WO2018103713A1 - 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 - Google Patents
一种利用硅厂碎硅进行再生熔炼的控制系统及方法 Download PDFInfo
- Publication number
- WO2018103713A1 WO2018103713A1 PCT/CN2017/115085 CN2017115085W WO2018103713A1 WO 2018103713 A1 WO2018103713 A1 WO 2018103713A1 CN 2017115085 W CN2017115085 W CN 2017115085W WO 2018103713 A1 WO2018103713 A1 WO 2018103713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- smelting
- submerged arc
- arc furnace
- granulator
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 198
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 197
- 239000010703 silicon Substances 0.000 title claims abstract description 197
- 238000003723 Smelting Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 29
- 238000000465 moulding Methods 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000007670 refining Methods 0.000 claims abstract description 7
- 238000004898 kneading Methods 0.000 claims abstract description 6
- 238000003860 storage Methods 0.000 claims abstract description 4
- 239000008188 pellet Substances 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 5
- 239000011856 silicon-based particle Substances 0.000 claims description 5
- 238000005469 granulation Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000002893 slag Substances 0.000 abstract description 20
- 239000002699 waste material Substances 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 17
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 230000001788 irregular Effects 0.000 abstract description 6
- 238000004064 recycling Methods 0.000 abstract description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 4
- 229920005591 polysilicon Polymers 0.000 abstract description 4
- 241001062472 Stokellia anisodon Species 0.000 abstract description 3
- 238000007711 solidification Methods 0.000 abstract 1
- 230000008023 solidification Effects 0.000 abstract 1
- 229910000720 Silicomanganese Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- XJKVPKYVPCWHFO-UHFFFAOYSA-N silicon;hydrate Chemical compound O.[Si] XJKVPKYVPCWHFO-UHFFFAOYSA-N 0.000 description 3
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 241001417490 Sillaginidae Species 0.000 description 1
- AHIVCQLQCIBVOS-UHFFFAOYSA-N [Fe].[W] Chemical compound [Fe].[W] AHIVCQLQCIBVOS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- DYRBFMPPJATHRF-UHFFFAOYSA-N chromium silicon Chemical compound [Si].[Cr] DYRBFMPPJATHRF-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/26—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic on endless conveyor belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2204/00—Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
- B01J2204/002—Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
Definitions
- the invention relates to the field of reusable processing of silicon slag, in particular to a production system and a process for re-smelting smelting using silicon plant silicon.
- Silicon slag generally refers to the remainder of the ore after refining, and also contains a certain amount of silicon. There are many kinds of silicon slag, industrial silicon slag, solar silicon slag, semiconductor silicon slag and so on. Silicon slag can be used to re-crystallize, purify, and now silicon is scarce, and the price is high. Silico-manganese slag, also called silico-manganese smelting slag, is an industrial waste slag emitted when smelting silicon-manganese alloy. Its structure is loose, and its appearance is often light green particles, which are composed of some irregular amorphous amorphous particles.
- the silico-manganese slag is brittle and brittle, and the bulk silicon-manganese slag can be broken into small pieces by the crusher, and then the coarsely crushed material is further pulverized by entering the fine crusher to ensure that the material entering the silo can reach the monomer dissociation.
- the degree is then evenly sorted by a vibrating feeder and a belt conveyor to the trapezoidal jig.
- the main purpose of the crushing is to break the structure of the continuous body.
- the main purpose of the jigging is to recover the silicon-manganese alloy from the silicon-manganese slag.
- the metal and waste slag can be separated by the re-selection of the jig to obtain pure alloy and waste slag.
- the concentrate and tail can be separated by dehydration of the dewatering sieve
- the object of the present invention is to provide a production system for re-smelting smelting using silicon plant silicon, and to establish a new process to quickly and efficiently recycle waste silicon after use of silicon in enterprises, thereby reducing conversion rate and reducing production cost. Realize the industrialization of waste silicon regeneration.
- a production system for regenerative smelting using silicon plant silicon including:
- Broken silicon storage device used for storing broken silicon, as a raw material supply mechanism of the production system, and outputting broken silicon to the granulator through a conveyor belt;
- Granulator mixing and kneading crushed silicon with water to form particles of uniform particle size, and then transporting it to a submerged arc furnace;
- Submerged arc furnace receiving granulated silicon particles and smelting to form a silicon liquid
- Transfer device transporting the smelted silicon liquid to a molding device
- Molding device injecting the molten silicon liquid into the cooling system according to the set particle diameter
- Cooling system The silicon liquid solidifies in the cooling system to form silicon pellets.
- the technical solution of the present invention is set for the current status of silicon for enterprises.
- the utilization rate of silicon for enterprises is about 70%, and the remaining 30% of waste silicon is silicon of unequal size.
