such as neural networks have been attracting attention. These are intended to be statistically processed by using a large amount of teacher data, and are not professionally and logically determined.
  • the expert system includes a rule base in which rules (logic) described in advance with respect to a specific field are accumulated, and an inference engine that repeats matching with the rules.
  • the rules are described in a natural language format of “if-then-”.
  • the expert system is also suitable for language processing such as a dialog interface with a user.
  • Patent Document 1 discloses a technique for integrating forward reasoning and backward reasoning. According to this technique, backward inference is executed when there is no rule, and forward inference is executed when the presence of a rule is detected.
  • Patent Document 2 discloses a technique for learning if-then rules by a self-propagating neural network. According to this technology, if-then rules are learned as input patterns and inferred using the learning results.
  • Japanese morphological analysis system MAN Kyoto University graduate School of Informatics Department of Intelligent Informatics Intelligence Media Course ⁇ Language Media Field, Kurohashi / Kawara Laboratory, [online], [October 14, 2016], Internet ⁇ URL: http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN>
  • Japanese syntax / case / anaphoric analysis system KNP Kyoto University graduate School of Informatics Department of Intelligent Informatics Intelligence Media Course Language Media Field, Kurohashi / Kawara Laboratory, [online], [October 14, 2016 ]
  • Inference engines using rule bases need to store a large number of rules in one rule base in order to deal with various situations. As these rules are applied more widely (not narrowed), the amount of rules increases because more diverse rules need to be considered. An increase in the amount of rules causes an increase in search time, calculation amount, and memory amount in the inference engine. At the same time, the larger the number of rules used, the more ambiguous the professional and logical reasoning results.
  • the inference engine is not limited to a high-speed and large-capacity server, but is installed in a smartphone possessed by a user or an embedded device represented by IoT (Internet of Things), its search time, calculation amount, and memory It is desirable to make the amount as small as possible.
  • an object of the present invention is to provide a program, an apparatus, and a method having an inference engine that can infer using various rules as much as possible using a rule set (rule set) as small as possible.
  • a classification-type machine learning engine that builds a learning model according to each category based on a group of teacher data classified for each category, Having a rule base pre-stored with a different rule set for each category, The machine learning engine inputs target data, outputs a category using a learning model, A rule set selection means for selecting a rule set corresponding to the category output from the machine learning engine from the rule base;
  • the computer is made to function as a rule engine that inputs target data and outputs an inference result using the rule set selected by the rule set selection means.
  • the machine learning engine has multiple support vector machines per category, Support vector machine As a learning stage, you can enter whether or not you belong to the category in charge and teacher data to build a learning model, As an operation stage, it is also preferable to make the computer function so as to input target data and output whether or not it belongs to the assigned category using the learning model.
  • the target data and the teacher data are texts
  • a preprocessing means for outputting a group of morphemes from the text is input to both the machine learning engine and the rule engine, It is also preferable to have the computer function so that the group of teacher data morphemes is input to the machine learning engine.
  • It further includes intermediate term generating means for inputting a group of morphemes of the target data from the preprocessing means and outputting a plurality of intermediate terms corresponding to different purposes to the rule engine as target data, It is also preferable that the rule engine inputs a plurality of intermediate terms and outputs an inference result based on backward inference using the selected rule set.
  • the intermediate term generating means is based on the LISP of expression-oriented procedural function programming.
  • the target data and teacher data are email texts
  • the category is also preferably based on whether it is automatic delivery mail, business mail, or private mail.
  • the rule engine is also preferably based on a Prolog of expression-oriented non-procedural logic programming.
  • the target data and the teacher data are multimedia data
  • a group of text elements of the target data is input to both the machine learning engine and the rule engine, It is also preferable to have the computer function so that the group of text elements of the teacher data is input to the machine learning engine.
  • the target data and teacher data are sensor type and measurement value
  • the sensor type and measurement value group of the target data are input to both the machine learning engine and the rule engine, It is also preferable to cause the computer to function so that the sensor type of the teacher data and the group of measurement values are input to the machine learning engine.
  • an inference apparatus that outputs an inference result for input target data
  • a machine learning engine that builds a learning model according to each category by a group of teacher data classified by category, Having a rule base pre-stored with a different rule set for each category, The machine learning engine inputs target data, outputs a category using a learning model, A rule set selection means for selecting a rule set corresponding to the category output from the machine learning engine from the rule base; And a rule engine that inputs target data and outputs an inference result using the rule set selected by the rule set selection means.
  • the device A machine learning engine that builds a learning model according to each category by a group of teacher data classified by category, Having a rule base pre-stored with a different rule set for each category, The device A first step in which a machine learning engine inputs target data and outputs a category using a learning model; A second step of selecting from the rule base a rule set corresponding to the category output from the machine learning engine; A third step of inputting target data and outputting an inference result using the rule set selected in the second step is executed.
  • FIG. 1 is a system configuration diagram of the present invention.
  • the program as an inference function of the present invention outputs an inference result for input target data, and causes a computer mounted on the inference apparatus to function.
  • the program of the present invention is installed in the terminal 1 possessed by the user.
  • the terminal 1 is installed with e-mail software based on the user, for example, and can receive various e-mails.
  • e-mail software based on the user, for example, and can receive various e-mails.
  • mail categories for example, there are business mails, private mails, and automatic delivery mails such as e-mail magazines. If the contents of these received mails can be inferred appropriately, various actions can be automatically taken.
  • the user can automatically reply with a response mail.
  • mail contents that request an appointment from the user can be automatically registered in the user's scheduler.
  • an alert can be sent to the user for the contents of mail important to the user.
  • the contents of the mail for notifying important information for the user can be automatically registered in the database. In this way, if the mail content can be inferred, it can be used for various purposes.
  • ⁇ Learning stage> Input teacher data and build a learning model.
  • (Teacher data is associated with target data and categories)
  • ⁇ Operational stage> Input target data and output a category using a learning model.
  • target data as e-mail text is input, and an action inferred from the target data is output to an application. Further, it is assumed that business mail and private mail are mixed as mail text. In this case, according to the present invention, it is determined whether the target data is for business mail or private, and an action is inferred using a different rule set according to the determination.
  • FIG. 2 is a functional configuration diagram of the learning stage in the program of the present invention.
  • the inference apparatus 1 includes a preprocessing unit 11 for inputting a teacher data group and a machine learning engine 12 in a learning stage.
  • These functional components are realized by executing the program of the present invention stored in the memory of the apparatus, which causes a computer mounted on the apparatus to function.
  • the processing flow of these functional components can also be understood as a learning method for the apparatus.
  • the preprocessing unit 11 performs preprocessing on teacher data.
  • teacher data for example, there are the following cases.
  • e-mail text multimedia data
  • sensor measurement value e.g. sensor type and measurement value measured by a sensor mounted on a smartphone
  • the preprocessing unit 11 When the teacher data is text, the preprocessing unit 11 outputs a group of morphemes from the text.
  • the preprocessing unit 11 classifies the sentence into morphemes by morphological analysis for each sentence.
  • Morphological analysis refers to a technology that uses a grammar and a word dictionary as an information source to divide a sentence written in a natural language into a morpheme, which is the smallest unit having meaning as a language. The part of speech for each form is also determined and stored.
  • the preprocessing unit 11 outputs a group of morphemes based on the text of the teacher data to the machine learning engine 12.
