WO2018101407A1 - Electric heater and method for manufacturing same - Google Patents

Electric heater and method for manufacturing same Download PDF

Info

Publication number
WO2018101407A1
WO2018101407A1 PCT/JP2017/043071 JP2017043071W WO2018101407A1 WO 2018101407 A1 WO2018101407 A1 WO 2018101407A1 JP 2017043071 W JP2017043071 W JP 2017043071W WO 2018101407 A1 WO2018101407 A1 WO 2018101407A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex portion
convex
electric heater
electrode plate
ptc element
Prior art date
Application number
PCT/JP2017/043071
Other languages
French (fr)
Japanese (ja)
Inventor
康裕 大矢
優希 小林
祥次 新西
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201780074473.8A priority Critical patent/CN110140422B/en
Priority to DE112017006124.5T priority patent/DE112017006124T5/en
Publication of WO2018101407A1 publication Critical patent/WO2018101407A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0435Structures comprising heat spreading elements in the form of fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0452Frame constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • F24H9/1872PTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system

Definitions

  • the present disclosure relates to an electric heater that uses heat generated when a PTC element is energized and a method for manufacturing the same.
  • An electric heater using a PTC (Positive Temperature Coefficient) element is used, for example, as an in-vehicle auxiliary heating heater.
  • the electric heater is composed of an electrode plate for energizing the PTC element, a pair of heat dissipating fins for dissipating heat transmitted from the PTC element, and a pair of layers disposed in the stacking direction of the laminate of the PTC element, the electrode plate and the heat dissipating fin.
  • a frame, a pressing spring for pressing the pair of frames from both sides in the stacking direction, and the like are provided.
  • a plurality of laterally arranged PTC elements are as evenly distributed as possible to the electrode plate and the radiating fin.
  • the device is made to contact.
  • bent portions for pressing the PTC elements arranged in the lateral direction are formed in a pair of frames. And the site
  • a warped elastic contact portion is provided at a position on the electrode plate facing a portion where a plurality of PTC elements are arranged in the lateral direction.
  • a portion where each PTC element is arranged is pressed by the elastic contact portion so that each PTC element is in close contact with the electrode plate and the radiation fin.
  • JP 2009-152172 A Chinese Patent CN10173324
  • Patent Documents 1 and 2 In order to further improve the performance of the heater, there is still room for improvement in Patent Documents 1 and 2. That is, as a result of the research and development by the inventors, in order to more effectively conduct electricity from the electrode plate to the PTC element and conduct heat from the PTC element to the radiation fin, all the PTC elements, the electrode plates, and the radiation fins It has been found that it is effective to form a state where is pressed and contacted with as much force as possible.
  • Patent Document 1 by bending a frame using a pressing spring, each bent portion of the frame presses a portion of the laminated body where each PTC element is arranged. Therefore, the force with which each PTC element is pressed against the electrode plate and the heat radiating fin varies depending on how the frame bends. As a result, the magnitude of the pressing force acting on each PTC element depends on the magnitude of the frame manufacturing error and deformation. Therefore, in Cited Document 1, there is a possibility that variations occur in the force with which each PTC element is pressed against the electrode plate and the heat radiating fin.
  • the present disclosure has been obtained in an attempt to provide an electric heater capable of improving the heater performance and a manufacturing method thereof.
  • One aspect of the present disclosure generates a plurality of PTC elements that generate heat when energized and are arranged in a lateral direction; A plurality of electrode plates stacked on both sides of the PTC element in a stacking direction orthogonal to the lateral direction, and for energizing the PTC element; A plurality of heat dissipating fins that are laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element; One or a plurality of resin plates laminated in the laminating direction of the electrode plates or the radiating fins, and insulating between the electrode plates having different polarities; A pressing spring that presses the laminated body of the PTC element, the electrode plate, the radiation fin, and the resin plate from both sides in the laminating direction, Of the electrode plate, the radiation fin, and the resin plate, any one of the electrode plate, the radiation fin, and the resin plate is a projection forming member having a projection, and the projection forming member is excluded.
  • any one of the above is a convex contact member that contacts the convex part
  • the convex portions are respectively provided in a plurality of projection ranges obtained by projecting arrangement portions of the plurality of PTC elements on the surface in the stacking direction of the convex portion forming member in the stacking direction, respectively.
  • At least one of the convex part and the convex part contact member in all the projection ranges is an electric heater having a deformed part due to plastic deformation.
  • Another aspect of the present disclosure includes a plurality of PTC elements that generate heat when energized and are arranged in a lateral direction; A plurality of electrode plates stacked on both sides of the PTC element in a stacking direction orthogonal to the lateral direction, and for energizing the PTC element; A plurality of heat dissipating fins that are laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element; One or a plurality of resin plates laminated in the laminating direction of the electrode plates or the radiating fins, and insulating between the electrode plates having different polarities; A pair of frames laminated at both ends in the laminating direction of a laminate of the PTC element, the electrode plate, the radiating fin, and the resin plate; A pressing spring that presses the stacked body from both sides in the stacking direction via the pair of frames; Any of the electrode plate, the radiating fin, the resin plate, and the frame is a convex forming member having a con
  • Still another aspect of the present disclosure includes a plurality of PTC elements that generate heat when energized and are arranged in a lateral direction; A plurality of electrode plates stacked on both sides of the PTC element in a stacking direction orthogonal to the lateral direction, and for energizing the PTC element; A plurality of heat dissipating fins that are laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element; One or a plurality of resin plates laminated in the laminating direction of the electrode plates or the radiating fins, and insulating between the electrode plates having different polarities; In a method of manufacturing an electric heater, comprising: a pressing spring that presses the stacked body of the PTC element, the electrode plate, the heat radiation fin, and the resin plate from both sides in the stacking direction.
  • any one of the electrode plate, the radiation fin, and the resin plate is a projection forming member having a projection, and the projection forming member is excluded.
  • any one of the above is a convex contact member that contacts the convex part
  • the convex portions are respectively provided in a plurality of projection ranges obtained by projecting the arrangement portions of the plurality of PTC elements on the surface in the stacking direction of the convex portion forming member in the stacking direction, respectively.
  • each PTC element is provided with a deformed portion formed by plastic deformation in at least one of the electrode plate, the heat radiating fin, and the resin plate, which are in contact with each other.
  • the device is designed to make the force pressed by the fins as uniform as possible in all PTC elements.
  • any one of the electrode plate, the heat radiating fin, and the resin plate is a convex portion forming member having a convex portion, and the other is a convex portion contact member that contacts the convex portion.
  • the convex portions are respectively provided in a plurality of projection ranges obtained by projecting the arrangement sites of the plurality of PTC elements in the stacking direction on the surface in the stacking direction of the convex portion forming member. At least one of the convex contact members has a deformed portion due to plastic deformation.
  • the convex portion and the convex portion contact member are in contact with each other, and at least one of all the convex portions and the convex portion contact member has a deformed portion that is plastically deformed.
  • the deformed portion is formed as a trace or a mark in which the convex portion is crushed so as to be lowered by plastic deformation, or a trace or a mark in which the surface of the convex portion contact member is recessed.
  • the deformed portion is formed by plastic deformation, unlike the case formed by elastic deformation, the phenomenon that the pressing force generated at each convex portion varies depending on the amount of deformation hardly occurs.
  • the manufacturing process generated in each of the PTC element, the electrode plate, the heat radiation fin, and the resin plate by utilizing the plastic deformation of at least one of the convex portion and the convex portion contact member, the manufacturing process generated in each of the PTC element, the electrode plate, the heat radiation fin, and the resin plate. Even if the thickness in the stacking direction is different at each position in the lateral direction where the PTC elements are arranged due to dimensional error, deformation, etc., all the PTC elements, the electrode plates, and the radiation fins are pressed with the same force as much as possible. In this way, a contact state can be formed.
  • the “thickness in the stacking direction” refers to the total thickness of the single stacking direction of the PTC element, the electrode plate, the radiation fin, and the resin plate in the projection range of each PTC element.
  • the heater performance can be further improved.
  • a frame is included in the convex portion forming member and the convex portion contact member.
  • Other configurations are the same as those of the electric heater according to the embodiment. Therefore, according to the electric heater of the other aspect, the heater performance can be further improved as in the case of the electric heater of the one aspect.
  • the electric heater when the laminate is pressed from both sides in the stacking direction by the pressing spring, at least one of the projecting portion and the projecting portion contact member within the entire projection range is caused by plastic deformation. A deformation part is formed.
  • each component is not limited only to the content of embodiment.
  • FIG. 3 is an explanatory diagram showing an electric heater according to the first embodiment. Explanatory drawing which expands and shows a part of electric heater concerning Embodiment 1.
  • FIG. Sectional drawing which shows the state which cut
  • FIG. Explanatory drawing shown in the state which decomposed
  • FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member before each convex part which plastically deforms concerning Embodiment 1.
  • FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member after each convex part which plastically deforms concerning Embodiment 1.
  • FIG. Explanatory drawing which shows a pair of member before each elastic deformation part elastically deforms concerning a comparison form.
  • Explanatory drawing which shows a pair of member after each elastic deformation part elastically deformed concerning a comparison form.
  • FIG. 1 Explanatory drawing shown in the state which decomposed
  • FIG. Sectional drawing shown in the state which cut
  • FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member before the convex part contact member which plastically deforms concerning Embodiment 2.
  • FIG. Sectional drawing which shows the state which cut
  • FIG. Sectional drawing which shows the state which cut
  • FIG. Explanatory drawing which shows the electric heater concerning Embodiment 5.
  • Sectional drawing which shows the state which cut
  • FIG. Explanatory drawing shown in the state which decomposed
  • FIG. Explanatory drawing shown in the state which decomposed
  • FIG. Sectional drawing which shows the state which cut
  • the electric heater 1 of this embodiment includes a plurality of PTC elements 2, a plurality of electrode plates 3, a plurality of heat radiation fins 4, a resin plate 5, and a pressing spring 7.
  • the PTC elements 2 generate heat when energized, and a plurality of PTC elements 2 are arranged in the horizontal direction W.
  • the electrode plates 3 are stacked on both sides of the PTC element 2 in the stacking direction H perpendicular to the lateral direction W, and are used to energize the PTC element 2.
  • the radiating fins 4 are stacked on both sides of the PTC element 2 in the stacking direction H, and are for radiating heat transmitted from the PTC element 2.
  • the resin plate 5 is stacked in the stacking direction H of the electrode plates 3 or the radiating fins 4 and is for insulating between the electrode plates 3 having different polarities.
  • the pressing spring 7 presses the laminated body 10 of the PTC element 2, the electrode plate 3, the radiation fin 4 and the resin plate 5 from both sides in the laminating direction H.
  • the resin plate 5 is a convex portion forming member 11, and the electrode plate 3 is a convex portion contact member 12 that is in contact with the convex portion 51.
  • the arrangement site in the lateral direction W and the depth direction D of the PTC element 2 on the surface 501 in the laminating direction H of the resin plate 5 as the convex portion forming member 11 is projected in the laminating direction H.
  • a convex portion 51 that protrudes from the surface 501 is provided in each projection range R.
  • the convex portion 51 in each projection range R has a deformed portion 511 that is plastically deformed in contact with the electrode plate 3 as the convex portion contact member 12.
  • the electric heater 1 is provided in a vehicle separately from an air conditioner such as an air conditioner, and is used to assist heating by the air conditioner or instead of heating by the air conditioner.
  • the electric heater 1 can be used to compensate for a decrease in the heat source of the vehicle due to the high efficiency of the engine, and is also used for a vehicle having no heat source such as an EV (electric vehicle) or an FCV (fuel cell vehicle). You can also.
  • the lateral direction W refers to a direction in which the electrode plate 3, the heat radiation fin 4, the resin plate 5, and the like are formed in a long shape.
  • the stacking direction H is a direction perpendicular to the lateral direction W and in which the PTC element 2, the electrode plate 3, the heat radiation fin 4, the resin plate 5, and the like are stacked.
  • a direction perpendicular to the lateral direction W and the stacking direction H is referred to as a depth direction D, and the depth direction D is a direction in which a fluid such as air for air conditioning passes through the electric heater 1.
  • the PTC element 2 is configured by using a semiconductor or the like, and has PTC (positive temperature coefficient) characteristics that generate heat when energized and increase in electrical resistance as the temperature rises. When the PTC element 2 generates heat above a predetermined temperature, the PTC element 2 is maintained at a substantially constant temperature due to an increase in electrical resistance.
  • the PTC element 2 is formed in a plate shape, and generates heat when a voltage is applied between a pair of surfaces having the largest area.
  • the PTC element 2 is held by a plate-shaped positioning plate 21 made of resin.
  • a plurality of arrangement holes 211 in which the PTC elements 2 are arranged are formed in the positioning plate 21 at predetermined intervals in the lateral direction W.
  • the plurality of arrangement holes 211 are formed so as to penetrate in the stacking direction H of the positioning plate 21.
  • Four PTC elements 2 of this embodiment are arranged in each arrangement hole 211 of the positioning plate 21 in a state of being arranged in the lateral direction W at a predetermined interval. For example, 4 to 6 PTC elements 2 can be arranged on the positioning plate 21.
  • the thickness in the stacking direction H of the portion of the positioning plate 21 where the PTC element 2 is disposed is desirably thinner than the PTC element 2 so that the electrode plate 3 or the radiation fin 4 can easily come into contact with the PTC element 2.
  • the positioning plate 21 is provided with a projection 212 for positioning in the depth direction D with respect to the electrode plate 3 or the radiating fin 4 laminated on the positioning plate 21. By adjusting the height of the protrusion 212, the electrode plate 3 and the radiation fin 4 can be simultaneously positioned with respect to the positioning plate 21.
  • the protrusions 212 of this embodiment are formed continuously on the edges on both sides in the depth direction D of the positioning plate.
  • the electrode plate 3 applies a voltage for energizing the PTC element 2.
  • One of the pair of electrode plates 3 stacked on both sides in the stacking direction H of the PTC element 2 is connected to a positive power source, and the other is connected to a negative power source (ground).
  • the electrode plate 3 connected to the positive power source is indicated by (+)
  • the electrode plate 3 connected to the negative power source is indicated by ( ⁇ ).
  • the electrode plate 3 of this embodiment is made of a material plated with tin on a brass plate as a metal having excellent conductivity.
  • the electrode plate 3 can be made of a copper material made of copper or a copper alloy, an aluminum material made of aluminum or an aluminum alloy, or the like. Each electrode plate 3 is pulled out in the lateral direction W from one end in the lateral direction W in order to apply a voltage.
  • the radiating fin 4 conducts and transfers heat with the PTC element 2 and transfers heat with a fluid such as heating air.
  • One of the pair of radiating fins 4 stacked on both sides in the stacking direction H of the PTC element 2 is connected to the positive power source via the electrode plate 3, and the other is connected to the negative power source via the electrode plate 3.
  • the radiating fin 4 is configured by a pair of flat plates 42 that are in contact with the PTC element 2, the electrode plate 3, and the like, and a corrugated plate 43 joined between the pair of flat plates 42.
  • the pair of flat plates 42 are disposed on both sides in the stacking direction H of the radiating fins 4.
  • the fluid heated by the electric heater 1 passes through a through gap 431 formed between the pair of flat plates 42 by the corrugated plate 43, and is heated by the radiating fins 4.
  • the heat radiation fin 4 of this embodiment is made of an aluminum material made of aluminum or an aluminum alloy, or a copper-based material made of copper or a copper alloy, as a metal having excellent conductivity and heat transfer.
  • the resin plate 5 is for insulating between the electrode plates 3 and the radiation fins 4 having different polarities connected to a positive power source or a negative power source.
  • the resin plate 5 of this embodiment is made of 66 nylon as a thermoplastic resin.
  • the resin plate 5 can be made of nylon resin, PBT (polybutylene terephthalate resin), PPS (polyphenylene sulfide resin), or the like.
  • the resin plate 5 is formed with a protrusion 52 for positioning in the depth direction D with respect to the electrode plate 3 (or the heat radiating fin 4) laminated on the resin plate 5. By adjusting the height of the protrusion 52, the electrode plate 3 and the radiation fin 4 can be simultaneously positioned with respect to the resin plate 5.
  • the protrusions 52 of this embodiment are formed continuously on the edges on both sides in the depth direction D of the resin plate 5.
  • a pair of frames 6A and 6B are laminated at both ends in the laminating direction H of the laminated body 10 of the PTC element 2, the electrode plate 3, the radiation fins 4, and the resin plate 5.
  • the pair of frames 6 ⁇ / b> A and 6 ⁇ / b> B are used to receive the pressing force (load) from the pressing spring 7 and to bring the PTC element 2, the electrode plate 3, the heat radiating fin 4, and the resin plate 5 in the laminated body 10 into close contact with each other.
  • the rigidity of the electric heater 1 can be increased, and the pressing force applied to the laminated body 10 from the pressing spring 7 can be applied equally to the plurality of PTC elements 2. It becomes easy.
  • the frames 6A and 6B are made of metal and are formed in a cylindrical shape having a hollow hole 62 penetrating in the lateral direction W.
  • the frames 6A and 6B can be formed in a cylindrical shape by bending a flat plate and having a slit between the bent ends. A part of the pressing spring 7 is inserted into the hollow holes 62 of the frames 6A and 6B.
  • the frames 6A and 6B of this embodiment are made of SUS430.
  • the frames 6A and 6B can be made of a SUS (stainless steel) material such as SUS304, a steel material such as SECC (electrogalvanized steel plate), or the like.
  • the pressing springs 7 are arranged on both sides in the lateral direction W of the laminated body 10 and press the laminated body 10 from both sides in the laminating direction H via a pair of frames 6A and 6B on both sides in the lateral direction W.
  • the pressing spring 7 extends in the stacking direction H and is formed to be bent from both sides of the spring center portion 71, with a spring center portion 71 disposed opposite to the end portion in the lateral direction W of the stack body 10. And a pair of sandwiching portions 72 for sandwiching.
  • a pair of clamping part 72 is inserted in the hollow hole 62 of each flame
  • the interval between the pair of sandwiching portions 72 is widened by the laminate 10 and the pair of frames 6A and 6B, so that the laminate 10 is laminated from the pair of sandwiching portions 72 to the laminate 10 and the pair of frames 6A and 6B.
  • the pressing force for maintaining the pressure acts.
  • resin-made covers 81 that engage with both ends of the pair of frames 6 ⁇ / b> A and 6 ⁇ / b> B in the lateral direction W are provided at both ends in the lateral direction W of the laminate 10. .
  • the cover 81 located on the side from which the electrode plate 3 is drawn is provided with a connector 82 for connecting the plurality of electrode plates 3 to a positive power source and a negative power source in a vehicle battery.
  • a plurality of PTC elements 2 are arranged in four stages, and the electrode plates 3 are arranged on both sides in the stacking direction H of the PTC elements 2.
  • the radiation fin 4 is arrange
  • the electrode plate 3 and the heat radiation fin 4 are alternately connected to a positive power source and a negative power source.
  • the resin plate 5 is located at the end of the stacked body 10 in the stacking direction H.
  • Each electrode plate 3 in the laminated body 10 can be separately supplied with voltages from a positive power source and a negative power source.
  • the electric heater 1 switches the presence / absence of energization to each electrode plate 3 in the laminated body 10, thereby performing a partial heating operation for energizing a plurality of PTC elements 2 in a specific lamination position, A full heating operation for energizing the PTC element 2 is possible.
  • each PTC element 2 in the laminated body 10 of this embodiment are coincident when viewed along the laminating direction H.
  • the projection range R of each PTC element 2 is uniquely determined. For example, in the case where the number of stages in which the plurality of PTC elements 2 are stacked increases, there may be a case where the positions of the plurality of PTC elements 2 in the stacked body 10 in the lateral direction W and the depth direction D do not match. In this case, when the laminated body 10 is viewed along the laminating direction H, the convex portion 51 may be formed at a portion where the projection ranges R of the plurality of PTC elements 2 in the laminated body 10 overlap each other. it can.
  • FIG. 6 it may be assumed that a part of the PTC element 2 is eliminated and a portion where the PTC element 2 is eliminated is filled with a positioning plate 21 for power adjustment.
  • the positioning plate 21 is pressed by the pressing spring 7 at a place where the PTC element 2 is not provided, so that each projection range R in the entire laminate 10 is pressed evenly.
  • each electrode plate 3 in the electric heater 1 having the laminated body 10 is alternately connected to the positive power source, the negative power source, the positive power source, the negative power source, and the positive power source in order from one side in the stacking direction H. Is done.
  • the resin plate 5 is disposed between the electrode plate 3 and the frame 6B, which is the outermost end in the stacking direction H of the stacked body 10 and located at one end in the stacking direction H.
  • the resin plate 5 is positioned at the other end portion in the stacking direction H via the electrode plate 3 and the radiation fin 4 positioned at one end portion in the stacking direction H, the frames 6A and 6B, and the pressing spring 7.
  • the electrode plate 3 and the heat radiating fin 4 are prevented from conducting.
  • the convex portion 51 of this embodiment is provided on the surface 501 of the resin plate 5 facing the electrode plate 3.
  • the convex portions 51 are respectively provided in four projection ranges R obtained by projecting the arrangement site of the four PTC elements 2 in the stacking direction H on the resin plate 5.
  • Each convex part 51 is provided in the center part of each projection range R, respectively.
  • a plurality of convex portions 51 may be provided in each projection range R. Further, the convex portion 51 is not necessarily provided at the center of each projection range R, and a plurality of projections 51 may be provided at a site around the center of each projection range R.
  • the hardness of the resin plate 5 as the convex portion forming member 11 of this embodiment is lower than the hardness of the electrode plate 3 as the convex portion contact member 12.
  • the electrode plate 3 causes each convex portion on the resin plate 5 to move.
  • the tip portion of 51 is crushed by plastic deformation so that the height protruding from the surface 501 is low.
  • most of the material located at the tip of each convex portion 51 flows from between each convex portion 51 and the electrode plate 3 around each convex portion 51. In this manner, a mark or a mark that has undergone plastic deformation is left as a deformed portion 511 on each convex portion 51.
  • FIG. 7 schematically shows a state before each convex portion 51 is plastically deformed
  • FIG. 8 schematically shows a state after each convex portion 51 is plastically deformed.
  • Each figure is a figure which shows typically the state by which the deformation
  • Each convex part 51 in the electric heater 1 may be formed in any shape as long as the deformation part 511 is formed at the tip part.
  • the shape of the convex portion 51 before the deformation portion 511 is formed is, for example, a cone, a triangular pyramid, a quadrangular pyramid such as a quadrilateral guess, a curved projection such as a hemisphere, etc., in order to facilitate the formation of the deformation portion 511. can do.
  • transformation part 511 is formed can also be made into the cylinder or prism which has a flat shape or a curved-shaped front-end
