WO2018101294A1 - Conductive carbon material dispersion - Google Patents

Conductive carbon material dispersion Download PDF

Info

Publication number
WO2018101294A1
WO2018101294A1 PCT/JP2017/042729 JP2017042729W WO2018101294A1 WO 2018101294 A1 WO2018101294 A1 WO 2018101294A1 JP 2017042729 W JP2017042729 W JP 2017042729W WO 2018101294 A1 WO2018101294 A1 WO 2018101294A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
conductive carbon
oxazoline
material dispersion
conductive
Prior art date
Application number
PCT/JP2017/042729
Other languages
French (fr)
Japanese (ja)
Inventor
辰也 畑中
佑紀 柴野
卓司 吉本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2018554177A priority Critical patent/JP7081493B2/en
Publication of WO2018101294A1 publication Critical patent/WO2018101294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C08L57/12Homopolymers or copolymers containing elements other than carbon and hydrogen containing nitrogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials

Definitions

  • the present invention relates to a conductive carbon material dispersion, and more specifically, relates to a conductive carbon material dispersion containing a conductive carbon material and an antifoaming agent and suitable as a composition for a conductive thin film.
  • a lithium ion secondary battery is a secondary battery that has been developed most vigorously at present because it has a high energy density and a high voltage and has no memory effect during charging and discharging.
  • the development of electric vehicles has been actively promoted due to recent efforts to deal with environmental problems, and higher performance has been demanded for secondary batteries as a power source.
  • a lithium ion secondary battery contains a positive electrode and a negative electrode capable of occluding and releasing lithium, and a separator interposed therebetween in a container, and an electrolyte solution (liquid in the case of a lithium ion polymer secondary battery) therein. It has a structure filled with a gel-like or all solid electrolyte instead of the electrolyte.
  • an active material capable of occluding and releasing lithium, a conductive material mainly composed of a carbon material, and a composition containing a polymer binder are generally applied on a current collector such as a copper foil or an aluminum foil. It is manufactured by doing.
  • This binder is used to bond an active material and a conductive material, and further to the metal foil, and is a fluorine-based resin soluble in N-methylpyrrolidone (NMP) such as polyvinylidene fluoride (PVdF) or an olefin-based heavy polymer.
  • NMP N-methylpyrrolidone
  • PVdF polyvinylidene fluoride
  • olefin-based heavy polymer Combined aqueous dispersions are commercially available.
  • the lithium ion secondary battery is also expected to be applied as a power source for electric vehicles and the like, and a longer life and safety than ever before are required.
  • the adhesive strength of the binder to the current collector cannot be said to be sufficient, and part of the active material or conductive material is peeled off from the current collector during the manufacturing process such as the cutting process or winding process of the electrode plate.
  • this may cause a minute short circuit and a variation in battery capacity.
  • the contact resistance between the electrode mixture and the current collector increases due to the volume change of the electrode mixture due to the swelling of the binder due to the electrolytic solution and the volume change due to the lithium occlusion and release of the active material after long-term use.
  • a method of inserting a conductive binder layer between a current collector and an electrode mixture has been developed.
  • a conductive carbon material is dispersed by using a surfactant-containing polymer having an oxazoline group as a dispersant, and a conductive thin film (hereinafter, referred to as a conductive thin film) obtained from this conductive carbon material dispersion.
  • Current collector (hereinafter also referred to as a composite current collector) can reduce the contact resistance between the current collector and the electrode mixture, and reduce the capacity during high-speed discharge. It has been shown that the degradation of the battery can also be suppressed.
  • An object of the present invention is to provide a conductive carbon material dispersion that can produce a uniform conductive thin film.
  • an acetylene-based surfactant As a result of intensive studies to achieve the above object, the present inventors have determined that an acetylene-based surfactant, a silicone-based surfactant, a metal soap-based surfactant, and an acrylic interface with respect to a conductive carbon material.
  • at least one antifoaming agent selected from activators it is possible to suppress the generation of bubbles, and in particular, by adding an acetylene-based surfactant, specifically a uniformly dispersed state of the conductive carbon material
  • the present inventors have found that a conductive carbon material dispersion liquid that can suppress the generation of bubbles while maintaining the viscosity and can be applied uniformly is obtained.
  • the present invention includes a conductive carbon material and one or more antifoaming agents selected from acetylene surfactants, silicone surfactants, metal soap surfactants, and acrylic surfactants.
  • Conductive carbon material dispersion 2. 1 conductive carbon material dispersion liquid in which the antifoaming agent contains an acetylene-based surfactant; 3. Furthermore, 1 or 2 conductive carbon material dispersion liquid containing the conductive carbon material dispersing agent which has surface active action, and a dispersion medium, 4).
  • the conductive carbon material dispersion liquid according to any one of 1 to 3, wherein the conductive carbon material includes one or more selected from graphite, carbon black, and carbon nanotubes, 5).
  • the conductive carbon material is a conductive carbon material dispersion liquid of any one of 1 to 4, wherein the conductive carbon material contains carbon nanotubes, 6).
  • the dispersion medium is any one of 3 to 5 conductive carbon material dispersion liquid containing water, 7).
  • a conductive carbon material dispersion of 8 wherein the chain hydrocarbon group containing a polymerizable carbon-carbon double bond is an alkenyl group having 2 to 8 carbon atoms; 10.
