WO2018103311A1 - 接水盘、空调器和改变冷凝水分布的方法 - Google Patents

接水盘、空调器和改变冷凝水分布的方法 Download PDF

Info

Publication number
WO2018103311A1
WO2018103311A1 PCT/CN2017/090135 CN2017090135W WO2018103311A1 WO 2018103311 A1 WO2018103311 A1 WO 2018103311A1 CN 2017090135 W CN2017090135 W CN 2017090135W WO 2018103311 A1 WO2018103311 A1 WO 2018103311A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
surface energy
receiving tray
dielectric layer
high surface
Prior art date
Application number
PCT/CN2017/090135
Other languages
English (en)
French (fr)
Inventor
李廷勋
彭杰林
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018103311A1 publication Critical patent/WO2018103311A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/228Treatment of condensate, e.g. sterilising

Definitions

  • the present invention relates to the field of air conditioner technology, and in particular to a water receiving tray, an air conditioner and a method for changing the distribution of condensed water.
  • the inventors have found that at least the following problems exist in the prior art: if the air humidity is low, the condensed water is reduced, and the condensed water gathers at the bottom of the water receiving tray and cannot flow to the condenser; due to the drainage hole design and installation And the material is unreasonable, resulting in intermittent discharge of condensed water or localized discharge, resulting in system performance degradation; in short, the current conventional condensate collection and distribution is basically based on experience and a certain set of conditions, unable to actively control or intervene The distribution of condensed water inhibits system performance. Therefore, how to achieve a reasonable distribution of condensed water to improve the performance of the air conditioner has become an urgent technical problem to be solved.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • Another object of the present invention is to provide an air conditioner.
  • Still another object of the present invention is to provide a method of changing the distribution of condensed water.
  • a water receiving tray comprising: a water receiving tray body for collecting and storing condensed water; and a dielectric layer disposed under the water receiving tray body Made of a porous material and/or a variety of high surface energy materials, the dielectric layer is used to adjust the distribution and flow of condensed water.
  • the discharge of the condensed water is guided by providing a dielectric layer having a specific material property at the bottom of the water receiving tray, thereby realizing the adjustment of the condensed water distribution position and the condensed water flow rate at each position. control.
  • the water receiving tray body is designed according to the installation environment for collecting and storing condensed water or other sources of liquid for cooling.
  • the dielectric layer is disposed at the bottom of the water receiving tray body.
  • the dielectric layer can also be separated from the water receiving tray for ease of installation and replacement.
  • the dielectric layer can be made of a porous material and/or a plurality of high surface energy materials.
  • the porous material When a dielectric layer is fabricated using a porous material, the porous material has a certain flexibility to improve contact between the water receiving tray and the device to be cooled, and when the dielectric layer is provided using a high surface energy material, the coating process is performed, The surface energy of the high surface energy material is sufficient to render the material hydrophilic.
  • the purpose of providing the dielectric layer is to adjust the distribution of the heat exchange liquid at the bottom of the water tray, and to adjust the flow rate of the liquid at a local location when the dielectric layer is disposed using a high surface energy material. The cooling effect of the condensed water is better utilized.
  • hydrophobic (hydrophobic) materials may be provided at locations where condensate flow is not required to help form a water conduit.
  • the water receiving tray according to the embodiment of the first aspect of the present invention preferably further includes: a plurality of water outlets disposed on the water receiving tray body, the plurality of water outlets having a water outlet side and a water storage side, and the water outlet side passing through the water receiving
  • the upper surface of the bottom of the disc is provided with an inner chamfer on the water outlet side, and the water outlet side is provided with a water outlet boss.
  • the water outlet boss is used to ensure the height of the water layer, so that a plurality of water outlets start to drain at the same time, and the inner chamfer is convenient to set.
  • the dielectric layer increases the displacement of the water outlet.
  • each water outlet is specially treated, that is, the water outlet side passes through the upper surface of the bottom of the water receiving tray, and the inner water chamfering side is provided with an inner chamfer.
  • the presence of the height of the water layer enables multiple outlets to start draining at the same time.
  • the inner chamfer and the outlet boss can improve the working environment of the dielectric layer.
  • the dielectric layer when the dielectric layer is disposed using a plurality of high surface energy materials, the dielectric layer has strong hydrophilicity, and a plurality of high surface energy materials are coated on the plurality of water outlets.
  • the inner chamfering surface and/or the bottom of the water tray form a water guiding zone of different hydrophilicity, and the dielectric layer has a thickness of 1 ⁇ 10 -3 mm to 1 mm for achieving an increase in the condensed water flow rate in the water guiding zone.
  • the high surface energy material utilizes its own hydrophilicity to achieve distribution control and flow control of the condensed water.
  • the hydrophilic (water conducting) ability of the region with high surface energy is stronger than the region with lower surface energy.
  • Hydrophilic (water-conducting) ability the condensate relies on its own surface tension and intermolecular forces to receive high surface energy materials along the bottom of the drain pan.
  • These high surface energy materials are arranged in a coating process with a coating thickness of from 1 x 10 -3 mm to 1 mm.
  • hydrophobic (hydrophobic) materials may be provided at locations where condensate flow is not required to help form a water conduit.
  • the porous material is disposed at the bottom of the water receiving tray or separated from the water receiving tray, and has a thickness of 1 ⁇ 10 -1 MM to 20 mm to prevent condensate from being concentrated at the bottom of the drain pan.
  • the function achieved by the porous material is to prevent condensed water from collecting and discharging at a certain position, thereby achieving uniform distribution of the condensed water.
  • the high surface energy material comprises TiO 2 (titanium dioxide) and a modified acrylate resin
  • the porous material comprises foamed polyurethane, expanded polyethylene, hair Soak PVC (polyvinyl chloride) and NBR (nitrile rubber).
  • the high surface energy material is hydrophilic and the porous material has some flexibility, including but not limited to the materials described above.
  • an air conditioner comprising: the water receiving tray according to the first aspect embodiment described above, and: an evaporator for a heat exchange process of the refrigerant of the air conditioner and generating Condensate; condenser, heat exchange process for refrigerant of air conditioner; assembly part, used for assembly between water receiving tray, evaporator and condenser.
  • the evaporator generates condensed water during heat exchange, and the condenser requires cooling water during heat exchange, so that the first aspect of the present invention is provided by the fitting portion.
  • the water tray is installed in the air conditioner system to realize the recovery of condensed water. Use, can improve the performance of the air conditioner.
  • the dielectric layer of the water tray can adjust the distribution of the condensed water and its flow rate at a local location. The cooling effect of the condensed water is better utilized.
  • An air conditioner according to an embodiment of the second aspect of the present invention preferably further includes: a water pump for delivering the condensed water to the water receiving tray.
  • the water pump can help deliver condensate to the water tray, as well as water from another source to supplement the water volume of the water tray.
  • the condenser includes a plurality of heat dissipation tubes.
  • the condenser is composed of a plurality of heat pipes to facilitate the heat release process of the refrigerant.
  • the plurality of water outlets of the water receiving tray are disposed corresponding to the plurality of heat pipes of the condenser.
  • the plurality of water outlets are disposed corresponding to the plurality of heat pipes, and the heat transfer effect of the condensed water or other liquid can be better exerted.
  • the dielectric layer material is a plurality of high surface energy materials
  • a coating layout of a plurality of high surface energy materials is performed according to heat exchange coefficients of the plurality of heat exchange tubes;
  • the surface energy at different positions of the dielectric layer is positively correlated with the heat transfer coefficient of the corresponding heat exchange tube.
  • the heat-dissipating heat-dissipating tube requires more condensed water for cooling, and then a higher-potential high-surface energy material is applied to the bottom of the water receiving tray at the corresponding position to make it relative to the heat-dissipating tube.
  • Other heat pipes can get more cooling water.
  • the condensed water can be cooled as much as possible in the case of insufficient condensed water to cool the heat transfer tubes with high heat exchange capacity (or higher temperature).
  • a method of changing the distribution of condensed water comprising: providing a high surface energy material and/or a porous material between the device to be cooled and the water receiving tray to form a dielectric layer;
  • the high surface energy material has a plurality of surface energy gradients.
  • a water receiving tray is disposed on the apparatus to be cooled, and a dielectric layer is further disposed therebetween.
  • the dielectric layer is made of a high surface energy material having a plurality of surface energy gradients.
  • the distribution of the condensed water and the local flow rate can be controlled by the characteristics of the high surface energy material, specifically, coated with a high surface energy material.
  • the position is capable of guiding water to change the distribution of the condensed water, and the material surface has a relatively high flow rate at a relatively high position.
  • the porous material can utilize its own material properties to prevent condensed water from accumulating at a certain position at the bottom of the water receiving tray, so that the condensed water is uniformly distributed to achieve uniform discharge.
  • the water receiving tray is provided with a plurality of water outlets for discharging the condensed water; wherein the water outlet has a water outlet side and a water storage side, and the water outlet The side passes through the upper surface of the bottom of the water tray, and the inner chamfer is arranged on the water outlet side, and the water outlet side is provided with a water outlet boss.
  • the water outlet boss is used to ensure the height of the water layer, so that the plurality of water outlets start to drain at the same time.
  • the inner chamfer facilitates the setting of the dielectric layer and increases the displacement of the outlet.
  • the water receiving tray is provided with a plurality of water outlets, each of which is specially treated, that is, the water outlet side passes through the upper surface of the bottom of the water receiving tray, and the inner water chamfering side is provided with an inner chamfer for easy setting.
  • the medium layer increases the displacement of the water outlet; the water storage side is provided with a water outlet boss, and the water outlet boss is used to ensure the height of the water layer, and the height of the water layer can enable multiple water outlets to start draining at the same time for better Supports the water guiding function of the dielectric layer. As a whole, multiple outlets can be set according to the specific use.
  • the inner chamfer and the outlet boss can improve the working environment of the dielectric layer.
  • the angle of the inner chamfer is set according to the height and diameter of the water outlet and the thickness of the bottom of the water receiving tray, and the height of the water outlet boss is based on the condensed water.
  • the amount of occurrence is set.
  • the function of facilitating the installation of the medium layer and increasing the displacement of the water outlet can be better exerted, and the water outlet is convex.
  • the height of the table is designed according to the amount of condensed water generated to prevent excessive condensed water from collecting around the boss and cannot be utilized.
  • a method of changing the distribution of condensed water according to an embodiment of the third aspect of the present invention preferably, more The water outlets are arranged corresponding to a plurality of heat dissipation portions.
  • the water outlet for draining the cooling should be installed corresponding to the plurality of heat dissipating portions of the device to be cooled, for example, the heat dissipating portion is a heat pipe of one piece, then Layout according to a water outlet corresponding to a heat pipe.
  • the material and thickness of the porous material are selected according to the assembly gap and the amount of condensed water generated, and can be disposed on the water receiving tray side, and can also be set to be independent.