- Blocks, silicon powder, etc. exist, and this part of the silicon block is often accompanied by the use of pollution, that is, the use of various equipment and equipment, these silicon waste is often difficult to use and recycle, and re-invested in the silicon plant and
- the melting rate of the prior art leads to a low conversion rate and a high cost of the silicon.
- the inventor of the present application has conducted exploration and experiment for many years.
- the silicon liquid relay device transfers the molten silicon after the smelting and moves to the upper side of the molding device, and the molding device uniformly deposits the silicon liquid into the cooling system according to the set flow rate, solidifies to form the silicon pellet, and then uses the lifting.
- the system extracts the formed silicon pill, and the silicon water falling into the cooling system has a uniform diameter, which solves the problem that the silicon block is irregularly formed and inconsistent in size due to dumping in the prior art, and the system can efficiently and quickly use the silicon enterprise.
- the silicon waste is smelted to form silicon pellets.
- the produced silicon pellets can be directly used for the refining of polysilicon, which greatly reduces the recycling process and time, and the conversion rate of silicon is high, avoiding the secondary generation of silicon slag and Secondary pollution.
- the submerged arc furnace is an industrial electric furnace that consumes a lot of electricity. Mainly by furnace shell, furnace cover, furnace lining, short net, water cooling system, smoke exhaust system, dust removal system, electrode shell, electrode pressure release and lifting system, loading and unloading system, gripper, burner, hydraulic system, ore furnace Transformer and various electrical equipment, etc.
- the current submerged arc furnace is mainly used for the melting of ferrosilicon, ferromanganese, ferrochrome, tungsten iron, silicon chromium alloy, calcium carbide, boron carbide, etc., but it can not be directly used for silicon melting.
- the reason for the submerged arc furnace is that in the current common sense, the use of the submerged arc furnace is generally 100 to 180 v in order to work normally.
- the transfer device is a rail crane.
- the transfer method of the track crane is fast and effective, and it is very suitable for use by silicon enterprises.
- the cooling system is a rotary cooling pool.
- the formation can be effectively increased, and therefore, by providing a plurality of sets of nozzles on the side wall of the cooling pool body, the nozzle groups are distributed At different depths, each set of nozzles contains one or more nozzles.
- the spray direction of the nozzles is distributed in a tangential direction along the circumference of the cooling pool and is sprayed inward.
- a group of nozzles can drive local cooling water.
- Forming a rotation in the cooling pool After the silicon liquid falls into, it will form a spiral motion under the rotation of the water flow, which greatly increases the formation of the silicon block and achieves the purpose of sufficient heat exchange cooling.
- the multiple sets of nozzles can be kept at different positions. Forming a rotational motion to form a uniform flow field
- a production process for reclaiming smelting using silicon plant silicon comprising the following steps:
- silicon refining silicon particles are smelted in a submerged arc furnace to obtain a silicon liquid
- (d) Molding The molding apparatus conducts the silicon liquid according to the set particle size, and then enters the rotary cooling bath to form a silicon pellet after cooling.
- Another object of the present invention is to provide a new silicon smelting process for centralized recycling of silicon waste in an enterprise in view of the current low silicon utilization rate, high cost of waste silicon processing, and low efficiency in silicon enterprises.
- the crushing silicon is outputted to the granulator through a conveyor belt, and the granulator mixes the discarded irregular silicon with water, and then granulates by granulation to produce small particles with uniform particle size, which is used as a raw material for smelting.
- the regular broken silicon is integrated into particles with substantially the same diameter as raw materials, which can improve the uniformity of the capacity, so that the melting process in the submerged arc furnace is relatively uniform, avoiding local instability, and the silicon liquid transfer device will melt the silicon after the melting.
- the liquid is transferred and moved to the top of the molding device.
- the molding device uniformly deposits the silicon liquid into the cooling system according to the set flow rate, solidifies to form the silicon pellet, and then extracts the formed silicon pellet by the lifting system and drops into the cooling system.
- the silicon water has a uniform diameter, which solves the problem that the silicon block is irregularly formed and inconsistent in size due to dumping in the prior art, and the system can Effectively smelting silicon waste from silicon companies to form silicon pellets, the produced silicon pellets can be directly used for the refining of polysilicon, greatly reducing the recycling process and time, and the conversion rate of silicon is high, avoiding Secondary generation and secondary pollution of silicon slag.
- the working temperature of the submerged arc furnace is 40 to 90V.
- the working temperature of the submerged arc furnace is 60-70V. After years of experimentation and analysis, the applicant found a better production parameter for the use of ore furnace to refine silicon. In this voltage range, silicon melts faster.
- the working voltage is 60 to 70 V. At this time, it is actually an abnormal working range of the submerged arc furnace.
- the use of ill-conditioned working conditions for silicon smelting greatly exceeds the scope of knowledge of those skilled in the art, and also satisfies the conditions of silicon smelting, and has achieved unexpected advantages. For the field of silicon smelting, it has a breakthrough. Progress has greatly improved the mass production of silicon smelting and promoted the development of the industry.
