WO2018105599A1 - 制御装置、制御方法およびプログラム記録媒体 - Google Patents

制御装置、制御方法およびプログラム記録媒体 Download PDF

Info

Publication number
WO2018105599A1
WO2018105599A1 PCT/JP2017/043613 JP2017043613W WO2018105599A1 WO 2018105599 A1 WO2018105599 A1 WO 2018105599A1 JP 2017043613 W JP2017043613 W JP 2017043613W WO 2018105599 A1 WO2018105599 A1 WO 2018105599A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
action
machine
search
unmanned aircraft
Prior art date
Application number
PCT/JP2017/043613
Other languages
English (en)
French (fr)
Inventor
小川 雅嗣
真澄 一圓
真史 江村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018555007A priority Critical patent/JP7056580B2/ja
Priority to US16/463,464 priority patent/US11163299B2/en
Priority to EP17878748.7A priority patent/EP3553622B1/en
Publication of WO2018105599A1 publication Critical patent/WO2018105599A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/02Registering or indicating driving, working, idle, or waiting time only
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a control device, a control method, and a program for controlling the behavior of unmanned aircraft constituting the unmanned aircraft group.
  • Autonomous drones such as robots that move autonomously to clean rooms, robots that work in environments where human activities are difficult, and drones that fly autonomously in many fields Applied.
  • an example of not only autonomously operating one unmanned aircraft but also autonomously operating a plurality of unmanned aircraft has been reported.
  • Patent Document 1 discloses an article operation system that uses a plurality of autonomously movable drive units and a plurality of movable inventory trays.
  • UxV UnmannedVx Vehicle
  • UAV Unmanned Air Vehicle
  • USV UnmannedmannSurface Vehicle
  • UUV Unmanned Undersea Vehicle
  • the above drones are roughly classified into two types: a centralized control type that is operated by a human from a remote location, and an autonomous operation type that operates autonomously by an installed program.
  • a centralized control type that is operated by a human from a remote location
  • an autonomous operation type that operates autonomously by an installed program.
  • an autonomous drone that operates autonomously by a program installed in the drone without human intervention and performs various actions and labors instead of the human being. For this reason, it is demanded that the drone operate to work on behalf of a human being, and research and development of artificial intelligence for mounting on the drone has been actively conducted.
  • Patent Document 2 discloses an automatic search system that searches for a search target by using a plurality of unmanned aircraft that operate autonomously and emphasized.
  • drones In order to make the drone operate smarter, it is required that the drone autonomously changes its behavior depending on the situation.
  • drones In general, drones often have a plurality of missions (also referred to as actions), and are required to change their actions depending on the situation.
  • the drone For example, if it is a drone for defense, first search for dangerous goods. When the drone detects a dangerous article, it tracks the dangerous article if it moves, and in some cases captures the dangerous article. That is, such an unmanned aerial machine appropriately changes behaviors such as searching, tracking, and capturing depending on the situation. In the current system, humans often switch actions remotely, but in the future, it is desirable that the drone autonomously determines the situation and automatically switches actions.
  • Patent Document 3 discloses a train operation control method that allows the traveling method to be autonomously changed according to the operation status of the own train.
  • an on-board device mounted on a train and a railroad crossing control device perform wireless communication, predict the time when the train reaches the railroad crossing and the brake pattern of the train, and based on the prediction result, A travel control support method for calculating a travel control pattern is disclosed.
  • the state transition is set in advance, and the behavior of the train is automatically switched based on the IF-THEN condition determination.
  • Patent Documents 1 and 2 disclose a study of a technique in which a single unmanned aircraft or a plurality of unmanned aircraft groups autonomously perform a single operation. However, Patent Documents 1 and 2 do not disclose an effective method regarding a technique in which the drone group autonomously switches actions.
  • a single unmanned aircraft can switch actions such as search, tracking, and capture.
  • actions such as search, tracking, and capture.
  • it is required to match the switching of the behavior of the own aircraft with the switching of the behavior of the entire unmanned aircraft group. It is difficult to switch the behavior in an effort.
  • it is impossible to determine by itself only that the unmanned aircraft near the object is switched to the tracking behavior. This is because when the other drone is closer to the target than the own drone, it is more efficient for the drone group as a whole that the drone takes the tracking action.
  • An object of the present invention is to solve the above-described problems and to provide a control device capable of optimizing the behavior of the entire unmanned aircraft group while autonomously selecting each behavior of the unmanned aircraft group.
  • the control device is a control device that controls at least one unmanned aircraft constituting the unmanned aircraft group, and includes other device information acquisition means for acquiring information related to the state of the other device, and other device information Acquires information on the status of other devices from the acquisition means, acquires sensor signals including information on the status of the own device, and uses the acquired information on the own device and other devices for multiple types of actions that the own device should take
  • An action comparison means for calculating a comparison value
  • an action selection means for selecting an action to be taken by the aircraft based on a comparison value of a plurality of types of actions calculated by the action comparison means, and an action selected by the action selection means
  • the operation amount calculation means for calculating the operation amount of the own device using the information and the information on the state of the other device obtained from the other device information acquisition means, and the own device is operated using the calculation result of the operation amount calculation means Actuate And a operation setting means for setting the operation setting value.
  • a control method is a control method for controlling at least one unmanned aircraft constituting the unmanned aircraft group, which acquires information on the status of another device and includes information on the status of the own device. Obtains a signal, calculates a comparison value for multiple types of actions to be taken by the own device using the acquired information on the own device and other devices, and the own device is based on the calculated comparison values of the multiple types of actions. Select the action to be taken, calculate the amount of movement of the own machine using information on the selected action and information on the status of the other machine, and set the operation setting value of the actuator that operates the machine using the calculation result To do.
  • the program according to one aspect of the present invention is a program for controlling at least one unmanned aircraft constituting the unmanned aircraft group, and includes a process for obtaining information on the state of another device and a sensor including information on the state of the own device. Based on the process of acquiring signals, the process of calculating comparison values for multiple types of actions to be taken by the own machine using the acquired information of the own machine and other machines, and the calculated comparison values of the multiple types of actions. The process to select the action to be taken by the own machine, the process to calculate the amount of movement of the own machine using information on the selected action and the information on the state of the other machine, and the own machine to operate using the calculation result And causing the computer to execute processing for setting the operation setting value of the actuator to be operated.
  • control device capable of optimizing the behavior of the entire unmanned aircraft group while each device constituting the unmanned aircraft group autonomously selects a behavior.
  • control device of the present embodiment is deployed in association with the unmanned aircraft constituting the unmanned aircraft group.
  • the control device of the present embodiment controls at least one unmanned aircraft constituting the unmanned aircraft group.
  • Each control device acquires information on each corresponding device from a sensor (not shown) mounted on the own device, and acquires information on each device that does not correspond by communication with another device.
  • control device may be arranged so as to correspond to a plurality of unmanned aircraft instead of a single unmanned aircraft.
  • a single control device can support a plurality of unmanned aircraft.
  • the control device of the present embodiment acquires information on the own device from a sensor mounted on the own device, acquires information on the other device through communication with the other device, and uses the acquired information on the own device and the other device. To calculate the amount of movement of the aircraft.
  • FIG. 1 is a block diagram showing the configuration of the control device 10 of the present embodiment. As shown in FIG. 1, the control device 10 includes other machine information acquisition means 11, action comparison means 12, action selection means 13, movement amount calculation means 14, and action setting means 15.
  • the other device information acquisition unit 11 acquires information related to the state of the other device from the other devices that can be located in the vicinity of the own device.
  • the vicinity means within a predetermined range around the own device.
  • the other machine information acquisition unit 11 of each machine transmits and receives information from each other while communicating with other machines located in the vicinity (within a predetermined range).
  • the predetermined range may be set in a space where the outer periphery is defined by a circle or a sphere, or may be set in a space where the outer periphery can be deformed.
  • the other-device information acquisition unit 11 acquires an evaluation value (hereinafter referred to as an evaluation function) regarding the behavior of the entire plurality of unmanned aircraft, or information associated with the evaluation function.
  • the evaluation function is a quantity related to the action purpose of the entire drone, and is a function set for each of a plurality of types of actions.
  • the multiple types of actions indicate, for example, searching for a search target, tracking, capturing, and improving communication status with other devices.
  • the behavior of the drone is not limited to that described here, and can be set according to the use condition of the drone.
  • the behavior comparison means 12 acquires sensor signals related to the state of the own device such as the position information, speed, and operation set value of the own device from the sensor.
  • the action comparison means 12 should be taken by the own machine using the acquired sensor signal, the set value set in the own machine, and the information on the state of the other unmanned aircraft acquired by the other machine information acquisition means 11.
  • a comparison value is calculated for a plurality of actions.
  • the following example shows an example in which the behavior comparison unit 12 calculates the evaluation function improvement degree based on the evaluation function value set for each machine as a comparison value.
  • the action comparing unit 12 evaluates the operation function A (N) for the operation amount of the own machine and information on the state of the other machine located in the vicinity.
  • the evaluation function B (N) for the operation amount of the other machine located in the vicinity calculated from the above is created.
  • the behavior comparison means 12 calculates the evaluation function improvement degree F (N) when the drone takes the behavior N using the evaluation function A (N) and the evaluation function B (N).
  • the evaluation function A (N) for the operation amount of the own device is also called a first evaluation function
  • the evaluation function B (N) for the operation amount of another device located in the vicinity is also called a second evaluation function.
  • the evaluation function A (N) and the evaluation function B (N) are functions of an amount desired to be controlled by the unmanned aircraft.
  • the function of the operation amount of the drone is assumed as the evaluation function A (N) and the evaluation function B (N).
  • the evaluation function improvement degree F (N) can be obtained, for example, by calculating a difference between evaluation function values and a difference between evaluation function values based on the value of the own machine.
  • an example in which the differentiation of the evaluation function is used when obtaining the evaluation function improvement degree F (N) is shown.