  • the pre-processing unit 11 specifically uses free software developed at Kyoto University. That is, JUMAN is used for morphological analysis (see, for example, Non-Patent Document 1), and KNP is used for syntax analysis (see, for example, Non-Patent Document 2). For example, an e-mail in mbox format is analyzed sentence by sentence with JUMAN and KNP, and the analysis result is output as an S-expression (Symbol-expression).
  • the S expression is a formal description method of a binary tree or a list structure, and is generally used in LISP.
  • the preprocessing unit 11 When the teacher data is multimedia data, the preprocessing unit 11 outputs a group of text elements added to the multimedia data to the machine learning engine 12. Further, when the teacher data is a sensor measurement value, the preprocessing unit 11 outputs a sensor type and a group of measurement values to the machine learning engine 12.
  • the machine learning engine 12 is of a classification type in which a learning model corresponding to each category is constructed by a group of teacher data classified for each category.
  • the machine learning engine may be a plurality of support vector machines for each category.
  • the “support vector machine (Support ⁇ ⁇ ⁇ ⁇ Vector Machine)” is a pattern recognition model using supervised learning, and is of a classification type.
  • the support vector machine constitutes two classes of pattern discriminators using linear input elements, and learns the parameters of the linear input elements by calculating the distance to each feature value for each teacher data. According to the support vector machine, high identification performance can be obtained for unlearned data, but the reliability of the teacher data directly affects the reliability of the learning result.
  • the mail text and category identifier of business mail and the mail text and category identifier of private mail are input as teacher data.
  • the category identifier is an identifier that represents business mail or private mail.
  • the support vector machine as the machine learning engine 12 has a first support vector machine for business mail and a second support vector machine for private mail. Then, the mail text of the business mail is input to the first support vector machine, and the first learning model is constructed. Similarly, the second support vector machine receives the mail text of the private mail and constructs the second learning model.
  • the first machine learning engine can classify whether it is a business mail or not, and the second machine learning engine can classify whether it is a private mail or not.
  • the support vector machine can output the reliability when classifying the correctness. Therefore, it is possible to select the category identifier having the highest reliability among the outputs from the plurality of support vector machines.
  • FIG. 3 is a schematic diagram showing feature parameters extracted in the machine learning engine.
  • the support vector machine may learn using feature parameters that can be extracted from the text of the teacher data. According to FIG. 3, for example, feature parameters as 188-dimensional vectors are extracted.
  • FIG. 4 is a functional configuration diagram of the operation stage in the program of the present invention.
  • FIG. 5 is a schematic diagram showing a flow of processing of a functional configuration for business mail.
  • FIG. 6 is a schematic diagram showing a flow of processing of a functional configuration for private mail.
  • the inference device 1 is in the operational stage, the rule base 10, the preprocessing unit 11, the machine learning engine 12, the rule set selection unit 13, the intermediate term sentence generation unit 14, and the rule engine 15. And have.
  • These functional components are realized by executing the program of the present invention stored in the memory of the apparatus, which causes the computer mounted on the apparatus to function.
  • the processing flow of these functional components can also be understood as an inference method for the apparatus.
  • Pre-processing unit 11 The pre-processing unit 11 at the operation stage also performs pre-processing on the target data, and functions in the same manner as the pre-processing unit 11 at the learning stage described above.
  • the group of elements extracted by the preprocessing unit 11 is output to both the machine learning engine 12 and the rule engine 15.
  • a mail that schedules a meeting from 10:00 is input to the preprocessing unit 11 as target data.
  • the mail of the private content is input into the pre-processing part 11 as object data.
  • the machine learning engine 12 at the operation stage incorporates a learning model constructed by the machine learning engine 12 at the learning stage described above.
  • the machine learning engine 12 at the operation stage inputs target data and outputs a category using a learning model.
  • the machine learning engine 12 inputs the morpheme group of the business mail output from the preprocessing unit 11, and outputs whether the category is “business” or “private”.
  • the support vector machine also outputs the category reliability.
  • the reliability of the category “business” is 0.98
  • the reliability of the category “private” is 0.57.
  • the category “business” is output to the rule set selection unit 13.
  • the machine learning engine 12 inputs a private mail morpheme group output from the pre-processing unit 11, and outputs whether the category is “business” or “private”. According to FIG. 6, the reliability of the category “private” is 0.98, and the reliability of the category “business” is 0.21. Here, the category “private” is output to the rule set selection unit 13.
  • the rule base 10 stores different rule sets for each category in advance.
  • the rule set refers to a set of production rules as follows as knowledge for problem solving. "If condition then conclusion" Further, according to FIGS. 5 and 6, it is assumed that the rule base 10 has a business mail rule set and a private mail rule set.
  • the rule set selection unit 13 selects a rule set corresponding to the category output from the machine learning engine 12 from the rule base 10. Specifically, according to FIGS. 5 and 6, the rule set selection unit 13 selects a rule set for “business” from the rule base 10 when the machine learning engine 12 determines that the category is “business”. . Further, the rule set selection unit 13 selects a “private” rule set from the rule base 10 when the machine learning engine 12 determines that the category is “private”. In this manner, the rule set of the rule base 10 is switched according to the category output from the machine learning engine 12.
  • the intermediate term generation unit 14 inputs a group of morphemes of the target data from the preprocessing unit 11 and outputs a plurality of intermediate terms (or intermediate goals) according to different purposes to the rule engine 15 as target data. .
  • the intermediate term generation unit 14 is based on the LISP of expression-oriented procedural function programming.
  • FIG. 4 shows an example of an intermediate sentence of business mail.
  • FIG. 5 shows an intermediate term of private mail.
  • the intermediate term is a term generated by pattern matching on the group of morphemes output from the preprocessing unit 11. For example, inferring subject (S), predicate (V), complement (C), object (O), etc. based on the part of speech given to each word, and the format equivalent to SVO, SVC, SVOO, SVOC, etc.
  • S subject
  • V predicate
  • C complement
  • O object
  • An intermediate term sentence is generated mainly focusing on important words appearing in the mail text. Specifically, the header and body (for example, referred to as “communication meta information”) are listed for each mail.
  • the rule engine 15 inputs target data, and outputs an inference result using the rule set selected by the rule set selection unit 13. Specifically, the rule engine 15 is based on the Prolog of expression-oriented nonprocedural logic programming.
  • the rule engine 15 inputs a plurality of intermediate terms and outputs an inference result based on backward inference (backward chaining) using the selected rule set.
  • retrospective inference is a technology that finds the conditions (assertions) and inference rules (rules) retrospectively from the results to determine whether or not the results are derived from the causes for the events whose causes and results are assumed.
  • the backward inference first the first establishment condition is extracted from the result (conclusion), and then the second establishment condition is extracted from the first establishment condition. If this is repeated and the finally established conditions agree with the assumed cause, it is inferred that the assumed cause is correct.
  • the establishment condition or the inference rule is not found midway, it is inferred that the assumed cause is an error.
  • the assertion is stored in the working memory and matches each rule of the selected rule set as appropriate.
  • the rule engine 15 matches the if (condition) of the rule against the assertion, and then (conclusion) for the matched if is triggered, and a new rule is fired from the set of triggered multiple rules ( fired) and the rule is saved in working memory as an assertion. Repeat this.
  • the intermediate term generating unit 14 (LISP engine) and the rule engine (Prolog engine) function as a double symbol inference engine.
  • a hybrid inference engine including a double symbol inference engine and a machine learning engine (support vector machine) functions.
  • FIG. 7 is a schematic diagram showing a command output from the rule engine.
  • the rule engine 15 outputs a command that should automatically register the date and time of the conference inferred from the business mail in the scheduler.
  • it is inferred using a rule set suitable for business mail.
  • the rule engine 15 can infer mail rules for various purposes using a rule set corresponding to a category. Depending on the mail content, some rulesets can also infer your liking for yourself as seen by the other party. It is also possible to infer information that cannot be read directly from the mail contents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Computational Linguistics (AREA)
  • Human Resources & Organizations (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Machine Translation (AREA)

