WO2018105392A1 - Vibration element - Google Patents
Vibration element Download PDFInfo
- Publication number
- WO2018105392A1 WO2018105392A1 PCT/JP2017/041925 JP2017041925W WO2018105392A1 WO 2018105392 A1 WO2018105392 A1 WO 2018105392A1 JP 2017041925 W JP2017041925 W JP 2017041925W WO 2018105392 A1 WO2018105392 A1 WO 2018105392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- main surface
- coil pattern
- magnet
- insulating base
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
Definitions
- the present invention relates to a vibration element, and particularly to a vibration element in which a plurality of coil patterns are formed across a plurality of insulating base layers.
- Patent Document 1 discloses a diaphragm having a configuration in which a coil pattern is formed across a plurality of insulating base layers in order to increase the number of turns of a coil. Such a diaphragm is vibrated by the interaction of the electromagnetic force with the magnet.
- An object of the present invention is to provide a vibrating element having a coil including a plurality of coil patterns formed over a plurality of insulating base layers and a magnet, and an electromagnetic force between the diaphragm and the magnet.
- An object of the present invention is to provide a vibration element that suppresses a significant increase in the conductor loss of a coil while increasing it.
- the vibration element of the present invention includes: Comprising a diaphragm and a first magnet;
- the diaphragm is A plurality of insulating base material layers having flexibility, and a laminate having a first main surface;
- Have The coil includes a plurality of coil patterns respectively formed on two or more insulating base layers among the plurality of insulating base layers.
- the line width of at least a part of the first main surface side coil pattern disposed closest to the first main surface among the plurality of coil patterns is narrower than at least one line width of the other coil patterns,
- the first magnet is disposed at a position overlapping the formation region of the coil when viewed from the winding axis direction of the coil, and is closest to the first main surface side coil pattern among the plurality of coil patterns. It is characterized by being arranged.
- the magnetic flux generated around the coil pattern increases when the line width of the coil pattern is narrower than when the line width of the coil pattern (conductor) forming the coil is large. Therefore, with this configuration, the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern is increased, and the driving efficiency of the diaphragm is increased (the amplitude of the diaphragm can be increased).
- the electromagnetic force due to the interaction between the first magnet and the coil can be increased as compared with the case where the line widths of all the plurality of coil patterns are the same under the same conductor loss of the coil.
- a significant increase in the coil conductor loss is suppressed as compared with the case where the line widths of all the plurality of coil patterns are the same under the same electromagnetic force.
- the stacked body has a second main surface facing the first main surface, and the first main surface side coil pattern is more than the second main surface in the stacking direction. Is preferably close to the first main surface.
- the coil is disposed closer to the first magnet than the first main surface side coil pattern is closer to the second main surface than the first main surface in the stacking direction. The electromagnetic force due to the interaction between the first magnet and the coil can be further increased.
- the first main surface side coil pattern has a spiral shape, and a line width equal to or greater than a half circumference of the outermost peripheral portion of the first main surface side coil pattern is It is preferable that the line width of the coil pattern other than is narrower.
- the outermost peripheral portion of the coil pattern mainly contributes to the formation of magnetic flux that interacts with the magnet. Therefore, by making the line width more than half the outermost circumference of the first main surface side coil pattern thinner than the line width of the other coil patterns, it is possible to suppress a significant increase in coil conductor loss, The electromagnetic force due to the interaction between one magnet and the coil can be effectively increased.
- the line width of the entire first main surface side coil pattern is preferably narrower than the line width of the other coil patterns.
- the stacked body has a second main surface facing the first main surface, and the coil includes the plurality of coils.
- a plurality of coil patterns respectively formed on three or more insulating base material layers of the insulating base material layers, and the second main surface side disposed closest to the second main surface among the plurality of coil patterns
- the line width of at least a part of the coil pattern and the line width of at least a part of the first main surface side coil pattern are narrower than at least one line width of the other coil patterns, and the second magnet
- the coil When viewed from the winding axis direction of the coil, the coil is disposed at a position overlapping the coil formation region, and is disposed closest to the second main surface side coil pattern among the plurality of coil patterns.
- the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern is increased, and the electromagnetic force due to the interaction between the second magnet and the second main surface side coil pattern is also increased. Therefore, the driving efficiency of the diaphragm is further increased as compared with the vibration element including only the first magnet (the amplitude of the diaphragm can be further increased).
- the second main surface side coil pattern is closer to the second main surface than the first main surface in the stacking direction.
- the coil is disposed closer to the second magnet than the second main surface side coil pattern is closer to the first main surface than the second main surface in the stacking direction. The electromagnetic force due to the interaction between the second magnet and the coil can be further increased.
- the second main surface side coil pattern has a spiral shape, and a line width equal to or greater than a half circumference of the outermost peripheral portion of the second main surface side coil pattern is It is preferable that the line width of the coil pattern other than is narrower.
- the outermost peripheral portion of the coil pattern mainly contributes to the formation of magnetic flux that interacts with the magnet. Therefore, by making the line width of the outer circumference of the second main surface side coil pattern more than half the circumference of the coil pattern thinner than that of the other coil patterns, it is possible to suppress a significant increase in coil conductor loss. The electromagnetic force due to the interaction between the two magnets and the coil can be effectively increased.
- the line width of the entire first main surface side coil pattern and the line width of the entire second main surface side coil pattern are larger than the line widths of the other coil patterns. Thin is preferable. With this configuration, it is possible to more efficiently suppress an increase in the conductor loss of the coil while increasing the electromagnetic force due to the interaction between the magnet (the first magnet and the second magnet) and the coil.
- a first recess is formed in the first main surface, and the first recess is an inner side of a coil opening of the coil as viewed from the stacking direction. It is preferable that at least a part of the first magnet is disposed inside the first recess. With this configuration, since the coil is disposed closer to the first magnet, the electromagnetic force due to the interaction between the first magnet and the coil can be further increased.
- a side surface of the first recess is formed in a tapered shape from the first main surface toward the inside of the laminate.
- a second recess is formed in the second main surface, and the second recess is inside the coil opening of the coil as viewed from the stacking direction.
- the second magnet is arranged at least partially inside the second recess, so that the coil is arranged closer to the second magnet, so that the second magnet and the coil are mutually connected. The electromagnetic force due to the action can be further increased.
- a side surface of the second recess is formed in a tapered shape from the second main surface toward the inside of the laminate.
- the line widths of the plurality of coil patterns are thicker as they are arranged in the inner layer than the surface layer of the stacked body in the stacking direction.
- a vibration element including a diaphragm having a coil including a plurality of coil patterns formed over a plurality of insulating base layers and a magnet
- an electromagnetic force between the diaphragm and the magnet is reduced. It is possible to realize a vibration element that suppresses a significant increase in the conductor loss of the coil while increasing the height.
- FIG. 1A is an external perspective view of the diaphragm 101 according to the first embodiment
- FIG. 1B is an exploded perspective view of the diaphragm 101
- FIG. 2 is a cross-sectional view of the vibration plate 101 on the XZ plane.
- FIG. 3A is a plan view showing the main part of the vibration element 201 according to the first embodiment
- FIG. 3B is a cross-sectional view showing the main part of the vibration element 201.
- FIG. 4 is a cross-sectional view illustrating the manufacturing process of the diaphragm 101 in order.
- FIG. 5A is an external perspective view of the diaphragm 102 according to the second embodiment
- FIG. 5B is an exploded perspective view of the diaphragm 102.
- FIG. 6A is a cross-sectional view of the diaphragm 102 on the XZ plane showing the positional relationship of the first main surface side coil pattern
- FIG. 6B is the positional relationship of the second main surface side coil pattern.
- FIG. 6 is a cross-sectional view of the vibration plate 102 taken along the XZ plane.
- FIG. 7 is a cross-sectional view illustrating a main part of the vibration element 202 according to the second embodiment.
- FIG. 8A is an external perspective view of the diaphragm 103 according to the third embodiment
- FIG. 8B is an exploded perspective view of the diaphragm 103.
- FIG. 9 is a cross-sectional view of the diaphragm 103 on the XZ plane.
- FIG. 10 is a cross-sectional view along the XZ plane of the diaphragm 104 according to the fourth embodiment.
- FIG. 11A is an external perspective view of the diaphragm 105 according to the fifth embodiment, and
- FIG. 11B is an exploded perspective view of the diaphragm 105.
- 12A is a plan view of the diaphragm 105, and
- FIG. 12B is a cross-sectional view of the diaphragm 105 on the XZ plane.
- FIG. 13 is a cross-sectional view illustrating a main part of a vibration element 205 according to the fifth embodiment.
- FIG. 14 is a cross-sectional view sequentially illustrating the manufacturing process of the diaphragm 105.
- FIG. 11A is an external perspective view of the diaphragm 105 according to the fifth embodiment
- FIG. 11B is an exploded perspective view of the diaphragm 105.
- 12A is a plan view of the diaphra
- FIG. 15A is an external perspective view of the diaphragm 106 according to the sixth embodiment
- FIG. 15B is a cross-sectional view of the diaphragm 106
- FIG. 16 is an exploded plan view of the diaphragm 106
- FIG. 17 is a cross-sectional view illustrating a main part of a vibration element 206 according to the sixth embodiment.
- FIG. 1A is an external perspective view of the diaphragm 101 according to the first embodiment
- FIG. 1B is an exploded perspective view of the diaphragm 101
- FIG. 2 is a cross-sectional view of the vibration plate 101 on the XZ plane.
- the coil patterns CP1, CP2, and CP3 are shown as dot patterns for easy understanding of the structure.
- the thickness of each part is exaggerated. The same applies to the sectional views in the following embodiments.
- the diaphragm 101 includes a laminated body 10A, a coil 31 (described in detail later) formed on the laminated body 10A, and external electrodes P1 and P2.
- the laminated body 10A is a rectangular flat plate whose longitudinal direction coincides with the X-axis direction, and has a first main surface VS1 and a second main surface VS2 facing each other.
- the laminated body 10A is made of a thermoplastic resin, and is formed by sequentially laminating a plurality of insulating base material layers 13a, 12a, 11a and a protective layer 1a as shown in FIG.
- the plurality of insulating base layers 11a, 12a, and 13a are each a rectangular flat plate made of a resin material having flexibility and having a longitudinal direction coinciding with the X-axis direction.
- the plurality of insulating base layers 11a, 12a, and 13a are sheets mainly made of, for example, a liquid crystal polymer (LCP) or polyether ether ketone (PEEK) which is a thermoplastic resin.
- LCP liquid crystal polymer
- PEEK polyether ether ketone
- the coil pattern CP1, the external electrodes P1, P2, and the connection conductor CN1 are formed on the surface of the insulating base layer 11a.
- the coil pattern CP1 is a rectangular loop-shaped conductor of about 1 turn that is wound along the outer periphery of the insulating base layer 11a.
- the external electrode P1 is a rectangular conductor disposed near the center of the first side of the insulating base layer 11a (the left side of the insulating base layer 11a in FIG. 1B).
- the external electrode P2 is a rectangular conductor disposed near the center of the second side of the insulating base layer 11a (the right side of the insulating base layer 11a in FIG. 1B).
- connection conductor CN1 is a conductor that connects the external electrode P1 and the first end of the coil pattern CP1.
- the coil pattern CP1, the external electrodes P1, P2, and the connection conductor CN1 are conductor patterns made of, for example, Cu foil.
- interlayer connection conductors V1 and V4 are formed on the insulating base material layer 11a.
- the coil pattern CP2 and the conductor 22 are formed on the surface of the insulating base material layer 12a.
- the coil pattern CP2 is a rectangular loop-shaped conductor of about one turn that is wound along the outer periphery of the insulating base layer 12a.
- the first end of the coil pattern CP2 is connected to the second end of the coil pattern CP1 through the interlayer connection conductor V1.
- the conductor 22 is a rectangular conductor disposed near the center of the second side of the insulating base layer 12a (the right side of the insulating base layer 12a in FIG. 1B).
- the conductor 22 is connected to the external electrode P2 through the interlayer connection conductor V4.
- the coil pattern CP2 and the conductor 22 are conductor patterns made of, for example, Cu foil.
- interlayer connection conductors V2 and V3 are formed on the insulating base material layer 12a.
- the coil pattern CP3, the conductor 21 and the connection conductor CN2 are formed on the surface of the insulating base layer 13a.
- the coil pattern CP3 is a rectangular loop-shaped conductor of about one turn that is wound along the outer periphery of the insulating base layer 13a.
- the first end of the coil pattern CP3 is connected to the second end of the coil pattern CP2 via the interlayer connection conductor V2.
- the conductor 21 is a rectangular conductor disposed near the center of the second side of the insulating base layer 13a (the right side of the insulating base layer 13a in FIG. 1B).
- the conductor 21 is connected to the conductor 22 via the interlayer connection conductor V3.
- the connection conductor CN2 is a conductor that connects between the conductor 21 and the second end of the coil pattern CP3.
- the coil pattern CP3, the conductor 21 and the connection conductor CN2 are conductor patterns such as a Cu foil, for example.
- the protective layer 1a is a resin film that is formed on substantially the entire surface of the laminated body 10A on the first main surface VS1 side and covers the coil pattern CP1 formed on the insulating base layer 11a (first main surface VS1 side).
- the protective layer 1a has openings AP1 and AP2 at positions corresponding to the external electrodes P1 and P2. Therefore, the external electrodes P1 and P2 are exposed from the first main surface VS1 by forming the protective layer 1a on the upper surface of the insulating base layer 11a.
- the protective layer 1a is, for example, a solder resist film or a coverlay film. In the “diaphragm” of the present invention, the protective layer 1a is not essential.
- the diaphragm 101 includes a plurality of coil patterns CP1, CP2, CP3 and interlayer connection conductors V1, V2 formed on the three insulating base layers 11a, 12a, 13a, respectively, and a rectangular helical structure having about 3 turns.
- a coil 31 is formed. As shown in FIG. 2, the winding axis AX of the coil 31 coincides with the stacking direction (Z-axis direction) of the plurality of insulating base layers 11a, 12a, 13a. The first end of the coil 31 is connected to the external electrode P1, and the second end of the coil 31 is connected to the external electrode P2.
- the line width of the coil pattern CP1 is narrower than the line widths of the other coil patterns CP2 and CP3.
- the coil pattern CP1 is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). Specifically, the distance between the coil pattern CP1 and the first main surface VS1 in the Z-axis direction is L11, and the distance between the coil pattern CP1 and the second main surface VS2 in the Z-axis direction is L12. In addition, L11 ⁇ L12 holds.
- the coil pattern CP1 described above corresponds to the “first main surface side coil pattern” in the present invention.
- the “first main surface side coil pattern” in the present invention refers to a coil pattern arranged closest to the first main surface VS1 among a plurality of coil patterns.
- the “coil pattern” in the present invention refers to a conductor pattern that contributes to the formation of magnetic flux that interacts with the magnet (see coil patterns CP1, CP2, and CP3 shown by the dot pattern in FIG. 1B). Note that the connection conductors CN1 and CN2 connected to both ends of the coil 31 are considered not to substantially contribute to the formation of the magnetic flux that interacts with the magnet, and thus are excluded from the “coil pattern” of the present invention. .
- FIG. 3A is a plan view showing the main part of the vibration element 201 according to the first embodiment
- FIG. 3B is a cross-sectional view showing the main part of the vibration element 201.
- the formation region CE of the coil 31 is indicated by a dot pattern for easy understanding of the structure.
- the vibration element 201 includes a vibration plate 101 and a magnet 41.
- Both ends in the longitudinal direction of the vibration plate 101 are fixed when the vibration element 201 is incorporated in an electronic device (not shown), and the magnet 41 is fixed to a casing (or cover) of the electronic device (not shown). As shown in FIG. 3A, the magnet 41 is disposed at a position overlapping the formation region CE of the coil 31 when viewed from the Z-axis direction.
- the magnet 41 corresponds to the “first magnet” in the present invention.
- the “first magnet” in the present invention refers to a magnet arranged closest to the first main surface side coil pattern among the plurality of coil patterns.
- the external electrodes P1 and P2 of the vibration plate 101 are connected to a circuit of the electronic device when the vibration element 201 is incorporated in an electronic device (not shown).
- a drive current flows through the coil 31 of the diaphragm 101, the diaphragm 101 vibrates in the direction indicated by the white arrow in FIG.
- the vibrating element 201 according to the present embodiment has the following effects.
- the first magnet (magnet 41) is closest to the first main surface side coil pattern (coil pattern CP1) among the plurality of coil patterns CP1, CP2, CP3.
- the line width of the first main surface side coil pattern is narrower than the line widths of the other coil patterns CP2 and CP3.
- more magnetic flux is generated around the coil pattern when the line width of the coil pattern is narrower than when the line width of the coil pattern (conductor) forming the coil is large. Therefore, with this configuration, the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern is increased, and the driving efficiency of the diaphragm 101 is increased (the amplitude of the diaphragm 101 can be increased).
- the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3. That is, by reducing only the line width of the first main surface side coil pattern, the first magnet and the coil are compared with the case where the line widths of all the coil patterns are the same under the same conductor loss of the coil. Electromagnetic force due to interaction with can be increased. In addition, a significant increase in the conductor loss of the coil is suppressed as compared with the case where the line widths of all the plurality of coil patterns are the same under the same electromagnetic force.
- the first main surface side coil pattern (coil pattern CP1) is located on the first main surface VS1 more than the second main surface VS2 in the stacking direction (Z-axis direction). It is close (L11 ⁇ L12).
- the coil 31 is the first magnet. Therefore, the electromagnetic force due to the interaction between the first magnet and the coil 31 can be further increased.
- the surface layer of the diaphragm expands and contracts more than the inner layer. That is, in the present embodiment, the first main surface side coil pattern having a line width narrower than the other coil patterns CP2 and CP3 in the vicinity of the first main surface VS1 of the laminate 10A that greatly expands and contracts when the diaphragm vibrates. Are arranged (L11 ⁇ L12). Generally, a conductor pattern has relatively higher rigidity than an insulating base material layer made of a resin material. Therefore, with this configuration, flexibility in the vicinity of the first main surface VS1 of the laminated body 10A that greatly expands and contracts when the diaphragm vibrates can be maintained, and the amplitude when the diaphragm vibrates can be increased.
- the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3 is shown, but the present invention is limited to this configuration. It is not a thing. If the line width of the first main surface side coil pattern is narrower than at least one line width of the other coil patterns, the above-described operations and effects are achieved. However, by making the line width of the first main surface side coil pattern thinner than the line width of the other coil patterns, the electromagnetic force due to the interaction between the first magnet and the coil can be increased efficiently, and the coil The increase in the conductor loss of 31 can be suppressed.
- FIG. 4 is a cross-sectional view illustrating the manufacturing process of the diaphragm 101 in order.
- FIG. 4 for the convenience of explanation, the manufacturing process using one chip (individual piece) will be described. However, the actual manufacturing process of the diaphragm is performed in a collective substrate state.
- a plurality of insulating base layers 11a, 12a, and 13a are prepared. Thereafter, coil patterns CP1, CP2, CP3, external electrodes P1, P2, conductors 21, 22 and the like are formed on the plurality of insulating base layers 11a, 12a, 13a, respectively.
- a metal foil for example, Cu foil
- the metal foil is laminated on one side main surface of the insulating base material layers 11a, 12a, and 13a in a collective substrate state, and the metal foil is patterned by photolithography, whereby the coil pattern CP1. , CP2, CP3, external electrodes P1, P2 and conductors 21, 22 are formed.
- the insulating base layers 11a, 12a, and 13a are thermoplastic resin sheets such as liquid crystal polymers.
- the plurality of insulating base layers 11a, 12a and 13a include other conductors (connection conductors CN1 and CN2 in FIG. 1B) and interlayer connection conductors (interlayer connection conductors V1, V2 in FIG. 1B). V3, V4) are formed.
- the interlayer connection conductor is provided with a through-hole with a laser or the like, and then a conductive paste containing one or more of Cu, Ag, Sn, Ni, Mo or the like or an alloy thereof is disposed and cured by subsequent heating and pressing. It is provided by (solidifying). Therefore, the interlayer connection conductor is made of a material having a melting point (melting temperature) lower than the temperature at the time of subsequent heating and pressurization.
- the insulating base layers 11a, 12a, and 13a are stacked in this order on the highly rigid base 2, and a plurality of stacked insulating base layers 11a are stacked. , 12a, and 13a are heated and pressed to form the laminated body 10AP. Specifically, the plurality of laminated insulating base layers 11a, 12a, and 13a are heated, and isotropic pressure pressing (pressurization) is performed by hydrostatic pressure from the direction of the white arrow shown in (2) in FIG. .
- the protective layer 1a is formed on the one main surface (upper surface of the laminated body 10AP shown in (3) in FIG. 4) of the laminated body 10AP.
- the protective layer 1a has openings at positions corresponding to the external electrodes P1 and P2. Therefore, the protective layer 1a is formed on the upper surface of the multilayer body 10AP (insulating base material layer 11a), so that the external electrodes P1 and P2 are exposed from the first main surface.
- the protective layer 1a is a resin film for preventing oxidation of the formation surface of the coil pattern CP1, etc., and is, for example, a solder resist film or a coverlay film.
- the diaphragm 101 as shown in (4) of FIG. 4 is obtained by separating into individual pieces from the collective substrate.
- Second Embodiment an example in which the configuration of a coil pattern formed over a plurality of insulating base material layers is different from that in the first embodiment will be described.
- FIG. 5A is an external perspective view of the diaphragm 102 according to the second embodiment
- FIG. 5B is an exploded perspective view of the diaphragm 102
- 6A is a cross-sectional view of the diaphragm 102 on the XZ plane showing the positional relationship of the first main surface side coil pattern
- FIG. 6B is the positional relationship of the second main surface side coil pattern.
- FIG. 6 is a cross-sectional view of the vibration plate 102 taken along the XZ plane.
- the coil patterns CP1, CP2, CP3, CP4, and CP5 are shown as dot patterns for easy understanding of the structure.
- the diaphragm 102 includes a laminated body 10B, a coil 32 (described in detail later) formed on the laminated body 10B, and external electrodes P1 and P2.
- the coil 32 according to the present embodiment is different from the coil 31 according to the first embodiment in that the coil 32 includes five coil patterns respectively formed on five insulating base layers.
- the laminated body 10B of the present embodiment is different from the laminated body 10A according to the first embodiment in the number of laminated insulating base material layers.
- Other configurations are substantially the same as those of the diaphragm 101.
- the laminated body 10B is formed by sequentially laminating a plurality of insulating base material layers 15b, 14b, 13b, 12b, 11b and a protective layer 1b as shown in FIG.
- the configuration of the plurality of insulating base layers 11b, 12b, 13b, 14b, and 15b is substantially the same as the insulating base layers 11a, 12a, and 13a described in the first embodiment.
- the coil pattern CP1, the external electrodes P1 and P2, and the connection conductor CN1 are formed on the surface of the insulating base layer 11b.
- the configurations of the coil pattern CP1, the external electrodes P1 and P2, and the connection conductor CN1 are substantially the same as those described in the first embodiment.
- interlayer connection conductors V1 and V8 are formed on the insulating base material layer 11b.
- the coil pattern CP2 and the conductor 24 are formed on the surface of the insulating base layer 12b.
- the coil pattern CP2 and the conductor 24 are substantially the same as the coil pattern CP2 and the conductor 22 described in the first embodiment.