  • the differentiation of the evaluation function is used, the room for improvement of the evaluation function can be more directly evaluated regardless of the absolute value of the evaluation function.
  • the action selecting unit 13 selects an action to be taken by the own device based on the comparison values of the plurality of types of actions calculated by the action comparing unit 12.
  • the simplest function of the action selection means 13 is to select an action from the magnitude relationship of the comparison values.
  • the action selection unit 13 selects an action having the highest evaluation function improvement degree F (N).
  • the action selection means 13 may select an action using a method other than comparing the evaluation function improvement degree F (N). For example, the action selection unit 13 may select an action by applying a weight to the comparison value of each action and comparing it. Moreover, when there exists a correlation with another action, the action selection means 13 may compare, after creating the arithmetic expression using the value of another action. That is, the action selecting means 13 selects actions by comparing actions that can be taken by the own device using some index.
  • the operation amount calculation unit 14 calculates the operation amount of the own device using the information related to the behavior of the own device selected by the behavior selection unit 13 and the information related to the state of the other device obtained from the other device information acquisition unit 11.
  • the motion amount calculation means 14 sets some rules for each action, and activates the rule for the action selected by the action selection means 13. In the present embodiment, it is necessary to determine the amount of operation for the selected action as a group of unmanned aircraft rather than the amount of operation of a single unmanned aircraft (also referred to as a behavior amount). Therefore, the motion amount calculation unit 14 determines the motion amount for the selected action using the information related to the state of the other device obtained by the other device information acquisition unit 11.
  • the movement amount calculation means 14 determines the movement amount using the evaluation function.
  • the evaluation function can be regarded as information indicating the state of the drone, and can be an indicator of a code of behavior (also referred to as a group purpose) as a group of drones. Therefore, according to the method of this embodiment, the behavior as a group can be optimized.
  • the operation setting means 15 sets an operation setting value of an actuator (not shown) for operating the own machine using the calculation result of the operation amount calculation means 14.
  • an evaluation function for search behavior and tracking behavior can be set by maximizing search probability. This is equivalent to performing control for maximizing the evaluation function value by controlling the unmanned aircraft group with the purpose of the entire plurality of unmanned aircraft as the search probability of the search target.
  • the purpose of the entire plurality of unmanned aircraft is the value that the entire unmanned aircraft group wants to maximize, and is represented by an evaluation function value.
  • the existence probability density of the search target is expressed by the following formula 1.
  • Equation 1 x, y, and z represent arbitrary position coordinates, and x t , y t , and z t represent position coordinates of a search target.
  • an area in which the drone group acts (hereinafter referred to as an action area) is divided into sub-areas by the number of drones.
  • a model is used in which the center of the sub-area divided for each drone has a peak, and the existence probability density decreases toward the periphery of the sub-area.
  • the entire action area is an evaluation function having a shape with a plurality of convex peaks. That is, the behavior comparison unit 12 calculates an evaluation function (first and second evaluation functions) having a convex characteristic. Then, the motion amount calculation unit 14 calculates the motion amount using the evaluation function having the convex characteristic calculated by the behavior comparison unit 12.
  • the evaluation function related to tracking a model having a shape in which the position of the search object found most recently is peaked and the existence probability density decreases as the distance from the position of the search object increases. If the function is set in this way, the behavior of the drone is tracked.
  • discovery probability is expressed by Equation 2.
  • ⁇ i is the search effort given to the drone i.
  • the search effort may be taken as an operation amount.
  • the discovery probability often varies depending on the environment in which each drone exists. For example, it is known that the discovery probability in the case where a search object is discovered by sonar in the sea is expressed by Expression 3.
  • Equation 3 ⁇ i is an amount that depends on radio wave propagation. That is, the amount varies depending on the medium of the space where the drone exists. As a coefficient of Equation 3, it is desirable to always use a value suitable for the environment where the drone exists.
  • the search probability of the search target in each drone can be represented by the product of the existence probability density of the search target and the discovery probability of the drone, as in the following Expression 4.
  • Expression 4 x i , y i , and z i indicate the position coordinates of the drone i.
  • the search probability (also referred to as global search probability) in the entire plurality of unmanned aircraft is expressed by the following Expression 5.
  • the search effort should be considered finite given the energy of the drone.
  • the overall search probability is maximized for a given search effort that is put into the entire drone group.
  • the search probability is increased as much as possible for a finite search effort.
  • the search effort ⁇ to be input to the entire unmanned aircraft group per unit time is set, and the search probability is maximized based on the set search effort ⁇ .
  • the motion amount calculation means 14 determines the motion amount of its own device by solving an optimization problem that maximizes the overall search probability of Equation 5 under the constraint on the search effort ⁇ expressed by Equation 6 below.
  • the motion amount calculation means 14 can maximize the search probability of the entire plurality of unmanned aircraft by moving how many of the unmanned aircraft among all the limited search efforts as described above.
  • the amount of movement of each machine is determined.
  • the motion amount calculation means 14 solves the optimization problem under the constraint that the total search effort put into each machine per unit time is equal to the search effort put into the entire unmanned aircraft group per unit time.
  • the amount of movement of the aircraft is determined by solving.
  • the evaluation value related to the purpose of the entire plurality of unmanned aircraft is the value of Equation 4.
  • other state information to be used includes position information of a search target, position information of an unmanned aircraft, search effort, and the like.
  • the motion amount calculation means 14 uses the following procedure to set the motion amount after performing the above formulation.
  • the motion amount calculating means 14 determines the motion amount of the own device in consideration of the state of the evaluation function of the other device located in the vicinity so that the search probability per unit search effort is maximized.
  • the motion amount calculation means 14 inputs the unit search effort to the own machine in the next control step if the own machine has a larger search probability increment than the other neighboring machines. Then decide. Conversely, if the increase in the search probability of the own device is smaller than that of the nearby unmanned aircraft, the movement amount calculating means 14 determines that the search effort is not input to the own device in the next control step. That is, the operation amount calculation means 14 operates when the increase in the search probability of the own device is larger than that of the other device in the vicinity, and does not operate when the increase of the search probability of the own device is smaller than that of the other device in the vicinity. It will be.
  • the search probability per unit search effort is equivalent to the differentiation of the evaluation function. Therefore, determining the amount of motion so that the search probability per unit search effort is maximized makes the differentiation of the evaluation function equal for all unmanned aircraft when the operation is repeated. That is, it is also effective to determine the operation amount so that the differentiation of the evaluation function is equal.
  • the motion setting means 15 distributes the motion amount determined in the above procedure to the output in the three-dimensional direction to obtain the final motion set value.
  • the operation setting means 15 determines the operation direction in the following procedure. That is, the operation setting unit 15 creates a vector connecting the start point and the position of the search target with the current position of the drone as the start point. Then, the motion setting unit 15 converts the created vector into a unit vector (standardized to a vector having a length of 1) for later processing, and sets this unit vector as a motion vector. If the length of the motion vector is the motion amount determined earlier, motion setting values in each direction are obtained.
  • the operation determination method for searching for an area where the drone's action is present or tracking a certain target is as described above.
  • Other possible actions include capturing an object by a certain drone and improving the communication status so that communication with another drone is not interrupted.
  • an evaluation function is set as formulated in the search action, and when an action is selected, a procedure for determining an operation setting value is executed in the same manner as the above flow.
  • an evaluation function For reference, an example of setting as an evaluation function how many other devices in the vicinity can communicate with when improving the communication status.
  • an evaluation function may be set such that the value increases as the number of other devices capable of communication increases.
  • ⁇ i is a coefficient.
  • the operation amount calculation means 14 can optimize each machine to be allocated to the optimum action and can operate by optimizing the assigned action as a group with other machines assigned to the same action.
  • the operation amount of the drone calculated by the operation amount calculation means 14 is converted by the operation setting means 15 into an operation setting value for an actuator that actually moves the drone. As a result, the drone can perform the operation assumed by the operation amount calculation unit 14.
  • the present embodiment it is possible to optimize the behavior of the entire drone group while each device belonging to the unmanned aircraft group autonomously selects the behavior. That is, according to the present embodiment, it is possible to operate a plurality of unmanned aircraft in a coordinated manner to cause the unmanned aircraft group to act in an efficient formation or to efficiently search for a search target.
  • control apparatus 10 of the present embodiment will be described with an application example.
  • an example in which a plurality of drones switch between two types of actions of searching and tracking a search target and maximizing search and tracking efficiency based on the search probability will be described in detail with reference to the drawings. To do.
  • FIG. 2 is a conceptual diagram for explaining the system of the application example 1.
  • the central management system 1 that manages a plurality of unmanned aircraft 20 operating in a real space is constructed on the cloud.
  • FIG. 2 an example in which a plurality of unmanned aircraft 20 is managed by the central management system 1 on which a plurality of control devices 10 of the present embodiment are mounted is shown. In this application example, the procedure related to the control device 10 described above is used.
  • This application example shows an example using an unmanned aerial vehicle 20 (UAV: Unmanned Air Air Vehicle) that autonomously operates in the air and searches for a search target with a radar.
  • UAV Unmanned Air Air Vehicle
  • USV Unmanned
  • UUV Unmanned
  • control device 10 corresponding to each drone 20 is virtually deployed on the cloud.
  • Each control device 10 exchanges information with the virtual control device 10 corresponding to the nearby drone 20 as if the drone 20 exchanges information with the nearby drone 20, and the drone corresponding to its own device.
  • a control instruction is issued to 20.
  • the behavior of the drone 20 is of two types: search of a search target in the action area and tracking of a search target found in the action area.
  • the same function as the above-described Expression 4 is set.
  • search behavior the behavior area in which the drone group acts is divided by the number of drones 20, and a plurality of Gaussian mountains in which the existence probability density decreases toward the periphery with the center of the divided sub-area as the apex.