Abstract

様々な用途に対しても、できる限り小さいルール集合を用いて推論することができる推論エンジンを有する装置、プログラム記録媒体及び方法を提供する。本装置は、カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した分類型の機械学習エンジンと、カテゴリ毎に異なるルールセットを予め記憶したルールベースとを有する。機械学習エンジンは、対象データを入力し、学習モデルを用いてカテゴリを出力する。また、機械学習エンジンから出力された当該カテゴリに対応するルールセットを、ルールベースから選択するルールセット選択手段と、対象データを入力し、ルールセット選択手段によって選択された当該ルールセットを用いて推論結果を出力するルールエンジンとを有する。

Description

ルールセットを選択可能な推論エンジンを有するプログラム記録媒体、装置及び方法
 本発明は、推論エンジンの構成技術に関する。
 本出願は、パリ条約の下、2016年12月7日に出願された日本国特許出願JP2016-238031についての優先権の利益を主張しており、その日本国特許出願は、PCT規則第20.6の規定によって、引用によりその全体が本明細書に組み込まれる。
 近年、AI(Artificial Intelligence)技術が様々な用途に適用されてきている。特に、サポートベクタマシンのような統計分析知能や、ニューラルネットワークのような計算知能としての機械学習エンジンが注目されてきている。これらは、大量の教師データを用いることによって統計的に処理しようとするものであって、専門的且つ論理的に判断するものではない。
 一方で、専門的且つ論理的な判断を要する実用的用途では、エキスパートシステムのようなルール分析知能が適用されている。エキスパートシステムは、特定分野に関して予め記述されたルール(ロジック)を蓄積したルールベースと、ルールとのマッチングを繰り返す推論エンジンとからなる。ルールは、「if~then~」の自然言語形式で記述されたものである。エキスパートシステムは、例えばユーザとの対話インタフェースのような言語処理にも適している。
 従来、エキスパートシステムとして、例えば特許文献1には、前向き推論及び後向き推論を統合させる技術が開示されている。この技術によれば、ルールが存在しない場合に、後向き推論を実行し、ルールの存在を検出した場合に、前向き推論を実行させるものである。また、特許文献2には、if-thenルールを自己増殖型ニューラルネットワークによって学習させる技術が開示されている。この技術によれば、if-thenルールを入力パターンとして学習し、その学習結果を用いて推論する。
特許第2853818号公報 特開2008-305129号公報
「日本語形態素解析システム JUMAN」、京都大学 大学院情報学研究科 知能情報学専攻 知能メディア講座 言語メディア分野、黒橋・河原研究室、[online]、[平成28年10月14日]、インターネット<URL:http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN> 「日本語構文・格・照応解析システム KNP」、京都大学 大学院情報学研究科 知能情報学専攻 知能メディア講座 言語メディア分野、黒橋・河原研究室、[online]、[平成28年10月14日]、インターネット<URL: http://nlp.ist.i.kyoto-u.ac.jp/index.php?KNP>
 ルールベースを用いた推論エンジンでは、多様な状況に対応するべく、1つのルールベースに大量のルールを蓄積する必要がある。これらのルールは、適用される専門分野が広くなる(絞り込まれていない)ほど、より多様なルールを考慮する必要があるために、そのルールの量も増大する。ルールの量の増加は、推論エンジンにおける探索時間や計算量、メモリ量の増大を招く。同時に、大量のルールが用いられるほど、専門的且つ論理的な推論結果も曖昧なものとなる。また、推論エンジンが、高速大容量のサーバに限られず、ユーザによって所持されるスマートフォンや、IoT(Internet of Things)に代表される組込機器に搭載される場合、その探索時間や計算量、メモリ量をできる限り小さくすることが望まれる。
 そこで、本発明は、様々な用途に対しても、できる限り小さいルールセット(ルール集合)を用いて推論することができる推論エンジンを有するプログラム、装置及び方法を提供することを目的とする。
 本発明によれば、入力された対象データに対する推論結果を出力するようにコンピュータを機能させるプログラムにおいて、
 カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した分類型の機械学習エンジンと、
 カテゴリ毎に異なるルールセットを予め記憶したルールベースと
を有し、
 機械学習エンジンは、対象データを入力し、学習モデルを用いてカテゴリを出力し、
 機械学習エンジンから出力された当該カテゴリに対応するルールセットを、ルールベースから選択するルールセット選択手段と、
 対象データを入力し、ルールセット選択手段によって選択された当該ルールセットを用いて推論結果を出力するルールエンジンと
してコンピュータを機能させることを特徴とする。
 本発明のプログラムにおける他の実施形態によれば、
 機械学習エンジンは、カテゴリ毎の複数のサポートベクタマシンを備えており、
 サポートベクタマシンは、
 学習段階として、担当カテゴリに属するか否かと、教師データとを入力して学習モデルを構築し、
 運用段階として、対象データを入力し、学習モデルを用いて担当カテゴリに属するか否かを出力する
ようにコンピュータを機能させることも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 対象データ及び教師データは、テキストであり、
 テキストから形態素の群を出力する前処理手段を更に有し、
 対象データの形態素の群は、機械学習エンジン及びルールエンジンの両方へ入力され、
 教師データの形態素の群は、機械学習エンジンへ入力される