- the first end of the coil pattern CP2 is connected to the second end of the coil pattern CP1 through the interlayer connection conductor V1.
- the conductor 24 is connected to the external electrode P2 through the interlayer connection conductor V8.
- interlayer connection conductors V2 and V7 are formed on the insulating base material layer 12b.
- the coil pattern CP3 and the conductor 23 are formed on the surface of the insulating base layer 13b.
- the configuration of the coil pattern CP3 is substantially the same as the coil pattern CP3 described in the first embodiment.
- the first end of the coil pattern CP3 is connected to the second end of the coil pattern CP2 via the interlayer connection conductor V2.
- the conductor 23 is a rectangular conductor arranged near the center of the second side of the insulating base layer 13b (the right side of the insulating base layer 13b in FIG. 5B).
- the conductor 23 is connected to the conductor 24 via the interlayer connection conductor V7.
- the conductor 23 is a conductor pattern such as a Cu foil, for example.
- interlayer connection conductors V3 and V6 are formed on the insulating base material layer 13b.
- the coil pattern CP4 and the conductor 22 are formed on the surface of the insulating base layer 14b.
- the coil pattern CP4 is a rectangular loop-shaped conductor of about one turn that is wound along the outer periphery of the insulating base layer 14b.
- the first end of the coil pattern CP4 is connected to the second end of the coil pattern CP3 via the interlayer connection conductor V3.
- the conductor 22 is a rectangular conductor arranged near the center of the second side of the insulating base layer 14b (the right side of the insulating base layer 14b in FIG. 5B).
- the conductor 22 is connected to the conductor 23 via the interlayer connection conductor V6.
- Coil pattern CP4 and conductor 23 are conductor patterns, such as Cu foil, for example.
- interlayer connection conductors V4 and V5 are formed on the insulating base material layer 14b.
- the coil pattern CP5 and the conductor 21 are formed on the surface of the insulating base layer 15b.
- the coil pattern CP5 is a rectangular loop-shaped conductor of about 1 turn formed along the outer periphery of the insulating base material layer 15b.
- the first end of the coil pattern CP5 is connected to the coil pattern CP4 via the interlayer connection conductor V4.
- the second end of the coil pattern CP5 is connected to the conductor 21.
- the conductor 21 is a rectangular conductor disposed near the center of the second side of the insulating base layer 15b (the right side of the insulating base layer 15b in FIG. 5B).
- the conductor 21 is connected to the conductor 22 via the interlayer connection conductor V5.
- Coil pattern CP5 and conductor 21 are conductor patterns, such as Cu foil, for example.
- the configuration of the protective layer 1b is substantially the same as that of the protective layer 1a described in the first embodiment.
- a rectangular helical coil 32 of about 5 turns including V3 and V4 is formed. The first end of the coil 32 is connected to the external electrode P1, and the second end of the coil 31 is connected to the external electrode P2.
- the coil widths of the coil patterns CP1 and CP5 are at least one of the other coil patterns CP2, CP3 and CP4 (coil patterns CP2 and CP4). It is thinner than the width.
- the coil pattern CP1 is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). Specifically, the distance between the coil pattern CP1 and the first main surface VS1 in the Z-axis direction is L11, and the distance between the coil pattern CP1 and the second main surface VS2 in the Z-axis direction is L12. In addition, L11 ⁇ L12 holds. As shown in FIG. 6B, the coil pattern CP5 is closer to the second main surface VS2 than the first main surface VS1 in the Z-axis direction.
- the distance between the coil pattern CP5 and the first main surface VS1 in the Z-axis direction is L21
- the distance between the coil pattern CP5 and the second main surface VS2 in the Z-axis direction is L22.
- L21> L22 holds.
- the coil pattern CP1 described above corresponds to the “first main surface side coil pattern” in the present invention.
- the coil pattern CP5 described above corresponds to the “second main surface side coil pattern” in the present invention.
- the “second main surface side coil pattern” in the present invention refers to a coil pattern arranged closest to the second main surface VS2 among a plurality of coil patterns.
- FIG. 7 is a cross-sectional view illustrating a main part of the vibration element 202 according to the second embodiment.
- the vibration element 202 includes a vibration plate 102 and magnets 41 and 42.
- Both ends in the longitudinal direction of the diaphragm 102 are fixed when the vibration element 202 is incorporated in an electronic device (not shown), and the magnets 41 and 42 are fixed to a casing (or cover) of the electronic device (not shown).
- the magnet 41 corresponds to the “first magnet” in the present invention.
- the magnet 42 corresponds to the “second magnet” in the present invention.
- the “second magnet” in the present invention refers to a magnet that is disposed closest to the second main surface side coil pattern among the plurality of coil patterns.
- the magnets 41 and 42 are arrange
- the external electrodes P1 and P2 of the diaphragm 102 are connected to a circuit of the electronic device when the vibration element 202 is incorporated in an electronic device (not shown).
- the diaphragm 102 vibrates in the direction indicated by the white arrow in FIG.
- the vibration element 202 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
- the first magnet (magnet 41) is disposed closest to the first main surface side coil pattern (coil pattern CP1) among the plurality of coil patterns
- the second magnet (magnet 42) is disposed closest to the second main surface side coil pattern (coil pattern CP5) among the plurality of coil patterns.
- the line widths of the first main surface side coil pattern and the second main surface side coil pattern are narrower than at least one of the other coil patterns CP2, CP3, CP4. Therefore, this configuration increases the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern, and also increases the electromagnetic force due to the interaction between the second magnet and the second main surface side coil pattern. . Therefore, the driving efficiency of the diaphragm 102 is further increased (the amplitude of the diaphragm 102 can be further increased) compared to the vibration element 201 described in the first embodiment.
- the line width of the first main surface side coil pattern (coil pattern CP1) and the line width of the second main surface side coil pattern (coil pattern CP5) are the other coil patterns CP2. , Smaller than the line width of CP4. Therefore, with this configuration, the electromagnetic force due to the interaction between the magnet (first magnet and second magnet) and the coil 32 can be increased compared to the case where the line widths of all of the plurality of coil patterns are the same, and the coil A large increase in the conductor loss of 32 can be suppressed.
- the second main surface side coil pattern (coil pattern CP5) is more than the first main surface VS1 in the stacking direction (Z-axis direction). 2 is close to the main surface VS2 (L21> L22).
- the coil 32 is connected to the second magnet (magnet 42). Since they are arranged close to each other, the electromagnetic force due to the interaction between the second magnet and the coil 32 can be further increased.
- the first main surface side coil pattern (coil pattern CP1) is closer to the first main surface VS1 than the second main surface VS2 in the Z-axis direction (L11 ⁇ L12).
- the overall electromagnetic force due to the interaction between the coil 32 and the coil 32 can be further increased.
- FIG. 8A is an external perspective view of the diaphragm 103 according to the third embodiment
- FIG. 8B is an exploded perspective view of the diaphragm 103
- FIG. 9 is a cross-sectional view of the diaphragm 103 on the XZ plane.
- the coil patterns CP1, CP2, CP3, CP4, and CP5 are shown as dot patterns for easy understanding of the structure.
- the diaphragm 103 includes a laminated body 10B, a coil 33 (described in detail later) formed on the laminated body 10B, and external electrodes P1 and P2.
- the coil 33 according to the present embodiment is different from the coil 32 according to the second embodiment in the configuration of five coil patterns respectively formed on the five insulating base layers.
- Other configurations are substantially the same as those of the diaphragm 102.
- a plurality of coil patterns CP1, CP2, CP3, CP4, CP5 and interlayer connection conductors V1, V2, V3, V4 formed on the five insulating base layers 11b, 12b, 13b, 14b, 15b, respectively.
- a rectangular helical coil 33 having about 5 turns is formed.
- the first main surface side coil pattern (coil pattern CP1) is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction).
- the second main surface side coil pattern (coil pattern CP5) is closer to the second main surface VS2 than the first main surface VS1 in the Z-axis direction.
- the line widths of the plurality of coil patterns CP1, CP2, CP3, CP4, CP5 are thicker as they are arranged in the inner layer than the surface layer of the stacked body 10C in the stacking direction (Z-axis direction).
- the first main surface side coil pattern (coil pattern CP1) and the second main surface side coil pattern (coil pattern CP5) located on the outermost surface of the multilayer body 10C in the Z-axis direction include a plurality of coil patterns CP1.
- CP2, CP3, CP4, CP5 has the narrowest line width
- the coil pattern CP3 located in the innermost layer of the laminate 10C in the Z-axis direction is the most of the plurality of coil patterns CP1, CP2, CP3, CP4, CP5.
- the line width is thick.
- the coil pattern closest to the first main surface VS1 or the second main surface VS2 in the Z-axis direction has a narrower line width
- the coil width is closer to the coil pattern arranged closer to the center height (see the center height ML in FIG. 9).
- the line width of the first main surface side coil pattern (coil pattern CP1) and the line of the second main surface side coil pattern (coil pattern CP5) is narrower than the line width of the other coil patterns CP2, CP3, CP4.
- the magnet the first magnet and the first magnet
- the increase in the conductor loss of the coil can be suppressed while increasing the electromagnetic force due to the interaction between the second magnet) and the coil.
- the line widths of the plurality of coil patterns CP1, CP2, CP3, CP4, CP5 are the same as those of the stacked body 10C in the stacking direction (Z-axis direction). It is thicker as it is arranged in the inner layer than the surface layer. With this configuration, it is possible to increase the electromagnetic force due to the interaction between the magnet and the coil 33 and to suppress an increase in the conductor loss of the coil 33 while maintaining the flexibility of the diaphragm.
- FIG. 10 is a cross-sectional view taken along the XZ plane of the diaphragm 104 according to the fourth embodiment.
- the diaphragm 104 includes a laminated body 10B, a coil 34 (described in detail later) formed on the laminated body 10B, and external electrodes P1 and P2.
- the coil 34 according to the present embodiment is different from the coil 33 according to the third embodiment in the arrangement of five coil patterns respectively formed on the five insulating base layers.
- Other configurations are substantially the same as those of the diaphragm 103.
- the coil patterns CP1, CP2, CP3, CP4, and CP5 wound around the surfaces of the plurality of insulating base layers are each provided with an inner end portion of the Z axis so that the coil opening is maximized. Arranged to match the direction.
- FIG. 11A is an external perspective view of the diaphragm 105 according to the fifth embodiment
- FIG. 11B is an exploded perspective view of the diaphragm 105
- 12A is a plan view of the diaphragm 105
- FIG. 12B is a cross-sectional view of the diaphragm 105 on the XZ plane.
- the coil patterns CP1, CP2, and CP3 are shown as dot patterns for easy understanding of the structure.
- the coil opening CO is indicated by hatching.
- the diaphragm 105 includes a laminated body 10C, a coil 31 formed in the laminated body 10C, and external electrodes P1 and P2.
- the coil 31 according to the present embodiment is substantially the same as that described in the first embodiment.
- the laminated body 10C according to the present embodiment is different from the laminated body 10A of the first embodiment in that it has a first recess HP1. Further, the laminated body 10C is different from the laminated body 10A in the number of laminated insulating base material layers. Other configurations are substantially the same as those of the diaphragm 101.
- the laminated body 10C is formed by sequentially laminating a plurality of insulating base material layers 14c, 13c, 12c, 11c and a protective layer 1c as shown in FIG.
- the configurations of the plurality of insulating base layers 11c, 12c, 13c, 14c and the protective layer 1c are substantially the same as the insulating base layers 11a, 12a, 13a and the protective layer 1a described in the first embodiment.
- openings H1 and H2 are formed in the insulating base layers 11c and 12c, respectively.
- the opening H1 is a rectangular hole penetrating both main surfaces of the insulating base material layer 11c, and is disposed in a region surrounded by the coil pattern CP1.
- the opening H2 is a rectangular hole penetrating both main surfaces of the insulating base material layer 12c, and is disposed in a region surrounded by the coil pattern CP2.
- the configuration of the protective layer 1c is substantially the same as that of the protective layer 1a described in the first embodiment.
- the protective layer 1c has openings AP1 and AP2 at positions corresponding to the external electrodes P1 and P2, and has an opening AP3 at a position corresponding to the opening H1 of the insulating base material layer 11c.
- the opening AP3 of the protective layer 1c and the openings H1 and H2 of the insulating base layers 11c and 12c constitute the first recess HP1 (described in detail later).
- the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3. Further, the line widths of the plurality of coil patterns CP1, CP2, CP3 are thicker as they are arranged in the inner layer than the surface layer of the stacked body 10C in the stacking direction (Z-axis direction).
- 1st recessed part HP1 is formed in 1st main surface VS1 of the laminated body 10C, as shown to FIG. 11 (A), FIG. 12 (A), and FIG. 12 (B).
- the first recess HP1 is an inverted square frustum-shaped opening formed from the first main surface VS1 toward the inner side ( ⁇ Z direction) of the stacked body 10C.
- 1st recessed part HP1 is arrange
- FIG. 13 is a cross-sectional view illustrating a main part of a vibration element 205 according to the fifth embodiment.
- the vibration element 205 includes a vibration plate 105 and a magnet 41.
- Both ends in the longitudinal direction of the diaphragm 105 are fixed when the vibration element 205 is incorporated in an electronic device (not shown), and the magnet 41 is fixed to a casing (or cover) of the electronic device (not shown). As shown in FIG. 13, at least a part of the magnet 41 is disposed inside the first recess HP1.
- the magnet 41 corresponds to the “first magnet” in the present invention.
- the external electrodes P1 and P2 of the diaphragm 105 are connected to a circuit of the electronic device when the vibration element 205 is incorporated in an electronic device (not shown).
- the diaphragm 105 vibrates in the direction indicated by the white arrow in FIG.
- the vibration element 205 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
- the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3. Further, the line widths of the plurality of coil patterns CP1, CP2, CP3P4, CP5 are thicker as they are arranged in the inner layer than the surface layer of the stacked body 10C in the stacking direction (Z-axis direction). With this configuration, while maintaining the flexibility of the diaphragm, the electromagnetic force due to the interaction between the magnet (the first magnet and the second magnet) and the coil 33 is increased more efficiently, and the conductor loss of the coil 33 is reduced. Increase can be suppressed.
- the first recess HP1 is formed on the first main surface VS1 of the stacked body 10C, and at least a part of the first magnet (magnet 41) is disposed inside the first recess HP1.
- the coil 31 is disposed closer to the first magnet than in the case where the first magnet is not disposed inside the first recess HP1, the electromagnetic force due to the interaction between the first magnet and the coil 31. Can be further increased.
- the first recess HP1 is disposed inside the coil opening CO of the coil 31 when viewed from the Z-axis direction. That is, as shown in FIG. 12B, the first recess HP1 is formed along the coil patterns CP1, CP2, CP3 having higher rigidity than the insulating base layer made of a resin material.
- the shape of HP1 is reinforced by coil patterns CP1, CP2, CP3. Therefore, even if the laminated body 10C (resin base material layer) is a resin material that easily deforms, it is easy to maintain the shape of the first recess HP1.
- the first recess HP1 has a side surface tapered from the first main surface VS1 toward the inside of the stacked body 10C, and at least the first magnet (magnet 41). A part is disposed inside the first recess HP1.
- FIG. 14 is a cross-sectional view sequentially illustrating the manufacturing process of the diaphragm 105.
- FIG. 14 for the convenience of explanation, the manufacturing process using one chip (individual piece) will be described.
- a plurality of insulating base layers 11c, 12c, 13c, and 14c are prepared.
- coil patterns CP1, CP2, CP3, external electrodes P1, P2, conductors 21, 22, and other conductors are formed on the plurality of insulating base layers 11c, 12c, 13c. ) And interlayer connection conductors and the like are formed.
- openings H1a and H2a are formed in the insulating base layers 11c and 12c, respectively.
- the opening H1a is a through hole arranged in a region surrounded by the coil pattern CP1.
- the opening H2a is a through hole arranged in a region surrounded by the coil pattern CP2.
- the openings H1a and H2a are formed by etching with a laser or the like, for example.
- the openings H1a and H2a may be formed by grinding, polishing, or punching with a drill or the like.
- the area of the opening H1a viewed from the Z-axis direction is larger than the area of the opening H2a viewed from the Z-axis direction.
- the insulating base layers 14c, 13c, 12c, and 11c are stacked in this order on the highly rigid base 2.
- the opening H2a of the insulating base material layer 12c is disposed so as to fit inside the opening H1a of the insulating base material layer 11c when viewed from the stacking direction (Z-axis direction). That is, when the insulating base material layer 11c and the insulating base material layer 12c are laminated, the openings H1a and H2a overlap.
- the laminated body 10CP is formed by heating and pressurizing the plurality of laminated insulating base material layers 11c, 12c, 13c, and 14c. Specifically, the plurality of laminated insulating base layers are heated and pressed (pressed) by the highly rigid member 3 from the direction of the arrow indicated by (2) in FIG. At the same time, the portion not pressed by the member 3 is isostatically pressed by hydrostatic pressure from the direction of the hollow arrow shown in (2) in FIG.
- the member 3 has a square frustum shape in which the area of one surface (the upper surface of the member 3 shown in (2) in FIG. 14) is larger than the area of the other surface (the lower surface of the member 3 shown in (2) in FIG. 14). For example, a metal block.
- the member 3 is disposed so as to be located inside the overlapping openings H1a and H2a. Therefore, the side surfaces of the overlapping openings H1a and H2a are pressed against the end surface of the member 3 and are shaped along the end surface of the member 3. In this way, the first recess HP1a having a tapered side surface is formed.
- the protective layer 1c is formed on one main surface of the multilayer body 10CP (the upper surface of the multilayer body 10CP shown in (3) in FIG. 14).
- the protective layer 1c has an opening at a position corresponding to the external electrodes P1 and P2, and an opening at a position corresponding to the first recess HP1a. Therefore, when the protective layer 1c is formed on the upper surface of the multilayer body 10CP (insulating base material layer 11c), the external electrodes P1 and P2 are exposed from the first main surface, and the first recess HP1 is formed.
- the diaphragm 105 is separated from the aggregate substrate into individual pieces to obtain a diaphragm 105 as shown in (4) in FIG.
- the example in which the first recess HP1 is formed by laminating the insulating base material layer in which the openings (openings H1a and H2a shown in (1) in FIG. 14) are formed is shown.
- the formation method of 1st recessed part HP1 is not limited to this.
- the first recess HP1 may be formed by grinding, polishing, and etching the main surface of the laminate with a laser or a drill after the laminate is formed. Moreover, a laminated body is formed.
- first recess HP1 is formed on the first main surface VS1 of the stacked body 10C
- a concave portion (“second concave portion” in the present invention) may be formed on the second main surface VS2 of the stacked body 10C, and at least a part of the second magnet may be disposed inside the second concave portion.
- the number of first recesses HP1 (or second recesses) is not limited to one, and may be plural. The position of the first recess HP1 (or the second recess) can be changed as appropriate.
- the first recess HP1 (or the second recess) is an inverted square frustum-shaped opening formed inward from the main surface of the stacked body 10C.
- 1 recessed part HP1 (or 2nd recessed part) is not limited to this shape.
- the shape of the first recess HP1 (or the second recess) can be changed as appropriate, and may be, for example, an inverted polygonal pyramid shape, an inverted truncated cone shape, an inverted cylindrical shape, an inverted conical shape, a hemispherical shape, or the like. That is, the side surface of the first recess HP1 (or the second recess) does not need to be tapered. However, it is preferable that the side surface of the first recess HP1 (or the second recess) is formed in a taper shape from the viewpoint of the function and effect such as (n).
- it may be a structure in which at least a part of the first magnet is disposed inside the first recess HP1, and at least a part of the second magnet is disposed inside the second recess.
- the present invention is not limited to this configuration.
- the first recess HP1 may not be disposed inside the coil opening CO of the coil 31 when viewed from the Z-axis direction.
- the first recess HP1 (or the second recess) is preferably disposed inside the coil opening CO of the coil 31 as viewed from the Z-axis direction.
- FIG. 15A is an external perspective view of the diaphragm 106 according to the sixth embodiment
- FIG. 15B is a cross-sectional view of the diaphragm 106
- FIG. 16 is an exploded plan view of the diaphragm 106.
- the coil patterns CP1A, CP2A, CP3A, and CP4A are shown as dot patterns in order to facilitate understanding of the structure.
- the outermost peripheral portion of the coil pattern CP1A is shown by a darker dot pattern than the other portions.
- the diaphragm 106 includes a laminate 10D, a coil 36 formed in the laminate 10D, and external electrodes P1 and P2.
- the diaphragm 106 according to the present embodiment is different from the diaphragm 101 according to the first embodiment in that a coil 36 is provided.
- the other configuration of the diaphragm 106 is substantially the same as that of the diaphragm 101.
- the laminated body 10D is formed by sequentially laminating a plurality of insulating base material layers 14d, 13c, 12d, 11d and a protective layer 1d.
- the configuration of the plurality of insulating base material layers 11d, 12d, 13d, 14d and the protective layer 1d is substantially the same as that of the plurality of insulating base material layers 11a, 12a, 13a, 14a and the protective layer 1a described in the first embodiment. The same.
- the coil pattern CP1A, the external electrodes P1 and P2, and the connection conductor CN1 are formed on the surface of the insulating base layer 11d.
- the coil pattern CP1A is a rectangular spiral conductor of about 1.5 turns that is wound along the outer periphery of the insulating base layer 11d.
- the configurations of the external electrodes P1, P2 and the connection conductor CN1 are the same as those described in the first embodiment.
- interlayer connection conductors V1 and V6 are formed on the insulating base material layer 11d.
- the coil pattern CP2A and the conductor 23 are formed on the surface of the insulating base layer 12d.
- the coil pattern CP2A is a rectangular spiral conductor having a strength of about 1.5 turns wound around the outer periphery of the insulating base layer 12d.
- the first end of the coil pattern CP2A is connected to the second end of the coil pattern CP1A via the interlayer connection conductor V1.
- the conductor 23 is a rectangular conductor disposed near the center of the second side of the insulating base layer 12d (the right side of the insulating base layer 12d in FIG. 16).
- the conductor 23 is connected to the external electrode P2 through the interlayer connection conductor V6.
- interlayer connection conductors V2 and V5 are formed on the insulating base material layer 12d.
- the coil pattern CP3A and the conductor 22 are formed on the surface of the insulating base layer 13d.
- the coil pattern CP3A is a rectangular spiral conductor of about 1.5 turns that is wound along the outer periphery of the insulating base layer 13d.
- the first end of the coil pattern CP3A is connected to the second end of the coil pattern CP2A via the interlayer connection conductor V2.
- the conductor 22 is a rectangular conductor arranged near the center of the second side of the insulating base layer 13d (the right side of the insulating base layer 13d in FIG. 16).
- the conductor 22 is connected to the conductor 23 via the interlayer connection conductor V5.
- interlayer connection conductors V3 and V4 are formed on the insulating base material layer 13d.
- the coil pattern CP4A, the conductor 21 and the connection conductor CN2 are formed on the surface of the insulating base layer 14d.
- the coil pattern CP4A is a rectangular spiral conductor of about 1.5 turns that is wound along the outer periphery of the insulating base layer 14d.
- the first end of the coil pattern CP4A is connected to the second end of the coil pattern CP3A via the interlayer connection conductor V3.