  • the oxazoline monomer is 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2 -Vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl -5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4 -Propyl-2-oxazoline, 2-isopropenyl-4-butyl-2-oxazoline, 2-isopropenyl-5-methyl 1 selected from
  • conductive carbon material dispersions wherein the oxazoline monomer is 2-isopropenyl-2-oxazoline; 12 Any one of the conductive carbon material dispersions 1 to 11 containing a crosslinking agent; 13. 12 conductive carbon material dispersions, wherein the crosslinking agent comprises a compound that causes a crosslinking reaction with an oxazoline group, 14 A compound that undergoes a crosslinking reaction with the oxazoline group exhibits a crosslinking reactivity in the presence of an acid catalyst, a synthetic polymer metal salt and a natural polymer metal salt, and exhibits a crosslinking reactivity when heated.
  • conductive carbon material dispersions containing a compound selected from ammonium salts of molecules and ammonium salts of natural polymers 15. 14 conductive substances, wherein the compound causing a crosslinking reaction with the oxazoline group includes a compound selected from lithium polyacrylate, sodium polyacrylate, ammonium polyacrylate, lithium carboxymethylcellulose, sodium carboxymethylcellulose, ammonium carboxymethylcellulose, and ammonium alginate.
  • a conductive binder layer obtained from the conductive carbon material dispersion liquid of any one of 1 to 16, 18. 17 conductive binder layers having a thickness of 5 ⁇ m or less, 19.
  • a composite current collector for an electrode of an energy storage device comprising: a current collecting substrate; and any one of conductive bonding layers 17 to 20 formed on the substrate, 22.
  • An electrode for an energy storage device comprising a composite current collector for an electrode of 21 energy storage devices, 23. 22 energy storage device electrodes comprising 21 energy storage device electrode composite current collectors and an active material layer formed on the conductive binder layer of the composite current collectors, 24.
  • An energy storage device comprising 22 or 23 electrodes for energy storage devices, 25. 24 energy storage devices which are lithium ion secondary batteries, 26.
  • a method for producing a conductive carbon material dispersion liquid with suppressed foaming comprising mixing a conductive carbon material, a conductive carbon material dispersant having a surface-active action, a dispersion medium, and an acetylene-based surfactant; 27.
  • a method for defoaming a conductive carbon material dispersion comprising mixing a conductive carbon material, a conductive carbon material dispersant having a surface active action, a dispersion medium, and an acetylene surfactant.
  • the conductive carbon material dispersion of the present invention is difficult to foam, its preparation and uniform coating are easy, and a uniform thin film can be easily obtained by coating the dispersion on a substrate. Since the obtained thin film exhibits high conductivity, it is suitable for the production of a conductive thin film and not only provides a thin film with excellent adhesion to a substrate, but also efficiently by a wet method with good reproducibility. Since a thin film having a large area can be formed, it can be suitably used not only for energy storage devices but also for various applications such as various semiconductor materials and conductor materials.
  • the conductive thin film for forming a conductive binder layer for joining the current collector substrate constituting the energy storage device electrode and the active material is suitable as a composition for use.
  • this conductive binder layer the electrical resistance of the energy storage device can be lowered, so that current can be taken out without causing a voltage drop, especially in applications that require a large current instantaneously, such as in electric vehicles. At the same time, the service life can be extended.
  • the conductive carbon material dispersion according to the present invention is one or two selected from conductive carbon materials, acetylene surfactants, silicone surfactants, metal soap surfactants, and acrylic surfactants.
  • the above-mentioned antifoaming agent is included.
  • an antifoaming agent containing an acetylene surfactant is preferable, and an antifoaming agent containing 50% by mass or more of an acetylene surfactant is preferable.
  • an antifoaming agent containing 80% by mass or more of an acetylenic surfactant is more preferable, and an antifoaming agent consisting of only an acetylenic surfactant (100% by mass) is optimal.
  • the amount of the antifoaming agent is not particularly limited, but while sufficiently exerting the foaming suppression effect, the aggregation of the conductive carbon material is suppressed.
  • the content is preferably 0.001 to 1.0 mass%, more preferably 0.01 to 0.5 mass%, based on the entire dispersion.
  • acetylene-based surfactant used as an antifoaming agent in the present invention are not particularly limited, but a surfactant containing an ethoxylated acetylene glycol represented by the following formula (A) is used. It is preferable to use it.
  • Specific examples of the alkyl group having 1 to 10 carbon atoms may be linear, branched, or cyclic.
  • acetylene glycol represented by the above formula (A) include 2,5,8,11-tetramethyl-6-dodecin-5,8-diol, 5,8-dimethyl-6-dodecin-5, 8-diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 4,7-dimethyl-5-decyne-4,7-diol, 2,3,6,7-tetra Methyl-4-octyne-3,6-diol, 3,6-dimethyl-4-octyne-3,6-diol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,4,7, Ethoxylate of 9-tetramethyl-5-decyne-4,7-diol (number of moles of ethylene oxide added: 1.3), 2,4,7,9-tetramethyl-5-decyne-4,7-diol (
  • the acetylene-based surfactant that can be used in the present invention can also be obtained as a commercial product.
  • a commercial product examples include Olphine D-10PG (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 50 mass).
  • Olphine E-1004 manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100% by mass, pale yellow liquid
  • Olphine E-1010 manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100% by mass
  • Olphine E-1020 manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100% by mass, pale yellow liquid
  • Olphine E-1030W manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 75 masses) %, Light yellow liquid
  • Surfynol 420 manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100 mass%, pale yellow viscous substance
  • Surfynol 440 manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100 mass
  • SURFYNOL 104E Nisshin Chemical Industry Co., Ltd.