  • a model composed of In the case of the tracking behavior of the search target a Gaussian function is used in which the position where the search target is most recently found is the vertex, and the existence probability density decreases as the distance from the vertex increases. Further, the discovery probability p i of each drone 20 is obtained by Equation 3.
  • ⁇ i in Equation 3 varies. Therefore, in the present embodiment, in advance a database of gamma i of each airspace, to employ a method of changing the gamma i on the basis of the position information drone 20 is present.
  • Other machine information acquisition means 11 uploads the target position information captured by each drone 20 and its own position information as accompanying information used by action comparison means 12 and motion amount calculation means 14 as appropriate.
  • Each drone 20 operates asynchronously with each other, and the uploaded information is also asynchronous. Therefore, in this application example, even if there is the central management system 1 on the cloud, since all information is not collected in the central management system 1 in synchronization, normal optimization calculation regarding the search probability cannot be performed. . Therefore, in this application example, the entire unmanned aircraft group is optimized using the procedure described in regard to the first embodiment.
  • 3 to 5 are conceptual diagrams in which the actual operations of the drone 20 are arranged in time series.
  • 3 is a snapshot at time t 1
  • FIG. 4 is a snapshot at time t 2
  • FIG. 5 is a snapshot at time t 3 .
  • the action area 100 is a space where the drone 20 should act.
  • 3 to 5 illustrate the action area 100 two-dimensionally, the action area 100 actually has a three-dimensional spread.
  • the snapshot at time t 1 (FIG. 3) shows a state where the search target has not been detected yet.
  • the drones 20 are evenly scattered throughout the action area 100 and the search action is being performed.
  • the snapshot at time t 2 shows a state in which the search target 300 is discovered after a lapse of time t 1 and the drone 20 around the search target 300 changes its behavior from search to tracking.
  • the drone 20 in the tracking area 200 surrounded by the broken closed curve is switched to the tracking action.
  • the tracking behavior is performed so that the plurality of unmanned aircraft 20 located in the tracking area 200 surround the search target 300.
  • the drone 20 outside the tracking area 200 continues to search for the action area 100 similarly to the time t 1, and the drones 20 are deployed almost evenly at positions away from the search target 300.
  • the snapshot at time t 3 (FIG. 5) shows a state in which the number of unmanned aerial vehicles 20 that change the behavior from searching to tracking are increasing as compared to the time t 2 in accordance with the movement of the search target 300.
  • the motion amount calculation means 14 determines the motion amount of each drone 20 so as to efficiently increase the search probability of tracking by the search target 300.
  • the search probability has a characteristic that it increases as the search effort is input, so it is necessary to compare the values of the search probabilities per input search effort (per unit search effort).
  • the operation amount calculation by the operation amount calculation unit 14 when the operation amount calculation by the operation amount calculation unit 14 is stopped, all the unmanned aircraft 20 operate so as to gradually approach the search target 300 by a certain amount.
  • the drone 20 located in the tracking area 200 tracks the search target 300.
  • the result of this application example is that the overall search probability per unit search effort is about 30% higher on average. This means that the search target 300 can be tracked efficiently according to the method of this application example.
  • FIG. 6 is a conceptual diagram for explaining the system of the application example 2.
  • the control device 10 is mounted on each drone 20.
  • the control device 10 mounted on the drone 20 is omitted.
  • each unmanned aircraft 20 exchanges information with the communication-enabled unmanned aircraft 20 located in the vicinity, and acts autonomously and decentralized under the control of the control device 10 installed in the own device. Further, in this application example, it is difficult to obtain information from the field in which the unmanned aircraft group operates, and this corresponds to a case in which autonomous operation in the unmanned aircraft group must be expected. Further, this application example corresponds to a case where it is difficult to assume the central management system 1 or a case where the central management system 1 stops functioning.
  • the conditions such as the drone 20 and the evaluation function used in this application example are all the same as in Application Example 1.
  • This application example differs from Application Example 1 in that information is not managed collectively by the central management system.
  • the other machine information acquisition means 11 is mounted on the drone 20 and exchanges information related to the search target 300 with other machines located in the vicinity.
  • the central management system may be constructed as a special system.
  • a management center provided with a central management system may be installed, and the drone may be controlled via the management center.
  • a management center in which a central management system is installed may be installed on the coast to control a plurality of unmanned underwater vessels (UUV) and unmanned vessels (USV: Unmanned ⁇ Surface Vehicle).
  • UUV unmanned underwater vessels
  • USV Unmanned ⁇ Surface Vehicle
  • a plurality of UUVs and USVs may be controlled from a mother ship provided with a central management system.
  • the control device according to the present embodiment is not limited to UAV, UUV, and USV, and can be applied to any unmanned aircraft such as an airplane-type unmanned aircraft or an unmanned aircraft traveling on land.
  • the search probability is controlled to be maximized when the discovered search target is tracked.
  • the purpose and the value to be maximized are not limited to the search probability, and can be changed as appropriate.
  • the method of the present embodiment can be used for control in which a wireless device is mounted on the unmanned aircraft and the formation is formed in the unmanned aircraft so that information can be transmitted in the widest range at a desired transfer rate. That is, the method of the present embodiment can be applied to an application that gives a certain purpose to a plurality of unmanned aircraft and maximizes a certain value.
  • search and tracking an example of taking two kinds of actions called search and tracking has been described, but the present invention may be applied to three or more kinds of actions.
  • FIG. 7 is a block diagram illustrating a configuration of the control device 10-2 according to the present embodiment.
  • the control device 10-2 of the present embodiment includes the target position in addition to the other device information acquisition unit 11, the behavior comparison unit 12, the behavior selection unit 13, the motion amount calculation unit 14, and the motion setting unit 15. Prediction means 16 is provided.
  • the configuration of the control device 10-2 is the same as that of the control device 10 of the first embodiment except for the target position prediction unit 16.
  • the target position prediction unit 16 acquires information on the search target discovered by the other device from the other device information acquisition unit 11, and predicts the position of the search target at the present time from the position where the search target was most recently discovered.
  • the target position predicting means 16 may predict the position of the search target at the present time from information related to the search target discovered by the sensor mounted on the own machine, or may obtain information acquired by the own machine and other machines. In addition, the position of the search target may be predicted.
  • the target position prediction unit 16 outputs the predicted position of the search target to the motion amount calculation unit 14.
  • the motion amount calculation means 14 predicts the existence probability density on the assumption that the search target exists at the position predicted by the target position prediction means 16, and calculates the motion amount of the own device as in the first embodiment.
  • the operation amount of the own aircraft can be calculated based on the position of the search target at the present time, so that the behavior of the entire unmanned aircraft group can be optimized more efficiently in accordance with the reality. .
  • the computer 90 in FIG. 8 is a configuration example for realizing the control device of each embodiment, and does not limit the scope of the present invention.
  • the computer 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input / output interface 95, and a communication interface 96.
  • the interface is abbreviated as I / F (Interface).
  • the processor 91, the main storage device 92, the auxiliary storage device 93, the input / output interface 95, and the communication interface 96 are connected to each other via a bus 99 so that data communication is possible.
  • the processor 91, the main storage device 92, the auxiliary storage device 93, and the input / output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96.
  • the computer 90 is connected to a system, device, or unmanned machine arranged in the cloud via a network.
  • the processor 91 expands the program stored in the auxiliary storage device 93 or the like in the main storage device 92, and executes the expanded program.
  • a configuration using a software program installed in the computer 90 may be adopted.
  • the processor 91 executes arithmetic processing and control processing executed by the control device according to the present embodiment.
  • the main storage device 92 has an area where the program is expanded.
  • the main storage device 92 may be a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, a nonvolatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured and added as the main storage device 92.
  • DRAM Dynamic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • the auxiliary storage device 93 is a means for storing various data.
  • the auxiliary storage device 93 is configured by a local disk such as a hard disk or a flash memory. Note that various data may be stored in the main storage device 92, and the auxiliary storage device 93 may be omitted.
  • the input / output interface 95 is a device that connects the computer 90 and peripheral devices based on the connection standard between the computer 90 and peripheral devices.
  • the communication interface 96 is an interface for connecting to a network such as the Internet or an intranet based on standards and specifications.
  • the input / output interface 95 and the communication interface 96 may be shared as an interface connected to an external device.
  • the computer 90 may be configured so that input devices such as a keyboard, a mouse, and a touch panel can be connected as necessary. These input devices are used for inputting information and settings. Note that when a touch panel is used as an input device, the display screen of the display device may be configured to also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input / output interface 95.
  • the communication interface 96 is connected to an external system, device, or drone through a network.
  • the computer 90 may be provided with a display device for displaying information.
  • the computer 90 is preferably provided with a display control device (not shown) for controlling the display of the display device.
  • the display device may be connected to the computer 90 via the input / output interface 95.
  • the computer 90 may be provided with a reader / writer as necessary.
  • the reader / writer is connected to the bus 99.
  • the reader / writer mediates reading of data programs from the recording medium, writing of processing results of the computer 90 to the recording medium, and the like between the processor 91 and a recording medium (program recording medium) (not shown).
  • the recording medium can be realized by a semiconductor recording medium such as an SD (Secure Digital) card or a USB (Universal Serial Bus) memory.
  • the recording medium may be realized by a magnetic recording medium such as a flexible disk, an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc), or other recording media.
  • the above is an example of the hardware configuration for enabling the control device according to the embodiment of the present invention.
  • the hardware configuration in FIG. 8 is an example of a hardware configuration for enabling the control device according to the present embodiment, and does not limit the scope of the present invention.
  • a control program that causes a computer to execute processing related to the control device according to the present embodiment is also included in the scope of the present invention.
  • a program recording medium that records a control program according to an embodiment of the present invention is also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