- the conductor 21 is a rectangular conductor arranged near the center of the second side of the insulating base layer 14d (the right side of the insulating base layer 14d in FIG. 16).
- the conductor 21 is connected to the conductor 22 via the interlayer connection conductor V4.
- the connection conductor CN2 is a conductor that connects between the conductor 21 and the second end of the coil pattern CP4A.
- the diaphragm 106 includes a plurality of coil patterns CP1A, CP2A, CP3A, CP4A and interlayer connection conductors V1, V2, V3 formed on the four insulating base layers 11d, 12d, 13d, 14d, respectively.
- a coil 36 having about 6.5 turns is formed. The first end of the coil 36 is connected to the external electrode P1, and the second end of the coil 36 is connected to the external electrode P2.
- the line width of a part of the first main surface side coil pattern is narrower than the line widths of the other coil patterns CP2A, CP3A, CP4A.
- the line width of the outermost peripheral portion of the first main surface side coil pattern is larger than the line widths of the other coil patterns CP2A, CP3A, CP4A. thin.
- the first main surface side coil pattern (coil pattern CP1A) is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). (L11 ⁇ L12).
- FIG. 17 is a cross-sectional view illustrating a main part of a vibration element 206 according to the sixth embodiment.
- the vibration element 206 includes a vibration plate 106 and a magnet 41.
- Both ends in the longitudinal direction of the diaphragm 106 are fixed when the vibration element 206 is incorporated in an electronic device (not shown), and the magnet 41 is fixed to a casing (or cover) of the electronic device (not shown).
- the magnet 41 corresponds to the “first magnet” in the present invention.
- the magnet 41 is arrange
- the external electrodes P1 and P2 of the diaphragm 106 are connected to the circuit of the electronic device when the vibration element 202 is incorporated in the electronic device (not shown).
- the diaphragm 106 vibrates in the direction indicated by the white arrow in FIG.
- a part of the first main surface side coil pattern (coil pattern CP1A) has a narrower line width than the other coil patterns CP2 and CP3. Also, the operations and effects as described in the first embodiment are achieved.
- the outermost peripheral portion of the first main surface side coil pattern (positioned at the outermost periphery). It is preferable that the line width of about one turn) is narrower than the line width of the other coil patterns.
- the outermost peripheral portion of the coil pattern mainly contributes to the formation of magnetic flux that interacts with the first magnet.
- the line width of the outer circumference of the first main surface side coil pattern is made more than a half circumference smaller than the line width of the other coil patterns, while suppressing a significant increase in the conductor loss of the coil 36, The electromagnetic force due to the interaction between the first magnet and the coil 36 can be effectively increased.
- ⁇ Other Embodiments In each embodiment shown above, although the example which a laminated body is a rectangular flat plate was shown, it is not limited to this structure.
- the planar shape of the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited, and may be, for example, a circle, an ellipse, or a polygon.
- the first main surface VS1 and the second main surface VS2 of the stacked body are not limited to complete planes, and some of them may be curved surfaces or the like.
- thermoplastic resin In each of the embodiments described above, an example of a laminate made of a thermoplastic resin has been shown, but the present invention is not limited to this configuration.
- the laminate of the present invention may be made of a thermosetting resin.
- the diaphragm including the laminated body constituted by laminating three to five insulating base layers is shown, but the present invention is not limited to this configuration.
- the number of insulating base material layers forming the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited.
- the diaphragm which concerns on each embodiment shown above showed the example provided with a helical coil including the coil pattern of about 1 turn each formed in three to five insulating base material layers.
- the diaphragm of the present invention may include a helical or loop-shaped coil including a plurality of coil patterns of less than one turn, or may include a coil including a plurality of loop-shaped and spiral coil patterns.
- the diaphragm of the present invention may have a configuration including a coil including a meandering coil pattern formed on each of a plurality of insulating base layers.
- the shape and the number of turns of the coil in the present invention can be changed as appropriate within the range where the functions and effects of the present invention are exhibited.
- the coil in this invention should just be the structure containing the coil pattern each formed in an at least 2 or more insulating base material layer.
- the vibration element of the present invention may be configured to include only the second magnet.
- the vibration element may include a plurality of first magnets, and the vibration element may include a plurality of second magnets.
- the diaphragm in the present invention is not limited to this configuration.
- the number, shape, arrangement, and the like of the external electrodes P1, P2 can be changed as appropriate within the scope of the effects and effects of the present invention.
- the external electrode may be provided on the second main surface VS2 side, or may be provided on both the first main surface VS1 and the second main surface VS2.
- the protective layer is not limited to this structure.
- the protective layer is not essential for the diaphragm of the present invention.
- the protective layer may be formed on the second main surface VS2 side of the multilayer body, or may be formed on both the first main surface VS1 side and the second main surface VS2 side.
- protective layer 2 ... pedestal 3 ... members 10A, 10AP, 10B, 10C , 10CP, 10D ... laminates 11a, 11b, 11c, 11d, 12a, 12b, 12c, 12d, 13a, 13b, 13c, 13d, 14b, 14c, 14d, 15b ... insulating base layers 21, 22, 23, 24 ... conductors 31, 32, 33, 34, 36 ... coil 41 ... magnet (first magnet) 42 ... Magnet (second magnet) 101, 102, 103, 104, 105, 106 ... diaphragms 201, 202, 205, 206 ... vibrating elements
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
A vibration element (201) is provided with a vibration plate (101) and a first magnet (magnet (41)). The vibration plate (101) comprises a stacked body (10A) in which a plurality of flexible insulating base material layers are stacked, and a coil (31) formed on the stacked body (10A) and having a first major surface (VS1). The coil (31) includes a plurality of coil patterns (CP1, CP2, CP3) respectively formed on the plurality of insulating base material layers, and has a winding axis (AX) in a stacked direction (Z-axis direction) of the plurality of insulating base material layers. Of the plurality of coil patterns, at least a part of a first major surface-side coil pattern (coil pattern (CP1)) which is disposed closest to the first major surface (VS1) has a line width narrower than a line width of at least one of the other coil patterns. The magnet (41) is disposed in a position which overlaps a coil formation area (CE) as viewed from the Z-axis direction, and disposed in closest proximity to the coil pattern (CP1).
Description
本発明は、振動素子に関し、特に複数の絶縁基材層に亘って複数のコイルパターンが形成された振動素子に関する。
The present invention relates to a vibration element, and particularly to a vibration element in which a plurality of coil patterns are formed across a plurality of insulating base layers.
従来、複数の絶縁基材層を積層してなる可撓性を有した積層体に、コイルが形成された振動板が知られている。例えば、特許文献1には、コイルの巻数を増やすため、複数の絶縁基材層に亘ってコイルパターンが形成された構成の振動板が開示されている。このような、振動板は、磁石との電磁力による相互作用によって振動させる。
Conventionally, there has been known a diaphragm in which a coil is formed on a flexible laminate formed by laminating a plurality of insulating base layers. For example, Patent Document 1 discloses a diaphragm having a configuration in which a coil pattern is formed across a plurality of insulating base layers in order to increase the number of turns of a coil. Such a diaphragm is vibrated by the interaction of the electromagnetic force with the magnet.
発明者等は、上記振動板を開発する過程で、特許文献1に示されるような振動板においては、次のような課題があることを見いだした。
Inventors and others found that the diaphragm as disclosed in Patent Document 1 has the following problems in the process of developing the diaphragm.
(a)コイルの導体損失を低減するため、複数の絶縁基材層に亘って形成されたコイルパターンの線幅を太くした場合には、コイルパターンの周囲に発生する磁束は少なくなってしまう。そのため、コイルと磁石との相互作用による電磁力も小さくなり、振動板の振幅が小さくなってしまう。
(A) In order to reduce the conductor loss of the coil, when the line width of the coil pattern formed over the plurality of insulating base layers is increased, the magnetic flux generated around the coil pattern is reduced. For this reason, the electromagnetic force due to the interaction between the coil and the magnet is also reduced, and the amplitude of the diaphragm is reduced.
(b)逆に、コイルと磁石との相互作用による電磁力を大きくするため、複数の絶縁基材層に亘って形成されたコイルパターンの線幅を細くした場合には、コイルのDCRが高くなり、コイルの導体損失が大幅に増加してしまう。
(B) On the contrary, in order to increase the electromagnetic force due to the interaction between the coil and the magnet, when the line width of the coil pattern formed across the plurality of insulating base layers is reduced, the DCR of the coil is high. Thus, the conductor loss of the coil is greatly increased.
本発明の目的は、複数の絶縁基材層に亘って形成される複数のコイルパターンを含むコイルを有する振動板と、磁石とを備える振動素子において、振動板と磁石との間の電磁力を高めつつ、コイルの導体損失の大幅な増加を抑制した振動素子を提供することにある。
An object of the present invention is to provide a vibrating element having a coil including a plurality of coil patterns formed over a plurality of insulating base layers and a magnet, and an electromagnetic force between the diaphragm and the magnet. An object of the present invention is to provide a vibration element that suppresses a significant increase in the conductor loss of a coil while increasing it.
(1)本発明の振動素子は、
振動板と、第1磁石と、を備え、
前記振動板は、
可撓性を有する複数の絶縁基材層が積層され、第1主面を有する積層体と、
前記積層体に形成され、前記複数の絶縁基材層の積層方向に巻回軸を有するコイルと、
を有し、
前記コイルは、前記複数の絶縁基材層のうち2つ以上の絶縁基材層にそれぞれ形成される複数のコイルパターンを含み、
前記複数のコイルパターンのうち最も前記第1主面寄りに配置される第1主面側コイルパターンの少なくとも一部の線幅は、それ以外のコイルパターンの少なくとも一つの線幅よりも細く、
前記第1磁石は、前記コイルの巻回軸方向から視て、前記コイルの形成領域に重なる位置に配置され、且つ、前記複数のコイルパターンのうち前記第1主面側コイルパターンに最も近接して配置されることを特徴とする。 (1) The vibration element of the present invention includes:
Comprising a diaphragm and a first magnet;
The diaphragm is
A plurality of insulating base material layers having flexibility, and a laminate having a first main surface;
A coil formed in the laminate and having a winding axis in the stacking direction of the plurality of insulating base layers;
Have
The coil includes a plurality of coil patterns respectively formed on two or more insulating base layers among the plurality of insulating base layers.
The line width of at least a part of the first main surface side coil pattern disposed closest to the first main surface among the plurality of coil patterns is narrower than at least one line width of the other coil patterns,
The first magnet is disposed at a position overlapping the formation region of the coil when viewed from the winding axis direction of the coil, and is closest to the first main surface side coil pattern among the plurality of coil patterns. It is characterized by being arranged.
振動板と、第1磁石と、を備え、
前記振動板は、
可撓性を有する複数の絶縁基材層が積層され、第1主面を有する積層体と、
前記積層体に形成され、前記複数の絶縁基材層の積層方向に巻回軸を有するコイルと、
を有し、
前記コイルは、前記複数の絶縁基材層のうち2つ以上の絶縁基材層にそれぞれ形成される複数のコイルパターンを含み、
前記複数のコイルパターンのうち最も前記第1主面寄りに配置される第1主面側コイルパターンの少なくとも一部の線幅は、それ以外のコイルパターンの少なくとも一つの線幅よりも細く、
前記第1磁石は、前記コイルの巻回軸方向から視て、前記コイルの形成領域に重なる位置に配置され、且つ、前記複数のコイルパターンのうち前記第1主面側コイルパターンに最も近接して配置されることを特徴とする。 (1) The vibration element of the present invention includes:
Comprising a diaphragm and a first magnet;
The diaphragm is
A plurality of insulating base material layers having flexibility, and a laminate having a first main surface;
A coil formed in the laminate and having a winding axis in the stacking direction of the plurality of insulating base layers;
Have
The coil includes a plurality of coil patterns respectively formed on two or more insulating base layers among the plurality of insulating base layers.
The line width of at least a part of the first main surface side coil pattern disposed closest to the first main surface among the plurality of coil patterns is narrower than at least one line width of the other coil patterns,
The first magnet is disposed at a position overlapping the formation region of the coil when viewed from the winding axis direction of the coil, and is closest to the first main surface side coil pattern among the plurality of coil patterns. It is characterized by being arranged.
一般的に、コイルを形成するコイルパターン(導体)の線幅が太い場合に比べて、コイルパターンの線幅が細い場合の方がコイルパターンの周囲に発生する磁束は多くなる。したがって、この構成により、第1磁石と第1主面側コイルパターンとの相互作用による電磁力が大きくなって、振動板の駆動効率が高まる(振動板の振幅を大きくできる)。
Generally, the magnetic flux generated around the coil pattern increases when the line width of the coil pattern is narrower than when the line width of the coil pattern (conductor) forming the coil is large. Therefore, with this configuration, the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern is increased, and the driving efficiency of the diaphragm is increased (the amplitude of the diaphragm can be increased).
また、この構成により、コイルの導体損失を同じ条件にして複数のコイルパターン全ての線幅を同じにした場合に比べて、第1磁石とコイルとの相互作用による電磁力を大きくできる。また、電磁力を同じ条件にして複数のコイルパターン全ての線幅を同じにした場合に比べて、コイルの導体損失の大幅な増加は抑制される。
Also, with this configuration, the electromagnetic force due to the interaction between the first magnet and the coil can be increased as compared with the case where the line widths of all the plurality of coil patterns are the same under the same conductor loss of the coil. In addition, a significant increase in the coil conductor loss is suppressed as compared with the case where the line widths of all the plurality of coil patterns are the same under the same electromagnetic force.
(2)上記(1)において、前記積層体は、前記第1主面に対向する第2主面を有し、前記第1主面側コイルパターンは、前記積層方向において前記第2主面よりも前記第1主面に近接することが好ましい。この構成により、第1主面側コイルパターンが、積層方向において第1主面よりも第2主面に近接している場合と比べて、コイルが第1磁石に近接して配置されるため、第1磁石とコイルとの相互作用による電磁力をさらに大きくできる。
(2) In the above (1), the stacked body has a second main surface facing the first main surface, and the first main surface side coil pattern is more than the second main surface in the stacking direction. Is preferably close to the first main surface. With this configuration, the coil is disposed closer to the first magnet than the first main surface side coil pattern is closer to the second main surface than the first main surface in the stacking direction. The electromagnetic force due to the interaction between the first magnet and the coil can be further increased.
(3)上記(1)または(2)において、前記第1主面側コイルパターンは、スパイラル状であり、前記第1主面側コイルパターンのうち最外周部分の半周以上の線幅は、それ以外のコイルパターンの線幅よりも細いことが好ましい。コイルパターンがスパイラル状である場合(コイルパターンが1ターン以上である場合)には、主にコイルパターンの最外周部分が、磁石と相互に作用する磁束の形成に寄与する。そのため、第1主面側コイルパターンの最外周部分の半周以上の線幅を、それ以外のコイルパターンの線幅よりも細くすることにより、コイルの導体損失の大幅な増加を抑制しつつ、第1磁石とコイルとの相互作用による電磁力を効果的に大きくできる。
(3) In the above (1) or (2), the first main surface side coil pattern has a spiral shape, and a line width equal to or greater than a half circumference of the outermost peripheral portion of the first main surface side coil pattern is It is preferable that the line width of the coil pattern other than is narrower. When the coil pattern is spiral (when the coil pattern has one or more turns), the outermost peripheral portion of the coil pattern mainly contributes to the formation of magnetic flux that interacts with the magnet. Therefore, by making the line width more than half the outermost circumference of the first main surface side coil pattern thinner than the line width of the other coil patterns, it is possible to suppress a significant increase in coil conductor loss, The electromagnetic force due to the interaction between one magnet and the coil can be effectively increased.
(4)上記(1)から(3)のいずれかにおいて、前記第1主面側コイルパターン全体の線幅は、それ以外のコイルパターンの線幅よりも細いことが好ましい。この構成により、効率良く、第1磁石とコイルとの相互作用による電磁力を高めつつ、コイルの導体損失の増加を抑制できる。
(4) In any one of the above (1) to (3), the line width of the entire first main surface side coil pattern is preferably narrower than the line width of the other coil patterns. With this configuration, it is possible to efficiently increase the electromagnetic force due to the interaction between the first magnet and the coil while suppressing an increase in the conductor loss of the coil.
(5)上記(1)から(3)のいずれかにおいて、第2磁石をさらに備え、前記積層体は、前記第1主面に対向する第2主面を有し、前記コイルは、前記複数の絶縁基材層のうち3つ以上の絶縁基材層にそれぞれ形成される複数のコイルパターンを含み、前記複数のコイルパターンのうち最も前記第2主面寄りに配置される第2主面側コイルパターンの少なくとも一部の線幅、および前記第1主面側コイルパターンの少なくとも一部の線幅は、それら以外のコイルパターンの少なくとも一つの線幅よりも細く、前記第2磁石は、前記コイルの前記巻回軸方向から視て、前記コイルの形成領域に重なる位置に配置され、且つ、前記複数のコイルパターンのうち前記第2主面側コイルパターンに最も近接して配置されることが好ましい。この構成により、第1磁石と第1主面側コイルパターンとの相互作用による電磁力が大きくなり、且つ、第2磁石と第2主面側コイルパターンとの相互作用による電磁力も大きくなる。そのため、第1磁石のみを備えた振動素子と比較して、振動板の駆動効率がさらに高まる(振動板の振幅をさらに大きくできる)。
(5) In any one of (1) to (3), further including a second magnet, the stacked body has a second main surface facing the first main surface, and the coil includes the plurality of coils. A plurality of coil patterns respectively formed on three or more insulating base material layers of the insulating base material layers, and the second main surface side disposed closest to the second main surface among the plurality of coil patterns The line width of at least a part of the coil pattern and the line width of at least a part of the first main surface side coil pattern are narrower than at least one line width of the other coil patterns, and the second magnet When viewed from the winding axis direction of the coil, the coil is disposed at a position overlapping the coil formation region, and is disposed closest to the second main surface side coil pattern among the plurality of coil patterns. preferable. With this configuration, the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern is increased, and the electromagnetic force due to the interaction between the second magnet and the second main surface side coil pattern is also increased. Therefore, the driving efficiency of the diaphragm is further increased as compared with the vibration element including only the first magnet (the amplitude of the diaphragm can be further increased).
(6)上記(5)において、前記第2主面側コイルパターンは、前記積層方向において前記第1主面よりも前記第2主面に近接することが好ましい。この構成により、第2主面側コイルパターンが、積層方向において第2主面よりも第1主面に近接している場合と比べて、コイルが第2磁石に近接して配置されるため、第2磁石とコイルとの相互作用による電磁力をさらに大きくできる。
(6) In the above (5), it is preferable that the second main surface side coil pattern is closer to the second main surface than the first main surface in the stacking direction. With this configuration, the coil is disposed closer to the second magnet than the second main surface side coil pattern is closer to the first main surface than the second main surface in the stacking direction. The electromagnetic force due to the interaction between the second magnet and the coil can be further increased.
(7)上記(5)または(6)において、前記第2主面側コイルパターンは、スパイラル状であり、前記第2主面側コイルパターンのうち最外周部分の半周以上の線幅は、それら以外のコイルパターンの線幅よりも細いことが好ましい。コイルパターンがスパイラル状である場合(コイルパターンが1ターン以上である場合)には、主にコイルパターンの最外周部分が、磁石と相互に作用する磁束の形成に寄与する。そのため、第2主面側コイルパターンの最外周部分の半周以上の線幅を、それ以外のコイルパターンの線幅よりも細くすることにより、コイルの導体損失の大幅な増加を抑制しつつ、第2磁石とコイルとの相互作用による電磁力を効果的に大きくできる。
(7) In the above (5) or (6), the second main surface side coil pattern has a spiral shape, and a line width equal to or greater than a half circumference of the outermost peripheral portion of the second main surface side coil pattern is It is preferable that the line width of the coil pattern other than is narrower. When the coil pattern is spiral (when the coil pattern has one or more turns), the outermost peripheral portion of the coil pattern mainly contributes to the formation of magnetic flux that interacts with the magnet. Therefore, by making the line width of the outer circumference of the second main surface side coil pattern more than half the circumference of the coil pattern thinner than that of the other coil patterns, it is possible to suppress a significant increase in coil conductor loss. The electromagnetic force due to the interaction between the two magnets and the coil can be effectively increased.
(8)上記(5)から(7)において、前記第1主面側コイルパターン全体の線幅および前記第2主面側コイルパターン全体の線幅は、それら以外のコイルパターンの線幅よりも細いことが好ましい。この構成により、さらに効率良く、磁石(第1磁石および第2磁石)とコイルとの相互作用による電磁力を高めつつ、コイルの導体損失の増加を抑制できる。
(8) In the above (5) to (7), the line width of the entire first main surface side coil pattern and the line width of the entire second main surface side coil pattern are larger than the line widths of the other coil patterns. Thin is preferable. With this configuration, it is possible to more efficiently suppress an increase in the conductor loss of the coil while increasing the electromagnetic force due to the interaction between the magnet (the first magnet and the second magnet) and the coil.
(9)上記(1)から(8)のいずれかにおいて、前記第1主面には第1凹部が形成され、前記第1凹部は、前記積層方向から視て、前記コイルのコイル開口の内側に配置され、前記第1磁石は、少なくとも一部が前記第1凹部の内側に配置されることが好ましい。この構成により、コイルが第1磁石により近接して配置されるため、第1磁石とコイルとの相互作用による電磁力をより大きくできる。
(9) In any one of the above (1) to (8), a first recess is formed in the first main surface, and the first recess is an inner side of a coil opening of the coil as viewed from the stacking direction. It is preferable that at least a part of the first magnet is disposed inside the first recess. With this configuration, since the coil is disposed closer to the first magnet, the electromagnetic force due to the interaction between the first magnet and the coil can be further increased.
(10)上記(9)において、前記第1凹部は、前記第1主面から前記積層体の内側に向かって、側面がテーパー状に形成されていることが好ましい。この構成により、振動板が不規則に振動したとき、第1凹部の側面が第1磁石に当接して振動板が適正位置へ動くことで、第1磁石に対して振動板を正しい位置関係に補正することができる。
(10) In the above (9), it is preferable that a side surface of the first recess is formed in a tapered shape from the first main surface toward the inside of the laminate. With this configuration, when the diaphragm vibrates irregularly, the side surface of the first recess comes into contact with the first magnet and the diaphragm moves to an appropriate position, so that the diaphragm is in a correct positional relationship with respect to the first magnet. It can be corrected.
(11)上記(5)から(8)のいずれかにおいて、前記第2主面には第2凹部が形成され、前記第2凹部は、前記積層方向から視て、前記コイルのコイル開口の内側に配置され、前記第2磁石は、少なくとも一部が前記第2凹部の内側に配置されるこの構成により、コイルが第2磁石により近接して配置されるため、第2磁石とコイルとの相互作用による電磁力をさらに大きくできる。
(11) In any one of the above (5) to (8), a second recess is formed in the second main surface, and the second recess is inside the coil opening of the coil as viewed from the stacking direction. The second magnet is arranged at least partially inside the second recess, so that the coil is arranged closer to the second magnet, so that the second magnet and the coil are mutually connected. The electromagnetic force due to the action can be further increased.