- the present invention has the following advantages and beneficial effects:
- the invention discloses a production system and a process for regenerating and smelting using silicon silicon in a silicon factory, firstly collecting silicon waste in the enterprise, and then outputting the silicon to the granulator through a conveyor belt, and the granulator will be discarded. Irregularly crushed silicon is mixed with water, and then granulated by kneading to produce small particles having a uniform particle size. As a raw material for smelting, uniformity of capacity can be improved by integrating irregular broken silicon into particles having substantially the same diameter as raw materials.
- the silicon liquid transfer device will transfer the silicon liquid after smelting and move to the top of the molding device, the molding device will set the silicon liquid according to the setting.
- the flow is evenly placed in the cooling system, solidified to form silicon pellets, and then the formed silicon pellets are extracted by the lifting system, and the silicon water falling into the cooling system has a uniform diameter, which solves the silicon block formation caused by dumping in the prior art. Irregular, inconsistent size, the system can efficiently and quickly smelt silicon waste from silicon companies to form silicon pellets.
- the silicon pellets produced can be directly used for the refining of polysilicon, which greatly reduces the recycling process and time, and the conversion rate of silicon is high, avoiding secondary generation and secondary pollution of silicon slag;
- the present invention relates to a production system and process for reclaiming smelting using silicon plant silicon.
- the structure of the submerged arc furnace is adopted in the present invention, a major adjustment is made to the parameters of its operation, and the operating voltage is 60 to 70V, at this time, it is actually an abnormal working area of the submerged arc furnace, using sick workers.
- the state of silicon smelting greatly exceeds the scope of knowledge of those skilled in the art, and also meets the conditions of silicon smelting, and has achieved unexpected advantages.
- For the field of silicon smelting there is a breakthrough in progress.
- the mass production of silicon smelting has greatly improved, which has promoted the development of the industry.
- the invention discloses a production system and a process for regenerating and smelting using silicon silicon in a silicon factory, and is directed to a medium-sized silicon enterprise, wherein the amount of silicon used is 3,000 tons per month, and the amount of waste silicon per month is about 80 to 100 tons.
- the specific situation of the enterprise is as follows: broken silicon storage device 1: for storing broken silicon, the warehouse covers an area of 20 square meters, the upper part is used as the collection material inlet, and the lower part has a discharge port as the raw material supply mechanism of the production system.
- the crushing silicon is output to the granulator 2 through the conveyor belt; the granulator 2: the crushed silicon is mixed with water and kneaded to form particles having uniform particle size, and then transported to the submerged arc furnace 3; the single pot yield of the submerged arc furnace is 1 Ton, each smelting time is about 1 hour; the submerged arc furnace 3 receives the granulated silicon particles and smelts to form a silicon liquid.
- the working voltage of the submerged arc furnace 3 adopts a ill-conditioned working voltage range of 40 to 90V.
- the preferred working voltage is 60-70V.
- the molding device 5 includes a cylindrical container.
- Ontology, and with containers The body of the body is matched with a layer of inner liner, the bottom of the container forms a detachable structure with the container body, at least one through hole is arranged on the bottom of the container, and a detachable guiding tube communicating with the through hole.
- the lower part of the container body is closed to form the bottom of the container, one or more through holes are arranged at the bottom, and a detachable draft tube is installed at the through hole, and a lining is arranged inside the container body, and between the container body and the lining
- a layer of insulation layer between the container body, the insulation layer and the lining
- the unloading portion forms a stepped structure, and the outer end surface of the bottom of the container also has a stepped structure.
- the outer casing of the bottom of the container is integrally connected with the container body, and the inner liner on the bottom of the container is connected with the inner liner of the inner side of the container body.
- a cavity is formed between the heat insulating layer and the bottom of the container, and a sealing ring is installed in the cavity, and the end surface of the container body, the heat insulating layer and the inner liner is arranged in a step shape, and is installed in the cavity at the same time.
- a sealing ring can make the connection between the container body and the bottom of the container more tight; the outer side of the container body is provided with a plurality of hanging teeth, and the bottom of the container is provided with a hook matching the hanging teeth, and the container body and the bottom of the container are connected by the hanging teeth and the hook
- the molten silicon liquid is injected into the rotary cooling tank 6 according to the set particle diameter, and a plurality of sets of nozzles are arranged on the side wall of the cooling pool, and the nozzle groups are distributed at different depths, and each set of nozzles includes one or more nozzles.
- the nozzle, the spray direction of the nozzle is distributed in a tangential direction along the circumference of the cooling pool, and is sprayed inward, so that a group of nozzles can partially cool
- the water is driven to form a rotation in the cooling pool. After the silicon liquid falls, the spiral motion is formed under the rotation of the water flow, which greatly increases the formation of the silicon block and achieves the purpose of sufficient heat exchange cooling.