無人機群を構成する各機が自律的に行動選択を行いながら、無人機群全体の行動を最適化することを目的とする。本発明は、他機の状態に関する情報を取得する他機情報取得手段(11)と、他機情報取得手段から他機の状態に関する情報を取得するとともに、自機の状態に関する情報を含むセンサ信号を取得し、取得した自機および他機の情報を用いて自機が取るべき複数種類の行動に対して比較値を算出する行動比較手段(12)と、行動比較手段が算出した複数種類の行動の比較値に基づいて自機が取るべき行動を選択する行動選択手段(13)と、行動選択手段が選択した行動の情報と、他機情報取得手段から得られる他機の状態に関する情報とを用いて自機の動作量を算出する動作量算出手段(14)と、動作量算出手段の算出結果を用いて自機を動作させるアクチュエータの動作設定値を設定する動作設定手段(15)とを備える制御装置(10)である。

Description

制御装置、制御方法およびプログラム記録媒体
 本発明は、無人機群を構成する無人機の行動を制御する制御装置、制御方法およびプログラムに関する。
 自律的に移動して部屋の掃除を行うロボットや、人間が活動しにくい環境で作業させるためのロボット、自律的に飛行するドローンなどのように、自律的に動作する無人機が多くの分野で応用されている。また、一機の無人機を自律的に動作させるだけではなく、複数の無人機を自律的に動作させる例も報告されている。
 特許文献1には、複数の自律可動式駆動ユニットと、複数の移動可能在庫トレイとを用いる物品操作システムが開示されている。
 特に、複数の無人機で探索対象を探索する技術については、防衛関連分野で盛んに研究されている。一般に、そのような無人機は、UxV(Unmanned x Vehicle)と呼ばれる。UxVは、無人飛行機ならばUAV(Unmanned Air Vehicle)と呼ばれる。同様に、UxVは、無人船ならばUSV(Unmanned Surface Vehicle)と呼ばれ、無人水中船ならばUUV(Unmanned Undersea Vehicle)と呼ばれる。
 上記のような無人機は、遠隔から人間によって操作される集中制御型と、搭載されたプログラムにより自律的に動作する自律動作型との2種類に大別される。技術的には、人間が介在しなくても無人機に搭載されたプログラムによって自律的に動作し、人間の代わりに様々な行動や労働を行う自律動作型の無人機が望まれている。そのため、無人機が人間の代わりに作業するように動作することを求め、無人機に搭載するための人工知能の研究開発が盛んに行われている。
 特許文献2には、自律的かつ強調的に動作する複数の無人機を使用して探索対象を探索する自動探索システムについて開示されている。
 無人機を賢く動作させるためには、状況によって無人機が自律的に行動を変更することが求められる。一般に、無人機は、複数のミッション(行動とも呼ぶ)を持っていることが多く、状況によって行動を変更することが求められる。
 例えば、防衛用の無人機であれば、まずは危険物の探索を行う。無人機は、危険物を発見すると、その危険物が動く場合はその危険物の追跡し、場合によってはその危険物を捕獲する。すなわち、そのような無人機は、状況によって、探索や追跡、捕獲などの行動を適宜変更する。現状のシステムでは、遠隔で人間が行動を切り替えていることが多いが、将来的には無人機が自律的に状況判断して、自動的に行動を切り替えることが望まれる。
 特許文献3には、自列車の運行状況に応じて走行方法を自律的に変更することを可能とする列車運行制御方法について開示されている。また、特許文献4には、列車に搭載された車上装置と踏切制御装置とが無線通信を行い、列車が踏切に到達する時間や列車のブレーキパターンを予測し、予測結果に基づいて列車の走行制御パターンを算出する走行制御支援方法について開示されている。特許文献3および4の技術においては、状態遷移を予め設定し、IF-THENの条件判定によって列車の行動を自動的に切り替える。
特許第4617293号公報 特許第4926958号公報 特許第5271772号公報 特許第5559671号公報
 特許文献1および2には、単体の無人機や複数の無人機群が、自律的に単一の動作を行う技術の検討が開示されている。しかし、特許文献1および2には、無人機群が自律的に行動を切り替える技術に関しては有効な手法が開示されていない。
 特許文献3および4のように状態遷移図を用いれば、単体の無人機であれば、探索、追跡および捕獲といった行動を切り替えることはできる。しかしながら、無人機群の自律動作を実現するためには、自機の行動の切り替えと無人機群全体としての行動の切り替えとを整合させることが求められるため、無人機群に属する単独機が自律的に行動を切り替えることは難しい。例えば、無人機群の自律動作を実現するために、対象物の近くにいる無人機が追跡行動に切り替えることを自機のみで判断することはできない。なぜならば、他の無人機が自機よりも対象物に近い場合、その無人機が追跡行動を取った方が無人機群全体として効率的だからである。
 また、無人機群の複数台が対象物の追跡に当たった方がよい場合もあるが、状態遷移図を使った単純なIF-THENルールを用いるだけでは、無人機群に属する自機がどのように行動すればよいかを判断することはできない。すなわち、特許文献3および4のように状態遷移図を用いただけでは、無人機群として最適に行動を切り替えることができない。
 本発明の目的は、上述した課題を解決し、無人機群を構成する各機が自律的に行動選択を行いながら、無人機群全体の行動を最適化できる制御装置を提供することである。
 本願発明の一態様における制御装置は、無人機群を構成する少なくとも一機の無人機を制御する制御装置であって、他機の状態に関する情報を取得する他機情報取得手段と、他機情報取得手段から他機の状態に関する情報を取得するとともに、自機の状態に関する情報を含むセンサ信号を取得し、取得した自機および他機の情報を用いて自機が取るべき複数種類の行動に対して比較値を算出する行動比較手段と、行動比較手段が算出した複数種類の行動の比較値に基づいて自機が取るべき行動を選択する行動選択手段と、行動選択手段が選択した行動の情報と、他機情報取得手段から得られる他機の状態に関する情報とを用いて自機の動作量を算出する動作量算出手段と、動作量算出手段の算出結果を用いて自機を動作させるアクチュエータの動作設定値を設定する動作設定手段とを備える。
 本願発明の一態様における制御方法は、無人機群を構成する少なくとも一機の無人機を制御する制御方法であって、他機の状態に関する情報を取得し、自機の状態に関する情報を含むセンサ信号を取得し、取得した自機および他機の情報を用いて自機が取るべき複数種類の行動に対して比較値を算出し、算出した複数種類の行動の比較値に基づいて自機が取るべき行動を選択し、選択した行動の情報と、他機の状態に関する情報とを用いて自機の動作量を算出し、算出結果を用いて自機を動作させるアクチュエータの動作設定値を設定する。
 本願発明の一態様におけるプログラムは、無人機群を構成する少なくとも一機の無人機を制御するプログラムであって、他機の状態に関する情報を取得する処理と、自機の状態に関する情報を含むセンサ信号を取得する処理と、取得した自機および他機の情報を用いて自機が取るべき複数種類の行動に対して比較値を算出する処理と、算出した複数種類の行動の比較値に基づいて自機が取るべき行動を選択する処理と、選択した行動の情報と、他機の状態に関する情報とを用いて自機の動作量を算出する処理と、算出結果を用いて自機を動作させるアクチュエータの動作設定値を設定する処理とをコンピュータに実行させる。
 本発明によれば、無人機群を構成する各機が自律的に行動選択を行いながら、無人機群全体の行動を最適化できる制御装置を提供することが可能になる。
本発明の第1の実施形態に係る制御装置の構成を示すブロック図である。 本発明の第1の実施形態に係る制御装置の適用例1について説明するための概念図である。 本発明の第1の実施形態に係る制御装置の適用例1で制御される無人機群の探索状態における配置状況の一例を示す概念図である。 本発明の第1の実施形態に係る制御装置の適用例1で制御される無人機群の一部が対象物を追跡する状態に移行した場合の配置状況の一例を示す概念図である。 本発明の第1の実施形態に係る制御装置の適用例1で制御される無人機群の一部が対象物を追跡する状態に移行した場合の配置状況の別の一例を示す概念図である。 本発明の第1の実施形態に係る制御装置の適用例2について説明するための概念図である。 本発明の第2の実施形態に係る制御装置の構成を示すブロック図である。 本発明の各実施形態に係る制御装置のハードウェア構成の一例を示すブロック図である。
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。
 (第1の実施形態)
 まず、本発明の第1の実施形態に係る制御装置に関して図面を参照しながら説明する。
 本実施形態の制御装置は、無人機群を構成する無人機に対応付けて配備されるものとする。本実施形態の制御装置は、無人機群を構成する少なくとも一機の無人機を制御する。各制御装置は、対応する各機に関する情報を自機に搭載されるセンサ(図示しない)から取得し、対応しない各機に関する情報を他機との通信によって取得する。
 なお、本実施形態の制御装置は、単一の無人機ではなく、複数の無人機に対応するように配備されてもよい。例えば、制御装置による処理を複数の無人機に対して時分割し、逐次的に処理を実行することによって、単一の制御装置で複数の無人機に対応できる。また、例えば、制御装置による処理を複数の演算装置で分担させ、並列処理を実行することによって、単一の制御装置で複数の無人機に対応できる。
 本実施形態の制御装置は、自機に搭載されたセンサから自機の情報を取得するとともに、他機との通信によって他機の情報を取得し、取得した自機および他機の情報を用いて自機の動作量を算出する。
 図1は、本実施形態の制御装置10の構成を示すブロック図である。図1のように、制御装置10は、他機情報取得手段11、行動比較手段12、行動選択手段13、動作量算出手段14、動作設定手段15を備える。
 他機情報取得手段11は、自機の近傍に位置する通信可能な他機から、他機の状態に関する情報を取得する。なお、本実施形態において、近傍とは、自機の周辺の所定範囲内を意味する。各機の他機情報取得手段11は、近傍(所定範囲内)に位置する他機を通信し合いながらお互いの情報を送受信し合う。所定範囲は、円や球などで外周が規定される空間内に設定されてもよいし、外周が変形可能な空間内に設定されてもよい。
 具体的には、他機情報取得手段11は、複数の無人機全体の行動に関する評価値(これ以降、評価関数と呼ぶ)、あるいは評価関数に付随する情報を取得する。評価関数は、無人機全体の行動目的に関する量でもあり、複数種類の行動ごとに設定される関数である。なお、複数種類の行動とは、例えば、探索対象の探索や追跡、捕獲、他機との通信状況の改善などを示す。ただし、無人機の行動は、ここで挙げた限りではなく、無人機の使用条件に合わせて設定できる。
 行動比較手段12は、自機の位置情報や速度、動作設定値などの自機の状態に関するセンサ信号をセンサから取得する。行動比較手段12は、取得したセンサ信号と、自機に設定された設定値と、他機情報取得手段11で取得された他の無人機の状態に関する情報とを用いて、自機が取るべき複数の行動に対して比較値を算出する。以下の例では、行動比較手段12が、各機に設定された評価関数値に基づく評価関数改善度を比較値として算出する例を示す。
 例えば、行動比較手段12は、自機が取るべき複数の行動(N:行動の番号)ごとに、自機の動作量に対する評価関数A(N)と、近傍に位置する他機の状態に関する情報から算出された近傍に位置する他機の動作量に対する評価関数B(N)とを作成する。そして、行動比較手段12は、評価関数A(N)と評価関数B(N)とを用いて、無人機が行動Nを取ったときの評価関数改善度F(N)を算出する。なお、自機の動作量に対する評価関数A(N)を第1の評価関数とも呼び、近傍に位置する他機の動作量に対する評価関数B(N)を第2の評価関数とも呼ぶ。
 一般に、評価関数A(N)および評価関数B(N)は、無人機において制御したい量の関数である。本実施形態では、評価関数A(N)および評価関数B(N)として無人機の動作量の関数を想定している。
 評価関数改善度F(N)は、例えば、自機の値を基準として、評価関数の値の差や評価関数の微分の差を算出することで得られる。本実施形態では、評価関数改善度F(N)を求める際に、評価関数の微分を使用する例を示す。評価関数の微分を用いる場合、評価関数の絶対値に関わらず、評価関数の改善余地をより直接的に評価できる。