  • the silicone surfactant used as an antifoaming agent in the present invention is not particularly limited, and may be linear, branched, or cyclic as long as it contains at least a silicone chain. Either a hydrophobic group or a hydrophilic group may be contained.
  • hydrophobic group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n- Examples thereof include alkyl groups such as heptyl group, n-octyl group, n-nonyl group and n-decyl group; cyclic alkyl groups such as cyclohexyl group; aromatic hydrocarbon groups such as phenyl group.
  • hydrophilic groups include amino groups, thiol groups, hydroxyl groups, alkoxy groups, carboxylic acids, sulfonic acids, phosphoric acids, nitric acids and their organic and inorganic salts, ester groups, aldehyde groups, glycerol groups, heterocyclic rings. Groups and the like.
  • silicone surfactants include dimethyl silicone, methylphenyl silicone, chlorophenyl silicone, alkyl modified silicone, fluorine modified silicone, amino modified silicone, alcohol modified silicone, phenol modified silicone, carboxy modified silicone, epoxy modified silicone, fatty acid. Examples thereof include ester-modified silicone and polyether-modified silicone.
  • Silicone-based surfactants that can be used in the present invention can also be obtained as commercial products, such as BYK-300, BYK-301, BYK-302, BYK-306, BYK-307, BYK-310, BYK-313, BYK-320BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, BYK-349 (above trade names, manufactured by BYK Japan KK) , KM-80, KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X -22-4515, KF-6011, KF-6012, KF-6015, KF-6017 (Manufactured by Gaku Kogyo Co., Ltd.), SH-28PA, SH8400, SH-190, SF
  • the metal soap surfactant used as an antifoaming agent in the present invention is not particularly limited, and includes any of linear, branched, and cyclic containing at least a polyvalent metal ion such as calcium and magnesium. It may be a structured metal soap. More specifically, fatty acids having 12 to 22 carbon atoms such as aluminum stearate, manganese stearate, cobalt stearate, copper stearate, iron stearate, nickel stearate, calcium stearate, zinc laurate, magnesium behenate and the like And salts with metals (alkaline earth metals, aluminum, manganese, cobalt, copper, iron, zinc, nickel, etc.).
  • the metal soap-based surfactant that can be used in the present invention can also be obtained as a commercial product. Examples of such a commercial product include Nopco NXZ (trade name, manufactured by San Nopco Co., Ltd.).
  • the acrylic surfactant used as an antifoaming agent in the present invention is not particularly limited as long as it is a polymer obtained by polymerizing at least an acrylic monomer, but is obtained by polymerizing at least an alkyl acrylate.
  • the polymer obtained is preferably a polymer obtained by polymerizing an alkyl acrylate having at least 2 to 9 carbon atoms in the alkyl group.
  • acrylic acid alkyl ester having 2 to 9 carbon atoms in the alkyl group examples include acrylic acid ethyl ester, acrylic acid n-propyl ester, acrylic acid isopropyl ester, acrylic acid n-butyl ester, acrylic acid isobutyl ester, Examples thereof include t-butyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate and the like.
  • the acrylic surfactant that can be used in the present invention can also be obtained as a commercially available product.
  • commercially available products include 1970, 230, LF-1980, LF-1982 (-50), LF- 1983 (-50), LF-1984 (-50), LHP-95, LHP-96, UVX-35, UVX-36, UVX-270, UVX-271, UVX-272, AQ-7120, AQ-7130 ( As mentioned above, trade names manufactured by Enomoto Kasei Co., Ltd.), BYK-350, BYK-352, BYK-354, BYK-355, BYK-358, BYK-380, BYK-381, BYK-392 (above, Big Chemie Japan ( Product name), Polyflow No.
  • the conductive carbon material is not particularly limited, but when used for forming a binding layer of a secondary battery, a fibrous conductive carbon material, a layered conductive carbon material, a particulate conductive carbon material. Is preferred. These conductive carbon materials can be used alone or in combination of two or more.
  • the fibrous conductive carbon material include carbon nanotubes (CNT) and carbon nanofibers (CNF).
  • CNT is preferable from the viewpoint of conductivity, dispersibility, availability, and the like.
  • CNTs are generally produced by arc discharge, chemical vapor deposition (CVD), laser ablation, etc., but the CNTs used in the present invention may be obtained by any method.
  • single-walled CNT hereinafter referred to as SWCNT in which one carbon film (graphene sheet) is wound in a cylindrical shape and two-layered CNT in which two graphene sheets are wound in a concentric shape.
  • DWCNT multi-layer CNT
  • MWCNT multi-layer CNT
  • SWCNT, DWCNT, and MWCNT are each a single unit, Or a combination of several can be used.
  • catalyst metals such as nickel, iron, cobalt, yttrium may remain, so that removal or purification of this impurity may be required. is there.
  • acid treatment with nitric acid, sulfuric acid or the like destroys the ⁇ -conjugated system constituting CNT and may impair the original characteristics of CNT. Therefore, it is desirable to purify and use under appropriate conditions.
  • the layered conductive carbon material include graphite and graphene.
  • the graphite is not particularly limited, and various commercially available graphites can be used.
  • Graphene is a sheet of sp2 bonded carbon atoms with a thickness of 1 atom, and has a hexagonal lattice structure like a honeycomb made of carbon atoms and their bonds, and its thickness is about 0.38 nm. It is said.
  • graphene oxide obtained by processing graphite by the Hummers method may be used.
  • the particulate conductive carbon material include carbon black such as furnace black, channel black, acetylene black, and thermal black. These carbon blacks are not particularly limited, and various commercially available carbon blacks can be used, and the particle diameter is preferably 5 to 500 nm.