  • the shape of the convex portion 51 before the deformation portion 511 is formed is the case where the convex portion 51 is plastically deformed even when the surface of the convex portion contact member 12 is plastically deformed as shown in the second embodiment described later. It can be made the same shape as.
  • the plastic deformation of the convex portion 51 is performed by applying a load to the convex portion 51 beyond the elastic limit for elastic deformation.
  • the size of the convex portion 51 can be made small in order to facilitate plastic deformation.
  • the size of the convex portion 51 can be, for example, in the range of 0.5 to 5 mm as the maximum outer shape when the convex portion 51 in the resin plate 5 is viewed in plan.
  • the height of the convex portion 51 on which the deformable portion 511 is formed can be set to 0.05 to 1 mm, for example.
  • the convex portion 51 can also be provided on the surface 501 of the resin plate 5 facing the frame 6B. Also in this case, since the hardness of the resin plate 5 is lower than the hardness of the frame 6B, a deformed portion 511 crushed by plastic deformation is formed at the tip of each convex portion 51 in the resin plate 5 by the frame 6B. Is done.
  • the convex part 51 can also be provided in the surface 501 of the both sides in the resin plate 5.
  • FIG. in this case, the convex portion 51 on one side has a deformed portion 511 caused by plastic deformation by contacting with the electrode plate 3, and the deformation caused by plastic deformation by contacting the convex portion 51 on the other side with the frame 6B.
  • a portion 511 may be included.
  • the PTC element 2, the electrode plate 3, the heat radiating fin 4, the resin plate 5, the frames 6A and 6B, and the pressing spring 7 are respectively processed by known methods.
  • the resin plate 5 is molded, a plurality of convex portions 51 are formed on the surface 501 of the resin plate 5.
  • the plurality of convex portions 51 are formed so as to protrude from the surface 501 in each projection range R obtained by projecting the arrangement site of the plurality of PTC elements 2 in the stacking direction H on the surface 501 in the stacking direction H of the resin plate 5. To do.
  • each PTC element 2 is arranged in each arrangement hole 211 of the positioning plate 21, and the positioning plate 21, the plurality of electrode plates 3, the plurality of radiating fins 4, and the resin plate 5 are stacked to form the stacked body 10.
  • each projection 51 in the resin plate 5 is disposed within the projection range R of each PTC element 2 on the surface 501 in the stacking direction H of the resin plate 5.
  • the frames 6A and 6B are stacked on both ends of the stacked body 10 in the stacking direction H.
  • the pressing spring 7 is elastically deformed so as to widen the distance between the pair of sandwiching portions 72 of the two pressing springs 7. Further, the respective pressing springs 7 are arranged on both sides of the laminated body 10 in the lateral direction W, and the clamping portions 72 of the respective pressing springs 7 are inserted into the hollow holes 62 of the respective frames 6A and 6B. And when the state which elastically deforms the press spring 7 is cancelled
  • each convex portion 51 of the resin plate 5 contacts the surface 301 of the electrode plate 3, and the hardness of each convex portion 51 is lower than the hardness of the electrode plate 3, and Since the strength of each convex portion 51 is low, plastic deformation occurs so that the tip portion of each convex portion 51 is crushed. And the deformation
  • the plurality of convex portions 51 of the convex portion forming member 11 are in contact with the convex portion contact member 12, and the plurality of convex portions 51 are plastically deformed. Indicates the state to be performed.
  • the convex portions 51 in each projection range R have different amounts of plastic deformation due to variations in the thickness of the stacked body 10 in the stacking direction H.
  • the laminate 10 is disposed in the projection range R where the thickness of the laminate 10 in the stacking direction H is larger than the amount of plastic deformation of the projection 51a disposed in the projection range R where the thickness in the stacking direction H is small.
  • the amount of plastic deformation of the projected portion 51b is increased.
  • the protrusion amount (height) of the latter convex portion 51b from the surface 501 is lower than the protrusion amount (height) of the former convex portion 51a from the surface 501.
  • the difference in the protruding amount between the convex portions 51a and 51b can be understood by observing the deformed portion 511 formed at the tip portions of the convex portions 51a and 51b.
  • the plastic deformation of the plurality of convex portions 51 in the resin plate 5 reduces the difference in the thickness in the stacking direction H of the stacked body 10 in the projection range R of each PTC element 2. 10, the thickness in the stacking direction H of each portion in the horizontal direction W is changed to be uniform.
  • transformation etc. which have arisen in each structural member 2,3,4,5,6A, 6B may be corrected.
  • each convex portion 51 of the resin plate 5 and the electrode plate 3 are in contact with each other, and all the convex portions 51 have a deformed portion 511 that is plastically deformed.
  • the deformed portion 511 is formed as a trace or a mark in which the convex portion 51 is crushed so as to be reduced in height by plastic deformation. Since the deformed portion 511 is formed by plastic deformation, unlike the case formed by elastic deformation, the phenomenon that the reaction force generated in each convex portion 51 varies depending on the amount of deformation hardly occurs. Thereby, within the projection range R of each PTC element 2, the force with which each PTC element 2 is pressed by the electrode plate 3 and the radiation fin 4 becomes as uniform as possible.
  • the following effects can be obtained by utilizing the plastic deformation of all the convex portions 51 of the resin plate 5. That is, the stacking direction H at each position in the lateral direction W where the PTC element 2 is arranged due to a manufacturing dimensional error, deformation, etc., generated in each of the PTC element 2, the electrode plate 3, the radiation fin 4, and the resin plate 5. Even when the thicknesses of the PTC elements are different from each other, it is possible to form a state in which all the PTC elements 2, the electrode plates 3, and the radiation fins 4 are pressed and contacted with each other as much as possible. Thereby, electricity supply from the electrode plate 3 to all the PTC elements 2 and heat conduction from all the PTC elements 2 to the radiation fins 4 can be performed more effectively. Therefore, according to the electric heater 1 of this embodiment, the heater performance can be further improved.
  • FIGS. 9 and 10 as a comparative form, a state in which the plurality of elastic deformation portions 51 ⁇ / b> X are elastically deformed when the member 11 ⁇ / b> X formed with the elastic deformation portions 51 ⁇ / b> X is used instead of the convex portion forming member 11.
  • a contact member in contact with the elastically deforming portion 51X of the member 11X is indicated by reference numeral 12X.
  • the elastic deformation portions 51X in each projection range R have different amounts of elastic deformation in response to variations in the thickness of the stacked body 10 in the stacking direction H.
  • the amount of elastic deformation increases.
  • the reaction force generated in each of the elastic deformation portions 51Xa and 51Xb differs depending on the amount of deformation, and the elastic deformation portion 51Xb having a large elastic deformation amount has a larger reaction force than the elastic deformation portion 51Xa having a small elastic deformation amount.
  • the force with which each PTC element 2 is pressed by the electrode plate 3 and the radiation fin 4 becomes non-uniform
  • the contact state of each PTC element 2 with respect to the electrode plate 3 and the radiating fin 4 varies, and the current conduction from the electrode plate 3 to each PTC element 2 and the heat conduction from each PTC element 2 to the radiating fin 4 vary. Will occur.
  • the electrode plate 3 and the radiating fins 4 are only required to have conductivity and heat transfer with the PTC element 2, and any of them may be disposed at a position in direct contact with the PTC element 2.
  • the electric heater 1 includes a plurality of PTC elements 2 in a stacked state in which the electrode plate 3 and the radiation fins 4 are respectively disposed on both sides in the stacking direction H of the plurality of PTC elements 2.
  • the laminated body 10 having the PTC element 2 may be pressed by the pressing spring 7.
  • the convex portion forming member 11 is the electrode plate 3 on which the convex portion 31 is formed, and the convex portion contact member 12 that is in contact with the convex portion 31 is the resin plate 5.
  • the convex portions 31 are respectively provided within the projection ranges R of the plurality of PTC elements 2 on the surface 301 in the stacking direction H of the electrode plate 3.
  • the convex portion 31 is provided on the surface 301 of the electrode plate 3 facing the resin plate 5.
  • the convex portion 31 is integrally provided on the electrode plate 3 with the same material as the electrode plate 3 by deforming a part of the electrode plate 3.
  • the convex portion 31 may be a metal material provided separately on the surface 301 of the electrode plate 3.
  • the electrode plate 3 is made of a copper material
  • the resin plate 5 is made of a resin material. Since the hardness of the electrode plate 3 is higher than the hardness of the resin plate 5, the resin plate 5 is plastically deformed by the convex portions 31 of the electrode plate 3, and the surface 501 of the resin plate 5 is recessed by the convex portions 31.
  • a deformed portion 512 is formed.
  • the deformed portion 512 is formed as a trace or a mark or the like in which the surface 501 of the resin plate 5 is recessed by plastic deformation.
  • the electrode plate 3 on which the convex portions 31 of this embodiment are formed is assumed to face the resin plate 5.
  • the convex portion 31 can be provided on any electrode plate 3 in the electric heater 1. Although the structure is different from that of the electric heater 1 of the present embodiment, the convex portion 31 can be provided on the surface of the electrode plate 3 facing the frame 6A.
  • the convex contact member 12 may be the heat radiation fin 4, and the convex portion 31 may be provided on the surface 301 of the electrode plate 3 facing the heat radiation fin 4.
  • the surface 401 of the flat plate 42 of the radiating fin 4 is plastically deformed by the convex portions 31 of the electrode plate 3, and the flat plate 42 of the radiating fin 4.
  • a deformed portion that is recessed by the convex portion 41 is formed on the surface 401.
  • each convex portion 31 of the electrode plate 3 comes into contact with the resin plate 5, and each part of the resin plate 5
  • the protrusion 31 is plastically deformed to be recessed. At this time, most of the material of the portion of the resin plate 5 with which the convex portions 31 come into contact flows from between the convex portions 31 and the resin plate 5 around the convex portions 31.
  • FIG. 14 schematically shows a state before the resin plate 5 is plastically deformed
  • FIG. 15 schematically shows a state after the resin plate 5 is plastically deformed.
  • Each figure is a figure which shows typically the state in which the deformation
  • the amount of plastic deformation of the portion of the resin plate 5 that comes into contact with the portion 31b increases.
  • the amount of depression from the surface 301 of the portion of the resin plate 5 that is recessed by the former convex portion 31a the amount of depression from the surface 301 of the portion of the resin plate 5 that is recessed by the latter convex portion 31b. (Depth) becomes deeper.
  • the difference in the amount of depression at each part of the resin plate 5 can be understood by observing the deformed portion 512 formed on the surface 501 of the resin plate 5.
  • each projection range R of the radiating fin 4 is plastically deformed by all the convex portions 31, so that each of the PTC element 2, the electrode plate 3, the radiating fin 4, and the resin plate 5 is used. Even if the thickness in the stacking direction H is different at each position in the lateral direction W where the PTC element 2 is disposed due to a dimensional error, deformation, etc. in manufacturing, all the PTC elements 2, the electrode plates 3 and the resin are different. It is possible to form a state in which the plate 5 is pressed and brought into contact with the plate 5 as much as possible. Thereby, electricity supply from the electrode plate 3 to all the PTC elements 2 and heat conduction from all the PTC elements 2 to the radiation fins 4 can be performed more effectively. Therefore, the heater performance can be further improved by the electric heater 1 of this embodiment.
  • the other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1 can be manufactured in the same manner as in the first embodiment.
  • the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
  • the convex forming member 11 is the heat radiation fin 4 on which the convex 41 is formed, and the convex contact member 12 that is in contact with the convex 41 is the electrode plate 3.
  • the convex portions 41 are respectively provided in the projection ranges R of the plurality of PTC elements 2 on the surface 401 in the stacking direction H of the radiating fins 4.
  • the convex portion 41 is provided on the surface 401 of the radiating fin 4 that faces the electrode plate 3.
  • the convex portion 41 is integrally provided on the heat radiation fin 4 with the same material as the heat radiation fin 4 by deforming a part of the flat plate 42 of the heat radiation fin 4.
  • the convex portion 41 may be a metal material separately provided on the surface 401 of the flat plate 42 of the radiating fin 4.
  • the heat radiation fin 4 is made of an aluminum material, and the electrode plate 3 is made of a copper material. Since the hardness of the radiating fin 4 is lower than the hardness of the electrode plate 3, the convex portion 41 of the flat plate 42 of the radiating fin 4 is plastically deformed by the electrode plate 3. A deformed portion 411 crushed by 3 is formed. The deformed portion 411 is formed as a trace or a mark or the like in which the tip portion of the convex portion 41 of the radiating fin 4 is crushed by plastic deformation.
  • the heat dissipating fin 4 on which the convex portion 41 of this embodiment is formed is the closest to the frame 6B.
  • the convex portion 41 can be provided on any of the radiating fins 4 in the electric heater 1.
  • the convex portion 41 is different from the configuration of the electric heater 1 of the present embodiment, but can be provided on the surface of the radiating fin 4 facing the frame 6A.
  • the other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1 can be manufactured in the same manner as in the first embodiment.
  • the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
  • the convex portion forming member 11 is a frame 6 ⁇ / b> B in which the convex portion 61 is formed, and the convex portion contact member 12 in contact with the convex portion 61 is a resin plate 5.
  • the convex portions 61 are respectively provided in the projection ranges R of the plurality of PTC elements 2 on the surface 601 in the stacking direction H of the frame 6B.
  • the convex portion 61 is provided on the surface 601 of the frame 6B that faces the resin plate 5.
  • the convex portion 61 is provided integrally with the frame 6B with the same material as the frame 6B by deforming a part of the frame 6B.
  • the convex portion 61 may be a metal material provided separately on the surface 601 of the frame 6B.
  • the frame 6B is made of a metal material such as stainless steel, and the resin plate 5 is made of a resin material. Since the hardness of the frame 6B is higher than the hardness of the resin plate 5, the resin plate 5 is plastically deformed by the convex portions 61 of the frame 6B, and the surface 501 of the resin plate 5 is deformed by the convex portions 61. A portion 512 is formed. The deformed portion 512 is formed as a trace or a mark or the like in which the surface 501 of the resin plate 5 is recessed by plastic deformation.
  • the frame 6B is the convex portion forming member 11 in which the convex portion 61 is formed.
  • the frame 6A may be the convex portion forming member 11 in which the convex portion 61 is formed.
  • the convex contact member 12 is used as the heat radiation fin 4
  • the convex portion 61 is provided on the surface 601 of the frame 6 ⁇ / b> A facing the heat radiation fin 4.
  • the flat plate 42 of the radiating fin 4 is plastically deformed by the convex portion 61 of the frame 6A, and the surface 401 of the flat plate 42 of the radiating fin 4 is A deformed portion that is recessed by the convex portion 61 of the frame 6A is formed.
  • the convex contact member 12 is the electrode plate 3, and the convex portions 61 of the frames 6A and 6B are the surfaces of the electrode plate 3 facing the frames 6A and 6B. Can also be contacted.
  • the surface of the electrode plate 3 is plastically deformed by the convex portions 61 of the frames 6A and 6B, and the surface of the electrode plate 3 is convex. A deformed portion that is recessed by the portion 61 is formed.
  • the other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1 can be manufactured in the same manner as in the first embodiment.
  • the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
  • This embodiment shows an electric heater 1Z having a structure different from that of the electric heater 1 of the first to fourth embodiments.
  • the first laminated body 10A composed of a plurality of PTC elements 2, a plurality of electrode plates 3, a plurality of heat radiation fins 4, and resin plates 5A and 5B.
  • the second stacked body 10 ⁇ / b> B is arranged in two layers in the stacking direction H.
  • the electrode plates 3 in each of the stacked bodies 10A and 10B can be separately supplied with voltages from a positive power source and a negative power source.
  • the electric heater 1Z can perform a half-heating operation in which heating is performed by the first stacked body 10A or the second stacked body 10B and a full heating operation in which heating is performed by both the stacked bodies 10A and 10B.
  • the electrode plate 3 connected to the positive power source is indicated by (+)
  • the electrode plate 3 connected to the negative power source is indicated by ( ⁇ ).
  • the convex portion forming member 11 of this embodiment is a resin plate 5A on which convex portions 51 are formed, and the convex portion contact member 12 is the electrode plate 3.
  • the convex part 51 of this form is provided in the surface 501 facing the electrode plate 3 of 10 A of 1st laminated bodies in the resin plate 5A arrange
  • the convex portions 51 are respectively provided in four projection ranges R obtained by projecting the arrangement site of the four PTC elements 2 in the stacking direction H on the resin plate 5A.
  • the tip portions of the convex portions 51 in the resin plate 5A are plastically deformed and crushed.
  • the convex part 51 can also be provided in the surface 501 facing the radiation fin 4 of the 2nd laminated body 10B in the resin plate 5A. Also in this case, when the hardness of the resin plate 5A is lower than the hardness of the radiating fins 4, the tips of the convex portions 51 in the resin plate 5A are plastically deformed and crushed.
  • the convex part 51 is a surface in the resin plate 5B arrange
  • part of the horizontal direction W and the depth direction D of each PTC element 2 in the two laminated bodies 10A and 10B of this form corresponds when it sees along the lamination direction H.
  • the projection range R of each PTC element 2 is uniquely determined.
  • part of the horizontal direction W and the depth direction D of the some PTC element 2 in each laminated body 10A, 10B does not necessarily need to correspond.
  • the projections 51 are formed at portions where the projection ranges R of the PTC elements 2 in the stacks 10A and 10B overlap each other. Can be formed.
  • the electrode plates 3 in the electric heater 1Z having the two-layered laminates 10A and 10B are alternately arranged in the order of one side in the stacking direction H into the positive power source, the negative power source, the positive power source, and the negative power source.
  • the resin plates 5A and 5B are disposed between the first stacked body 10A and the second stacked body 10B, and between the second stacked body 10B and the frame 6B.
  • the resin plate 5A disposed between the first laminated body 10A and the second laminated body 10B includes the electrode plate 3 and the radiation fins 4 connected to the negative power source of the first laminated body 10A, and the second The laminated body 10B is insulated from the electrode plate 3 and the radiation fin 4 connected to the plus power source.
  • the resin plate 5B disposed between the second laminate 10B and the frame 6B is composed of the electrode plate 3 and the radiation fin 4 connected to the negative power source, the frames 6A and 6B, and the press of the second laminate 10B.
  • the electrode plate 3 and the radiation fin 4 connected to the positive power source of the first stacked body 10A are prevented from being electrically connected to each other through the spring 7.
  • the electric heater 1Z of the present embodiment other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1Z can be manufactured in the same manner as in the first embodiment. In addition, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
  • the present embodiment is a modification of the electric heater 1 ⁇ / b> Z according to the fifth embodiment, in which the convex portion forming member 11 is a heat radiating fin 4 having the convex portion 41 and the convex portion 41.
  • the convex contact member 12 in contact with the resin plate 5A is shown.
  • the convex portions 41 are respectively provided in the projection ranges R of the plurality of PTC elements 2 on the surface 401 in the stacking direction H of the radiating fins 4.
  • the convex portion 41 is provided on the surface 401 of the radiating fin 4 facing the resin plate 5A.
  • the convex portion 41 is integrally provided on the heat radiation fin 4 with the same material as the heat radiation fin 4 by deforming a part of the flat plate 42 of the heat radiation fin 4.
  • the convex portion 41 may be a metal material separately provided on the surface 401 of the flat plate 42 of the radiating fin 4.
  • the heat radiating fins 4 are made of an aluminum material, and the resin plate 5A is made of a resin material. Since the hardness of the radiating fin 4 is higher than the hardness of the resin plate 5A, the resin plate 5A is plastically deformed by the convex portion 41 of the flat plate 42 of the radiating fin 4, and the convex portion is formed on the surface 501 of the resin plate 5A. A deformed portion 512 that is recessed by 41 is formed. The deformed portion 512 is formed as a trace or a mark or the like in which the surface 501 of the resin plate 5A is recessed by plastic deformation.
  • the heat dissipating fins 4 formed with the convex portions 41 of this embodiment are used for the second laminated body 10B.
  • the convex part 41 can also be provided in any radiation fin 4 in the electric heater 1Z.
  • the convex part 41 can also be provided, for example, on the surface of the radiating fin 4 facing the frame 6A.
  • the other configurations are the same as in the case of the fifth embodiment.
  • the electric heater 1Z can be manufactured in the same manner as in the first embodiment.
  • the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
  • the convex portion forming member 11 forming the convex portions 31, 41, 51, 61 may be any one of the electrode plate 3, the heat radiating fins 4, the resin plates 5, 5A, 5B, or the frames 6A, 6B. it can.
  • the convex part contact member 12 which contacts the convex parts 31, 41, 51, 61 can also be any of the electrode plate 3, the radiation fin 4, the resin plates 5, 5A, 5B, or the frames 6A, 6B. Which of the convex portions 31, 41, 51, 61 and the convex portion contact member 12 is plastically deformed is determined by the hardness of both, and the lower the hardness, the plastic deformation occurs.
  • convex part 31,41,51,61 when both hardness becomes equivalent, while deforming so that convex part 31,41,51,61 may be crushed, it may be plastically deformed so that convex part contact member 12 may be dented. Moreover, even if the hardness of the convex portions 31, 41, 51, 61 is higher than the hardness of the convex portion contact member 12, depending on the shape of the convex portions 31, 41, 51, 61, it is necessary for plastic deformation of the convex portion contact member 12. The convex portions 31, 41, 51, 61 may be plastically deformed with a load lower than a normal load.
  • the resin plates 5, 5A, 5B and the frames 6A, 6B have the lowest hardness. Therefore, by using the convex portion forming member 11 or the convex portion contact member 12 as the resin plates 5, 5A, 5B, the convex portion 51 or the convex portion contact member 12 can be easily plastically deformed by the pressing force of the pressing spring 7. Become. Further, since the resin plates 5, 5 ⁇ / b> A, 5 ⁇ / b> B are molded by an injection molding method or the like, it is easy to integrally form the convex portions 51.
  • the convex portions 31, 41, 61 are formed on the electrode plate 3, the flat plate 42 of the radiating fin 4, and the frames 6A, 6B, a part of the material is deformed when each member is formed by pressing.
  • the convex portions 31, 41, 61 can be integrally formed.
  • the surface in the stacking direction H of the electrode plate 3 and the surface in the stacking direction H of the radiation fin 4 are in close contact with each other in order to ensure conductivity or heat transfer. Therefore, when the convex part forming member 11 is the electrode plate 3 and the convex part contact member 12 is the radiating fin 4, or the convex part forming member 11 is the radiating fin 4 and the convex part contact member 12 is the electrode plate 3. In this case, the formation height of the convex portions 31 and 41 is lowered, and at least one of the convex portions 31 and 41 and the convex portion contact member 12 is plastically deformed, and the surface of the electrode plate 3 in the stacking direction H and the radiation fin 4. It is also necessary to devise a method for forming a state in which the surface in the stacking direction H is in close contact.
  • the resin plates 5, 5A, 5B and the frames 6A, 6B are not required to have conductivity and heat conductivity. Therefore, by using at least one of the convex portion forming member 11 and the convex portion contact member 12 as the resin plates 5, 5 ⁇ / b> A, 5 ⁇ / b> B or the frames 6 ⁇ / b> A, 6 ⁇ / b> B, the surface in the stacking direction H is not necessarily closely adhered. It is possible to easily set the formation height, size, and the like of the convex portions 31, 41, 51, 61 of the forming member 11. However, fluid such as air for air conditioning is basically heated by heat conduction from the radiation fins 4.
  • the gap formed between the convex portions 31, 41, 51, 61 of the convex portion forming member 11 and the convex portion contact member 12 may be a gap that allows fluid to pass through without being heated. Therefore, the formation height of the convex portions 31, 41, 51, 61 is lowered, and the surface of the convex portion forming member 11 in the stacking direction H excluding the formation portions of the convex portions 31, 41, 51, 61, and the convex portions It is preferable to prevent a gap from being formed as much as possible between the contact member 12 and the surface in the stacking direction H.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