 行動選択手段13は、行動比較手段12が算出した複数種類の行動の比較値に基づいて自機が取るべき行動を選択する。行動選択手段13の最も簡単な機能は、比較値の大小関係から行動を選択するというものである。本実施形態において、行動選択手段13は、評価関数改善度F(N)が最も大きい行動を選択する。
 行動選択手段13は、評価関数改善度F(N)を比較する以外の方法を用いて行動を選択してもよい。例えば、行動選択手段13は、各行動の比較値に重みを掛けた後に比較して行動を選択してもよい。また、行動選択手段13は、他の行動との相関がある場合、他の行動の値を用いた演算式を作成した上で比較を行ってもよい。すなわち、行動選択手段13は、自機が取りうる行動を何らかの指標を用いて比較して行動を選択する。
 動作量算出手段14は、行動選択手段13が選択した自機の行動に関する情報と、他機情報取得手段11から得られる他機の状態に関する情報とを用いて自機の動作量を算出する。
 例えば、動作量算出手段14は、各行動に対して何らかのルールを設定しておき、行動選択手段13が選択した行動に対するルールを発動する。本実施形態においては、選択された行動に対し、単体の無人機の動作量(行動量ともよぶ)ではなく、無人機群として動作量を決める必要がある。したがって、動作量算出手段14は、他機情報取得手段11が得た他機の状態に関する情報を使用して、選択された行動に対する動作量を決定する。
 動作量算出手段14は、評価関数を用いて動作量を決定する。評価関数は、無人機の状態を表す情報とみなすことができ、無人機の群としての行動規範(群の目的とも呼ぶ)の指標になり得る。そのため、本実施形態の手法によれば、群としての行動を最適化できる。
 動作設定手段15は、動作量算出手段14の算出結果を用いて、自機を動作させるアクチュエータ(図示しない)の動作設定値を設定する。
 〔動作量算出処理〕
 ここで、無人機の行動が探索または追跡である場合において、動作量算出手段14が具体的な処理を行う例に関して説明する。探索理論を用いると、探索確率の最大化により、探索行動および追跡行動の評価関数を設定できる。これは、複数の無人機全体の目的を探索対象の探索確率として無人機群を制御し、評価関数値を最大化する制御を行うことと等価である。なお、複数の無人機全体の目的は、無人機群全体で最大化したい価値であり、評価関数値で表される。
 探索対象の存在確率密度は、以下の式1で表される。
Figure JPOXMLDOC01-appb-I000001
 式1において、x、y、zは任意の位置座標を表し、x、y、zは探索対象の位置座標を表す。
 探索に関する評価関数としては、無人機群が行動するエリア(以下、行動エリア)を無人機の数でサブエリアに分割する。無人機ごとに分割されたサブエリアの中央をピークとし、サブエリアの周辺に向けて存在確率密度が小さくなっていく形状のモデルを用いる。行動エリア全体としては、上に凸の山が複数存在するような形の評価関数となる。すなわち、行動比較手段12は、凸型の特性を持つ評価関数(第1および第2の評価関数)を算出する。そして、動作量算出手段14は、行動比較手段12が算出した凸型の特性を持つ評価関数を用いて動作量を算出する。このような評価関数を設定することによって、無人機が行動エリア全体に満遍なく広がる行動が可能となり、行動エリア全体で探索を行うことができる。
 一方、追跡に関する評価関数としては、直近に発見された探索対象の位置をピークにし、その探索対象の位置から離れるほど存在確率密度が小さくなっていく形状のモデルを用いる。このように関数を設定すれば、無人機の行動が追跡になる。
 また、各無人機が探索対象を発見する確率(以下、発見確率)を式2で表す。
Figure JPOXMLDOC01-appb-I000002
 ここで、φiは、無人機iに与えられた探索努力である。なお、探索努力は、動作量ととらえてもよい。
 発見確率は、各無人機が存在する環境によって変わってくることが多い。例えば、海中でソナーにより探索物を発見するような場合の発見確率は、式3で表されることが知られている。
Figure JPOXMLDOC01-appb-I000003
 式3において、γiは電波伝搬に依存する量である。つまり、無人機が存在する空間の媒質によって変わる量である。式3の係数としては、無人機の存在する環境にふさわしい値を常に用いることが望ましい。
 各無人機における探索対象の探索確率は、以下の式4のように、探索対象の存在確率密度と、無人機の発見確率との積で表すことができる。なお、式4において、xi、yi、ziは無人機iの位置座標を示す。
Figure JPOXMLDOC01-appb-I000004
 したがって、複数の無人機全体での探索確率(全体探索確率とも呼ぶ)は、以下の式5で表される。
Figure JPOXMLDOC01-appb-I000005
 無人機のエネルギーを考えれば、探索努力は有限と考えるべきである。したがって、全体探索確率は、無人機群全体に投入する既定の探索努力に対して最大化することになる。つまり、有限の探索努力に対して、できるだけ探索確率を大きくする。本実施形態においては、単位時間当たりに無人機群全体に投入する探索努力Ψを設定し、設定した探索努力Ψに基づいて探索確率を最大化する。
 動作量算出手段14は、以下の式6で表す探索努力Ψに対する制約条件の下で、式5の全体探索確率を最大化する最適化問題を解くことによって自機の動作量を決定する。
Figure JPOXMLDOC01-appb-I000006
 動作量算出手段14は、探索行動が選択された場合、上述のような限りがある全探索努力の中、いずれの無人機をどれだけ動かせば、複数の無人機全体の探索確率を最大にできるかを勘案して、各機の動作量を決定する。すなわち、動作量算出手段14は、単位時間当たりに各機に投入する探索努力の総和が、単位時間当たりに無人機群全体に投入する探索努力と等しくなるという制約条件の下で最適化問題を解くことによって自機の動作量を決定する。
 したがって、上述の例の場合、複数の無人機全体の目的に関する評価値は式4の値になる。また、その他に使用する状態の情報は、探索対象の位置情報や無人機の位置情報、探索努力などである。動作量算出手段14は、上記のような定式化を行った上で、動作量を設定するために以下の手順を用いる。
 すなわち、動作量算出手段14は、単位探索努力あたりの探索確率が最も大きくなるように、近傍に位置する他機の評価関数の状態を勘案して自機の動作量を決定する。
 例えば、動作量算出手段14は、単位探索努力を投入した場合、近傍の他機よりも自機の方が探索確率の増分が大きいならば、次の制御ステップでは単位探索努力を自機に投入すると決める。逆に、動作量算出手段14は、近傍の無人機よりも自機の探索確率の増分が小さいならば、次の制御ステップでは探索努力を自機に投入しないと決める。すなわち、動作量算出手段14は、近傍の他機よりも自機の方が探索確率の増分が大きい場合は動作し、近傍の他機よりも自機の探索確率の増分が小さい場合は動作しないことになる。
 単位探索努力あたりの探索確率とは、評価関数の微分と等価である。したがって、単位探索努力あたりの探索確率が最も上がるように動作量を決めることは、その操作を繰り返すと評価関数の微分が全ての無人機で等しくなってくる。すなわち、評価関数の微分を等しくするように動作量を決めることも有効である。
 上述のような手順によれば、ある無人機が自機の動作量を決定するときに、無人機群を構成する全ての無人機の状態情報を取る必要がなく、隣接する無人機の状態情報だけを用いて全体目的に近い動作量を決定できる。無人機の制御の場合、動作設定値は、スカラー量ではなく、3次元的な方向を持つベクトル量で設定する必要がある。したがって、動作設定手段15は、上述の手順で決めた動作量を3次元方向の出力に振り分け、最終的な動作設定値にする。
 動作設定手段15は、以下のような手順で動作方向を決定する。すなわち、動作設定手段15は、無人機の現在位置を始点とし、その始点と探索対象の位置を結ぶベクトルを作成する。そして、動作設定手段15は、後々の処理のために、作成したベクトルを単位ベクトル化(長さが1のベクトルに規格化)し、この単位ベクトルを動作ベクトルとする。動作ベクトルの長さを先ほど決定した動作量とすれば、各方向の動作設定値が求められる。
 無人機の行動があるエリアの探索、またはある対象を追跡する場合の動作決定手法については上述した通りである。その他に考えられる行動としては、ある無人機が対象物を捕獲する、他の無人機との通信が途切れないように通信状況を改善するなどが挙げられる。このような各種行動に対して、探索行動で定式化したように評価関数を設定し、行動が選択された場合、上述の流れと同様に動作設定値を決める手順を実行させる。
 参考として、通信状況を改善する場合、どれだけの数の近傍に位置する他機と通信可能であるかを評価関数として設定する例を挙げる。この場合、通信可能な他機が多いほど値が大きくなるような評価関数を設定すればよい。
 例えば、自機と通信可能な他機の数をmとする(iは自機の番号)。このとき、評価関数hiは、以下の式7のようなものが考えられる。なお、αiは係数である。
Figure JPOXMLDOC01-appb-I000007
 動作量算出手段14により、各機には最適な行動に割り振られ、かつ同じ行動に割り振られた他機と、割り振られた行動を群として最適化して動作することができる。
 動作量算出手段14で算出された無人機の動作量は、動作設定手段15によって実際に無人機を動かすアクチュエータへの動作設定値に変換される。その結果、無人機は、動作量算出手段14が想定した動作を実施できる。
 以上のように、本実施形態によれば、無人機群に属する各機が自律的に行動選択を行いながら、無人機群全体の行動を最適化できる。すなわち、本実施形態によれば、複数の無人機を協調動作させて、効率的なフォーメーションで無人機群を行動させたり、探索対象を効率的に探索させたりできる。
 (適用例)
 ここで、本実施形態の制御装置10について適用例を挙げて説明する。以下においては、複数の無人機が探索対象の探索と追跡という2種類の行動を切り替えながら、探索確率に基づいて探索と追跡の効率を最大化していく例を、図面を参照しながら詳細に説明する。
 〔適用例1〕
 図2は、適用例1のシステムについて説明するための概念図である。適用例1では、実空間で動作する複数の無人機20を管理する中央管理システム1をクラウド上に構築する。図2の例では、本実施形態の制御装置10を複数搭載する中央管理システム1によって複数の無人機20を管理する例を示す。なお、本適用例では、上述の制御装置10に関する手順を用いる。
 本適用例では、空中を自律動作し、レーダーで探索対象を探索する無人機20(UAV:Unmanned Air Vehicle)を用いる例を示す。なお、USV(Unmanned Surface Vehicle)やUUV(Unmanned Undersea Vehicle)に本適用例を用いてもよい。
 本適用例においては、各無人機20に対応する制御装置10がバーチャルにクラウド上に配備される。そして、あたかも無人機20が近傍の無人機20と情報交換するように、各制御装置10が近傍の無人機20に対応するバーチャルな制御装置10と情報交換しながら、自機に対応する無人機20に制御指示を出す。
 本適用例において、無人機20の行動は、行動エリアにおける探索対象の探索と、行動エリアで発見した探索対象の追跡との2種類である。
 本適用例で使用する評価関数には、上述の式4と同じものを設定する。探索行動の場合、無人機群が行動する行動エリアを無人機20の数で分割し、分割されたサブエリアの中央を頂点として周辺に向けて存在確率密度が下がっていく複数のガウシアン型の山で構成されるモデルを用いる。探索対象の追跡行動の場合、探索対象が直近で発見された位置を頂点とし、頂点から離れるほど存在確率密度が減っていくガウシアン型の関数を用いる。また、各無人機20の発見確率piは、式3によって求める。
 無人機20が存在する空域によって、式3のγは異なる。したがって、本実施形態では、空域ごとのγを予めデータベース化しておき、無人機20が存在する位置情報に基づいてγを変える手法を採用する。
 他機情報取得手段11は、行動比較手段12、動作量算出手段14が用いる付随情報として、各無人機20が捕捉したターゲットの位置情報、自機の位置情報を適宜アップロードする。各無人機20は、互いに非同期で動作しており、アップロードされる情報も非同期となる。したがって、本適用例では、クラウド上に中央管理システム1があるといっても、全ての情報が同期して中央管理システム1に集まらないため、探索確率に関する通常の最適化計算を行うことができない。そのため、本適用例では、第1の実施形態に関して説明してきた手順を用いて無人機群を全体最適する。