  • Solvents include pure water; ethers such as tetrahydrofuran (THF), diethyl ether, 1,2-dimethoxyethane (DME); halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane; N, N Amides such as dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP); ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methanol, ethanol, Alcohols such as isopropanol and n-propanol; aliphatic hydrocarbons such as n-heptane, n-hexane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethylene glycol monoethyl
  • the conductive carbon material dispersant used in the present invention is not particularly limited as long as the conductive carbon material can be dispersed in a solvent. However, the conductive thin film obtained by drying can have strength. A polymer dispersant having a surface active action is preferred.
  • polymeric dispersant having a surface active action examples include oxazoline polymers; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; polyacrylamide; polystyrene sulfonic acid; poly (meth) acrylic acid, poly (meth) acrylic Poly (meth) acrylic acid derivatives such as sodium acid and ammonium poly (meth) acrylate; polyvinyl alcohol derivatives such as polyvinyl alcohol and polyvinyl acetal; cellulose derivatives such as methylcellulose, carboxycellulose and hydroxymethylcellulose; starch, lignin sulfonate, Natural polymers such as sodium alginate and derivatives thereof, copolymers of polymerizable monomers that are constituent units of these polymers, or copolymers with other monomers Examples include phase transfer catalysts such as crown ethers, etc., but when used for forming a binding layer of a secondary battery, viewpoints such as dispersibility, solubility, and adhesion to a current collector substrate
  • the oxazoline polymer is not particularly limited as long as it is a polymer in which an oxazoline group is bonded directly to a repeating unit constituting the main chain or via a spacer group such as an alkylene group.
  • a vinyl polymer having an oxazoline group in the side chain is preferred.
  • X represents a polymerizable carbon-carbon double bond-containing group
  • R 1 to R 4 are independently of each other a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or a 6 to 20 carbon atoms.
  • An aryl group or an aralkyl group having 7 to 20 carbon atoms is represented.
  • the polymerizable carbon-carbon double bond-containing group of the oxazoline monomer is not particularly limited as long as it contains a polymerizable carbon-carbon double bond, but a chain containing a polymerizable carbon-carbon double bond.
  • a hydrocarbon group having 2 to 8 carbon atoms such as vinyl group, allyl group and isopropenyl group is preferable.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group having 1 to 5 carbon atoms may be linear, branched or cyclic, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group. Tert-butyl group, n-pentyl group, cyclohexyl group and the like.
  • Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl group, xylyl group, tolyl group, biphenyl group, naphthyl group and the like.
  • Specific examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, phenylethyl group, phenylcyclohexyl group and the like.
  • oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2-position represented by the formula (1) include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2-vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2- Vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl-5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4- Methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4-propyl-2-oxazoline, 2- Sopropenyl-4-butyl
  • the oxazoline polymer is also preferably water-soluble.
  • a water-soluble oxazoline polymer may be a homopolymer of the oxazoline monomer represented by the above formula (1), but has a oxazoline monomer and a hydrophilic functional group in order to further enhance the solubility in water (meta ) It is preferable to be obtained by radical polymerization of at least two monomers with an acrylate monomer.
  • (meth) acrylic monomer having a hydrophilic functional group examples include (meth) acrylic acid, 2-hydroxyethyl acrylate, methoxypolyethylene glycol acrylate, monoesterified product of acrylic acid and polyethylene glycol, acrylic acid 2-aminoethyl and its salt, 2-hydroxyethyl methacrylate, methoxypolyethylene glycol methacrylate, monoesterified product of methacrylic acid and polyethylene glycol, 2-aminoethyl methacrylate and its salt, sodium (meth) acrylate, ( Ammonium methacrylate, (meth) acrylonitrile, (meth) acrylamide, N-methylol (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, sodium styrenesulfonate, etc. The like, which may be used singly or may be used in combination of two or more. Among these, (meth) acrylic acid methoxypolyethylene glycol and mono
  • the oxazoline monomer and other monomers other than the (meth) acrylic monomer having a hydrophilic functional group are used in combination as long as the conductive carbon material dispersibility of the obtained oxazoline polymer is not adversely affected.
  • Specific examples of other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, (meth) acrylic.
  • (Meth) acrylic acid ester monomers such as perfluoroethyl acid and phenyl (meth) acrylate; ⁇ -olefin monomers such as ethylene, propylene, butene and pentene; haloolefins such as vinyl chloride, vinylidene chloride and vinyl fluoride Monomers: Styrene monomers such as styrene and ⁇ -methyl styrene; Vinyl ester monomers such as vinyl acetate and vinyl propionate; Vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether, and the like. But two or more A combination of the above may also be used.
  • the content of the oxazoline monomer is preferably 10% by mass or more, more preferably 20% by mass or more from the viewpoint of further increasing the CNT dispersibility of the obtained oxazoline polymer. Preferably, 30% by mass or more is even more preferable.
  • the upper limit of the content rate of the oxazoline monomer in a monomer component is 100 mass%, and the homopolymer of an oxazoline monomer is obtained in this case.
  • the content of the (meth) acrylic monomer having a hydrophilic functional group in the monomer component is preferably 10% by mass or more, more preferably 20% by mass or more from the viewpoint of further increasing the water solubility of the obtained oxazoline polymer. 30% by mass or more is even more preferable.