An electric heater (1) is provided with: a plurality of PTC elements (2) for generating heat by electric current passing therethrough; a plurality of electrode plates (3) for applying electric current to the PTC elements (2); a plurality of heat dissipation fins (4) for dissipating heat transferred from the PTC elements (2); a resin plate (5) for providing insulation between the electrode plates (3) having different polarities; and a pressing spring (7) for pressing a laminate (10) from both sides in the lamination direction (H). In projection ranges (R), on the surface in the lamination direction (H) of the resin plate (5), which respectively are the arrangement portions projected in the lamination direction (H) of the PTC elements (2), a plurality of protruding portions (51), protruding as compared to the surface, are provided, respectively. The protruding portion (51) in each projection range (R) has a deformed portion obtained by plastic deformation due to contact with the electrode plates (3).

Description

電気式ヒータ及びその製造方法Electric heater and method for manufacturing the same 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月2日に出願された日本の特許出願番号2016-234975号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-234975 filed on December 2, 2016, the contents of which are incorporated herein by reference.
 本開示は、PTC素子に通電を行ったときに発生する熱を利用する電気式ヒータ及びその製造方法に関する。 The present disclosure relates to an electric heater that uses heat generated when a PTC element is energized and a method for manufacturing the same.
 PTC(Positive Temperature Coefficient)素子を利用した電気式ヒータは、例えば、車載用の補助暖房ヒータとして使用されている。電気式ヒータは、PTC素子に通電するための電極板、PTC素子から伝わる熱を放熱するための放熱フィン、PTC素子、電極板及び放熱フィンの積層体の積層方向の両側に配置された一対のフレーム、一対のフレームを積層方向の両側から押圧する押圧バネ等を備える。電気式ヒータにおいては、電極板からPTC素子への通電及びPTC素子から放熱フィンへの熱伝導を効果的に行うために、横方向に並ぶ複数のPTC素子が、電極板及び放熱フィンにできるだけ均等に接触するための工夫がなされている。 An electric heater using a PTC (Positive Temperature Coefficient) element is used, for example, as an in-vehicle auxiliary heating heater. The electric heater is composed of an electrode plate for energizing the PTC element, a pair of heat dissipating fins for dissipating heat transmitted from the PTC element, and a pair of layers disposed in the stacking direction of the laminate of the PTC element, the electrode plate and the heat dissipating fin. A frame, a pressing spring for pressing the pair of frames from both sides in the stacking direction, and the like are provided. In an electric heater, in order to effectively conduct electricity from the electrode plate to the PTC element and to conduct heat from the PTC element to the radiating fin, a plurality of laterally arranged PTC elements are as evenly distributed as possible to the electrode plate and the radiating fin. The device is made to contact.
 例えば、特許文献1の電気式ヒータにおいては、一対のフレームに、横方向に並ぶPTC素子のそれぞれを押圧するための屈曲部を形成している。そして、積層体における、各PTC素子が配置された部位が、各屈曲部によって押圧され、各PTC素子が電極板及び放熱フィンに密着するようにしている。 For example, in the electric heater disclosed in Patent Document 1, bent portions for pressing the PTC elements arranged in the lateral direction are formed in a pair of frames. And the site | part in which each PTC element is arrange | positioned in a laminated body is pressed by each bending part, and it is trying for each PTC element to closely_contact | adhere to an electrode plate and a radiation fin.
 また、例えば、特許文献2のカーエアコン電力消費加熱器においては、電極板における、複数のPTC素子が横方向に配置された部位に対向する位置に、反り形状の弾性接触部を設けている。そして、積層体を押圧バネによって押圧するときには、弾性接触部によって各PTC素子が配置された部位が押圧され、各PTC素子が電極板及び放熱フィンに密着するようにしている。 Further, for example, in the car air conditioner power consumption heater of Patent Document 2, a warped elastic contact portion is provided at a position on the electrode plate facing a portion where a plurality of PTC elements are arranged in the lateral direction. When the laminated body is pressed by a pressing spring, a portion where each PTC element is arranged is pressed by the elastic contact portion so that each PTC element is in close contact with the electrode plate and the radiation fin.
特開2009-152172号公報JP 2009-152172 A 中国特許CN101730324号公報Chinese Patent CN10173324
 ヒータの性能をさらに向上させるためには、特許文献1,2においても改善の余地が残る。つまり、発明者らの研究開発の結果、電極板からPTC素子への通電及びPTC素子から放熱フィンへの熱伝導をより効果的に行うためには、全てのPTC素子と電極板及び放熱フィンとが極力同等の力で押圧されて接触する状態を形成することが有効であることが分かった。 In order to further improve the performance of the heater, there is still room for improvement in Patent Documents 1 and 2. That is, as a result of the research and development by the inventors, in order to more effectively conduct electricity from the electrode plate to the PTC element and conduct heat from the PTC element to the radiation fin, all the PTC elements, the electrode plates, and the radiation fins It has been found that it is effective to form a state where is pressed and contacted with as much force as possible.
 特許文献1においては、押圧バネを用いてフレームを撓ませることによって、フレームの各屈曲部が、積層体における、各PTC素子が配置された部位を押圧する。そのため、フレームの撓み方によって、各PTC素子が電極板及び放熱フィンに押圧される力が異なる。その結果、各PTC素子に作用する押圧力の大小は、フレームの製造上の誤差、変形等の大小によって左右される。従って、引用文献1においては、各PTC素子が電極板及び放熱フィンに押圧される力にばらつきが生じるおそれがある。 In Patent Document 1, by bending a frame using a pressing spring, each bent portion of the frame presses a portion of the laminated body where each PTC element is arranged. Therefore, the force with which each PTC element is pressed against the electrode plate and the heat radiating fin varies depending on how the frame bends. As a result, the magnitude of the pressing force acting on each PTC element depends on the magnitude of the frame manufacturing error and deformation. Therefore, in Cited Document 1, there is a possibility that variations occur in the force with which each PTC element is pressed against the electrode plate and the heat radiating fin.
 特許文献2においては、積層体における、各PTC素子の配置部位の積層方向の厚みの違いに応じて、電極板における各弾性接触部が弾性変形する量が異なる。そのため、弾性接触部ごとに、PTC素子が電極板及び放熱フィンに押圧される力が異なり、大きく弾性変形した弾性接触部に対向するPTC素子ほど、大きな力で押圧されることになる。従って、引用文献2においても、各PTC素子が電極板及び放熱フィンに押圧される力にばらつきが生じるおそれがある。 In Patent Document 2, the amount of elastic deformation of each elastic contact portion in the electrode plate varies depending on the difference in the thickness in the stacking direction of the arrangement site of each PTC element in the laminate. Therefore, the force with which the PTC element is pressed against the electrode plate and the heat radiating fin is different for each elastic contact portion, and the PTC element facing the elastic contact portion that is greatly elastically deformed is pressed with a larger force. Therefore, also in the cited document 2, there is a possibility that variations occur in the force with which each PTC element is pressed against the electrode plate and the heat radiating fin.
 本開示は、ヒータ性能を向上させることができる電気式ヒータ及びその製造方法を提供しようとして得られたものである。 The present disclosure has been obtained in an attempt to provide an electric heater capable of improving the heater performance and a manufacturing method thereof.
 本開示の一態様は、通電によって発熱し、横方向に並んで配置された複数のPTC素子と、
 前記PTC素子の、前記横方向に直交する積層方向の両側に積層され、前記PTC素子に通電するための複数の電極板と、
 前記PTC素子の前記積層方向の両側に積層され、前記PTC素子から伝わる熱を放熱するための複数の放熱フィンと、
 前記電極板又は前記放熱フィンの前記積層方向に積層され、極性の異なる前記電極板の間を絶縁するための1つ又は複数の樹脂プレートと、
 前記PTC素子、前記電極板、前記放熱フィン及び前記樹脂プレートの積層体を、前記積層方向の両側から押圧する押圧バネと、を備え、
 前記電極板、前記放熱フィン及び前記樹脂プレートのうちのいずれかを、凸部を有する凸部形成部材とし、かつ前記凸部形成部材を除く、前記電極板、前記放熱フィン及び前記樹脂プレートのうちの他のいずれかを、前記凸部と接触する凸部接触部材としたとき、
 前記凸部は、前記凸部形成部材の前記積層方向の表面における、複数の前記PTC素子の配置部位をそれぞれ前記積層方向に投影した複数の投影範囲内にそれぞれ設けられており、
 全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方は、塑性変形による変形部を有する、電気式ヒータにある。
One aspect of the present disclosure generates a plurality of PTC elements that generate heat when energized and are arranged in a lateral direction;
A plurality of electrode plates stacked on both sides of the PTC element in a stacking direction orthogonal to the lateral direction, and for energizing the PTC element;
A plurality of heat dissipating fins that are laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element;
One or a plurality of resin plates laminated in the laminating direction of the electrode plates or the radiating fins, and insulating between the electrode plates having different polarities;
A pressing spring that presses the laminated body of the PTC element, the electrode plate, the radiation fin, and the resin plate from both sides in the laminating direction,
Of the electrode plate, the radiation fin, and the resin plate, any one of the electrode plate, the radiation fin, and the resin plate is a projection forming member having a projection, and the projection forming member is excluded. When any one of the above is a convex contact member that contacts the convex part,
The convex portions are respectively provided in a plurality of projection ranges obtained by projecting arrangement portions of the plurality of PTC elements on the surface in the stacking direction of the convex portion forming member in the stacking direction, respectively.
At least one of the convex part and the convex part contact member in all the projection ranges is an electric heater having a deformed part due to plastic deformation.
 本開示の他の態様は、通電によって発熱し、横方向に並んで配置された複数のPTC素子と、
 前記PTC素子の、前記横方向に直交する積層方向の両側に積層され、前記PTC素子に通電するための複数の電極板と、
 前記PTC素子の前記積層方向の両側に積層され、前記PTC素子から伝わる熱を放熱するための複数の放熱フィンと、
 前記電極板又は前記放熱フィンの前記積層方向に積層され、極性の異なる前記電極板の間を絶縁するための1つ又は複数の樹脂プレートと、
 前記PTC素子、前記電極板、前記放熱フィン及び前記樹脂プレートの積層体の前記積層方向の両端に積層された一対のフレームと、
 一対の前記フレームを介して、前記積層体を前記積層方向の両側から押圧する押圧バネと、を備え、
 前記電極板、前記放熱フィン、前記樹脂プレート及び前記フレームのうちのいずれかを、凸部を有する凸部形成部材とし、かつ前記凸部形成部材を除く、前記電極板、前記放熱フィン、前記樹脂プレート及び前記フレームのうちの他のいずれかを、前記凸部と接触する凸部接触部材としたとき、
 前記凸部は、前記凸部形成部材の前記積層方向の表面における、複数の前記PTC素子の配置部位をそれぞれ前記積層方向に投影した複数の投影範囲内にそれぞれ設けられており、
 全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方は、塑性変形による変形部を有する、電気式ヒータにある。
Another aspect of the present disclosure includes a plurality of PTC elements that generate heat when energized and are arranged in a lateral direction;
A plurality of electrode plates stacked on both sides of the PTC element in a stacking direction orthogonal to the lateral direction, and for energizing the PTC element;
A plurality of heat dissipating fins that are laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element;
One or a plurality of resin plates laminated in the laminating direction of the electrode plates or the radiating fins, and insulating between the electrode plates having different polarities;
A pair of frames laminated at both ends in the laminating direction of a laminate of the PTC element, the electrode plate, the radiating fin, and the resin plate;
A pressing spring that presses the stacked body from both sides in the stacking direction via the pair of frames;
Any of the electrode plate, the radiating fin, the resin plate, and the frame is a convex forming member having a convex portion, and the convex plate forming member is excluded, and the electrode plate, the radiating fin, and the resin When any one of the plate and the frame is a convex contact member that contacts the convex part,
The convex portions are respectively provided in a plurality of projection ranges obtained by projecting arrangement portions of the plurality of PTC elements on the surface in the stacking direction of the convex portion forming member in the stacking direction, respectively.
At least one of the convex part and the convex part contact member in all the projection ranges is an electric heater having a deformed part due to plastic deformation.
 本開示のさらに他の態様は、通電によって発熱し、横方向に並んで配置された複数のPTC素子と、
 前記PTC素子の、前記横方向に直交する積層方向の両側に積層され、前記PTC素子に通電するための複数の電極板と、
 前記PTC素子の前記積層方向の両側に積層され、前記PTC素子から伝わる熱を放熱するための複数の放熱フィンと、
 前記電極板又は前記放熱フィンの前記積層方向に積層され、極性の異なる前記電極板の間を絶縁するための1つ又は複数の樹脂プレートと、
 前記PTC素子、前記電極板、前記放熱フィン及び前記樹脂プレートの積層体を、前記積層方向の両側から押圧する押圧バネと、を備える、電気式ヒータを製造する方法において、
 前記電極板、前記放熱フィン及び前記樹脂プレートのうちのいずれかを、凸部を有する凸部形成部材とし、かつ前記凸部形成部材を除く、前記電極板、前記放熱フィン及び前記樹脂プレートのうちの他のいずれかを、前記凸部と接触する凸部接触部材としたとき、
 前記凸部は、前記凸部形成部材の前記積層方向の表面における、複数の前記PTC素子の配置部位をそれぞれ前記積層方向に投影した複数の投影範囲内にそれぞれ設け、
 前記押圧バネによって、前記積層体を、前記積層方向の両側から押圧する際に、全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方を塑性変形させて、全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方に変形部を形成する、電気式ヒータの製造方法にある。
Still another aspect of the present disclosure includes a plurality of PTC elements that generate heat when energized and are arranged in a lateral direction;
A plurality of electrode plates stacked on both sides of the PTC element in a stacking direction orthogonal to the lateral direction, and for energizing the PTC element;
A plurality of heat dissipating fins that are laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element;
One or a plurality of resin plates laminated in the laminating direction of the electrode plates or the radiating fins, and insulating between the electrode plates having different polarities;
In a method of manufacturing an electric heater, comprising: a pressing spring that presses the stacked body of the PTC element, the electrode plate, the heat radiation fin, and the resin plate from both sides in the stacking direction.
Of the electrode plate, the radiation fin, and the resin plate, any one of the electrode plate, the radiation fin, and the resin plate is a projection forming member having a projection, and the projection forming member is excluded. When any one of the above is a convex contact member that contacts the convex part,
The convex portions are respectively provided in a plurality of projection ranges obtained by projecting the arrangement portions of the plurality of PTC elements on the surface in the stacking direction of the convex portion forming member in the stacking direction, respectively.
When the laminate is pressed from both sides in the stacking direction by the pressing spring, at least one of the convex portions and the convex portion contact members in all the projection ranges is plastically deformed, In the method of manufacturing an electric heater, a deformed portion is formed on at least one of the convex portion and the convex portion contact member within a projection range.
 前記一態様の電気式ヒータは、電極板、放熱フィン及び樹脂プレートのうちの互いに接触する部材の少なくとも一方に、塑性変形による変形部が形成されていることにより、各PTC素子が電極板及び放熱フィンに押圧される力を、全てのPTC素子において極力均等にする工夫をしている。具体的には、電極板、放熱フィン及び樹脂プレートのうちのいずれかを、凸部を有する凸部形成部材とするとともに、他のいずれかを凸部と接触する凸部接触部材とする。そして、凸部は、凸部形成部材の積層方向の表面における、複数のPTC素子の配置部位を積層方向に投影した複数の投影範囲内にそれぞれ設けられており、各投影範囲内における凸部と凸部接触部材との少なくとも一方は、塑性変形による変形部を有する。 In the electric heater according to the one aspect, each PTC element is provided with a deformed portion formed by plastic deformation in at least one of the electrode plate, the heat radiating fin, and the resin plate, which are in contact with each other. The device is designed to make the force pressed by the fins as uniform as possible in all PTC elements. Specifically, any one of the electrode plate, the heat radiating fin, and the resin plate is a convex portion forming member having a convex portion, and the other is a convex portion contact member that contacts the convex portion. The convex portions are respectively provided in a plurality of projection ranges obtained by projecting the arrangement sites of the plurality of PTC elements in the stacking direction on the surface in the stacking direction of the convex portion forming member. At least one of the convex contact members has a deformed portion due to plastic deformation.
 そして、全てのPTC素子の投影範囲内においては、凸部と凸部接触部材とが接触しており、全ての凸部と凸部接触部材との少なくとも一方が塑性変形した変形部を有する。この変形部は、塑性変形によって、高さが低くなるように凸部が潰された形跡もしくは痕、又は凸部接触部材の表面が凹んだ形跡もしくは痕等として形成されている。また、変形部は、塑性変形によって形成されたものであるため、弾性変形によって形成されたものと違って、各凸部に発生する押圧力が変形量の大小によって異なるといった現象がほとんど生じない。 And, within the projection range of all the PTC elements, the convex portion and the convex portion contact member are in contact with each other, and at least one of all the convex portions and the convex portion contact member has a deformed portion that is plastically deformed. The deformed portion is formed as a trace or a mark in which the convex portion is crushed so as to be lowered by plastic deformation, or a trace or a mark in which the surface of the convex portion contact member is recessed. Further, since the deformed portion is formed by plastic deformation, unlike the case formed by elastic deformation, the phenomenon that the pressing force generated at each convex portion varies depending on the amount of deformation hardly occurs.
 こうして、前記一態様の電気式ヒータにおいては、凸部と凸部接触部材との少なくとも一方の塑性変形を利用することにより、PTC素子、電極板、放熱フィン、樹脂プレートのそれぞれに生じた製造上の寸法誤差、変形等によって、PTC素子が配置された横方向の各位置における、積層方向の厚みが互いに異なった場合でも、全てのPTC素子と電極板及び放熱フィンとが極力同等の力で押圧されて接触する状態を形成することができる。なお、ここでいう「積層方向の厚み」とは、各PTC素子の投影範囲において、PTC素子、電極板、放熱フィン及び樹脂プレートの単独の積層方向の厚みを合計した厚みのことをいう。 Thus, in the electric heater according to the one aspect, by utilizing the plastic deformation of at least one of the convex portion and the convex portion contact member, the manufacturing process generated in each of the PTC element, the electrode plate, the heat radiation fin, and the resin plate. Even if the thickness in the stacking direction is different at each position in the lateral direction where the PTC elements are arranged due to dimensional error, deformation, etc., all the PTC elements, the electrode plates, and the radiation fins are pressed with the same force as much as possible. In this way, a contact state can be formed. Here, the “thickness in the stacking direction” refers to the total thickness of the single stacking direction of the PTC element, the electrode plate, the radiation fin, and the resin plate in the projection range of each PTC element.
 これにより、電極板から全てのPTC素子への通電、及び全てのPTC素子から放熱フィンへの熱伝導をより効果的に行うことができる。それ故、前記一態様の電気式ヒータによれば、そのヒータ性能をさらに向上させることができる。 Thereby, energization from the electrode plate to all the PTC elements and heat conduction from all the PTC elements to the radiation fins can be performed more effectively. Therefore, according to the electric heater of the one aspect, the heater performance can be further improved.
 前記他の態様の電気式ヒータにおいては、凸部形成部材及び凸部接触部材の中にフレームが含まれる。その他の構成は、前記一態様の電気式ヒータと同様である。それ故、前記他の態様の電気式ヒータによれば、前記一態様の電気式ヒータの場合と同様に、そのヒータ性能をさらに向上させることができる。 In the electric heater of the other aspect, a frame is included in the convex portion forming member and the convex portion contact member. Other configurations are the same as those of the electric heater according to the embodiment. Therefore, according to the electric heater of the other aspect, the heater performance can be further improved as in the case of the electric heater of the one aspect.
 前記電気式ヒータの製造方法においては、押圧バネによって、積層体を、積層方向の両側から押圧する際に、全ての投影範囲内における凸部と凸部接触部材との少なくとも一方に、塑性変形による変形部を形成する。これにより、電気式ヒータの製造方法によれば、ヒータ性能をさらに向上させることができる電気式ヒータを容易に製造することができる。 In the manufacturing method of the electric heater, when the laminate is pressed from both sides in the stacking direction by the pressing spring, at least one of the projecting portion and the projecting portion contact member within the entire projection range is caused by plastic deformation. A deformation part is formed. Thereby, according to the manufacturing method of an electric heater, the electric heater which can further improve heater performance can be manufactured easily.
 なお、本開示の一態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 In addition, although the code | symbol of the parenthesis of each component shown in 1 aspect of this indication shows the correspondence with the code | symbol in the figure in embodiment, each component is not limited only to the content of embodiment.
 本開示についての目的、特徴、利点等は、添付の図面を参照する下記の詳細な記述により、より明確になる。本開示の図面を以下に示す。
実施形態1にかかる、電気式ヒータを示す説明図。 実施形態1にかかる、電気式ヒータの一部を拡大して示す説明図。 実施形態1にかかる、電気式ヒータを積層方向に切断した状態で示す断面図。 実施形態1にかかる、電気式ヒータを分解した状態で示す説明図。 実施形態1にかかる、電気式ヒータの主要部を分解した状態で示す説明図。 実施形態1にかかる、他の電気式ヒータの主要部を分解した状態で示す説明図。 実施形態1にかかる、各凸部が塑性変形する前の凸部形成部材及び凸部接触部材を模式的に示す説明図。 実施形態1にかかる、各凸部が塑性変形した後の凸部形成部材及び凸部接触部材を模式的に示す説明図。 比較形態にかかる、各弾性変形部が弾性変形する前の一対の部材を模式的に示す説明図。 比較形態にかかる、各弾性変形部が弾性変形した後の一対の部材を模式的に示す説明図。 実施形態2にかかる、電気式ヒータの主要部を分解した状態で示す説明図。 実施形態2にかかる、電気式ヒータを積層方向に切断した状態で示す断面図。 実施形態2にかかる、他の電気式ヒータの主要部を分解した状態で示す説明図。 実施形態2にかかる、凸部接触部材が塑性変形する前の凸部形成部材及び凸部接触部材を模式的に示す説明図。 実施形態2にかかる、凸部接触部材が塑性変形した後の凸部形成部材及び凸部接触部材を模式的に示す説明図。 実施形態3にかかる、電気式ヒータの主要部を分解した状態で示す説明図。 実施形態3にかかる、電気式ヒータを積層方向に切断した状態で示す断面図。 実施形態4にかかる、電気式ヒータの主要部を分解した状態で示す説明図。 実施形態4にかかる、電気式ヒータを積層方向に切断した状態で示す断面図。 実施形態4にかかる、他の電気式ヒータの主要部を分解した状態で示す説明図。 実施形態5にかかる、電気式ヒータを示す説明図。 実施形態5にかかる、電気式ヒータの一部を拡大して示す説明図。 実施形態5にかかる、電気式ヒータを積層方向に切断した状態で示す断面図。 実施形態5にかかる、電気式ヒータの主要部を分解した状態で示す説明図。 実施形態5にかかる、他の電気式ヒータの主要部を分解した状態で示す説明図。 実施形態6にかかる、電気式ヒータの主要部を分解した状態で示す説明図。 実施形態6にかかる、電気式ヒータを積層方向に切断した状態で示す断面図。
Objects, features, advantages, and the like of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawings of the present disclosure are shown below.
FIG. 3 is an explanatory diagram showing an electric heater according to the first embodiment. Explanatory drawing which expands and shows a part of electric heater concerning Embodiment 1. FIG. Sectional drawing which shows the state which cut | disconnected the electric heater concerning Embodiment 1 in the lamination direction. Explanatory drawing shown in the state which decomposed | disassembled the electric heater concerning Embodiment 1. FIG. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the electric heater concerning Embodiment 1. FIG. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the other electric heater concerning Embodiment 1. FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member before each convex part which plastically deforms concerning Embodiment 1. FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member after each convex part which plastically deforms concerning Embodiment 1. FIG. Explanatory drawing which shows a pair of member before each elastic deformation part elastically deforms concerning a comparison form. Explanatory drawing which shows a pair of member after each elastic deformation part elastically deformed concerning a comparison form. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the electric heater concerning Embodiment 2. FIG. Sectional drawing shown in the state which cut | disconnected the electric heater concerning Embodiment 2 in the lamination direction. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the other electric heater concerning Embodiment 2. FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member before the convex part contact member which plastically deforms concerning Embodiment 2. FIG. Explanatory drawing which shows typically the convex part formation member and convex part contact member after the plastic deformation of the convex part contact member concerning Embodiment 2. FIG. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the electric heater concerning Embodiment 3. FIG. Sectional drawing which shows the state which cut | disconnected the electric heater concerning Embodiment 3 in the lamination direction. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the electric heater concerning Embodiment 4. FIG. Sectional drawing which shows the state which cut | disconnected the electric heater concerning Embodiment 4 in the lamination direction. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the other electric heater concerning Embodiment 4. FIG. Explanatory drawing which shows the electric heater concerning Embodiment 5. FIG. Explanatory drawing which expands and shows a part of electric heater concerning Embodiment 5. FIG. Sectional drawing which shows the state which cut | disconnected the electric heater concerning Embodiment 5 in the lamination direction. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the electric heater concerning Embodiment 5. FIG. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the other electric heater concerning Embodiment 5. FIG. Explanatory drawing shown in the state which decomposed | disassembled the principal part of the electric heater concerning Embodiment 6. FIG. Sectional drawing which shows the state which cut | disconnected the electric heater concerning Embodiment 6 in the lamination direction.