  • the component, the high surface energy material is disposed in a coated form; the plurality of high surface energy materials are disposed on the chamfered surface of the plurality of water outlets and/or the water outlet side of the water tray.
  • the porous material when the porous material is provided as a dielectric layer, it also absorbs a part of the condensed water. Therefore, the thickness thereof is adjusted according to the amount of condensed water generated. Further, if the assembly gap is large, it is necessary to exert a dielectric layer. When the effect of contact between the components is improved, a thickened dielectric layer can be provided.
  • the high surface energy material when the high surface energy material is disposed as a dielectric layer, it may be integrally coated on the bottom of the water tray or partially coated on the inner chamfer surface and its surrounding area, and the corresponding surface is designed according to the heat exchange capacity or working temperature of the heat dissipation portion. The energy gradient (ie, the surface energy of different materials in different regions is positively correlated with the heat exchange capacity and temperature of multiple heat dissipation portions).
  • Figure 1 shows a block diagram of a water receiving tray in accordance with an embodiment of the first aspect of the present invention
  • FIG. 2 shows a detailed block diagram of a water receiving tray in accordance with an embodiment of the first aspect of the present invention
  • FIG. 3 is a block diagram showing an air conditioner according to an embodiment of the second aspect of the present invention.
  • FIG. 4 shows a flow chart of a method of changing the distribution of condensed water in accordance with an embodiment of the third aspect of the present invention
  • FIG. 5 is a schematic view showing a dielectric layer setting according to an embodiment of the present invention.
  • Figure 6 shows an illustration of the relationship between surface energy and heat transfer coefficient of a material in accordance with an embodiment of the present invention. intention.
  • FIG. 1 shows a block diagram of a water receiving tray in accordance with an embodiment of the first aspect of the present invention.
  • a water receiving tray 100 includes: a water receiving tray main body 102 for collecting and storing condensed water; and a dielectric layer 104 disposed under the water receiving tray main body 102.
  • the dielectric layer 104 is used to adjust the distribution and flow of condensed water.
  • the discharge of the condensed water is guided by providing the dielectric layer 104 having the specific material characteristics at the bottom of the water receiving tray 100, and the adjustment of the condensed water distribution position and the condensation at each position are realized. Control of water flow.
  • the water tray body 102 is designed according to the installation environment for collecting and storing condensed water or other sources of liquid for cooling.
  • the dielectric layer 104 is disposed at the bottom of the water receiving tray body 102.
  • the dielectric layer 104 can also be separated from the water receiving tray 100 for ease of installation and replacement.
  • the dielectric layer 104 can be made of a porous material and/or a plurality of high surface energy materials. .
  • the porous material When the dielectric layer 104 is fabricated using a porous material, the porous material has a certain flexibility to improve contact between the water receiving tray 100 and the device to be cooled, and when the dielectric layer 104 is provided using a high surface energy material, the coating process is employed. The setting is made such that the surface energy of the high surface energy material is sufficient to render the material hydrophilic.
  • the dielectric layer 104 is provided for the purpose of adjusting the distribution of the heat exchange liquid at the bottom of the water receiving tray 100, and also for adjusting the flow rate of the liquid at a local location when the dielectric layer 104 is disposed using a high surface energy material. The cooling effect of the condensed water is better utilized.
  • hydrophobic (hydrophobic) materials may be provided at locations where condensate flow is not required to help form a water conduit.
  • the dielectric layer 104 when the dielectric layer 104 is disposed using a plurality of high surface energy materials, the dielectric layer 104 has strong hydrophilicity, and a plurality of high surface energy materials are coated.
  • the inner chamfering surface of the water outlet and/or the bottom of the water receiving tray 100 form a water guiding area with different hydrophilic ability.
  • the dielectric layer 104 has a thickness of 1 ⁇ 10 -3 mm to 1 mm, and is used for realizing condensed water in the water guiding area. The traffic has increased.
  • the high surface energy material utilizes its own hydrophilicity to achieve distribution control and flow control of the condensed water.
  • the hydrophilic (water conducting) ability of the region with high surface energy is stronger than the region with lower surface energy.
  • the hydrophilic (water-conducting) ability the condensate relies on its own surface tension and intermolecular forces to receive high surface energy materials along the bottom of the water tray 100. These high surface energy materials are arranged in a coating process with a coating thickness of from 1 x 10 -3 mm to 1 mm.
  • a material having a higher surface energy is used at a location where the condensed water is demanding, and a material having a lower surface energy is used at a location where the condensed water is less demanded, wherein the surface energy of the high surface energy material is sufficient to support the dielectric layer 104 to have a pro Water capacity, after which the surface energy of different positions only needs to have a relative height difference, and it is not necessary to know the specific value of the surface energy.
  • hydrophobic (hydrophobic) materials may be provided at locations where condensate flow is not required to help form a water conduit.
  • the porous material is disposed at the bottom of the water receiving tray 100 or separated from the water receiving tray 100, and has a thickness of 1 ⁇ 10 -1 mm to 20 mm to prevent condensed water from being discharged at the bottom of the water receiving tray 100.
  • the function achieved by the porous material is to prevent condensed water from collecting and discharging at a certain position, thereby achieving uniform distribution of the condensed water.
  • the high surface energy material comprises TiO 2 (titanium dioxide) and a modified acrylate resin;
  • the porous material comprises foamed polyurethane, expanded polyethylene, Foamed PVC (polyvinyl chloride) and NBR (nitrile rubber).
  • the high surface energy material is hydrophilic and the porous material has some flexibility, including but not limited to the materials described above.
  • FIG. 2 shows a detailed block diagram of a water tray in accordance with an embodiment of the first aspect of the invention.
  • a water receiving tray 200 comprising: a water receiving tray body 202 for collecting and storing condensed water; and a dielectric layer 204 disposed at the water receiving Below the disc body 202, a porous material and/or a plurality of high surface energy materials are used, and the dielectric layer 204 is used to adjust the distribution and flow rate of the condensed water.
  • the condensed water is guided to discharge the condensed water by providing the dielectric layer 204 having the specific material characteristics at the bottom of the water receiving tray 200. Adjustment of cloth position and control of condensate flow at various locations.
  • the water tray body 202 is designed according to the installation environment for collecting and storing condensed water or other sources of liquid for cooling.
  • the dielectric layer 204 is disposed at the bottom of the water tray body 202.
  • the dielectric layer 204 can also be separated from the water tray 200 for ease of installation and replacement.
  • the dielectric layer 204 can be made of a porous material and/or a plurality of high surface energy materials. .
  • the porous material When the dielectric layer 204 is fabricated using a porous material, the porous material has a certain flexibility to improve contact between the water receiving tray 200 and the device to be cooled, and when the dielectric layer 204 is provided using a high surface energy material, the coating process is employed. The setting is made such that the surface energy of the high surface energy material is sufficient to render the material hydrophilic.
  • the dielectric layer 204 is provided for the purpose of adjusting the distribution of the heat exchange liquid at the bottom of the water receiving tray 200, and also for adjusting the flow rate of the liquid at a local location when the dielectric layer 204 is disposed using a high surface energy material. The cooling effect of the condensed water is better utilized.
  • hydrophobic (hydrophobic) materials may be provided at locations where condensate flow is not required to help form a water conduit.
  • the water receiving tray 200 preferably further includes: a plurality of water outlets 206 disposed on the water receiving tray body 202, the plurality of water outlets 206 having a water outlet side and a water storage side, and a water outlet side
  • a plurality of water outlets 206 disposed on the water receiving tray body 202, the plurality of water outlets 206 having a water outlet side and a water storage side, and a water outlet side
  • an inner chamfer 2064 is arranged on the water outlet side, and a water outlet boss 2062 is provided on the water storage side, and the water outlet boss 2062 is used to ensure the height of the water layer, so that the plurality of water outlets 206 At the same time, drainage is started, and the inner chamfer 2064 facilitates the provision of the dielectric layer 204 and increases the displacement of the water outlet 206.
  • each water outlet 206 is specially treated, that is, the water outlet side passes through the upper surface of the bottom of the water receiving tray 200, and is disposed inside the water outlet side.
  • the chamfer 2064 facilitates the provision of the dielectric layer 204 and increases the displacement of the water outlet 206; the water storage side is provided with a water outlet boss 2062, and the water outlet boss 2062 is used to ensure the height of the water layer, and the existence of the water layer height can make multiple
  • the water outlet 206 begins to drain at the same time to better support the water guiding function of the dielectric layer 204.
  • the plurality of water outlets 206 can be set according to specific use conditions, and the inner chamfer 2064 and the water outlet boss 2062 can improve the working environment of the dielectric layer 204.
  • the dielectric layer 204 when the dielectric layer 204 is disposed using a plurality of high surface energy materials, the dielectric layer 204 has strong hydrophilicity, and a plurality of high surface energy materials are coated.
  • the inner chamfer 2064 surface of the water outlet 206 and/or the bottom of the water receiving tray 200 form a water guiding zone of different hydrophilic ability, and the dielectric layer 204 has a thickness of 1 ⁇ 10 -3 mm to 1 mm for realizing the water guiding area. Condensate flow increases.
  • the high surface energy material utilizes its own hydrophilicity to achieve distribution control and flow control of the condensed water.
  • the hydrophilic (water conducting) ability of the region with high surface energy is stronger than the region with lower surface energy.
  • the hydrophilic (water-conducting) ability, the condensate relies on its own surface tension and intermolecular forces to receive high surface energy material along the bottom of the water tray 200.
  • These high surface energy materials are arranged in a coating process with a coating thickness of from 1 x 10 -3 mm to 1 mm.
  • a material with a higher surface energy is used at a location where the condensed water is required to be high, and a material having a lower surface energy is used where the condensed water is less demanded, wherein the surface energy of the high surface energy material is sufficient to support the dielectric layer 204 to have a pro Water capacity, after which the surface energy of different positions only needs to have a relative height difference, and it is not necessary to know the specific value of the surface energy.
  • hydrophobic (hydrophobic) materials may be provided at locations where condensate flow is not required to help form a water conduit.
  • the porous material is disposed at the bottom of the water receiving tray 200 or separated from the water receiving tray 200, and has a thickness of 1 ⁇ 10 -1 mm to 20 mm to prevent condensed water from being discharged at the bottom of the water receiving tray 200.
  • the function achieved by the porous material is to prevent condensed water from collecting and discharging at a certain position, thereby achieving uniform distribution of the condensed water.
  • the high surface energy material comprises TiO 2 (titanium dioxide) and a modified acrylate resin
  • the porous material comprises foamed polyurethane, expanded polyethylene, Foamed PVC (polyvinyl chloride) and NBR (nitrile rubber).
  • the high surface energy material is hydrophilic and the porous material has some flexibility, including but not limited to the materials described above.
  • Fig. 3 shows a block diagram of an air conditioner according to an embodiment of the second aspect of the invention.
  • an air conditioner 300 includes: a water receiving tray 200 according to the above first embodiment, and an evaporator 302 for a heat exchange process of the refrigerant of the air conditioner 300 and generating condensed water;