- the scraps generated by the enterprise after using silicon can be directly smelted and recovered in the plant to form silicon pellets, thereby avoiding the transfer process to the silicon refinery, and at the same time, the low conversion rate of the silicon plant, the invention
- the device and process can increase the conversion rate of silicon to over 98%, effectively avoiding secondary pollution and greatly improving production efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Silicon Compounds (AREA)
Abstract
一种利用硅厂碎硅进行再生熔炼的生产系统及工艺,包括碎硅存储装置(1)、造粒机(2)、矿热炉(3)、转运装置(4)、成型装置(5)、冷却系统(6)。首先将企业内的硅废弃物进行集中回收,然后通过输送带向造粒机(2)输出碎硅,造粒机(2)将经过捏合作用造粒生产出粒径均匀的小颗粒,作为熔炼的原料,在矿热炉(3)中的熔炼成硅液,成型装置(5)将硅液按照设定的流量进行均匀地放入冷却系统(6)中,凝固形成硅丸,然后利用提升系统将成型的硅丸提取出来,落入冷却系统(6)的硅水直径均匀,解决了现有技术中因倾倒导致的硅块成型不规则、大小不一致的问题。本系统可以高效快速地对用硅企业的硅废弃物进行熔炼,形成硅丸,生产出来的硅丸可以直接用于多晶硅的提炼,大大减少了回收利用的流程和时间,而且硅的转化率高,避免了硅渣的二次生成和二次污染。
Description
本发明涉及硅渣的重复利用加工领域,具体涉及一种利用硅厂碎硅进行再生熔炼的生产系统及工艺。
硅渣一般是指原矿提炼之后的剩余部分,还含有一定量的硅。硅渣分很多种,工业硅渣,太阳能硅渣,半导体硅渣等等。硅渣可以用来回炉重新结晶、提纯、现在硅料紧缺,价格不菲。硅锰渣也叫硅锰冶炼渣,是冶炼硅锰合金时排放的一种工业废渣,其结构疏松,外观常为浅绿色的颗粒,由一些形状不规则的多孔非晶质颗粒组成。硅锰渣性脆易碎,通过破碎机可以将大块的硅锰渣破碎成小块,然后进入细碎机将粗碎后的物料进一步粉碎,确保进入料仓的物料能够达到单体解离的程度,然后通过振动给料机和皮带输送机均匀的将物料给入梯形跳汰机进行分选。破碎的主要目的在于打破连生体结构,跳汰的主要目的在于从硅锰渣中回收硅锰合金。硅锰渣和硅锰合金存在较大的比重差,通过跳汰机的重选作用可以将金属和废渣分离,获得纯净的合金和废渣,最后可以通过脱水筛的脱水作用分别将精矿和尾矿进行脱水。
用硅企业在进行硅加工的过程中,首先会对硅进行切割分解,然后成片使用,在多个切割、破碎、检测的过程中,不可避免的会有不合格的废硅产生,对于这一类的硅,目前的处置方式还很混乱,有的直接废弃,有的收集以后重新送至硅熔炼厂,加入到硅矿中进行熔炼,但是这个周期漫长,较低的硅矿冶炼生产效率使得碎硅的转化率很低,过多的收集、转运过程造成了比利用硅矿直接冶炼硅的成本高的问题。
发明内容
本发明的目的在于提供一种利用硅厂碎硅进行再生熔炼的生产系统,通过建立新的工艺来对于企业用硅后的废弃硅进行快速高效的回收,在提高转化率的同时降低生产成本,实现废硅再生的产业化。
本发明通过下述技术方案实现:
一种利用硅厂碎硅进行再生熔炼的生产系统,包括:
碎硅存储装置:用于存储碎硅,作为生产系统的原料供应机构,通过输送带向造粒机输出碎硅;
造粒机:将碎硅与水混合并捏合形成粒径均匀的颗粒,然后输送至矿热炉;
矿热炉:接收造粒后的硅颗粒,并进行熔炼形成硅液;
转运装置:将熔炼后的硅液转运至成型装置;
成型装置:将熔炼后的硅液按照设定的粒径注入冷却系统;
冷却系统:硅液在冷却系统中凝固形成硅丸。
本发明的技术方案是针对目前企业用硅的现状而设置的,现有技术中,企业用硅的使用率大概在70%左右,剩余的30%左右的废硅是以不等粒径的硅块、硅粉等形式存在的,而且,这部分的硅块常常伴随着使用污染,即各种机具器械的使用污染,这些硅的废弃物往往难以使用和回收,而重新投入到炼硅厂与硅矿一起熔炼的话,现有技术的熔炼产出率导致了这部分硅的转化率较低,成本较高,为了解决这个现有技术中的问题,本申请的发明人经过多年的摸索和实验,建立了一套针对企业用硅的废弃硅回收利用的生产系统:首先将企业内的硅废弃物进行集中回收,然后通过输送带向造粒机输出碎硅,造粒机将废弃的不规则碎硅与水混合,然后经过捏合作用造粒生产出粒径均匀的小颗粒,作为熔炼的原料,通过将不规则的碎硅整合成直径大致相同的颗粒作为原料,可以提高容量的均一性,使得在矿热炉中的熔炼过程较为均一,避免出现局部不