(12)上記(11)において、前記第2凹部は、前記第2主面から前記積層体の内側に向かって、側面がテーパー状に形成されていることが好ましい。この構成により、振動板が不規則に振動したとき、第2凹部の側面が第2磁石に当接して振動板が適正位置へ動くことで、第2磁石に対して振動板を正しい位置関係に補正することができる。
(12) In the above (11), it is preferable that a side surface of the second recess is formed in a tapered shape from the second main surface toward the inside of the laminate. With this configuration, when the diaphragm vibrates irregularly, the side surface of the second recess comes into contact with the second magnet and the diaphragm moves to an appropriate position, so that the diaphragm is in a correct positional relationship with respect to the second magnet. It can be corrected.
(13)上記(4)または(8)において、前記複数のコイルパターンの線幅は、前記積層方向において前記積層体の表層よりも内層に配置されているほど太いことが好ましい。この構成により、振動板の可撓性を維持した上で、より効率良く、磁石とコイルとの相互作用による電磁力を高め、且つ、コイルの導体損失の増加を抑制できる。
(13) In the above (4) or (8), it is preferable that the line widths of the plurality of coil patterns are thicker as they are arranged in the inner layer than the surface layer of the stacked body in the stacking direction. With this configuration, while maintaining the flexibility of the diaphragm, the electromagnetic force due to the interaction between the magnet and the coil can be increased more efficiently and the increase in the conductor loss of the coil can be suppressed.
本発明によれば、複数の絶縁基材層に亘って形成される複数のコイルパターンを含むコイルを有する振動板と、磁石とを備える振動素子において、振動板と磁石との間の電磁力を高めつつ、コイルの導体損失の大幅な増加を抑制した振動素子を実現できる。
According to the present invention, in a vibration element including a diaphragm having a coil including a plurality of coil patterns formed over a plurality of insulating base layers and a magnet, an electromagnetic force between the diaphragm and the magnet is reduced. It is possible to realize a vibration element that suppresses a significant increase in the conductor loss of the coil while increasing the height.
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
Hereinafter, several specific examples will be given with reference to the drawings to show a plurality of modes for carrying out the present invention. In each figure, the same reference numerals are assigned to the same portions. In consideration of ease of explanation or understanding of the main points, the embodiments are shown separately for convenience, but the components shown in different embodiments can be partially replaced or combined. In the second and subsequent embodiments, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
《第1の実施形態》
図1(A)は第1の実施形態に係る振動板101の外観斜視図であり、図1(B)は振動板101の分解斜視図である。図2は振動板101のX-Z面での断面図である。なお、図1(B)では、構造を解りやすくするため、コイルパターンCP1,CP2,CP3をドットパターンで示している。また、図2において、各部の厚みは誇張して図示している。以降の各実施形態における断面図についても同様である。 << First Embodiment >>
FIG. 1A is an external perspective view of thediaphragm 101 according to the first embodiment, and FIG. 1B is an exploded perspective view of the diaphragm 101. FIG. 2 is a cross-sectional view of the vibration plate 101 on the XZ plane. In FIG. 1B, the coil patterns CP1, CP2, and CP3 are shown as dot patterns for easy understanding of the structure. In FIG. 2, the thickness of each part is exaggerated. The same applies to the sectional views in the following embodiments.
図1(A)は第1の実施形態に係る振動板101の外観斜視図であり、図1(B)は振動板101の分解斜視図である。図2は振動板101のX-Z面での断面図である。なお、図1(B)では、構造を解りやすくするため、コイルパターンCP1,CP2,CP3をドットパターンで示している。また、図2において、各部の厚みは誇張して図示している。以降の各実施形態における断面図についても同様である。 << First Embodiment >>
FIG. 1A is an external perspective view of the
振動板101は、積層体10A、積層体10Aに形成されるコイル31(後に詳述する)および外部電極P1,P2を備える。
The diaphragm 101 includes a laminated body 10A, a coil 31 (described in detail later) formed on the laminated body 10A, and external electrodes P1 and P2.
積層体10Aは、長手方向がX軸方向に一致する矩形の平板であり、互いに対向する第1主面VS1および第2主面VS2を有する。積層体10Aは、熱可塑性樹脂からなり、図1(B)に示すように、複数の絶縁基材層13a,12a,11aおよび保護層1aを順に積層して形成される。複数の絶縁基材層11a,12a,13aは、それぞれ可撓性を有し、長手方向がX軸方向に一致する樹脂材料からなる矩形の平板である。複数の絶縁基材層11a,12a,13aは、例えば熱可塑性樹脂である液晶ポリマー(LCP)またはポリエーテルエーテルケトン(PEEK)を主材料とするシートである。
The laminated body 10A is a rectangular flat plate whose longitudinal direction coincides with the X-axis direction, and has a first main surface VS1 and a second main surface VS2 facing each other. The laminated body 10A is made of a thermoplastic resin, and is formed by sequentially laminating a plurality of insulating base material layers 13a, 12a, 11a and a protective layer 1a as shown in FIG. The plurality of insulating base layers 11a, 12a, and 13a are each a rectangular flat plate made of a resin material having flexibility and having a longitudinal direction coinciding with the X-axis direction. The plurality of insulating base layers 11a, 12a, and 13a are sheets mainly made of, for example, a liquid crystal polymer (LCP) or polyether ether ketone (PEEK) which is a thermoplastic resin.
絶縁基材層11aの表面には、コイルパターンCP1、外部電極P1,P2および接続導体CN1が形成されている。コイルパターンCP1は、絶縁基材層11aの外周に沿って巻回される約1ターンの矩形ループ状の導体である。外部電極P1は、絶縁基材層11aの第1辺(図1(B)における絶縁基材層11aの左辺)中央付近に配置される矩形の導体である。外部電極P2は、絶縁基材層11aの第2辺(図1(B)における絶縁基材層11aの右辺)中央付近に配置される矩形の導体である。接続導体CN1は、外部電極P1とコイルパターンCP1の第1端との間を接続する導体である。コイルパターンCP1,外部電極P1,P2および接続導体CN1は、例えばCu箔等による導体パターンである。
The coil pattern CP1, the external electrodes P1, P2, and the connection conductor CN1 are formed on the surface of the insulating base layer 11a. The coil pattern CP1 is a rectangular loop-shaped conductor of about 1 turn that is wound along the outer periphery of the insulating base layer 11a. The external electrode P1 is a rectangular conductor disposed near the center of the first side of the insulating base layer 11a (the left side of the insulating base layer 11a in FIG. 1B). The external electrode P2 is a rectangular conductor disposed near the center of the second side of the insulating base layer 11a (the right side of the insulating base layer 11a in FIG. 1B). The connection conductor CN1 is a conductor that connects the external electrode P1 and the first end of the coil pattern CP1. The coil pattern CP1, the external electrodes P1, P2, and the connection conductor CN1 are conductor patterns made of, for example, Cu foil.
また、絶縁基材層11aには、層間接続導体V1,V4が形成されている。
Further, interlayer connection conductors V1 and V4 are formed on the insulating base material layer 11a.
絶縁基材層12aの表面には、コイルパターンCP2および導体22が形成されている。コイルパターンCP2は、絶縁基材層12aの外周に沿って巻回される約1ターンの矩形ループ状の導体である。図1(B)に示すように、コイルパターンCP2の第1端は、層間接続導体V1を介して、コイルパターンCP1の第2端に接続される。導体22は、絶縁基材層12aの第2辺(図1(B)における絶縁基材層12aの右辺)中央付近に配置される矩形の導体である。導体22は、層間接続導体V4を介して外部電極P2に接続される。コイルパターンCP2および導体22は、例えばCu箔等による導体パターンである。
The coil pattern CP2 and the conductor 22 are formed on the surface of the insulating base material layer 12a. The coil pattern CP2 is a rectangular loop-shaped conductor of about one turn that is wound along the outer periphery of the insulating base layer 12a. As shown in FIG. 1B, the first end of the coil pattern CP2 is connected to the second end of the coil pattern CP1 through the interlayer connection conductor V1. The conductor 22 is a rectangular conductor disposed near the center of the second side of the insulating base layer 12a (the right side of the insulating base layer 12a in FIG. 1B). The conductor 22 is connected to the external electrode P2 through the interlayer connection conductor V4. The coil pattern CP2 and the conductor 22 are conductor patterns made of, for example, Cu foil.
また、絶縁基材層12aには、層間接続導体V2,V3が形成されている。
Further, interlayer connection conductors V2 and V3 are formed on the insulating base material layer 12a.
絶縁基材層13aの表面には、コイルパターンCP3、導体21および接続導体CN2が形成されている。コイルパターンCP3は、絶縁基材層13aの外周に沿って巻回される約1ターンの矩形ループ状の導体である。図1(B)に示すように、コイルパターンCP3の第1端は、層間接続導体V2を介して、コイルパターンCP2の第2端に接続される。導体21は、絶縁基材層13aの第2辺(図1(B)における絶縁基材層13aの右辺)中央付近に配置される矩形の導体である。導体21は、層間接続導体V3を介して導体22に接続される。接続導体CN2は導体21とコイルパターンCP3の第2端との間を接続する導体である。コイルパターンCP3、導体21および接続導体CN2は、例えばCu箔等の導体パターンである。
The coil pattern CP3, the conductor 21 and the connection conductor CN2 are formed on the surface of the insulating base layer 13a. The coil pattern CP3 is a rectangular loop-shaped conductor of about one turn that is wound along the outer periphery of the insulating base layer 13a. As shown in FIG. 1B, the first end of the coil pattern CP3 is connected to the second end of the coil pattern CP2 via the interlayer connection conductor V2. The conductor 21 is a rectangular conductor disposed near the center of the second side of the insulating base layer 13a (the right side of the insulating base layer 13a in FIG. 1B). The conductor 21 is connected to the conductor 22 via the interlayer connection conductor V3. The connection conductor CN2 is a conductor that connects between the conductor 21 and the second end of the coil pattern CP3. The coil pattern CP3, the conductor 21 and the connection conductor CN2 are conductor patterns such as a Cu foil, for example.
保護層1aは、積層体10Aの第1主面VS1側の略全面に形成され、絶縁基材層11a(第1主面VS1側)に形成されるコイルパターンCP1を被覆する樹脂膜である。保護層1aは、外部電極P1,P2に応じた位置に開口AP1,AP2を有する。そのため、絶縁基材層11aの上面に保護層1aが形成されることにより、外部電極P1,P2が第1主面VS1から露出する。保護層1aは例えばソルダーレジスト膜またはカバーレイフィルム等である。なお、本発明の「振動板」において保護層1aは必須ではない。
The protective layer 1a is a resin film that is formed on substantially the entire surface of the laminated body 10A on the first main surface VS1 side and covers the coil pattern CP1 formed on the insulating base layer 11a (first main surface VS1 side). The protective layer 1a has openings AP1 and AP2 at positions corresponding to the external electrodes P1 and P2. Therefore, the external electrodes P1 and P2 are exposed from the first main surface VS1 by forming the protective layer 1a on the upper surface of the insulating base layer 11a. The protective layer 1a is, for example, a solder resist film or a coverlay film. In the “diaphragm” of the present invention, the protective layer 1a is not essential.
このように、振動板101では、3つの絶縁基材層11a,12a,13aにそれぞれ形成される複数のコイルパターンCP1,CP2,CP3および層間接続導体V1,V2を含んで約3ターンの矩形ヘリカル状のコイル31が形成される。また、図2に示すように、コイル31の巻回軸AXは、複数の絶縁基材層11a,12a,13aの積層方向(Z軸方向)に一致している。コイル31の第1端は外部電極P1に接続され、コイル31の第2端は外部電極P2に接続される。
As described above, the diaphragm 101 includes a plurality of coil patterns CP1, CP2, CP3 and interlayer connection conductors V1, V2 formed on the three insulating base layers 11a, 12a, 13a, respectively, and a rectangular helical structure having about 3 turns. A coil 31 is formed. As shown in FIG. 2, the winding axis AX of the coil 31 coincides with the stacking direction (Z-axis direction) of the plurality of insulating base layers 11a, 12a, 13a. The first end of the coil 31 is connected to the external electrode P1, and the second end of the coil 31 is connected to the external electrode P2.
図2に示すように、コイルパターンCP1の線幅は、それ以外のコイルパターンCP2,CP3の線幅よりも細い。
As shown in FIG. 2, the line width of the coil pattern CP1 is narrower than the line widths of the other coil patterns CP2 and CP3.
また、図2に示すように、コイルパターンCP1は、積層方向(Z軸方向)において第2主面VS2よりも第1主面VS1に近接している。具体的には、Z軸方向におけるコイルパターンCP1と第1主面VS1との間の距離をL11とし、Z軸方向におけるコイルパターンCP1と第2主面VS2との間の距離をL12とした場合に、L11<L12が成り立つ。
As shown in FIG. 2, the coil pattern CP1 is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). Specifically, the distance between the coil pattern CP1 and the first main surface VS1 in the Z-axis direction is L11, and the distance between the coil pattern CP1 and the second main surface VS2 in the Z-axis direction is L12. In addition, L11 <L12 holds.
本実施形態では、上述したコイルパターンCP1が、本発明における「第1主面側コイルパターン」に相当する。本発明における「第1主面側コイルパターン」とは、複数のコイルパターンのうち最も第1主面VS1寄りに配置されるコイルパターンを言う。
In the present embodiment, the coil pattern CP1 described above corresponds to the “first main surface side coil pattern” in the present invention. The “first main surface side coil pattern” in the present invention refers to a coil pattern arranged closest to the first main surface VS1 among a plurality of coil patterns.
また、本発明における「コイルパターン」とは、磁石と相互に作用する磁束の形成に寄与する導体パターンを言う(図1(B)におけるドットパターンで示すコイルパターンCP1,CP2,CP3を参照)。なお、コイル31の両端に接続される接続導体CN1,CN2は、磁石と相互に作用する磁束の形成には実質的に寄与していないと考えられるため、本発明の「コイルパターン」から除かれる。
In addition, the “coil pattern” in the present invention refers to a conductor pattern that contributes to the formation of magnetic flux that interacts with the magnet (see coil patterns CP1, CP2, and CP3 shown by the dot pattern in FIG. 1B). Note that the connection conductors CN1 and CN2 connected to both ends of the coil 31 are considered not to substantially contribute to the formation of the magnetic flux that interacts with the magnet, and thus are excluded from the “coil pattern” of the present invention. .
次に、本実施形態に係る振動素子について図を参照して説明する。図3(A)は第1の実施形態に係る振動素子201の主要部を示す平面図であり、図3(B)は振動素子201の主要部を示す断面図である。なお、図3(A)では、構造を解りやすくするため、コイル31の形成領域CEをドットパターンで示している。
Next, the vibration element according to this embodiment will be described with reference to the drawings. FIG. 3A is a plan view showing the main part of the vibration element 201 according to the first embodiment, and FIG. 3B is a cross-sectional view showing the main part of the vibration element 201. In FIG. 3A, the formation region CE of the coil 31 is indicated by a dot pattern for easy understanding of the structure.
振動素子201は、振動板101および磁石41を備える。
The vibration element 201 includes a vibration plate 101 and a magnet 41.
振動板101の長手方向の両端は、振動素子201が図示しない電子機器に組み込まれた際に固定され、磁石41は図示しない電子機器の筐体(またはカバー)等に固定される。磁石41は、図3(A)に示すように、Z軸方向から視て、コイル31の形成領域CEに重なる位置に配置されている。
Both ends in the longitudinal direction of the vibration plate 101 are fixed when the vibration element 201 is incorporated in an electronic device (not shown), and the magnet 41 is fixed to a casing (or cover) of the electronic device (not shown). As shown in FIG. 3A, the magnet 41 is disposed at a position overlapping the formation region CE of the coil 31 when viewed from the Z-axis direction.
本実施形態では、この磁石41が本発明における「第1磁石」に相当する。なお、本発明における「第1磁石」とは、複数のコイルパターンのうち第1主面側コイルパターンに最も近接して配置される磁石を言う。
In the present embodiment, the magnet 41 corresponds to the “first magnet” in the present invention. In addition, the “first magnet” in the present invention refers to a magnet arranged closest to the first main surface side coil pattern among the plurality of coil patterns.
また、振動板101の外部電極P1,P2は、振動素子201が図示しない電子機器に組み込まれた際、電子機器の回路に接続される。振動板101のコイル31に駆動電流が流れることにより、振動板101は図3(B)中の白抜き矢印で示す方向に振動する。
Further, the external electrodes P1 and P2 of the vibration plate 101 are connected to a circuit of the electronic device when the vibration element 201 is incorporated in an electronic device (not shown). When a drive current flows through the coil 31 of the diaphragm 101, the diaphragm 101 vibrates in the direction indicated by the white arrow in FIG.
本実施形態に係る振動素子201によれば、次のような効果を奏する。
The vibrating element 201 according to the present embodiment has the following effects.
(a)本実施形態に係る振動素子201では、第1磁石(磁石41)が、複数のコイルパターンCP1,CP2,CP3のうち第1主面側コイルパターン(コイルパターンCP1)に最も近接して配置されている。また、第1主面側コイルパターンの線幅は、それ以外のコイルパターンCP2,CP3の線幅よりも細い。一般的に、コイルを形成するコイルパターン(導体)の線幅が太い場合に比べて、コイルパターンの線幅が細い場合の方がコイルパターンの周囲に発生する磁束は多くなる。したがって、この構成により、第1磁石と第1主面側コイルパターンとの相互作用による電磁力が大きくなって、振動板101の駆動効率が高まる(振動板101の振幅を大きくできる)。
(A) In the vibration element 201 according to the present embodiment, the first magnet (magnet 41) is closest to the first main surface side coil pattern (coil pattern CP1) among the plurality of coil patterns CP1, CP2, CP3. Has been placed. The line width of the first main surface side coil pattern is narrower than the line widths of the other coil patterns CP2 and CP3. In general, more magnetic flux is generated around the coil pattern when the line width of the coil pattern is narrower than when the line width of the coil pattern (conductor) forming the coil is large. Therefore, with this configuration, the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern is increased, and the driving efficiency of the diaphragm 101 is increased (the amplitude of the diaphragm 101 can be increased).
また、本実施形態では、第1主面側コイルパターン(コイルパターンCP1)の線幅が、それ以外のコイルパターンCP2,CP3の線幅よりも細い。すなわち、第1主面側コイルパターンの線幅だけを細くすることにより、コイルの導体損失を同じ条件にして複数のコイルパターン全ての線幅を同じにした場合に比べて、第1磁石とコイルとの相互作用による電磁力を大きくできる。また、電磁力を同じ条件にして複数のコイルパターン全ての線幅を同じにした場合に比べて、コイルの導体損失の大幅な増加が抑制される。
In the present embodiment, the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3. That is, by reducing only the line width of the first main surface side coil pattern, the first magnet and the coil are compared with the case where the line widths of all the coil patterns are the same under the same conductor loss of the coil. Electromagnetic force due to interaction with can be increased. In addition, a significant increase in the conductor loss of the coil is suppressed as compared with the case where the line widths of all the plurality of coil patterns are the same under the same electromagnetic force.
(b)本実施形態では、図2に示すように、第1主面側コイルパターン(コイルパターンCP1)は、積層方向(Z軸方向)において第2主面VS2よりも第1主面VS1に近接している(L11<L12)。この構成により、第1主面側コイルパターンが、Z軸方向において第1主面VS1よりも第2主面VS2に近接している場合(L11>L12)と比べて、コイル31が第1磁石に近接して配置されるため、第1磁石とコイル31との相互作用による電磁力をさらに大きくできる。
(B) In the present embodiment, as shown in FIG. 2, the first main surface side coil pattern (coil pattern CP1) is located on the first main surface VS1 more than the second main surface VS2 in the stacking direction (Z-axis direction). It is close (L11 <L12). With this configuration, compared to the case where the first main surface side coil pattern is closer to the second main surface VS2 than the first main surface VS1 in the Z-axis direction (L11> L12), the coil 31 is the first magnet. Therefore, the electromagnetic force due to the interaction between the first magnet and the coil 31 can be further increased.
また、一般的に、振動板が振動する際、振動板(積層体)の表層のほうが内層よりも伸縮する。すなわち、本実施形態では、振動板が振動したときに大きく伸縮する積層体10Aの第1主面VS1付近に、それ以外のコイルパターンCP2,CP3よりも線幅の細い第1主面側コイルパターンが配置されている(L11<L12)。一般的に、導体パターンは、樹脂材料からなる絶縁基材層よりも相対的に剛性が高い。そのため、この構成により、振動板が振動したときに大きく伸縮する積層体10Aの第1主面VS1付近の可撓性は維持され、振動板が振動した時の振幅を大きくすることができる。
In general, when the diaphragm vibrates, the surface layer of the diaphragm (laminate) expands and contracts more than the inner layer. That is, in the present embodiment, the first main surface side coil pattern having a line width narrower than the other coil patterns CP2 and CP3 in the vicinity of the first main surface VS1 of the laminate 10A that greatly expands and contracts when the diaphragm vibrates. Are arranged (L11 <L12). Generally, a conductor pattern has relatively higher rigidity than an insulating base material layer made of a resin material. Therefore, with this configuration, flexibility in the vicinity of the first main surface VS1 of the laminated body 10A that greatly expands and contracts when the diaphragm vibrates can be maintained, and the amplitude when the diaphragm vibrates can be increased.
なお、本実施形態では、第1主面側コイルパターン(コイルパターンCP1)の線幅が、それ以外のコイルパターンCP2,CP3の線幅よりも細い場合を示したが、この構成に限定されるものではない。第1主面側コイルパターンの線幅が、それ以外のコイルパターンの少なくとも一つの線幅よりも細ければ、上記作用・効果を奏する。但し、第1主面側コイルパターンの線幅を、それ以外のコイルパターンの線幅よりも細くすることで、効率良く、第1磁石とコイルとの相互作用による電磁力を高め、且つ、コイル31の導体損失の増加を抑制できる。
In the present embodiment, the case where the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3 is shown, but the present invention is limited to this configuration. It is not a thing. If the line width of the first main surface side coil pattern is narrower than at least one line width of the other coil patterns, the above-described operations and effects are achieved. However, by making the line width of the first main surface side coil pattern thinner than the line width of the other coil patterns, the electromagnetic force due to the interaction between the first magnet and the coil can be increased efficiently, and the coil The increase in the conductor loss of 31 can be suppressed.
本実施形態に係る振動板101は、例えば次の工程で製造される。図4は振動板101の製造工程を順に示す断面図である。なお、図4では、説明の都合上ワンチップ(個片)での製造工程で説明するが、実際の振動板の製造工程は集合基板状態で行われる。
The diaphragm 101 according to the present embodiment is manufactured by, for example, the following process. FIG. 4 is a cross-sectional view illustrating the manufacturing process of the diaphragm 101 in order. In FIG. 4, for the convenience of explanation, the manufacturing process using one chip (individual piece) will be described. However, the actual manufacturing process of the diaphragm is performed in a collective substrate state.