  • the condenser 304 is used for the heat exchange process of the refrigerant of the air conditioner 300;
  • the fitting portion 306 is used for the assembly between the water receiving tray 200, the evaporator 302, and the condenser 304.
  • the evaporator 302 generates condensed water during the heat exchange process, and the condenser 304 requires cooling water during the heat exchange process, so that the assembly portion is passed through the assembly section.
  • the water receiving tray 200 provided in the embodiment of the first aspect of the present invention is installed in the air conditioner 300 system to realize the recycling of the condensed water, and the performance of the air conditioner 300 can be improved.
  • the special arrangement of the dielectric layer 204 of the water receiving tray 200 is utilized to achieve a reasonable distribution of the condensed water, and the performance of the air conditioner 300 can be further improved.
  • the dielectric layer 204 of the water receiving tray 200 is capable of adjusting the distribution of the condensed water and its flow rate at a local location. The cooling effect of the condensed water is better utilized.
  • the air conditioner 300 preferably further includes a water pump 308 for conveying the condensed water to the water receiving tray 200.
  • the water pump 308 can assist in delivering condensate to the water tray 200, as well as water from another source to supplement the water volume of the water tray 200.
  • the condenser 304 includes a plurality of heat dissipation tubes.
  • the condenser 304 is composed of a plurality of heat pipes to facilitate the heat release process of the refrigerant.
  • the plurality of water outlets 206 of the water receiving tray 200 are disposed corresponding to the plurality of heat pipes of the condenser 304.
  • the plurality of water outlets 206 are disposed corresponding to the plurality of heat pipes, and the heat transfer effect of the condensed water or other liquid can be better exerted.
  • the material of the dielectric layer 204 is a plurality of high surface energy materials, coating of a plurality of high surface energy materials according to heat transfer coefficients of the plurality of heat exchange tubes Layout; the surface energy of different locations of the dielectric layer 204 is positively correlated with the heat transfer coefficient of the corresponding heat exchange tube.
  • the heat-dissipating heat-dissipating tube requires more condensed water for cooling, and then a higher-potential high-surface energy material is applied to the bottom of the water receiving tray 200 at the corresponding position to make it relatively More cooling water can be obtained for other heat pipes.
  • the condensed water can be cooled as much as possible in the case of insufficient condensed water to cool the heat transfer tubes with high heat exchange capacity (or higher temperature).
  • FIG. 4 shows a flow chart of a method of varying the distribution of condensed water in accordance with an embodiment of the third aspect of the present invention.
  • the method for distributing water includes: step 402, providing a high surface energy material and/or a porous material between the device to be cooled and the water receiving tray to form a dielectric layer; wherein the high surface energy material has a plurality of surface energy gradients, Calculating a corresponding calculation result by calculating a heat exchange capability of each heat dissipating portion of the device to be cooled, and selecting a plurality of high surface energy materials according to the calculation result, wherein a surface energy of the high surface energy material is The heat transfer capacity of the heat sink is positively correlated.
  • the working temperature of the different heat dissipating portions is determined by an experiment or a measured method, and a high surface energy material having a high surface energy is disposed as a dielectric layer at a corresponding position of the water receiving tray body above the higher temperature heat dissipating portion.
  • step 402 is provided with a water receiving tray on the device to be cooled, and a dielectric layer is further disposed therebetween.
  • the dielectric layer is made of a high surface energy material having a plurality of surface energy gradients.
  • the distribution of the condensed water and the local flow rate can be controlled by the characteristics of the high surface energy material, specifically, coated with a high surface energy material.
  • the position is capable of guiding water to change the distribution of the condensed water, and the material surface has a relatively high flow rate at a relatively high position.
  • the porous material can utilize its own material properties to prevent condensed water from accumulating at a certain position at the bottom of the water receiving tray, so that the condensed water is uniformly distributed to achieve uniform discharge.
  • the water receiving tray is provided with a plurality of water outlets for discharging the condensed water; wherein the water outlet has a water outlet side and a water storage port On the side, the water outlet side passes through the upper surface of the bottom of the water receiving tray, and the inner water chamfering side is provided with an inner chamfering side, and the water storage side is provided with a water outlet boss, and the water outlet boss is used to ensure the height of the water layer, so that the plurality of water outlets simultaneously The drainage begins, and the inner chamfer facilitates the setting of the dielectric layer and increases the displacement of the outlet.
  • the water receiving tray is provided with a plurality of water outlets, each of which is specially treated, that is, the water outlet side passes through the upper surface of the bottom of the water receiving tray, and the inner water chamfering side is provided with an inner chamfer for easy setting.
  • the medium layer increases the displacement of the water outlet; the water storage side is provided with a water outlet boss, and the water outlet boss is used to ensure the height of the water layer, and the height of the water layer can enable multiple water outlets to start draining at the same time for better Supports the water guiding function of the dielectric layer. As a whole, multiple outlets can be set according to the specific use.
  • the inner chamfer and the outlet boss can improve the working environment of the dielectric layer.
  • the angle of the inner chamfer is set according to the height and diameter of the water outlet and the thickness of the bottom of the water receiving tray, and the height of the water outlet boss Set according to the amount of condensed water generated.
  • the environment, the thickness of the water tray, and the height of the water outlet are considered.
  • the internal chamfering design can better exert its function of easily setting the dielectric layer and increasing the displacement of the water outlet.
  • the height of the water outlet boss is designed according to the amount of condensed water to prevent excessive condensation water from accumulating in the convexity. It can't be used around the station.
  • the plurality of water outlets are disposed corresponding to the plurality of heat dissipating portions.
  • the water outlet for draining the cooling should be installed corresponding to the plurality of heat dissipating portions of the device to be cooled, for example, the heat dissipating portion is a heat pipe of one piece, then Layout according to a water outlet corresponding to a heat pipe.
  • the material and thickness of the porous material are selected according to the assembly gap and the amount of condensed water generated, and can be disposed on the water receiving tray side.
  • the high surface energy material is placed in a coated form; a plurality of high surface energy materials are disposed on the chamfered surface of the plurality of water outlets and/or the water outlet side of the water tray.
  • the porous material when the porous material is provided as a dielectric layer, it also absorbs a part of the condensed water. Therefore, the thickness thereof is adjusted according to the amount of condensed water generated. Further, if the assembly gap is large, it is necessary to exert a dielectric layer. When the effect of contact between the components is improved, a thickened dielectric layer can be provided.
  • the high surface energy material when the high surface energy material is disposed as a dielectric layer, it may be integrally coated on the bottom of the water tray or partially coated on the inner chamfer surface and its surrounding area, and the corresponding surface is designed according to the heat exchange capacity or working temperature of the heat dissipation portion. The energy gradient (ie, the surface energy of different materials in different regions is positively correlated with the heat exchange capacity and temperature of multiple heat dissipation portions).
  • FIG. 5 shows a schematic diagram of a dielectric layer setup in accordance with an embodiment of the present invention.
  • a water receiving tray 510 is mounted on the upper portion of the condenser 502, and the reference numeral 508 is enlarged in a ratio of 3:1. As shown in the left circle, the water receiving tray 510 is provided with a water outlet 506. A high surface energy material coating 504 is disposed beneath the nozzle 506 (water tray 510).
  • the evaporator (not shown) generates condensed water during heat exchange, and the condenser 502 requires cooling water during heat exchange, so that the first aspect of the present invention is provided
  • the water receiving tray 510 is mounted on the condenser 502 to realize the recycling of the condensed water.
  • a reasonable distribution of condensed water is achieved by using the high surface energy material coating 504 disposed under the water receiving tray 510, wherein the high surface energy material coating 504 under the water receiving tray 510 can adjust the condensed water. Cloth and its flow at a local location. The cooling effect of the condensed water is better utilized.
  • the condenser 502 includes a plurality of heat dissipation pipes, and the plurality of water outlets 506 disposed on the water receiving tray 510 are disposed corresponding to the plurality of heat dissipation pipes of the condenser 502, so that the heat transfer effect of the condensed water or other liquid can be better exerted.
  • the heat pipe with strong heat exchange capacity needs more condensed water for cooling, so the higher surface energy material with stronger hydrophilic ability is applied to the bottom of the water receiving tray 510 at the corresponding position, so that it can be obtained with respect to other heat pipes. More cooling water.
  • the condensed water can be cooled as much as possible in the case of insufficient condensed water to cool the heat transfer tubes with high heat exchange capacity (or higher temperature).
  • the water receiving tray 510 is made of a conventional plastic material. After molding, a high surface energy material 504 such as TiO2, modified acrylate resin or the like is sprayed on the side close to the condenser 502.
  • the hydrophilic layer has a thickness of 0.001-1 mm, and further, different surface energy materials can be used for layout.
  • the high surface energy material coating 504 may also be replaced by a porous material having a certain flexibility to improve contact between the water receiving tray 510 and the condenser 502.
  • the material may be foamed polyurethane, expanded polyethylene, expanded PVC/NBR, and has a thickness of 0.1-20 mm.
  • the porous material may be provided as a separate component or may be additionally mounted on the condenser 502. Compared with the high energy surface material scheme, directly increasing the porous material is simpler and more feasible, and the uniform distribution of the condensed water can be achieved, but the distribution and flow rate of the condensed water at different positions cannot be adjusted.
  • Figure 6 shows a schematic diagram of the relationship between surface energy of a material and heat transfer coefficient in accordance with an embodiment of the present invention.
  • the condenser tube row 606 has a plurality of heat pipes 602, and the water outlet 604 is disposed on the water receiving tray.
  • the dielectric layer 608 is made of a high surface energy material
  • the surface energy ⁇ x, y and the condenser Corresponding position equivalent average heat transfer coefficient h x, y has the following relationship:
  • ⁇ x, y is the surface energy
  • h x, y is the equivalent average heat transfer coefficient of the corresponding position of the condenser
  • n x, y is the number of the heat pipes 602 of the condenser below the corresponding area of the water tray, h i is the heat transfer coefficient of each heat pipe 602, and h i is calculated by the following formula:
  • Q i is the heat exchange amount of the i-th heat pipe 602
  • a i is the heat exchange area of the i-th heat pipe 602
  • ⁇ T i is the heat exchange temperature difference of the i-th heat pipe 602.
  • the coating surface energy ⁇ x, y and the position heat transfer coefficient h x, y conform to a certain functional relationship law, and can be easily processed into a linear relationship.
  • K is a constant that can be derived experimentally.
  • the present invention provides a water receiving tray, an air conditioner and a method for changing the distribution of condensed water, which are increased between the air conditioner water receiving tray and the condenser.
  • the surface energy material or the addition of a separate porous medium structure to improve the distribution of condensed water can also control the flow of condensed water in different spatial locations, achieve the purpose of actively intervening condensate distribution, and improve the performance of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