 前述した電気式ヒータにかかる好ましい実施形態について、図面を参照して説明する。
 本形態の電気式ヒータ1は、図1、図2、図4に示すように、複数のPTC素子2、複数の電極板3、複数の放熱フィン4、樹脂プレート5及び押圧バネ7を備える。PTC素子2は、通電によって発熱するものであり、横方向Wに並んで複数配置されている。電極板3は、PTC素子2の、横方向Wに直交する積層方向Hの両側に積層されており、PTC素子2に通電するためのものである。放熱フィン4は、PTC素子2の積層方向Hの両側に積層されており、PTC素子2から伝わる熱を放熱するためのものである。
A preferred embodiment of the electric heater described above will be described with reference to the drawings.
As shown in FIGS. 1, 2, and 4, the electric heater 1 of this embodiment includes a plurality of PTC elements 2, a plurality of electrode plates 3, a plurality of heat radiation fins 4, a resin plate 5, and a pressing spring 7. The PTC elements 2 generate heat when energized, and a plurality of PTC elements 2 are arranged in the horizontal direction W. The electrode plates 3 are stacked on both sides of the PTC element 2 in the stacking direction H perpendicular to the lateral direction W, and are used to energize the PTC element 2. The radiating fins 4 are stacked on both sides of the PTC element 2 in the stacking direction H, and are for radiating heat transmitted from the PTC element 2.
 樹脂プレート5は、電極板3又は放熱フィン4の積層方向Hに積層されており、極性の異なる電極板3の間を絶縁するためのものである。押圧バネ7は、PTC素子2、電極板3、放熱フィン4及び樹脂プレート5の積層体10を、積層方向Hの両側から押圧するものである。 The resin plate 5 is stacked in the stacking direction H of the electrode plates 3 or the radiating fins 4 and is for insulating between the electrode plates 3 having different polarities. The pressing spring 7 presses the laminated body 10 of the PTC element 2, the electrode plate 3, the radiation fin 4 and the resin plate 5 from both sides in the laminating direction H.
 電気式ヒータ1においては、樹脂プレート5を凸部形成部材11とし、かつ電極板3を、凸部51と接触する凸部接触部材12とする。図3、図5に示すように、凸部形成部材11としての樹脂プレート5の積層方向Hの表面501における、PTC素子2の横方向W及び奥行方向Dの配置部位を積層方向Hに投影した各投影範囲R内には、表面501よりも突出した凸部51がそれぞれ設けられている。各投影範囲R内における凸部51は、凸部接触部材12としての電極板3と接触して塑性変形した変形部511を有する。 In the electric heater 1, the resin plate 5 is a convex portion forming member 11, and the electrode plate 3 is a convex portion contact member 12 that is in contact with the convex portion 51. As shown in FIGS. 3 and 5, the arrangement site in the lateral direction W and the depth direction D of the PTC element 2 on the surface 501 in the laminating direction H of the resin plate 5 as the convex portion forming member 11 is projected in the laminating direction H. In each projection range R, a convex portion 51 that protrudes from the surface 501 is provided. The convex portion 51 in each projection range R has a deformed portion 511 that is plastically deformed in contact with the electrode plate 3 as the convex portion contact member 12.
 以下に、本形態の電気式ヒータ1について詳説する。
 電気式ヒータ1は、エアコン等の空調装置とは別に車両に設けられ、空調装置による暖房を補助するために、あるいは空調装置による暖房の代わりに用いられる。電気式ヒータ1は、特に、エンジンの高効率化による車両の熱源低下を補うために用いることができ、また、EV(電気自動車)、FCV(燃料電池自動車)等の熱源を持たない車両に用いることもできる。
Below, it explains in full detail about the electric heater 1 of this form.
The electric heater 1 is provided in a vehicle separately from an air conditioner such as an air conditioner, and is used to assist heating by the air conditioner or instead of heating by the air conditioner. In particular, the electric heater 1 can be used to compensate for a decrease in the heat source of the vehicle due to the high efficiency of the engine, and is also used for a vehicle having no heat source such as an EV (electric vehicle) or an FCV (fuel cell vehicle). You can also.
 本形態において、横方向Wとは、電極板3、放熱フィン4、樹脂プレート5等が長尺状に形成された方向のことをいう。積層方向Hとは、横方向Wに直交し、PTC素子2、電極板3、放熱フィン4、樹脂プレート5等が積層された方向のことをいう。また、横方向W及び積層方向Hに直交する方向を奥行方向Dといい、奥行方向Dは、電気式ヒータ1に対して空調用空気等の流体が通過する方向となる。 In this embodiment, the lateral direction W refers to a direction in which the electrode plate 3, the heat radiation fin 4, the resin plate 5, and the like are formed in a long shape. The stacking direction H is a direction perpendicular to the lateral direction W and in which the PTC element 2, the electrode plate 3, the heat radiation fin 4, the resin plate 5, and the like are stacked. A direction perpendicular to the lateral direction W and the stacking direction H is referred to as a depth direction D, and the depth direction D is a direction in which a fluid such as air for air conditioning passes through the electric heater 1.
 PTC素子2は、半導体等を用いて構成されており、通電によって発熱するとともに、温度が上昇するに伴って電気抵抗が増加するPTC(正温度係数)特性を有するものである。そして、PTC素子2は、所定の温度以上に発熱すると、電気抵抗の増加によって略一定の温度に維持される。PTC素子2は、板形状に形成されており、その面積が最も大きい一対の表面の間に電圧が印加されて発熱するものである。 The PTC element 2 is configured by using a semiconductor or the like, and has PTC (positive temperature coefficient) characteristics that generate heat when energized and increase in electrical resistance as the temperature rises. When the PTC element 2 generates heat above a predetermined temperature, the PTC element 2 is maintained at a substantially constant temperature due to an increase in electrical resistance. The PTC element 2 is formed in a plate shape, and generates heat when a voltage is applied between a pair of surfaces having the largest area.
 図3に示すように、PTC素子2は、樹脂から構成された、板形状の位置決めプレート21によって保持されている。位置決めプレート21には、PTC素子2が配置される複数の配置穴211が、横方向Wに所定の間隔を空けて形成されている。複数の配置穴211は、位置決めプレート21の積層方向Hに貫通して形成されている。本形態のPTC素子2は、位置決めプレート21の各配置穴211内に、所定の間隔を空けて横方向Wに4個並ぶ状態で配置されている。PTC素子2は、位置決めプレート21に、例えば、4~6個並ぶ状態で配置することができる。位置決めプレート21の、PTC素子2が配置される部分の積層方向Hの厚みは、PTC素子2に電極板3又は放熱フィン4が接触しやすくするために、PTC素子2よりも薄くすることが望ましい。位置決めプレート21には、位置決めプレート21に積層される電極板3又は放熱フィン4との奥行方向Dの位置決めを行うための突起212が形成されている。突起212は、その高さを調整することによって、位置決めプレート21に対する電極板3及び放熱フィン4の位置決めを同時に行うことが可能である。本形態の突起212は、位置決めプレートの奥行方向Dの両側の縁部に連続して形成されている。 As shown in FIG. 3, the PTC element 2 is held by a plate-shaped positioning plate 21 made of resin. A plurality of arrangement holes 211 in which the PTC elements 2 are arranged are formed in the positioning plate 21 at predetermined intervals in the lateral direction W. The plurality of arrangement holes 211 are formed so as to penetrate in the stacking direction H of the positioning plate 21. Four PTC elements 2 of this embodiment are arranged in each arrangement hole 211 of the positioning plate 21 in a state of being arranged in the lateral direction W at a predetermined interval. For example, 4 to 6 PTC elements 2 can be arranged on the positioning plate 21. The thickness in the stacking direction H of the portion of the positioning plate 21 where the PTC element 2 is disposed is desirably thinner than the PTC element 2 so that the electrode plate 3 or the radiation fin 4 can easily come into contact with the PTC element 2. . The positioning plate 21 is provided with a projection 212 for positioning in the depth direction D with respect to the electrode plate 3 or the radiating fin 4 laminated on the positioning plate 21. By adjusting the height of the protrusion 212, the electrode plate 3 and the radiation fin 4 can be simultaneously positioned with respect to the positioning plate 21. The protrusions 212 of this embodiment are formed continuously on the edges on both sides in the depth direction D of the positioning plate.
 図5に示すように、電極板3は、PTC素子2に通電を行うための電圧を印加するものである。PTC素子2の積層方向Hの両側に積層された一対の電極板3のうちの一方は、プラス電源に接続され、他方は、マイナス電源(グラウンド)に接続される。同図において、プラス電源に接続される電極板3を(+)で示し、マイナス電源に接続される電極板3を(-)で示す。本形態の電極板3は、導電性に優れる金属として、黄銅板にスズめっきされた材料からなる。その他の材料として、電極板3は、銅又は銅合金からなる銅材料、アルミニウム又はアルミニウム合金からなるアルミニウム材料等によって構成することができる。各電極板3は、電圧を印加するために、横方向Wの一方の端部から、横方向Wの外方に引き出されている。 As shown in FIG. 5, the electrode plate 3 applies a voltage for energizing the PTC element 2. One of the pair of electrode plates 3 stacked on both sides in the stacking direction H of the PTC element 2 is connected to a positive power source, and the other is connected to a negative power source (ground). In the figure, the electrode plate 3 connected to the positive power source is indicated by (+), and the electrode plate 3 connected to the negative power source is indicated by (−). The electrode plate 3 of this embodiment is made of a material plated with tin on a brass plate as a metal having excellent conductivity. As other materials, the electrode plate 3 can be made of a copper material made of copper or a copper alloy, an aluminum material made of aluminum or an aluminum alloy, or the like. Each electrode plate 3 is pulled out in the lateral direction W from one end in the lateral direction W in order to apply a voltage.
 図2、図5に示すように、放熱フィン4は、PTC素子2との間の導通及び伝熱、並びに加熱用空気等の流体との間の伝熱を行うものである。PTC素子2の積層方向Hの両側に積層された一対の放熱フィン4のうちの一方は、電極板3を介してプラス電源に接続され、他方は、電極板3を介してマイナス電源に接続される。放熱フィン4は、PTC素子2、電極板3等に接触する一対の平板42と、一対の平板42の間に接合された波状板43とによって構成されている。一対の平板42は、放熱フィン4の積層方向Hの両側に配置されている。電気式ヒータ1によって加熱される流体は、波状板43によって一対の平板42の間に形成された貫通隙間431を通過し、放熱フィン4によって加熱される。本形態の放熱フィン4は、導電性及び伝熱性に優れる金属として、アルミニウムもしくはアルミニウム合金からなるアルミニウム材料、又は銅もしくは銅合金からなる銅系材料によって構成されている。 2 and 5, the radiating fin 4 conducts and transfers heat with the PTC element 2 and transfers heat with a fluid such as heating air. One of the pair of radiating fins 4 stacked on both sides in the stacking direction H of the PTC element 2 is connected to the positive power source via the electrode plate 3, and the other is connected to the negative power source via the electrode plate 3. The The radiating fin 4 is configured by a pair of flat plates 42 that are in contact with the PTC element 2, the electrode plate 3, and the like, and a corrugated plate 43 joined between the pair of flat plates 42. The pair of flat plates 42 are disposed on both sides in the stacking direction H of the radiating fins 4. The fluid heated by the electric heater 1 passes through a through gap 431 formed between the pair of flat plates 42 by the corrugated plate 43, and is heated by the radiating fins 4. The heat radiation fin 4 of this embodiment is made of an aluminum material made of aluminum or an aluminum alloy, or a copper-based material made of copper or a copper alloy, as a metal having excellent conductivity and heat transfer.
 図3、図5に示すように、樹脂プレート5は、プラス電源又はマイナス電源に接続された、極性の異なる電極板3及び放熱フィン4の間を絶縁するためのものである。本形態の樹脂プレート5は、熱可塑性樹脂としての66ナイロンからなる。樹脂プレート5は、この他にも、ナイロン系樹脂、PBT(ポリブチレンテレフタレート樹脂)、PPS(ポリフェニレンサルファイド樹脂)等から構成することができる。樹脂プレート5には、樹脂プレート5に積層される電極板3(又は放熱フィン4)との奥行方向Dの位置決めを行うための突起52が形成されている。突起52は、その高さを調整することによって、樹脂プレート5に対する電極板3及び放熱フィン4の位置決めを同時に行うことが可能である。本形態の突起52は、樹脂プレート5の奥行方向Dの両側の縁部に連続して形成されている。 As shown in FIGS. 3 and 5, the resin plate 5 is for insulating between the electrode plates 3 and the radiation fins 4 having different polarities connected to a positive power source or a negative power source. The resin plate 5 of this embodiment is made of 66 nylon as a thermoplastic resin. In addition, the resin plate 5 can be made of nylon resin, PBT (polybutylene terephthalate resin), PPS (polyphenylene sulfide resin), or the like. The resin plate 5 is formed with a protrusion 52 for positioning in the depth direction D with respect to the electrode plate 3 (or the heat radiating fin 4) laminated on the resin plate 5. By adjusting the height of the protrusion 52, the electrode plate 3 and the radiation fin 4 can be simultaneously positioned with respect to the resin plate 5. The protrusions 52 of this embodiment are formed continuously on the edges on both sides in the depth direction D of the resin plate 5.
 図1~図3に示すように、PTC素子2、電極板3、放熱フィン4及び樹脂プレート5の積層体10の積層方向Hの両端には、一対のフレーム6A,6Bが積層されている。一対のフレーム6A,6Bは、押圧バネ7による押圧力(荷重)を受けて、積層体10におけるPTC素子2、電極板3、放熱フィン4及び樹脂プレート5を互いに密着させるために用いられる。一対のフレーム6A,6Bを用いることにより、電気式ヒータ1の剛性を高めることができ、また、押圧バネ7から積層体10に加わる押圧力を、複数のPTC素子2に均等に作用させることが容易になる。 As shown in FIGS. 1 to 3, a pair of frames 6A and 6B are laminated at both ends in the laminating direction H of the laminated body 10 of the PTC element 2, the electrode plate 3, the radiation fins 4, and the resin plate 5. The pair of frames 6 </ b> A and 6 </ b> B are used to receive the pressing force (load) from the pressing spring 7 and to bring the PTC element 2, the electrode plate 3, the heat radiating fin 4, and the resin plate 5 in the laminated body 10 into close contact with each other. By using the pair of frames 6 </ b> A and 6 </ b> B, the rigidity of the electric heater 1 can be increased, and the pressing force applied to the laminated body 10 from the pressing spring 7 can be applied equally to the plurality of PTC elements 2. It becomes easy.
 フレーム6A,6Bは、金属製であり、横方向Wに貫通する中空穴62を有する筒形状に形成されている。フレーム6A,6Bは、平板を折り曲げて、折曲げの端部同士の間にスリットを有する筒形状に形成することができる。フレーム6A,6Bの中空穴62には、押圧バネ7の一部が挿入される。本形態のフレーム6A,6Bは、SUS430からなる。フレーム6A,6Bは、この他にも、SUS304などのSUS系(ステンレス系)の材料、SECC(電気亜鉛めっき鋼板)などの鉄鋼材料等から構成することができる。 The frames 6A and 6B are made of metal and are formed in a cylindrical shape having a hollow hole 62 penetrating in the lateral direction W. The frames 6A and 6B can be formed in a cylindrical shape by bending a flat plate and having a slit between the bent ends. A part of the pressing spring 7 is inserted into the hollow holes 62 of the frames 6A and 6B. The frames 6A and 6B of this embodiment are made of SUS430. In addition, the frames 6A and 6B can be made of a SUS (stainless steel) material such as SUS304, a steel material such as SECC (electrogalvanized steel plate), or the like.
 押圧バネ7は、積層体10の横方向Wにおける両側に配置され、横方向Wの両側において、一対のフレーム6A,6Bを介して積層体10を積層方向Hの両側から押圧するものである。押圧バネ7は、積層方向Hに伸びて積層体10の横方向Wの端部に対向して配置されるバネ中心部71と、バネ中心部71の両側から屈曲して形成され、積層体10を挟持するための一対の挟持部72とを有する。一対の挟持部72は、各フレーム6A,6Bの中空穴62内に挿入され、各フレーム6A,6Bを介して積層体10を挟持する。一対の挟持部72の間の間隔が積層体10及び一対のフレーム6A,6Bによって広げられることにより、一対の挟持部72から積層体10及び一対のフレーム6A,6Bに、積層体10の積層状態を維持するための押圧力が作用する。 The pressing springs 7 are arranged on both sides in the lateral direction W of the laminated body 10 and press the laminated body 10 from both sides in the laminating direction H via a pair of frames 6A and 6B on both sides in the lateral direction W. The pressing spring 7 extends in the stacking direction H and is formed to be bent from both sides of the spring center portion 71, with a spring center portion 71 disposed opposite to the end portion in the lateral direction W of the stack body 10. And a pair of sandwiching portions 72 for sandwiching. A pair of clamping part 72 is inserted in the hollow hole 62 of each flame | frame 6A, 6B, and clamps the laminated body 10 via each flame | frame 6A, 6B. The interval between the pair of sandwiching portions 72 is widened by the laminate 10 and the pair of frames 6A and 6B, so that the laminate 10 is laminated from the pair of sandwiching portions 72 to the laminate 10 and the pair of frames 6A and 6B. The pressing force for maintaining the pressure acts.
 図1、図4に示すように、積層体10の横方向Wの両端部には、一対のフレーム6A,6Bの横方向Wの両端部に係合する樹脂製のカバー81が設けられている。また、電極板3が引き出された側に位置するカバー81には、複数の電極板3を、車両のバッテリーにおけるプラス電源及びマイナス電源に接続するためのコネクタ82が設けられている。 As shown in FIGS. 1 and 4, resin-made covers 81 that engage with both ends of the pair of frames 6 </ b> A and 6 </ b> B in the lateral direction W are provided at both ends in the lateral direction W of the laminate 10. . The cover 81 located on the side from which the electrode plate 3 is drawn is provided with a connector 82 for connecting the plurality of electrode plates 3 to a positive power source and a negative power source in a vehicle battery.
 図3~図5に示すように、本形態の電気式ヒータ1の積層体10においては、複数のPTC素子2が4段に配置され、PTC素子2の積層方向Hの両側に、電極板3及び放熱フィン4が配置されている。電極板3及び放熱フィン4は、プラス電源とマイナス電源とに交互に接続されている。樹脂プレート5は、積層体10の積層方向Hの端部に位置している。積層体10における各電極板3は、プラス電源及びマイナス電源からの電圧の供給を別々に受けることが可能である。電気式ヒータ1は、積層体10における各電極板3への通電の有無を切り替えることによって、特定の積層位置における複数のPTC素子2に通電を行う一部加熱動作と、積層体10における全てのPTC素子2に通電を行う全加熱動作とが可能である。 As shown in FIGS. 3 to 5, in the laminated body 10 of the electric heater 1 of the present embodiment, a plurality of PTC elements 2 are arranged in four stages, and the electrode plates 3 are arranged on both sides in the stacking direction H of the PTC elements 2. And the radiation fin 4 is arrange | positioned. The electrode plate 3 and the heat radiation fin 4 are alternately connected to a positive power source and a negative power source. The resin plate 5 is located at the end of the stacked body 10 in the stacking direction H. Each electrode plate 3 in the laminated body 10 can be separately supplied with voltages from a positive power source and a negative power source. The electric heater 1 switches the presence / absence of energization to each electrode plate 3 in the laminated body 10, thereby performing a partial heating operation for energizing a plurality of PTC elements 2 in a specific lamination position, A full heating operation for energizing the PTC element 2 is possible.
 図3、図5に示すように、本形態の積層体10における各PTC素子2の横方向W及び奥行方向Dの配置部位は、積層方向Hに沿って見たときに一致している。そして、各PTC素子2の投影範囲Rは、一意的に定まる。例えば、複数のPTC素子2を積層する段数が増えた場合には、各積層体10における複数のPTC素子2の横方向W及び奥行方向Dの配置部位が一致しないケースも想定される。このケースの場合には、積層体10を積層方向Hに沿って見たときに、積層体10における複数のPTC素子2の投影範囲R同士が互いに重なる部位に、凸部51を形成することができる。 As shown in FIGS. 3 and 5, the arrangement positions in the lateral direction W and the depth direction D of each PTC element 2 in the laminated body 10 of this embodiment are coincident when viewed along the laminating direction H. The projection range R of each PTC element 2 is uniquely determined. For example, in the case where the number of stages in which the plurality of PTC elements 2 are stacked increases, there may be a case where the positions of the plurality of PTC elements 2 in the stacked body 10 in the lateral direction W and the depth direction D do not match. In this case, when the laminated body 10 is viewed along the laminating direction H, the convex portion 51 may be formed at a portion where the projection ranges R of the plurality of PTC elements 2 in the laminated body 10 overlap each other. it can.
 また、図6に示すように、電力調整のために、一部のPTC素子2をなくし、PTC素子2をなくした箇所を、位置決めプレート21によって埋める構成にする場合も想定される。この場合には、PTC素子2がない箇所においては、押圧バネ7によって位置決めプレート21が押圧され、積層体10の全体における各投影範囲Rが均等に押圧されるようにする。 Further, as shown in FIG. 6, it may be assumed that a part of the PTC element 2 is eliminated and a portion where the PTC element 2 is eliminated is filled with a positioning plate 21 for power adjustment. In this case, the positioning plate 21 is pressed by the pressing spring 7 at a place where the PTC element 2 is not provided, so that each projection range R in the entire laminate 10 is pressed evenly.
 図5に示すように、積層体10を有する電気式ヒータ1における各電極板3は、積層方向Hの一方側から順に、プラス電源、マイナス電源、プラス電源、マイナス電源、プラス電源に交互に接続される。樹脂プレート5は、積層体10の積層方向Hにおける最端部であって、積層方向Hの一方側の端部に位置する電極板3とフレーム6Bとの間に配置されている。樹脂プレート5は、積層方向Hの一方側の端部に位置する電極板3及び放熱フィン4と、フレーム6A,6B及び押圧バネ7を介して、積層方向Hの他方側の端部に位置する電極板3及び放熱フィン4とが導通されないようにする。樹脂プレート5は、積層方向Hの一方側の端部に位置する複数のPTC素子2と、積層方向Hの他方側の端部に位置する複数のPTC素子2とを互いに独立させて通電する際に、両者を絶縁するために用いる。 As shown in FIG. 5, each electrode plate 3 in the electric heater 1 having the laminated body 10 is alternately connected to the positive power source, the negative power source, the positive power source, the negative power source, and the positive power source in order from one side in the stacking direction H. Is done. The resin plate 5 is disposed between the electrode plate 3 and the frame 6B, which is the outermost end in the stacking direction H of the stacked body 10 and located at one end in the stacking direction H. The resin plate 5 is positioned at the other end portion in the stacking direction H via the electrode plate 3 and the radiation fin 4 positioned at one end portion in the stacking direction H, the frames 6A and 6B, and the pressing spring 7. The electrode plate 3 and the heat radiating fin 4 are prevented from conducting. When the resin plate 5 energizes the plurality of PTC elements 2 positioned at one end in the stacking direction H and the plurality of PTC elements 2 positioned at the other end in the stacking direction H independently of each other. Used to insulate the two.
 本形態の凸部51は、樹脂プレート5における、電極板3と対向する表面501に設けられている。凸部51は、樹脂プレート5における、4個のPTC素子2の配置部位を積層方向Hに投影した4箇所の投影範囲R内にそれぞれ設けられている。各凸部51は、各投影範囲Rの中心部にそれぞれ1つ設けられている。なお、各投影範囲R内には、複数の凸部51が設けられていてもよい。また、凸部51は、必ずしも各投影範囲Rの中心部に設ける必要はなく、各投影範囲Rの、中心部の周りの部位に複数設けられていてもよい。 The convex portion 51 of this embodiment is provided on the surface 501 of the resin plate 5 facing the electrode plate 3. The convex portions 51 are respectively provided in four projection ranges R obtained by projecting the arrangement site of the four PTC elements 2 in the stacking direction H on the resin plate 5. Each convex part 51 is provided in the center part of each projection range R, respectively. A plurality of convex portions 51 may be provided in each projection range R. Further, the convex portion 51 is not necessarily provided at the center of each projection range R, and a plurality of projections 51 may be provided at a site around the center of each projection range R.
 本形態の凸部形成部材11としての樹脂プレート5の硬度は、凸部接触部材12としての電極板3の硬度よりも低い。そして、図7、図8に示すように、樹脂プレート5と電極板3とが接触し、これらの間に押圧バネ7による押圧力が作用するときには、電極板3によって樹脂プレート5における各凸部51の先端部が、表面501から突出する高さが低くなるように塑性変形して潰される。このとき、各凸部51の先端部に位置する材料の多くは、各凸部51と電極板3との間から各凸部51の周囲に流動する。こうして、各凸部51には、塑性変形が行われた形跡もしくは痕が変形部511として残される。 The hardness of the resin plate 5 as the convex portion forming member 11 of this embodiment is lower than the hardness of the electrode plate 3 as the convex portion contact member 12. As shown in FIGS. 7 and 8, when the resin plate 5 and the electrode plate 3 are in contact with each other, and the pressing force by the pressing spring 7 acts between them, the electrode plate 3 causes each convex portion on the resin plate 5 to move. The tip portion of 51 is crushed by plastic deformation so that the height protruding from the surface 501 is low. At this time, most of the material located at the tip of each convex portion 51 flows from between each convex portion 51 and the electrode plate 3 around each convex portion 51. In this manner, a mark or a mark that has undergone plastic deformation is left as a deformed portion 511 on each convex portion 51.
 ここで、図7は、各凸部51が塑性変形する前の状態を模式的に示し、図8は、各凸部51が塑性変形した後の状態を模式的に示す。各図は、説明のために、各凸部51に変形部511が形成される状態を模式的に示す図であり、凸部51を誇張して示す。 Here, FIG. 7 schematically shows a state before each convex portion 51 is plastically deformed, and FIG. 8 schematically shows a state after each convex portion 51 is plastically deformed. Each figure is a figure which shows typically the state by which the deformation | transformation part 511 is formed in each convex part 51 for description, and shows the convex part 51 exaggeratingly.
 電気式ヒータ1における各凸部51は、先端部に変形部511が形成されていれば、いかなる形状に形成されていてもよい。変形部511が形成される前の凸部51の形状は、変形部511が形成されやすくするために、例えば、円錐、三角錐・四角推等の角錐、半球状等の曲面状の突起等とすることができる。また、変形部511が形成される前の凸部51の形状は、平坦状もしくは曲面状の先端部を有する円柱又は角柱、複数の先端部を有する錐状又は柱状等とすることもできる。変形部511が形成される前の凸部51の形状は、後述する実施形態2等に示す、凸部接触部材12の表面が凹むように塑性変形する場合でも、凸部51が塑性変形する場合と同様の形状とすることができる。 Each convex part 51 in the electric heater 1 may be formed in any shape as long as the deformation part 511 is formed at the tip part. The shape of the convex portion 51 before the deformation portion 511 is formed is, for example, a cone, a triangular pyramid, a quadrangular pyramid such as a quadrilateral guess, a curved projection such as a hemisphere, etc., in order to facilitate the formation of the deformation portion 511. can do. Moreover, the shape of the convex part 51 before the deformation | transformation part 511 is formed can also be made into the cylinder or prism which has a flat shape or a curved-shaped front-end | tip part, the cone shape or column shape which has several front-end | tip parts, etc. The shape of the convex portion 51 before the deformation portion 511 is formed is the case where the convex portion 51 is plastically deformed even when the surface of the convex portion contact member 12 is plastically deformed as shown in the second embodiment described later. It can be made the same shape as.