稳定的情况,硅液中转装置将熔炼以后的硅液进行中转并移动至成型装置上方,成型装置将硅液按照设定的流量进行均匀地放入冷却系统中,凝固形成硅丸,然后利用提升系统将成型的硅丸提取出来,落入冷却系统的硅水直径均匀,解决了现有技术中因倾倒导致的硅块成型不规则、大小不一致的问题,本系统可以高效快速地对用硅企业的硅废弃物进行熔炼,形成硅丸,生产出来的硅丸可以直接用于多晶硅的提炼,大大减少了回收利用的流程和时间,而且硅的转化率高,避免了硅渣的二次生成和二次污染。
所述矿热炉工作时,其电压为40~90V。矿热炉是一种耗电量巨大的工业电炉。主要由炉壳,炉盖、炉衬、短网,水冷系统,排烟系统,除尘系统,电极壳,电极压放及升降系统,上下料系统,把持器,烧穿器,液压系统,矿热炉变压器及各种电器设备等组成,目前的矿热炉主要用于硅铁、锰铁、铬铁、钨铁、硅铬合金、电石、碳化硼等产品的熔炼,但是没有可以直接用于硅熔炼的矿热炉,其原因在于,目前的公知常识中,矿热炉的使用一般都是100至180v才能正常工作,申请人在实验过程中发现,当矿热炉在病态工作时,硅吸热的速度大于散热的速度,经过多次的试验后发现,当矿热炉的工作电压在40~90V的时候,硅可以熔炼生成硅液,突破了硅熔炼的技术瓶颈。
所述转运装置为轨道吊车。轨道吊车的转运方式快捷有效,非常适合用硅企业使用。
所述的冷却系统为旋转冷却池。通过将落入到冷却水里面的硅块的运行途径从垂直的运动变为螺旋的运动,可以有效增加其形成,因此,通过在冷却池本体的侧壁上设置多组喷嘴,喷嘴组分布在不同深度的位置,每组喷嘴都包含一个或一个以上的喷嘴,喷嘴的喷射方向分布成沿冷却池圆周的切向方向,且向内侧喷射,如此,一组喷嘴可以将局部的冷却水带动,在冷却池内形成转动,
硅液落入后,会在水流的旋转运动带动下,形成螺旋式的运动,如此大大增加了硅块的形成,达到了充分换热冷却的目的,多组的喷嘴可以保持在不同的位置都形成旋转运动,形成均匀的流动场
一种利用硅厂碎硅进行再生熔炼的生产工艺,包括以下步骤:
(a)造粒:在造粒机内将碎硅与水混合并捏合形成粒径均匀的颗粒;
(b)炼硅:在矿热炉内将硅颗粒进行熔炼,制得硅液;
(c)转运:利用转运装置将硅液转运至成型装置;
(d)成型:成型装置将硅液按照设定的粒径进行导出,然后进入旋转冷却池,冷却后形成硅丸。
本发明的另一个目的是针对目前的用硅企业存在的硅使用率低、废硅处理成本高、效率低的问题,提供一种新的硅熔炼工艺,将企业内的硅废弃物进行集中回收,然后通过输送带向造粒机输出碎硅,造粒机将废弃的不规则碎硅与水混合,然后经过捏合作用造粒生产出粒径均匀的小颗粒,作为熔炼的原料,通过将不规则的碎硅整合成直径大致相同的颗粒作为原料,可以提高容量的均一性,使得在矿热炉中的熔炼过程较为均一,避免出现局部不稳定的情况,硅液中转装置将熔炼以后的硅液进行中转并移动至成型装置上方,成型装置将硅液按照设定的流量进行均匀地放入冷却系统中,凝固形成硅丸,然后利用提升系统将成型的硅丸提取出来,落入冷却系统的硅水直径均匀,解决了现有技术中因倾倒导致的硅块成型不规则、大小不一致的问题,本系统可以高效快速地对用硅企业的硅废弃物进行熔炼,形成硅丸,生产出来的硅丸可以直接用于多晶硅的提炼,大大减少了回收利用的流程和时间,而且硅的转化率高,避免了硅渣的二次生成和二次污染。
所述的步骤(b)炼硅中,矿热炉的工作电压为40~90V。
所述矿热炉的工作电压为60~70V。经过多年的实验和分析,申请人找到了利用矿热炉炼硅的较好的生产参数,在此电压范围内,硅熔化的速度较快。本发明中虽然采用了矿热炉的结构,但是,对于其运行的参数做出了重大调整,将其工作电压为60~70V,此时,实际上是属于矿热炉的非正常工作区间,利用病态的工作状态来进行硅的熔炼,大大超出了本领域技术人员的认知范围,同时也满足硅熔炼的条件,取得了意料不到的优点,对于硅熔炼领域而言,具有突破性的进步,将硅熔炼的量产极大的提高,推动了行业的发展。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明一种利用硅厂碎硅进行再生熔炼的生产系统及工艺,首先将企业内的硅废弃物进行集中回收,然后通过输送带向造粒机输出碎硅,造粒机将废弃的不规则碎硅与水混合,然后经过捏合作用造粒生产出粒径均匀的小颗粒,作为熔炼的原料,通过将不规则的碎硅整合成直径大致相同的颗粒作为原料,可以提高容量的均一性,使得在矿热炉中的熔炼过程较为均一,避免出现局部不稳定的情况,硅液中转装置将熔炼以后的硅液进行中转并移动至成型装置上方,成型装置将硅液按照设定的流量进行均匀地放入冷却系统中,凝固形成硅丸,然后利用提升系统将成型的硅丸提取出来,落入冷却系统的硅水直径均匀,解决了现有技术中因倾倒导致的硅块成型不规则、大小不一致的问题,本系统可以高效快速地对用硅企业的硅废弃物进行熔炼,形成硅丸,生产出来的硅丸可以直接用于多晶硅的提炼,大大减少了回收利用的流程和时间,而且硅的转化率高,避免了硅渣的二次生成和二次污染;
2、本发明一种利用硅厂碎硅进行再生熔炼的生产系统及工艺,本发明中虽然采用了矿热炉的结构,但是,对于其运行的参数做出了重大调整,将其工作电压为60~70V,此时,实际上是属于矿热炉的非正常工作区间,利用病态的工
作状态来进行硅的熔炼,大大超出了本领域技术人员的认知范围,同时也满足硅熔炼的条件,取得了意料不到的优点,对于硅熔炼领域而言,具有突破性的进步,将硅熔炼的量产极大的提高,推动了行业的发展。
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例