  • the content of other monomers in the monomer component is a range that does not affect the CNT dispersibility of the obtained oxazoline polymer, and since it varies depending on the type, it cannot be determined unconditionally. What is necessary is just to set suitably in the range of 5-95 mass%, Preferably it is 10-90 mass%.
  • the average molecular weight of the oxazoline polymer is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000. When the weight average molecular weight of the polymer is less than 1,000, there is a possibility that the dispersibility of the conductive carbon material is remarkably lowered or the dispersibility is not exhibited. On the other hand, if the weight average molecular weight exceeds 2,000,000, handling in the dispersion treatment may become extremely difficult. An oxazoline polymer having a weight average molecular weight of 2,000 to 1,000,000 is more preferable.
  • the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
  • the oxazoline polymer that can be used in the present invention can be synthesized by a conventional radical polymerization of the above-mentioned monomers, but can also be obtained as a commercial product, and as such a commercial product, for example, Epocross WS-300 (Manufactured by Nippon Shokubai Co., Ltd., solid content concentration 10% by mass, aqueous solution), Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd., solid content concentration 25% by mass, aqueous solution), Epocross WS-500 (manufactured by Nippon Shokubai Co., Ltd.) Manufactured, solid content concentration 39% by mass, water / 1-methoxy-2-propanol solution), Poly (2-ethyl-2-oxazoline) (Aldrich), Poly (2-ethyl-2-oxazoline) (AlfaAesar), Poly (2-ethyl-2-oxazole) (
  • the mixing ratio of the conductive carbon material dispersant to the conductive carbon material can be about 100: 1 to 1: 100 by mass ratio.
  • the concentration of the surfactant in the dispersion is not particularly limited as long as the conductive carbon material can be dispersed in a solvent.
  • the concentration of the surfactant is 0.001 to 50. It is preferably about mass%, more preferably about 0.01 to 40 mass%.
  • the concentration of the conductive carbon material in the dispersion changes in the mechanical, electrical, and thermal characteristics required for the thin film, and at least a part of the conductive carbon material is isolated and dispersed. In the present invention, it is preferably about 0.001 to 50% by mass, more preferably about 0.01 to 40% by mass, and more preferably 0.02 to More preferably, it is about 30% by mass.
  • the conductive carbon material dispersion of the present invention may contain a crosslinking agent that is soluble in the above-described solvent.
  • the crosslinking agent may be either a compound that causes a crosslinking reaction with the dispersant to be used or a compound that self-crosslinks, but reacts with the dispersant to form a crosslinked structure from the viewpoint of further improving the solvent resistance of the resulting thin film.
  • a crosslinking agent is preferred.
  • the dispersant is an oxazoline polymer
  • a functional group having reactivity with an oxazoline group such as a carboxyl group, a hydroxyl group, a thiol group, an amino group, a sulfinic acid group, and an epoxy group.
  • an oxazoline group such as a carboxyl group, a hydroxyl group, a thiol group, an amino group, a sulfinic acid group, and an epoxy group.
  • it will not specifically limit if it is a compound which has two or more groups, The compound which has two or more carboxyl groups is preferable.
  • a compound having a functional group that causes a crosslinking reaction by heating during thin film formation or in the presence of an acid catalyst such as a sodium salt, potassium salt, lithium salt, or ammonium salt of a carboxylic acid is also crosslinked. It can be used as an agent.
  • an acid catalyst such as a sodium salt, potassium salt, lithium salt, or ammonium salt of a carboxylic acid
  • these compounds include metal salts of synthetic polymers such as polyacrylic acid and copolymers thereof and natural polymers such as carboxymethylcellulose and alginic acid that exhibit crosslinking reactivity in the presence of an acid catalyst, and crosslinking reaction by heating.
  • ammonium salts of the above-described synthetic polymers and natural polymers that exhibit the properties in particular, sodium polyacrylate, lithium polyacrylate, which exhibit crosslinking reactivity in the presence of an acid catalyst or under heating conditions, Ammonium polyacrylate, sodium carboxymethyl cellulose, lithium carboxymethyl cellulose, carboxymethyl cellulose ammonium and the like are preferable.
  • the compound that causes a crosslinking reaction with the oxazoline group can also be obtained as a commercial product.
  • a commercial product examples include sodium polyacrylate (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization 2,700).
  • Examples of the self-crosslinking compound include an aldehyde group, an epoxy group, a vinyl group, an isocyanate group, an alkoxy group, and a carboxyl group with respect to a hydroxyl group, an aldehyde group, an amino group, an isocyanate group, an epoxy group, and an amino group.
  • crosslinkable functional groups that react with each other in the same molecule, such as isocyanate groups and aldehyde groups, hydroxyl groups that react with the same crosslinkable functional groups (dehydration condensation), mercapto groups (disulfide bonds), esters And compounds having a group (Claisen condensation), a silanol group (dehydration condensation), a vinyl group, an acrylic group, and the like.
  • Specific examples of the self-crosslinking compound include polyfunctional acrylate that exhibits crosslinking reactivity in the presence of an acid catalyst, tetraalkoxysilane, a monomer having a blocked isocyanate group, and at least one of a hydroxyl group, a carboxylic acid, and an amino group. Examples include monomer block copolymers.
  • Such a self-crosslinking crosslinking agent can also be obtained as a commercial product.