ようにコンピュータを機能させることも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 前処理手段からの対象データの形態素の群を入力し、異なる目的に応じた複数の中間項文を、対象データとしてルールエンジンへ出力する中間項文生成手段を更に有し、
 ルールエンジンは、複数の中間項文を入力し、選択されたルールセットを用いて後向き推論に基づく推論結果を出力することも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 中間項文生成手段は、式指向の手続型の関数プログラミングのLISPに基づくものであることも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 対象データ及び教師データは、メール文章であり、
 カテゴリは、自動配信メールか否か、ビジネスメールか否か、又は、プライベートメールか否かに基づくものであることも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 ルールエンジンは、式指向の非手続型の論理プログラミングのPrologに基づくものであることも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 対象データ及び教師データは、マルチメディアデータであり、
 マルチメディアデータに付与されたテキスト要素の群を出力する前処理手段を更に有し、
 対象データのテキスト要素の群は、機械学習エンジン及びルールエンジンの両方へ入力され、
 教師データのテキスト要素の群は、機械学習エンジンへ入力される
ようにコンピュータを機能させることも好ましい。
 本発明のプログラムにおける他の実施形態によれば、
 対象データ及び教師データは、センサ種別及び計測値であり、
 対象データのセンサ種別及び計測値の群は、機械学習エンジン及びルールエンジンの両方へ入力され、
 教師データのセンサ種別及び計測値の群は、機械学習エンジンへ入力される
ようにコンピュータを機能させることも好ましい。
 本発明によれば、入力された対象データに対する推論結果を出力する推論装置において、
 カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した機械学習エンジンと、
 カテゴリ毎に異なるルールセットを予め記憶したルールベースと
を有し、
 機械学習エンジンは、対象データを入力し、学習モデルを用いてカテゴリを出力し、
 機械学習エンジンから出力された当該カテゴリに対応するルールセットを、ルールベースから選択するルールセット選択手段と、
 対象データを入力し、ルールセット選択手段によって選択された当該ルールセットを用いて推論結果を出力するルールエンジンと
を有することを特徴とする。
 本発明によれば、入力された対象データに対する推論結果を出力する装置の推論方法において、
 装置は、
 カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した機械学習エンジンと、
 カテゴリ毎に異なるルールセットを予め記憶したルールベースと
を有し、
 装置は、
 機械学習エンジンが、対象データを入力し、学習モデルを用いてカテゴリを出力する第1のステップと、
 機械学習エンジンから出力された当該カテゴリに対応するルールセットを、ルールベースから選択する第2のステップと、
 対象データを入力し、第2のステップによって選択された当該ルールセットを用いて推論結果を出力する第3のステップと
を実行することを特徴とする。
 本発明のプログラム、装置及び方法によれば、様々な用途に対しても、できる限り小さいルールセットを用いて推論することができる。
本発明のシステム構成図である。 本発明のプログラムにおける学習段階の機能構成図である。 機械学習エンジン内で抽出される特徴パラメータを表す模式図である。 本発明のプログラムにおける運用段階の機能構成図である。 ビジネスメールに対する機能構成の処理の流れを表す模式図である。 プライベートメールに対する機能構成の処理の流れを表す模式図である。 ルールエンジンから出力されたコマンドを表す模式図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。
 図1は、本発明のシステム構成図である。
 本発明の推論機能としてのプログラムは、入力された対象データに対する推論結果を出力するものであって、推論装置に搭載されたコンピュータを機能させるものである。図1によれば、本発明のプログラムは、ユーザが所持する端末1に搭載されている。端末1は、例えば、ユーザに基づくメールソフトをインストールしており、様々なメールを受信することができる。メールのカテゴリとしては、例えばビジネスメールもあれば、プライベートメールもあり、メルマガのような自動配信メールもある。これらの受信したメールの内容を適切に推論することができれば、自動的に様々なアクションをとることができる。
 例えばメール自動配信サーバから受信したメールに対しては、ユーザ自身も自動的に応答メールを返信することもできる。また、ユーザに対してアポイントを要求するようなメール内容に対しては、ユーザのスケジューラに自動的に登録することもできる。更に、ユーザに対してビジネスで重要なメール内容に対しては、ユーザにアラートを通知することもできる。更に、ユーザにとって重要情報を通知するメール内容に対しては、自動的にデータベースに登録することもできる。このように、メール内容を推論することができれば、様々な用途に利用することができる。
 本発明によれば、以下の2つの段階が設けられる。
<学習段階>教師データを入力し、学習モデルを構築する。
      (教師データには、対象データ及びカテゴリが対応付けられている)
<運用段階>対象データを入力し、学習モデルを用いてカテゴリを出力する。
 本発明の実施形態としては、メール文章としての対象データを入力し、その対象データから推論されたアクションをアプリケーションへ出力するものである。また、メール文章としては、ビジネスメールとプライベートメールとが混在しているとする。この場合、本発明によれば、対象データに対してビジネスメール用か又はプライベート用かを判定し、その判定に応じて異なるルールセットを用いてアクションを推論する。