本发明一种利用硅厂碎硅进行再生熔炼的生产系统及工艺,针对的是中型用硅企业,其用硅量为3000吨每月,每月的废硅量大概为80至100吨,针对该企业的具体情况,配置如下:碎硅存储装置1:用于存储碎硅,占地面积20平米的仓库,其上部作为收集料入口,下部有一个出料口,作为生产系统的原料供应机构,通过输送带向造粒机2输出碎硅;造粒机2:将碎硅与水混合并捏合形成粒径均匀的颗粒,然后输送至矿热炉3;矿热炉的单锅产量为1吨,每次的熔炼时间约为1小时;矿热炉3接收造粒后的硅颗粒,并进行熔炼形成硅液,熔炼时,矿热炉3的工作电压采用病态的工作电压区间40~90V,优选的工作电压是60~70V,炼成硅液后,在厂区安装有轨道吊车作为转运装置4,轨道吊车将熔炼后的硅液转运至成型装置5;成型装置5包括一个筒状的容器本体,以及与容器本体相匹配的容器底,在容器本体内设置有一层内衬,容器底与容器本体形成可拆卸结构,在容器底上至少设置有一个通孔、以及与通孔连通的可拆卸的导流管,容器本体的下部封闭形成容器的底部,在底部设置有一个或者多个通孔,在通孔处安装可以拆卸的导流管,容器本体内侧设置有一层内衬,容器本体与内衬之间还设置有一层保温层,容器本体、保温层、内衬之间在拆
卸处形成阶梯状结构,而容器底的外侧端面也呈阶梯状结构,在配合以后,容器底的外部壳体与容器本体连接形成整体,容器底上的内衬与容器本体内侧的内衬连接形成整体结构,保温层与容器底之间形成一个空腔,在该空腔内安装有一个密封环,通过将容器本体、保温层、内衬的端面设置成阶梯状,同时在空腔内安装一个密封环,可以使得容器本体和容器底的连接更加紧密;容器本体外侧设置有多个挂齿,在容器底上设置有与挂齿相匹配的挂钩,容器本体与容器底通过挂齿与挂钩的配合连接;将熔炼后的硅液按照设定的粒径注入旋转冷却池6,在冷却池的侧壁上设置多组喷嘴,喷嘴组分布在不同深度的位置,每组喷嘴都包含一个或一个以上的喷嘴,喷嘴的喷射方向分布成沿冷却池圆周的切向方向,且向内侧喷射,如此,一组喷嘴可以将局部的冷却水带动,在冷却池内形成转动,硅液落入后,会在水流的旋转运动带动下,形成螺旋式的运动,如此大大增加了硅块的形成,达到了充分换热冷却的目的。
本实施例中,企业用硅后产生的碎屑可以在厂区内直接进行熔炼回收形成硅丸,避免了转运到炼硅厂的中转过程,同时相对于炼硅厂的低转化率,本发明的装置和工艺可以将硅的转化率提升至98%以上,有效避免了二次污染,大大提高了生产效率。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (7)
- 一种利用硅厂碎硅进行再生熔炼的控制系统,其特征在于包括:碎硅存储装置(1):用于存储碎硅,作为生产系统的原料供应机构,通过输送带向造粒机(2)输出碎硅;造粒机(2):将碎硅与水混合并捏合形成粒径均匀的颗粒,然后输送至矿热炉(3);矿热炉(3):接收造粒后的硅颗粒,并进行熔炼形成硅液;转运装置(4):将熔炼后的硅液转运至成型装置(5);成型装置(5):将熔炼后的硅液按照设定的粒径注入冷却系统(6);冷却系统(6):硅液在冷却系统中凝固形成硅丸。
- 根据权利要求1所述的一种利用硅厂碎硅进行再生熔炼的控制系统,其特征在于:所述矿热炉(3)工作时,其电压为40~90V。
- 根据权利要求1所述的一种利用硅厂碎硅进行再生熔炼的控制系统,其特征在于:所述转运装置(4)为轨道吊车。
- 根据权利要求1所述的一种利用硅厂碎硅进行再生熔炼的控制系统,其特征在于:所述的冷却系统(6)为旋转冷却池。
- 一种利用硅厂碎硅进行再生熔炼的控制方法,其特征在于包括以下步骤:(a)造粒:在造粒机(2)内将碎硅与水混合并捏合形成粒径均匀的颗粒;(b)炼硅:在矿热炉(3)内将硅颗粒进行熔炼,制得硅液;(c)转运:利用转运装置(4)将硅液转运至成型装置(5);(d)成型:成型装置(5)将硅液按照设定的粒径进行导出,然后进入旋转冷却池,冷却后形成硅丸。
- 根据权利要求5所述的一种利用硅厂碎硅进行再生熔炼的控制方法,其特征在于:所述的步骤(b)炼硅中,矿热炉(3)的工作电压为40~90V。
- 根据权利要求6所述的一种利用硅厂碎硅进行再生熔炼的控制方法,其特征在于:所述矿热炉(3)的工作电压为60~70V。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/467,036 US11261095B2 (en) | 2016-12-09 | 2017-12-07 | Control system and control method for recycling and smelting crushed silica from silicon plants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611130091.6A CN106672973B (zh) | 2016-12-09 | 2016-12-09 | 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 |
CN201611130091.6 | 2016-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018103713A1 true WO2018103713A1 (zh) | 2018-06-14 |