 図3~図5は、実際の無人機20の動作を時系列で並べた概念図である。図3が時刻t1、図4が時刻t2、図5が時刻t3におけるスナップショットである。ただし、時間は、時刻t1、時刻t2、時刻t3の順に進むものとする。行動エリア100は、無人機20が行動をするべき空間である。なお、図3~図5においては、行動エリア100を二次元的に図示しているが、行動エリア100は実際には三次元的な広がりを有する。
 時刻t1のスナップショット(図3)は、探索対象が未だ検知されていない状態を示す。時刻t1の状態では、行動エリア100全体に無人機20が均等に散らばって探索行動を行っている。
 時刻t2のスナップショット(図4)は、時刻t1から時間が経過して探索対象300が発見され、探索対象300の周辺の無人機20が探索から追跡に行動を変化させる状態を示す。時刻t2の状態では、破線の閉曲線で囲んだ追跡領域200内の無人機20が追跡行動に切り替えている。時刻t2の状態では、追跡領域200内に位置する複数の無人機20が探索対象300を取り囲むように追跡行動を行っている。追跡領域200の外の無人機20は、時刻t1と同様に、行動エリア100の探索を引き続き行っており、探索対象300から離れた位置では、ほぼ均等に無人機20が展開している。
 時刻t3のスナップショット(図5)は、探索対象300の動きに合わせて、時刻t2と比べて、探索から追跡に行動を変える無人機20が増えている状態を示す。
 ここで、適用例1に関して、無人機群がどの程度適切に動作するのかを評価する方法を示す。本評価において、動作量算出手段14は、探索対象300による追跡の探索確率を効率的に上昇させるようにして各無人機20の動作量を決定する。
 本評価では、動作量算出手段14が行う動作量の算出を故意に停止させて一定量動作するようにした比較例による動作と、本適用例による動作とに関して、単位探索努力あたりの全体探索確率を比較する。原理上、探索確率は、探索努力を投入すればするほど大きくなる特性を持っているので、投入した探索努力あたり(単位探索努力あたり)の探索確率の値を比較する必要がある。
 比較例においては、動作量算出手段14による動作量の算出を停止した場合、全ての無人機20が探索対象300に一定量で徐々に近づいていくように動作する。一方、本適用例においては、追跡領域200内に位置する無人機20が探索対象300を追跡する。
 本評価の結果、比較例と比べると、本適用例の方が、単位探索努力あたりの全体探索確率が平均して30%程度高くなる結果が得られる。これは、本適用例の手法によれば、効率的に探索対象300を追跡できることを意味する。
 以上のように、本適用例の手法によれば、クラウドに配備した中央管理システムを介して、状況に応じて群としての行動を適切に切り替え、群として複数の行動を適切に行うことができる。
 〔適用例2〕
 図6は、適用例2のシステムについて説明するための概念図である。本適用例では、各無人機20に制御装置10を搭載する。なお、図6においては、無人機20に搭載される制御装置10については省略している。
 本適用例では、各無人機20が近傍に位置する通信可能な無人機20と情報交換し、自機に搭載された制御装置10の制御を受けて自律分散的に行動する。また、本適用例では、無人機群が動作するフィールドから情報が取りにくく、無人機群に自律分散的な動作を期待しなくてはならないケースに相当する。また、本適用例は、中央管理システム1を想定することが難しいケース、あるいは中央管理システム1が機能しなくなってしまったケースに相当する。
 本適用例で使用する無人機20や評価関数などの条件は、全て適用例1と同様である。本適用例は、中央管理システムで情報を一括して管理しない点で適用例1とは異なる。
 他機情報取得手段11は、無人機20に搭載されており、探索対象300に関する情報を近傍に位置する他機との間で交換する。
 本適用例についても、適用例1と同様に、探索対象300を探索し、探索対象300を発見した際に行動を追跡に切り替える評価を行った。その結果、適用例1と同様の評価結果が得られた。
 また、本評価においても、適用例1と同様に、動作量算出手段14による動作量の算出を故意に停止させて一定量動作するようにした比較例による動作と、本適用例による動作とに関して、単位探索努力あたりの全体探索確率を比較した。二つの例を評価した結果、適用例1と同様に、本適用例の方が、比較例よりも単位探索努力あたりの全体探索確率が30%高くなる結果が得られた。
 以上のように、本適用例の手法によれば、本実施形態の制御装置を各無人機に搭載して制御を行っても、適用例1と同様の効果が得られる。
 上述の適用例1では、クラウドに中央管理システムを実装するケースを示したが、中央管理システムを特別なシステムとして構築してもよい。例えば、中央管理システムが配備された管理センターを設置し、その管理センターを介して無人機を制御するようにしてもよい。例えば、中央管理システムが配備された管理センターを海岸に設置し、複数の無人水中船(UUV:Unmanned Undersea Vehicle)や無人船(USV:Unmanned Surface Vehicle)を制御するようにしてもよい。また、例えば、中央管理システムが配備された母船から複数のUUVやUSVを制御するようにしてもよい。また、例えば、本実施形態の制御装置は、UAVやUUV、USVに限らず、飛行機型の無人機や、陸上を走行する無人機など、任意の無人機に適用できる。
 また、上述の適用例では、発見した探索対象を追跡する際に、探索確率を最大化するように制御したが、目的や最大化する価値は探索確率に限らず、適宜変更可能である。例えば、本実施形態の手法は、無人機に無線機を搭載し、所望の転送レートで最も広範囲に情報が送れるように無人機にフォーメーションを組ませる制御にも使用できる。すなわち、本実施形態の手法は、複数の無人機にある目的を持たせ、ある価値を最大化するような応用に関して適用可能である。また、本実施形態においては、探索と追跡をいう二種類の行動を取る例について説明してきたが、三種類以上の行動に関して適用してもよい。
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る制御装置について図面を参照しながら説明する。図7は、本実施形態に係る制御装置10-2の構成を示すブロック図である。図7のように、本実施形態の制御装置10-2は、他機情報取得手段11、行動比較手段12、行動選択手段13、動作量算出手段14、動作設定手段15に加えて、対象位置予測手段16を備える。なお、制御装置10-2は、対象位置予測手段16以外の構成については第1の実施形態の制御装置10と同様である。
 対象位置予測手段16は、他機情報取得手段11から他機によって発見された探索対象に関する情報を取得し、探索対象が直近に発見された位置から、現時点における探索対象の位置を予測する。なお、対象位置予測手段16は、自機に搭載されたセンサによって発見された探索対象に関する情報から現時点における探索対象の位置を予測してもよいし、自機および他機によって取得された情報を合わせて探索対象の位置を予測してもよい。対象位置予測手段16は、予測した探索対象の位置を動作量算出手段14に出力する。
 動作量算出手段14は、対象位置予測手段16が予測した位置に探索対象が存在するものとして存在確率密度を予測し、第1の実施形態と同様に自機の動作量を算出する。
 以上のように、本実施形態によれば、現時点における探索対象の位置に基づいて自機の動作量を算出できるため、より現実に即して効率的に無人機群全体の行動を最適化できる。
 (ハードウェア)
 ここで、本実施形態に係る制御装置の制御系統を実現するハードウェア構成について、図8のコンピュータ90を一例として挙げて説明する。なお、図8のコンピュータ90は、各実施形態の制御装置を実現するための構成例であって、本発明の範囲を限定するものではない。
 図8のように、コンピュータ90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95および通信インターフェース96を備える。図8においては、インターフェースをI/F(Interface)と略して表記している。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95および通信インターフェース96は、バス99を介して互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。例えば、コンピュータ90は、ネットワークを介してクラウドに配置されたシステムや装置、無人機に接続される。
 プロセッサ91は、補助記憶装置93等に格納されたプログラムを主記憶装置92に展開し、展開されたプログラムを実行する。本実施形態においては、コンピュータ90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る制御装置が実行する演算処理や制御処理を実行する。
 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリとすればよい。また、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリを主記憶装置92として構成・追加してもよい。
 補助記憶装置93は、種々のデータを記憶する手段である。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって構成される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
 入出力インターフェース95は、コンピュータ90と周辺機器との接続規格に基づいて、コンピュータ90と周辺機器とを接続する装置である。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークに接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
 コンピュータ90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器を接続できるように構成してもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成とすればよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
 通信インターフェース96は、ネットワークを通じて、外部のシステムや装置、無人機に接続される。
 また、コンピュータ90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、コンピュータ90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介してコンピュータ90に接続すればよい。
 また、コンピュータ90には、必要に応じて、リーダライタを備え付けてもよい。リーダライタは、バス99に接続される。リーダライタは、プロセッサ91と図示しない記録媒体(プログラム記録媒体)との間で、記録媒体からのデータ・プログラムの読み出し、コンピュータ90の処理結果の記録媒体への書き込みなどを仲介する。記録媒体は、例えばSD(Secure Digital)カードやUSB(Universal Serial Bus)メモリなどの半導体記録媒体などで実現できる。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体やその他の記録媒体によって実現してもよい。
 以上が、本発明の実施形態に係る制御装置を可能とするためのハードウェア構成の一例である。なお、図8のハードウェア構成は、本実施形態に係る制御装置を可能とするためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、本実施形態に係る制御装置に関する処理をコンピュータに実行させる制御プログラムも本発明の範囲に含まれる。さらに、本発明の実施形態に係る制御プログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年12月7日に出願された日本出願特願2016-237840を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  制御装置
 11  他機情報取得手段
 12  行動比較手段
 13  行動選択手段
 14  動作量算出手段
 15  動作設定手段
 16  対象位置予測手段
 20  無人機