<学習段階>
 図2は、本発明のプログラムにおける学習段階の機能構成図である。
 図2によれば、推論装置1は、学習段階では、教師データ群を入力する前処理部11と、機械学習エンジン12とを有する。これらの機能構成部は、装置に搭載されたコンピュータを機能させる、装置のメモリに記憶された本発明のプログラムを実行することによって実現される。また、これらの機能構成部の処理の流れは、装置の学習方法としても理解できる。
[前処理部11]
 前処理部11は、教師データに対する前処理を実行する。教師データとしては、例えば以下のような場合がある。
(テキスト)例えばメール文章
(マルチメディアデータ)例えばテキスト要素が付加されている画像や映像
(センサ計測値)例えばスマートフォンに搭載されているセンサによって計測された、センサ種別及び計測値
 前処理部11は、教師データがテキストである場合、テキストから形態素の群を出力する。前処理部11は、文章毎に、当該文章を形態素解析によって形態素に区分する。形態素解析とは、文法及び単語辞書を情報源として用いて、自然言語で書かれた文を言語として意味を持つ最小単位である形態素(Morpheme)に分割する技術をいう。また、形態毎の品詞も判別して蓄積する。次いで、前処理部11は、教師データのテキストに基づく形態素の群を、機械学習エンジン12へ出力する。
 前処理部11は、具体的には京都大学で開発されたフリーソフトを用いる。すなわち、形態素解析にはJUMANを用い(例えば非特許文献1参照)、構文解析にKNPを用いる(例えば非特許文献2参照)。例えばmbox形式のメールについて、1文ずつ、JUMAN及びKNPによって解析し、その解析結果をS式(Symbol-expression)で出力する。S式とは、2分木又はリスト構造の形式的な記述方式であり、一般にLISPで用いられる。
 前処理部11は、教師データがマルチメディアデータである場合、マルチメディアデータに付与されたテキスト要素の群を、機械学習エンジン12へ出力する。また、前処理部11は、教師データがセンサ計測値である場合、センサ種別及び計測値の群を、機械学習エンジン12へ出力する。
[機械学習エンジン12]
 機械学習エンジン12は、カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した分類型のものである。
 ここで、機械学習エンジンは、カテゴリ毎の複数のサポートベクタマシンであってもよい。「サポートベクタマシン(Support Vector Machine)」は、教師有り学習を用いるパターン認識モデルであって、分類型のものである。サポートベクタマシンは、線形入力素子を用いて2クラスのパターン識別器を構成するものであって、教師データ毎に各特徴値との距離を算出することによって、線形入力素子のパラメータを学習する。サポートベクタマシンによれば、未学習データに対して高い識別性能を得ることができるが、教師データの信頼性がそのまま学習結果の信頼性に影響する。
 例えば、ビジネスメールとプライベートメールとを、サポートベクタマシンによって分類したいとする。この場合、教師データとしては、ビジネスメールのメール文章及びカテゴリ識別子と、プライベートメールのメール文章及びカテゴリ識別子とを入力する。カテゴリ識別子は、ビジネスメールかプライベートメールかを表す識別子である。これに対し、機械学習エンジン12としてのサポートベクタマシンも、ビジネスメール用の第1のサポートベクタマシンと、プライベートメール用の第2のサポートベクタマシンとを有する。そして、第1のサポートベクタマシンには、ビジネスメールのメール文章が入力され、第1の学習モデルを構築する。同様に、第2のサポートベクタマシンには、プライベートメールのメール文章が入力され、第2の学習モデルを構築する。これによって、第1の機械学習エンジンは、ビジネスメールか否かを分類することができ、第2の機械学習エンジンは、プライベートメールか否かを分類することができる。また、サポートベクタマシンは、正否を分類する際に、その信頼度を出力することもできる。そのために、複数のサポートベクタマシンからの出力の中で、最も信頼度が高いカテゴリ識別子を選択することができる。
 図3は、機械学習エンジン内で抽出される特徴パラメータを表す模式図である。
 サポートベクタマシンは、教師データのテキストから抽出可能な特徴パラメータを用いて、学習するものであってもよい。図3によれば、例えば188次元のベクトルとしての特徴パラメータが抽出されている。
<運用段階>
 図4は、本発明のプログラムにおける運用段階の機能構成図である。
 図5は、ビジネスメールに対する機能構成の処理の流れを表す模式図である。
 図6は、プライベートメールに対する機能構成の処理の流れを表す模式図である。
 図4によれば、推論装置1は、運用段階では、ルールベース10と、前処理部11と、機械学習エンジン12と、ルールセット選択部13と、中間項文生成部14と、ルールエンジン15とを有する。これら機能構成部は、装置に搭載されたコンピュータを機能させる、装置のメモリに記憶された本発明のプログラムを実行することによって実現される。また、これら機能構成部の処理の流れは、装置の推論方法としても理解できる。
[前処理部11]
 運用段階の前処理部11も、対象データに対する前処理を実行するものであって、前述した学習段階の前処理部11と同様に機能する。前処理部11によって抽出された要素の群は、機械学習エンジン12及びルールエンジン15の両方へ出力される。図5によれば、前処理部11には、対象データとして、10時からの会議を予定するメールが入力されている。また、図6によれば、前処理部11に、対象データとして、プライベートの内容のメールが入力されている。
[機械学習エンジン12]
 運用段階の機械学習エンジン12は、前述した学習段階の機械学習エンジン12によって構築された学習モデルを組み込んだものである。運用段階の機械学習エンジン12は、対象データを入力し、学習モデルを用いてカテゴリを出力する。