Family
ID=58868626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/115085 WO2018103713A1 (zh) | 2016-12-09 | 2017-12-07 | 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11261095B2 (zh) |
CN (1) | CN106672973B (zh) |
WO (1) | WO2018103713A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111829357A (zh) * | 2020-08-05 | 2020-10-27 | 河南省德耀节能科技股份有限公司 | 一种矿热炉生产产品的包装及余热回收利用系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106672973B (zh) * | 2016-12-09 | 2019-01-11 | 成都斯力康科技股份有限公司 | 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 |
CN111302345B (zh) * | 2020-04-23 | 2023-03-10 | 四川宏图普新微波科技有限公司 | 一种以硅废料制备多晶硅颗粒的方法 |
CN113480140A (zh) * | 2021-07-27 | 2021-10-08 | 成都光明光电股份有限公司 | 光学玻璃熟料的制造装置及制造方法 |
CN118326510B (zh) * | 2024-04-11 | 2024-10-18 | 泰州东鼎光电科技有限公司 | 一种多晶硅生产装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168313A (ja) * | 1984-09-07 | 1986-04-08 | Osaka Titanium Seizo Kk | シリコン切粉から高純度けい素の回収方法 |
CN105603291A (zh) * | 2016-02-01 | 2016-05-25 | 四川川投峨眉铁合金(集团)有限责任公司 | 回收利用晶体硅切割废粉料冶炼硅铬合金的生产方法 |
CN106082234A (zh) * | 2016-06-15 | 2016-11-09 | 大工(青岛)新能源材料技术研究院有限公司 | 中频熔炼回收金刚线切割硅粉的方法 |
CN106672973A (zh) * | 2016-12-09 | 2017-05-17 | 永平县泰达废渣开发利用有限公司 | 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 |
CN206692338U (zh) * | 2016-12-09 | 2017-12-01 | 成都斯力康科技股份有限公司 | 一种利用硅厂碎硅进行再生熔炼的控制系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE340272B (zh) * | 1971-01-19 | 1971-11-15 | Kema Nord Ab | |
US3973683A (en) * | 1975-04-17 | 1976-08-10 | Automatic Material Handling, Inc. | Safety means for fiber pick-up and transporting apparatus |
JP2006206368A (ja) * | 2005-01-27 | 2006-08-10 | Fuji Mach Mfg Co Ltd | 粒状シリコンの製造方法及び製造装置 |
JP2008115040A (ja) * | 2006-11-02 | 2008-05-22 | Sharp Corp | シリコン再生装置、シリコン再生方法 |
ITMI20081085A1 (it) * | 2008-06-16 | 2009-12-17 | N E D Silicon S P A | Metodo per la preparazione di silicio di grado metallurgico di elevata purezza. |
DE102009035041B3 (de) * | 2009-07-28 | 2011-01-05 | Sunicon Ag | Anlage zur Herstellung von Silizium-Granulat |
CN103011167B (zh) * | 2012-12-14 | 2015-01-07 | 厦门大学 | 一种硅球制备装置及其制备方法 |
EP2845671A1 (en) * | 2013-09-05 | 2015-03-11 | Uvån Holding AB | Granulation of molten material |
-
2016