 凸部51の塑性変形は、弾性変形する弾性限界を超えて、凸部51に荷重が加わることによって行われる。凸部51の大きさは、塑性変形しやすくするために小さく形成することができる。凸部51の大きさは、樹脂プレート5における凸部51を平面視したときの最大外形として、例えば、0.5~5mmの範囲内とすることができる。変形部511が形成された凸部51の高さは、例えば、0.05~1mmとすることができる。 The plastic deformation of the convex portion 51 is performed by applying a load to the convex portion 51 beyond the elastic limit for elastic deformation. The size of the convex portion 51 can be made small in order to facilitate plastic deformation. The size of the convex portion 51 can be, for example, in the range of 0.5 to 5 mm as the maximum outer shape when the convex portion 51 in the resin plate 5 is viewed in plan. The height of the convex portion 51 on which the deformable portion 511 is formed can be set to 0.05 to 1 mm, for example.
 凸部51は、樹脂プレート5における、フレーム6Bと対向する表面501に設けることもできる。この場合にも、樹脂プレート5の硬度が、フレーム6Bの硬度よりも低いことにより、フレーム6Bによって樹脂プレート5における各凸部51の先端部には、塑性変形によって潰された変形部511が形成される。 The convex portion 51 can also be provided on the surface 501 of the resin plate 5 facing the frame 6B. Also in this case, since the hardness of the resin plate 5 is lower than the hardness of the frame 6B, a deformed portion 511 crushed by plastic deformation is formed at the tip of each convex portion 51 in the resin plate 5 by the frame 6B. Is done.
 また、凸部51は、樹脂プレート5における両側の表面501に設けることもできる。この場合、一方側の凸部51が、電極板3と接触して塑性変形したことによる変形部511を有し、他方側の凸部51が、フレーム6Bと接触して塑性変形したことによる変形部511を有していてもよい。 Moreover, the convex part 51 can also be provided in the surface 501 of the both sides in the resin plate 5. FIG. In this case, the convex portion 51 on one side has a deformed portion 511 caused by plastic deformation by contacting with the electrode plate 3, and the deformation caused by plastic deformation by contacting the convex portion 51 on the other side with the frame 6B. A portion 511 may be included.
 次に、本形態の電気式ヒータ1の製造方法について説明する。
 まず、PTC素子2、電極板3、放熱フィン4、樹脂プレート5、フレーム6A,6B及び押圧バネ7を既知の方法によってそれぞれ加工する。樹脂プレート5を成形する際には、この樹脂プレート5の表面501には、複数の凸部51を形成する。この複数の凸部51は、樹脂プレート5の積層方向Hの表面501における、複数のPTC素子2の配置部位を積層方向Hに投影した各投影範囲R内において、表面501から突出する状態で形成する。
Next, a method for manufacturing the electric heater 1 according to this embodiment will be described.
First, the PTC element 2, the electrode plate 3, the heat radiating fin 4, the resin plate 5, the frames 6A and 6B, and the pressing spring 7 are respectively processed by known methods. When the resin plate 5 is molded, a plurality of convex portions 51 are formed on the surface 501 of the resin plate 5. The plurality of convex portions 51 are formed so as to protrude from the surface 501 in each projection range R obtained by projecting the arrangement site of the plurality of PTC elements 2 in the stacking direction H on the surface 501 in the stacking direction H of the resin plate 5. To do.
 次いで、各PTC素子2を位置決めプレート21の各配置穴211内に配置し、位置決めプレート21、複数の電極板3、複数の放熱フィン4、樹脂プレート5を積層して、積層体10を形成する。このとき、樹脂プレート5の積層方向Hの表面501における、各PTC素子2の投影範囲R内には、樹脂プレート5における各凸部51が配置される。また、積層体10の積層方向Hの両端にフレーム6A,6Bを積層する。 Next, each PTC element 2 is arranged in each arrangement hole 211 of the positioning plate 21, and the positioning plate 21, the plurality of electrode plates 3, the plurality of radiating fins 4, and the resin plate 5 are stacked to form the stacked body 10. . At this time, each projection 51 in the resin plate 5 is disposed within the projection range R of each PTC element 2 on the surface 501 in the stacking direction H of the resin plate 5. Further, the frames 6A and 6B are stacked on both ends of the stacked body 10 in the stacking direction H.
 次いで、治具等を用いて、2つの押圧バネ7の一対の挟持部72の間の間隔を広げるように押圧バネ7を弾性変形させる。また、各押圧バネ7を、積層体10の横方向Wの両側に配置し、各フレーム6A,6Bの中空穴62に各押圧バネ7の挟持部72を挿入する。そして、押圧バネ7を弾性変形させる状態を解除したときには、一対の挟持部72の間の間隔が狭くなる。これにより、押圧バネ7の一対の挟持部72によって、一対のフレーム6A,6Bを介して積層体10が押圧される。 Next, using a jig or the like, the pressing spring 7 is elastically deformed so as to widen the distance between the pair of sandwiching portions 72 of the two pressing springs 7. Further, the respective pressing springs 7 are arranged on both sides of the laminated body 10 in the lateral direction W, and the clamping portions 72 of the respective pressing springs 7 are inserted into the hollow holes 62 of the respective frames 6A and 6B. And when the state which elastically deforms the press spring 7 is cancelled | released, the space | interval between a pair of clamping parts 72 becomes narrow. Thereby, the laminated body 10 is pressed by the pair of holding portions 72 of the pressing spring 7 via the pair of frames 6A and 6B.
 積層体10が押圧バネ7による押圧力を受けるときには、樹脂プレート5の各凸部51が電極板3の表面301に接触し、各凸部51の硬度が電極板3の硬度よりも低く、かつ各凸部51の強度が低いことにより、各凸部51の先端部が潰れるように塑性変形する。そして、全ての投影範囲R内における凸部51に、先端部が潰された変形部511が形成される。その後、カバー81及びコネクタ82の取付を行って、電気式ヒータ1が製造される。 When the laminate 10 receives a pressing force from the pressing spring 7, each convex portion 51 of the resin plate 5 contacts the surface 301 of the electrode plate 3, and the hardness of each convex portion 51 is lower than the hardness of the electrode plate 3, and Since the strength of each convex portion 51 is low, plastic deformation occurs so that the tip portion of each convex portion 51 is crushed. And the deformation | transformation part 511 where the front-end | tip part was crushed is formed in the convex part 51 in all the projection ranges R. FIG. Thereafter, the cover 81 and the connector 82 are attached, and the electric heater 1 is manufactured.
 次に、本形態の電気式ヒータ1の作用効果について説明する。
 積層体10が一対の押圧バネ7によって押圧されるときには、樹脂プレート5における各凸部51に電極板3が接触する。このとき、積層体10における横方向Wの各部位の積層方向Hの厚みには、PTC素子2、電極板3、放熱フィン4、樹脂プレート5及びフレーム6A,6Bの各構成部材に生じた製造上の寸法誤差、変形等の影響を受けたばらつきが生じている。そして、積層体10が押圧バネ7による押圧力を受けたときには、電極板3に比べて強度が低い樹脂プレート5の各凸部51が塑性変形して潰れる。このとき、樹脂プレート5の表面501における、各PTC素子2の投影範囲Rにおいては、各投影範囲Rにおける積層体10の厚みの違いを受けて、各凸部51が塑性変形する量が異なる。
Next, the effect of the electric heater 1 of this form is demonstrated.
When the laminated body 10 is pressed by the pair of pressing springs 7, the electrode plate 3 comes into contact with each convex portion 51 in the resin plate 5. At this time, the thickness in the stacking direction H of each part in the lateral direction W in the stacked body 10 is the production that has occurred in the constituent members of the PTC element 2, the electrode plate 3, the heat radiation fin 4, the resin plate 5, and the frames 6A and 6B. Variations are affected by the above dimensional errors and deformation. And when the laminated body 10 receives the pressing force by the pressing spring 7, each convex part 51 of the resin plate 5 whose strength is lower than that of the electrode plate 3 is plastically deformed and crushed. At this time, in the projection range R of each PTC element 2 on the surface 501 of the resin plate 5, the amount by which each convex portion 51 is plastically deformed varies depending on the difference in thickness of the laminate 10 in each projection range R.
 図7、図8には、複数のPTC素子2の投影範囲R内において、凸部形成部材11の複数の凸部51が、凸部接触部材12に接触し、複数の凸部51が塑性変形する状態を示す。各投影範囲R内における凸部51は、積層体10の積層方向Hの厚みのばらつきを受けて、塑性変形する量が異なる。具体的には、積層体10の積層方向Hの厚みが小さい投影範囲Rに配置された凸部51aの塑性変形量に比べて、積層体10の積層方向Hの厚みが大きい投影範囲Rに配置された凸部51bの塑性変形量が大きくなる。そして、前者の凸部51aの、表面501からの突出量(高さ)に比べて、後者の凸部51bの、表面501からの突出量(高さ)は低くなる。この凸部51a,51b間の突出量の差は、凸部51a,51bの先端部に形成された変形部511を観察することによって分かる。 7 and 8, in the projection range R of the plurality of PTC elements 2, the plurality of convex portions 51 of the convex portion forming member 11 are in contact with the convex portion contact member 12, and the plurality of convex portions 51 are plastically deformed. Indicates the state to be performed. The convex portions 51 in each projection range R have different amounts of plastic deformation due to variations in the thickness of the stacked body 10 in the stacking direction H. Specifically, the laminate 10 is disposed in the projection range R where the thickness of the laminate 10 in the stacking direction H is larger than the amount of plastic deformation of the projection 51a disposed in the projection range R where the thickness in the stacking direction H is small. The amount of plastic deformation of the projected portion 51b is increased. Then, the protrusion amount (height) of the latter convex portion 51b from the surface 501 is lower than the protrusion amount (height) of the former convex portion 51a from the surface 501. The difference in the protruding amount between the convex portions 51a and 51b can be understood by observing the deformed portion 511 formed at the tip portions of the convex portions 51a and 51b.
 このように、樹脂プレート5における複数の凸部51の塑性変形が行われたことにより、各PTC素子2の投影範囲Rにおける、積層体10の積層方向Hの厚みの違いが小さくなり、積層体10における横方向Wの各部位の積層方向Hの厚みが均一になるように変化する。なお、各凸部51が塑性変形する際には、各構成部材2,3,4,5,6A,6Bに生じていた変形等が矯正されることもある。 Thus, the plastic deformation of the plurality of convex portions 51 in the resin plate 5 reduces the difference in the thickness in the stacking direction H of the stacked body 10 in the projection range R of each PTC element 2. 10, the thickness in the stacking direction H of each portion in the horizontal direction W is changed to be uniform. In addition, when each convex part 51 plastically deforms, the deformation | transformation etc. which have arisen in each structural member 2,3,4,5,6A, 6B may be corrected.
 全てのPTC素子2の投影範囲R内においては、樹脂プレート5の各凸部51と電極板3とが接触しており、全ての凸部51が塑性変形した変形部511を有する。この変形部511は、塑性変形によって、高さが低くなるように凸部51が潰された形跡もしくは痕として形成されている。変形部511は、塑性変形によって形成されたものであるため、弾性変形によって形成されたものと違って、各凸部51に発生する反力が変形量の大小によって異なるといった現象がほとんど生じない。これにより、各PTC素子2の投影範囲R内において、各PTC素子2が電極板3及び放熱フィン4に押圧される力が極力均一になる。 Within the projection range R of all the PTC elements 2, each convex portion 51 of the resin plate 5 and the electrode plate 3 are in contact with each other, and all the convex portions 51 have a deformed portion 511 that is plastically deformed. The deformed portion 511 is formed as a trace or a mark in which the convex portion 51 is crushed so as to be reduced in height by plastic deformation. Since the deformed portion 511 is formed by plastic deformation, unlike the case formed by elastic deformation, the phenomenon that the reaction force generated in each convex portion 51 varies depending on the amount of deformation hardly occurs. Thereby, within the projection range R of each PTC element 2, the force with which each PTC element 2 is pressed by the electrode plate 3 and the radiation fin 4 becomes as uniform as possible.
 こうして、本形態の電気式ヒータ1においては、樹脂プレート5の全ての凸部51の塑性変形を利用することにより次の効果が得られる。すなわち、PTC素子2、電極板3、放熱フィン4、樹脂プレート5のそれぞれに生じた製造上の寸法誤差、変形等によって、PTC素子2が配置された横方向Wの各位置における、積層方向Hの厚みが互いに異なった場合でも、全てのPTC素子2と電極板3及び放熱フィン4とが極力同等の力で押圧されて接触する状態を形成することができる。これにより、電極板3から全てのPTC素子2への通電、及び全てのPTC素子2から放熱フィン4への熱伝導をより効果的に行うことができる。それ故、本形態の電気式ヒータ1によれば、そのヒータ性能をさらに向上させることができる。 Thus, in the electric heater 1 of the present embodiment, the following effects can be obtained by utilizing the plastic deformation of all the convex portions 51 of the resin plate 5. That is, the stacking direction H at each position in the lateral direction W where the PTC element 2 is arranged due to a manufacturing dimensional error, deformation, etc., generated in each of the PTC element 2, the electrode plate 3, the radiation fin 4, and the resin plate 5. Even when the thicknesses of the PTC elements are different from each other, it is possible to form a state in which all the PTC elements 2, the electrode plates 3, and the radiation fins 4 are pressed and contacted with each other as much as possible. Thereby, electricity supply from the electrode plate 3 to all the PTC elements 2 and heat conduction from all the PTC elements 2 to the radiation fins 4 can be performed more effectively. Therefore, according to the electric heater 1 of this embodiment, the heater performance can be further improved.
 図9、図10には、比較形態として、凸部形成部材11の代わりに、弾性変形部51Xが形成された部材11Xが用いられた場合について、複数の弾性変形部51Xが弾性変形する状態を示す。部材11Xの弾性変形部51Xと接触する接触部材を符号12Xによって示す。各投影範囲R内における弾性変形部51Xは、積層体10の積層方向Hの厚みのばらつきを受けて、弾性変形する量が異なる。具体的には、積層体10の厚みが小さい投影範囲Rに配置された弾性変形部51Xaの弾性変形量に比べて、積層体10の厚みが大きい投影範囲Rに配置された弾性変形部51Xbの弾性変形量が大きくなる。 In FIGS. 9 and 10, as a comparative form, a state in which the plurality of elastic deformation portions 51 </ b> X are elastically deformed when the member 11 </ b> X formed with the elastic deformation portions 51 </ b> X is used instead of the convex portion forming member 11. Show. A contact member in contact with the elastically deforming portion 51X of the member 11X is indicated by reference numeral 12X. The elastic deformation portions 51X in each projection range R have different amounts of elastic deformation in response to variations in the thickness of the stacked body 10 in the stacking direction H. Specifically, the elastic deformation portion 51Xb disposed in the projection range R where the thickness of the stacked body 10 is larger than the elastic deformation amount of the elastic deformation portion 51Xa disposed in the projection range R where the thickness of the stacked body 10 is small. The amount of elastic deformation increases.
 このとき、各弾性変形部51Xa,51Xbに発生する反力が変形量の大小によって異なり、弾性変形量が大きい弾性変形部51Xbには、弾性変形量が小さい弾性変形部51Xaに比べて大きな反力が加わる。これにより、各PTC素子2の投影範囲R内において、各PTC素子2が電極板3及び放熱フィン4に押圧される力が不均一になる。その結果、電極板3及び放熱フィン4に対する各PTC素子2の接触状態にばらつきが生じ、電極板3から各PTC素子2への通電、及び各PTC素子2から放熱フィン4への熱伝導にばらつきが生じることになる。 At this time, the reaction force generated in each of the elastic deformation portions 51Xa and 51Xb differs depending on the amount of deformation, and the elastic deformation portion 51Xb having a large elastic deformation amount has a larger reaction force than the elastic deformation portion 51Xa having a small elastic deformation amount. Will be added. Thereby, in the projection range R of each PTC element 2, the force with which each PTC element 2 is pressed by the electrode plate 3 and the radiation fin 4 becomes non-uniform | heterogenous. As a result, the contact state of each PTC element 2 with respect to the electrode plate 3 and the radiating fin 4 varies, and the current conduction from the electrode plate 3 to each PTC element 2 and the heat conduction from each PTC element 2 to the radiating fin 4 vary. Will occur.
 また、樹脂プレート5等に、塑性変形した凸部51も弾性変形部51Xも形成されていない場合においては、各構成部品2,3,4,5,6A,6Bに生じる寸法のばらつきを受けて、PTC素子2の投影範囲Rにおいては、PTC素子2が電極板3及び放熱フィン4に接触するための力がほとんど作用しない場合もある。
 従って、電気式ヒータ1のヒータ性能を高めるためには、塑性変形した凸部51を有することが効果的であると言える。
Further, when neither the plastically deformed convex portion 51 nor the elastically deformable portion 51X is formed on the resin plate 5 or the like, the resin plate 5 or the like is subjected to dimensional variations occurring in the respective component parts 2, 3, 4, 5, 6A, 6B. In the projection range R of the PTC element 2, there is a case where the force for the PTC element 2 to contact the electrode plate 3 and the heat radiating fin 4 hardly acts.
Therefore, in order to improve the heater performance of the electric heater 1, it can be said that it is effective to have the convex portions 51 that are plastically deformed.
 なお、電極板3及び放熱フィン4は、PTC素子2との導通性及び伝熱性が確保されればよく、いずれをPTC素子2と直接接触する位置に配置してもよい。
 電気式ヒータ1は、複数のPTC素子2の積層方向Hの両側に電極板3及び放熱フィン4がそれぞれ配置された、1段、2段、3段又は5段以上の積層状態にある複数のPTC素子2を有する積層体10を、押圧バネ7によって押圧するものとしてもよい。
The electrode plate 3 and the radiating fins 4 are only required to have conductivity and heat transfer with the PTC element 2, and any of them may be disposed at a position in direct contact with the PTC element 2.
The electric heater 1 includes a plurality of PTC elements 2 in a stacked state in which the electrode plate 3 and the radiation fins 4 are respectively disposed on both sides in the stacking direction H of the plurality of PTC elements 2. The laminated body 10 having the PTC element 2 may be pressed by the pressing spring 7.
(実施形態2)
 本形態は、図11、図12に示すように、凸部形成部材11を凸部31が形成された電極板3とし、凸部31と接触する凸部接触部材12を樹脂プレート5とした場合について示す。
 凸部31は、電極板3の積層方向Hの表面301における、複数のPTC素子2の投影範囲R内にそれぞれ設けられている。凸部31は、電極板3における、樹脂プレート5と対向する表面301に設けられている。凸部31は、電極板3の一部を変形させることによって、電極板3と同質の材料で電極板3に一体的に設けられている。凸部31は、電極板3の表面301に別途設けられた金属材とすることもできる。
(Embodiment 2)
In this embodiment, as shown in FIGS. 11 and 12, the convex portion forming member 11 is the electrode plate 3 on which the convex portion 31 is formed, and the convex portion contact member 12 that is in contact with the convex portion 31 is the resin plate 5. Show about.
The convex portions 31 are respectively provided within the projection ranges R of the plurality of PTC elements 2 on the surface 301 in the stacking direction H of the electrode plate 3. The convex portion 31 is provided on the surface 301 of the electrode plate 3 facing the resin plate 5. The convex portion 31 is integrally provided on the electrode plate 3 with the same material as the electrode plate 3 by deforming a part of the electrode plate 3. The convex portion 31 may be a metal material provided separately on the surface 301 of the electrode plate 3.
 電極板3は、銅材料から構成されており、樹脂プレート5は、樹脂材料から構成されている。電極板3の硬度が樹脂プレート5の硬度よりも高いことにより、電極板3の凸部31によって、樹脂プレート5が塑性変形しており、樹脂プレート5の表面501には、凸部31によって凹んだ変形部512が形成されている。この変形部512は、塑性変形によって、樹脂プレート5の表面501が凹んだ形跡もしくは痕等として形成されている。 The electrode plate 3 is made of a copper material, and the resin plate 5 is made of a resin material. Since the hardness of the electrode plate 3 is higher than the hardness of the resin plate 5, the resin plate 5 is plastically deformed by the convex portions 31 of the electrode plate 3, and the surface 501 of the resin plate 5 is recessed by the convex portions 31. A deformed portion 512 is formed. The deformed portion 512 is formed as a trace or a mark or the like in which the surface 501 of the resin plate 5 is recessed by plastic deformation.
 本形態の凸部31が形成された電極板3は、樹脂プレート5に対向するものとした。凸部31は、電気式ヒータ1におけるいずれの電極板3に設けることもできる。また、本形態の電気式ヒータ1とは構造が異なるが、凸部31は、電極板3における、フレーム6Aと対向する表面に設けることもできる。 The electrode plate 3 on which the convex portions 31 of this embodiment are formed is assumed to face the resin plate 5. The convex portion 31 can be provided on any electrode plate 3 in the electric heater 1. Although the structure is different from that of the electric heater 1 of the present embodiment, the convex portion 31 can be provided on the surface of the electrode plate 3 facing the frame 6A.
 また、図13に示すように、凸部接触部材12を放熱フィン4とし、凸部31は、電極板3における、放熱フィン4と対向する表面301に設けることもできる。この場合には、電極板3の硬度が放熱フィン4の硬度よりも高いことにより、電極板3の凸部31によって放熱フィン4の平板42の表面401が塑性変形し、放熱フィン4の平板42の表面401に、凸部41によって凹んだ変形部が形成される。 Further, as shown in FIG. 13, the convex contact member 12 may be the heat radiation fin 4, and the convex portion 31 may be provided on the surface 301 of the electrode plate 3 facing the heat radiation fin 4. In this case, since the hardness of the electrode plate 3 is higher than the hardness of the radiating fin 4, the surface 401 of the flat plate 42 of the radiating fin 4 is plastically deformed by the convex portions 31 of the electrode plate 3, and the flat plate 42 of the radiating fin 4. A deformed portion that is recessed by the convex portion 41 is formed on the surface 401.
 図14、図15に示すように、本形態の積層体10が押圧バネ7によって押圧されるときには、電極板3の各凸部31が樹脂プレート5と接触し、樹脂プレート5の各部位が各凸部31によって塑性変形して凹む。このとき、各凸部31が接触する樹脂プレート5の部位の材料の多くは、各凸部31と樹脂プレート5との間から各凸部31の周囲に流動する。 As shown in FIGS. 14 and 15, when the laminate 10 of this embodiment is pressed by the pressing spring 7, each convex portion 31 of the electrode plate 3 comes into contact with the resin plate 5, and each part of the resin plate 5 The protrusion 31 is plastically deformed to be recessed. At this time, most of the material of the portion of the resin plate 5 with which the convex portions 31 come into contact flows from between the convex portions 31 and the resin plate 5 around the convex portions 31.
 ここで、図14は、樹脂プレート5が塑性変形する前の状態を模式的に示し、図15は、樹脂プレート5が塑性変形した後の状態を模式的に示す。各図は、説明のために、樹脂プレート5に変形部512が形成される状態を模式的に示す図であり、凸部31及び変形部512を誇張して示す。 Here, FIG. 14 schematically shows a state before the resin plate 5 is plastically deformed, and FIG. 15 schematically shows a state after the resin plate 5 is plastically deformed. Each figure is a figure which shows typically the state in which the deformation | transformation part 512 is formed in the resin plate 5 for description, and shows the convex part 31 and the deformation | transformation part 512 exaggeratedly.
 そして、積層体10の厚みが小さい投影範囲Rに配置された凸部31aと接触する樹脂プレート5の部位の塑性変形量に比べて、積層体10の厚みが大きい投影範囲Rに配置された凸部31bと接触する樹脂プレート5の部位の塑性変形量が大きくなる。そして、前者の凸部31aによって凹む樹脂プレート5の部位の、表面301からの陥没量(深さ)に比べて、後者の凸部31bによって凹む樹脂プレート5の部位の、表面301からの陥没量(深さ)は深くなる。この樹脂プレート5の各部位の陥没量の差は、樹脂プレート5の表面501に形成された変形部512を観察することによって分かる。 And the convexity arrange | positioned in the projection range R where the thickness of the laminated body 10 is large compared with the amount of plastic deformation of the site | part of the resin plate 5 which contacts the convex part 31a arrange | positioned in the projection range R where the thickness of the laminated body 10 is small. The amount of plastic deformation of the portion of the resin plate 5 that comes into contact with the portion 31b increases. Then, compared to the amount of depression (depth) from the surface 301 of the portion of the resin plate 5 that is recessed by the former convex portion 31a, the amount of depression from the surface 301 of the portion of the resin plate 5 that is recessed by the latter convex portion 31b. (Depth) becomes deeper. The difference in the amount of depression at each part of the resin plate 5 can be understood by observing the deformed portion 512 formed on the surface 501 of the resin plate 5.
 本形態の電気式ヒータ1においても、全ての凸部31によって、放熱フィン4の各投影範囲Rが塑性変形することにより、PTC素子2、電極板3、放熱フィン4、樹脂プレート5のそれぞれに生じた製造上の寸法誤差、変形等によって、PTC素子2が配置された横方向Wの各位置における、積層方向Hの厚みが互いに異なった場合でも、全てのPTC素子2と電極板3及び樹脂プレート5とが極力同等の力で押圧されて接触する状態を形成することができる。これにより、電極板3から全てのPTC素子2への通電、及び全てのPTC素子2から放熱フィン4への熱伝導をより効果的に行うことができる。それ故、本形態の電気式ヒータ1によっても、そのヒータ性能をさらに向上させることができる。 Also in the electric heater 1 of this embodiment, each projection range R of the radiating fin 4 is plastically deformed by all the convex portions 31, so that each of the PTC element 2, the electrode plate 3, the radiating fin 4, and the resin plate 5 is used. Even if the thickness in the stacking direction H is different at each position in the lateral direction W where the PTC element 2 is disposed due to a dimensional error, deformation, etc. in manufacturing, all the PTC elements 2, the electrode plates 3 and the resin are different. It is possible to form a state in which the plate 5 is pressed and brought into contact with the plate 5 as much as possible. Thereby, electricity supply from the electrode plate 3 to all the PTC elements 2 and heat conduction from all the PTC elements 2 to the radiation fins 4 can be performed more effectively. Therefore, the heater performance can be further improved by the electric heater 1 of this embodiment.
 本形態の電気式ヒータ1においても、その他の構成は、実施形態1の場合と同様である。本形態においても、実施形態1と同様にして、電気式ヒータ1を製造することができる。また、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。また、本形態においても、実施形態1と同様の作用効果を得ることができる。 Also in the electric heater 1 of this embodiment, the other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1 can be manufactured in the same manner as in the first embodiment. In addition, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