 図5によれば、機械学習エンジン12は、前処理部11から出力されたビジネスメールの形態素群を入力し、カテゴリ「ビジネス」か否か、「プライベート」か否かが出力される。サポートベクタマシンは、カテゴリの信頼度も出力する。図5によれば、カテゴリ「ビジネス」の信頼度0.98であり、カテゴリ「プライベート」の信頼度0.57である。ここでは、カテゴリ「ビジネス」が、ルールセット選択部13へ出力される。
 図6によれば、機械学習エンジン12は、前処理部11から出力されたプライベートメールの形態素群を入力し、カテゴリ「ビジネス」か否か、「プライベート」か否かが出力される。図6によれば、カテゴリ「プライベート」の信頼度0.98であり、カテゴリ「ビジネス」の信頼度0.21である。ここでは、カテゴリ「プライベート」が、ルールセット選択部13へ出力される。
[ルールベース10]
 ルールベース10は、カテゴリ毎に異なるルールセットを予め記憶したものである。ルールセットとは、問題解決のための知識(knowledge)として、以下のようなプロダクションルールの集合をいう。
   「if 条件 then 結論」
また、図5及び図6によれば、ルールベース10は、ビジネスメール用のルールセットと、プライベートメール用のルールセットとを有するものとする。
[ルールセット選択部13]
 ルールセット選択部13は、機械学習エンジン12から出力された当該カテゴリに対応するルールセットを、ルールベース10から選択する。図5及び図6によれば、具体的には、ルールセット選択部13は、機械学習エンジン12によってカテゴリ「ビジネス」と判定された場合、ルールベース10から「ビジネス」用のルールセットを選択する。また、ルールセット選択部13は、機械学習エンジン12によってカテゴリ「プライベート」と判定された場合、ルールベース10から「プライベート」用のルールセットを選択する。このように、機械学習エンジン12から出力されたカテゴリに応じて、ルールベース10のルールセットを切り替える。
[中間項文生成部14]
 中間項文生成部14は、前処理部11からの対象データの形態素の群を入力し、異なる目的に応じた複数の中間項文(又は中間ゴール)を、対象データとしてルールエンジン15へ出力する。
 中間項文生成部14は、具体的には、式指向の手続型の関数プログラミングのLISPに基づくものである。図4には、ビジネスメールの中間項文の例が表されている。図5には、プライベートメールの中間項文が表されている。
 中間項文は、前処理部11から出力された形態素の群に対して、パターンマッチングによって生成された項文である。例えば、各単語に付与された品詞に基づいて、主語(S)、述語(V)、補語(C)、目的語(O)などを推論し、SVO, SVC, SVOO, SVOC等に相当する形式にマッチングさせて、中間項文を生成する。主に、メール文章内に出現する重要単語などに注目して、中間項文が生成される。具体的には、メール毎に、そのヘッダや本文(例えば「通信メタ情報」と称される)をリストにする。
[ルールエンジン15]
 ルールエンジン15は、対象データを入力し、ルールセット選択部13によって選択された当該ルールセットを用いて推論結果を出力する。ルールエンジン15は、具体的には、式指向の非手続型の論理プログラミングのPrologに基づくものである
 ルールエンジン15は、複数の中間項文を入力し、選択されたルールセットを用いて後向き推論(backward chaining)に基づく推論結果を出力する。ここで、後向き推論とは、原因と結果が仮定されている事象について、その結果が原因から導き出されるか否かを、結果から遡って成立条件(アサーション)や推論規則(ルール)を見出す技術をいう。後向き推論によれば、まず結果(結論)について第1の成立条件を抽出し、次に第1の成立条件について第2の成立条件が抽出される。これを繰り返し最終的に抽出された成立条件が仮定された原因と一致するならば、仮定された原因は正しいと推論する。逆に、成立条件や推論規則が途中で見出されなくなった場合には、仮定された原因は誤りであると推論する。
 アサーションは、ワーキングメモリ(working memory)に保存され、適宜、選択されたルールセットの各ルールをマッチングしていく。ルールエンジン15は、アサーションに対してルールのif(条件)をマッチングさせて、一致したifに対するthen(結論)がトリガ(triggered)され、トリガされた複数のルールの集合から新たにルールが発火(fired)し、ルールがアサーションとしてワーキングメモリに保存される。これを繰り返す。
 前述した図4~図6によれば、中間項文生成部14(LISPエンジン)と、ルールエンジン(Prologエンジン)とが、ダブル記号推論エンジンとして機能している。これに加えて、本発明によれば、ダブル記号推論エンジンと、機械学習エンジン(サポートベクタマシン)とからなるハイブリッド推論エンジンが機能する。
 図7は、ルールエンジンから出力されたコマンドを表す模式図である。
 図7によれば、ルールエンジン15は、ビジネスメールから推論された会議の日時を、スケジューラに自動的に登録すべきコマンドを出力している。ここでは、ビジネスメールに適したルールセットを用いて推論されている。ルールエンジン15は、様々な用途のメール文章であっても、カテゴリに応じたルールセットで推論することができる。ルールセットによっては、メール内容によって、相手から見た自分に対する好感度を推論することもできる。また、メール内容から直接的に読み取ることができない情報を推論することもできる。
 以上、詳細に説明したように、本発明のプログラム、装置及び方法によれば、様々な用途に対しても、できる限り小さいルール集合を用いて推論することができる推論エンジンを有することができる。
 前述した本発明の種々の実施形態について、本発明の技術思想及び見地の範囲の種々の変更、修正及び省略は、当業者によれば容易に行うことができる。前述の説明はあくまで例であって、何ら制約しようとするものではない。本発明は、特許請求の範囲及びその均等物として限定するものにのみ制約される。
 1 端末、推論装置
 10 ルールベース
 11 前処理部
 12 機械学習エンジン
 13 ルールセット選択部
 14 中間項文生成部
 15 ルールエンジン