  • a commercial product examples include A-9300 (ethoxylated isocyanuric acid triacrylate, Shin-Nakamura Chemical ( ), A-GLY-9E (Ethoxylatedinglycerine triacrylate (EO9 mol), Shin-Nakamura Chemical Co., Ltd.), A-TMMT (pentaerythritol tetraacrylate, Shin-Nakamura Chemical Co., Ltd.), tetraalkoxysilane In the case of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), tetraethoxysilane (manufactured by Toyoko Chemical Co., Ltd.), and polymers having a blocked isocyanate group, Elastron series E-37, H-3, H38, BAP, NEW BAP-15, C-52, F-2 9, W-11P, MF-9, MF-25K (D
  • crosslinking agents may be used alone or in combination of two or more.
  • the addition amount of the crosslinking agent varies depending on the solvent used, the substrate used, the required viscosity, the required film shape, etc., but is preferably 0.001 to 80% by mass with respect to the dispersant, Is more preferably from 50 to 50% by mass, and even more preferably from 0.05 to 40% by mass.
  • a catalyst for accelerating the crosslinking reaction p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid And / or a thermal acid generator such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and organic sulfonic acid alkyl ester can be added.
  • the addition amount of the catalyst is 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, and more preferably 0.001 to 3% by mass with respect to the dispersant.
  • a polymer serving as a matrix may be added to the conductive carbon material dispersion of the present invention.
  • the matrix polymer include polyvinylidene fluoride (PVdF), polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer [P (VDF-HFP)], Fluorine resin such as vinylidene fluoride-trichloroethylene copolymer [P (VDF-CTFE)], polyvinyl pyrrolidone, ethylene-propylene-diene terpolymer, PE (polyethylene), PP (polypropylene), Polyolefin resins such as EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer); PS (polystyrene), HIPS (high impact polystyrene), AS (acryl
  • Examples thereof include sodium boxymethylcellulose, water-soluble cellulose ether, sodium alginate, polyvinyl alcohol, polystyrene sulfonic acid, polyethylene glycol and the like, and particularly, sodium polyacrylate and sodium carboxymethylcellulose are preferable.
  • the matrix polymer can also be obtained as a commercial product.
  • a commercial product examples include sodium polyacrylate (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization 2,700 to 7,500), carboxy Sodium methylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.), sodium alginate (manufactured by Kanto Chemical Co., Ltd., deer grade 1), Metrol's SH series (hydroxypropylmethylcellulose, Shin-Etsu Chemical Co., Ltd.), Metrolose SE series (hydroxyl) Ethyl methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd.), JC-25 (completely saponified polyvinyl alcohol, manufactured by Nippon Vineyard Poval Co., Ltd.), JM-17 (intermediate saponified polyvinyl alcohol, Nippon Vinegared / Poval) Manufactured by Co., Ltd.), JP-03 (partially saponified polyvinyl alcohol, Nippon Vinegar Po
  • the method for preparing the conductive carbon material dispersion of the present invention is arbitrary, and the surfactant, the conductive carbon material, the solvent and the antifoaming agent, and the cross-linking agent and matrix polymer used as necessary are in any order.
  • a dispersion may be prepared by mixing. At this time, it is preferable to disperse a mixture of a surfactant, a conductive carbon material and a solvent, and this treatment can further improve the dispersion ratio of the conductive carbon material.
  • the dispersion treatment include mechanical treatment, wet treatment using a ball mill, bead mill, jet mill, etc., and ultrasonic treatment using a bath-type or probe-type sonicator. In particular, wet treatment using a jet mill.
  • An antifoaming agent is preferable because it can suppress foaming during the dispersion treatment by adding it before the dispersion treatment, but it may inhibit the dispersion of the conductive carbon material by the surfactant. It may be added after processing. Moreover, you may add a crosslinking agent and a matrix polymer, after preparing the dispersion liquid containing components other than these. In the conductive carbon material dispersion prepared as described above, it is presumed that the dispersant is physically adsorbed on the surface of the conductive carbon material to form a composite.
  • the conductive carbon material dispersion liquid (composition for conductive thin film) described above is applied onto a substrate or a product on which a thin film is to be formed. This can be produced by natural or heat drying to form a conductive binder layer.
  • the substrate and the formed product are not particularly limited.
  • metals such as copper, aluminum, nickel, gold, silver, and alloys thereof; carbon materials; metal oxides; conductive polymers; Synthetic polymers such as tarate, polypropylene and polyimide; natural polymers such as cellulose and chitosan can be used.
  • the thickness is not particularly limited, but is preferably 1 to 100 ⁇ m in the present invention.
  • the conductive thin film obtained from the conductive carbon material dispersion of the present invention is interposed between the current collecting substrate constituting the electrode of the energy storage device and the active material layer, and is formed into a conductive binding layer that binds both. Especially suitable.
  • various energy storage devices such as an electric double layer capacitor, a lithium secondary battery, a lithium ion secondary battery, a proton polymer battery, a nickel metal hydride battery, an aluminum solid capacitor, an electrolytic capacitor, and a lead storage battery.
  • the electroconductive thin film obtained from the electroconductive carbon material dispersion liquid of this invention can be applied suitably for the electrode of an electrical double layer capacitor and a lithium ion secondary battery especially.
  • a composite current collector comprising a current collector substrate and a conductive binder layer.
  • the conductive carbon material dispersion liquid (composition for conductive thin film) described above is applied onto a current collector substrate, and this is naturally or heat-dried to form a conductive binder layer.
  • the current collecting substrate may be appropriately selected from those conventionally used as a current collecting substrate for electrodes for energy storage devices. For example, copper, aluminum, nickel, gold, silver, alloys thereof, carbon materials, metals
  • a thin film such as an oxide or a conductive polymer can be used.
  • the thickness is not particularly limited, but is preferably 1 to 100 ⁇ m in the present invention.