(実施形態3)
 本形態は、図16、図17に示すように、凸部形成部材11を凸部41が形成された放熱フィン4とし、凸部41と接触する凸部接触部材12を電極板3とした場合について示す。
 凸部41は、放熱フィン4の積層方向Hの表面401における、複数のPTC素子2の投影範囲R内にそれぞれ設けられている。凸部41は、放熱フィン4における、電極板3と対向する表面401に設けられている。凸部41は、放熱フィン4の平板42の一部を変形させることによって、放熱フィン4と同質の材料で放熱フィン4に一体的に設けられている。凸部41は、放熱フィン4の平板42の表面401に別途設けられた金属材とすることもできる。
(Embodiment 3)
In this embodiment, as shown in FIGS. 16 and 17, the convex forming member 11 is the heat radiation fin 4 on which the convex 41 is formed, and the convex contact member 12 that is in contact with the convex 41 is the electrode plate 3. Show about.
The convex portions 41 are respectively provided in the projection ranges R of the plurality of PTC elements 2 on the surface 401 in the stacking direction H of the radiating fins 4. The convex portion 41 is provided on the surface 401 of the radiating fin 4 that faces the electrode plate 3. The convex portion 41 is integrally provided on the heat radiation fin 4 with the same material as the heat radiation fin 4 by deforming a part of the flat plate 42 of the heat radiation fin 4. The convex portion 41 may be a metal material separately provided on the surface 401 of the flat plate 42 of the radiating fin 4.
 放熱フィン4は、アルミニウム材料から構成されており、電極板3は、銅材料から構成されている。放熱フィン4の硬度が電極板3の硬度よりも低いことにより、放熱フィン4の平板42の凸部41が、電極板3によって塑性変形しており、凸部41の先端部には、電極板3によって潰された変形部411が形成されている。この変形部411は、塑性変形によって、放熱フィン4の凸部41の先端部が潰れた形跡もしくは痕等として形成されている。 The heat radiation fin 4 is made of an aluminum material, and the electrode plate 3 is made of a copper material. Since the hardness of the radiating fin 4 is lower than the hardness of the electrode plate 3, the convex portion 41 of the flat plate 42 of the radiating fin 4 is plastically deformed by the electrode plate 3. A deformed portion 411 crushed by 3 is formed. The deformed portion 411 is formed as a trace or a mark or the like in which the tip portion of the convex portion 41 of the radiating fin 4 is crushed by plastic deformation.
 本形態の凸部41が形成された放熱フィン4は、フレーム6Bに最も近いものとした。凸部41は、電気式ヒータ1におけるいずれの放熱フィン4に設けることもできる。凸部41は、例えば、本形態の電気式ヒータ1の構成とは異なるが、放熱フィン4における、フレーム6Aと対向する表面に設けることもできる。 The heat dissipating fin 4 on which the convex portion 41 of this embodiment is formed is the closest to the frame 6B. The convex portion 41 can be provided on any of the radiating fins 4 in the electric heater 1. For example, the convex portion 41 is different from the configuration of the electric heater 1 of the present embodiment, but can be provided on the surface of the radiating fin 4 facing the frame 6A.
 本形態の電気式ヒータ1においても、その他の構成は、実施形態1の場合と同様である。本形態においても、実施形態1と同様にして、電気式ヒータ1を製造することができる。また、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。また、本形態においても、実施形態1と同様の作用効果を得ることができる。 Also in the electric heater 1 of this embodiment, the other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1 can be manufactured in the same manner as in the first embodiment. In addition, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
(実施形態4)
 本形態は、図18、図19に示すように、凸部形成部材11を、凸部61が形成されたフレーム6Bとし、凸部61と接触する凸部接触部材12を樹脂プレート5とした場合について示す。
 凸部61は、フレーム6Bの積層方向Hの表面601における、複数のPTC素子2の投影範囲R内にそれぞれ設けられている。凸部61は、フレーム6Bにおける、樹脂プレート5と対向する表面601に設けられている。凸部61は、フレーム6Bの一部を変形させることによって、フレーム6Bと同質の材料でフレーム6Bに一体的に設けられている。凸部61は、フレーム6Bの表面601に別途設けられた金属材とすることもできる。
(Embodiment 4)
In this embodiment, as shown in FIGS. 18 and 19, the convex portion forming member 11 is a frame 6 </ b> B in which the convex portion 61 is formed, and the convex portion contact member 12 in contact with the convex portion 61 is a resin plate 5. Show about.
The convex portions 61 are respectively provided in the projection ranges R of the plurality of PTC elements 2 on the surface 601 in the stacking direction H of the frame 6B. The convex portion 61 is provided on the surface 601 of the frame 6B that faces the resin plate 5. The convex portion 61 is provided integrally with the frame 6B with the same material as the frame 6B by deforming a part of the frame 6B. The convex portion 61 may be a metal material provided separately on the surface 601 of the frame 6B.
 フレーム6Bは、ステンレス鋼等の金属材料から構成されており、樹脂プレート5は、樹脂材料から構成されている。フレーム6Bの硬度が樹脂プレート5の硬度よりも高いことにより、フレーム6Bの凸部61によって、樹脂プレート5が塑性変形しており、樹脂プレート5の表面501には、凸部61によって凹んだ変形部512が形成されている。この変形部512は、塑性変形によって、樹脂プレート5の表面501が凹んだ形跡もしくは痕等として形成されている。 The frame 6B is made of a metal material such as stainless steel, and the resin plate 5 is made of a resin material. Since the hardness of the frame 6B is higher than the hardness of the resin plate 5, the resin plate 5 is plastically deformed by the convex portions 61 of the frame 6B, and the surface 501 of the resin plate 5 is deformed by the convex portions 61. A portion 512 is formed. The deformed portion 512 is formed as a trace or a mark or the like in which the surface 501 of the resin plate 5 is recessed by plastic deformation.
 本形態においては、フレーム6Bを、凸部61が形成された凸部形成部材11とした。これ以外にも、フレーム6Aを、凸部61が形成された凸部形成部材11としてもよい。この場合には、図20に示すように、凸部接触部材12を放熱フィン4とし、凸部61は、フレーム6Aにおける、放熱フィン4と対向する表面601に設ける。この場合には、フレーム6Aの硬度が放熱フィン4の硬度よりも高いことにより、放熱フィン4の平板42がフレーム6Aの凸部61によって塑性変形し、放熱フィン4の平板42の表面401に、フレーム6Aの凸部61によって凹んだ変形部が形成される。 In this embodiment, the frame 6B is the convex portion forming member 11 in which the convex portion 61 is formed. In addition, the frame 6A may be the convex portion forming member 11 in which the convex portion 61 is formed. In this case, as shown in FIG. 20, the convex contact member 12 is used as the heat radiation fin 4, and the convex portion 61 is provided on the surface 601 of the frame 6 </ b> A facing the heat radiation fin 4. In this case, since the hardness of the frame 6A is higher than the hardness of the radiating fin 4, the flat plate 42 of the radiating fin 4 is plastically deformed by the convex portion 61 of the frame 6A, and the surface 401 of the flat plate 42 of the radiating fin 4 is A deformed portion that is recessed by the convex portion 61 of the frame 6A is formed.
 また、本形態の電気式ヒータ1の構造とは異なるが、凸部接触部材12を電極板3とし、フレーム6A,6Bの凸部61は、電極板3における、フレーム6A,6Bと対向する表面に接触させることもできる。この場合には、フレーム6A,6Bの硬度が電極板3の硬度よりも高いことにより、フレーム6A,6Bの凸部61によって電極板3の表面が塑性変形し、電極板3の表面に、凸部61によって凹んだ変形部が形成される。 Further, although different from the structure of the electric heater 1 of this embodiment, the convex contact member 12 is the electrode plate 3, and the convex portions 61 of the frames 6A and 6B are the surfaces of the electrode plate 3 facing the frames 6A and 6B. Can also be contacted. In this case, since the hardness of the frames 6A and 6B is higher than the hardness of the electrode plate 3, the surface of the electrode plate 3 is plastically deformed by the convex portions 61 of the frames 6A and 6B, and the surface of the electrode plate 3 is convex. A deformed portion that is recessed by the portion 61 is formed.
 本形態の電気式ヒータ1においても、その他の構成は、実施形態1の場合と同様である。本形態においても、実施形態1と同様にして、電気式ヒータ1を製造することができる。また、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。また、本形態においても、実施形態1と同様の作用効果を得ることができる。 Also in the electric heater 1 of this embodiment, the other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1 can be manufactured in the same manner as in the first embodiment. In addition, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
(実施形態5)
 本形態は、実施形態1~4の電気式ヒータ1とは異なる構造の電気式ヒータ1Zについて示す。
 図21~図24に示すように、本形態の電気式ヒータ1Zにおいては、複数のPTC素子2、複数の電極板3、複数の放熱フィン4及び樹脂プレート5A,5Bによる第1の積層体10A及び第2の積層体10Bが、積層方向Hに2段に重ねて配置されている。各積層体10A,10Bにおける電極板3は、プラス電源及びマイナス電源からの電圧の供給を別々に受けることが可能である。電気式ヒータ1Zは、第1の積層体10A又は第2の積層体10Bによる加熱を行う半加熱動作と、両方の積層体10A,10Bによる加熱を行う全加熱動作とが可能である。図24において、プラス電源に接続される電極板3を(+)で示し、マイナス電源に接続される電極板3を(-)で示す。
(Embodiment 5)
This embodiment shows an electric heater 1Z having a structure different from that of the electric heater 1 of the first to fourth embodiments.
As shown in FIGS. 21 to 24, in the electric heater 1Z of this embodiment, the first laminated body 10A composed of a plurality of PTC elements 2, a plurality of electrode plates 3, a plurality of heat radiation fins 4, and resin plates 5A and 5B. The second stacked body 10 </ b> B is arranged in two layers in the stacking direction H. The electrode plates 3 in each of the stacked bodies 10A and 10B can be separately supplied with voltages from a positive power source and a negative power source. The electric heater 1Z can perform a half-heating operation in which heating is performed by the first stacked body 10A or the second stacked body 10B and a full heating operation in which heating is performed by both the stacked bodies 10A and 10B. In FIG. 24, the electrode plate 3 connected to the positive power source is indicated by (+), and the electrode plate 3 connected to the negative power source is indicated by (−).
 本形態の凸部形成部材11は、凸部51が形成された樹脂プレート5Aであり、凸部接触部材12は、電極板3である。本形態の凸部51は、第1の積層体10Aと第2の積層体10Bとの間に配置された樹脂プレート5Aにおける、第1の積層体10Aの電極板3と対向する表面501に設けられている。凸部51は、樹脂プレート5Aにおける、4個のPTC素子2の配置部位を積層方向Hに投影した4箇所の投影範囲R内にそれぞれ設けられている。 The convex portion forming member 11 of this embodiment is a resin plate 5A on which convex portions 51 are formed, and the convex portion contact member 12 is the electrode plate 3. The convex part 51 of this form is provided in the surface 501 facing the electrode plate 3 of 10 A of 1st laminated bodies in the resin plate 5A arrange | positioned between 10 A of 1st laminated bodies, and the 2nd laminated body 10B. It has been. The convex portions 51 are respectively provided in four projection ranges R obtained by projecting the arrangement site of the four PTC elements 2 in the stacking direction H on the resin plate 5A.
 本形態においても、実施形態1の場合と同様に、樹脂プレート5Aの硬度が電極板3の硬度よりも低いことにより、樹脂プレート5Aにおける各凸部51の先端部が塑性変形して潰される。また、図25に示すように、凸部51は、樹脂プレート5Aにおける、第2の積層体10Bの放熱フィン4と対向する表面501に設けることもできる。この場合にも、樹脂プレート5Aの硬度が放熱フィン4の硬度よりも低いことにより、樹脂プレート5Aにおける各凸部51の先端部が塑性変形して潰される。また、凸部51は、第2の積層体10Bとフレーム6Bとの間に配置された樹脂プレート5Bにおける、第2の積層体10Bの電極板3と対向する表面、又は樹脂プレート5Bにおける、フレーム6Bと対向する表面に設けることもできる。 Also in this embodiment, as in the case of the first embodiment, when the hardness of the resin plate 5A is lower than the hardness of the electrode plate 3, the tip portions of the convex portions 51 in the resin plate 5A are plastically deformed and crushed. Moreover, as shown in FIG. 25, the convex part 51 can also be provided in the surface 501 facing the radiation fin 4 of the 2nd laminated body 10B in the resin plate 5A. Also in this case, when the hardness of the resin plate 5A is lower than the hardness of the radiating fins 4, the tips of the convex portions 51 in the resin plate 5A are plastically deformed and crushed. Moreover, the convex part 51 is a surface in the resin plate 5B arrange | positioned between the 2nd laminated body 10B and the flame | frame 6B, the surface facing the electrode plate 3 of the 2nd laminated body 10B, or the frame in the resin plate 5B. It can also be provided on the surface facing 6B.
 本形態の2つの積層体10A,10Bにおける各PTC素子2の横方向W及び奥行方向Dの配置部位は、積層方向Hに沿って見たときに一致している。そして、各PTC素子2の投影範囲Rは、一意的に定まる。一方、各積層体10A,10Bにおける複数のPTC素子2の横方向W及び奥行方向Dの配置部位は、必ずしも一致していなくてもよい。この場合には、複数段の積層体10A,10Bを積層方向Hに沿って見たときに、各積層体10A,10BにおけるPTC素子2の投影範囲R同士が互いに重なる部位に、凸部51を形成することができる。 The arrangement site | part of the horizontal direction W and the depth direction D of each PTC element 2 in the two laminated bodies 10A and 10B of this form corresponds when it sees along the lamination direction H. The projection range R of each PTC element 2 is uniquely determined. On the other hand, the arrangement | positioning site | part of the horizontal direction W and the depth direction D of the some PTC element 2 in each laminated body 10A, 10B does not necessarily need to correspond. In this case, when the multi-layer stacks 10A and 10B are viewed along the stacking direction H, the projections 51 are formed at portions where the projection ranges R of the PTC elements 2 in the stacks 10A and 10B overlap each other. Can be formed.
 図24に示すように、2段の積層体10A,10Bを有する電気式ヒータ1Zにおける各電極板3は、積層方向Hの一方側から順に、プラス電源、マイナス電源、プラス電源、マイナス電源に交互に接続される。樹脂プレート5A,5Bは、第1の積層体10Aと第2の積層体10Bとの間、及び第2の積層体10Bとフレーム6Bとの間に配置されている。第1の積層体10Aと第2の積層体10Bとの間に配置された樹脂プレート5Aは、第1の積層体10Aの、マイナス電源に接続される電極板3及び放熱フィン4と、第2の積層体10Bの、プラス電源に接続される電極板3及び放熱フィン4との間を絶縁する。第2の積層体10Bとフレーム6Bとの間に配置された樹脂プレート5Bは、第2の積層体10Bの、マイナス電源に接続される電極板3及び放熱フィン4と、フレーム6A,6B及び押圧バネ7を介して、第1の積層体10Aの、プラス電源に接続される電極板3及び放熱フィン4とが導通されないようにする。 As shown in FIG. 24, the electrode plates 3 in the electric heater 1Z having the two-layered laminates 10A and 10B are alternately arranged in the order of one side in the stacking direction H into the positive power source, the negative power source, the positive power source, and the negative power source. Connected to. The resin plates 5A and 5B are disposed between the first stacked body 10A and the second stacked body 10B, and between the second stacked body 10B and the frame 6B. The resin plate 5A disposed between the first laminated body 10A and the second laminated body 10B includes the electrode plate 3 and the radiation fins 4 connected to the negative power source of the first laminated body 10A, and the second The laminated body 10B is insulated from the electrode plate 3 and the radiation fin 4 connected to the plus power source. The resin plate 5B disposed between the second laminate 10B and the frame 6B is composed of the electrode plate 3 and the radiation fin 4 connected to the negative power source, the frames 6A and 6B, and the press of the second laminate 10B. The electrode plate 3 and the radiation fin 4 connected to the positive power source of the first stacked body 10A are prevented from being electrically connected to each other through the spring 7.
 本形態の電気式ヒータ1Zにおいても、その他の構成は、実施形態1の場合と同様である。本形態においても、実施形態1と同様にして、電気式ヒータ1Zを製造することができる。また、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。また、本形態においても、実施形態1と同様の作用効果を得ることができる。 Also in the electric heater 1Z of the present embodiment, other configurations are the same as those in the first embodiment. Also in this embodiment, the electric heater 1Z can be manufactured in the same manner as in the first embodiment. In addition, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
(実施形態6)
 本形態は、図26、図27に示すように、実施形態5の電気式ヒータ1Zの変形形態であって、凸部形成部材11を凸部41が形成された放熱フィン4とし、凸部41と接触する凸部接触部材12を樹脂プレート5Aとした場合について示す。
 凸部41は、放熱フィン4の積層方向Hの表面401における、複数のPTC素子2の投影範囲R内にそれぞれ設けられている。凸部41は、放熱フィン4における、樹脂プレート5Aと対向する表面401に設けられている。凸部41は、放熱フィン4の平板42の一部を変形させることによって、放熱フィン4と同質の材料で放熱フィン4に一体的に設けられている。凸部41は、放熱フィン4の平板42の表面401に別途設けられた金属材とすることもできる。
(Embodiment 6)
As shown in FIGS. 26 and 27, the present embodiment is a modification of the electric heater 1 </ b> Z according to the fifth embodiment, in which the convex portion forming member 11 is a heat radiating fin 4 having the convex portion 41 and the convex portion 41. A case where the convex contact member 12 in contact with the resin plate 5A is shown.
The convex portions 41 are respectively provided in the projection ranges R of the plurality of PTC elements 2 on the surface 401 in the stacking direction H of the radiating fins 4. The convex portion 41 is provided on the surface 401 of the radiating fin 4 facing the resin plate 5A. The convex portion 41 is integrally provided on the heat radiation fin 4 with the same material as the heat radiation fin 4 by deforming a part of the flat plate 42 of the heat radiation fin 4. The convex portion 41 may be a metal material separately provided on the surface 401 of the flat plate 42 of the radiating fin 4.
 放熱フィン4は、アルミニウム材料から構成されており、樹脂プレート5Aは、樹脂材料から構成されている。放熱フィン4の硬度が樹脂プレート5Aの硬度よりも高いことにより、放熱フィン4の平板42の凸部41によって、樹脂プレート5Aが塑性変形しており、樹脂プレート5Aの表面501には、凸部41によって凹んだ変形部512が形成されている。この変形部512は、塑性変形によって、樹脂プレート5Aの表面501が凹んだ形跡もしくは痕等として形成されている。 The heat radiating fins 4 are made of an aluminum material, and the resin plate 5A is made of a resin material. Since the hardness of the radiating fin 4 is higher than the hardness of the resin plate 5A, the resin plate 5A is plastically deformed by the convex portion 41 of the flat plate 42 of the radiating fin 4, and the convex portion is formed on the surface 501 of the resin plate 5A. A deformed portion 512 that is recessed by 41 is formed. The deformed portion 512 is formed as a trace or a mark or the like in which the surface 501 of the resin plate 5A is recessed by plastic deformation.
 本形態の凸部41が形成された放熱フィン4は、第2の積層体10Bに使用されるものとした。凸部41は、電気式ヒータ1Zにおけるいずれの放熱フィン4に設けることもできる。凸部41は、例えば、放熱フィン4における、フレーム6Aと対向する表面に設けることもできる。 The heat dissipating fins 4 formed with the convex portions 41 of this embodiment are used for the second laminated body 10B. The convex part 41 can also be provided in any radiation fin 4 in the electric heater 1Z. The convex part 41 can also be provided, for example, on the surface of the radiating fin 4 facing the frame 6A.
 本形態の電気式ヒータ1Zにおいても、その他の構成は、実施形態5の場合と同様である。本形態においても、実施形態1と同様にして、電気式ヒータ1Zを製造することができる。また、実施形態1に示した符号と同一の符号が示す構成要素等は、実施形態1における構成要素等と同様である。また、本形態においても、実施形態1と同様の作用効果を得ることができる。 Also in the electric heater 1Z of the present embodiment, the other configurations are the same as in the case of the fifth embodiment. Also in this embodiment, the electric heater 1Z can be manufactured in the same manner as in the first embodiment. In addition, the constituent elements and the like indicated by the same reference numerals as those in the first embodiment are the same as the constituent elements and the like in the first embodiment. Also in this embodiment, the same effects as those of the first embodiment can be obtained.
(その他)
 前述したように、凸部31,41,51,61を形成する凸部形成部材11は、電極板3、放熱フィン4、樹脂プレート5,5A,5B又はフレーム6A,6Bのいずれとすることもできる。また、凸部31,41,51,61と接触する凸部接触部材12も、電極板3、放熱フィン4、樹脂プレート5,5A,5B又はフレーム6A,6Bのいずれとすることもできる。凸部31,41,51,61と凸部接触部材12とのいずれが塑性変形するかは、両者の硬度によって決まり、硬度が低い方が塑性変形する。そのため、両者の硬度が同等になる場合には、凸部31,41,51,61が潰れるように塑性変形するとともに、凸部接触部材12が凹むように塑性変形することもあり得る。また、凸部31,41,51,61の硬度が凸部接触部材12の硬度より高くても、凸部31,41,51,61の形状によっては、凸部接触部材12の塑性変形に必要な荷重よりも低い荷重で凸部31,41,51,61が塑性変形することもあり得る。
(Other)
As described above, the convex portion forming member 11 forming the convex portions 31, 41, 51, 61 may be any one of the electrode plate 3, the heat radiating fins 4, the resin plates 5, 5A, 5B, or the frames 6A, 6B. it can. Moreover, the convex part contact member 12 which contacts the convex parts 31, 41, 51, 61 can also be any of the electrode plate 3, the radiation fin 4, the resin plates 5, 5A, 5B, or the frames 6A, 6B. Which of the convex portions 31, 41, 51, 61 and the convex portion contact member 12 is plastically deformed is determined by the hardness of both, and the lower the hardness, the plastic deformation occurs. Therefore, when both hardness becomes equivalent, while deforming so that convex part 31,41,51,61 may be crushed, it may be plastically deformed so that convex part contact member 12 may be dented. Moreover, even if the hardness of the convex portions 31, 41, 51, 61 is higher than the hardness of the convex portion contact member 12, depending on the shape of the convex portions 31, 41, 51, 61, it is necessary for plastic deformation of the convex portion contact member 12. The convex portions 31, 41, 51, 61 may be plastically deformed with a load lower than a normal load.
 電極板3、放熱フィン4、樹脂プレート5,5A,5B及びフレーム6A,6Bの中においては、樹脂プレート5,5A,5Bの硬度が最も低い。そのため、凸部形成部材11又は凸部接触部材12を樹脂プレート5,5A,5Bとすることにより、押圧バネ7の押圧力によって凸部51又は凸部接触部材12を塑性変形させることが容易になる。また、樹脂プレート5,5A,5Bは、射出成形法等によって成形するため、凸部51を一体的に形成することが容易である。電極板3、放熱フィン4の平板42、フレーム6A,6Bに凸部31,41,61を形成する場合には、それぞれの部材をプレス加工によって成形する際に、素材の一部を変形させて、凸部31,41,61を一体的に形成することができる。 Among the electrode plate 3, the radiating fin 4, the resin plates 5, 5A, 5B and the frames 6A, 6B, the resin plates 5, 5A, 5B have the lowest hardness. Therefore, by using the convex portion forming member 11 or the convex portion contact member 12 as the resin plates 5, 5A, 5B, the convex portion 51 or the convex portion contact member 12 can be easily plastically deformed by the pressing force of the pressing spring 7. Become. Further, since the resin plates 5, 5 </ b> A, 5 </ b> B are molded by an injection molding method or the like, it is easy to integrally form the convex portions 51. When the convex portions 31, 41, 61 are formed on the electrode plate 3, the flat plate 42 of the radiating fin 4, and the frames 6A, 6B, a part of the material is deformed when each member is formed by pressing. The convex portions 31, 41, 61 can be integrally formed.
 電極板3の積層方向Hの表面と放熱フィン4の積層方向Hの表面とは、導電性又は伝熱性を確保するために、互いに密着していることが好ましい。そのため、凸部形成部材11を電極板3とし、凸部接触部材12を放熱フィン4とする場合、又は凸部形成部材11を放熱フィン4とし、凸部接触部材12を電極板3とする場合には、凸部31,41の形成高さを低くして、凸部31,41及び凸部接触部材12の少なくとも一方が塑性変形しつつ、電極板3の積層方向Hの表面と放熱フィン4の積層方向Hの表面とが密着する状態を形成する工夫も必要となる。 It is preferable that the surface in the stacking direction H of the electrode plate 3 and the surface in the stacking direction H of the radiation fin 4 are in close contact with each other in order to ensure conductivity or heat transfer. Therefore, when the convex part forming member 11 is the electrode plate 3 and the convex part contact member 12 is the radiating fin 4, or the convex part forming member 11 is the radiating fin 4 and the convex part contact member 12 is the electrode plate 3. In this case, the formation height of the convex portions 31 and 41 is lowered, and at least one of the convex portions 31 and 41 and the convex portion contact member 12 is plastically deformed, and the surface of the electrode plate 3 in the stacking direction H and the radiation fin 4. It is also necessary to devise a method for forming a state in which the surface in the stacking direction H is in close contact.
 一方、樹脂プレート5,5A,5B及びフレーム6A,6Bには、導電性及び伝熱性が要求されない。そのため、凸部形成部材11及び凸部接触部材12の少なくとも一方を、樹脂プレート5,5A,5B又はフレーム6A,6Bとすることにより、積層方向Hの表面を必ずしも密着させる必要がなくなり、凸部形成部材11の凸部31,41,51,61の形成高さ、大きさ等を設定しやすくすることができる。ただし、空調用空気等の流体は、放熱フィン4からの熱伝導によって加熱することが基本である。凸部形成部材11の凸部31,41,51,61と凸部接触部材12との間に形成される隙間は、流体を加熱せずに通過させてしまう隙間になる可能性がある。そのため、凸部31,41,51,61の形成高さを低くして、凸部形成部材11における、凸部31,41,51,61の形成部位を除く積層方向Hの表面と、凸部接触部材12の積層方向Hの表面との間に、隙間が極力形成されないようにすることが好ましい。 On the other hand, the resin plates 5, 5A, 5B and the frames 6A, 6B are not required to have conductivity and heat conductivity. Therefore, by using at least one of the convex portion forming member 11 and the convex portion contact member 12 as the resin plates 5, 5 </ b> A, 5 </ b> B or the frames 6 </ b> A, 6 </ b> B, the surface in the stacking direction H is not necessarily closely adhered. It is possible to easily set the formation height, size, and the like of the convex portions 31, 41, 51, 61 of the forming member 11. However, fluid such as air for air conditioning is basically heated by heat conduction from the radiation fins 4. The gap formed between the convex portions 31, 41, 51, 61 of the convex portion forming member 11 and the convex portion contact member 12 may be a gap that allows fluid to pass through without being heated. Therefore, the formation height of the convex portions 31, 41, 51, 61 is lowered, and the surface of the convex portion forming member 11 in the stacking direction H excluding the formation portions of the convex portions 31, 41, 51, 61, and the convex portions It is preferable to prevent a gap from being formed as much as possible between the contact member 12 and the surface in the stacking direction H.
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。 The present disclosure is not limited to each embodiment, and further different embodiments can be configured without departing from the scope of the disclosure. In addition, the present disclosure includes various modifications, modifications within an equivalent range, and the like.