図4中の(1)に示すように、まず複数の絶縁基材層11a,12a,13aを準備する。その後、複数の絶縁基材層11a,12a,13aに、コイルパターンCP1,CP2,CP3、外部電極P1,P2および導体21,22等をそれぞれ形成する。具体的には、集合基板状態の絶縁基材層11a,12a,13aの片側主面に金属箔(例えばCu箔)をラミネートし、その金属箔をフォトリソグラフィでパターンニングすることで、コイルパターンCP1,CP2,CP3、外部電極P1,P2および導体21,22を形成する。
As shown in (1) in FIG. 4, first, a plurality of insulating base layers 11a, 12a, and 13a are prepared. Thereafter, coil patterns CP1, CP2, CP3, external electrodes P1, P2, conductors 21, 22 and the like are formed on the plurality of insulating base layers 11a, 12a, 13a, respectively. Specifically, a metal foil (for example, Cu foil) is laminated on one side main surface of the insulating base material layers 11a, 12a, and 13a in a collective substrate state, and the metal foil is patterned by photolithography, whereby the coil pattern CP1. , CP2, CP3, external electrodes P1, P2 and conductors 21, 22 are formed.
絶縁基材層11a,12a,13aは例えば液晶ポリマー等の熱可塑性樹脂シートである。
The insulating base layers 11a, 12a, and 13a are thermoplastic resin sheets such as liquid crystal polymers.
なお、複数の絶縁基材層11a,12a,13aには、他の導体(図1(B)における接続導体CN1,CN2)や層間接続導体(図1(B)における層間接続導体V1,V2,V3,V4)が形成される。層間接続導体は、レーザー等で貫通孔を設けた後、Cu,Ag,Sn,Ni,Mo等のうち1以上もしくはそれらの合金を含む導電性ペーストを配設し、後の加熱加圧で硬化(固化)させることによって設けられる。そのため、層間接続導体は、後の加熱加圧時の温度よりも融点(溶融温度)が低い材料とする。
The plurality of insulating base layers 11a, 12a and 13a include other conductors (connection conductors CN1 and CN2 in FIG. 1B) and interlayer connection conductors (interlayer connection conductors V1, V2 in FIG. 1B). V3, V4) are formed. The interlayer connection conductor is provided with a through-hole with a laser or the like, and then a conductive paste containing one or more of Cu, Ag, Sn, Ni, Mo or the like or an alloy thereof is disposed and cured by subsequent heating and pressing. It is provided by (solidifying). Therefore, the interlayer connection conductor is made of a material having a melting point (melting temperature) lower than the temperature at the time of subsequent heating and pressurization.
次に、図4中の(2)(3)に示すように、剛性の高い台座2の上に、絶縁基材層11a,12a,13aの順に積層し、積層した複数の絶縁基材層11a,12a,13aを加熱加圧することにより、積層体10APを構成する。具体的には、積層した複数の絶縁基材層11a,12a,13aを加熱し、図4中の(2)に示す白抜き矢印の方向から静水圧による等方圧プレス(加圧)を行う。
Next, as shown in (2) and (3) in FIG. 4, the insulating base layers 11a, 12a, and 13a are stacked in this order on the highly rigid base 2, and a plurality of stacked insulating base layers 11a are stacked. , 12a, and 13a are heated and pressed to form the laminated body 10AP. Specifically, the plurality of laminated insulating base layers 11a, 12a, and 13a are heated, and isotropic pressure pressing (pressurization) is performed by hydrostatic pressure from the direction of the white arrow shown in (2) in FIG. .
その後、積層体10APの一方主面(図4中の(3)に示す積層体10APの上面)側に保護層1aを形成する。保護層1aは、外部電極P1,P2に応じた位置に開口を有する。そのため、積層体10AP(絶縁基材層11a)の上面に保護層1aが形成されることにより、外部電極P1,P2が第1主面から露出する。保護層1aは、コイルパターンCP1等の形成面の酸化防止用の樹脂膜であり、例えばソルダーレジスト膜やカバーレイフィルム等である。
Then, the protective layer 1a is formed on the one main surface (upper surface of the laminated body 10AP shown in (3) in FIG. 4) of the laminated body 10AP. The protective layer 1a has openings at positions corresponding to the external electrodes P1 and P2. Therefore, the protective layer 1a is formed on the upper surface of the multilayer body 10AP (insulating base material layer 11a), so that the external electrodes P1 and P2 are exposed from the first main surface. The protective layer 1a is a resin film for preventing oxidation of the formation surface of the coil pattern CP1, etc., and is, for example, a solder resist film or a coverlay film.
最後に、集合基板から個々の個片に分離して、図4中の(4)に示すような振動板101を得る。
Finally, the diaphragm 101 as shown in (4) of FIG. 4 is obtained by separating into individual pieces from the collective substrate.
上記の製造方法により、磁石との間の電磁力を高めつつ、コイルの導体損失の大幅な増加を抑制した振動板を容易に製造できる。
With the above manufacturing method, it is possible to easily manufacture a diaphragm that suppresses a significant increase in the conductor loss of the coil while increasing the electromagnetic force with the magnet.
《第2の実施形態》
第2の実施形態では、複数の絶縁基材層に亘って形成されるコイルパターンの構成が、第1の実施形態と異なる例を示す。 << Second Embodiment >>
In the second embodiment, an example in which the configuration of a coil pattern formed over a plurality of insulating base material layers is different from that in the first embodiment will be described.
第2の実施形態では、複数の絶縁基材層に亘って形成されるコイルパターンの構成が、第1の実施形態と異なる例を示す。 << Second Embodiment >>
In the second embodiment, an example in which the configuration of a coil pattern formed over a plurality of insulating base material layers is different from that in the first embodiment will be described.
図5(A)は第2の実施形態に係る振動板102の外観斜視図であり、図5(B)は振動板102の分解斜視図である。図6(A)は第1主面側コイルパターンの位置関係を示す、振動板102のX-Z面での断面図であり、図6(B)は第2主面側コイルパターンの位置関係を示す、振動板102のX-Z面での断面図である。なお、図5(B)では、構造を解りやすくするため、コイルパターンCP1,CP2,CP3,CP4,CP5をドットパターンで示している。
FIG. 5A is an external perspective view of the diaphragm 102 according to the second embodiment, and FIG. 5B is an exploded perspective view of the diaphragm 102. 6A is a cross-sectional view of the diaphragm 102 on the XZ plane showing the positional relationship of the first main surface side coil pattern, and FIG. 6B is the positional relationship of the second main surface side coil pattern. FIG. 6 is a cross-sectional view of the vibration plate 102 taken along the XZ plane. In FIG. 5B, the coil patterns CP1, CP2, CP3, CP4, and CP5 are shown as dot patterns for easy understanding of the structure.
振動板102は、積層体10B、積層体10Bに形成されるコイル32(後に詳述する)および外部電極P1,P2を備える。
The diaphragm 102 includes a laminated body 10B, a coil 32 (described in detail later) formed on the laminated body 10B, and external electrodes P1 and P2.
本実施形態に係るコイル32は、5つの絶縁基材層にそれぞれ形成される5つのコイルパターンを含む点で、第1の実施形態に係るコイル31と異なる。また、本実施形態の積層体10Bは、絶縁基材層の積層数が、第1の実施形態に係る積層体10Aと異なる。その他の構成については、振動板101と実質的に同じである。
The coil 32 according to the present embodiment is different from the coil 31 according to the first embodiment in that the coil 32 includes five coil patterns respectively formed on five insulating base layers. Moreover, the laminated body 10B of the present embodiment is different from the laminated body 10A according to the first embodiment in the number of laminated insulating base material layers. Other configurations are substantially the same as those of the diaphragm 101.
以下、第1の実施形態に係る振動板101と異なる部分について説明する。
Hereinafter, parts different from the diaphragm 101 according to the first embodiment will be described.
積層体10Bは、図5(B)に示すように、複数の絶縁基材層15b,14b,13b,12b,11bおよび保護層1bを順に積層して形成される。複数の絶縁基材層11b,12b,13b,14b,15bの構成は、第1の実施形態で説明した絶縁基材層11a,12a,13aと実質的に同じである。
The laminated body 10B is formed by sequentially laminating a plurality of insulating base material layers 15b, 14b, 13b, 12b, 11b and a protective layer 1b as shown in FIG. The configuration of the plurality of insulating base layers 11b, 12b, 13b, 14b, and 15b is substantially the same as the insulating base layers 11a, 12a, and 13a described in the first embodiment.
絶縁基材層11bの表面には、コイルパターンCP1、外部電極P1,P2および接続導体CN1が形成されている。コイルパターンCP1、外部電極P1,P2および接続導体CN1の構成は、第1の実施形態で説明したものと実質的に同じである。
The coil pattern CP1, the external electrodes P1 and P2, and the connection conductor CN1 are formed on the surface of the insulating base layer 11b. The configurations of the coil pattern CP1, the external electrodes P1 and P2, and the connection conductor CN1 are substantially the same as those described in the first embodiment.
また、絶縁基材層11bには、層間接続導体V1,V8が形成されている。
Further, interlayer connection conductors V1 and V8 are formed on the insulating base material layer 11b.
絶縁基材層12bの表面には、コイルパターンCP2および導体24が形成されている。コイルパターンCP2、導体24は、第1の実施形態で説明したコイルパターンCP2および導体22と実質的に同じである。図5(B)に示すように、コイルパターンCP2の第1端は、層間接続導体V1を介してコイルパターンCP1の第2端に接続される。導体24は、層間接続導体V8を介して外部電極P2に接続される。
The coil pattern CP2 and the conductor 24 are formed on the surface of the insulating base layer 12b. The coil pattern CP2 and the conductor 24 are substantially the same as the coil pattern CP2 and the conductor 22 described in the first embodiment. As shown in FIG. 5B, the first end of the coil pattern CP2 is connected to the second end of the coil pattern CP1 through the interlayer connection conductor V1. The conductor 24 is connected to the external electrode P2 through the interlayer connection conductor V8.
また、絶縁基材層12bには、層間接続導体V2,V7が形成されている。
Further, interlayer connection conductors V2 and V7 are formed on the insulating base material layer 12b.
絶縁基材層13bの表面には、コイルパターンCP3および導体23が形成されている。コイルパターンCP3の構成は、第1の実施形態で説明したコイルパターンCP3と実質的に同じである。図5(B)に示すように、コイルパターンCP3の第1端は、層間接続導体V2を介してコイルパターンCP2の第2端に接続される。導体23は、絶縁基材層13bの第2辺(図5(B)における絶縁基材層13bの右辺)中央付近に配置される矩形の導体である。導体23は、層間接続導体V7を介して導体24に接続される。導体23は、例えばCu箔等の導体パターンである。
The coil pattern CP3 and the conductor 23 are formed on the surface of the insulating base layer 13b. The configuration of the coil pattern CP3 is substantially the same as the coil pattern CP3 described in the first embodiment. As shown in FIG. 5B, the first end of the coil pattern CP3 is connected to the second end of the coil pattern CP2 via the interlayer connection conductor V2. The conductor 23 is a rectangular conductor arranged near the center of the second side of the insulating base layer 13b (the right side of the insulating base layer 13b in FIG. 5B). The conductor 23 is connected to the conductor 24 via the interlayer connection conductor V7. The conductor 23 is a conductor pattern such as a Cu foil, for example.
また、絶縁基材層13bには、層間接続導体V3,V6は形成されている。
Further, interlayer connection conductors V3 and V6 are formed on the insulating base material layer 13b.
絶縁基材層14bの表面には、コイルパターンCP4および導体22が形成されている。コイルパターンCP4は、絶縁基材層14bの外周に沿って巻回される約1ターンの矩形ループ状の導体である。図5(B)に示すように、コイルパターンCP4の第1端は、層間接続導体V3を介してコイルパターンCP3の第2端に接続される。導体22は、絶縁基材層14bの第2辺(図5(B)における絶縁基材層14bの右辺)中央付近に配置される矩形の導体である。導体22は、層間接続導体V6を介して導体23に接続される。コイルパターンCP4および導体23は、例えばCu箔等の導体パターンである。
The coil pattern CP4 and the conductor 22 are formed on the surface of the insulating base layer 14b. The coil pattern CP4 is a rectangular loop-shaped conductor of about one turn that is wound along the outer periphery of the insulating base layer 14b. As shown in FIG. 5B, the first end of the coil pattern CP4 is connected to the second end of the coil pattern CP3 via the interlayer connection conductor V3. The conductor 22 is a rectangular conductor arranged near the center of the second side of the insulating base layer 14b (the right side of the insulating base layer 14b in FIG. 5B). The conductor 22 is connected to the conductor 23 via the interlayer connection conductor V6. Coil pattern CP4 and conductor 23 are conductor patterns, such as Cu foil, for example.
また、絶縁基材層14bには、層間接続導体V4,V5が形成されている。
Further, interlayer connection conductors V4 and V5 are formed on the insulating base material layer 14b.
絶縁基材層15bの表面には、コイルパターンCP5および導体21が形成されている。コイルパターンCP5は、絶縁基材層15bの外周に沿って形成される約1ターンの矩形ループ状の導体である。図5(B)に示すように、コイルパターンCP5の第1端は、層間接続導体V4を介してコイルパターンCP4に接続されている。コイルパターンCP5の第2端は、導体21に接続される。導体21は、絶縁基材層15bの第2辺(図5(B)における絶縁基材層15bの右辺)中央付近に配置される矩形の導体である。導体21は、層間接続導体V5を介して導体22に接続される。コイルパターンCP5および導体21は、例えばCu箔等の導体パターンである。
The coil pattern CP5 and the conductor 21 are formed on the surface of the insulating base layer 15b. The coil pattern CP5 is a rectangular loop-shaped conductor of about 1 turn formed along the outer periphery of the insulating base material layer 15b. As shown in FIG. 5B, the first end of the coil pattern CP5 is connected to the coil pattern CP4 via the interlayer connection conductor V4. The second end of the coil pattern CP5 is connected to the conductor 21. The conductor 21 is a rectangular conductor disposed near the center of the second side of the insulating base layer 15b (the right side of the insulating base layer 15b in FIG. 5B). The conductor 21 is connected to the conductor 22 via the interlayer connection conductor V5. Coil pattern CP5 and conductor 21 are conductor patterns, such as Cu foil, for example.
保護層1bの構成は、第1の実施形態で説明した保護層1aと実質的に同じである。
The configuration of the protective layer 1b is substantially the same as that of the protective layer 1a described in the first embodiment.
このように、振動板102では、5つの絶縁基材層11b,12b,13b,14b,15bにそれぞれ形成される複数のコイルパターンCP1,CP2,CP3,CP4,CP5および層間接続導体V1,V2,V3,V4を含んで約5ターンの矩形ヘリカル状のコイル32が形成される。また、コイル32の第1端は外部電極P1に接続され、コイル31の第2端は外部電極P2に接続される。
As described above, in the diaphragm 102, the plurality of coil patterns CP1, CP2, CP3, CP4, CP5 and the interlayer connection conductors V1, V2, formed on the five insulating base layers 11b, 12b, 13b, 14b, 15b, respectively. A rectangular helical coil 32 of about 5 turns including V3 and V4 is formed. The first end of the coil 32 is connected to the external electrode P1, and the second end of the coil 31 is connected to the external electrode P2.
図6(A)および図6(B)に示すように、コイルパターンCP1,CP5の線幅は、それら以外のコイルパターンCP2,CP3,CP4のうち少なくとも一つ(コイルパターンCP2,CP4)の線幅よりも細い。
As shown in FIGS. 6A and 6B, the coil widths of the coil patterns CP1 and CP5 are at least one of the other coil patterns CP2, CP3 and CP4 (coil patterns CP2 and CP4). It is thinner than the width.
また、図6(A)に示すように、コイルパターンCP1は、積層方向(Z軸方向)において第2主面VS2よりも第1主面VS1に近接している。具体的には、Z軸方向におけるコイルパターンCP1と第1主面VS1との間の距離をL11とし、Z軸方向におけるコイルパターンCP1と第2主面VS2との間の距離をL12とした場合に、L11<L12が成り立つ。また、図6(B)に示すように、コイルパターンCP5は、Z軸方向において第1主面VS1よりも第2主面VS2に近接している。具体的には、Z軸方向におけるコイルパターンCP5と第1主面VS1との間の距離をL21とし、Z軸方向におけるコイルパターンCP5と第2主面VS2との間の距離をL22とした場合に、L21>L22が成り立つ。
As shown in FIG. 6A, the coil pattern CP1 is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). Specifically, the distance between the coil pattern CP1 and the first main surface VS1 in the Z-axis direction is L11, and the distance between the coil pattern CP1 and the second main surface VS2 in the Z-axis direction is L12. In addition, L11 <L12 holds. As shown in FIG. 6B, the coil pattern CP5 is closer to the second main surface VS2 than the first main surface VS1 in the Z-axis direction. Specifically, the distance between the coil pattern CP5 and the first main surface VS1 in the Z-axis direction is L21, and the distance between the coil pattern CP5 and the second main surface VS2 in the Z-axis direction is L22. In addition, L21> L22 holds.
本実施形態では、上述したコイルパターンCP1が、本発明における「第1主面側コイルパターン」に相当する。また、本実施形態では、上述したコイルパターンCP5が、本発明における「第2主面側コイルパターン」に相当する。本発明における「第2主面側コイルパターン」とは、複数のコイルパターンのうち最も第2主面VS2寄りに配置されるコイルパターンを言う。
In the present embodiment, the coil pattern CP1 described above corresponds to the “first main surface side coil pattern” in the present invention. In the present embodiment, the coil pattern CP5 described above corresponds to the “second main surface side coil pattern” in the present invention. The “second main surface side coil pattern” in the present invention refers to a coil pattern arranged closest to the second main surface VS2 among a plurality of coil patterns.
次に、本実施形態に係る振動素子について図を参照して説明する。図7は第2の実施形態に係る振動素子202の主要部を示す断面図である。
Next, the vibration element according to this embodiment will be described with reference to the drawings. FIG. 7 is a cross-sectional view illustrating a main part of the vibration element 202 according to the second embodiment.
振動素子202は、振動板102および磁石41,42を備える。
The vibration element 202 includes a vibration plate 102 and magnets 41 and 42.
振動板102の長手方向の両端は、振動素子202が図示しない電子機器に組み込まれた際に固定され、磁石41,42は図示しない電子機器の筐体(またはカバー)等に固定される。
Both ends in the longitudinal direction of the diaphragm 102 are fixed when the vibration element 202 is incorporated in an electronic device (not shown), and the magnets 41 and 42 are fixed to a casing (or cover) of the electronic device (not shown).
本実施形態では、この磁石41が本発明における「第1磁石」に相当する。また、本実施形態では、磁石42が本発明における「第2磁石」に相当する。なお、本発明における「第2磁石」とは、複数のコイルパターンのうち第2主面側コイルパターンに最も近接して配置される磁石を言う。
In the present embodiment, the magnet 41 corresponds to the “first magnet” in the present invention. In the present embodiment, the magnet 42 corresponds to the “second magnet” in the present invention. The “second magnet” in the present invention refers to a magnet that is disposed closest to the second main surface side coil pattern among the plurality of coil patterns.
なお、図示を省略するが、磁石41,42は、Z軸方向から視て、コイル31の形成領域(図3(A)におけるコイルの形成領域CEを参照)に重なる位置に配置されている。
In addition, although illustration is abbreviate | omitted, the magnets 41 and 42 are arrange | positioned in the position which overlaps with the formation area (refer coil formation area | region CE in FIG. 3 (A)) of the coil 31 seeing from a Z-axis direction.
また、振動板102の外部電極P1,P2は、振動素子202が図示しない電子機器に組み込まれた際、電子機器の回路に接続される。振動板102のコイル32に駆動電流が流れることにより、振動板102は図7中の白抜き矢印で示す方向に振動する。
Further, the external electrodes P1 and P2 of the diaphragm 102 are connected to a circuit of the electronic device when the vibration element 202 is incorporated in an electronic device (not shown). When a drive current flows through the coil 32 of the diaphragm 102, the diaphragm 102 vibrates in the direction indicated by the white arrow in FIG.
本実施形態に係る振動素子202によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
The vibration element 202 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
(c)本実施形態に係る振動素子202では、第1磁石(磁石41)が、複数のコイルパターンのうち第1主面側コイルパターン(コイルパターンCP1)に最も近接して配置されており、第2磁石(磁石42)が、複数のコイルパターンのうち第2主面側コイルパターン(コイルパターンCP5)に最も近接して配置されている。また、第1主面側コイルパターンおよび第2主面側コイルパターンの線幅は、それら以外のコイルパターンCP2,CP3,CP4少なくとも一つの線幅よりも細い。したがって、この構成により、第1磁石と第1主面側コイルパターンとの相互作用による電磁力が大きくなり、且つ、第2磁石と第2主面側コイルパターンとの相互作用による電磁力も大きくなる。そのため、第1の実施形態で説明した振動素子201と比較して、振動板102の駆動効率がさらに高まる(振動板102の振幅をさらに大きくできる)。
(C) In the vibration element 202 according to the present embodiment, the first magnet (magnet 41) is disposed closest to the first main surface side coil pattern (coil pattern CP1) among the plurality of coil patterns, The second magnet (magnet 42) is disposed closest to the second main surface side coil pattern (coil pattern CP5) among the plurality of coil patterns. The line widths of the first main surface side coil pattern and the second main surface side coil pattern are narrower than at least one of the other coil patterns CP2, CP3, CP4. Therefore, this configuration increases the electromagnetic force due to the interaction between the first magnet and the first main surface side coil pattern, and also increases the electromagnetic force due to the interaction between the second magnet and the second main surface side coil pattern. . Therefore, the driving efficiency of the diaphragm 102 is further increased (the amplitude of the diaphragm 102 can be further increased) compared to the vibration element 201 described in the first embodiment.
(d)また、本実施形態では、第1主面側コイルパターン(コイルパターンCP1)の線幅、および第2主面側コイルパターン(コイルパターンCP5)の線幅が、それ以外のコイルパターンCP2,CP4の線幅よりも細い。したがって、この構成により、複数のコイルパターン全ての線幅を同じにした場合に比べて、磁石(第1磁石および第2磁石)とコイル32との相互作用による電磁力を大きくでき、且つ、コイル32の導体損失の大幅な増加を抑制できる。
(D) In the present embodiment, the line width of the first main surface side coil pattern (coil pattern CP1) and the line width of the second main surface side coil pattern (coil pattern CP5) are the other coil patterns CP2. , Smaller than the line width of CP4. Therefore, with this configuration, the electromagnetic force due to the interaction between the magnet (first magnet and second magnet) and the coil 32 can be increased compared to the case where the line widths of all of the plurality of coil patterns are the same, and the coil A large increase in the conductor loss of 32 can be suppressed.
(e)また、本実施形態では、図6(B)に示すように、第2主面側コイルパターン(コイルパターンCP5)が、積層方向(Z軸方向)において第1主面VS1よりも第2主面VS2に近接している(L21>L22)。この構成により、第2主面側コイルパターンが、Z軸方向において第2主面VS2よりも第1主面VS1に近接している場合と比べて、コイル32が第2磁石(磁石42)に近接して配置されるため、第2磁石とコイル32との相互作用による電磁力をさらに大きくできる。なお、本実施形態では、第1主面側コイルパターン(コイルパターンCP1)が、Z軸方向において第2主面VS2よりも第1主面VS1に近接しているため(L11<L12)、磁石とコイル32との相互作用による全体な電磁力をさらに大きくできる。
(E) Further, in the present embodiment, as shown in FIG. 6B, the second main surface side coil pattern (coil pattern CP5) is more than the first main surface VS1 in the stacking direction (Z-axis direction). 2 is close to the main surface VS2 (L21> L22). With this configuration, compared to the case where the second main surface side coil pattern is closer to the first main surface VS1 than the second main surface VS2 in the Z-axis direction, the coil 32 is connected to the second magnet (magnet 42). Since they are arranged close to each other, the electromagnetic force due to the interaction between the second magnet and the coil 32 can be further increased. In the present embodiment, the first main surface side coil pattern (coil pattern CP1) is closer to the first main surface VS1 than the second main surface VS2 in the Z-axis direction (L11 <L12). The overall electromagnetic force due to the interaction between the coil 32 and the coil 32 can be further increased.