Claims (10)

  1.  無人機群を構成する少なくとも一機の無人機を制御する制御装置であって、
     他機の状態に関する情報を取得する他機情報取得手段と、
     前記他機情報取得手段から前記他機の状態に関する情報を取得するとともに、自機の状態に関する情報を含むセンサ信号を取得し、取得した前記自機および前記他機の情報を用いて前記自機が取るべき複数種類の行動に対して比較値を算出する行動比較手段と、
     前記行動比較手段が算出した複数種類の行動の前記比較値に基づいて前記自機が取るべき行動を選択する行動選択手段と、
     前記行動選択手段が選択した行動の情報と、前記他機情報取得手段から得られる前記他機の状態に関する情報とを用いて前記自機の動作量を算出する動作量算出手段と、
     前記動作量算出手段の算出した前記自機の前記動作量を用いて前記自機を動作させるアクチュエータの動作設定値を設定する動作設定手段とを備える制御装置。
  2.  前記行動比較手段は、
     前記自機が取るべき複数種類の行動それぞれに対して、前記自機の状態に関する情報から前記自機の前記動作量に対する第1の評価関数を作成するとともに、前記他機の状態に対する情報から前記他機の前記動作量に関する第2の評価関数を作成し、前記第1の評価関数および前記第2の評価関数から前記自機が取るべき複数種類の行動を取ったときの評価関数改善度を前記比較値として算出し、
     前記行動選択手段は、
     前記行動比較手段が前記自機が取るべき複数行動ごとに算出した前記評価関数改善度を相互に比較することによって前記自機が取るべき行動を選択する請求項1に記載の制御装置。
  3.  前記行動比較手段は、
     前記第1の評価関数の微分値と前記第2の評価関数の微分値との差を用いて前記評価関数改善度を算出する請求項2に記載の制御装置。
  4.  前記行動比較手段は、
     凸型の特性を持つ前記第1および第2の評価関数を算出し、
     前記動作量算出手段は、
     前記行動比較手段が作成した凸型の特性を持つ前記第1および第2の評価関数を用いて前記自機の前記動作量を算出する請求項2に記載の制御装置。
  5.  前記動作量算出手段は、
     前記無人機群を構成する全ての前記無人機について、前記無人機群を構成する前記無人機のそれぞれが探索対象を発見する確率と、それぞれの前記無人機の位置における前記探索対象の存在確率密度との積である探索確率とを合計した全体探索確率を最大化する最適化問題を解くことによって前記自機の前記動作量を算出する請求項2に記載の制御装置。
  6.  前記動作量算出手段は、
     単位時間当たりに前記無人機のそれぞれに投入する探索努力の総和が、単位時間当たりに前記無人機群の全体に投入する前記探索努力と等しくなるという制約条件の下で前記最適化問題を解く請求項5に記載の制御装置。
  7.  前記動作設定手段は、
     前記他機よりも前記自機の方が前記探索確率の増分が大きい場合は、前記動作量算出手段によって算出された前記動作量に基づいて前記動作設定値を設定し、
     前記他機よりも前記自機の前記探索確率の増分が小さい場合は、前記動作設定値を設定しない請求項5または6に記載の制御装置。
  8.  前記探索対象が直近に発見された位置から現時点における前記探索対象の位置を予測する対象位置予測手段を備え、
     前記動作量算出手段は、
     前記対象位置予測手段が予測した位置に前記探索対象が存在するものとして前記自機の前記動作量を算出する請求項7に記載の制御装置。
  9.  無人機群を構成する少なくとも一機の無人機を制御する制御方法であって、
     他機の状態に関する情報を取得し、
     自機の状態に関する情報を含むセンサ信号を取得し、
     取得した前記自機および前記他機の情報を用いて前記自機が取るべき複数種類の行動に対して比較値を算出し、
     算出した複数種類の行動の比較値に基づいて前記自機が取るべき行動を選択し、
     選択した行動の情報と、前記他機の状態に関する情報とを用いて前記自機の動作量を算出し、
     算出結果を用いて前記自機を動作させるアクチュエータの動作設定値を設定する制御方法。
  10.  無人機群を構成する少なくとも一機の無人機を制御するプログラムであって、
     他機の状態に関する情報を取得する処理と、
     自機の状態に関する情報を含むセンサ信号を取得する処理と、
     取得した前記自機および前記他機の情報を用いて前記自機が取るべき複数種類の行動に対して比較値を算出する処理と、
     算出した複数種類の行動の比較値に基づいて前記自機が取るべき行動を選択する処理と、
     選択した行動の情報と、前記他機の状態に関する情報とを用いて前記自機の動作量を算出する処理と、
     算出結果を用いて前記自機を動作させるアクチュエータの動作設定値を設定する処理とをコンピュータに実行させるプログラムを記録するプログラム記録媒体。
PCT/JP2017/043613 2016-12-07 2017-12-05 制御装置、制御方法およびプログラム記録媒体 WO2018105599A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018555007A JP7056580B2 (ja) 2016-12-07 2017-12-05 制御装置、制御方法およびプログラム
US16/463,464 US11163299B2 (en) 2016-12-07 2017-12-05 Control device, control method, and program recording medium
EP17878748.7A EP3553622B1 (en) 2016-12-07 2017-12-05 Control device, control method, and program recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237840 2016-12-07
JP2016-237840 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105599A1 true WO2018105599A1 (ja) 2018-06-14

Family

ID=62491296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043613 WO2018105599A1 (ja) 2016-12-07 2017-12-05 制御装置、制御方法およびプログラム記録媒体

Country Status (4)