Claims (13)

  1.  通電によって発熱し、横方向(W)に並んで配置された複数のPTC素子(2)と、
     前記PTC素子の、前記横方向に直交する積層方向(H)の両側に積層され、前記PTC素子に通電するための複数の電極板(3)と、
     前記PTC素子の前記積層方向の両側に積層され、前記PTC素子から伝わる熱を放熱するための複数の放熱フィン(4)と、
     前記電極板又は前記放熱フィンの前記積層方向に積層され、極性の異なる前記電極板の間を絶縁するための1つ又は複数の樹脂プレート(5,5A,5B)と、
     前記PTC素子、前記電極板、前記放熱フィン及び前記樹脂プレートの積層体(10,10A,10B)を、前記積層方向の両側から押圧する押圧バネ(7)と、を備え、
     前記電極板、前記放熱フィン及び前記樹脂プレートのうちのいずれかを、凸部(31,41,51)を有する凸部形成部材(11)とし、かつ前記凸部形成部材を除く、前記電極板、前記放熱フィン及び前記樹脂プレートのうちの他のいずれかを、前記凸部と接触する凸部接触部材(12)としたとき、
     前記凸部は、前記凸部形成部材の前記積層方向の表面(301,401,501)における、複数の前記PTC素子の配置部位をそれぞれ前記積層方向に投影した複数の投影範囲(R)内にそれぞれ設けられており、
     全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方は、塑性変形による変形部(511,512)を有する、電気式ヒータ(1)。
    A plurality of PTC elements (2) that generate heat when energized and are arranged side by side in the lateral direction (W);
    A plurality of electrode plates (3) stacked on both sides of the stacking direction (H) perpendicular to the lateral direction of the PTC element, and for energizing the PTC element;
    A plurality of heat dissipating fins (4) laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element;
    One or a plurality of resin plates (5, 5A, 5B) laminated in the laminating direction of the electrode plates or the heat radiating fins and insulating between the electrode plates having different polarities;
    A pressing spring (7) that presses the laminated body (10, 10A, 10B) of the PTC element, the electrode plate, the radiation fin, and the resin plate from both sides in the laminating direction;
    The electrode plate, wherein any one of the electrode plate, the radiating fin, and the resin plate is a convex portion forming member (11) having a convex portion (31, 41, 51), and the convex portion forming member is excluded. When any one of the heat radiating fins and the resin plate is a convex contact member (12) that contacts the convex part,
    The convex portion is within a plurality of projection ranges (R) obtained by projecting the arrangement portions of the plurality of PTC elements in the stacking direction on the surface (301, 401, 501) of the convex portion forming member in the stacking direction. Each is provided,
    The electric heater (1), wherein at least one of the convex portion and the convex portion contact member in all the projection ranges has a deformed portion (511, 512) due to plastic deformation.
  2.  前記凸部形成部材は、前記樹脂プレートである、請求項1に記載の電気式ヒータ。 The electric heater according to claim 1, wherein the convex forming member is the resin plate.
  3.  前記凸部接触部材は、前記電極板又は前記放熱フィンであり、
     前記変形部は、前記各投影範囲内における前記凸部が塑性変形することによって形成されたものである、請求項2に記載の電気式ヒータ。
    The convex contact member is the electrode plate or the radiating fin,
    The electric heater according to claim 2, wherein the deformable portion is formed by plastic deformation of the convex portion within each projection range.
  4.  前記凸部形成部材は、前記電極板である、請求項1に記載の電気式ヒータ。 The electric heater according to claim 1, wherein the convex forming member is the electrode plate.
  5.  前記凸部接触部材は、前記放熱フィン又は前記樹脂プレートであり、
     前記変形部は、前記凸部接触部材が塑性変形することによって形成されたものである、請求項4に記載の電気式ヒータ。
    The convex contact member is the heat radiating fin or the resin plate,
    The electric heater according to claim 4, wherein the deforming portion is formed by plastic deformation of the convex portion contact member.
  6.  前記凸部形成部材は、前記放熱フィンである、請求項1に記載の電気式ヒータ。 The electric heater according to claim 1, wherein the convex forming member is the heat radiating fin.
  7.  前記凸部接触部材は、前記電極板又は前記樹脂プレートであり、
     前記変形部は、前記各投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方が塑性変形することによって形成されたものである、請求項6に記載の電気式ヒータ。
    The convex contact member is the electrode plate or the resin plate,
    The electric heater according to claim 6, wherein the deformable portion is formed by plastic deformation of at least one of the convex portion and the convex portion contact member in each projection range.
  8.  通電によって発熱し、横方向(W)に並んで配置された複数のPTC素子(2)と、
     前記PTC素子の、前記横方向に直交する積層方向(D)の両側に積層され、前記PTC素子に通電するための複数の電極板(3)と、
     前記PTC素子の前記積層方向の両側に積層され、前記PTC素子から伝わる熱を放熱するための複数の放熱フィン(4)と、
     前記電極板又は前記放熱フィンの前記積層方向に積層され、極性の異なる前記電極板の間を絶縁するための1つ又は複数の樹脂プレート(5,5A,5B)と、
     前記PTC素子、前記電極板、前記放熱フィン及び前記樹脂プレートの積層体(10,10A,10B)の前記積層方向の両端に積層された一対のフレーム(6A,6B)と、
     一対の前記フレームを介して、前記積層体を前記積層方向の両側から押圧する押圧バネ(7)と、を備え、
     前記電極板、前記放熱フィン、前記樹脂プレート及び前記フレームのうちのいずれかを、凸部(31,41,51,61)を有する凸部形成部材(11)とし、かつ前記凸部形成部材を除く、前記電極板、前記放熱フィン、前記樹脂プレート及び前記フレームのうちの他のいずれかを、前記凸部と接触する凸部接触部材(12)としたとき、
     前記凸部は、前記凸部形成部材の前記積層方向の表面(301,401,501,601)における、複数の前記PTC素子の配置部位をそれぞれ前記積層方向に投影した複数の投影範囲(R)内にそれぞれ設けられており、
     全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方は、塑性変形による変形部(511,512)を有する、電気式ヒータ(1)。
    A plurality of PTC elements (2) that generate heat when energized and are arranged side by side in the lateral direction (W);
    A plurality of electrode plates (3) stacked on both sides of the stacking direction (D) perpendicular to the lateral direction of the PTC element, and for energizing the PTC element;
    A plurality of heat dissipating fins (4) laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element;
    One or a plurality of resin plates (5, 5A, 5B) laminated in the laminating direction of the electrode plates or the heat radiating fins and insulating between the electrode plates having different polarities;
    A pair of frames (6A, 6B) laminated at both ends in the laminating direction of the laminated body (10, 10A, 10B) of the PTC element, the electrode plate, the radiation fin, and the resin plate;
    A pressing spring (7) for pressing the stacked body from both sides in the stacking direction via a pair of the frames;
    Any one of the electrode plate, the radiating fin, the resin plate, and the frame is a convex portion forming member (11) having convex portions (31, 41, 51, 61), and the convex portion forming member is When excluding the electrode plate, the heat radiating fin, the resin plate, and the other one of the frame, a convex contact member (12) that contacts the convex portion,
    The convex portion is a plurality of projection ranges (R) obtained by projecting arrangement portions of the plurality of PTC elements in the stacking direction on the surface (301, 401, 501, 601) in the stacking direction of the convex forming member. In each,
    The electric heater (1), wherein at least one of the convex portion and the convex portion contact member in all the projection ranges has a deformed portion (511, 512) due to plastic deformation.
  9.  前記凸部形成部材は、前記フレームである、請求項8に記載の電気式ヒータ。 The electric heater according to claim 8, wherein the convex forming member is the frame.
  10.  前記凸部接触部材は、前記電極板、前記放熱フィン又は前記樹脂プレートであり、
     前記変形部は、前記凸部接触部材が塑性変形することによって形成されたものである、請求項9に記載の電気式ヒータ。
    The convex contact member is the electrode plate, the radiation fin or the resin plate,
    The electric heater according to claim 9, wherein the deforming portion is formed by plastic deformation of the convex portion contact member.
  11.  前記凸部形成部材は、前記電極板、前記放熱フィン又は前記樹脂プレートであり、前記凸部接触部材は、前記フレームであり、
     前記変形部は、前記各投影範囲内における前記凸部が塑性変形することによって形成されたものである、請求項8に記載の電気式ヒータ。
    The convex portion forming member is the electrode plate, the heat radiating fin, or the resin plate, and the convex portion contact member is the frame,
    The electric heater according to claim 8, wherein the deformable portion is formed by plastic deformation of the convex portion within each projection range.
  12.  前記凸部は、前記凸部形成部材と同質の材料で前記凸部形成部材と一体的に設けられている、請求項1~11のいずれか1項に記載の電気式ヒータ。 The electric heater according to any one of claims 1 to 11, wherein the convex portion is provided integrally with the convex portion forming member using the same material as the convex portion forming member.
  13.  通電によって発熱し、横方向(W)に並んで配置された複数のPTC素子(2)と、
     前記PTC素子の、前記横方向に直交する積層方向(D)の両側に積層され、前記PTC素子に通電するための複数の電極板(3)と、
     前記PTC素子の前記積層方向の両側に積層され、前記PTC素子から伝わる熱を放熱するための複数の放熱フィン(4)と、
     前記電極板又は前記放熱フィンの前記積層方向に積層され、極性の異なる前記電極板の間を絶縁するための1つ又は複数の樹脂プレート(5,5A,5B)と、
     前記PTC素子、前記電極板、前記放熱フィン及び前記樹脂プレートの積層体(10,10A,10B)を、前記積層方向の両側から押圧する押圧バネ(7)と、を備える、電気式ヒータを製造する方法において、
     前記電極板、前記放熱フィン及び前記樹脂プレートのうちのいずれかを、凸部(31,41,51)を有する凸部形成部材(11)とし、かつ前記凸部形成部材を除く、前記電極板、前記放熱フィン及び前記樹脂プレートのうちの他のいずれかを、前記凸部と接触する凸部接触部材(12)としたとき、
     前記凸部は、前記凸部形成部材の前記積層方向の表面(301,401,501)における、複数の前記PTC素子の配置部位をそれぞれ前記積層方向に投影した複数の投影範囲(R)内にそれぞれ設け、
     前記押圧バネによって、前記積層体を、前記積層方向の両側から押圧する際に、全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方を塑性変形させて、全ての前記投影範囲内における前記凸部と前記凸部接触部材との少なくとも一方に変形部(511,512)を形成する、電気式ヒータ(1)の製造方法。
    A plurality of PTC elements (2) that generate heat when energized and are arranged side by side in the lateral direction (W);
    A plurality of electrode plates (3) stacked on both sides of the stacking direction (D) perpendicular to the lateral direction of the PTC element, and for energizing the PTC element;
    A plurality of heat dissipating fins (4) laminated on both sides of the PTC element in the laminating direction and for radiating heat transmitted from the PTC element;
    One or a plurality of resin plates (5, 5A, 5B) laminated in the laminating direction of the electrode plates or the heat radiating fins and insulating between the electrode plates having different polarities;
    Manufacturing an electric heater, comprising: a pressing spring (7) that presses the PTC element, the electrode plate, the heat radiating fin, and the laminate (10, 10A, 10B) of the resin plate from both sides in the stacking direction. In the way to
    The electrode plate, wherein any one of the electrode plate, the radiating fin, and the resin plate is a convex portion forming member (11) having a convex portion (31, 41, 51), and the convex portion forming member is excluded. When any one of the heat radiating fins and the resin plate is a convex contact member (12) that contacts the convex part,
    The convex portion is within a plurality of projection ranges (R) obtained by projecting the arrangement portions of the plurality of PTC elements in the stacking direction on the surface (301, 401, 501) of the convex portion forming member in the stacking direction. Each provided,
    When the laminate is pressed from both sides in the stacking direction by the pressing spring, at least one of the convex portions and the convex portion contact members in all the projection ranges is plastically deformed, The manufacturing method of the electric heater (1) which forms a deformation | transformation part (511,512) in at least one of the said convex part and the said convex part contact member in a projection range.
PCT/JP2017/043071 2016-12-02 2017-11-30 Electric heater and method for manufacturing same WO2018101407A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780074473.8A CN110140422B (en) 2016-12-02 2017-11-30 Electric heater and method for manufacturing the same
DE112017006124.5T DE112017006124T5 (en) 2016-12-02 2017-11-30 Electric heating device and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234975 2016-12-02
JP2016234975A JP6640700B2 (en) 2016-12-02 2016-12-02 Electric heater

Publications (1)

Publication Number Publication Date
WO2018101407A1 true WO2018101407A1 (en) 2018-06-07

Family

ID=62242285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043071 WO2018101407A1 (en) 2016-12-02 2017-11-30 Electric heater and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP6640700B2 (en)
CN (1) CN110140422B (en)
DE (1) DE112017006124T5 (en)
WO (1) WO2018101407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618426A (en) * 2018-11-20 2019-04-12 海盐徐氏电控设备有限公司 A kind of electric ripple type PTC heating block being easily installed

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157607B2 (en) * 2018-09-26 2022-10-20 三菱重工サーマルシステムズ株式会社 Heat medium heating device and vehicle air conditioner
CN111918423B (en) * 2020-08-31 2022-04-29 江苏启程电热科技有限公司 Anti-condensation and corrosion-resistant PTC electric heater and manufacturing method thereof
DE102021103480A1 (en) 2021-02-15 2022-08-18 Tdk Electronics Ag PTC heating element, electric heating device and use of a PTC heating element
JP7529996B2 (en) 2021-03-23 2024-08-07 株式会社デンソートリム Electric heater
DE102022121865A1 (en) 2022-08-30 2024-02-29 Tdk Electronics Ag Monolithic functional ceramic element and method for producing a contact for a functional ceramic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521134A (en) * 1991-07-02 1993-01-29 Sumitomo Metal Ind Ltd Ptc thermister heater
JP2009152172A (en) * 2007-11-26 2009-07-09 Denso Corp Electric heater
JP2009170121A (en) * 2008-01-11 2009-07-30 Calsonic Kansei Corp Electric heater unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730324B (en) * 2009-11-11 2013-04-03 天津三电汽车空调有限公司 Electric heater for air conditioner of automobile
CN103687098A (en) * 2013-12-30 2014-03-26 上海神沃电子有限公司 PTC (Positive Temperature Coefficient) heating sheet, low-temperature radiating electrothermal film and preparation method of low-temperature radiating electrothermal film
CN105072711A (en) * 2015-07-28 2015-11-18 江苏源之翼电气有限公司 Pretightening force PTC electric heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521134A (en) * 1991-07-02 1993-01-29 Sumitomo Metal Ind Ltd Ptc thermister heater
JP2009152172A (en) * 2007-11-26 2009-07-09 Denso Corp Electric heater
JP2009170121A (en) * 2008-01-11 2009-07-30 Calsonic Kansei Corp Electric heater unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618426A (en) * 2018-11-20 2019-04-12 海盐徐氏电控设备有限公司 A kind of electric ripple type PTC heating block being easily installed

Also Published As

Publication number Publication date
CN110140422B (en) 2022-05-13
CN110140422A (en) 2019-08-16
JP6640700B2 (en) 2020-02-05
JP2018092787A (en) 2018-06-14
DE112017006124T5 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018101407A1 (en) Electric heater and method for manufacturing same
US8084721B2 (en) Electrical heating apparatus, method of manufacturing heat generator unit and pressing jig for use in manufacturing thereof
JP6368807B2 (en) Manufacturing method of fuel cell stack and manufacturing method of metal separator for fuel cell
JP2015520480A (en) Method for manufacturing a lithium ion battery module and corresponding lithium ion battery module
JP4579282B2 (en) Electric heater device
JP2011181369A (en) Laminated cell battery structure
WO2015087438A1 (en) Secondary cell module
EP3147983B1 (en) Fuel cell manufacturing method and fuel cell manufacturing device
WO2018163816A1 (en) Separator, battery module and battery module production method
JP2018092787A5 (en) Electric heater
WO2010001771A1 (en) Polymeric actuator and device equipped with polymeric actuator
CN103165959B (en) There is the battery component of heat management system
WO2017033802A1 (en) Pressing structure and pressing unit
JP2009187972A (en) Power storage module
JP3963165B2 (en) Assembled battery
JP6411456B2 (en) Spring member and pressing unit
JP6245059B2 (en) Assembled battery and method of manufacturing the assembled battery
CN110050139B (en) Pressing structure and pressing unit
JP6119419B2 (en) Power converter
JP2008084957A (en) Mounting structure and mounting method for actuator
KR20120002574A (en) Electrochemical cell and contact element for making contact with it
JP2007300005A (en) Electrical heater equipment
JP2019121523A (en) Method of manufacturing fuel cell separator
CN220649814U (en) Temperature sensing mechanism
JP7131178B2 (en) exothermic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876825

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17876825

Country of ref document: EP

Kind code of ref document: A1