(f)また、本実施形態では、振動板が振動したときに大きく伸縮する積層体10Bの両主面(第1主面VS1および第2主面VS2)付近に、それ以外のコイルパターンCP2,CP4よりも線幅の細い第1主面側コイルパターンおよび第2主面側コイルパターンがそれぞれ配置される(L11<L12およびL21>L22)。そのため、この構成により、振動板が振動したときに大きく伸縮する積層体10Bの両主面(第1主面VS1および第2主面VS2)付近の可撓性が維持され、振動板が振動した時の振幅をさらに大きくすることができる。
(F) Further, in the present embodiment, other coil patterns CP2, near both main surfaces (first main surface VS1 and second main surface VS2) of the laminate 10B that greatly expands and contracts when the diaphragm vibrates. A first main surface side coil pattern and a second main surface side coil pattern whose line width is narrower than CP4 are respectively arranged (L11 <L12 and L21> L22). Therefore, with this configuration, the flexibility in the vicinity of both main surfaces (first main surface VS1 and second main surface VS2) of the laminate 10B that greatly expands and contracts when the vibration plate vibrates is maintained, and the vibration plate vibrates. The time amplitude can be further increased.
《第3の実施形態》
第3の実施形態では、複数の絶縁基材層に亘って形成されるコイルパターンの構成が、第2の実施形態と異なる例を示す。 << Third Embodiment >>
In 3rd Embodiment, the structure from which the structure of the coil pattern formed over a some insulating base material layer differs from 2nd Embodiment is shown.
第3の実施形態では、複数の絶縁基材層に亘って形成されるコイルパターンの構成が、第2の実施形態と異なる例を示す。 << Third Embodiment >>
In 3rd Embodiment, the structure from which the structure of the coil pattern formed over a some insulating base material layer differs from 2nd Embodiment is shown.
図8(A)は第3の実施形態に係る振動板103の外観斜視図であり、図8(B)は振動板103の分解斜視図である。図9は振動板103のX-Z面での断面図である。なお、図8(B)では、構造を解りやすくするため、コイルパターンCP1,CP2,CP3,CP4,CP5をドットパターンで示している。
FIG. 8A is an external perspective view of the diaphragm 103 according to the third embodiment, and FIG. 8B is an exploded perspective view of the diaphragm 103. FIG. 9 is a cross-sectional view of the diaphragm 103 on the XZ plane. In FIG. 8B, the coil patterns CP1, CP2, CP3, CP4, and CP5 are shown as dot patterns for easy understanding of the structure.
振動板103は、積層体10B、積層体10Bに形成されるコイル33(後に詳述する)および外部電極P1,P2を備える。
The diaphragm 103 includes a laminated body 10B, a coil 33 (described in detail later) formed on the laminated body 10B, and external electrodes P1 and P2.
本実施形態に係るコイル33は、5つの絶縁基材層にそれぞれ形成される5つのコイルパターンの構成が、第2の実施形態に係るコイル32と異なる。その他の構成については、振動板102と実質的に同じである。
The coil 33 according to the present embodiment is different from the coil 32 according to the second embodiment in the configuration of five coil patterns respectively formed on the five insulating base layers. Other configurations are substantially the same as those of the diaphragm 102.
以下、第2の実施形態に係る振動板102と異なる部分について説明する。
Hereinafter, parts different from the diaphragm 102 according to the second embodiment will be described.
振動板103では、5つの絶縁基材層11b,12b,13b,14b,15bにそれぞれ形成される複数のコイルパターンCP1,CP2,CP3,CP4,CP5および層間接続導体V1,V2,V3,V4を含んで約5ターンの矩形ヘリカル状のコイル33が形成される。
In the diaphragm 103, a plurality of coil patterns CP1, CP2, CP3, CP4, CP5 and interlayer connection conductors V1, V2, V3, V4 formed on the five insulating base layers 11b, 12b, 13b, 14b, 15b, respectively. A rectangular helical coil 33 having about 5 turns is formed.
図9に示すように、第1主面側コイルパターン(コイルパターンCP1)は、積層方向(Z軸方向)において第2主面VS2よりも第1主面VS1に近接している。また、第2主面側コイルパターン(コイルパターンCP5)は、Z軸方向において第1主面VS1よりも第2主面VS2に近接している。
As shown in FIG. 9, the first main surface side coil pattern (coil pattern CP1) is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). The second main surface side coil pattern (coil pattern CP5) is closer to the second main surface VS2 than the first main surface VS1 in the Z-axis direction.
また、図9に示すように、複数のコイルパターンCP1,CP2,CP3,CP4,CP5の線幅は、積層方向(Z軸方向)において積層体10Cの表層よりも内層に配置されているほど太い。具体的には、Z軸方向において積層体10Cの最も表層に位置する第1主面側コイルパターン(コイルパターンCP1)および第2主面側コイルパターン(コイルパターンCP5)が、複数のコイルパターンCP1,CP2,CP3,CP4,CP5のうち最も線幅が細く、Z軸方向において積層体10Cの最も内層に位置するコイルパターンCP3が、複数のコイルパターンCP1,CP2,CP3,CP4,CP5のうち最も線幅が太い。このように、本実施形態では、Z軸方向において第1主面VS1または第2主面VS2に最も近接するコイルパターンほど線幅が細く、Z軸方向において保護層1bを含めた積層体10Cの中央高さ(図9における中央高さMLを参照。)により近接して配置されるコイルパターンほど線幅が太い。
Further, as shown in FIG. 9, the line widths of the plurality of coil patterns CP1, CP2, CP3, CP4, CP5 are thicker as they are arranged in the inner layer than the surface layer of the stacked body 10C in the stacking direction (Z-axis direction). . Specifically, the first main surface side coil pattern (coil pattern CP1) and the second main surface side coil pattern (coil pattern CP5) located on the outermost surface of the multilayer body 10C in the Z-axis direction include a plurality of coil patterns CP1. , CP2, CP3, CP4, CP5 has the narrowest line width, and the coil pattern CP3 located in the innermost layer of the laminate 10C in the Z-axis direction is the most of the plurality of coil patterns CP1, CP2, CP3, CP4, CP5. The line width is thick. As described above, in the present embodiment, the coil pattern closest to the first main surface VS1 or the second main surface VS2 in the Z-axis direction has a narrower line width, and the stacked body 10C including the protective layer 1b in the Z-axis direction. The coil width is closer to the coil pattern arranged closer to the center height (see the center height ML in FIG. 9).
本実施形態によれば、第1・第2の実施形態で述べた効果以外に、次のような効果を奏する。
According to the present embodiment, in addition to the effects described in the first and second embodiments, the following effects can be obtained.
(g)本実施形態に係る振動板103では、図9に示すように、第1主面側コイルパターン(コイルパターンCP1)の線幅および第2主面側コイルパターン(コイルパターンCP5)の線幅が、それら以外のコイルパターンCP2,CP3,CP4の線幅よりも細い。この構成により、第1主面側コイルパターンの線幅がそれ以外のコイルパターンの線幅よりも細い場合と比べて(第1の実施形態を参照)、さらに効率良く、磁石(第1磁石および第2磁石)とコイルとの相互作用による電磁力を高めつつ、コイルの導体損失の増加を抑制できる。
(G) In the diaphragm 103 according to the present embodiment, as shown in FIG. 9, the line width of the first main surface side coil pattern (coil pattern CP1) and the line of the second main surface side coil pattern (coil pattern CP5). The width is narrower than the line width of the other coil patterns CP2, CP3, CP4. With this configuration, compared to the case where the line width of the first main surface side coil pattern is narrower than that of the other coil patterns (see the first embodiment), the magnet (the first magnet and the first magnet) The increase in the conductor loss of the coil can be suppressed while increasing the electromagnetic force due to the interaction between the second magnet) and the coil.
(h)また、上記(g)の構成に加えて、本実施形態では、複数のコイルパターンCP1,CP2,CP3,CP4,CP5の線幅が、積層方向(Z軸方向)において積層体10Cの表層よりも内層に配置されているほど太い。この構成により、振動板の可撓性を維持した上で、より効率良く、磁石とコイル33との相互作用による電磁力を高め、且つ、コイル33の導体損失の増加を抑制できる。
(H) In addition to the configuration of (g), in the present embodiment, the line widths of the plurality of coil patterns CP1, CP2, CP3, CP4, CP5 are the same as those of the stacked body 10C in the stacking direction (Z-axis direction). It is thicker as it is arranged in the inner layer than the surface layer. With this configuration, it is possible to increase the electromagnetic force due to the interaction between the magnet and the coil 33 and to suppress an increase in the conductor loss of the coil 33 while maintaining the flexibility of the diaphragm.
《第4の実施形態》
第4の実施形態では、複数の絶縁基材層に亘って形成されるコイルパターンの構成が、第3の実施形態と異なる例を示す。 << Fourth Embodiment >>
In 4th Embodiment, the structure from which the structure of the coil pattern formed over several insulating base material layers differs from 3rd Embodiment is shown.
第4の実施形態では、複数の絶縁基材層に亘って形成されるコイルパターンの構成が、第3の実施形態と異なる例を示す。 << Fourth Embodiment >>
In 4th Embodiment, the structure from which the structure of the coil pattern formed over several insulating base material layers differs from 3rd Embodiment is shown.
図10は、第4の実施形態に係る振動板104のX-Z面での断面図である。
FIG. 10 is a cross-sectional view taken along the XZ plane of the diaphragm 104 according to the fourth embodiment.
振動板104は、積層体10B、積層体10Bに形成されるコイル34(後に詳述する)および外部電極P1,P2を備える。
The diaphragm 104 includes a laminated body 10B, a coil 34 (described in detail later) formed on the laminated body 10B, and external electrodes P1 and P2.
本実施形態に係るコイル34は、5つの絶縁基材層にそれぞれ形成される5つのコイルパターンの配置が、第3の実施形態に係るコイル33と異なる。その他の構成については、振動板103と実質的に同じである。
The coil 34 according to the present embodiment is different from the coil 33 according to the third embodiment in the arrangement of five coil patterns respectively formed on the five insulating base layers. Other configurations are substantially the same as those of the diaphragm 103.
以下、第3の実施形態に係る振動板103と異なる部分について説明する。
Hereinafter, parts different from the diaphragm 103 according to the third embodiment will be described.
図10に示すように、複数の絶縁基材層の表面を巻回するコイルパターンCP1,CP2,CP3,CP4,CP5は、コイル開口が最大限に広くなるように、内側端部がそれぞれZ軸方向に一致するように配置されている。
As shown in FIG. 10, the coil patterns CP1, CP2, CP3, CP4, and CP5 wound around the surfaces of the plurality of insulating base layers are each provided with an inner end portion of the Z axis so that the coil opening is maximized. Arranged to match the direction.
本実施形態によれば、第1・第2・第3の実施形態で述べた効果以外に、次のような効果を奏する。
According to this embodiment, in addition to the effects described in the first, second, and third embodiments, the following effects can be obtained.
(i)本実施形態では、コイル34のコイル開口が広くできるので、磁石とコイルとの相互作用による電磁力を高めることができる。
(I) In this embodiment, since the coil opening of the coil 34 can be widened, the electromagnetic force due to the interaction between the magnet and the coil can be increased.
《第5の実施形態》
第5の実施形態では、主面に凹部が形成された積層体を備える振動板の例を示す。 << Fifth Embodiment >>
In 5th Embodiment, the example of a diaphragm provided with the laminated body in which the recessed part was formed in the main surface is shown.
第5の実施形態では、主面に凹部が形成された積層体を備える振動板の例を示す。 << Fifth Embodiment >>
In 5th Embodiment, the example of a diaphragm provided with the laminated body in which the recessed part was formed in the main surface is shown.
図11(A)は第5の実施形態に係る振動板105の外観斜視図であり、図11(B)は振動板105の分解斜視図である。図12(A)は振動板105の平面図であり、図12(B)は振動板105のX-Z面での断面図である。なお、図11(B)では、構造を解りやすくするため、コイルパターンCP1,CP2,CP3をドットパターンで示している。また、図12(A)では、コイル開口COをハッチングで示している。
FIG. 11A is an external perspective view of the diaphragm 105 according to the fifth embodiment, and FIG. 11B is an exploded perspective view of the diaphragm 105. 12A is a plan view of the diaphragm 105, and FIG. 12B is a cross-sectional view of the diaphragm 105 on the XZ plane. In FIG. 11B, the coil patterns CP1, CP2, and CP3 are shown as dot patterns for easy understanding of the structure. In FIG. 12A, the coil opening CO is indicated by hatching.
振動板105は、積層体10C、積層体10Cに形成されるコイル31、外部電極P1,P2を備える。本実施形態に係るコイル31は、第1の実施形態で説明したものと略同じである。
The diaphragm 105 includes a laminated body 10C, a coil 31 formed in the laminated body 10C, and external electrodes P1 and P2. The coil 31 according to the present embodiment is substantially the same as that described in the first embodiment.
本実施形態に係る積層体10Cは、第1凹部HP1を有する点で第1の実施形態の積層体10Aと異なる。また、積層体10Cは、絶縁基材層の積層数が積層体10Aと異なる。その他の構成については、振動板101と実質的に同じである。
The laminated body 10C according to the present embodiment is different from the laminated body 10A of the first embodiment in that it has a first recess HP1. Further, the laminated body 10C is different from the laminated body 10A in the number of laminated insulating base material layers. Other configurations are substantially the same as those of the diaphragm 101.
以下、第1の実施形態に係る振動板101と異なる部分について説明する。
Hereinafter, parts different from the diaphragm 101 according to the first embodiment will be described.
積層体10Cは、図11(B)に示すように、複数の絶縁基材層14c,13c,12c,11cおよび保護層1cを順に積層して形成される。複数の絶縁基材層11c,12c,13c,14cおよび保護層1cの構成は、第1の実施形態で説明した絶縁基材層11a,12a,13aおよび保護層1aと実質的に同じである。
The laminated body 10C is formed by sequentially laminating a plurality of insulating base material layers 14c, 13c, 12c, 11c and a protective layer 1c as shown in FIG. The configurations of the plurality of insulating base layers 11c, 12c, 13c, 14c and the protective layer 1c are substantially the same as the insulating base layers 11a, 12a, 13a and the protective layer 1a described in the first embodiment.
絶縁基材層11c,12cには、図11(B)に示すように、それぞれ開口部H1,H2が形成されている。開口部H1は絶縁基材層11cの両主面を貫通する矩形の孔であり、コイルパターンCP1によって囲まれる領域内に配置されている。開口部H2は絶縁基材層12cの両主面を貫通する矩形の孔であり、コイルパターンCP2によって囲まれる領域内に配置されている。
As shown in FIG. 11B, openings H1 and H2 are formed in the insulating base layers 11c and 12c, respectively. The opening H1 is a rectangular hole penetrating both main surfaces of the insulating base material layer 11c, and is disposed in a region surrounded by the coil pattern CP1. The opening H2 is a rectangular hole penetrating both main surfaces of the insulating base material layer 12c, and is disposed in a region surrounded by the coil pattern CP2.
保護層1cの構成は、第1の実施形態で説明した保護層1aと実質的に同じである。保護層1cは、外部電極P1,P2に応じた位置に開口AP1,AP2を有し、絶縁基材層11cの開口部H1に応じた位置に開口AP3を有する。
The configuration of the protective layer 1c is substantially the same as that of the protective layer 1a described in the first embodiment. The protective layer 1c has openings AP1 and AP2 at positions corresponding to the external electrodes P1 and P2, and has an opening AP3 at a position corresponding to the opening H1 of the insulating base material layer 11c.
上述した保護層1cの開口AP3、および絶縁基材層11c,12cの開口部H1,H2は、第1凹部HP1(後に詳述する)を構成する。
The opening AP3 of the protective layer 1c and the openings H1 and H2 of the insulating base layers 11c and 12c constitute the first recess HP1 (described in detail later).
図12(B)に示すように、第1主面側コイルパターン(コイルパターンCP1)の線幅は、それ以外のコイルパターンCP2,CP3の線幅よりも細い。また、複数のコイルパターンCP1,CP2,CP3の線幅は、積層方向(Z軸方向)において積層体10Cの表層よりも内層に配置されているほど太い。
As shown in FIG. 12B, the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3. Further, the line widths of the plurality of coil patterns CP1, CP2, CP3 are thicker as they are arranged in the inner layer than the surface layer of the stacked body 10C in the stacking direction (Z-axis direction).
第1凹部HP1は、図11(A)、図12(A)および図12(B)に示すように、積層体10Cの第1主面VS1に形成されている。第1凹部HP1は、第1主面VS1から積層体10Cの内側(-Z方向)に向かって形成される逆四角錘台状の開口である。
1st recessed part HP1 is formed in 1st main surface VS1 of the laminated body 10C, as shown to FIG. 11 (A), FIG. 12 (A), and FIG. 12 (B). The first recess HP1 is an inverted square frustum-shaped opening formed from the first main surface VS1 toward the inner side (−Z direction) of the stacked body 10C.
第1凹部HP1は、図12(A)に示すように、Z軸方向から視て、コイル31のコイル開口COの内側に配置されている。また、第1凹部HP1は、図12(B)に示すように、第1主面VS1から積層体10Cの内側(-Z方向)に向かって、側面がテーパー状に形成されている。
1st recessed part HP1 is arrange | positioned inside the coil opening CO of the coil 31, seeing from a Z-axis direction, as shown to FIG. 12 (A). Further, as shown in FIG. 12B, the first recess HP1 has a side surface tapered from the first main surface VS1 toward the inner side (−Z direction) of the stacked body 10C.
次に、本実施形態に係る振動素子について図を参照して説明する。図13は第5の実施形態に係る振動素子205の主要部を示す断面図である。
Next, the vibration element according to this embodiment will be described with reference to the drawings. FIG. 13 is a cross-sectional view illustrating a main part of a vibration element 205 according to the fifth embodiment.
振動素子205は、振動板105および磁石41を備える。
The vibration element 205 includes a vibration plate 105 and a magnet 41.
振動板105の長手方向の両端は、振動素子205が図示しない電子機器に組み込まれた際に固定され、磁石41は図示しない電子機器の筐体(またはカバー)等に固定される。図13に示すように、磁石41は、少なくとも一部が第1凹部HP1の内側に配置されている。
Both ends in the longitudinal direction of the diaphragm 105 are fixed when the vibration element 205 is incorporated in an electronic device (not shown), and the magnet 41 is fixed to a casing (or cover) of the electronic device (not shown). As shown in FIG. 13, at least a part of the magnet 41 is disposed inside the first recess HP1.
本実施形態では、この磁石41が本発明における「第1磁石」に相当する。
In the present embodiment, the magnet 41 corresponds to the “first magnet” in the present invention.
また、振動板105の外部電極P1,P2は、振動素子205が図示しない電子機器に組み込まれた際、電子機器の回路に接続される。振動板105のコイル31に駆動電流が流れることにより、振動板105は図13中の白抜き矢印で示す方向に振動する。
Further, the external electrodes P1 and P2 of the diaphragm 105 are connected to a circuit of the electronic device when the vibration element 205 is incorporated in an electronic device (not shown). When the drive current flows through the coil 31 of the diaphragm 105, the diaphragm 105 vibrates in the direction indicated by the white arrow in FIG.
本実施形態に係る振動素子205によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。
The vibration element 205 according to the present embodiment has the following effects in addition to the effects described in the first embodiment.
(j)本実施形態では、第1主面側コイルパターン(コイルパターンCP1)の線幅が、それ以外のコイルパターンCP2,CP3の線幅よりも細い。また、複数のコイルパターンCP1,CP2,CP3P4,CP5の線幅は、積層方向(Z軸方向)において積層体10Cの表層よりも内層に配置されているほど太い。この構成により、振動板の可撓性を維持した上で、より効率良く、磁石(第1磁石および第2磁石)とコイル33との相互作用による電磁力を高めつつ、コイル33の導体損失の増加を抑制できる。
(J) In the present embodiment, the line width of the first main surface side coil pattern (coil pattern CP1) is narrower than the line widths of the other coil patterns CP2 and CP3. Further, the line widths of the plurality of coil patterns CP1, CP2, CP3P4, CP5 are thicker as they are arranged in the inner layer than the surface layer of the stacked body 10C in the stacking direction (Z-axis direction). With this configuration, while maintaining the flexibility of the diaphragm, the electromagnetic force due to the interaction between the magnet (the first magnet and the second magnet) and the coil 33 is increased more efficiently, and the conductor loss of the coil 33 is reduced. Increase can be suppressed.
(k)本実施形態では、積層体10Cの第1主面VS1に第1凹部HP1が形成され、第1磁石(磁石41)の少なくとも一部が第1凹部HP1の内側に配置されている。この構成により、第1磁石を第1凹部HP1の内側に配置しない場合と比べて、コイル31が第1磁石に近接して配置されるため、第1磁石とコイル31との相互作用による電磁力をさらに大きくできる。
(K) In the present embodiment, the first recess HP1 is formed on the first main surface VS1 of the stacked body 10C, and at least a part of the first magnet (magnet 41) is disposed inside the first recess HP1. With this configuration, since the coil 31 is disposed closer to the first magnet than in the case where the first magnet is not disposed inside the first recess HP1, the electromagnetic force due to the interaction between the first magnet and the coil 31. Can be further increased.
(m)また、本実施形態では、第1凹部HP1が、Z軸方向から視て、コイル31のコイル開口COの内側に配置されている。すなわち、図12(B)に示すように、第1凹部HP1は、樹脂材料からなる絶縁基材層よりも剛性の高いコイルパターンCP1,CP2,CP3に沿って形成されているため、第1凹部HP1の形状は、コイルパターンCP1,CP2,CP3で補強される。したがって、積層体10C(樹脂基材層)が変形しやすい樹脂材料であっても、第1凹部HP1の形状を維持しやすい。
(M) In the present embodiment, the first recess HP1 is disposed inside the coil opening CO of the coil 31 when viewed from the Z-axis direction. That is, as shown in FIG. 12B, the first recess HP1 is formed along the coil patterns CP1, CP2, CP3 having higher rigidity than the insulating base layer made of a resin material. The shape of HP1 is reinforced by coil patterns CP1, CP2, CP3. Therefore, even if the laminated body 10C (resin base material layer) is a resin material that easily deforms, it is easy to maintain the shape of the first recess HP1.
(n)また、本実施形態では、第1凹部HP1が、第1主面VS1から積層体10Cの内側に向かって、側面がテーパー状に形成され、且つ、第1磁石(磁石41)の少なくとも一部が第1凹部HP1の内側に配置されている。この構成により、振動板105が不規則に振動したとき、第1凹部HP1の側面が第1磁石に当接して振動板105が適正位置へ動くことで、第1磁石に対して振動板105を正しい位置関係に補正することができる。
(N) In the present embodiment, the first recess HP1 has a side surface tapered from the first main surface VS1 toward the inside of the stacked body 10C, and at least the first magnet (magnet 41). A part is disposed inside the first recess HP1. With this configuration, when the vibration plate 105 vibrates irregularly, the side surface of the first recess HP1 comes into contact with the first magnet and the vibration plate 105 moves to an appropriate position, so that the vibration plate 105 is moved relative to the first magnet. The correct positional relationship can be corrected.