  • the thickness of the conductive binder layer in the present invention is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, in consideration of improving the energy density of the battery and reducing the bulk resistance of the conductive binder layer. 5 ⁇ m or less is even more preferable.
  • the thickness of the conductive binder layer can be calculated by observing the cross section of the conductive binder layer with a scanning microscope (hereinafter referred to as SEM) or by dividing the basis weight by the specific gravity of the conductive binder layer. it can.
  • SEM scanning microscope
  • the cross section of the conductive binder layer can be obtained, for example, by tearing the composite current collector or processing with an ion beam.
  • the basis weight is the ratio of the mass (g) of the conductive binder layer to the area (m 2 ) of the conductive binder layer, and when the conductive binder layer is formed in a pattern, the area is conductive It is the area of only the conductive binding layer, and does not include the area of the current collector substrate exposed between the conductive binding layers formed in a pattern.
  • a test piece of an appropriate size is cut out from the composite current collector, its mass W0 is measured, and then the conductive binder layer is peeled off from the composite current collector.
  • the mass W3 of the composite current collector measured can be measured and calculated from the difference (W3-W2).
  • a method of peeling the conductive binder layer for example, a method of immersing the conductive binder layer in a solvent in which the conductive binder layer is dissolved or swells and wiping the conductive binder layer with a cloth or the like is available. Can be mentioned.
  • the specific gravity of the conductive binder layer can be calculated, for example, by dividing the basis weight by the film thickness. Further, it can be measured by a bead replacement method, a tap density measurement or the like.
  • the film thickness can be adjusted by a known method.
  • the solid content concentration of the coating liquid (CNT-containing composition) for forming the conductive binder layer, the number of coating times, and the coating liquid inlet of the coating machine It can be adjusted by changing the clearance.
  • increase the weight per unit area increase the solid content concentration, increase the number of coatings, or increase the clearance.
  • the solid content concentration is decreased, the number of coatings is decreased, or the clearance is decreased.
  • coating methods include spin coating, dip coating, flow coating, ink jet, spray coating, bar coating, gravure coating, slit coating, roll coating, flexographic printing, transfer printing, Brush coating, blade coating method, air knife coating method, etc. are mentioned, but from the viewpoint of work efficiency etc., inkjet method, casting method, dip coating method, bar coating method, blade coating method, roll coating method, gravure coating method, A flexographic printing method and a spray coating method are suitable.
  • the temperature for drying by heating is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
  • the energy storage device electrode can be produced by forming an active material layer on the conductive binding layer of the composite current collector.
  • an active material the various active materials conventionally used for the electrode for energy storage devices can be used.
  • a chalcogen compound capable of adsorbing / leaving lithium ions or a lithium ion-containing chalcogen compound, a polyanion compound, a simple substance of sulfur and a compound thereof may be used as a positive electrode active material. it can.
  • the chalcogen compound that can adsorb and desorb lithium ions include FeS 2 , TiS 2 , MoS 2 , V 2 O 6 , V 6 O 13 , and MnO 2 .
  • the lithium ion-containing chalcogen compound include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiMo 2 O 4 , LiV 3 O 8 , LiNiO 2 , Li x Ni y M 1-y O 2 (where M is Represents at least one metal element selected from Co, Mn, Ti, Cr, V, Al, Sn, Pb, and Zn, and 0.05 ⁇ x ⁇ 1.10, 0.5 ⁇ y ⁇ 1. 0) and the like.
  • Specific examples of the polyanionic compound include LiFePO 4 .
  • Specific examples of the sulfur compound include Li 2 S and rubeanic acid.
  • the negative electrode active material constituting the negative electrode at least one element selected from alkali metals, alkali alloys, and elements of Groups 4 to 15 of the periodic table that occlude / release lithium ions, oxides, sulfides, nitrides Or a carbon material capable of reversibly occluding and releasing lithium ions can be used.
  • the alkali metal include Li, Na, and K.
  • Specific examples of the alkali metal alloy include metals Li, Li—Al, Li—Mg, Li—Al—Ni, Na, Na—Hg, and Na—Zn. Etc.
  • At least one element selected from Group 4 to 15 elements of the periodic table that store and release lithium ions include silicon, tin, aluminum, zinc, and arsenic.
  • specific examples of the oxide include tin silicon oxide (SnSiO 3 ), lithium bismuth oxide (Li 3 BiO 4 ), lithium zinc oxide (Li 2 ZnO 2 ), lithium titanium oxide (Li 4 Ti 5 O 12 ), and the like. Is mentioned.
  • specific examples of sulfides include lithium iron sulfide (Li x FeS 2 (0 ⁇ x ⁇ 3)), lithium copper sulfide (Li x CuS (0 ⁇ x ⁇ 3)), and the like.
  • Li x M y N Co, Ni, Cu, 0 ⁇ x ⁇ 3,0 ⁇ y ⁇ 0.5
  • lithium iron nitride Li 3 FeN 4
  • Specific examples of the carbon material capable of reversibly occluding and releasing lithium ions include graphite, carbon black, coke, glassy carbon, carbon fiber, carbon nanotube, or a sintered body thereof.
  • a carbonaceous material can be used as an active material.
  • the carbonaceous material include activated carbon and the like, for example, activated carbon obtained by carbonizing a phenol resin and then activating treatment.
  • a conductive additive can also be added to the electrode of the present invention.
  • the conductive aid include carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, titanium oxide, ruthenium oxide, aluminum, nickel and the like.