Country Link
US (1) US11163299B2 (ja)
EP (1) EP3553622B1 (ja)
JP (1) JP7056580B2 (ja)
WO (1) WO2018105599A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159413A (ja) * 2018-03-07 2019-09-19 株式会社豊田中央研究所 制御装置、移動体、自律分散制御プログラム
JP2020021351A (ja) * 2018-08-02 2020-02-06 株式会社国際電気通信基礎技術研究所 ロボット、ロボット制御プログラムおよびロボット制御方法
JP6678831B1 (ja) * 2019-03-12 2020-04-08 三菱電機株式会社 制御装置および制御方法
WO2020105183A1 (ja) * 2018-11-22 2020-05-28 楽天株式会社 情報処理システム、情報処理方法及びプログラム
WO2020136850A1 (ja) * 2018-12-27 2020-07-02 日本電気株式会社 制御装置、フォーメーション決定装置、制御方法およびプログラム
JPWO2020188818A1 (ja) * 2019-03-20 2020-09-24
WO2021024352A1 (ja) * 2019-08-05 2021-02-11 三菱電機株式会社 制御装置、および、制御方法
WO2021039093A1 (ja) 2019-08-30 2021-03-04 三菱重工業株式会社 無人機協調システム、無人機協調処理方法及びプログラム
JPWO2021095189A1 (ja) * 2019-11-14 2021-05-20
JP7366410B2 (ja) 2020-01-16 2023-10-23 学校法人 関西大学 移動体、無線通信システム、移動体の制御方法、および制御プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694365B (zh) * 2020-07-01 2021-04-20 武汉理工大学 一种基于深度强化学习的无人船艇编队路径跟踪方法
CN112612212B (zh) * 2020-12-30 2021-11-23 上海大学 一种异构多无人系统编队与协同目标驱离方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926958B1 (ja) 1970-12-28 1974-07-13
JP4617293B2 (ja) 2003-02-03 2011-01-19 キヴァ システムズ,インコーポレイテッド 自律可動式駆動ユニット及び移動可能在庫トレイを用いる物品操作システム及び方法
JP5271772B2 (ja) 2009-03-30 2013-08-21 株式会社日立製作所 列車運行制御方法および車上制御装置
JP5559671B2 (ja) 2010-12-13 2014-07-23 公益財団法人鉄道総合技術研究所 走行制御支援方法及び走行制御支援装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732292B2 (ja) * 1996-11-27 2006-01-05 本田技研工業株式会社 車群走行制御システム
EP1761741A2 (en) 2004-02-06 2007-03-14 Icosystem Corporation Methods and systems for area search using a plurality of unmanned vehicles
US7908040B2 (en) 2004-07-15 2011-03-15 Raytheon Company System and method for automated search by distributed elements
US9026315B2 (en) * 2010-10-13 2015-05-05 Deere & Company Apparatus for machine coordination which maintains line-of-site contact
US8634982B2 (en) * 2009-08-19 2014-01-21 Raytheon Company System and method for resource allocation and management
US9104201B1 (en) * 2012-02-13 2015-08-11 C&P Technologies, Inc. Method and apparatus for dynamic swarming of airborne drones for a reconfigurable array
JP6207908B2 (ja) 2012-11-29 2017-10-04 三菱重工業株式会社 航空機管理装置、航空機、及び航空機管理方法
WO2016166983A1 (ja) * 2015-04-16 2016-10-20 日本電気株式会社 制御装置、機器、情報処理システム、制御方法、および、記憶媒体
DE112017001267B4 (de) * 2016-03-11 2024-05-02 Panasonic Automotive Systems Co., Ltd. Automatikfahrzeug-Dispatchingsystem und Servervorrichtung
US11014650B2 (en) * 2016-06-21 2021-05-25 Nec Corporation Moving body, moving body control system, moving body control method, interface device, and recording medium having program recorded thereon
US10663595B2 (en) * 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926958B1 (ja) 1970-12-28 1974-07-13
JP4617293B2 (ja) 2003-02-03 2011-01-19 キヴァ システムズ,インコーポレイテッド 自律可動式駆動ユニット及び移動可能在庫トレイを用いる物品操作システム及び方法
JP5271772B2 (ja) 2009-03-30 2013-08-21 株式会社日立製作所 列車運行制御方法および車上制御装置
JP5559671B2 (ja) 2010-12-13 2014-07-23 公益財団法人鉄道総合技術研究所 走行制御支援方法及び走行制御支援装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWAKAMI, KOHEI: "1D13. Self-Organization of Action Control Architecture for Multi-Agent System", PROCEEDINGS OF THE 25TH ANNUAL CONFERENCE OF THE ROBOTICS SOCIETY OF JAPAN; SEPTEMBER 13, 2007 (THU) — SEPTEMBER 15, 2007 (SAT), 25 September 2007 (2007-09-25), pages 1 - 4, XP009515274 *
TAGAWA, RYO: "Reinforcement learning of state evaluation functions in soccer agents", PROCEEDINGS OF THE 20TH GAME PROGRAMMING WORKSHOP 2015, 2015, pages 78 - 83, XP009515827 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019159413A (ja) * 2018-03-07 2019-09-19 株式会社豊田中央研究所 制御装置、移動体、自律分散制御プログラム
JP7091723B2 (ja) 2018-03-07 2022-06-28 株式会社豊田中央研究所 制御装置、移動体、自律分散制御プログラム
JP2020021351A (ja) * 2018-08-02 2020-02-06 株式会社国際電気通信基礎技術研究所 ロボット、ロボット制御プログラムおよびロボット制御方法
JP7317436B2 (ja) 2018-08-02 2023-07-31 株式会社国際電気通信基礎技術研究所 ロボット、ロボット制御プログラムおよびロボット制御方法
JP6761146B1 (ja) * 2018-11-22 2020-09-23 楽天株式会社 情報処理システム、情報処理方法及びプログラム
WO2020105183A1 (ja) * 2018-11-22 2020-05-28 楽天株式会社 情報処理システム、情報処理方法及びプログラム
WO2020136850A1 (ja) * 2018-12-27 2020-07-02 日本電気株式会社 制御装置、フォーメーション決定装置、制御方法およびプログラム
US11853066B2 (en) 2018-12-27 2023-12-26 Nec Corporation Control device, formation determination device, control method, and program
JPWO2020136850A1 (ja) * 2018-12-27 2021-09-27 日本電気株式会社 制御装置、フォーメーション決定装置、制御方法およびプログラム
WO2020183608A1 (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 制御装置および制御方法
JP6678831B1 (ja) * 2019-03-12 2020-04-08 三菱電機株式会社 制御装置および制御方法
JPWO2020188818A1 (ja) * 2019-03-20 2020-09-24
WO2020188818A1 (ja) 2019-03-20 2020-09-24 日本電気株式会社 無人機制御システム、方法、無人機、指示端末、及びコンピュータ可読媒体
US11960277B2 (en) 2019-03-20 2024-04-16 Nec Corporation Unmanned vehicle controlling system and method, and nontransitory computer-readable medium
JP7046275B2 (ja) 2019-08-05 2022-04-01 三菱電機株式会社 制御装置、および、制御方法
JPWO2021024352A1 (ja) * 2019-08-05 2021-11-18 三菱電機株式会社 制御装置、および、制御方法
WO2021024352A1 (ja) * 2019-08-05 2021-02-11 三菱電機株式会社 制御装置、および、制御方法
WO2021039093A1 (ja) 2019-08-30 2021-03-04 三菱重工業株式会社 無人機協調システム、無人機協調処理方法及びプログラム
WO2021095189A1 (ja) * 2019-11-14 2021-05-20 日本電気株式会社 無人機制御装置、無人機制御システム、無人機制御方法及び記録媒体
JPWO2021095189A1 (ja) * 2019-11-14 2021-05-20
JP7435620B2 (ja) 2019-11-14 2024-02-21 日本電気株式会社 無人機、無人機制御システム、制御方法、プログラム及び制御装置
JP7366410B2 (ja) 2020-01-16 2023-10-23 学校法人 関西大学 移動体、無線通信システム、移動体の制御方法、および制御プログラム

Also Published As

Publication number Publication date
EP3553622B1 (en) 2021-03-24
JPWO2018105599A1 (ja) 2019-11-07
JP7056580B2 (ja) 2022-04-19
US20190354113A1 (en) 2019-11-21
EP3553622A1 (en) 2019-10-16
EP3553622A4 (en) 2019-12-04
US11163299B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2018105599A1 (ja) 制御装置、制御方法およびプログラム記録媒体
US11970161B2 (en) Apparatus, method and article to facilitate motion planning of an autonomous vehicle in an environment having dynamic objects
Song et al. A new approach to smooth global path planning of mobile robots with kinematic constraints
Wallar et al. Reactive motion planning for unmanned aerial surveillance of risk-sensitive areas
JP6750615B2 (ja) 制御装置、機器、情報処理システム、制御方法、および、制御プログラム
EP3891570A1 (en) Apparatus, method and article to facilitate motion planning in an environment having dynamic objects
JP2018505788A (ja) 専用ロボットの動作を計画するハードウェアならびにその作製方法および使用方法
CN110162035B (zh) 一种集群机器人在有障碍物场景中的协同运动方法
WO2018170444A1 (en) Method and apparatus for constructing informative outcomes to guide multi-policy decision making
JP7044061B2 (ja) 移動体、移動体制御システム、移動体制御方法、インターフェース装置、およびプログラム
Zhao et al. A path planning method based on multi-objective cauchy mutation cat swarm optimization algorithm for navigation system of intelligent patrol car
Radmard et al. Active target search for high dimensional robotic systems
Sreedhar et al. A review on advanced optimization algorithms in multidisciplinary applications
Haugen et al. Monitoring an advection-diffusion process using aerial mobile sensors
CN114724396A (zh) 用于操作自主代理的地图表示系统和方法
JP7070673B2 (ja) 自律動作機の制御装置、自律動作機の制御方法、及び、自律動作機の制御プログラム
CN114559439B (zh) 一种移动机器人智能避障控制方法、装置和电子设备
Chen et al. Social crowd navigation of a mobile robot based on human trajectory prediction and hybrid sensing
Mukhopadhyay et al. Multi-robot Map Exploration Based on Multiple Rapidly-Exploring Randomized Trees
KR101560701B1 (ko) 다중 이동 로봇의 대형 제어 방법 및 시스템
CN113671942A (zh) 用于控制机器人的设备和方法
JP6939395B2 (ja) 制御装置、方法及びプログラム
Emoto et al. Information seeking and model predictive control of a cooperative multi-robot system
Zambom et al. Constrained optimization with stochastic feasibility regions applied to vehicle path planning
Haugen et al. Optimization-based motion planning for trawling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878748

Country of ref document: EP

Effective date: 20190708