本実施形態に係る振動板105は、例えば次の工程で製造される。図14は振動板105の製造工程を順に示す断面図である。なお、図14では、説明の都合上ワンチップ(個片)での製造工程で説明するが、実際の振動板の製造工程は集合基板状態で行われる。
The diaphragm 105 according to the present embodiment is manufactured by, for example, the following process. FIG. 14 is a cross-sectional view sequentially illustrating the manufacturing process of the diaphragm 105. In FIG. 14, for the convenience of explanation, the manufacturing process using one chip (individual piece) will be described.
まず、図14中の(1)に示すように、複数の絶縁基材層11c,12c,13c,14cを準備する。
First, as shown in (1) in FIG. 14, a plurality of insulating base layers 11c, 12c, 13c, and 14c are prepared.
次に、複数の絶縁基材層11c,12c,13cに、コイルパターンCP1,CP2,CP3、外部電極P1,P2、導体21,22、他の導体(図12(B)における接続導体CN1,CN2)および層間接続導体等をそれぞれ形成する。
Next, coil patterns CP1, CP2, CP3, external electrodes P1, P2, conductors 21, 22, and other conductors (connection conductors CN1, CN2 in FIG. 12B) are formed on the plurality of insulating base layers 11c, 12c, 13c. ) And interlayer connection conductors and the like are formed.
また、絶縁基材層11c,12cに、開口部H1a,開口部H2aをそれぞれ形成する。開口部H1aは、コイルパターンCP1によって囲まれる領域内に配置される貫通孔である。開口部H2aは、コイルパターンCP2によって囲まれる領域内に配置される貫通孔である。開口部H1a,H2aは、例えばレーザー等によってエッチングすることで形成される。なお、開口部H1a,H2aは、ドリル等による研削、研磨またはパンチングで形成してもよい。
Also, openings H1a and H2a are formed in the insulating base layers 11c and 12c, respectively. The opening H1a is a through hole arranged in a region surrounded by the coil pattern CP1. The opening H2a is a through hole arranged in a region surrounded by the coil pattern CP2. The openings H1a and H2a are formed by etching with a laser or the like, for example. The openings H1a and H2a may be formed by grinding, polishing, or punching with a drill or the like.
なお、本実施形態では、Z軸方向から視た開口部H1aの面積は、Z軸方向から視た開口部H2aの面積よりも大きい。
In the present embodiment, the area of the opening H1a viewed from the Z-axis direction is larger than the area of the opening H2a viewed from the Z-axis direction.
次に、図14中の(2)に示すように、剛性の高い台座2上に、絶縁基材層14c,13c,12c,11cの順に積層する。このとき、絶縁基材層12cの開口部H2aは、積層方向(Z軸方向)から視て、絶縁基材層11cの開口部H1aの内部に収まるように配置される。すなわち、絶縁基材層11cおよび絶縁基材層12cを積層したときに、開口部H1a,H2aは重なっている。
Next, as shown in (2) in FIG. 14, the insulating base layers 14c, 13c, 12c, and 11c are stacked in this order on the highly rigid base 2. At this time, the opening H2a of the insulating base material layer 12c is disposed so as to fit inside the opening H1a of the insulating base material layer 11c when viewed from the stacking direction (Z-axis direction). That is, when the insulating base material layer 11c and the insulating base material layer 12c are laminated, the openings H1a and H2a overlap.
その後、積層した複数の絶縁基材層11c,12c,13c,14cを加熱加圧することにより、積層体10CPを形成する。具体的には、積層した複数の絶縁基材層を加熱し、図14中の(2)に示す矢印の方向から剛性の高い部材3によりプレス(加圧)を行う。同時に、部材3によって加圧していな部分は、図14中の(2)に示す中抜き矢印の方向から静水圧による等方圧プレスを行う。部材3は、一方面(図14中の(2)に示す部材3の上面)の面積が他方面(図14中の(2)に示す部材3の下面)の面積よりも大きな四角錘台状の部材であり、例えば金属製ブロックである。
Thereafter, the laminated body 10CP is formed by heating and pressurizing the plurality of laminated insulating base material layers 11c, 12c, 13c, and 14c. Specifically, the plurality of laminated insulating base layers are heated and pressed (pressed) by the highly rigid member 3 from the direction of the arrow indicated by (2) in FIG. At the same time, the portion not pressed by the member 3 is isostatically pressed by hydrostatic pressure from the direction of the hollow arrow shown in (2) in FIG. The member 3 has a square frustum shape in which the area of one surface (the upper surface of the member 3 shown in (2) in FIG. 14) is larger than the area of the other surface (the lower surface of the member 3 shown in (2) in FIG. 14). For example, a metal block.
上記加熱・加圧の際、部材3は、重なった開口部H1a,H2aの内側に位置するように配置される。そのため、重なった開口部H1a,H2aの側面は、部材3の端面に当接して加圧され、部材3の端面に沿った形状となる。このようにして、側面がテーパー状の第1凹部HP1aが形成される。
During the heating and pressurization, the member 3 is disposed so as to be located inside the overlapping openings H1a and H2a. Therefore, the side surfaces of the overlapping openings H1a and H2a are pressed against the end surface of the member 3 and are shaped along the end surface of the member 3. In this way, the first recess HP1a having a tapered side surface is formed.
次に、積層体10CPの一方主面(図14中の(3)に示す積層体10CPの上面)に保護層1cを形成する。保護層1cは、外部電極P1,P2に応じた位置に開口を有し、第1凹部HP1aに応じた位置に開口を有する。そのため、積層体10CP(絶縁基材層11c)の上面に保護層1cが形成されることにより、外部電極P1,P2が第1主面から露出し、第1凹部HP1が形成される。
Next, the protective layer 1c is formed on one main surface of the multilayer body 10CP (the upper surface of the multilayer body 10CP shown in (3) in FIG. 14). The protective layer 1c has an opening at a position corresponding to the external electrodes P1 and P2, and an opening at a position corresponding to the first recess HP1a. Therefore, when the protective layer 1c is formed on the upper surface of the multilayer body 10CP (insulating base material layer 11c), the external electrodes P1 and P2 are exposed from the first main surface, and the first recess HP1 is formed.
上記の工程の後、集合基板から個々の個片に分離して、図14中の(4)に示すような振動板105を得る。
After the above steps, the diaphragm 105 is separated from the aggregate substrate into individual pieces to obtain a diaphragm 105 as shown in (4) in FIG.
なお、上記製造方法では、開口部(図14中の(1)に示す開口部H1a,H2a)を形成した絶縁基材層を積層して、第1凹部HP1を形成する例を示したが、第1凹部HP1の形成方法はこれに限定されるものではない。第1凹部HP1は、積層体を形成した後に、レーザーやドリル等で積層体の主面を研削・研磨・エッチングすることで形成してもよい。また、積層体を形成する。
In the above manufacturing method, the example in which the first recess HP1 is formed by laminating the insulating base material layer in which the openings (openings H1a and H2a shown in (1) in FIG. 14) are formed is shown. The formation method of 1st recessed part HP1 is not limited to this. The first recess HP1 may be formed by grinding, polishing, and etching the main surface of the laminate with a laser or a drill after the laminate is formed. Moreover, a laminated body is formed.
なお、本実施形態では、積層体10Cの第1主面VS1に1つの第1凹部HP1が形成される例を示したが、この構成に限定されるものではない。積層体10Cの第2主面VS2に凹部(本発明における「第2凹部」)が形成され、第2磁石の少なくとも一部が第2凹部の内側に配置されていてもよい。なお、第1凹部HP1(または、第2凹部)の個数は、1つに限定されるものではなく、複数でもよい。なお、第1凹部HP1(または、第2凹部)の位置は、適宜変更が可能である。
In the present embodiment, an example in which one first recess HP1 is formed on the first main surface VS1 of the stacked body 10C is shown, but the present invention is not limited to this configuration. A concave portion (“second concave portion” in the present invention) may be formed on the second main surface VS2 of the stacked body 10C, and at least a part of the second magnet may be disposed inside the second concave portion. Note that the number of first recesses HP1 (or second recesses) is not limited to one, and may be plural. The position of the first recess HP1 (or the second recess) can be changed as appropriate.
また、本実施形態では、第1凹部HP1(または、第2凹部)が、積層体10Cの主面から内側に向かって形成される逆四角錘台状の開口である例を示したが、第1凹部HP1(または、第2凹部)はこの形状に限定されるものではない。第1凹部HP1(または、第2凹部)の形状は適宜変更可能であり、例えば逆多角錘状、逆円錐台状、逆円柱状、逆円錐状、半球状等であってもよい。すなわち、第1凹部HP1(または、第2凹部)の側面は、テーパー状に形成されている必要はない。但し、上記(n)等の作用・効果の点から、第1凹部HP1(または第2凹部)の側面は、テーパー状に形成されていることが好ましい。
In the present embodiment, an example is shown in which the first recess HP1 (or the second recess) is an inverted square frustum-shaped opening formed inward from the main surface of the stacked body 10C. 1 recessed part HP1 (or 2nd recessed part) is not limited to this shape. The shape of the first recess HP1 (or the second recess) can be changed as appropriate, and may be, for example, an inverted polygonal pyramid shape, an inverted truncated cone shape, an inverted cylindrical shape, an inverted conical shape, a hemispherical shape, or the like. That is, the side surface of the first recess HP1 (or the second recess) does not need to be tapered. However, it is preferable that the side surface of the first recess HP1 (or the second recess) is formed in a taper shape from the viewpoint of the function and effect such as (n).
さらに、第1磁石の少なくとも一部が第1凹部HP1の内側に配置され、且つ、第2磁石の少なくとも一部が第2凹部の内側に配置される構造であってもよい。この構成により、コイル31が第1磁石により近接して配置され、コイル31が第2磁石により近接して配置されるため、第1磁石とコイル31との相互作用による電磁力を大きくでき、且つ、第2磁石とコイル31との相互作用による電磁力を大きくできる。したがって、第1磁石の少なくとも一部が第1凹部HP1に配置される構成よりも、振動板の駆動効率がさらに高まる(振動板の振幅をさらに大きくできる)。
Furthermore, it may be a structure in which at least a part of the first magnet is disposed inside the first recess HP1, and at least a part of the second magnet is disposed inside the second recess. With this configuration, since the coil 31 is disposed closer to the first magnet and the coil 31 is disposed closer to the second magnet, the electromagnetic force due to the interaction between the first magnet and the coil 31 can be increased, and The electromagnetic force due to the interaction between the second magnet and the coil 31 can be increased. Therefore, the driving efficiency of the diaphragm is further increased (the amplitude of the diaphragm can be further increased) as compared with the configuration in which at least a part of the first magnet is disposed in the first recess HP1.
また、本実施形態では、第1凹部HP1が、Z軸方向から視て、コイル31のコイル開口COの内側に配置される例を示したが、この構成に限定されるものではない。第1凹部HP1は、Z軸方向から視て、コイル31のコイル開口COの内側に配置されていなくてもよい。但し、上記(m)等の作用・効果の点から、第1凹部HP1(または第2凹部)は、Z軸方向から視て、コイル31のコイル開口COの内側に配置されることが好ましい。
Further, in the present embodiment, the example in which the first recess HP1 is disposed inside the coil opening CO of the coil 31 when viewed from the Z-axis direction is shown, but the present invention is not limited to this configuration. The first recess HP1 may not be disposed inside the coil opening CO of the coil 31 when viewed from the Z-axis direction. However, from the viewpoint of the function and effect such as the above (m), the first recess HP1 (or the second recess) is preferably disposed inside the coil opening CO of the coil 31 as viewed from the Z-axis direction.
《第6の実施形態》
第6の実施形態では、複数のコイルパターンがスパイラル状である例を示す。 << Sixth Embodiment >>
In the sixth embodiment, an example in which a plurality of coil patterns is spiral is shown.
第6の実施形態では、複数のコイルパターンがスパイラル状である例を示す。 << Sixth Embodiment >>
In the sixth embodiment, an example in which a plurality of coil patterns is spiral is shown.
図15(A)は第6の実施形態に係る振動板106の外観斜視図であり、図15(B)は振動板106の断面図である。図16は、振動板106の分解平面図である。なお、図16では、構造を解りやすくするため、コイルパターンCP1A,CP2A,CP3A,CP4Aをドットパターンで示している。また、図16では、コイルパターンCP1Aの最外周部分を、他の部分よりも濃いドットパターンで示している。
FIG. 15A is an external perspective view of the diaphragm 106 according to the sixth embodiment, and FIG. 15B is a cross-sectional view of the diaphragm 106. FIG. 16 is an exploded plan view of the diaphragm 106. In FIG. 16, the coil patterns CP1A, CP2A, CP3A, and CP4A are shown as dot patterns in order to facilitate understanding of the structure. In FIG. 16, the outermost peripheral portion of the coil pattern CP1A is shown by a darker dot pattern than the other portions.
振動板106は、積層体10D、積層体10Dに形成されるコイル36、外部電極P1,P2を備える。本実施形態に係る振動板106は、コイル36を備える点で、第1の実施形態に係る振動板101と異なる。振動板106の他の構成については、振動板101と実質的に同じである。
The diaphragm 106 includes a laminate 10D, a coil 36 formed in the laminate 10D, and external electrodes P1 and P2. The diaphragm 106 according to the present embodiment is different from the diaphragm 101 according to the first embodiment in that a coil 36 is provided. The other configuration of the diaphragm 106 is substantially the same as that of the diaphragm 101.
以下、第1の実施形態に係る振動板101と異なる部分について説明する。
Hereinafter, parts different from the diaphragm 101 according to the first embodiment will be described.
積層体10Dは、図16に示すように、複数の絶縁基材層14d,13c,12d,11dおよび保護層1dを順に積層して形成される。複数の絶縁基材層11d,12d,13d,14dおよび保護層1dの構成は、第1の実施形態で説明した複数の絶縁基材層11a,12a,13a,14aおよび保護層1aと実質的に同じである。
As shown in FIG. 16, the laminated body 10D is formed by sequentially laminating a plurality of insulating base material layers 14d, 13c, 12d, 11d and a protective layer 1d. The configuration of the plurality of insulating base material layers 11d, 12d, 13d, 14d and the protective layer 1d is substantially the same as that of the plurality of insulating base material layers 11a, 12a, 13a, 14a and the protective layer 1a described in the first embodiment. The same.
絶縁基材層11dの表面には、コイルパターンCP1A、外部電極P1,P2および接続導体CN1が形成されている。コイルパターンCP1Aは、絶縁基材層11dの外周に沿って巻回される約1.5ターン強の矩形スパイラル状の導体である。外部電極P1,P2および接続導体CN1の構成は、第1の実施形態で説明したものと同じである。
The coil pattern CP1A, the external electrodes P1 and P2, and the connection conductor CN1 are formed on the surface of the insulating base layer 11d. The coil pattern CP1A is a rectangular spiral conductor of about 1.5 turns that is wound along the outer periphery of the insulating base layer 11d. The configurations of the external electrodes P1, P2 and the connection conductor CN1 are the same as those described in the first embodiment.
また、絶縁基材層11dには、層間接続導体V1,V6が形成されている。
Further, interlayer connection conductors V1 and V6 are formed on the insulating base material layer 11d.
絶縁基材層12dの表面には、コイルパターンCP2Aおよび導体23が形成されている。コイルパターンCP2Aは、絶縁基材層12dの外周に沿って巻回される約1.5ターン強の矩形スパイラル状の導体である。図16に示すように、コイルパターンCP2Aの第1端は、層間接続導体V1を介して、コイルパターンCP1Aの第2端に接続される。導体23は、絶縁基材層12dの第2辺(図16における絶縁基材層12dの右辺)中央付近に配置される矩形の導体である。導体23は、層間接続導体V6を介して外部電極P2に接続される。
The coil pattern CP2A and the conductor 23 are formed on the surface of the insulating base layer 12d. The coil pattern CP2A is a rectangular spiral conductor having a strength of about 1.5 turns wound around the outer periphery of the insulating base layer 12d. As shown in FIG. 16, the first end of the coil pattern CP2A is connected to the second end of the coil pattern CP1A via the interlayer connection conductor V1. The conductor 23 is a rectangular conductor disposed near the center of the second side of the insulating base layer 12d (the right side of the insulating base layer 12d in FIG. 16). The conductor 23 is connected to the external electrode P2 through the interlayer connection conductor V6.
また、絶縁基材層12dには、層間接続導体V2,V5が形成されている。
Further, interlayer connection conductors V2 and V5 are formed on the insulating base material layer 12d.
絶縁基材層13dの表面には、コイルパターンCP3Aおよび導体22が形成されている。コイルパターンCP3Aは、絶縁基材層13dの外周に沿って巻回される約1.5ターン強の矩形スパイラル状の導体である。図16に示すように、コイルパターンCP3Aの第1端は、層間接続導体V2を介して、コイルパターンCP2Aの第2端に接続される。導体22は、図16に示すように、絶縁基材層13dの第2辺(図16における絶縁基材層13dの右辺)中央付近に配置される矩形の導体である。導体22は、層間接続導体V5を介して導体23に接続される。
The coil pattern CP3A and the conductor 22 are formed on the surface of the insulating base layer 13d. The coil pattern CP3A is a rectangular spiral conductor of about 1.5 turns that is wound along the outer periphery of the insulating base layer 13d. As shown in FIG. 16, the first end of the coil pattern CP3A is connected to the second end of the coil pattern CP2A via the interlayer connection conductor V2. As shown in FIG. 16, the conductor 22 is a rectangular conductor arranged near the center of the second side of the insulating base layer 13d (the right side of the insulating base layer 13d in FIG. 16). The conductor 22 is connected to the conductor 23 via the interlayer connection conductor V5.
また、絶縁基材層13dには、層間接続導体V3,V4が形成されている。
Further, interlayer connection conductors V3 and V4 are formed on the insulating base material layer 13d.
絶縁基材層14dの表面には、コイルパターンCP4A、導体21および接続導体CN2が形成されている。コイルパターンCP4Aは、絶縁基材層14dの外周に沿って巻回される約1.5ターンの矩形スパイラル状の導体である。図16に示すように、コイルパターンCP4Aの第1端は、層間接続導体V3を介して、コイルパターンCP3Aの第2端に接続される。導体21は、絶縁基材層14dの第2辺(図16における絶縁基材層14dの右辺)中央付近に配置される矩形の導体である。導体21は、層間接続導体V4を介して導体22に接続される。接続導体CN2は導体21とコイルパターンCP4Aの第2端との間を接続する導体である。
The coil pattern CP4A, the conductor 21 and the connection conductor CN2 are formed on the surface of the insulating base layer 14d. The coil pattern CP4A is a rectangular spiral conductor of about 1.5 turns that is wound along the outer periphery of the insulating base layer 14d. As shown in FIG. 16, the first end of the coil pattern CP4A is connected to the second end of the coil pattern CP3A via the interlayer connection conductor V3. The conductor 21 is a rectangular conductor arranged near the center of the second side of the insulating base layer 14d (the right side of the insulating base layer 14d in FIG. 16). The conductor 21 is connected to the conductor 22 via the interlayer connection conductor V4. The connection conductor CN2 is a conductor that connects between the conductor 21 and the second end of the coil pattern CP4A.
このように、振動板106では、4つの絶縁基材層11d,12d,13d,14dにそれぞれ形成される複数のコイルパターンCP1A,CP2A,CP3A,CP4Aおよび層間接続導体V1,V2,V3を含んで約6.5ターンのコイル36が形成される。また、コイル36の第1端は外部電極P1に接続され、コイル36の第2端は外部電極P2に接続される。
Thus, the diaphragm 106 includes a plurality of coil patterns CP1A, CP2A, CP3A, CP4A and interlayer connection conductors V1, V2, V3 formed on the four insulating base layers 11d, 12d, 13d, 14d, respectively. A coil 36 having about 6.5 turns is formed. The first end of the coil 36 is connected to the external electrode P1, and the second end of the coil 36 is connected to the external electrode P2.
図16に示すように、第1主面側コイルパターン(コイルパターンCP1A)の一部の線幅は、それ以外のコイルパターンCP2A,CP3A,CP4Aの線幅よりも細い。具体的には、第1主面側コイルパターンの最外周部分(コイルパターンCP1Aの最外周に位置する約1ターン)の線幅が、それ以外のコイルパターンCP2A,CP3A,CP4Aの線幅よりも細い。
As shown in FIG. 16, the line width of a part of the first main surface side coil pattern (coil pattern CP1A) is narrower than the line widths of the other coil patterns CP2A, CP3A, CP4A. Specifically, the line width of the outermost peripheral portion of the first main surface side coil pattern (about one turn located on the outermost outer periphery of the coil pattern CP1A) is larger than the line widths of the other coil patterns CP2A, CP3A, CP4A. thin.
また、図15(B)に示すように、第1主面側コイルパターン(コイルパターンCP1A)は、積層方向(Z軸方向)において第2主面VS2よりも第1主面VS1に近接している(L11<L12)。
Further, as shown in FIG. 15B, the first main surface side coil pattern (coil pattern CP1A) is closer to the first main surface VS1 than the second main surface VS2 in the stacking direction (Z-axis direction). (L11 <L12).
次に、本実施形態に係る振動素子について図を参照して説明する。図17は第6の実施形態に係る振動素子206の主要部を示す断面図である。
Next, the vibration element according to this embodiment will be described with reference to the drawings. FIG. 17 is a cross-sectional view illustrating a main part of a vibration element 206 according to the sixth embodiment.
振動素子206は、振動板106および磁石41を備える。
The vibration element 206 includes a vibration plate 106 and a magnet 41.
振動板106の長手方向の両端は、振動素子206が図示しない電子機器に組み込まれた際に固定され、磁石41は図示しない電子機器の筐体(またはカバー)等に固定される。
Both ends in the longitudinal direction of the diaphragm 106 are fixed when the vibration element 206 is incorporated in an electronic device (not shown), and the magnet 41 is fixed to a casing (or cover) of the electronic device (not shown).
本実施形態では、この磁石41が本発明における「第1磁石」に相当する。
In the present embodiment, the magnet 41 corresponds to the “first magnet” in the present invention.
なお、図示を省略するが、磁石41はZ軸方向から視て、コイル36の形成領域(図3(A)におけるコイルの形成領域CEを参照)に重なる位置に配置されている。
In addition, although illustration is abbreviate | omitted, the magnet 41 is arrange | positioned in the position which overlaps with the formation area (refer coil formation area | region CE in FIG. 3 (A)) of the coil 36 seeing from a Z-axis direction.
また、振動板106の外部電極P1,P2は、振動素子202が図示しない電子機器に組み込まれた際、電子機器の回路に接続される。振動板106のコイル36に駆動電流が流れることにより、振動板106は図17中の白抜き矢印で示す方向に振動する。
Further, the external electrodes P1 and P2 of the diaphragm 106 are connected to the circuit of the electronic device when the vibration element 202 is incorporated in the electronic device (not shown). When a drive current flows through the coil 36 of the diaphragm 106, the diaphragm 106 vibrates in the direction indicated by the white arrow in FIG.