 

Claims (11)

  1.  入力された対象データに対する推論結果を出力する推論装置に搭載されたコンピュータによって実行されるプログラムを記録した、コンピュータ読み取り可能な非一過性の記録媒体であって、前記プログラムは、
     カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した分類型の機械学習エンジンであって、対象データを入力し、前記学習モデルを用いてカテゴリを出力する機械学習エンジンと、
     前記機械学習エンジンから出力された当該カテゴリに対応するルールセットを、カテゴリ毎に異なるルールセットを予め記憶したルールベースから選択するルールセット選択手段と、
     前記対象データを入力し、前記ルールセット選択手段によって選択された当該ルールセットを用いて推論結果を出力するルールエンジンと
    してコンピュータを機能させることを特徴とする記録媒体。
  2.  前記機械学習エンジンは、カテゴリ毎の複数のサポートベクタマシンを備えており、
     前記サポートベクタマシンは、
     学習段階として、担当カテゴリに属するか否かと、教師データとを入力して学習モデルを構築し、
     運用段階として、対象データを入力し、前記学習モデルを用いて担当カテゴリに属するか否かを出力する
    ことを特徴とする請求項1に記載の記録媒体。
  3.  前記対象データ及び前記教師データは、テキストであり、
     前記プログラムは、前記テキストから形態素の群を出力する前処理手段としてコンピュータを更に機能させ、
     前記対象データの形態素の群は、前記機械学習エンジン及び前記ルールエンジンの両方へ入力され、
     前記教師データの形態素の群は、前記機械学習エンジンへ入力される
    ことを特徴とする請求項1に記載の記録媒体。
  4.  前記プログラムは、前記前処理手段からの前記対象データの形態素の群を入力し、異なる目的に応じた複数の中間項文を、前記対象データとして前記ルールエンジンへ出力する中間項文生成手段としてコンピュータを更に機能させ、
     前記ルールエンジンは、複数の中間項文を入力し、選択された前記ルールセットを用いて後向き推論に基づく推論結果を出力する
    ことを特徴とする請求項3に記載の記録媒体。
  5.  前記中間項文生成手段は、式指向の手続型の関数プログラミングのLISPに基づくものである
    ことを特徴とする請求項4に記載の記録媒体。
  6.  前記対象データ及び前記教師データは、メール文章であり、
     前記カテゴリは、自動配信メールか否か、ビジネスメールか否か、又は、プライベートメールか否かに基づくものである
    ことを特徴とする請求項3に記載の記録媒体。
  7.  前記ルールエンジンは、式指向の非手続型の論理プログラミングのPrologに基づくものである
    ことを特徴とする請求項1に記載の記録媒体。
  8.  前記対象データ及び前記教師データは、マルチメディアデータであり、
     前記プログラムは、前記マルチメディアデータに付与されたテキスト要素の群を出力する前処理手段としてコンピュータを更に機能させ、
     前記対象データのテキスト要素の群は、前記機械学習エンジン及び前記ルールエンジンの両方へ入力され、
     前記教師データのテキスト要素の群は、前記機械学習エンジンへ入力される
    ことを特徴とする請求項1に記載の記録媒体。
  9.  前記対象データ及び前記教師データは、センサ種別及び計測値であり、
     前記対象データのセンサ種別及び計測値の群は、前記機械学習エンジン及び前記ルールエンジンの両方へ入力され、
     前記教師データのセンサ種別及び計測値の群は、前記機械学習エンジンへ入力される
    ことを特徴とする請求項1に記載の記録媒体。
  10.  入力された対象データに対する推論結果を出力する推論装置であって、
     カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した機械学習エンジンであって、前記対象データを入力し、前記学習モデルを用いてカテゴリを出力する機械学習エンジンと、
     カテゴリ毎に異なるルールセットを予め記憶したルールベースと、
     前記機械学習エンジンから出力された当該カテゴリに対応するルールセットを、前記ルールベースから選択するルールセット選択手段と、
     前記対象データを入力し、前記ルールセット選択手段によって選択された当該ルールセットを用いて推論結果を出力するルールエンジンと
    を有することを特徴とする推論装置。
  11.  入力された対象データに対する推論結果を出力する装置において実行される推論方法であって、
     前記装置は、
     カテゴリ毎に分類された教師データの群によって、各カテゴリに応じた学習モデルを構築した機械学習エンジンと、
     カテゴリ毎に異なるルールセットを予め記憶したルールベースと
    を有し、
     前記推論方法は、
     前記機械学習エンジンが、前記対象データを入力し、前記学習モデルを用いてカテゴリを出力する第1のステップと、
     前記機械学習エンジンから出力された当該カテゴリに対応するルールセットを、前記ルールベースから選択する第2のステップと、
     前記対象データを入力し、第2のステップによって選択された当該ルールセットを用いて推論結果を出力する第3のステップと
    を有することを特徴とする推論方法。

     
PCT/JP2017/043817 2016-12-07 2017-12-06 ルールセットを選択可能な推論エンジンを有するプログラム記録媒体、装置及び方法 WO2018105656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/464,752 US11443199B2 (en) 2016-12-07 2017-12-06 Program storage medium, apparatus and method provided with ruleset-selectable inference engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-238031 2016-12-07
JP2016238031A JP6224811B1 (ja) 2016-12-07 2016-12-07 ルールセットを選択可能な推論エンジンを有するプログラム、装置及び方法