一种接水盘(100、200),用于空调器(300),包括:接水盘主体(102、202),用于收集和存放冷凝水;介质层(104、204),设置在接水盘主体(102、202)下方,使用多孔材料和/或多种高表面材料制成,用于调整冷凝水的分布和流量。该装置能够防止冷凝水在接水盘(100、200)底部聚集并仅往同一位置排放,实现冷凝水的合理分配。还公开了一种空调器(300)和改变冷凝水分布的方法。

Description

接水盘、空调器和改变冷凝水分布的方法
本申请要求2016年12月07日在中国国家知识产权局提交的申请号为201611117788.X、发明名称为“接水盘、空调器和改变冷凝水分布的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调器技术领域,具体而言,涉及一种接水盘、一种空调器和一种改变冷凝水分布的方法。
背景技术
目前,移动空调因为使用方便灵活被广泛应用于普通家庭、办公室以及公寓等场合,由于其整体式结构以及蒸发器、冷凝器空间排放等因素,蒸发器上产生的冷凝水通过打水电机输送至冷凝器,从而提高系统能效,因此冷凝水的收集及分配对系统性能影响至关重要。在实现本发明过程中,发明人发现现有技术中至少存在如下问题:如果空气湿度低导致冷凝水减少,出现冷凝水在接水盘底部聚集而不能流到冷凝器;由于排水孔设计、安装及材料不合理,导致冷凝水排放出现间断性或者在局部聚集排放,导致系统性能下降;总而言之,当前常规的冷凝水收集及分配基本依据经验和某一设定工况设计,无法主动控制或干预冷凝水的分配,抑制了系统性能提升。因此,如何实现冷凝水的合理分配,用以提高空调器性能成为亟待解决的技术问题。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的一个目的在于提供一种接水盘。
本发明的另一个目的在于提供了一种空调器。
本发明的再一个目的在于提出了一种改变冷凝水分布的方法。
为实现上述目的,根据本发明的第一方面的实施例,提供了一种接水盘,包括:接水盘主体,用于收集和存放冷凝水;介质层,设置在接水盘主体下方,使用多孔材料和/或多种高表面能材料制成,介质层用于调整冷凝水的分布和流量。
根据本发明第一方面的实施例的接水盘,通过在接水盘底部设置具有特定材料特性的介质层来引导冷凝水的排放,实现冷凝水分布位置的调整和各个位置上冷凝水流量的控制。具体地,接水盘主体根据安装环境进行设计,用于收集和存放冷凝水或者其它来源的实现冷却作用的液体。介质层设置在接水盘主体的底部,为了便于安装和更换,介质层还能够与接水盘分离,介质层的制造材料能够是多孔材料和/或多种高表面能材料。当使用多孔材料制造介质层时,所述多孔材料具有一定的柔性以改善接水盘与待冷却装置之间的接触,当使用高表面能材料设置介质层时,以涂布的工艺进行设置,所述高表面能材料的表面能足以使材料具有亲水性。设置该介质层目的在于调整换热液体在接水盘底部的分布,以及,当所述介质层使用高表面能材料进行设置时还能够调整液体在局部位置的流量。使冷凝水的冷却作用更好地被利用。另外,在不需要冷凝水流经的位置也可以设置憎水(疏水)材料用以帮助形成导水路线。
根据本发明第一方面实施例的接水盘,优选地,还包括:多个出水口,设于接水盘主体上,多个出水口具有出水侧和蓄水侧,出水侧穿过接水盘底部的上表面,在出水侧设置有内倒角,蓄水侧设置有出水口凸台,出水口凸台用于保证水层高度,使多个出水口同时开始排水,内倒角便于设置介质层并增加出水口的排水量。
在该实施例中,提出在接水盘底部设置多个出水口,每个出水口都做特殊处理,即出水侧穿过接水盘底部的上表面,在出水侧设置有内倒角,便于设置介质层并增加出水口的排水量;蓄水侧设置有出水口凸台,出水口凸台用于保证水层高度,此水层高度的存在可以使多个出水口同时开始排水,用以更好地支持介质层的导水功能。整体上来看,多个出水口可根据具体使用情况进行设置,内倒角和出水口凸台的设置则可以改善介质层的工作环境。
根据本发明第一方面实施例的接水盘,优选地,介质层使用多种高表 面能材料进行设置时,介质层具有强亲水性,多种高表面能材料涂布在多个出水口的内倒角表面和/或接水盘底部,形成不同亲水能力的导水区,介质层厚度为1×10-3毫米至1毫米,用于实现导水区冷凝水流量增加。
在该实施例中,高表面能材料利用自身的亲水性实现冷凝水的分布控制和流量控制,具体地,表面能高的区域的亲水(导水)能力强于表面能较低的区域的亲水(导水)能力,冷凝水依靠自身表面张力和分子间的作用力沿着接水盘底部接受高表面能材料的疏导。这些高表面能材料以涂布的工艺进行设置,涂层厚度为1×10-3毫米至1毫米。在冷凝水需求量大的位置使用较高表面能的材料,在冷凝水需求量小的位置使用较低表面能的材料,其中,高表面能材料的表面能足以支持介质层使其具有亲水能力,之后不同位置的表面能只需要具有相对的高低区分即可,不必得知表面能的具体数值。另外,在不需要冷凝水流经的位置也可以设置憎水(疏水)材料用以帮助形成导水路线。
根据本发明第一方面实施例的接水盘,优选地,介质层使用具有多孔结构的材料进行设置时,多孔材料设置在接水盘底部或与接水盘分离,厚度为1×10-1毫米至20毫米,防止冷凝水在接水盘底部集中排放。
在该实施例中,多孔材料实现的功能是防止冷凝水在某一位置聚集排放,实现冷凝水的均匀分布。
根据本发明第一方面实施例的接水盘,优选地,所述高表面能材料包括TiO2(二氧化钛)和改性丙烯酸酯树脂;所述多孔材料包括发泡聚氨酯、发泡聚乙烯、发泡PVC(聚氯乙烯)和NBR(丁腈橡胶)。
在该实施例中,高表面能材料具有亲水性,多孔材料具有一定的柔性,包括但不限于上述材料。
根据本发明第二方面的实施例,还提供了一种空调器,包括:如上述第一方面实施例的接水盘,以及:蒸发器,用于空调器的制冷剂的热交换过程并产生冷凝水;冷凝器,用于空调器的制冷剂的热交换过程;装配部,用于接水盘、蒸发器、冷凝器之间的装配。
根据本发明第二方面实施例的空调器,蒸发器在换热过程中会产生冷凝水,而冷凝器在换热过程中需要冷却水,所以通过装配部将本发明第一方面实施例中提供的接水盘安装在此空调器系统中,实现冷凝水的回收利 用,可以提高空调器性能。再利用接水盘的介质层的特殊设置,实现冷凝水的合理分配,还能够进一步提高空调器性能。其中,所述接水盘的介质层能够调整冷凝水的分布和其在局部位置的流量。使冷凝水的冷却作用更好地被利用。
根据本发明第二方面的实施例的空调器,优选地,还包括:打水电机,用于将冷凝水输送至接水盘。
在该实施例中,打水电机可以帮助输送冷凝水至接水盘,也能够从另外的水源汲水用以补充接水盘的水量。
根据本发明第二方面的实施例的空调器,优选地,冷凝器中包括多根散热管。
在该实施例中,冷凝器由多根散热管构成,方便制冷剂的放热过程。
根据本发明第二方面的实施例的空调器,优选地,接水盘的多个出水口对应于冷凝器的多根散热管进行设置。
在该实施例中,多个出水口对应于多个散热管进行设置,可以更好地发挥冷凝水或其它液体的传热效果。同时,也方便厂家或者用户根据不同散热管的换热能力为其对应位置上的接水盘涂布具有不同表面能的多种高表面能材料。
根据本发明第二方面的实施例的空调器,优选地,介质层材料为多种高表面能材料时,根据多个换热管的换热系数进行多种高表面能材料的涂布布局;介质层不同位置的表面能与对应的换热管的换热系数正相关。
在该实施例中,换热能力强的散热管需要较多的冷凝水进行冷却,那么就在其对应位置的接水盘底部涂布亲水能力更强的高表面能材料,使其相对于其它散热管能够获得更多的冷却水。可以在冷凝水不足的情况下尽量使冷凝水去冷却那些换热能力强(或者说是温度较高)的散热管。
根据本发明第三方面的实施例,还提出了一种改变冷凝水分布的方法,包括:在待冷却装置与接水盘之间设置高表面能材料和/或多孔材料,形成介质层;其中,所述高表面能材料具有多个表面能梯度,通过计算所述待冷却装置的各个散热部的换热能力,得到相应的计算结果,并根据所述计算结果选择多种高表面能材料进行设置,所述高表面能材料的表面能与所述散热部的换热能力正相关。或者通过实验或实测的方法确定不 同散热部的工作温度,在温度较高的散热部上方设置表面能相对较高的高表面能材料作为介质层。