- 2016-12-09 CN CN201611130091.6A patent/CN106672973B/zh active Active
-
2017
- 2017-12-07 WO PCT/CN2017/115085 patent/WO2018103713A1/zh active Application Filing
- 2017-12-07 US US16/467,036 patent/US11261095B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168313A (ja) * | 1984-09-07 | 1986-04-08 | Osaka Titanium Seizo Kk | シリコン切粉から高純度けい素の回収方法 |
CN105603291A (zh) * | 2016-02-01 | 2016-05-25 | 四川川投峨眉铁合金(集团)有限责任公司 | 回收利用晶体硅切割废粉料冶炼硅铬合金的生产方法 |
CN106082234A (zh) * | 2016-06-15 | 2016-11-09 | 大工(青岛)新能源材料技术研究院有限公司 | 中频熔炼回收金刚线切割硅粉的方法 |
CN106672973A (zh) * | 2016-12-09 | 2017-05-17 | 永平县泰达废渣开发利用有限公司 | 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 |
CN206692338U (zh) * | 2016-12-09 | 2017-12-01 | 成都斯力康科技股份有限公司 | 一种利用硅厂碎硅进行再生熔炼的控制系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111829357A (zh) * | 2020-08-05 | 2020-10-27 | 河南省德耀节能科技股份有限公司 | 一种矿热炉生产产品的包装及余热回收利用系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106672973B (zh) | 2019-01-11 |
CN106672973A (zh) | 2017-05-17 |
US20190308882A1 (en) | 2019-10-10 |
US11261095B2 (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018103713A1 (zh) | 一种利用硅厂碎硅进行再生熔炼的控制系统及方法 | |
CN104357605B (zh) | 高温熔渣余热回收系统及方法 | |
CN103849894B (zh) | 铝灰资源化处理系统及处理方法 | |
CN101342512A (zh) | 钢渣处理方法 | |
CN105132604A (zh) | 一种铸渣取热的装置与方法 | |
CN101239384B (zh) | 铸余渣和钢水的分离方法 | |
CN105603197A (zh) | 一种锑渣和锑烟灰直接还原炼锑的装置及其工艺 | |
JPS5927732B2 (ja) | 溶融スラグからの熱回収方法 | |
CN210614636U (zh) | 一种炼钢尾渣的资源化回收利用系统 | |
CN107520454A (zh) | 一种金属制粒系统及方法 | |
CN108912493A (zh) | 一种利用粉煤灰二氧化碳生产石墨烯轮毂的方法 | |
CN104561405A (zh) | 一种热态钢渣高温固化粒化与热量回收方法及其设备系统 | |
CN102492793A (zh) | 熔态冶金渣粒化装置 | |
CN104109742A (zh) | 一种喷射渣颗粒击碎熔渣余热回收系统 | |
CN206692338U (zh) | 一种利用硅厂碎硅进行再生熔炼的控制系统 | |
CN103160693A (zh) | 一种铝灰处理与循环利用的方法 | |
CN113549715B (zh) | 一种铁水粒化的系统 | |
WO2018103710A1 (zh) | 一种硅液造粒成型系统及方法 | |
CN212293627U (zh) | 一种熔融钢渣出渣冷却过程在线调质装置 | |
CN210085533U (zh) | 冷铝渣再生循环利用系统 | |
CN207205279U (zh) | 一种金属制粒系统 | |
CN106636498A (zh) | 一种资源化利用粉煤灰的方法 | |
CN105567891B (zh) | 一种高温液态渣热能提取方法 | |
CN111139371A (zh) | 一种绿色低成本再生铝合金制备方法及装备 | |
CN105036523B (zh) | 一种用于玻璃瓶制造中更换供料机料盆的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877926 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877926 Country of ref document: EP Kind code of ref document: A1 |