Publications (1)

Publication Number Publication Date
WO2018105656A1 true WO2018105656A1 (ja) 2018-06-14

Family

ID=60206000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043817 WO2018105656A1 (ja) 2016-12-07 2017-12-06 ルールセットを選択可能な推論エンジンを有するプログラム記録媒体、装置及び方法

Country Status (3)

Country Link
US (1) US11443199B2 (ja)
JP (1) JP6224811B1 (ja)
WO (1) WO2018105656A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720402B2 (ja) * 2017-03-21 2020-07-08 株式会社Preferred Networks サーバ装置、学習済モデル提供プログラム、学習済モデル提供方法及び学習済モデル提供システム
JP6884685B2 (ja) * 2017-12-08 2021-06-09 三菱重工業株式会社 制御装置、無人システム、制御方法及びプログラム
JP6606651B1 (ja) * 2018-06-28 2019-11-20 株式会社ラクロー 労務管理システム
JP7273293B2 (ja) * 2019-03-28 2023-05-15 キヤノンマーケティングジャパン株式会社 情報処理装置、制御方法、プログラム
US11159551B2 (en) * 2019-04-19 2021-10-26 Microsoft Technology Licensing, Llc Sensitive data detection in communication data
JP7452654B2 (ja) 2020-06-29 2024-03-19 日本電気株式会社 情報処理装置、制御方法及びプログラム
CN111882072B (zh) * 2020-07-09 2023-11-14 北京华如科技股份有限公司 一种与规则对弈的智能模型自动化课程训练方法
CN112667413A (zh) * 2020-12-19 2021-04-16 前海飞算科技(深圳)有限公司 业务规则引擎的访问控制方法、系统及可读存储介质
JP7350145B1 (ja) 2022-11-25 2023-09-25 Kddi株式会社 情報処理装置、情報処理方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05204406A (ja) * 1992-01-28 1993-08-13 Hitachi Ltd プロセス制御装置
JP2005258588A (ja) * 2004-03-09 2005-09-22 Denso Corp 推論システム、及びルール群の視覚的表現方法
JP2011113099A (ja) * 2009-11-21 2011-06-09 Kddi R & D Laboratories Inc 未知語を含む文章を修正するための文章修正プログラム、方法及び文章解析サーバ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119470A (en) 1990-04-27 1992-06-02 Ibm Corporation Computer based inference engine device and method thereof for integrating backward chaining and forward chaining reasoning
US7668824B2 (en) 2004-03-01 2010-02-23 Denso Corporation Interface device, inferring system, and visual expression method
US20080071714A1 (en) * 2006-08-21 2008-03-20 Motorola, Inc. Method and apparatus for controlling autonomic computing system processes using knowledge-based reasoning mechanisms
JP5126949B2 (ja) 2007-06-07 2013-01-23 国立大学法人東京工業大学 推論装置、推論方法、及びプログラム
US9916538B2 (en) * 2012-09-15 2018-03-13 Z Advanced Computing, Inc. Method and system for feature detection
GB2520987B (en) * 2013-12-06 2016-06-01 Cyberlytic Ltd Using fuzzy logic to assign a risk level profile to a potential cyber threat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05204406A (ja) * 1992-01-28 1993-08-13 Hitachi Ltd プロセス制御装置
JP2005258588A (ja) * 2004-03-09 2005-09-22 Denso Corp 推論システム、及びルール群の視覚的表現方法
JP2011113099A (ja) * 2009-11-21 2011-06-09 Kddi R & D Laboratories Inc 未知語を含む文章を修正するための文章修正プログラム、方法及び文章解析サーバ

Also Published As

Publication number Publication date
JP2018097397A (ja) 2018-06-21
JP6224811B1 (ja) 2017-11-01
US11443199B2 (en) 2022-09-13
US20190385068A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6224811B1 (ja) ルールセットを選択可能な推論エンジンを有するプログラム、装置及び方法
US11797835B2 (en) Explainable transducer transformers
Umer et al. CNN-based automatic prioritization of bug reports
Setyawan et al. Comparison of multinomial naive bayes algorithm and logistic regression for intent classification in chatbot
Saha et al. BERT-caps: A transformer-based capsule network for tweet act classification
US11669687B1 (en) Systems and methods for natural language processing (NLP) model robustness determination
Windiatmoko et al. Developing facebook chatbot based on deep learning using rasa framework for university enquiries
Gomes et al. BERT-and TF-IDF-based feature extraction for long-lived bug prediction in FLOSS: a comparative study
Pichl et al. Alquist 2.0: Alexa prize socialbot based on sub-dialogue models
Windiatmoko et al. Developing FB chatbot based on deep learning using RASA framework for university enquiries
Lago et al. Deep learning applications on cybersecurity
Permatasari et al. Combination of natural language understanding and reinforcement learning for booking bot
Zhang et al. Predicting and visualizing consumer sentiments in online social media
Sinpang et al. Detecting ambiguity in requirements analysis using Mamdani fuzzy inference
KR102466559B1 (ko) 동적 텍스트 소스를 활용한 ai 기반 의사결정지원 시스템
Manasa et al. Detection of twitter spam using GLoVe vocabulary features, bidirectional LSTM and convolution neural network
CN111523319B (zh) 基于情景lstm结构网络的微博情感分析方法
US11222177B2 (en) Intelligent augmentation of word representation via character shape embeddings in a neural network
Wu et al. Evaluating the performance of chatgpt for spam email detection
Bushra et al. Recognizing sentimental emotions in text by using Machine Learning
Nayak et al. Feasibility study of machine learning & AI algorithms for classifying software requirements
Chawla et al. Counsellor chatbot
Subramanian et al. Detecting offensive Tamil texts using machine learning and multilingual transformer models
Yang Knowledge sharing: From atomic to parametrised context and shallow to deep models
Zapata Recommendation of Text Properties for Short Texts with the Use of Machine Learning: A Comparative Study of State-of-the-Art Techniques Including BERT and GPT-2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877718

Country of ref document: EP

Kind code of ref document: A1