根据本发明第三方面的实施例的改变冷凝水分布的方法,在待冷却装置上设置接水盘,在二者之间进一步设置介质层。所述介质层由具有多个表面能梯度的高表面能材料制成,此时,能够利用高表面能材料的特性控制冷凝水的分布及局部的流量,具体地,涂布有高表面能材料的位置能够导水,用以改变冷凝水的分布位置,材料表面能相对较高的位置则具有更大的流量。当所述介质层由多孔材料制成时,多孔材料能够利用本身材料特性防止冷凝水在接水盘底部某一位置聚集,使冷凝水均匀分布,实现均匀排放。
根据本发明第三方面的实施例的改变冷凝水分布的方法,优选地,接水盘上设置有多个出水口,用于排放冷凝水;其中,出水口具有出水侧和蓄水侧,出水侧穿过接水盘底部的上表面,在出水侧设置有内倒角,蓄水侧设置有出水口凸台,出水口凸台用于保证水层高度,使多个出水口同时开始排水,内倒角便于设置介质层并增加出水口的排水量。
在该实施例中,接水盘上设置有多个出水口,每个出水口都做特殊处理,即出水侧穿过接水盘底部的上表面,在出水侧设置有内倒角,便于设置介质层并增加出水口的排水量;蓄水侧设置有出水口凸台,出水口凸台用于保证水层高度,此水层高度的存在可以使多个出水口同时开始排水,用以更好地支持介质层的导水功能。整体上来看,多个出水口可根据具体使用情况进行设置,内倒角和出水口凸台的设置则可以改善介质层的工作环境。
根据本发明第三方面的实施例的改变冷凝水分布的方法,优选地,内倒角的角度根据出水口的高度、直径以及接水盘底部的厚度进行设置,出水口凸台高度根据冷凝水的发生量进行设置。
在该实施例中,综合考虑使用环境、接水盘厚度以及出水口高度等因素进行内倒角的设计,可以更好地发挥其便于设置介质层并增加出水口的排水量的作用,出水口凸台高度则根据冷凝水发生量进行设计,防止过多的冷凝水聚集在凸台周围而不能被利用。
根据本发明第三方面的实施例的改变冷凝水分布的方法,优选地,多 个出水口对应于多个散热部进行设置。
在该实施例中,为了取得更好的冷却效果,用于排水降温的出水口应对应于待冷却装置的多个散热部进行安装,例如,散热部是一根一根的散热管,那么就按照一个出水口对应一根散热管的方式进行布局。
根据本发明第三方面的实施例的改变冷凝水分布的方法,优选地,多孔材料的材质和厚度根据装配间隙和冷凝水发生量进行选择,能够设置在接水盘侧,也能够设置为独立部件,高表面能材料以涂布的形式进行设置;多种高表面能材料设置在多个出水口内倒角表面和/或接水盘出水侧。
在该实施例中,多孔材料作为介质层进行设置的情况下,其本身也会吸收一部分冷凝水,所以,其厚度根据冷凝水发生量进行调整,此外,如果装配间隙较大,需要发挥介质层改善部件之间的接触的效果时,可以设置加厚介质层。高表面能材料作为介质层进行设置时,可整体涂布在接水盘底部或局部涂布在内倒角表面及其周围区域,并根据散热部的换热能力或者工作温度设计出对应的表面能梯度(即不同区域的材料表面能不同,与多个散热部的换热能力和温度正相关)。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的第一方面实施例的接水盘的框图;
图2示出了根据本发明的第一方面实施例的接水盘的详细框图;
图3示出了根据本发明的第二方面实施例的空调器的框图;
图4示出了根据本发明的第三方面实施例的改变冷凝水分布的方法的流程图;
图5示出了根据本发明实施例的介质层设置示意图;
图6示出了根据本发明的实施例的材料表面能与换热系数的关系的示 意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的第一方面实施例的接水盘的框图。
如图1所示,根据本发明的第一方面实施例的接水盘100,包括:接水盘主体102,用于收集和存放冷凝水;介质层104,设置在接水盘主体102下方,使用多孔材料和/或多种高表面能材料制成,介质层104用于调整冷凝水的分布和流量。
根据本发明第一方面的实施例的接水盘100,通过在接水盘100底部设置具有特定材料特性的介质层104来引导冷凝水的排放,实现冷凝水分布位置的调整和各个位置上冷凝水流量的控制。具体地,接水盘主体102根据安装环境进行设计,用于收集和存放冷凝水或者其它来源的实现冷却作用的液体。介质层104设置在接水盘主体102的底部,为了便于安装和更换,介质层104还能够与接水盘100分离,介质层104的制造材料能够是多孔材料和/或多种高表面能材料。当使用多孔材料制造介质层104时,所述多孔材料具有一定的柔性以改善接水盘100与待冷却装置之间的接触,当使用高表面能材料设置介质层104时,以涂布的工艺进行设置,所述高表面能材料的表面能足以使材料具有亲水性。设置该介质层104目的在于调整换热液体在接水盘100底部的分布,以及,当所述介质层104使用高表面能材料进行设置时还能够调整液体在局部位置的流量。使冷凝水的冷却作用更好地被利用。另外,在不需要冷凝水流经的位置也可以设置憎水(疏水)材料用以帮助形成导水路线。
根据本发明第一方面实施例的接水盘100,优选地,介质层104使用 多种高表面能材料进行设置时,介质层104具有强亲水性,多种高表面能材料涂布在多个出水口的内倒角表面和/或接水盘100底部,形成不同亲水能力的导水区,介质层104厚度为1×10-3毫米至1毫米,用于实现导水区冷凝水流量增加。在该实施例中,高表面能材料利用自身的亲水性实现冷凝水的分布控制和流量控制,具体地,表面能高的区域的亲水(导水)能力强于表面能较低的区域的亲水(导水)能力,冷凝水依靠自身表面张力和分子间的作用力沿着接水盘100底部接受高表面能材料的疏导。这些高表面能材料以涂布的工艺进行设置,涂层厚度为1×10-3毫米至1毫米。在冷凝水需求量大的位置使用较高表面能的材料,在冷凝水需求量小的位置使用较低表面能的材料,其中,高表面能材料的表面能足以支持介质层104使其具有亲水能力,之后不同位置的表面能只需要具有相对的高低区分即可,不必得知表面能的具体数值。另外,在不需要冷凝水流经的位置也可以设置憎水(疏水)材料用以帮助形成导水路线。
根据本发明第一方面实施例的接水盘100,优选地,介质层104使用具有多孔结构的材料进行设置时,多孔材料设置在接水盘100底部或与接水盘100分离,厚度为1×10-1毫米至20毫米,防止冷凝水在接水盘100底部集中排放。在该实施例中,多孔材料实现的功能是防止冷凝水在某一位置聚集排放,实现冷凝水的均匀分布。
根据本发明第一方面实施例的接水盘100,优选地,所述高表面能材料包括TiO2(二氧化钛)和改性丙烯酸酯树脂;所述多孔材料包括发泡聚氨酯、发泡聚乙烯、发泡PVC(聚氯乙烯)和NBR(丁腈橡胶)。在该实施例中,高表面能材料具有亲水性,多孔材料具有一定的柔性,包括但不限于上述材料。
图2示出了根据本发明的第一方面实施例的接水盘的详细框图。
如图2所示,根据本发明的第一方面的实施例,提供了一种接水盘200,包括:接水盘主体202,用于收集和存放冷凝水;介质层204,设置在接水盘主体202下方,使用多孔材料和/或多种高表面能材料制成,介质层204用于调整冷凝水的分布和流量。
根据本发明第一方面的实施例的接水盘200,通过在接水盘200底部设置具有特定材料特性的介质层204来引导冷凝水的排放,实现冷凝水分 布位置的调整和各个位置上冷凝水流量的控制。具体地,接水盘主体202根据安装环境进行设计,用于收集和存放冷凝水或者其它来源的实现冷却作用的液体。介质层204设置在接水盘主体202的底部,为了便于安装和更换,介质层204还能够与接水盘200分离,介质层204的制造材料能够是多孔材料和/或多种高表面能材料。当使用多孔材料制造介质层204时,所述多孔材料具有一定的柔性以改善接水盘200与待冷却装置之间的接触,当使用高表面能材料设置介质层204时,以涂布的工艺进行设置,所述高表面能材料的表面能足以使材料具有亲水性。设置该介质层204目的在于调整换热液体在接水盘200底部的分布,以及,当所述介质层204使用高表面能材料进行设置时还能够调整液体在局部位置的流量。使冷凝水的冷却作用更好地被利用。另外,在不需要冷凝水流经的位置也可以设置憎水(疏水)材料用以帮助形成导水路线。
根据本发明第一方面实施例的接水盘200,优选地,还包括:多个出水口206,设于接水盘主体202上,多个出水口206具有出水侧和蓄水侧,出水侧穿过接水盘200底部的上表面,在出水侧设置有内倒角2064,蓄水侧设置有出水口凸台2062,出水口凸台2062用于保证水层高度,使多个出水口206同时开始排水,内倒角2064便于设置介质层204并增加出水口206的排水量。
在该实施例中,提出在接水盘200底部设置多个出水口206,每个出水口206都做特殊处理,即出水侧穿过接水盘200底部的上表面,在出水侧设置有内倒角2064,便于设置介质层204并增加出水口206的排水量;蓄水侧设置有出水口凸台2062,出水口凸台2062用于保证水层高度,此水层高度的存在可以使多个出水口206同时开始排水,用以更好地支持介质层204的导水功能。整体上来看,多个出水口206可根据具体使用情况进行设置,内倒角2064和出水口凸台2062的设置则可以改善介质层204的工作环境。
根据本发明第一方面实施例的接水盘200,优选地,介质层204使用多种高表面能材料进行设置时,介质层204具有强亲水性,多种高表面能材料涂布在多个出水口206的内倒角2064表面和/或接水盘200底部,形 成不同亲水能力的导水区,介质层204厚度为1×10-3毫米至1毫米,用于实现导水区冷凝水流量增加。
在该实施例中,高表面能材料利用自身的亲水性实现冷凝水的分布控制和流量控制,具体地,表面能高的区域的亲水(导水)能力强于表面能较低的区域的亲水(导水)能力,冷凝水依靠自身表面张力和分子间的作用力沿着接水盘200底部接受高表面能材料的疏导。这些高表面能材料以涂布的工艺进行设置,涂层厚度为1×10-3毫米至1毫米。在冷凝水需求量大的位置使用较高表面能的材料,在冷凝水需求量小的位置使用较低表面能的材料,其中,高表面能材料的表面能足以支持介质层204使其具有亲水能力,之后不同位置的表面能只需要具有相对的高低区分即可,不必得知表面能的具体数值。另外,在不需要冷凝水流经的位置也可以设置憎水(疏水)材料用以帮助形成导水路线。
根据本发明第一方面实施例的接水盘200,优选地,介质层204使用具有多孔结构的材料进行设置时,多孔材料设置在接水盘200底部或与接水盘200分离,厚度为1×10-1毫米至20毫米,防止冷凝水在接水盘200底部集中排放。
在该实施例中,多孔材料实现的功能是防止冷凝水在某一位置聚集排放,实现冷凝水的均匀分布。
根据本发明第一方面实施例的接水盘200,优选地,所述高表面能材料包括TiO2(二氧化钛)和改性丙烯酸酯树脂;所述多孔材料包括发泡聚氨酯、发泡聚乙烯、发泡PVC(聚氯乙烯)和NBR(丁腈橡胶)。
在该实施例中,高表面能材料具有亲水性,多孔材料具有一定的柔性,包括但不限于上述材料。
图3示出了根据本发明的第二方面实施例的空调器的框图。
如图3所示,一种空调器300,包括:如上述第一方面实施例的接水盘200,以及:蒸发器302,用于空调器300的制冷剂的热交换过程并产生冷凝水;冷凝器304,用于空调器300的制冷剂的热交换过程;装配部306,用于接水盘200、蒸发器302、冷凝器304之间的装配。
根据本发明第二方面实施例的空调器300,蒸发器302在换热过程中会产生冷凝水,而冷凝器304在换热过程中需要冷却水,所以通过装配部 306将本发明第一方面实施例中提供的接水盘200安装在此空调器300系统中,实现冷凝水的回收利用,可以提高空调器300性能。再利用接水盘200的介质层204的特殊设置,实现冷凝水的合理分配,还能够进一步提高空调器300性能。其中,所述接水盘200的介质层204能够调整冷凝水的分布和其在局部位置的流量。使冷凝水的冷却作用更好地被利用。
根据本发明第二方面的实施例的空调器300,优选地,还包括:打水电机308,用于将冷凝水输送至接水盘200。
在该实施例中,打水电机308可以帮助输送冷凝水至接水盘200,也能够从另外的水源汲水用以补充接水盘200的水量。
根据本发明第二方面的实施例的空调器300,优选地,冷凝器304中包括多根散热管。
在该实施例中,冷凝器304由多根散热管构成,方便制冷剂的放热过程。
根据本发明第二方面的实施例的空调器300,优选地,接水盘200的多个出水口206对应于冷凝器304的多根散热管进行设置。
在该实施例中,多个出水口206对应于多个散热管进行设置,可以更好地发挥冷凝水或其它液体的传热效果。同时,也方便厂家或者用户根据不同散热管的换热能力为其对应位置上的接水盘200涂布具有不同表面能的多种高表面能材料。
根据本发明第二方面的实施例的空调器300,优选地,介质层204材料为多种高表面能材料时,根据多个换热管的换热系数进行多种高表面能材料的涂布布局;介质层204不同位置的表面能与对应的换热管的换热系数正相关。
在该实施例中,换热能力强的散热管需要较多的冷凝水进行冷却,那么就在其对应位置的接水盘200底部涂布亲水能力更强的高表面能材料,使其相对于其它散热管能够获得更多的冷却水。可以在冷凝水不足的情况下尽量使冷凝水去冷却那些换热能力强(或者说是温度较高)的散热管。
图4示出了根据本发明的第三方面实施例的改变冷凝水分布的方法的流程图。
如图4所示,根据本发明第三方面的实施例,还提出了一种改变冷凝 水分布的方法,包括:步骤402,在待冷却装置与接水盘之间设置高表面能材料和/或多孔材料,形成介质层;其中,所述高表面能材料具有多个表面能梯度,通过计算所述待冷却装置的各个散热部的换热能力,得到相应的计算结果,并根据所述计算结果选择多种高表面能材料进行设置,所述高表面能材料的表面能与所述散热部的换热能力正相关。或者通过实验或实测的方法确定不同散热部的工作温度,在温度较高的散热部上方的接水盘主体对应位置设置表面能较高的高表面能材料作为介质层。
根据本发明第三方面的实施例的改变冷凝水分布的方法,步骤402在待冷却装置上设置接水盘,在二者之间进一步设置介质层。所述介质层由具有多个表面能梯度的高表面能材料制成,此时,能够利用高表面能材料的特性控制冷凝水的分布及局部的流量,具体地,涂布有高表面能材料的位置能够导水,用以改变冷凝水的分布位置,材料表面能相对较高的位置则具有更大的流量。当所述介质层由多孔材料制成时,多孔材料能够利用本身材料特性防止冷凝水在接水盘底部某一位置聚集,使冷凝水均匀分布,实现均匀排放。
根据本发明第三方面的实施例的改变冷凝水分布的方法的步骤402,优选地,接水盘上设置有多个出水口,用于排放冷凝水;其中,出水口具有出水侧和蓄水侧,出水侧穿过接水盘底部的上表面,在出水侧设置有内倒角,蓄水侧设置有出水口凸台,出水口凸台用于保证水层高度,使多个出水口同时开始排水,内倒角便于设置介质层并增加出水口的排水量。
在该实施例中,接水盘上设置有多个出水口,每个出水口都做特殊处理,即出水侧穿过接水盘底部的上表面,在出水侧设置有内倒角,便于设置介质层并增加出水口的排水量;蓄水侧设置有出水口凸台,出水口凸台用于保证水层高度,此水层高度的存在可以使多个出水口同时开始排水,用以更好地支持介质层的导水功能。整体上来看,多个出水口可根据具体使用情况进行设置,内倒角和出水口凸台的设置则可以改善介质层的工作环境。
根据本发明第三方面的实施例的改变冷凝水分布的方法的步骤402,优选地,内倒角的角度根据出水口的高度、直径以及接水盘底部的厚度进行设置,出水口凸台高度根据冷凝水的发生量进行设置。
在该实施例中,综合考虑使用环境、接水盘厚度以及出水口高度等因 素进行内倒角的设计,可以更好地发挥其便于设置介质层并增加出水口的排水量的作用,出水口凸台高度则根据冷凝水发生量进行设计,防止过多的冷凝水聚集在凸台周围而不能被利用。
根据本发明第三方面的实施例的改变冷凝水分布的方法的步骤402,优选地,多个出水口对应于多个散热部进行设置。
在该实施例中,为了取得更好的冷却效果,用于排水降温的出水口应对应于待冷却装置的多个散热部进行安装,例如,散热部是一根一根的散热管,那么就按照一个出水口对应一根散热管的方式进行布局。
根据本发明第三方面的实施例的改变冷凝水分布的方法的步骤402,优选地,多孔材料的材质和厚度根据装配间隙和冷凝水发生量进行选择,能够设置在接水盘侧,也能够设置为独立部件,高表面能材料以涂布的形式进行设置;多种高表面能材料设置在多个出水口内倒角表面和/或接水盘出水侧。
在该实施例中,多孔材料作为介质层进行设置的情况下,其本身也会吸收一部分冷凝水,所以,其厚度根据冷凝水发生量进行调整,此外,如果装配间隙较大,需要发挥介质层改善部件之间的接触的效果时,可以设置加厚介质层。高表面能材料作为介质层进行设置时,可整体涂布在接水盘底部或局部涂布在内倒角表面及其周围区域,并根据散热部的换热能力或者工作温度设计出对应的表面能梯度(即不同区域的材料表面能不同,与多个散热部的换热能力和温度正相关)。
图5示出了根据本发明实施例的介质层设置示意图。
如图5所示,冷凝器502上部安装有接水盘510,标号508处按照3:1的比例放大后,如左侧圆内所示,接水盘510上设置有出水口506,在出水口506(接水盘510)下部设置高表面能材料涂层504。
在该实施例中,蒸发器(图中未示出)在换热过程中会产生冷凝水,而冷凝器502在换热过程中需要冷却水,所以将本发明第一方面实施例中提供的接水盘510安装在此冷凝器502上,实现冷凝水的回收利用。再利用接水盘510下部设置的高表面能材料涂层504实现冷凝水的合理分配,其中,所述接水盘510下方的高表面能材料涂层504能够调整冷凝水的分 布和其在局部位置的流量。使冷凝水的冷却作用更好地被利用。冷凝器502中包括多根散热管,接水盘510上设置的多个出水口506对应于冷凝器502的多根散热管进行设置,可以更好地发挥冷凝水或其它液体的传热效果。同时,也方便厂家或者用户根据不同散热管的换热能力为其对应位置上的接水盘510底部涂布具有不同表面能的高表面能材料涂层504。换热能力强的散热管需要较多的冷凝水进行冷却,那么就在其对应位置的接水盘510底部涂布亲水能力更强的高表面能材料,使其相对于其它散热管能够获得更多的冷却水。可以在冷凝水不足的情况下尽量使冷凝水去冷却那些换热能力强(或者说是温度较高)的散热管。接水盘510采用常规塑料材料,成型后在靠近冷凝器502那一侧喷涂高表面能材料504,比如:TiO2、改性丙烯酸酯树脂等。亲水层厚度0.001-1毫米,进一步地,可采用不同的表面能材料进行布局。
根据图5所示的介质层设置,其中,高表面能材料涂层504也可以由多孔材料代替,多孔材料具备一定的柔性以改善接水盘510与冷凝器502之间的接触。该材料可以为发泡聚氨酯、发泡聚乙烯、发泡PVC/NBR,厚度为0.1-20毫米。该多孔材料可以设置为独立部件,也可以附加安装在冷凝器502上。相比于采用高能表面材料方案,直接增加多孔材料更加简单可行,可以实现冷凝水的均匀分布,但是不能调整冷凝水在不同位置上的分布和流量。
图6示出了根据本发明的实施例的材料表面能与换热系数的关系的示意图。
如图6所示,冷凝器管排606中有多根散热管602,出水口604设置在接水盘上,介质层608由高表面能材料制成时,表面能Φx,y与冷凝器对应位置当量平均换热系数hx,y有如下关系:
Φx,y=f(hx,y)
Φx,y为表面能,hx,y为冷凝器对应位置当量平均换热系数,
hx,y由以下公式计算:
hx,y=∑hi/nx,y
nx,y为所述接水盘对应区域下方所述冷凝器的所述散热管602的数量,hi为每根散热管602的换热系数,hi由以下公式计算:
hi=Qi/AiΔTi
Qi为第i根所述散热管602的换热量,Ai为第i根散热管602换热面积,ΔTi为第i根所述散热管602的换热温差,
涂层表面能Φx,y与该位置换热系数hx,y符合一定的函数关系规律,简单可处理成线性关系
Φx,y=Khx,y
K为常数可以由实验得出。
以上结合附图详细说明了本发明的技术方案,本发明提供了一种接水盘,一种空调器和一种改变冷凝水分布的方法,在空调器接水盘与冷凝器之间增加高表面能材料或者增加单独多孔介质结构以改善冷凝水分配,还能够控制冷凝水在不同空间位置的流量,达到主动干预冷凝水分配的目的,提升了空调器性能。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种接水盘,用于空调器,其特征在于,包括:
    接水盘主体,用于收集和存放冷凝水;
    介质层,设置在所述接水盘主体下方,使用多孔材料和/或多种高表面能材料制成,所述介质层用于调整冷凝水的分布和流量。
  2. 根据权利要求1所述的接水盘,其特征在于,还包括:
    多个出水口,设于所述接水盘主体上,所述多个出水口具有出水侧和蓄水侧,所述出水侧穿过所述接水盘底部的上表面,在所述出水侧设置有内倒角,所述蓄水侧设置有出水口凸台,所述出水口凸台用于保证水层高度,使所述多个出水口同时开始排水,所述内倒角便于设置所述介质层并增加所述出水口的排水量。
  3. 根据权利要求2所述的接水盘,其特征在于,所述介质层使用多种高表面能材料进行设置时,所述介质层具有强亲水性,所述多种高表面能材料涂布在所述多个出水口的内倒角表面和/或接水盘底部,形成不同亲水能力的导水区,所述介质层厚度为1×10-3毫米至1毫米,用于实现所述导水区冷凝水流量增加。
  4. 根据权利要求2所述的接水盘,其特征在于,所述介质层使用具有多孔结构的材料进行设置时,所述多孔材料设置在所述接水盘底部或与所述接水盘分离,厚度为1×10-1毫米至20毫米,防止冷凝水在接水盘底部集中排放。
  5. 根据权利要求1至4中任一项所述的接水盘,其特征在于,所述高表面能材料包括TiO2和改性丙烯酸酯树脂;所述多孔材料包括发泡聚氨酯、发泡聚乙烯、发泡PVC(聚氯乙烯)和NBR(丁腈橡胶)。
  6. 一种空调器,包括如权利要求1至5中任一项所述的接水盘,其特征在于,还包括:
    蒸发器,用于所述空调器的制冷剂的热交换过程并产生冷凝水;
    冷凝器,用于所述空调器的制冷剂的热交换过程;
    装配部,用于所述接水盘、所述蒸发器、所述冷凝器之间的装配。
  7. 根据权利要求6所述的空调器,其特征在于,还包括:
    打水电机,用于将冷凝水输送至所述接水盘。
  8. 根据权利要求6所述的空调器,其特征在于,所述冷凝器中包括多根散热管。
  9. 根据权利要求8所述的空调器,其特征在于,所述接水盘的所述多个出水口对应于所述冷凝器的所述多根散热管进行设置。
  10. 根据权利要求9所述的空调器,其特征在于,所述介质层材料为多种高表面能材料时,根据所述多个换热管的换热系数进行所述多种高表面能材料的涂布布局;介质层不同位置的表面能与对应的换热管的换热系数正相关。
  11. 一种改变冷凝水分布的方法,其特征在于,包括:
    在待冷却装置与接水盘之间设置高表面能材料和/或多孔材料,形成介质层;其中,
    所述高表面能材料具有多个表面能梯度,通过计算所述待冷却装置的各个散热部的换热能力,得到相应的计算结果,并根据所述计算结果选择多种高表面能材料进行设置,所述高表面能材料的表面能与所述散热部的换热能力正相关。
  12. 根据权利要求11所述的改变冷凝水分布的方法,其特征在于,所述接水盘上设置有多个出水口,用于排放冷凝水;其中,所述出水口具有出水侧和蓄水侧,所述出水侧穿过所述接水盘底部的上表面,在所述出水侧设置有内倒角,所述蓄水侧设置有出水口凸台,所述出水口凸台用于保证水层高度,使所述多个出水口同时开始排水,所述内倒角便于设置所述介质层并增加所述出水口的排水量。
  13. 根据权利要求12所述的改变冷凝水分布的方法,其特征在于,所述内倒角的角度根据所述出水口的高度、直径以及所述接水盘底部的厚度进行设置,所述出水口凸台高度根据冷凝水的发生量进行设置。
  14. 根据权利要求12所述的改变冷凝水分布的方法,其特征在于,所述多个出水口对应于所述多个散热部进行设置。
  15. 根据权利要求14所述的改变冷凝水分布的方法,其特征在于,所述多孔材料的材质和厚度根据装配间隙和冷凝水发生量进行选择,能够设置在所述接水盘侧,也能够设置为独立部件,所述高表面能材料以涂布的形式进行设置;所述多种高表面能材料设置在所述多个出水口内倒角表 面和/或接水盘出水侧。
PCT/CN2017/090135 2016-12-07 2017-06-26 接水盘、空调器和改变冷凝水分布的方法 WO2018103311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611117788.XA CN106642631B (zh) 2016-12-07 2016-12-07 接水盘、空调器和改变冷凝水分布的方法
CN201611117788.X 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018103311A1 true WO2018103311A1 (zh) 2018-06-14

Family

ID=58818946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090135 WO2018103311A1 (zh) 2016-12-07 2017-06-26 接水盘、空调器和改变冷凝水分布的方法

Country Status (2)

Country Link
CN (1) CN106642631B (zh)
WO (1) WO2018103311A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642631B (zh) * 2016-12-07 2022-03-01 广东美的制冷设备有限公司 接水盘、空调器和改变冷凝水分布的方法
CN109297008B (zh) * 2018-11-07 2023-11-21 新麦机械(中国)股份有限公司 一种用于烘焙设备的蒸汽组装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290272A (ja) * 1996-04-26 1997-11-11 Ebara Corp スライム防除方法及び防除用受水装置
US6065299A (en) * 1999-03-01 2000-05-23 Yang Fan Development Co., Ltd. Mechanism freeing an air conditioner from dripping
CN2551919Y (zh) * 2002-06-19 2003-05-21 任尧森 一种空调无水节能装置
CN2556552Y (zh) * 2002-06-19 2003-06-18 任尧森 空调无水节能装置
CN2591497Y (zh) * 2002-12-18 2003-12-10 河南新飞电器有限公司 分体式制冷不滴水空调器
CN101368760A (zh) * 2008-04-30 2009-02-18 王斌 空调机散热装置
CN103307730A (zh) * 2012-03-07 2013-09-18 珠海格力电器股份有限公司 接水盘及包含该接水盘的空调器
CN204006592U (zh) * 2014-07-24 2014-12-10 江苏友奥电器有限公司 一种冷凝水自蒸发空调用辅助淋水装置
CN106642631A (zh) * 2016-12-07 2017-05-10 广东美的制冷设备有限公司 接水盘、空调器和改变冷凝水分布的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170019A (ja) * 1996-12-10 1998-06-26 Hitachi Ltd 空気調和機の室内ユニット
CN104515211A (zh) * 2013-09-26 2015-04-15 珠海格力电器股份有限公司 分水器及具有其的空调
CN205316646U (zh) * 2016-01-28 2016-06-15 宁波奥克斯电气股份有限公司 一种空调冷凝水回收利用装置及空调
CN105605710A (zh) * 2016-02-01 2016-05-25 青岛海尔空调电子有限公司 空调器
CN206496492U (zh) * 2016-12-07 2017-09-15 广东美的制冷设备有限公司 接水盘和空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290272A (ja) * 1996-04-26 1997-11-11 Ebara Corp スライム防除方法及び防除用受水装置
US6065299A (en) * 1999-03-01 2000-05-23 Yang Fan Development Co., Ltd. Mechanism freeing an air conditioner from dripping
CN2551919Y (zh) * 2002-06-19 2003-05-21 任尧森 一种空调无水节能装置
CN2556552Y (zh) * 2002-06-19 2003-06-18 任尧森 空调无水节能装置
CN2591497Y (zh) * 2002-12-18 2003-12-10 河南新飞电器有限公司 分体式制冷不滴水空调器
CN101368760A (zh) * 2008-04-30 2009-02-18 王斌 空调机散热装置
CN103307730A (zh) * 2012-03-07 2013-09-18 珠海格力电器股份有限公司 接水盘及包含该接水盘的空调器
CN204006592U (zh) * 2014-07-24 2014-12-10 江苏友奥电器有限公司 一种冷凝水自蒸发空调用辅助淋水装置
CN106642631A (zh) * 2016-12-07 2017-05-10 广东美的制冷设备有限公司 接水盘、空调器和改变冷凝水分布的方法

Also Published As

Publication number Publication date
CN106642631B (zh) 2022-03-01
CN106642631A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN205425941U (zh) 一种卧式降膜蒸发器的布液器
WO2018103311A1 (zh) 接水盘、空调器和改变冷凝水分布的方法
CN104296268A (zh) 一种室内温度调节装置
US20170191713A1 (en) Vapor compression system
CN103542466A (zh) 一种分体式空调及其冷凝水回收节能方法
CN103913006B (zh) 基于空气源热泵技术的地暖与空气调节一体化装置
RU2689857C1 (ru) Кондиционер
CN106679450A (zh) 一种冷暖两用的散热片系统
CN110430722A (zh) 一种具备温湿度调控能力的装置及其自适应控制方法
US9310113B2 (en) Thermoelectric heat pump apparatus
US20120273171A1 (en) Earthen evaporative heat exchanger
JP2006153431A (ja) 冷却パネル
CN206496492U (zh) 接水盘和空调器
JP4899036B2 (ja) 空冷式冷房装置の排熱抑制装置とそれを用いた空冷式冷房システム
CN110854091A (zh) 一种基于液冷板均热的防凝露装置
CN207196725U (zh) 一种高效散热的空调室外机
CN206207834U (zh) 膜法溶液直冷式制冷设备
CN109812913A (zh) 间接蒸发内冷型溶液新风除湿装置
CN204084671U (zh) 一种室内温度调节装置
WO2017088772A1 (zh) 吸收式制冷单元无循环泵冷媒蒸发器、制冷单元及矩阵
CN208475598U (zh) 一种空调冷凝水回收装置
CN100580343C (zh) 用于制冷系统中的冷凝器、蒸发器、散热方法及散冷方法
CN105258529B (zh) 一种用于空调冷却水系统中的冷却塔装置
CN106225096A (zh) 移动式空调及混风方法
CN206207620U (zh) 膜法溶液风式制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877576

Country of ref document: EP

Kind code of ref document: A1