本実施形態に係る振動板106のように、第1主面側コイルパターン(コイルパターンCP1A)の一部の線幅が、それ以外のコイルパターンCP2,CP3の線幅よりも細い場合であっても、第1の実施形態で述べたような作用・効果を奏する。
As in the diaphragm 106 according to the present embodiment, a part of the first main surface side coil pattern (coil pattern CP1A) has a narrower line width than the other coil patterns CP2 and CP3. Also, the operations and effects as described in the first embodiment are achieved.
なお、スパイラル状の第1主面側コイルパターンの一部の線幅がそれ以外のコイルパターンの線幅よりも細い場合には、第1主面側コイルパターンの最外周部分(最外周に位置する約1ターン)の半周以上の線幅が、それ以外のコイルパターンの線幅よりも細いことが好ましい。コイルパターンがスパイラル状である場合(コイルパターンが1ターン以上である場合)には、主にコイルパターンの最外周部分が、第1磁石と相互に作用する磁束の形成に寄与する。そのため、第1主面側コイルパターンの最外周部分の半周以上の線幅を、それ以外のコイルパターンの線幅よりも細くすることにより、コイル36の導体損失の大幅な増加を抑制しつつ、第1磁石とコイル36との相互作用による電磁力を効果的に大きくできる。なお、上記の作用・効果の点から、第1主面側コイルパターンの最外周部分全体の線幅を、それ以外のコイルパターンの線幅よりも細くすることが好ましい。なお、このことは、第2主面側コイルパターンと第2磁石との関係でも同様である。
In addition, when the line width of a part of the spiral first main surface side coil pattern is narrower than the line width of the other coil patterns, the outermost peripheral portion of the first main surface side coil pattern (positioned at the outermost periphery). It is preferable that the line width of about one turn) is narrower than the line width of the other coil patterns. When the coil pattern is spiral (when the coil pattern has one or more turns), the outermost peripheral portion of the coil pattern mainly contributes to the formation of magnetic flux that interacts with the first magnet. Therefore, by making the line width of the outer circumference of the first main surface side coil pattern more than a half circumference smaller than the line width of the other coil patterns, while suppressing a significant increase in the conductor loss of the coil 36, The electromagnetic force due to the interaction between the first magnet and the coil 36 can be effectively increased. In addition, it is preferable to make the line width of the whole outermost peripheral part of a 1st main surface side coil pattern thinner than the line width of other coil patterns from the point of said effect | action and effect. This also applies to the relationship between the second main surface side coil pattern and the second magnet.
《その他の実施形態》
以上に示した各実施形態では、積層体が矩形の平板である例を示したが、この構成に限定されるものではない。積層体の平面形状は本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば円形、楕円形、多角形等であってもよい。また、積層体の第1主面VS1および第2主面VS2は、完全な平面に限定されるものではなく、一部が曲面等であってもよい。 << Other Embodiments >>
In each embodiment shown above, although the example which a laminated body is a rectangular flat plate was shown, it is not limited to this structure. The planar shape of the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited, and may be, for example, a circle, an ellipse, or a polygon. Further, the first main surface VS1 and the second main surface VS2 of the stacked body are not limited to complete planes, and some of them may be curved surfaces or the like.
以上に示した各実施形態では、積層体が矩形の平板である例を示したが、この構成に限定されるものではない。積層体の平面形状は本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば円形、楕円形、多角形等であってもよい。また、積層体の第1主面VS1および第2主面VS2は、完全な平面に限定されるものではなく、一部が曲面等であってもよい。 << Other Embodiments >>
In each embodiment shown above, although the example which a laminated body is a rectangular flat plate was shown, it is not limited to this structure. The planar shape of the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited, and may be, for example, a circle, an ellipse, or a polygon. Further, the first main surface VS1 and the second main surface VS2 of the stacked body are not limited to complete planes, and some of them may be curved surfaces or the like.
以上に示した各実施形態では、熱可塑性樹脂からなる積層体の例を示したが、この構成に限定されるものではない。本発明の積層体は、熱硬化性樹脂からなるものでもよい。
In each of the embodiments described above, an example of a laminate made of a thermoplastic resin has been shown, but the present invention is not limited to this configuration. The laminate of the present invention may be made of a thermosetting resin.
また、以上に示した各実施形態では、3つから5つの絶縁基材層を積層して構成される積層体を備える振動板について示したが、この構成に限定されるものではない。積層体を形成する絶縁基材層の層数は、本発明の作用・効果を奏する範囲において適宜変更可能である。
Further, in each of the embodiments described above, the diaphragm including the laminated body constituted by laminating three to five insulating base layers is shown, but the present invention is not limited to this configuration. The number of insulating base material layers forming the laminate can be changed as appropriate within the range where the functions and effects of the present invention are exhibited.
なお、以上に示した各実施形態に係る振動板は、3つから5つの絶縁基材層にそれぞれ形成される約1ターンの複数のコイルパターンを含んでヘリカル状のコイルを備える例を示したが、この構成に限定されるものではない。本発明の振動板は、1ターン未満の複数のコイルパターンを含んでヘリカル状またはループ状のコイルを備える構成でもよく、ループ状およびスパイラル状の複数のコイルパターンを含んだコイルを備える構成でもよい。また、本発明の振動板は、複数の絶縁基材層にそれぞれ形成されるミアンダ状のコイルパターンを含んだコイルを備える構成でもよい。本発明におけるコイルの形状および巻回数は、本発明の作用・効果を奏する範囲において適宜変更可能である。なお、本発明におけるコイルは、少なくとも2つ以上の絶縁基材層にそれぞれ形成されるコイルパターンを含む構成であればよい。
In addition, the diaphragm which concerns on each embodiment shown above showed the example provided with a helical coil including the coil pattern of about 1 turn each formed in three to five insulating base material layers. However, it is not limited to this configuration. The diaphragm of the present invention may include a helical or loop-shaped coil including a plurality of coil patterns of less than one turn, or may include a coil including a plurality of loop-shaped and spiral coil patterns. . In addition, the diaphragm of the present invention may have a configuration including a coil including a meandering coil pattern formed on each of a plurality of insulating base layers. The shape and the number of turns of the coil in the present invention can be changed as appropriate within the range where the functions and effects of the present invention are exhibited. In addition, the coil in this invention should just be the structure containing the coil pattern each formed in an at least 2 or more insulating base material layer.
また、以上に示した各実施形態では、第1磁石のみを備える振動素子、または第1磁石と第2磁石の両方を備える振動素子の2例を示したが、この構成に限定されるものではない。本発明の振動素子は、第2磁石のみを備える構成であってもよい。また、以上に示した各実施形態では、振動素子が1つまたは2つの磁石を備える例を示したが、磁石の個数はこれに限定されるものではなく、3つ以上であってもよい。振動素子が3つ以上の磁石を備える場合には、振動素子が複数の第1磁石を備えていてもよく、振動素子が複数の第2磁石を備えていてもよい。
Moreover, in each embodiment shown above, although two examples of the vibration element provided only with a 1st magnet or the vibration element provided with both the 1st magnet and the 2nd magnet were shown, it is not limited to this structure. Absent. The vibration element of the present invention may be configured to include only the second magnet. Moreover, in each embodiment shown above, although the example in which a vibration element is provided with one or two magnets was shown, the number of magnets is not limited to this, Three or more may be sufficient. When the vibration element includes three or more magnets, the vibration element may include a plurality of first magnets, and the vibration element may include a plurality of second magnets.
以上に示した各実施形態では、積層体の第1主面VS1側に外部電極P1,P2が設けられた例を示したが、本発明における振動板はこの構成に限定されるものではない。外部電極P1,P2の個数・形状・配置等については本発明の作用・効果を奏する範囲において適宜変更可能である。外部電極は、第2主面VS2側に設けられていてもよく、第1主面VS1および第2主面VS2の両方に設けられていてもよい。
In each of the above-described embodiments, the example in which the external electrodes P1 and P2 are provided on the first main surface VS1 side of the multilayer body is shown, but the diaphragm in the present invention is not limited to this configuration. The number, shape, arrangement, and the like of the external electrodes P1, P2 can be changed as appropriate within the scope of the effects and effects of the present invention. The external electrode may be provided on the second main surface VS2 side, or may be provided on both the first main surface VS1 and the second main surface VS2.
また、以上に示した各実施形態では、積層体の第1主面VS1側に保護層が形成された例を示したが、この構成に限定されるものではない。上述したように、本発明の振動板にとって、保護層は必須ではない。また、保護層は、積層体の第2主面VS2側に形成されていてもよく、第1主面VS1側および第2主面VS2側の両方に形成されていてもよい。
Moreover, in each embodiment shown above, although the example in which the protective layer was formed in the 1st main surface VS1 side of a laminated body was shown, it is not limited to this structure. As described above, the protective layer is not essential for the diaphragm of the present invention. Further, the protective layer may be formed on the second main surface VS2 side of the multilayer body, or may be formed on both the first main surface VS1 side and the second main surface VS2 side.
最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
Finally, the description of the above embodiment is illustrative in all respects and not restrictive. Modifications and changes can be made as appropriate by those skilled in the art. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope equivalent to the claims.
AP1,AP2,AP3…開口
AX…コイルの巻回軸
CE…コイルの形成領域
CN1,CN2…接続導体
CO…コイル開口
CP1,CP1A…コイルパターン(第1主面側コイルパターン)
CP2,CP2A,CP3,CP3A,CP4,CP4A,CP5…コイルパターン
H1,H1a,H2,H2a…開口部
HP1,HP1a…第1凹部
P1,P2…外部電極
ML…中央高さ
V1,V2,V3,V4,V5,V6,V7,V8…層間接続導体
VS1…第1主面
VS2…第2主面
1,1a,1b,1c,1d…保護層
2…台座
3…部材
10A,10AP,10B,10C,10CP,10D…積層体
11a,11b,11c,11d,12a,12b,12c,12d,13a,13b,13c,13d,14b,14c,14d,15b…絶縁基材層
21,22,23,24…導体
31,32,33,34,36…コイル
41…磁石(第1磁石)
42…磁石(第2磁石)
101,102,103,104,105,106…振動板
201,202,205,206…振動素子 AP1, AP2, AP3 ... opening AX ... coil winding axis CE ... coil formation region CN1, CN2 ... connection conductor CO ... coil opening CP1, CP1A ... coil pattern (first main surface side coil pattern)
CP2, CP2A, CP3, CP3A, CP4, CP4A, CP5 ... Coil pattern H1, H1a, H2, H2a ... Opening HP1, HP1a ... First recess P1, P2 ... External electrode ML ... Center height V1, V2, V3 V4, V5, V6, V7, V8 ... interlayer connection conductor VS1 ... first main surface VS2 ... second main surface 1, 1a, 1b, 1c, 1d ... protective layer 2 ... pedestal 3 ... members 10A, 10AP, 10B, 10C , 10CP, 10D ... laminates 11a, 11b, 11c, 11d, 12a, 12b, 12c, 12d, 13a, 13b, 13c, 13d, 14b, 14c, 14d, 15b ... insulating base layers 21, 22, 23, 24 ... conductors 31, 32, 33, 34, 36 ... coil 41 ... magnet (first magnet)
42 ... Magnet (second magnet)
101, 102, 103, 104, 105, 106 ... diaphragms 201, 202, 205, 206 ... vibrating elements
AX…コイルの巻回軸
CE…コイルの形成領域
CN1,CN2…接続導体
CO…コイル開口
CP1,CP1A…コイルパターン(第1主面側コイルパターン)
CP2,CP2A,CP3,CP3A,CP4,CP4A,CP5…コイルパターン
H1,H1a,H2,H2a…開口部
HP1,HP1a…第1凹部
P1,P2…外部電極
ML…中央高さ
V1,V2,V3,V4,V5,V6,V7,V8…層間接続導体
VS1…第1主面
VS2…第2主面
1,1a,1b,1c,1d…保護層
2…台座
3…部材
10A,10AP,10B,10C,10CP,10D…積層体
11a,11b,11c,11d,12a,12b,12c,12d,13a,13b,13c,13d,14b,14c,14d,15b…絶縁基材層
21,22,23,24…導体
31,32,33,34,36…コイル
41…磁石(第1磁石)
42…磁石(第2磁石)
101,102,103,104,105,106…振動板
201,202,205,206…振動素子 AP1, AP2, AP3 ... opening AX ... coil winding axis CE ... coil formation region CN1, CN2 ... connection conductor CO ... coil opening CP1, CP1A ... coil pattern (first main surface side coil pattern)
CP2, CP2A, CP3, CP3A, CP4, CP4A, CP5 ... Coil pattern H1, H1a, H2, H2a ... Opening HP1, HP1a ... First recess P1, P2 ... External electrode ML ... Center height V1, V2, V3 V4, V5, V6, V7, V8 ... interlayer connection conductor VS1 ... first main surface VS2 ... second
42 ... Magnet (second magnet)
101, 102, 103, 104, 105, 106 ...
Claims (13)
- 振動板と、第1磁石と、を備え、
前記振動板は、
可撓性を有する複数の絶縁基材層が積層され、第1主面を有する積層体と、
前記積層体に形成され、前記複数の絶縁基材層の積層方向に巻回軸を有するコイルと、
を有し、
前記コイルは、前記複数の絶縁基材層のうち2つ以上の絶縁基材層にそれぞれ形成される複数のコイルパターンを含み、
前記複数のコイルパターンのうち最も前記第1主面寄りに配置される第1主面側コイルパターンの少なくとも一部の線幅は、それ以外のコイルパターンの少なくとも一つの線幅よりも細く、
前記第1磁石は、前記コイルの巻回軸方向から視て、前記コイルの形成領域に重なる位置に配置され、且つ、前記複数のコイルパターンのうち前記第1主面側コイルパターンに最も近接して配置される、
振動素子。 Comprising a diaphragm and a first magnet;
The diaphragm is
A plurality of insulating base material layers having flexibility, and a laminate having a first main surface;
A coil formed in the laminate and having a winding axis in the stacking direction of the plurality of insulating base layers;
Have
The coil includes a plurality of coil patterns respectively formed on two or more insulating base layers among the plurality of insulating base layers.
The line width of at least a part of the first main surface side coil pattern disposed closest to the first main surface among the plurality of coil patterns is narrower than at least one line width of the other coil patterns,
The first magnet is disposed at a position overlapping the formation region of the coil when viewed from the winding axis direction of the coil, and is closest to the first main surface side coil pattern among the plurality of coil patterns. Arranged,
Vibration element. - 前記積層体は、前記第1主面に対向する第2主面を有し、
前記第1主面側コイルパターンは、前記積層方向において前記第2主面よりも前記第1主面に近接する、請求項1に記載の振動素子。 The laminate has a second main surface facing the first main surface,
2. The vibration element according to claim 1, wherein the first main surface side coil pattern is closer to the first main surface than the second main surface in the stacking direction. - 前記第1主面側コイルパターンは、スパイラル状であり、
前記第1主面側コイルパターンのうち最外周部分の半周以上の線幅は、それ以外のコイルパターンの少なくとも一つの線幅よりも細い、請求項1または2に記載の振動素子。 The first main surface side coil pattern has a spiral shape,
3. The vibration element according to claim 1, wherein a line width equal to or greater than a half circumference of an outermost peripheral portion of the first main surface side coil pattern is narrower than at least one line width of other coil patterns. - 前記第1主面側コイルパターン全体の線幅は、それ以外のコイルパターンの線幅よりも細い、請求項1から3のいずれかに記載の振動素子。 The vibration element according to any one of claims 1 to 3, wherein a line width of the entire first main surface side coil pattern is narrower than a line width of other coil patterns.
- 第2磁石をさらに備え、
前記積層体は、前記第1主面に対向する第2主面を有し、
前記コイルは、前記複数の絶縁基材層のうち3つ以上の絶縁基材層にそれぞれ形成される複数のコイルパターンを含み、
前記複数のコイルパターンのうち最も前記第2主面寄りに配置される第2主面側コイルパターンの少なくとも一部の線幅、および前記第1主面側コイルパターンの少なくとも一部の線幅は、それら以外のコイルパターンの少なくとも一つの線幅よりも細く、
前記第2磁石は、前記コイルの前記巻回軸方向から視て、前記コイルの形成領域に重なる位置に配置され、且つ、前記複数のコイルパターンのうち前記第2主面側コイルパターンに最も近接して配置される、請求項1から3のいずれかに記載の振動素子。 A second magnet;
The laminate has a second main surface facing the first main surface,
The coil includes a plurality of coil patterns respectively formed on three or more insulating base layers among the plurality of insulating base layers.
Of the plurality of coil patterns, the line width of at least a part of the second main surface side coil pattern arranged closest to the second main surface, and the line width of at least a part of the first main surface side coil pattern are: , Narrower than at least one line width of other coil patterns,
The second magnet is disposed at a position overlapping the formation area of the coil when viewed from the winding axis direction of the coil, and is closest to the second main surface side coil pattern among the plurality of coil patterns. The vibration element according to claim 1, wherein the vibration element is disposed as follows. - 前記第2主面側コイルパターンは、前記積層方向において前記第1主面よりも前記第2主面に近接する、請求項5に記載の振動素子。 The vibration element according to claim 5, wherein the second main surface side coil pattern is closer to the second main surface than the first main surface in the stacking direction.
- 前記第2主面側コイルパターンは、スパイラル状であり、
前記第2主面側コイルパターンのうち最外周部分の半周以上の線幅は、それら以外のコイルパターンの少なくとも一つの線幅よりも細い、請求項5または6に記載の振動素子。 The second main surface side coil pattern has a spiral shape,
7. The vibration element according to claim 5, wherein a line width equal to or greater than a half circumference of an outermost peripheral portion of the second main surface side coil pattern is narrower than at least one line width of other coil patterns. - 前記第1主面側コイルパターン全体の線幅および前記第2主面側コイルパターン全体の線幅は、それら以外のコイルパターンの線幅よりも細い、請求項5から7のいずれかに記載の振動素子。 The line width of the whole said 1st main surface side coil pattern and the line width of the whole said 2nd main surface side coil pattern are narrower than the line width of coil patterns other than those, The Claim 1 in any one of Claim 5-7 Vibration element.
- 前記第1主面には第1凹部が形成され、
前記第1凹部は、前記積層方向から視て、前記コイルのコイル開口の内側に配置され、
前記第1磁石は、少なくとも一部が前記第1凹部の内側に配置される、請求項1から8のいずれかに記載の振動素子。 A first recess is formed in the first main surface,
The first recess is disposed inside a coil opening of the coil as viewed from the stacking direction,
The vibration element according to claim 1, wherein at least a part of the first magnet is disposed inside the first recess. - 前記第1凹部は、前記第1主面から前記積層体の内側に向かって、側面がテーパー状に形成されている、請求項9に記載の振動素子。 The vibration element according to claim 9, wherein the first recess has a side surface formed in a tapered shape from the first main surface toward the inside of the stacked body.
- 前記第2主面には第2凹部が形成され、
前記第2凹部は、前記積層方向から視て、前記コイルのコイル開口の内側に配置され、
前記第2磁石は、少なくとも一部が前記第2凹部の内側に配置される、請求項5から8のいずれかに記載の振動素子。 A second recess is formed in the second main surface,
The second recess is disposed inside the coil opening of the coil as viewed from the stacking direction,
The vibration element according to claim 5, wherein at least part of the second magnet is disposed inside the second recess. - 前記第2凹部は、前記第2主面から前記積層体の内側に向かって、側面がテーパー状に形成されている、請求項11に記載の振動素子。 The vibration element according to claim 11, wherein the second recess has a side surface formed in a taper shape from the second main surface toward the inside of the stacked body.
- 前記複数のコイルパターンの線幅は、前記積層方向において前記積層体の表層よりも内層に配置されているほど太い、請求項4または請求項8に記載の振動素子。 The vibration element according to claim 4 or 8, wherein a line width of the plurality of coil patterns is thicker as it is arranged in an inner layer than a surface layer of the multilayer body in the lamination direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201790001337.1U CN209693037U (en) | 2016-12-09 | 2017-11-22 | Vibrating elements |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016239010 | 2016-12-09 | ||
JP2016-239010 | 2016-12-09 | ||
JP2017221626 | 2017-11-17 | ||
JP2017-221626 | 2017-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105392A1 true WO2018105392A1 (en) | 2018-06-14 |
Family
ID=62490937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041925 WO2018105392A1 (en) | 2016-12-09 | 2017-11-22 | Vibration element |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN209693037U (en) |
WO (1) | WO2018105392A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114829023A (en) * | 2020-01-30 | 2022-07-29 | 株式会社村田制作所 | Linear vibration motor, electronic device using the same, vibrator, and method for manufacturing vibrator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008177943A (en) * | 2007-01-19 | 2008-07-31 | Mitsubishi Electric Engineering Co Ltd | Electromagnetic transducer |
JP2011130349A (en) * | 2009-12-21 | 2011-06-30 | Alpine Electronics Inc | Speaker |
US20130089232A1 (en) * | 2010-06-11 | 2013-04-11 | Exelway Inc. | Voice film of multi-layered structure for flat type speaker |
-
2017
- 2017-11-22 WO PCT/JP2017/041925 patent/WO2018105392A1/en active Application Filing
- 2017-11-22 CN CN201790001337.1U patent/CN209693037U/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008177943A (en) * | 2007-01-19 | 2008-07-31 | Mitsubishi Electric Engineering Co Ltd | Electromagnetic transducer |
JP2011130349A (en) * | 2009-12-21 | 2011-06-30 | Alpine Electronics Inc | Speaker |
US20130089232A1 (en) * | 2010-06-11 | 2013-04-11 | Exelway Inc. | Voice film of multi-layered structure for flat type speaker |
Also Published As
Publication number | Publication date |
---|---|
CN209693037U (en) | 2019-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10796837B2 (en) | Electronic component, diaphragm, and electronic device | |
CN106469603B (en) | Coil electronic component | |
JP6401119B2 (en) | Module board | |
JP6566455B2 (en) | Coil component and manufacturing method thereof | |
JP5915821B2 (en) | Electromagnet manufacturing method and electromagnet | |
CN109036831B (en) | Coil component and method for manufacturing same | |
WO2017018109A1 (en) | Flexible inductor | |
WO2016199516A1 (en) | Coil-incorporating multilayer substrate and method for manufacturing same | |
JP2014038884A (en) | Electronic component and method for manufacturing electronic component | |
JP6287974B2 (en) | Coil parts | |
JP2019016743A (en) | Multilayer substrate | |
JP7240813B2 (en) | coil parts | |
US20210272734A1 (en) | Laminated coil component | |
KR102052770B1 (en) | Power inductor and method for manufacturing the same | |
CN112908611B (en) | Coil component | |
JP2017191924A (en) | Coil electronic component and manufacturing method thereof | |
US20190088403A1 (en) | Electronic component, diaphragm, electronic device, and electronic component manufacturing method | |
JP6716867B2 (en) | Coil component and manufacturing method thereof | |
JP5880805B2 (en) | High frequency signal transmission line and manufacturing method thereof | |
JP6913155B2 (en) | Actuator | |
WO2018105392A1 (en) | Vibration element | |
WO2018074104A1 (en) | Magnetic element | |
US20200411228A1 (en) | Laminated coil component | |
JP6638825B2 (en) | Multilayer board | |
KR20170097862A (en) | Coil component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877415 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877415 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |