WO2018102934A1 - Método de instalación y de operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera - Google Patents
Método de instalación y de operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera Download PDFInfo
- Publication number
- WO2018102934A1 WO2018102934A1 PCT/CL2016/000077 CL2016000077W WO2018102934A1 WO 2018102934 A1 WO2018102934 A1 WO 2018102934A1 CL 2016000077 W CL2016000077 W CL 2016000077W WO 2018102934 A1 WO2018102934 A1 WO 2018102934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- installation
- valve device
- hatch
- atmosphere
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
- A23B7/00—Preservation or chemical ripening of fruit or vegetables
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
- A23B7/00—Preservation or chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
- A23B7/00—Preservation or chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
- A23B7/144—Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
- A23B7/148—Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3409—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
- A23L3/3418—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3409—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
- A23L3/3445—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/02—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
Definitions
- the present invention falls within the field of atmospheric control procedures in refrigerated containers, within which hatches are used where air flow controllers or valves must be installed to be used in an atmosphere control system in containers, for the transport of perishable refrigerated cargo.
- the transport of fresh fruit involves a prolonged period of time between the harvest of the fruit and delivery to the final customer. Adequate means of transporting such fruits are involved in this period of transport, which, if they are not in proper operating conditions, will lead to early ripening and the faster decomposition of the fruit.
- Cargo containers comprising refrigeration systems are mostly used for the transport of fresh fruit from the origin of the fruit's production to its place of sale, for which said cargo containers are equipped with the necessary elements that achieve reduce breathing, avoid sanitary deterioration and fruit ripening, in order to keep it in good condition.
- This transport condition is achieved by maintaining low temperatures, decreasing or increasing the amount of oxygen or carbon dioxide (carbon dioxide) in the environment, and absorbing ethylene, by means of a cooling system that generally comprises a cooling module. , service hatches, hatch of ventilation, a fan arranged in a chamber where the cooling module is installed, in order to circulate the air into the cargo area of the container, through an air inlet and outlet.
- two approaches are used to keep the fruit in good condition.
- the first focuses on being able to maintain the low temperatures where the fruit is exposed, in order to reduce the cellular metabolism of the fruit, finally causing a decrease in the rate of gas exchange.
- the second approach which complements the control of low temperature, is the control and / or the decrease in external form of oxygen (replacing it with nitrogen, carbon dioxide (carbon dioxide) or with another inert gas), which also translates into a decrease in cellular respiration, increasing the levels of carbon dioxide generated from the fruit or introduced externally, in order to achieve three objectives at the same time: a) a biological control, restricting the growth of aerobic bacteria, avoiding the deterioration of the fruit, b) decrease of the respiratory rate when removing the oxygen, decreasing the process of deterioration of the fruit and c) the control of the liberation of ethylene, to avoid the early ripening of the fruit.
- the types of containers normally used for the transport of fresh products correspond to refrigerated containers, with integral refrigeration system, such as and / or refrigerated containers with the adapted integral refrigeration system.
- this last type of container basically comprises an area where the load is arranged and a cooling system.
- the cooling module within the cooling system, in turn, are included the cooling module (s), service hatches, ventilation hatch, evaporators, fans arranged inside the chamber where the cooling module is installed (in order to circulate the air into the container, where the load is located), and an air inlet and outlet, such as those described in patents ES 2143858, ES 2036180 and / or WO2015178537, among others.
- Controlled atmosphere systems arranged in a refrigerated container used in the art in US 5,872,721 of Transfresh Corporation, published on February 16, 1999, mention a system for controlling the concentrations of oxygen and carbon dioxide in a refrigerated container for perishable products, comprising a controller suitable for being placed in an enclosure means and removed therefrom, the enclosure means being for installation on an outer panel of the refrigerated container in order to provide gas access to the stream of refrigerated air within of the container and provide access of gas from outside the container, the controller comprising means that include a gaseous oxygen sensor to dynamically and continuously monitor the concentration of gaseous oxygen in the container, and means that include a carbon dioxide sensor gas to monitor dynamically and continuously concentrates tion of gaseous carbon dioxide in the container, the respective monitoring means being connected to programmed means to maintain desired levels of oxygen and carbon dioxide in the refrigerated container by activating valve means to admit atmospheric air as a source of oxygen within the container container and to expel from the container gases low in oxygen concentration and high in carbon dioxide concentration, so
- the fruit consumes oxygen and generates carbon dioxide
- the controller opens and closes floodgates to regulate the concentration of the atmosphere, and in case of excess dioxide of carbon the controller turns on the scrubber to absorb excess carbon dioxide, where also a
- the curtain is arranged within the cargo area in order to achieve a tight area within the cargo area, which is generally arranged very close to the container doors.
- the controlled atmosphere system of a refrigerated container as described above and used in the art, provides a system that allows the container atmosphere to be adequately controlled, and thus to keep the transported product in good condition.
- WO 2014/094540 of Suzhou Yi Bei Information Technplogy Co. published on June 26, 2014, describes a method and system for logistic information changes, comprising the following steps: a customer transmits a first transport request to a central processor and a comparator, when the first transport request is received by the central processor, an information search is performed for a logistic vehicle without cargo within a predetermined area and determines the logistics company to which the logistic vehicle without cargo belongs , and the central processor transmits a second request to the logistics company, a logistics company management device receives the second transport request, if the logistics company management device determines that the amount of cargo that can be loaded into a logistics vehicle downloaded belonging to the company within the default area In order to meet the demand for the second transport request, the logistics company administration device transmits a new request to the central processor.
- An apparatus for regulating the atmosphere inside a chamber is disclosed in document ES 2,279,648 of Mitsubishi Australia, published on January 30, 2002, which comprises sealing means for closing the chamber, entry means for allowing the atmosphere environment enters the chamber, exit means to allow the chamber atmosphere to exit from the chamber, a controller to control the opening of the entrance means and means of reducing the concentration of carbon dioxide in the chamber, where the arrangement and form of retention of the controller and the air inlet valve towards the chamber is not described and disclosed.
- the definitive modification of the service hatches of the refrigerated containers is previously required, to incorporate an atmosphere controller, which implies the realization of a hole in said hatch, in order to ensure in said hole said controller.
- an atmosphere controller implies the realization of a hole in said hatch, in order to ensure in said hole said controller.
- the fact of having to make a hole to one of the components of the container implies that the means used to support and fix said controller in its place must provide the necessary tightness to maintain the atmosphere and the controlled temperature inside the container, as well as to the if the removal of said control devices from their place of operation is required, they may have an element that allows to maintain the tightness of the container.
- a technical problem associated with the aforementioned developments implies that none of them has a method by which an atmosphere control device can be easily placed and / or removed for recharging, replacement or repair, because the systems of Controlled atmosphere previously described are an integral part of the atmospheric control system and the container physically, which makes replacement, recharge or repair much more complex.
- a second technical problem associated with the aforementioned developments lies in the fact that when handling any device in the service hatch of a container can cause the container to leak tightly, especially thinking that some device described in the prior art be damaged in transportation, leave Inoperative the atmospheric control system and therefore the container.
- the present development allows these devices to be replaced without affecting the tightness of the container.
- a third technical problem associated with previous developments is the amount of energy that must be supplied throughout the operation for the state of the art devices to operate. The amount of energy is such that state-of-the-art devices require, in their installation procedure, the connection to other external sources of energy or to other large-scale devices outside where the filter is to be operative. This problem does not happen in the present method where the energy saving generated allows a battery to be integrated into the filter device itself, and once the transport path has been completed, it can be removed and replaced.
- the primary object of the invention is a procedure for the start-up of a refrigerated container with a controlled atmosphere, so that the process of operation of the container is simple, with little intervention in the container and maintaining its tightness.
- the invention provides a method by which a hatch device is operated with a controlling device and / or valve for atmosphere control, so that it is possible to operate and maintain optimum atmospheric conditions in the transport of perishable material.
- This procedure allows a refrigerated container with controlled atmosphere to be operated quickly, easily, with low labor and at a low cost, by the simple arrangement of a controlling device and / or valve for controlling atmosphere in said hatch device that it will be comprised in a refrigerated cargo container, so that the configuration of said hatch device allows the container to remain tightly sealed.
- the present invention comprises the following steps, as seen in the figure
- the first stage a.- comprises a series of sub-stages which include: a.a.- Cleaning and drying of the container;
- Stage b.- includes the sub-stages of: b. a.- Drill the service hatch cover of the container (2e) generating the main anchor hole (4e);
- bb- Externally install the hatch device (le) by passing the main support body (3e) until it meets the rear anchoring surface (9e), leaving the main body fitted through the protruding fixing ribs (23e); bc- Install the slotted nozzle (53e) and the nozzle (14e) on the hollow cone (5e), both joining through the edges (2 le) with the guide and fixing segments (22e), leaving them in an upright position ascending the connecting tube (19e) into the container;
- bd- Install the flow conduit piece in the upper margin of the service hatch cover (2e) of the container where the longitudinal opening (26e) is exposed to a positive pressure condition of the refrigerated container, where this installation is carried out at through ears with holes (29e) and adhesives, between two foam blocks (48e) also arranged in the upper margin of the service hatch cover (2e).
- b. e.- Connect the connecting tube (19e) with the flow conduction part (24e) through the clamps (54e).
- Stage c- comprises the sub-stages of: c. a.- Execution of purge opening in the container (33p);
- Stage d.- comprises the sub-stages of: d.a.- Installation of a curtain (38c), in the loading area adjacent to the container doors;
- d.d.- Evaluate if the measured pressure loss time in the container is in the range of at least 6 to 10 minutes, if they are in the correct ranges, the container has passed the leak test;
- the container door is opened and pressurized in a pressure range of at least 0.5 to 2 inches of pressure and the curtain installation is checked;
- Stage e.- simply comprises the stage of filling the container with perishable products for transport.
- Stage f.- includes the sub-stages of: f.a.- Installation of the scrubber optionally;
- Stage g.- comprises the sub-stages of: g. a.- Insert the atmosphere control valve device into the hatch device, so that the upper flow duct (24 v) and the upper flow duct opening (25v) fit or connect with the opening of the nozzle (15e), in addition for this connection to occur naturally and a manual adjustment is not required, the guide channels (46v) of the hatchway device (46v) must be matched and slid over the valve guides (52e) of the hatch valve device In addition in the same operation, the lower flow duct (26v) and the opening of the lower flow duct (27v) must be matched with the open cutout (12e), at the same time as the insertion of the atmosphere control valve Insert the Cap (30e), which is anchored to the valve through the plug's cap cover (41 e);
- Stage h.- includes the sub-stages of:
- this stage comprises that the atmosphere control valve device is programmed according to the type of fruit and its variety because gas combinations depend largely on tolerance to high levels of carbon dioxide or low oxygen levels. They present the different types of fruit.
- the final destination of the fruit is included in the programming, since depending on the destination, it will be the transit time of the container with controlled atmosphere, so there are different elements of the service that vary or are modified according to the time of transit.
- Stage i.- includes the sub-stages of: ia- Connect the gas cylinders (Nitrogen and / or C0 2 Carbon Anhydride and / or other inert gases) to their respective regulators and leave the regulators at a predefined pressure and these they are in turn connected to the purge body (32p) through the nozzle with seal thread (36p) and screwed;
- gas cylinders Nirogen and / or C0 2 Carbon Anhydride and / or other inert gases
- the gas preferably Nitrogen
- ic- The gas, preferably Carbonic Anhydride, is opened and a range of 15-45 minutes, preferably 30 minutes, is expected to bring the gas concentration until the valve device ceases the set described in step h, in a range between 5 to 40 Kgr of C0 2 , reaching between 1-18% of the total volume of the mixture, inside the container; Y
- Stage j.- this stage consists of the trip of the merchandise to the port of destination where the controlled atmosphere device is monitoring, correcting and recording the information, during the whole trip. If necessary, an operator can lower the Travel information, using the Liventus® electronic application developed for these purposes, installed on a smartphone, which allows gas combinations to be read inside the container.
- Stage k.- comprises the sub-stages of: ka- Extracting information from the valve device wirelessly or by direct connection to a computer or mobile device;
- the programming of parameters will depend on the type of fruit.
- k.d. Close the sliding cover (11) to avoid tampering with the cap (30e); and k.e.- Review and replacement or recharging of the valve device batteries for reuse.
- the term "major modifications" refers to the fact that the container incorporates a series of components that allow it to function as a refrigerated container that must be modified. These components occupy vital space for the transformation of this container, to one with controlled atmosphere. In other words, components of the refrigeration unit as devices related to energy transmission, in some cases require mechanical displacement.
- the installation of sealing elements is required once the control equipment is removed, and / or incorporating an additional compressor to the compressor that carries the normal refrigerated containers, and / or incorporating systems to filter and vent the carbon dioxide, such as carbon dioxide anhydride membranes or scrubbers and / or incorporate activated carbon to retain and clean the carbon dioxide environment.
- fixed valves are incorporated to ventilate and allow oxygen to enter.
- the term “reduce energy consumption” refers to the normal functioning of the hatch device by mechanically supporting (by convection) a valve device.
- the energy used is small enough so that the valve device can incorporate a battery that is replaced or recharged at the place of delivery of the perishable load.
- the term "compact” refers to the fact that all the parts and pieces of the hatch device and the valve device are interacting within the same unit, it does not require wired electrical connections either to the interior of the container or to The outside of this.
- the term "reusable" refers to the fact that the device once installed can be used for its purpose continuously, either when the hatch device is locked with the cap without the valve device or when the hatch device is with the valve device inserted and operating.
- the term "intervention in a refrigerated container” refers to the physical modifications that a container equipment requires to be able to couple the atmospheric control systems.
- the position is preferably in the area of the traditional hatch of the containers described in the state of the art, without excluding other areas where it can also be coupled in a refrigerated container.
- FIG. 1/1 1 This figure corresponds to a flow chart showing the sequence of steps that must be carried out in the process of the invention for the operational start-up of a refrigerated container with controlled atmosphere.
- This figure corresponds to a side bottom view of an atmosphere control valve device.
- This figure represents a front image of a hatch device mounted on a service hatch.
- This figure represents in the image above a frontal image of a hatch device mounted in a service hatch, with the valve device inside it and with the cap inside the container.
- the bottom image shows a view from inside the container of a service hatch with the hatch device inserted.
- This figure represents the interaction between the valve device and the hatch device when inserted (right image) or when it is removed (left image) as described in steps (g) and (k), respectively.
- This figure represents three operative parts of the valve and hatch devices, the nozzle assembly with its respective parts is shown at the top left of the figure. Immediately below this figure there is a longitudinal section of the electronic area of the valve device. Finally, to the right of the figure you can see a diagram of the cap showing mainly the availability it has to be able to connect inside the container with other equipment to work with them.
- This figure corresponds to a side and perspective view of a purge device that is used in the process of the present invention. You can see the position of the device and its operational arrangement. Specifically, the figure shows the following reference numbers:
- This figure corresponds to a side and perspective view of a curtain device that is used in the process of the present invention.
- This figure presents a diagram of how the cap moves by blocking the free flow of the upper and lower openings of the hatch device to prevent the container from being open towards the outside, when the valve device has already been used and you only want to leave the container operating in the form of a refrigerated container without controlled atmosphere, as happens in step k of the process of the present invention.
- the figure shows the following reference numbers:
- This figure corresponds to a side view of a container showing a detail of the air and gas flows used within it and its control process with the atmosphere control valve device of the present invention. Specifically, the figure shows the following reference numbers:
- the invention corresponds to a procedure for putting into operation a refrigerated container with controlled atmosphere, so that said operation is protocolized by means of a procedure that clearly and precisely defines the steps to follow to operate a container of refrigerated cargo with atmosphere controlled, in such a way as to ensure the quality of the start-up and its operation.
- the handling of the container with the installed devices can be seen in Figure 10/1 1.
- the procedure for the operational start-up of a refrigerated container with controlled atmosphere considers the preparation of a used or new refrigerated container to verify its tightness and good structural conditions, where the container is inspected and pre-approved for transport, then proceed with its cleaning and drying, and the maintenance of appropriate structural conditions according to the guidelines established by the inspection protocol and pre-established repair criteria, then a general external visual inspection of the containers is carried out, rejecting all the containers that show physical damage or structural visible according to the protocol, which clearly establishes what is defined as structural damage, established in this stage of general exterior inspection of the refrigerated container, generating a report on these damages with its repair recommendation.
- the interior inspection of the container is performed, where the entire interior of the surfaces of the container is checked, in order to detect any damage or problems that the floor, the side walls, the sky, the conditions in the interior caulking and Checking all interior patches which may affect the insulation of the refrigerated container, a report is generated and the respective repairs or approval for the leak test is recommended.
- the external and internal nonconformities of the container are corrected to maintain the hermeticity and structuring of the same.
- the next stage in the implementation of the operation of the present invention requires a series of configurations and modifications that are necessary to carry out in said container, where said modifications include the implementation of a hatch device (le) for the valve device holder (lv) and / or controller Atmosphere, which allows said atmosphere control valve device to be held in the container in a non-invasive and transient manner, enabling it to be used in transport with a controlled cargo atmosphere.
- This hatch device provides a specific location to the atmosphere control valve device in the refrigerated container, also providing the ability to connect this device with all internal mechanisms of said atmosphere controller.
- the main support body (3e) of the hatch device must be installed with all its rubbers and seals, for which it must be placed, as a
- a cord of polyurethane adhesive or equivalent at the connecting edge of the hollow cone (5e) with the rear anchoring surface (9e) of the main support body (3e) of the hatch device (le) throughout its constantly perimeter so that subsequently the main support body (3e) with the adhesive is introduced through the front of the service hatch cover (2e), taking care that the position of the hollow cone (5e) is in the correct direction according to the model of the refrigerated container, to subsequently press until the entire surface of the rear anchor surface (9e) is supported and bolt said rear anchor surface to the service hatch cover (2e) (figure 3 /eleven).
- the nozzle (14e) is assembled (figure 6/11), so that a seal (18e) is glued inside the said nozzle (14e), ensuring that the nozzle recess (16e) ) is clear, and then said nozzle (14e) is coupled through the edges (2 le) and guide and fixing segments of the nozzle (22e) to the slotted nozzle (53e) and all this complex attached to the hollow cone ( 5e) of the main support body (3e) of the hatch device (le), such that it is pushed until it reaches its stop, defined by the rear anchoring surface (9e) ( Figure 3/11). Subsequently, polyurethane adhesive or equivalent should be placed around the perimeter of the nozzle joint (14e), slotted nozzle (53e) and hollow cone (5e) with the rear anchoring surface (9e) of the hatch.
- the plug (30e) can be installed in the hatch device (le), however it must first be assembled for which a connecting cap of the plug (4 le) is attached to the front wall of the plug (38e) by at least one fixing means (40e) in at least one hole made in said plug (30e).
- the plug (30e) can be assembled with at least one connector piece (44e), where said connector piece (44e) is placed in a connector slot (42e) the front wall of the plug ( 38e).
- the plug has at least one channel for the admission of cables called small cones (47e) on its back, so that depending on the requirement, the seal of at least one of the small cones (47e) that will be used is cut and It is crossed by a connector cable to crimp it to the connector part (44e) of the front wall of the plug (38e).
- the cylindrical body of the device (2v) of the device must first be positioned valve device (lv) for atmosphere control in the travel position in the hatch device (le), the plug (30e) is connected, previously assembled, to the rear of the same atmosphere controller valve device (lv) , subsequently said device (lv) is removed by the front of the hatch device (le) in such a way that the cap (30e) is in its ideal position, subsequently a sliding cover (l ie) of the hatch device, is arranged in its sliding front part perpendicular to the body of the hatch device, thus providing a closure element of the hatch device (le) of the device atmospheric control valve, which can be seen through figures 5/11 and 9/1 1.
- an insertion stage of a valve is carried out individual purge to allow the injection of gases, called stage "c.-" in the stages of the procedure, for which an individual purge port (31 p) is installed, consisting of a piece that allows access to the atmosphere of the sealed container (see figure 7/11), where said piece has a purge body (32p) that is inserted through a purge opening (33p) that is practiced in the lower area of the refrigerated container, where it is not it finds machinery, and it has a purge ring (34p) towards the outer perpendicular surface that has at least one hole in the ring (35p) for fixing to the outer wall of the container, where said part (31p) has been inserted, and where the piece has a nozzle with seal thread (36p) that allows the adjustment of injection hoses, so that the hose remains fixed during the injection
- the leakage test stage consists of, once the standard service hatch is exchanged for the service hatch that has the hatch device (le) for an atmosphere control valve device (lv) from the container refrigerated, which has been selected according to the previous stages, the container is pressurized with negative and positive pressure in order to find leaks.
- Each container has two components that must be tested at this stage of leak testing, the refrigeration unit and the structural part of the cargo area.
- the drainage holes of the container are required to be clogged, the air exchanger must be closed, and that plugs and hole holders are present and in operation, which should be repaired if necessary.
- the leak test stage consists specifically of installing a curtain (38c), see figure 8/11, in the loading area adjacent to the container doors, then pressurizing the container with a positive pressure that varies in the range between at least 5.08 to 12.7 cm of Hg, preferably over at least 7.62 cm of Hg, and more preferably over at least 8.89 cm of Hg, and measure the time required for pressure to be lost in the container from the range of at least 10.16 to 2.54 cm Hg pressure, preferably at least 7.62 to 5.08 cm Hg pressure, more preferred at least 7.62 cm Hg pressure , in the range of at least 7.62 to 0 cm Hg pressure, preferably at least 5.08 to 2.54 cm Hg pressure, preferably at least 5.08 cm Hg pressure.
- the container has passed the leak test. If the time is not within the minimum range, as indicated above, the opening of a container door must be performed, pressurize the container again in a pressure range of at least 1.27 to 5, 08 cm Hg pressure, preferably at least 2.54 to 5.08 cm Hg pressure, more preferably at least 3.81 cm Hg pressure, and the curtain installation should be checked and proceed to repair the smallest leaks found in said installation.
- pressure must be applied again to the container, in the range of at least 5.08 to 12.7 cm Hg pressure, more preferably at least 7.62 cm of pressure Hg, and records the time required in which the pressure in the container is lost from the range of at least 10.16 to 2.54 cm of Hg pressure, preferably at least 7.62 to 5.08 cm Hg pressure, more preferred at least 7.62 cm Hg pressure, at the range of at least 7.62 to 0 cm Hg pressure, preferably at least 5.08 to 2.54 cm Hg pressure, preferably at least 5.08 cm Hg pressure.
- the container has passed the leak test, so it will proceed to the next stage for the start-up of a refrigerated container with controlled atmosphere.
- a cable is installed, which takes energy from the reefer from inside the cargo space, and that has a sufficient length, to reach the container door, where the scrubber will be installed and connected.
- the curtain is opened and removed and the approved container is destined for stacking, waiting to be dispatched to some packing to load the perishable products to the loading area.
- the container is filled with the perishable foods that are to be transported, in the transport area of the container.
- the volume of food transported will depend on the type of refrigerated container that is previously conditioned to control its atmosphere.
- the curtain (38c) is installed directly, which is illustrated through Figure 8/1 1, for which this arrangement comprises two basic elements, a joining means ( 39c) and a curtain (38c), where the joining means corresponds to a double contact adhesive tape which is installed by placing one side of the adhesive tape on the perimeter surface (40c) before of the doors of the container (in its loading area) and the curtain is placed on the other side of the adhesive tape, so that the installation of said curtain (38c) should consider cleaning the interior walls of the contour with cloth or towels until the surface is dry, where you start from the midpoint of the upper section of the container, locating the midpoint of the opening of the container doors, adhere the curtain on the top of the container ensuring that the edge of the curtain is square with respect to the door frame and the container, so that it does not have creases or wrinkles, discover the double-contact adhesive tape (39c), in order to expose the adhesive at the same time as the curtain It is installed on it, completing the installation of it around the frame, to
- the lower flow duct (26v) and the opening of the lower flow duct (27v) must be matched with the open cutout (12e), at the same time as the insertion of the atmosphere control valve Insert the Cap (30e), which is anchored to the valve through the plug cap (41v). Then, the insertion must meet at the outer edge with the perimeter O-ring (l lv) of the valve device against the outside edge of the main anchoring hole (4e), thus sealing the connection between the valve device (lv ) and the hatch device (le). Finally, the sliding cover (l ie) is closed on the front face of the valve device (3v) to prevent its manipulation. Stage "h !
- valve (lv) to open the air flow through the cavities and from outside the container, or close said air flow, in response to sensors (42v, 43v) incorporated in the sens area ora of gases (40v) of said valve, which allow measuring the amount of gases present in the container loading area, in order to maintain the optimum levels required for the type of cargo transported and the transport time.
- the body of the controlling valve device (lv) comprises a cavity, where a battery (35v) and a series of electronic elements that allow the solenoid (22v) to operate the valve device (lv) are housed, and thus like the other electronic elements that said device comprises.
- valve device for atmosphere control where all the elements are arranged in a unified way and in one piece, give robustness and solidity to the configuration of the valve device for atmosphere control (lv) , where the configuration of the two ducts and the actuation thereof, allow to provide a valve with two flow exchange cavities, such as gases and / or air, defined by the ducts (24v, 26v), which function as input or air outlet, respectively, not depending on a specific position to operate, thus providing bidirectional use to the valve.
- two flow exchange cavities such as gases and / or air
- the configuration of the atmospheric controller valve (lv) device and the pressures inside the sealed container make the solenoid require less force for actuating the valve device (lv), achieving at the same time a greater area of air transfer with less force, therefore with less stress tensions, and less probability of failures.
- valve device (lv) comprises a single mechanism that drives both the inlet and the outlet of flow, such as air and / or gases, simultaneously by means of a single solenoid, can reduce energy consumption, which it allows it to be electrically powered by a battery (35v), thus allowing the autonomy of the atmosphere control valve during the period of transport of the load, which also leads to the start-up procedure of the operation of the atmosphere-cooled container controlled, do not require an electricity test.
- this is done wirelessly and is based on two parameters, the first is the type and quantity of perishable product to be transported because the chemistry of the gases emitted varies from product to product, and second the distance between the place of origin and the place of destination of the product, which results in the time that the valve device (lv) must be operating.
- valve device for the atmosphere control (lv) is installed in the hatch device (le) previously installed in the hatch of service (2e) so that it is connected wirelessly with a server or computer that has a software or / or algorithm that will allow to control the operation of said atmosphere control valve device. If the device does not respond adequately, it must be returned for inspection and repair based on a fault report. If the atmosphere controller responds optimally, the programming process will begin.
- valve device software stores tables that contain the specific parameters that need to be loaded into the atmosphere controller depending on the product that will be transported, such as those that say in relation to the transport time, type of product , gas levels, ventilation required, purification required, among others, which will allow optimum atmospheric conditions to be maintained in the cargo area of the container, to keep the transported cargo in good condition.
- the air exchanger is opened, which has been sealed during the gas leak test, the gas hose is connected to a gas vaporizer, preferably nitrogen and gasification is started, for nitrogen supply
- a gas vaporizer preferably nitrogen and gasification is started, for nitrogen supply
- This stage consists of the trip of the merchandise to the destination port where an operator may or may not optionally monitor some parameter of the remote container through a mobile device.
- the atmosphere control valve device (lv) and the data collected from the trip are recovered, as in Figure 5/11. It begins by extracting the information from the valve device wirelessly or by direct connection to a computer or mobile device, then the information obtained is evaluated, with respect to whether the transport occurred in the optimal way in the control of the environment. For the transfer to be optimal environmentally speaking, it is required that the concentration of 0 2 does not exceed 14% of the volume of the container, that the Nitrogen does not exceed 85% of the volume of the container and that the C0 2 does not decrease of 1% of the container.
- valve device (lv) is then removed from the hatch device (le), leaving the plug (30e) placed in the main anchoring hole (4e), through the separation of the plug anchor (39v) from the cap of the plug (4 le), thus leaving the plug connected to the hatch device (le), occluding the nozzle opening (15e) and the open cutout (12e), thus tightly closing the hatch device (le) and thus the refrigerated container, as shown in Figure 9/1 1;
- k.d. Close the sliding cover (l ie) to avoid tampering with the cap (30e); and k.e.- Checking and replacing or recharging batteries (35v) of the valve device for reuse or disposal.
- the operation of the operational start-up procedure of a refrigerated container for its evolution in a refrigerated container with controlled atmosphere allows a refrigerated container that is normally used in the art to be modified without major interventions, allowing checking in Optimally form the refrigerated container with controlled atmosphere, without requiring a large number of devices, and large interventions in the container, which manages to provide a simple, efficient and economical procedure to implement, also allowing the container at any time to be used again as a refrigerated container or as a refrigerated container with controlled atmosphere, following the described steps of the process of the present invention , and incorporating an atmospheric controller valve device in the hatch device of the present invnesion.
- a 40-foot container was used, integrated with an atmosphere control valve device (lv), with a hatch device (le) and with a purge port (31p).
- an atmosphere control valve device lv
- a hatch device e.g., a hatch device
- a purge port e.g., a purge port
- the steps of a to - to d.- of the present invention were carried out.
- 14 tons of blueberries were loaded, which theoretically released 3-4 ml of C0 2 per kilo of fruit, in an hour later the atmospheric control valve (lv) device was installed and set for blueberries with 12% Carbon dioxide (as a maximum threshold) and 8% oxygen, for a transit time of 25 days, which corresponds to the transit time between Valpara ⁇ so and Rotterdam, the Netherlands.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nutrition Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
El presente desarrollo protege un método para la instalación y la operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera, donde el método de instalación comprende las etapas de: preparar un contenedor refrigerado nuevo o usado verificando la hermeticidad, instalación de un dispositivo de escotilla, instalación de una válvula de purga e inyección de gases en el contenedor y realizar una prueba de fugas; el método de operación considera cargar alimentos perecibles en el contenedor, instalar una cortina final, instalación de un dispositivo de válvula controladora de atmósfera en el dispositivo de escotilla, programación del dispositivo de válvula controladora de atmósfera, inyección de gases, transporte de alimentos perecibles, y recuperación del dispositivo de válvula controladora de atmósfera.
Description
METODO DE INSTALACIÓN Y DE OPERACIÓN DE UN SISTEMA DE CONTROL
ATMOSFÉRICO DENTRO DE UN CONTENEDOR DE TRANSPORTE DE CARGA CON UN DISPOSITIVO DE CONTROL DE ATMÓSFERA
CAMPO DE LA INVENCIÓN
La presente invención se enmarca dentro del campo de los procedimientos de control atmosférico en contenedores refrigerados, dentro de los cuales se utilizan escotillas en donde deben de ser instalados los controladores o válvulas de flujo de aire para ser utilizados en un sistema de control de atmósfera en contenedores, para el transporte de carga refrigerada perecible.
ANTECEDENTES DE LA INVENCION
Los alimentos frescos mantienen su respiración después de su cosecha, lo cual implica que consumen oxígeno, generan fitohormonas tales como el etileno y producen anhídrido carbónico (dióxido de carbono), provocando un grado de deterioro durante su transporte, si las condiciones del medio en las cuales son transportadas, no son controladas en forma correcta.
El transporte de fruta fresca, involucra un periodo de tiempo prolongado entre la cosecha de la fruta y la entrega al cliente final. En ese periodo de transporte se involucran medios adecuados para transportar dichas frutas, los cuales, si no se encuentran en condiciones de operación correcta, se producirá una maduración adelantada y la descomposición más rápida de la fruta.
Los contenedores de carga que comprenden sistemas de refrigeración son mayoritariamente utilizados para el transporte de fruta fresca desde el origen de producción de la fruta hacia el lugar de venta de la misma, para lo cual dichos contenedores de carga son dotados de los elementos necesarios que logran disminuir la respiración, evitar el deterioro sanitario y maduración de la fruta, de forma de permitir mantenerla en buen estado. Esta condición de transporte se logra manteniendo temperaturas bajas, disminuyendo o aumentado la cantidad de oxígeno o de anhídrido carbónico (dióxido de carbono) en el ambiente, y absorbiendo el etileno, mediante un sistema de refrigeración que comprende en general, de un módulo de refrigeración, escotillas de servicio, escotilla
de ventilación, un ventilador dispuesto en una cámara donde es instalado el módulo de refrigeración, de forma de hacer circular el aire hacia el interior del área de carga del contenedor, a través de una entrada y salida de aire. Especificando el párrafo anterior, para mantener la fruta en buen estado se utilizan principalmente dos enfoques. El primero, se concentra en poder lograr mantener las temperaturas bajas donde está expuesta la fruta, con el fin de lograr disminuir el metabolismo celular de la misma, provocando finalmente, una baja en la tasa de intercambio gaseoso. El segundo enfoque, que complementa el control de la baja temperatura, es el control y/o la disminución en forma externa del oxígeno (reemplazándolo por nitrógeno, anhídrido carbónico (dióxido de carbono) o con otro gas inerte), que se traduce también en una baja en la respiración celular, aumentando los niveles de anhídrido carbónico generados desde la fruta o introducidos externamente, para así lograr tres objetivos al mismo tiempo: a) un control biológico, restringiendo el crecimiento de bacterias aeróbicas, evitando el deterioro de la fruta, b) disminución de la tasa respiratoria al quitar el oxígeno, disminuyendo el proceso de deterioro de la fruta y c) el control de la liberación de etileno, para evitar la maduración temprana de la fruta.
Los tipos de contenedores normalmente utilizados para el transporte de productos frescos corresponde a contenedores refrigerados, con sistema de refrigeración integral, tales como y/o los contenedores refrigerados con el sistema de refrigeración integral adaptado. En general este último tipo de contenedores, básicamente comprende un área en donde se dispone la carga y un sistema de refrigeración. Dentro del sistema de refrigeración a su vez, están comprendidos el o los módulos de refrigeración, escotillas de servicio, escotilla de ventilación, evaporadores, ventiladores dispuestos dentro de la cámara en donde está instalado el módulo de refrigeración (con el propósito de hacer circular el aire hacia el interior del contenedor, en donde se encuentra la carga), y una entrada y salida de aire, tales como los descritos en las patentes ES 2143858, ES 2036180 y/o WO2015178537, entre otras.
Para poder controlar todos los parámetros que dicen relación con el deterioro y maduración adelantada de la fruta que es transportada en contenedores refrigerados, son
incorporados además un serie de elementos que permiten mantener la atmósfera controlada en el recinto de transporte de la carga dentro del contenedor refrigerado, para lo cual se requiere de dotar al contenedor refrigerado con un dispositivo o válvula que permita controlar la atmósfera del recinto de carga dentro del contenedor durante el periodo de transporte, tal como el descrito en la solicitud de patente CL 0948-2016 y un dispositivo de escotilla, tal como el descrito en la solicitud de patente CL-1817-2016 para poder sustentar la válvula y canalizar los gases, siendo sus contenidos íntegramente parte descriptiva de la presente invención. Los sistemas de atmósfera controlada, dispuestos en un contenedor refrigerado utilizados en la técnica en el documento US 5,872,721 de Transfresh Corporation, publicado el 16 de febrero de 1999, mencionan un sistema para controlar las concentraciones de oxígeno y dióxido de carbono en un contenedor refrigerado para productos perecibles, que comprende un controlador adecuado para situarse en unos medios de recinto y retirarse de los mismos, siendo los medios de recinto para la instalación en un panel exterior del contenedor refrigerado a fin de proporcionar acceso de gas a la corriente de aire refrigerado dentro del contenedor y proporcionar acceso de gas desde el exterior del contenedor, comprendiendo el controlador unos medios que incluyen un sensor de oxígeno gaseoso para vigilar dinámica y continuamente la concentración de oxígeno gaseoso en el contenedor, y unos medios que incluyen un sensor de dióxido de carbono gaseoso para vigilar dinámica y continuamente la concentración de dióxido de carbono gaseoso en el contenedor, estando conectados los medios respectivos de vigilancia a unos medios programados para mantener niveles deseados de oxígeno y dióxido de carbono en el contenedor refrigerado activando unos medios de válvula para admitir aire atmosférico como fuente de oxígeno dentro del contenedor y para expeler del contenedor gases bajos en concentración de oxígeno y altos en concentración de dióxido de carbono, a fin de controlar así dinámica y continuamente las concentraciones de oxígeno gaseoso y de dióxido de carbono gaseoso en el contenedor refrigerado. Operativamente, la fruta consume oxígeno y genera dióxido de carbono, donde en caso de exceso o falta de gases (oxígeno y dióxido de carbono), el controlador abre y cierra compuertas para regular la concentración de la atmosfera, y en caso de exceso de dióxido de carbono el controlador enciende el depurador para absorber el exceso de dióxido de carbono, donde además una
cortina es dispuesta dentro del área de carga de forma de lograr un área hermética dentro del área de carga, la cual generalmente está dispuesta muy cerca de las puertas del contenedor. El sistema de atmosfera controlada de un contenedor refrigerado como el descrito precedentemente y utilizado en la técnica, proporciona un sistema que permite controlar en forma adecuada la atmosfera del contenedor, y por ende mantener en buenas condiciones el producto transportado. Sin embargo, el procedimiento de operación con un contenedor de carga refrigerado con atmosfera controlada para el transporte de carga perecible, del estado de la técnica, es silente frente a la utilización de un procedimiento que defina etapas claras y precisas que permitan determinar en qué forma opera este sistema para mantener las condiciones ambientales correctas, para evitar así el deterioro del producto que es transportado en dicho contenedor, de acuerdo a los parámetros preestablecidos, las condiciones preestablecidas, con relación al tipo de producto y tiempo de transporte.
El documento WO 2014/094540 de Suzhou Yi Bei Information Technplogy Co., publicado el 26 de junio del 2014, describe un método y sistema para cambios de información logística, que comprende los siguientes pasos: un cliente transmite una primera solicitud de transporte a un procesador central y un comparador, cuando la primera solicitud de transporte es recibida por el procesador central, es realizada una búsqueda de información para un vehículo logístico sin carga dentro de un área predeterminada y determina la compañía logística a la cual el vehículo logístico sin carga pertenece, y el procesador central transmite una segunda solicitud a la compañía logística, un dispositivo de administración de compañía logística recibe la segunda solicitud de transporte, si el dispositivo de administración de compañía logística determina que la cantidad de carga que puede ser cargada en un vehículo logístico descargado perteneciente a la compañía dentro del área predeterminada no puede satisfacer la demanda de la segunda solicitud de / transporte, el dispositivo de administración de compañía logística transmite una nueva solicitud al procesador central.
El documento US 8,562,399 de Maersk Container, publicado el 22 de octubre del 2013, describe una válvula de ventilación con dos aberturas de válvula en una placa de
válvula, los grados de abertura de las aberturas son controlables por medio de un elemento de válvula, el cual es giratorio con relación a la placa de válvula, es provisto en paralelo con al menos una abertura de válvula en un canal de ventilación, sin embargo de la divulgación de dicho documento no se describe ni observa un elemento o dispositivo de soporte de una válvula removible, para el control de atmósfera para un contenedor refrigerado con control de atmósfera.
Un aparato para regular la atmósfera en el interior de una cámara es divulgado en el documento ES 2,279,648 de Mitsubishi Australia, publicado el 30 de enero del 2002, que comprende medios de cierre hermético para cerrar la cámara, medios de entrada para permitir que la atmósfera ambiente entre en la cámara, medios de salida para permitir que la atmósfera de la cámara salga desde la cámara, un controlador para controlar la abertura de los medios de entrada y medios de reducción de la concentración de dióxido de carbono en la cámara, donde la disposición y forma de retención del controlador y la válvula de entrada de aire hacia la cámara no se encuentra descrita y divulgada.
Las soluciones propuestas en el arte previo dicen relación con el proporcionar alternativas para controlar el ambiente del contenedor en el cual son transportados productos frescos, así como controlar la logística de transporte del contenedor, para lo cual gran parte de los documentos del arte previo, hacen referencian a los sistemas y procedimientos que permiten lograr dicha condición atmosfera controlada en forma óptima para el transporte de carga fresca. Sin embargo, en el arte previo no se hace mención, en forma específica, a la operación de sistemas de control atmosféricos removibles por trayectos y programables puestos en marcha en los contenedores refrigerados, de forma que dicho contenedor se encuentre implementado y probado para que funcione en forma óptima durante el transporte de carga fresca.
Por lo tanto existe la necesidad de proporcionar un procedimiento de operación de un contenedor refrigerado con atmosfera controlada, que permita operar dispositivos de válvula para atmosfera controlada reutilizables por trayectos, así como mantener la hermeticidad del contenedor en óptimas condiciones, de forma que pueda conservar la
atmosfera controlada durante el periodo de transporte que se requiere para transportar una carga fresca desde un lugar a otro, sin que dicha carga fresca sufra mayores deterioros.
Para poder operar el sistema de control ambiental se requiere previamente la modificación en forma definitiva de las escotillas de servicio de los contenedores refrigerados, para incorporar un controlador de atmósfera, lo cual implica la realización de un orificio en dicha escotilla, de forma de poder asegurar en dicho orificio dicho controlador. El hecho de tener que realizar un orificio a uno de los componentes del contenedor implica que los medios utilizados para soportar y fijar dicha controlador en su lugar deben proporcionar la hermeticidad necesaria para lograr mantener la atmósfera y la temperatura controlada dentro del contenedor, así como al ser requerido el retiro de dichos dispositivos controladores desde su lugar de operación, puedan contar un elemento que permita mantener la hermeticidad del contenedor. Por lo tanto sería deseable contar con procedimiento mediante el cual pueda operar a través de un dispositivo permita proporcionar un soporte mecánico y de guía de gases a un dispositivo de válvula controladora de atmósfera en un contenedor de carga refrigerado, cuyas etapas permitan proporcionar hermeticidad a dicho contenedor y operatividad del dispositivo de válvula, tanto éste se encuentre dispuesto en el contenedor o cuando este no esté operativo.
Un problema técnico asociado a los anteriores desarrollos mencionados, conlleva que, ninguno de los mismos posee un método por el cual un dispositivo para el control de atmosfera pueda ser colocado y/o removido fácilmente para su recarga, reemplazo o arreglo, porque los sistemas de atmosfera controlada previamente descritos son parte integrante del sistema de control atmosférico y del contenedor físicamente, lo cual hace mucho más complejo su remplazo, recarga o reparación.
Un segundo problema técnico asociado a los anteriores desarrollos mencionados, radica en el hecho de que al manipular cualquier dispositivo en la escotilla de servicio de un contenedor puede hacer perder hermeticidad al contenedor, sobre todo pensando en que algún dispositivo descrito en el estado del arte previo sea dañado en el transporte, deja
inoperativo el sistema de control atmosférico y por ende el contenedor. El presente desarrollo permite que en su operación estos dispositivos sean reemplazados sin afectar la hermeticidad del contenedor. Un tercer problema técnico asociado a los anteriores desarrollos es la cantidad de energía que debe ser suministrada durante toda la operación para que los dispositivos del estado del arte operen. La cantidad de energía es tal, que los dispositivos del estado del arte requieren en su procedimiento de instalación, la conexión a otras fuentes externas de energía o a otros dispositivos de gran envergadura fuera de donde está el filtro para ser operativos. Este problema no sucede en el presente método en donde el ahorro de energía generado permite integrar al dispositivo de filtro mismo una batería, y una vez realizado el recorrido de trasporte poder ser retirada y reemplazada.
RESUMEN DE LA INVENCIÓN
El objeto primario de la invención, es un procedimiento para la puesta en marcha de un contendor refrigerado con atmosfera controlada, de forma que el proceso de operación del contendor sea sencillo, de poca intervención en el contendor y mantenga la hermeticidad del mismo.
La invención proporciona un procedimiento por el cual se opera un dispositivo de escotilla con un dispositivo controlador y/o válvula para el control de atmósfera, de forma de poder operar y mantener las condiciones óptimas atmosféricas en el transporte de material perecible. Este procedimiento permite operar en forma rápida, sencilla, con baja mano de obra y a un bajo costo, un contenedor refrigerado de atmósfera controlada, por la simple disposición de un dispositivo controlador y/o válvula para el control de atmósfera en dicho dispositivo de escotilla que estará comprendido en un contenedor refrigerado de carga, de forma tal que la configuración de dicho dispositivo de escotilla permita en forma constante mantener la hermeticidad del contenedor.
La presente invención comprende las siguientes etapas, tal como se ve en la figura
1/11 : a.- Preparar un contenedor refrigerado nuevo o usado verificando la hermeticidad;
b.- Instalación de dispositivo de escotilla;
c- Instalación de válvula de purga e inyección de gases en el contenedor;
d. - Prueba de Fugas;
e. - Cargar alimentos perecibles en el contenedor;
f. - Instalación de cortina final;
g.- Instalación de dispositivo de válvula controladora de atmosfera en el dispositivo de escotilla;
h. - Programación de dispositivo de válvula controladora de atmosfera;
i. - Inyección de gases;
j.- Transporte de alimentos perecibles; y
k.- Recuperación del dispositivo de válvula controladora de atmosfera.
La primera etapa a.- comprende a su vez una serie de sub-etapas las cuales comprenden: a.a.- Limpieza y secado del contenedor;
a.b.- Inspección visual exterior del contenedor bajo vacio e identificación de fugas;
a.c- Inspección interior del contenedor bajo vacio e identificación de fugas; y
a. d.- Reparación de zonas con fugas.
La etapa b.- comprende las sub-etapas de: b. a.- Perforar la tapa de escotilla de servicio del contenedor (2e) generando el orificio principal de anclaje (4e);
b.b.- Instalar exteriormente el dispositivo de escotilla (le) haciendo pasar el cuerpo principal de soporte (3e) hasta topar con la superficie de anclaje posterior (9e), dejando el cuerpo principal encajado a través de las costillas sobresalientes de fijación (23e);
b.c- Instalar sobre el cono hueco (5e) la tobera ranurada (53e) y la tobera (14e), ambas se unen a través de los bordes (2 le) con los segmentos de guía y fijación (22e), dejando en posición vertical ascendente el tubo de conexión (19e) al interior del contenedor;
b.d.- Instalar la pieza de conducción de flujo en el margen superior de la tapa de escotilla de servicio (2e) del contenedor donde la abertura longitudinal (26e) se encuentra expuesta una condición de presión positiva del contenedor refrigerado, donde esta instalación se realiza a través de orejas con orificios (29e) y adhesivos, entre dos bloques de espuma (48e) también dispuestos en el margen superior de la tapa de escotilla de servicio (2e). b. e.- Conectar el tubo de conexión (19e) con la pieza de conducción de flujo (24e) a través de las abrazaderas (54e).
La etapa c- comprende las sub-etapas de: c. a.- Realización de abertura de purga en el contenedor (33p);
c.b.- Insertar puerto de purga individual (3 lp); y
ce- Conectar al puerto de purga individual (31p) una boquilla con rosca de sello (36p)
La etapa d.- comprende las sub-etapas de: d.a.- Instalación de una cortina (38c), en la zona de carga adyacente a las puertas del contenedor;
d. b.- Presurizar el contenedor con una presión que varía en el rango entre al menos 2 a 5 pulgadas;
d.c- Medir el tiempo requerido en que se pierde la presión en el contenedor desde el rango de al menos 4 a 1 pulgadas de presión;
d.d.- Evaluar si el tiempo medido de la perdida de presión en el contenedor se encuentra en el rango de entre al menos 6 a 10 minutos, si están en los rangos correctos, el contenedor ha superado la prueba de fugas;
d.e.- Si la evaluación es negativa, se abre la puerta del contenedor y se presuriza en un rango de presión de a lo menos de 0,5 a 2 pulgadas de presión y se chequea la instalación de la cortina;
d.f- Se procede con la reparación de fugas mínimas encontradas en dicha instalación;
d.g.- Se repiten los pasos d.b.-, d.c.- y d.d.- para asegurar que la instalación supera la prueba de fugas; y
d.h.- Retiro de la cortina para el almacenamiento del producto perecible. La etapa e.- simplemente comprende la etapa de llenado del contenedor con productos perecibles para su transporte.
La etapa f.- comprende las sub-etapas de: f.a.- Instalación del depurador de manera opcional;
f.b.- Colocación del medio de unión (39c) en la superficie perimetral (40c) antes de la puertas del contenedor (en su zona de carga); y
f. c- Adhesión de la cortina (38c) al medio de unión (39c). La etapa g.- comprende las sub-etapas de: g. a.- Insertar el dispositivo de válvula controladora de atmosfera dentro del dispositivo de escotilla, de forma tal que el conducto de flujo superior (24 v) y la abertura del conducto del flujo superior (25v) calcen o conecten con la apertura de la tobera (15e), además para que esta conexión se de en forma natural y no se requiera de un ajuste manual, se deben hacer coincidir y hacer deslizar sobre las guías de válvula (52e) del dispositivo de escotilla los canales de guía (46v) del dispositivo de válvula. Además en la misma operación, se deben hacer coincidir el conducto de flujo inferior (26v) y la abertura del conducto del flujo inferior (27v) con el recorte abierto (12e), al mismo tiempo de la inserción de la válvula controladora de atmosfera se inserta el Tapón (30e), que queda anclado a la válvula a través de la tapa conectora del tapón (41 e) ;
g.b.- La inserción debe topar en el borde exterior con el O-ring perimetral (l lv) del dispositivo de válvula contra el borde hacia el exterior del orificio principal de anclaje (4e), sellando así la conexión entre el dispositivo de válvula y el dispositivo de escotilla;
g.c- Cerrar la tapa deslizante (l ie) sobre la cara frontal del dispositivo de válvula (3v) para evitar su manipulación.
La etapa h.- comprende las sub-etapas de:
En general esta etapa comprende que el dispositivo de válvula controladora de atmósfera se programa de acuerdo al tipo de fruta y su variedad porque las combinaciones de gases dependen en gran medida de la tolerancia a los altos niveles de anhídrido carbónico o a los bajos niveles de oxígeno que presentan los distintos tipos de fruta.
Además, se incluye en la programación el destino final de la fruta, ya que según dependiendo del destino, será el tiempo de tránsito del contenedor con atmósfera controlada, por lo que existen distintos elementos del servicio que varían o se modifican según sea el tiempo de tránsito.
La etapa i.- comprende las sub-etapas de: i.a.- Conectar los cilindros de los gases (Nitrógeno y/o Anhídrido Carbónico C02 y/o otros gases inertes) a sus respectivos reguladores y dejar los reguladores en una presión predefinida y éstos se conectan a su vez con el cuerpo de la purga (32p) a través de la boquilla con rosca de sello (36p) y se atornilla;
i.b.- Se abre el gas, de preferencia Nitrógeno y se espera un rango de 45 a 90 minutos ,de preferencia 60 minutos, para llevar la concentración de gases hasta que el dispositivo de válvula cense el seteado descrito en la etapa h, en un rango de porcentaje entre los 85-90% de volumen del contenedor;
i.c- Se abre el gas, de preferencia Anhídrido Carbónico y se espera un rango de 15-45 minutos, de preferencia 30 minutos, para llevar la concentración de gases hasta que el dispositivo de válvula cense el seteado descrito en la etapa h, en un rango entre los 5 a 40 Kgr de C02, alcanzando entre 1-18% del volumen total de la mezcla, dentro del contenedor; y
i.d.- Cierre de los cilindros de gas, desconexión de las mangueras hacia el contenedor y se tapa la boquilla con el sello de rosca (36p) con la tapa de boquilla (37p). La etapa j.- esta etapa consiste en el viaje de la mercadería al puerto de destino en donde el dispositivo de atmósfera controlada va monitoreando, corrigiendo y registrando la información, durante todo el viaje. Si fuera necesario, un operador puede bajar la
información del viaje, usando la aplicación electrónica de Liventus® desarrollada para estos fines, instalada en un teléfono inteligente, que permite leer las combinaciones de gases al interior del contenedor. La etapa k.- comprende las sub-etapas de: k.a.- Extraer la información desde el dispositivo de válvula inalámbricamente o por conexión directa a un ordenador o dispositivo móvil;
k.b.- Evaluar con la información obtenida si el transporte ocurrió de la manera óptima en el control del ambiente, para eso se requiere que la concentración de 02 se mantenga en +/- 3% del rango programado, y que el C02 también sea mantenido en rango de +/- 3%. La programación de parámetros dependerá del tipo de fruta.
k.c- Extraer el dispositivo de válvula desde el dispositivo de escotilla, dejando colocado en el orificio principal de anclaje (4e), el tapón (30e), a través de la separación del anclaje del tapón (39v) de la tapa conectora del tapón (4 le), dejando así el tapón enchufado y cerrando herméticamente el dispositivo de escotilla y así el contenedor refrigerado;
k.d.- Cerrar la tapa deslizante (11) para evitar la manipulación del tapón (30e); y k.e.- Revisión y reemplazo o recarga de baterías del dispositivo de válvula para su reutilización.
En general, el término "modificaciones mayores" se refiere a que el contenedor trae incorporado una serie de componentes que le permiten funcionar como contenedor refrigerado que deben ser modificados. Estos componentes ocupan espacio vital para la transformación de éste contenedor, a uno con atmosfera controlada. En otras palabras, componentes de la unidad de refrigeración como dispositivos relacionados con la transmisión de energía, requieren en algunos casos de su desplazamiento mecánico. Por otro lado, se requiere de la instalación de elementos sellantes una vez que se retira el equipo controlador, y/o incorporar un compresor adicional al compresor que llevan los contenedores refrigerados normales, y/o incorporar sistemas para filtrar y ventilar el anhídrido carbónico, tales como membranas o scrubbers de anhídrido carbónico y/o incorporar el carbón activado para retener y limpiar el ambiente del anhídrido carbónico. Además se incorporan válvulas fijas para poder ventilar y permitir la entrada del oxígeno.
En general, el término "reducir el consumo de energía" se refiere a que el dispositivo de escotilla funcionando en forma normal, logra apoyar mecánicamente (por convección) a un dispositivo de válvula. Dejando así, que la energía utilizada sea lo suficientemente pequeña para que el dispositivo de válvula pueda incorporar una batería que se reemplaza o recarga en el lugar de entrega de la carga perecible.
En general, el término "compacto", se refiere a que todas las partes y piezas del dispositivo de escotilla y el dispositivo de válvula, están interactuando dentro de una misma unidad, no requiere de conexiones eléctricas cableadas ni hacia el interior del contenedor ni hacia el exterior de este.
En general, el término "reutilizable", se refiere a que el dispositivo una vez instalado puede ser usado para su propósito continuamente, tanto cuando el dispositivo de escotilla está bloqueado con el tapón sin el dispositivo de válvula o cuando el dispositivo de escotilla está con el dispositivo de válvula insertado y operando.
En general, el término "intervención en un contenedor refrigerado", se refiere a las modificaciones físicas que requiere un equipo contenedor para poder acoplar los sistemas de control atmosférico. Para los dispositivos del presente desarrollo, la posición es de preferencia en la zona de la escotilla tradicional de los contenedores descritos en el estado del arte, sin excluir otras zonas donde pueda ser acoplado también en un contenedor refrigerado. En general y para un mayor entendimiento se entrega un listado total de todas las partes y piezas del presente desarrollo se resume aquí :
(le) Dispositivo de escotilla
(lv) Dispositivo de Válvula controladora de atmósfera
(2e) Tapa de escotilla de servicio
(2v) Cuerpo cilindrico del dispositivo
(3e) Cuerpo principal de soporte
(3v) Cara frontal del dispositivo de válvula (4e) Orificio principal de anclaje
(5e) Cono hueco
(9e) Superficie de anclaje posterior
(He) Tapa deslizante
(1 lv) O-ring perimetral
(12e) Recorte abierto
(14e) Tobera
(15e) Abertura de tobera
( 16e) Rebaj e de tobera
(18e) Sello
(19e) Tubo de conexión
(2 le) Bordes
(22e) Segmentos de Guía y fijación
(22v) Solenoide
(23e) Costillas sobresalientes de Fijación
(24 v) Conducto de flujo Superior
(24e) Pieza de conducción de flujo
(25v) Abertura del conducto de flujo superior (25e) Cuerpo principal alargado
(26e) Abertura longitudinal
(26v) Conducto de flujo inferior
(27v) Abertura del conducto de flujo inferior (28e) Manguera retráctil con memoria (29e) Orejas con orificios
(30e) Tapón
(3 lp) Puerto de purga individual
(32p) Cuerpo de purga
(33p) Abertura de Purga
(34p) Anillo de Purga
(35p) Orificio de anillo
(35v) Batería
(36p) Boquilla con rosca de sello
(37p) Tapa de boquilla
(38c) Cortina
(38e) Pared Frontal del tapón
(39v) Anclaje del Tapón
(39c) Medio de unión de cortina
(40e) Medio de fijación
(40v) Área sensora de gases
(40c) Superficie perimetral interna previa a las puertas del contenedor
(41 e) Tapa conectora del tapón
(42e) Ranura de conector
(42v) Sensor alto
(43v) Sensor bajo
(44e) Pieza de Conector
(46v) Canales de Guía
(47e) Conos pequeños
(48e) Bloques de espuma
(52e) Guías de válvula
(53e) Tobera Ranurada
(54e) Abrazaderas
(55e) Espuma de protección de la abertura longitudinal
Las letras (e) y (v) asociadas a los números corresponden a las partes y piezas descritas en las figuras de las solicitudes de patente del dispositivo de escotilla CL-1817- 2016 y dispositivo de válvula CL 0948-2016, respectivamente.
Por otra parte las letras (p) y (c) asociados a los números corresponden a las identificaciones referentes a la purga y la cortina respectivamente.
DESCRIPCIÓN DE FIGURAS
Con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de la realización práctica del mismo, se acompaña como parte integrante de la descripción, un juego de figuras en donde con carácter ilustrativo y no limitativo, se ha representado la invención.
La figura 1/1 1 Esta figura corresponde a un diagrama de flujo que muestra la secuencia de pasos que deben ser llevados a cabo en el procedimiento de la invención para la puesta en marcha operativa de un contendor refrigerado con atmosfera controlada.
La figura 2/1 1
Esta figura corresponde a una vista inferior lateral de un dispositivo de válvula controladora de atmosfera.
Específicamente la figura muestra los siguientes números de referencia:
(lv) Dispositivo de válvula controladora de atmósfera
(3v) Cara frontal del dispositivo de válvula
(1 1 v) O-ring perimetral
(24v) Conducto de flujo Superior
(25v) Abertura del conducto de flujo superior
(26v) Conducto de flujo inferior
(27 v) Abertura del conducto de flujo inferior
(35v) Batería
(39v) Anclaje del Tapón
(46v) Canales de Guía
La figura 3/11
Esta figura representa una imagen frontal de un dispositivo de escotilla montado en una escotilla de servicio.
Específicamente la figura muestra los siguientes números de referencia:
(le) Dispositivo de escotilla
(2e) Tapa de escotilla de servicio
(3e) Cuerpo principal de soporte
(4e) Orificio principal de anclaje
(9e) Superficie de anclaje posterior
(l ie) Tapa deslizante
(12e) Recorte abierto
(14e) Tobera
(15e) Abertura de tobera
(2 le) Bordes
(22e) Segmentos de Guía y fijación
(23 e) Costillas sobresalientes de Fijación
(52e) Guías de válvula
La figura 4/1 1
Esta figura representa en la imagen superior una imagen frontal de un dispositivo de escotilla montado en una escotilla de servicio, con el dispositivo de válvula dentro de él y con el tapón dentro del contenedor.
En la imagen inferior se aprecia una vista desde dentro del contenedor de una escotilla de servicio con el dispositivo de escotilla insertado.
Específicamente la figura muestra los siguientes números de referencia:
(2v) Cuerpo cilindrico del dispositivo de válvula
(5e) Cono hueco
(19e) Tubo de conexión
(24e) Pieza de conducción de flujo
(25e) Cuerpo principal alargado
(26e) Abertura longitudinal
(28e) Manguera retráctil con memoria
(29e) Orejas con orificios
(30e) Tapón
(39v) Anclaje del Tapón
(4 le) Tapa conectora del tapón
(48e) Bloques de espuma
(53e) Tobera Ranurada
(54e) Abrazaderas
(55e) Espuma de protección de la abertura longitudinal
Figura 5/1 1
Esta figura representa en la interacción entre el dispositivo de válvula y el dispositivo de escotilla cuando está insertado (imagen derecha) o cuando se extrae (imagen izquierda) tal como se describe en las etapas (g) y (k), respectivamente.
También la misma figura, en su parte inferior muestra la interacción del dispositivo de escotilla con el tapón cuando se retira el dispositivo de válvula al final del transporte de mercaderías perecibles. Acá se ve claramente como se bloquea hacia el exterior, el flujo de aire interior del contenedor que era controlado por el dispositivo de válvula, manteniendo la hermeticidad del contenedor y su capacidad refrigerante.
Específicamente la figura muestra los siguientes números de referencia:
(lv) Dispositivo de Válvula controladora de atmósfera
(24v) Conducto de flujo Superior
(26v) Conducto de flujo inferior
(30e) Tapón
Figura 6/1 1
Esta figura representa tres partes operativas de los dispositivos de válvula y de escotilla, arriba a la izquierda de la figura se ve el armado de la tobera con sus respectivas partes. Inmediatamente debajo de esta figura hay un corte longitudinal del área electrónica del dispositivo de válvula. Finalmente, a la derecha de la figura se ve un esquema del tapón mostrando principalmente la disponibilidad que posee para poder conectarse dentro del contenedor con otros equipos para poder trabajar con ellos.
Específicamente la figura muestra los siguientes números de referencia: ( 16e) Rebaj e de tobera
(18e) Sello
(22v) Solenoide
(38e) Pared Frontal del tapón
(40e) Medio de fijación
(40v) Área sensora de gases
(42e) Ranura de conectar
(42v) Sensor alto
(43v) Sensor bajo
(44e) Pieza de Conectar
(47e) Conos pequeños
Figura 7/1 1
Esta figura corresponde a una vista lateral y en perspectiva de un dispositivo de purga que es utilizado en el procedimiento de la presente invención. Se puede apreciar la posición que va colocado el dispositivo y su disposición operativa.
Específicamente la figura muestra los siguientes números de referencia:
(3 lp) Puerto de purga individual
(32p) Cuerpo de purga
(33p) Abertura de Purga
(34p) Anillo de Purga
(35p) Orificio de anillo
(36p) Boquilla con rosca de sello
(37p) Tapa de boquilla
Figura 8/1 1
Esta figura corresponde a una vista lateral y en perspectiva de un dispositivo de cortina que es utilizado en el procedimiento de la presente invención.
Específicamente la figura muestra los siguientes números de referencia: (38c) Cortina
(39c) Medio de unión de cortina
(40c) Superficie perimetral interna previa a las puertas del contenedor
Figura 9/11
Esta figura presenta un diagrama de cómo se mueve el tapón bloqueando el flujo libre de las aberturas superior e inferior del dispositivo de escotilla para evitar que el contenedor quede abierto hacia el exterior, cuando ya se ha usado el dispositivo de válvula y solo se quiere dejar el contenedor operando en forma de contenedor refrigerado sin atmosfera controlada, tal como pasa en la etapa k del proceso de la presente invención. Específicamente la figura muestra los siguientes números de referencia:
(24 v) Conducto de flujo Superior
(26v) Conducto de flujo inferior
(30e) Tapón
Figura 10/11
Esta figura corresponde a una vista lateral de un contenedor que muestra un detalle de los flujos de aire y gases que utilizados dentro del mismo y su proceso de control con el dispositivo de válvula de control de atmosfera de la presente invención. Específicamente la figura muestra los siguientes números de referencia:
(lv) Dispositivo de Válvula controladora de atmósfera
Figura 1 1/11
Esta figura presenta curvas de gases 02/C02 durante el traslado de arándanos desde el puerto del Callao hasta el puerto Everglades con una duración del viaje de 25 días. Se ve claramente que los parámetros gaseosos se mantienen estables durante todo el tránsito de la fruta al puerto de destino.
REALIZACIÓN PREFERENTE DE LA INVENCION
La invención corresponde a un procedimiento para la puesta en operaciones de un contenedor refrigerado con atmosfera controlada, de forma que dicha operación se encuentra protocolizada mediante un procedimiento que define en forma clara y precisa los pasos a seguir para operar un contenedor de carga refrigerado con atmosfera controlada, de forma tal que se asegure la calidad de la puesta en marcha y la operación del mismo. El manejo del contenedor con los dispositivos instalados se puede apreciar en la figura 10/1 1.
Etapa "a.-"
El procedimiento para la puesta en marcha operativa de un contenedor refrigerado de atmosfera controlada considera la preparación de un contenedor refrigerado usado o nuevo para verificar su hermeticidad y buenas condiciones estructurales, donde el contendor es inspeccionado y pre-aprobado para su transporte, luego se procede con su limpieza y secado, y la mantención de condiciones estructurales apropiadas de acuerdo a las directrices establecidas por el protocolo de inspección y criterios de reparación preestablecidos, luego se realiza una inspección visual general exterior de los contenedores, rechazando todos los contenedores que muestren daños físicos o estructurales visibles de acuerdo al protocolo, el cual establece claramente qué se define como daños estructurales, establecido en esta etapa de inspección exterior general del contenedor refrigerado, generándose un informe sobre estos daños con su recomendación de reparación.
Luego es realizada la inspección interior del contenedor, donde se revisa todo el interior de las superficies del contenedor, de forma de poder detectar cualquier daño o problema que pueda presentar el piso, las paredes laterales, el cielo, las condiciones en el calafateo interior y chequeo de todos los parches interiores los cuales puedan afectar la aislación del contendor refrigerado, se genera un informe y se recomienda las respectivas reparaciones o su aprobación para la prueba de fugas.
Posteriormente, con la información de los reportes de reparación, se corrigen las inconformidades externas e internas del contenedor para mantener la hermeticidad y estructurabilidad del mismo.
Etapa "b"
La siguiente etapa en la puesta en marcha de la operación de la presente invención, requiere de una serie de configuraciones y modificaciones que son necesarias de llevar a cabo en dicho contenedor, donde dichas modificaciones incluyen la implementación de un dispositivo de escotilla (le) para el soporte del dispositivo de válvula (lv) y/o controlador
de atmosfera, que permite sostener dicho dispositivo de válvula controladora de atmosfera en el contendor de forma no invasiva y transitoria, habilitando para su utilización en el transporte con atmosfera controlada de carga. Este dispositivo de escotilla proporciona una ubicación específica al dispositivo de válvula de control de atmosfera en el contenedor refrigerado, proporcionando también la capacidad de conectar este dispositivo con todos los mecanismos internos de dicho controlador de atmosfera.
Para la operación de la puesta en marcha de un contenedor refrigerado para que pueda ser utilizado en cualquier momento como un contenedor refrigerado con atmosfera controlada, considerando la menor invasión posible al mismo, tal como para permitir una simple maniobra de retiro de un dispositivo de válvula controladora desde un dispositivo de escotilla, requiere el poder transformar dicho contendor refrigerado bajo ciertas condiciones especificas. La implementación o instalación de un dispositivo de escotilla para un dispositivo de válvula para el control de atmosfera para la puesta en marcha de un contenedor refrigerado, es una de las etapas que debe ser llevada a cabo en el presente procedimiento de invención, donde cada uno de los pasos de la instalación de dicho dispositivo de escotilla será explicado con referencia a las figuras 3/1 1, 4/1 1 y 6/1 1. El armado e instalación del dispositivo de escotilla (le) para un dispositivo de válvula (lv) para el control de atmosfera, requiere que una tapa de escotilla de servicio (2e) estándar de un contenedor refrigerado sea transformado, de forma tal que se instale en forma definitiva en dicha tapa de escotilla de servicio (2e) dicho dispositivo de escotilla (le), para lo cual deben ser llevados a cabo una serie de pasos, los cuales se detallan a continuación. En un primer paso a tapa de escotilla de servicio (2e) se le debe de realizar una abertura u orificio principal de anclaje (4e) en un lugar predeterminado que dependerá según el modelo de contenedor refrigerado normalmente disponible en el mercado. Una vez practicada la abertura (4e) en dicha tapa de escotilla de servicio (2e) se debe de instalar el cuerpo principal de soporte (3e) del dispositivo de escotilla con todas sus gomas y sellos, para lo cual se debe colocar, a modo de ejemplo, un cordón de adhesivo poliuretánico o equivalente en el borde de unión del cono hueco (5e) con la superficie de anclaje posterior (9e) del cuerpo principal de soporte (3e) del dispositivo de escotilla (le) por todo su
perímetro en forma constante, de forma que posteriormente el cuerpo principal de soporte (3e) con el adhesivo es introducido por el frente de la tapa de escotilla de servicio (2e), teniendo la precaución que la posición del cono hueco (5e) quede en la dirección correcta de acuerdo al modelo del contendor refrigerado, para posteriormente presionar hasta que se apoye toda la superficie de la superficie de anclaje posterior (9e) y apernar dicha superficie de anclaje posterior a la tapa de escotilla de servicio (2e) (figura 3/11). Una vez realizado este paso, la tobera (14e) es armada (figura 6/11), de forma tal que un sello (18e) es pegado en la parte interior de dicha tobera (14e), asegurándose que el rebaje de tobera (16e) quede despejado, para luego ser acoplada dicha tobera (14e) a través de los bordes (2 le) y segmentos de guía y fijación de la tobera (22e) a la tobera ranurada (53e) y todo este complejo unido al cono hueco (5e) del cuerpo principal de soporte (3e) del dispositivo de escotilla (le), de forma tal que es empujado hasta que llegue a su tope, definido por la superficie de anclaje posterior (9e) (figura 3/11). Posteriormente se debe colocar adhesivo poliuretanico o equivalente en todo el perímetro de la unión de la tobera (14e), tobera ranurada (53e) y cono hueco (5e) con la superficie de anclaje posterior (9e) de la escotilla.
En un ejemplo de aplicación, tal como es ilustrado a través de la figura 4/11, para algunos modelos de contenedores existentes en el mercado, es necesario instalar un cuerpo principal alargado (25 e) a la pieza de tobera, la cual es presentada en su posición de fijación en la superficie posterior de la escotilla, es instalado la pieza de la tobera (14e), alineando los ejes con las orejas con orificios (29e) de dicho cuerpo principal alargado (25e), posteriormente es incorporada una espuma de protección de la abertura longitudinal (55e) al cuerpo principal alargado (25e), el cual se ubica nuevamente en la alineación marcada en la superficie posterior de la escotilla se servicio y es apernada en los puntos de los ejes de las orejas con orificios (29e) para fijarla en su posición.
Posteriormente es colocada una sección de manguera retráctil con memoria (28e) que conecta el cuerpo principal alargado (25e) con la tobera (14e) del dispositivo de escotilla (le). Esta configuración permite que para los modelos de contendores que requieren de esta modalidad, lograr que cada una de las salidas estén en una zona de presión del contenedor refrigerado, de forma de permitir al dispositivo de escotilla acceder directamente a la zona de presión positiva sin necesidad de instalar una manguera, para
generar de esta forma el tiraje de aire suficiente para ventilar, donde la presente configuración no requiere de una modificación del contenedor, la cual se puede mantener en su lugar sin producir obstrucción o problema alguno si el contenedor es solamente utilizado como un contendor refrigerado, ya que un tapón de sello (30e), (figuras 4/11, 5/11 y 6/11), permite cerrar y obturar el paso de aire en dicho dispositivo de escotilla (le) cuando no se encuentra dispuesto el dispositivo de válvula (lv) para control de atmosfera, dejando así sellado el traspaso de aire entre las zonas. Esta serie de sub-etapas definen la etapa b de la presente invención, correspondiente a la instalación del dispositivo de escotilla.
Alternativamente, el tapón (30e) puede ser instalado en el dispositivo de escotilla (le), sin embargo primero tiene que ser armado para lo cual se une una tapa conectora del tapón (4 le) con la pared frontal del tapón (38e) mediante al menos un medio de fijación (40e) en al menos un agujero practicado en dicho tapón (30e). En una modalidad del armado del tapón, el tapón (30e) puede ser armado con al menos una pieza de conector (44e), donde dicha pieza conector (44e) es colocada en una ranura de conectores (42e) la pared frontal del tapón (38e). El tapón posee al menos un canal para admisión de cables denominado como conos pequeños (47e) en su parte posterior, de forma tal que dependiendo del requerimiento, es cortado el sello de al menos uno de los conos pequeños (47e) que será utilizado y es atravesado por un cable conector para poder crimpearlo a la pieza conector (44e) de pared frontal del tapón (38e).
Haciendo referencia a la figuras 4/11, 5/11 y 9/11, para disponer o colocar el tapón (30e) siendo parte del dispositivo de escotilla (le), primero debe de ser posicionado el cuerpo cilindrico del dispositivo (2v) del dispositivo de válvula (lv) para control de atmosfera en la posición de viaje en el dispositivo de escotilla (le), el tapón (30e) es conectado, previamente armado, en la parte trasera del mismo dispositivo de válvula controladora de atmosfera (lv), posteriormente es retirado dicho dispositivo (lv) por el frente del dispositivo de escotilla (le) de forma tal que el tapón (30e) queda en su posición ideal, posteriormente una tapa deslizante (l ie) del dispositivo de escotilla, es dispuesto en su parte frontal en forma deslizante perpendicular al cuerpo del dispositivo de escotilla, para otorgar así un elemento de cierre del dispositivo de escotilla (le) del dispositivo de
válvula controladora de atmosfera, lo cual se puede apreciar a través de la figuras 5/11 y 9/1 1.
Etapa "c"
Posterior a la etapa de instalación del dispositivo de escotilla (le) para un dispositivo válvula de control de atmosfera (lv) en una tapa de escotilla de servicio (2e) de un contenedor refrigerado, se lleva a cabo una etapa de inserción de una válvula individual de purga para permitir la inyección de gases, denominada como etapa "c.-" en las etapas del procedimiento, para lo cual es instalado un puerto de purga individual (31 p), que consiste en una pieza que permite acceder a la atmosfera del contenedor sellado (ver figura 7/11), donde dicha pieza posee un cuerpo de purga (32p) que es insertado a través de una abertura de purga (33p) que es practicada en la zona baja del contenedor refrigerado, en donde no se encuentra maquinaria, y posee un anillo de purga (34p) hacia la superficie perpendicular exterior que posee al menos un orificio del anillo (35p) para la fijación a la pared exterior del contenedor, en donde ha sido insertada dicha pieza (31p), y donde la pieza posee una boquilla con rosca de sello (36p) que permite el ajuste de mangueras de inyección, de forma que la manguera se mantenga fija durante la inyección de un gas. La boquilla con rosca de sello (36p) es cerrada mediante una tapa de boquilla (37p) una vez retirada la manguera de inyección, de forma de mantener la hermeticidad del contenedor refrigerado cuando no se está utilizado dicho puerto de purga individual.
Etapa "d" La etapa de prueba de fuga, consiste en, una vez intercambiada la escotilla de servicio estándar por la escotilla de servicio que posee el dispositivo de escotilla (le) para un dispositivo de válvula controladora de atmosfera (lv) desde el contenedor refrigerado, que ha sido seleccionado de acuerdo a las etapas anteriores, el contenedor es presurizado con presión negativa y positiva con el objeto de encontrar fugas. Cada contenedor tiene dos componentes que deben ser testeados en esta etapa de prueba de fugas, la unidad de refrigeración y la parte estructural de la zona de carga. Además se requiere que los orificios de drenaje del contenedor sean obstruidos, se debe cerrar el intercambiador de aire, y que
estén presentes y en funcionamiento los tapones y porta orificios, los cuales deberán ser reparados si es el caso.
La etapa de prueba de fugas consiste específicamente en instalar una cortina (38c), ver figura 8/11 , en la zona de carga adyacente a las puertas del contenedor, posteriormente presurizar el contenedor con una presión positiva que varía en el rango entre al menos 5,08 a 12,7 cm de Hg, en forma preferente sobre al menos 7,62 cm de Hg, y más preferentemente sobre al menos 8,89 cm de Hg, y medir el tiempo requerido en que se pierde la presión en el contenedor desde el rango de al menos 10,16 a 2,54 cm de Hg de presión, preferentemente de al menos 7,62 a 5,08 cm de Hg de presión, más preferentes de al menos 7,62 cm de Hg de presión, al rango de al menos 7,62 a 0 cm de Hg de presión, preferentemente de al menos 5,08 a 2,54 cm de Hg de presión, en forma preferente de al menos 5,08 cm de Hg de presión. Si el tiempo medido de la perdida de presión en el contenedor se encuentra en el rango de entre al menos 6 a 10 minutos, preferentemente al menos entre 7 a 9 minutos, en forma preferente al menos en 8 minutos de acuerdo a los rangos de pérdida de presión indicado precedentemente, el contenedor ha superado la prueba de fugas. Si el tiempo no se encuentra dentro del rango mínimo, de acuerdo a lo indicado precedentemente, se deberá de realizar la abertura de una puerta del contenedor, presurizar nuevamente el contenedor en un rango de presión de a lo menos de 1,27 a 5,08 cm de Hg de presión, preferentemente de a lo menos 2,54 a 5,08 cm de Hg de presión, más preferentemente de a lo menos 3,81 cm de Hg de presión, y se debe de chequear la instalación de la cortina y proceder a la reparación de las fugas más mínimas encontradas en dicha instalación. Posterior a este chequeo y reparación de instalación de cortina (38c), se debe de aplicar nuevamente presión al contenedor, en el rango de al menos 5,08 a 12,7 cm de Hg de presión, mas preferente al menos 7,62 cm de Hg de presión, y registra el tiempo requerido en que se pierde la presión en el contenedor desde el rango de al menos de 10,16 a 2,54 cm de Hg de presión, preferentemente al menos de 7,62 a 5,08 cm de Hg de presión, más preferentes al menos de 7,62 cm de Hg de presión, al rango de al menos 7,62 a 0 cm de Hg de presión, preferentemente de al menos 5,08 a 2,54 cm de Hg de presión, en forma preferente al menos 5,08 cm de Hg de presión. Si el tiempo medido de la perdida de presión en el contenedor se encuentra en el rango de entre al menos 6 a 10 minutos, preferentemente al menos entre 7 a 9 minutos, en forma preferente al menos en 8
minutos de acuerdo a los rangos de pérdida de presión indicado precedentemente, el contenedor ha superado la prueba de fugas, por lo cual pasará a la siguiente etapa para la puesta en marcha de un contenedor refrigerado con atmosfera controlada. En aquellos casos en que el producto requiera el uso del depurador de Anhídrido Carbónico, al momento de finalizar la prueba de fugas, se instala un cable, que toma energía del reefer desde el interior del espacio de carga, y que tiene un largo suficiente, para llegar hasta la puerta del contenedor, donde se instalará y conectará el depurador. También y finalmente, se abre y remueve la cortina y el contenedor aprobado se destina a stacking, en espera de ser despachado a algún packing para cargar los productos perecibles a la zona de carga.
Etapa "e"
En el siguiente paso del procedimiento de operación se da el llenado del contenedor con los alimentos perecibles que se quieren transportar, en el área de transporte del contenedor. El volumen de alimentos transportados, dependerá del tipo de contenedor refrigerado que esté previamente acondicionado para controlar su atmosfera.
Etapa "f"
Una vez realizada la carga del producto en el contenedor, si es fruta que requiere instalación del depurador, los operadores procederán al ensamblaje e instalación del depurador de anhídrido carbónico, el cual se posiciona al interior del contenedor y que se conecta eléctricamente al cable que toma energía del contenedor.
Si la fruta no necesita depurador, entonces se procede directamente a la instalación de la cortina (38c), lo cual es ilustrado a través de la figura 8/1 1, para lo cual esta disposición comprende dos elementos básicos, un medio de unión (39c) y una cortina (38c), donde el medio de unión corresponde a una cinta adhesiva de doble contacto la cual es instalada colocando un lado de la cinta adhesiva en la superficie perimetral (40c) antes
de la puertas del contenedor (en su zona de carga) y la cortina es colocada en el otro lado de la cinta adhesiva, de forma tal que la instalación de dicha cortina (38c) debe considerar la limpieza de las paredes interiores del contorno con paño o toallas hasta que la superficie este seca, donde se empieza desde el punto medio de la sección superior del contenedor, localizando el punto medio de la abertura de las puertas del contenedor, adherir la cortina en la parte superior del contenedor asegurando que el borde de la cortina este cuadrada respecto del marco de la puerta y al contenedor, de forma que no posea pliegues o arrugas, descubrir la cinta adhesiva (39c) de doble contacto, de forma de dejar al descubierto el adhesivo en el mismo momento en que la cortina es instalada sobre ésta, completando la instalación de ésta alrededor del marco, para posteriormente aplicar una capa de sello en la unión de la cortina y presionar cada esquina hasta crear un cierre de sello, con lo cual el contenedor refrigerado se encuentra listo para recibir el controlador y/o válvula para controlar la atmosfera y para inyectar gases. Etapa "g"
Después de la preparación del contenedor con la carga y con la cortina puesta , viene la etapa del procedimiento donde se debe insertar el dispositivo de válvula controladora de atmosfera (lv) dentro del dispositivo de escotilla (le), de forma tal que el conducto de flujo superior (24v) y la abertura del conducto del flujo superior (25v) calcen o conecten con la apertura de la tobera (15e), además para que esta conexión se de en forma natural y no se requiera de un ajuste manual, se deben hacer coincidir y hacer deslizar sobre las guías de válvula (52e) del dispositivo de escotilla los canales de guía (46v) del dispositivo de válvula. Además en la misma operación, se deben hacer coincidir el conducto de flujo inferior (26v) y la abertura del conducto del flujo inferior (27v) con el recorte abierto (12e), al mismo tiempo de la inserción de la válvula controladora de atmosfera se inserta el Tapón (30e), que queda anclado a la válvula a través de la tapa conectora del tapón (41v). Luego, la inserción debe topar en el borde exterior con el O-ring perimetral (l lv) del dispositivo de válvula contra el borde hacia el exterior del orificio principal de anclaje (4e), sellando así la conexión entre el dispositivo de válvula (lv) y el dispositivo de escotilla (le). Finalmente, se cierra la tapa deslizante (l ie) sobre la cara frontal del dispositivo de válvula (3v) para evitar su manipulación.
Etapa "h!
Para la programación del control atmosférico en el contenedor refrigerado del procedimiento de operación de la presente invención, es imprescindible entender que una de las ventajas del procedimiento de puesta en marcha y operación de contenedor refrigerado con atmosfera controlada de la presente invención , es que no se requiere de realizar un chequeo y test eléctrico al contenedor, ya que en un aspecto de la invención del dispositivo de válvula (lv) para controlar la atmosfera, en el contenedor , tal como se aprecia en la figura 2/1 1 y 6/1 1, donde se posee un cuerpo principal de soporte (3e) que sostiene el dispositivo de válvula (lv) bidireccional de flujos, definido por los conductos (24v, 26v), y accionada por un solenoide (22v) que permite mover dicho dispositivo de válvula (lv) para abrir el flujo de aire a través de las cavidades y desde el exterior del contenedor, o bien cerrar dicho flujo de aire, en respuesta a sensores (42v, 43 v) incorporados en el área sensora de gases (40v) de dicha válvula, que permiten medir la cantidad de gases presente en la zona de carga del contenedor, de forma de mantener los niveles óptimos requeridos para el tipo de carga transportada y el tiempo de transporte. El cuerpo del dispositivo de válvula controladora (lv) comprende una cavidad, en donde es alojada una batería (35v) y una serie de elementos electrónicos que permiten accionar el solenoide (22v) para el accionamiento del dispositivo de válvula (lv), y así como los demás elementos electrónicos que comprende dicho dispositivo. La configuración del dispositivo de válvula para el control de atmosfera (lv), en donde todos los elementos se encuentran dispuestos en forma unificada y en una sola pieza, otorgan robustez y solidez a la configuración del dispositivo de válvula para control de atmosfera (lv), donde la configuración de los dos conductos y el accionamiento del mismo, permiten proporcionar una válvula con dos cavidades de intercambio de flujo, tal como gases y/o aire, definidos por los conductos (24v, 26v), los cuales funcionan como entrada o salida de aire, respectivamente, no dependiendo de una posición específica para funcionar, proporcionado así a la válvula un uso bidireccional. La configuración del dispositivo de válvula (lv) controlador de atmosfera y las presiones al interior del contenedor sellado logran que el solenoide requiera de menos fuerza para el accionamiento del dispositivo de válvula (lv),
logrando a la vez un mayor área de traspaso de aire con menos fuerza, por lo tanto con menos tensiones de esfuerzo, y menos probabilidad de fallas.
El hecho que el dispositivo de válvula (lv) comprenda un solo mecanismo que acciona tanto la entrada como la salida de flujo, tal como aire y/o gases, en forma simultánea mediante un solo solenoide, permiten reducir el consumo de energía, lo cual permite que sea alimentada eléctricamente con una batería (35v), permitiendo así la autonomía de la válvula controladora de atmosfera durante el periodo de transporte de la carga, lo cual conduce además que el procedimiento de puesta en marcha de la operación del contenedor refrigerado con atmosfera controlada, no requiera de un testeo de electricidad.
Con respecto a la programación y como se menciona anteriormente, ésta se realiza inalámbricamente y se basa en dos parámetros, el primero es el tipo y cantidad de producto perecible a transportar porque la química de los gases que emiten varia de producto en producto, y segundo la distancia entre el lugar de origen y el lugar de destino del producto, lo cual redunda en el tiempo que debe estar operando el dispositivo de válvula (lv).
Una vez realizada y verificada la correcta instalación de la cortina (38) en la zona de carga del contenedor, e instalado el dispositivo de válvula para el control de atmosfera (lv) en el dispositivo de escotilla (le) previamente instalado en la escotilla de servicio (2e), será encendido para que sea conectado inalámbricamente con un servidor o computador que posee un software u/o algoritmo que permitirá controlar el funcionamiento de dicho dispositivo de válvula controladora de atmosfera. En caso que el dispositivo no responda en forma adecuada deberá ser devuelto para su inspección y reparación en base a un informe de fallas. Si el controlador de atmosfera responde en forma óptima será iniciado el proceso de programación. La programación se basa en que el software del dispositivo de válvula almacena tablas que contienen los parámetros específicos que requieren ser cargados en el controlador de atmosfera dependiendo del producto que será transportado, tal como aquellos que dicen relación con el tiempo de transporte, tipo de producto, niveles de gases, ventilación requerida, depuración requerida, entre otros, que permitirán mantener las condiciones atmosféricas en forma óptima en la zona de carga del
contenedor, para mantener en buenas condiciones la carga transportada. Una vez incorporada toda la información del viaje al controlador de atmosfera, este será cambiado al estado de inicio de viaje, conectándose automáticamente al servidor del sistema central para actualizar el controlador y programar los parámetros del servicio.
5
Un ejemplo del setéo se puede ver a continuación en la tabla I:
Tabla 1
10
Etapa i.-
Posteriormente es realizada la inyección de gases, la cual es iniciada de acuerdo a los requerimiento atmosféricos de la carga, donde se debe remover la tapa de puerto de
15 purga simple, se abre el intercambiador de aire, el cual ha sido sellado durante la prueba de fuga de gases, se conecta la manguera de gas a un vaporizador de gas, de preferencia nitrógeno y se inicia la gasificación, para el abastecimiento del nitrógeno, cuando el nivel de oxigeno alcanza su punto de equilibrio, entre 3- 8% dentro del contenedor (dependiendo del producto), se observan los cambios de niveles de gases durante la inyección. Luego es
20 inyectado anhídrido carbónico (dióxido de carbono) hasta alcanzar el punto de equilibrio entre el 1 y el 18% del contenedor, para lo cual es necesario chequear en todo instante los parámetros del servicio, de forma de conocer cuando los niveles de gases alcancen los puntos de equilibrio, como han sido indicado por el programa, y finalmente cerrar el programa de transporte.
25
La etapa j.-
Esta etapa consiste en el viaje de la mercadería al puerto de destino en donde un operador opcionalmente puede o no monitorizar algún parámetro del contenedor a distancia a través de un dispositivo móvil.
La etapa k.-
En esta etapa, se recupera el dispositivo de válvula controladora de atmósfera (lv) y los datos recabados del viaje, tal como en la figura 5/11. Se comienza extrayendo la información desde el dispositivo de válvula inalámbricamente o por conexión directa a un ordenador o dispositivo móvil, luego se evalúa la información obtenida, con respecto, a si el transporte ocurrió de la manera óptima en el control del ambiente. Para que el traslado sea óptimo ambientalmente hablando, se requiere que la concentración de 02 no sobrepase el 14 % del volumen del contenedor, que el Nitrógeno no supere el 85% del volumen del contenedor y que el C02 no disminuya del 1% del contenedor. Luego se extrae el dispositivo de válvula (lv) desde el dispositivo de escotilla (le), dejando colocado en el orificio principal de anclaje (4e), el tapón (30e), a través de la separación del anclaje del tapón (39v) de la tapa conectora del tapón (4 le), dejando así el tapón conectado al dispositivo de escotilla (le), ocluyendo la abertura de tobera (15e) y el recorte abierto (12e), cerrando así, herméticamente el dispositivo de escotilla (le) y así el contenedor refrigerado, tal como se muestra en la figura 9/1 1 ;
k.d.- Cerrar la tapa deslizante (l ie) para evitar la manipulación del tapón (30e); y k.e.- Revisión y reemplazo o recarga de baterías (35v) del dispositivo de válvula para su reutilización o descarte.
El funcionamiento del procedimiento de puesta en marcha operativa de un contenedor refrigerado para su evolución en un contenedor refrigerado con atmosfera controlada, de acuerdo a la presente invención, permite modificar sin grandes intervenciones un contenedor refrigerado que normalmente es utilizado en la técnica, permitiendo chequear en forma óptima el contenedor refrigerado con atmosfera controlada, sin requerir una gran cantidad de dispositivos, y grandes intervenciones en el contenedor,
lo cual logra proporcionar un procedimiento sencillo, eficiente y económico de implementar, permitiendo además que el contenedor en cualquier momento pueda ser utilizado nuevamente como un contenedor refrigerado o bien como un contenedor refrigerado con atmosfera controlada, siguiendo las etapas descritas del procedimiento de la presente invención, e incorporando un dispositivo de válvula controladora de atmosfera en el dispositivo de escotilla de la presente invnesión.
Si bien la implementación del procedimiento de puesta en marcha para un contendor refrigerado con atmósfera controlada aquí descrita constituyen una inclusión preferida de esta invención, se debe entender que la invención no se limita a esta forma de implementación y utilización del procedimiento, y que se pueden hacer cambios en ésta sin apartarse del alcance de la invención, que se definen en las reivindicaciones adjuntas.
Ejemplo de aplicación:
Para este ejemplo se utilizo un contenedor de 40 pies, integrado con un dispositivo de válvula controladora de atmosfera (lv), con un dispositivo de escotilla (le) y con un puerto de purga (31p). A este contenedor se le realizaron las etapas de la a a.- a la d.- de la presente invención. Luego se cargaron 14 ton de arándanos los cuales teóricamente liberan 3-4 mi de C02 por kilo de fruta, en una hora después se instaló el dispositivo de válvula controladora de atmosfera (lv) y se seteó para arándanos con 12% de Anhídrido carbónico (como umbral máximo) y 8 % de oxígeno, para un tiempo de tránsito de 25 días, que corresponde al tiempo de tránsito entre Valparaíso y Rotterdam, Holanda. Luego se inyectó Nitrógeno y C02, desplazando el oxigeno existente, llegando a las concentraciones finales de gases de 12% C02 y 8% de 02, con balance 80% nitrógeno. Se trasladó la mercadería durante 25 días y se monitoreó inalámbricamente el día del arribo, lo cual entregó los siguientes parámetros incluyendo la energía restante de la batería, tal como se ve en la tabla II:
Tabla II
Luego de llegar al puerto de destino se retiró el dispositivo de válvula controladora de atmósfera y quedó en su lugar el tapón. Se analizó inalámbricamente los parámetros finales del traslado indicando niveles de 12 % C02 y 8-9% 02, es decir, en rango de acuerdo al setéo original, para luego reemplazar la batería por una nueva para un nuevo trayecto reciclando así el dispositivo. La curva del comportamiento de los gases en el trayecto se puede apreciar en la figura 1 1/11.
Claims
1. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, CARACTERIZADO porque comprende las siguientes etapas: a. - Preparar un contenedor refrigerado nuevo o usado verificando la hermeticidad;
b. - Instalación de dispositivo de escotilla;
c- Instalación de válvula de purga e inyección de gases en el contenedor;
d.- Prueba de Fugas;
e.- Cargar alimentos perecibles en el contenedor;
f. - Instalación de cortina final;
g. - Instalación de dispositivo de válvula controladora de atmosfera en el dispositivo de escotilla;
h. - Programación de dispositivo de válvula controladora de atmosfera;
i.- Inyección de gases;
j.- Transporte de alimentos perecibles; y
k.- Recuperación del dispositivo de válvula controladora de atmosfera.
2. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa a.-, donde se preparar un contenedor refrigerado nuevo o usado verificando la hermeticidad del mismo que comprende: a. a.- Limpieza y secado del contenedor;
a.b.- Inspección visual exterior del contenedor bajo vacio e identificación de fugas;
a.c- Inspección interior del contenedor bajo vacio e identificación de fugas; y
a.d.- Reparación de zonas con fugas.
3. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa b.-, donde se instala el dispositivo de escotilla que comprende:
b.a.- Perforar la tapa de escotilla de servicio del contenedor (2e) generando el orificio principal de anclaje (4e);
b.b.- Instalar exteriormente el dispositivo de escotilla (le) haciendo pasar el cuerpo principal de soporte (3e) hasta topar con la superficie de anclaje posterior (9e), dejando el cuerpo principal encajado a través de las costillas sobresalientes de fijación (23e);
b.c- Instalar sobre el cono hueco (5e) la tobera ranurada (53e) y la tobera (14e), ambas se unen a través de los bordes (2 le) con los segmentos de guía y fijación (22e), dejando en posición vertical ascendente el tubo de conexión (19e) al interior del contenedor;
b.d.- Instalar la pieza de conducción de flujo en el margen superior de la tapa de escotilla de servicio (2e) del contenedor donde la abertura longitudinal (26e) se encuentra expuesta una condición de presión positiva del contenedor refrigerado, donde esta instalación se realiza a través de orejas con orificios (29e) y adhesivos, entre dos bloques de espuma (48e) también dispuestos en el margen superior de la tapa de escotilla de servicio (2e); y b. e.- Conectar el tubo de conexión (19e) con la pieza de conducción de flujo (24e) a través de las abrazaderas (54e).
4.- Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa c-, donde se instala la válvula de purga e inyección de gases en el contenedor que comprende: c. a.- Realización de abertura de purga en el contenedor (33p);
c. b.- Insertar puerto de purga individual (31p); y
ce- Conectar al puerto de purga individual (31p) a una boquilla con rosca de sello (36p). 5.- Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa d.-, donde se realiza la prueba de Fugas en el contenedor que comprende: d. a.- Instalación de una cortina (38c), en la zona de carga adyacente a las puertas del contenedor;
d.b.- Presurizar el contenedor con una presión que varía en el rango entre al menos 2 a 5 pulgadas (psi);
d.c- Medir el tiempo requerido en que se pierde la presión en el contenedor desde el rango de al menos 4 a 1 pulgadas de presión (psi);
d.d.- Evaluar si el tiempo medido de la perdida de presión en el contenedor se encuentra en el rango de entre al menos 6 a 10 minutos, si están en los rangos correctos, el contenedor ha superado la prueba de fugas;
d.e.- Si la evaluación es negativa, se abre la puerta del contenedor y se presuriza en un rango de presión de a lo menos de 0,
5 a 2 pulgadas de presión (psi) y se chequea la instalación de la cortina;
d.f- Se procede con la reparación de fugas mínimas encontradas en dicha instalación; d.g.- Se repiten los pasos d.b.-, d.c- y d.d.- para asegurar que la instalación supera la prueba de fugas; y
d.h.- Retiro de la cortina para el almacenamiento del producto perecible.
6.- Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa e.-, donde se realiza la carga de alimentos perecibles en el contenedor comprende simplemente el llenar del contenedor con productos perecibles para su transporte, evitando hacer daño a los dispositivos para el control atmosférico y de refrigeración.
7.- Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa f.-, donde se realiza la instalación de la cortina final que comprende: f.a.- Instalación del depurador de manera opcional;
f.b.- Colocación del medio de unión (39c) en la superficie perimetral (40c) antes de la puertas del contenedor (en su zona de carga); y
f.c- Adhesión de la cortina (38c) al medio de unión (39c).
8.- Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa g.-, donde se instala el dispositivo de válvula controladora de atmosfera, en el dispositivo de escotilla que comprende:
g.a.- Insertar el dispositivo de válvula controladora de atmosfera dentro del dispositivo de escotilla, de forma tal que el conducto de flujo superior (24 v) y la abertura del conducto del flujo superior (25 v) calcen o conecten con la apertura de la tobera (15e), además para que esta conexión se de en forma natural y no se requiera de un ajuste manual, se deben hacer coincidir y hacer deslizar sobre las guías de válvula (52e) del dispositivo de escotilla los canales de guía (46v) del dispositivo de válvula, por otro lado en la misma operación, se deben hacer coincidir el conducto de flujo inferior (26v) y la abertura del conducto del flujo inferior (27v) con el recorte abierto (12e), al mismo tiempo de la inserción de la válvula controladora de atmosfera se inserta el Tapón (30e), que queda anclado a la válvula a través de la tapa conectora del tapón (4 le);
g.b.- La inserción debe topar en el borde exterior con el O-ring perimetral (l lv) del dispositivo de válvula contra el borde hacia el exterior del orificio principal de anclaje (4e), sellando así la conexión entre el dispositivo de válvula y el dispositivo de escotilla;
g.c- Cerrar la tapa deslizante (l ie) sobre la cara frontal del dispositivo de válvula (3v) para evitar su manipulación.
9. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa h.-, donde se programa el dispositivo de válvula controladora de atmosfera que comprende la programación de acuerdo al tipo de fruta y su variedad porque las combinaciones de gases dependen en gran medida de la tolerancia a los altos niveles de anhídrido carbónico o a los bajos niveles de oxígeno que presentan los distintos tipos de fruta, además en la programación, se incluye el destino final de la fruta porque de eso depende el tiempo de tránsito del contenedor con atmósfera controlada.
10. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa i.-, donde se realiza la inyección de gases que comprende: i.a.- Conectar los cilindros de los gases (Nitrógeno y/o Anhídrido Carbónico y/o otros gases inertes) a sus respectivos reguladores y dejar los reguladores en una presión de
3-4 columnas de agua, equivalente a 25 PSI aproximadamente y éstos se conectan a su vez con el cuerpo de la purga (32p) a través de la boquilla con rosca de sello (36p) y se atornilla;
i.b.- Se abre el gas, de preferencia Nitrógeno y se espera un rango de 45 a 90 minutos, de preferencia 60 minutos, para bajar la concentración de oxígeno hasta que el dispositivo de válvula cense el seteado de oxígeno, descrito en la etapa h, quedando la mezcla total al interior del contenedor, en un rango de porcentaje entre los 80-95 % de nitrógeno, de volumen total del contenedor;
i.c- Se abre el gas, de preferencia Dióxido de Carbono y se espera un rango de 15-45 minutos, de preferencia 30 minutos, para elevar la concentración de anhídrido carbónico hasta que el dispositivo de válvula cense el seteado descrito en la etapa h, en un rango entre los 5-40 Kg de C02, alcanzando entre 1-18% del volumen total de la mezcla, dentro del contenedor.
i.d.- Cierre de los cilindros de gas, desconexión de las mangueras hacia el contenedor y se tapa la boquilla con el sello de rosca (36p) con la tapa de boquilla (37p).
11. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa j.-, donde se realiza el transporte de los alimentos perecibles que comprende el viaje de la mercadería al puerto de destino en donde el dispositivo de atmósfera controlada va monitoreando, corrigiendo y registrando la información, durante todo el viaje, donde si fuera necesario, un operador puede bajar la información del viaje, usando la aplicación electrónica de Liventus® desarrollada para estos fines, instalada en un teléfono inteligente, que permite leer las combinaciones de gases al interior del contenedor.
12. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque la etapa k.-, donde se realiza la recuperación del dispositivo de válvula controladora de atmosfera que comprende: k.a.- Extraer la información desde el dispositivo de válvula inalámbricamente o por conexión directa a un ordenador o dispositivo móvil;
k.b.- Evaluar con la información obtenida si el transporte ocurrió de la manera óptima en el control del ambiente, para eso se requiere que la concentración de 02 se mantenga en +/- 3% del rango programado, y que el C02 también sea mantenido en rango de +/- 3%, donde la programación de parámetros dependerá del tipo de fruta.
k.c- Extraer el dispositivo de válvula desde el dispositivo de escotilla, dejando colocado en el orificio principal de anclaje (4e), el tapón (30e), a través de la separación del anclaje del tapón (39v) de la tapa conectora del tapón (4 le), dejando así el tapón enchufado y cerrando herméticamente el dispositivo de escotilla y así el contenedor refrigerado;
k.d.- Cerrar la tapa deslizante (11) para evitar la manipulación del tapón (30e); y k.e.- Revisión y reemplazo o recarga de baterías del dispositivo de válvula para su reutilización.
13. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque el presente método permite colocar y/o remover fácilmente para su recarga, reemplazo o arreglo, los dispositivos de atmosfera controlada (lv) desde o hacia el contenedor.
14. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque el manejo operacional del dispositivo de válvula (1 v) mantiene la hermeticidad del contenedor.
15. - Método para la instalación y el control atmosférico dentro de un contenedor de transporte de carga, según la reivindicación 1, CARACTERIZADO porque el consumo de energía en la operación de control atmosférico interno del contenedor no requiere de energización externa o grandes aparatos para suministrar energía, simplemente el mismo dispositivo de válvula con las variaciones térmicas del contenedor hacen necesaria una mínima cantidad de energía asociada a una batería interna (35v) dentro del dispositivo de válvula (lv).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CL2016/000077 WO2018102934A1 (es) | 2016-12-05 | 2016-12-05 | Método de instalación y de operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CL2016/000077 WO2018102934A1 (es) | 2016-12-05 | 2016-12-05 | Método de instalación y de operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018102934A1 true WO2018102934A1 (es) | 2018-06-14 |
Family
ID=62490610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2016/000077 WO2018102934A1 (es) | 2016-12-05 | 2016-12-05 | Método de instalación y de operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018102934A1 (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200205447A1 (en) * | 2018-12-30 | 2020-07-02 | Thermo King Corporation | Active controlled atmosphere systems |
US11441820B2 (en) | 2018-09-06 | 2022-09-13 | Carrier Corporation | Refrigerant leak detection system |
US11576391B2 (en) | 2018-12-30 | 2023-02-14 | Thermo King Llc | Method and system operating a controlled atmosphere system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5457963A (en) * | 1994-06-15 | 1995-10-17 | Carrier Corporation | Controlled atmosphere system for a refrigerated container |
US20060199267A1 (en) * | 1998-10-19 | 2006-09-07 | Mitsubishi Australia Ltd. | Apparatus for controlled venting of a chamber |
WO2007129280A1 (en) * | 2006-05-09 | 2007-11-15 | Perishable Products Export Control Board | Refrigerated container |
US20150017296A1 (en) * | 2012-02-24 | 2015-01-15 | Van Amerongen Controlled Atmosphere Technology B.V. | Method and apparatus for controlling the atmosphere in a space filled with agricultural or horticultural products |
-
2016
- 2016-12-05 WO PCT/CL2016/000077 patent/WO2018102934A1/es active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5457963A (en) * | 1994-06-15 | 1995-10-17 | Carrier Corporation | Controlled atmosphere system for a refrigerated container |
US20060199267A1 (en) * | 1998-10-19 | 2006-09-07 | Mitsubishi Australia Ltd. | Apparatus for controlled venting of a chamber |
WO2007129280A1 (en) * | 2006-05-09 | 2007-11-15 | Perishable Products Export Control Board | Refrigerated container |
US20150017296A1 (en) * | 2012-02-24 | 2015-01-15 | Van Amerongen Controlled Atmosphere Technology B.V. | Method and apparatus for controlling the atmosphere in a space filled with agricultural or horticultural products |
Non-Patent Citations (1)
Title |
---|
CLAUDIA MARDONES: "Experiencias en atmosfera controlada", TRANSFRESH, 28 October 2014 (2014-10-28), pages 37 - 49, XP055508967, Retrieved from the Internet <URL:http://www.fdf.cl/biblioteca/presentaciones/2014/pdt_arandanos/postcosecha/Experiencias_atmosfera_controlada_Claudia_Mardones_Transfresh.pdf> [retrieved on 20170221] * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11441820B2 (en) | 2018-09-06 | 2022-09-13 | Carrier Corporation | Refrigerant leak detection system |
US20200205447A1 (en) * | 2018-12-30 | 2020-07-02 | Thermo King Corporation | Active controlled atmosphere systems |
US11576391B2 (en) | 2018-12-30 | 2023-02-14 | Thermo King Llc | Method and system operating a controlled atmosphere system |
US11647767B2 (en) * | 2018-12-30 | 2023-05-16 | Thermo King Llc | Active controlled atmosphere systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018102934A1 (es) | Método de instalación y de operación de un sistema de control atmosférico dentro de un contenedor de transporte de carga con un dispositivo de control de atmósfera | |
US6615908B1 (en) | Method of transporting or storing perishable produce | |
ES2300155T3 (es) | Sistema y procedimiento que proporcionan una atmosfera regulada para embalar productos perecederos. | |
JP5804215B1 (ja) | コンテナ用冷凍装置 | |
ES2279648T3 (es) | Metodo para regular la atmosfera dentro de una camara cerrada. | |
ES2674450T3 (es) | Cámara de maduración de productos | |
CN101850875A (zh) | 一种配送或短期存放蔬菜的气调降温避光保鲜箱 | |
BR112019011838B1 (pt) | Gaveta de geladeira para preservação de alimento, e, membrana substituível | |
FI95506C (fi) | Pakastuskaluste huurteen muodostumista estävällä järjestelyllä | |
CN105409592B (zh) | 食用菌种植装置 | |
JP6459355B2 (ja) | 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置 | |
ES2843694T3 (es) | Incubadora | |
CN213486692U (zh) | 一种移动式气调箱及气调冷链物流系统 | |
EP2800716B1 (en) | Air sealing system for a refrigerated container, method | |
KR20190099516A (ko) | 상자 내 공기 조성 변경으로 신선도가 연장된 상태로 생산물을 보관할 수 있는 야채 상자 | |
KR102056889B1 (ko) | 냉장수단 일체형 염소투입장치 | |
KR20160096896A (ko) | 냉장고의 밀폐룸 | |
EP3486191A1 (en) | Hatch device comprising a main body supporting a flow guiding part | |
CN112027361A (zh) | 一种多功能医用配药取用盒 | |
EP3446568B1 (en) | Atmosphere valve control device for installation in refrigerated containers | |
KR100336922B1 (ko) | 농수축산물용 지하저장시설 | |
WO2018220562A4 (en) | FOLDABLE COVERAGE SYSTEM, THERMALLY INSULATED, REFRIGERATED, ASSEMBLY AND METHOD OF USE FOR TRANSPORTING PERISHABLE PRODUCTS | |
CN208731658U (zh) | 运输设备 | |
ES2310361T3 (es) | Vitrina para conservar y/o exponer objetos. | |
CN206751849U (zh) | 一种大鼠纤维化细胞培养保温箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16923514 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16923514 Country of ref document: EP Kind code of ref document: A1 |