  • the active material layer can be formed by applying the electrode slurry containing the active material, the binder polymer, and, if necessary, the solvent described above onto the conductive binder layer and naturally or by heating and drying.
  • the binder polymer can be appropriately selected from known materials and used, for example, polyvinylidene fluoride (PVdF), polyvinylpyrrolidone, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride- Hexafluoropropylene copolymer [P (VDF-HFP)], vinylidene fluoride-trichloroethylene copolymer [P (VDF-CTFE)], polyvinyl alcohol, polyimide, ethylene-propylene-diene ternary copolymer Examples thereof include conductive polymers such as coalescence, styrene-butadiene rubber, carboxymethyl cellulose (CMC), polyacrylic acid (PAA),
  • the added amount of the binder polymer is preferably 0.1 to 20 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • the solvent include those exemplified for the above oxazoline polymer, and may be appropriately selected according to the type of the binder, but in the case of a water-insoluble binder such as PVdF, NMP is preferable, and PAA In the case of a water-soluble binder such as water, water is preferred.
  • Examples of the method for applying the electrode slurry include the same method as that for the conductive binder layer forming composition described above.
  • the temperature for drying by heating is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
  • An energy storage device includes the above-described electrodes, and more specifically, includes at least a pair of positive and negative electrodes, a separator interposed between these electrodes, and an electrolyte. At least one of the positive and negative electrodes is composed of the above-described electrode for energy storage device. Since this energy storage device is characterized by the use of the above-mentioned electrode for energy storage device as an electrode, other device constituent members such as separators and electrolytes may be appropriately selected from known materials and used. it can. Specific examples of the separator include a cellulose separator and a polyolefin separator.
  • the electrolyte may be either liquid or solid, and may be either aqueous or non-aqueous.
  • the electrode for an energy storage device of the present invention is practically sufficient even when applied to a device using a non-aqueous electrolyte. Performance can be demonstrated.
  • non-aqueous electrolyte examples include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous organic solvent.
  • electrolyte salts include lithium salts such as lithium tetrafluoroborate, lithium hexafluorophosphate, lithium perchlorate, and lithium trifluoromethanesulfonate; tetramethylammonium hexafluorophosphate, tetraethylammonium hexafluorophosphate, tetrapropylammonium hexa
  • examples thereof include quaternary ammonium salts such as fluorophosphate, methyltriethylammonium hexafluorophosphate, tetraethylammonium tetrafluoroborate, and tetraethylammonium perchlorate.
  • non-aqueous organic solvent examples include alkylene carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; dialkyl carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; nitriles such as acetonitrile; and amides such as dimethylformamide. .
  • a precursor dispersion C was prepared in the same manner as in Production Example 1-1 except that the conductive carbon material was changed to 0.5 g of acetylene black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.).
  • acetylene black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.).
  • a conductive precursor dispersion D was prepared in the same manner as in Production Example 1-2 except that the precursor dispersion A was changed to the precursor dispersion C.
  • Example 1-1 Example 1-1, except that acetylene surfactant Olfine E-1004 was changed to 25 mg of acetylene surfactant Surfynol 420 (manufactured by Nissin Chemical Industry Co., Ltd., solid concentration 100 mass%).
  • a conductive carbon material dispersion was prepared by the method described above.
  • Example 1-3 50 g of the precursor dispersion D prepared in Production Example 1-4 and 25 mg of acetylene surfactant Olfine E-1004 (manufactured by Nissin Chemical Industry Co., Ltd., solid content concentration: 100% by mass) are mixed to form conductive carbon. A material dispersion was prepared.
  • Example 1-4 Except for changing the acetylene surfactant Olphine E-1004 to 25 mg of acetylene surfactant Surfynol 420 (manufactured by Nissin Chemical Industry Co., Ltd., solid content concentration: 100% by mass), the same as in Example 1-3 A conductive carbon material dispersion was prepared by the method described above.
  • Example 1-5 Except for changing the acetylene surfactant Olphine E-1004 to 25 mg of a silicone antifoaming agent Polyflow KL100 (manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 100% by mass), the same method as in Example 1-1. A conductive carbon material dispersion was prepared.
  • Example 1-6 The same method as in Example 1-1, except that the acetylene-based surfactant Olphine E-1004 was changed to 25 mg of a metal soap-based antifoaming agent Nopco NXZ (manufactured by San Nopco, solid content concentration 100% by mass). A conductive carbon material dispersion was prepared.
  • Example 1-7 Except for changing the acetylene surfactant Olphine E-1004 to 26.9 mg of acrylic antifoaming agent Polyflow KL800 (manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 93 mass%) 26.9 mg, the same as Example 1-1 A conductive carbon material dispersion was prepared by the method.
  • Example 1-1 The same method as in Example 2-1, except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of the polyether antifoam SN deformer 170 (manufactured by San Nopco, solid content concentration 100% by mass). A conductive carbon material dispersion was prepared.
  • Example 1-2 The same method as in Example 1-1, except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of the polyether antifoam SN deformer 260 (manufactured by San Nopco, solid concentration 100% by mass). A conductive carbon material dispersion was prepared.
  • Example 1-1 and Example 1-1 were used except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of the polyether antifoam Disperse CC-438 (manufactured by NOF Corporation, solid content concentration: 100% by mass).
  • a conductive carbon material dispersion was prepared in the same manner.
  • Example 1-1 is the same as Example 1-1 except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of a polyether antifoaming agent Distro CD-432 (manufactured by NOF Corporation, solid content concentration: 100% by mass).
  • Distro CD-432 manufactured by NOF Corporation, solid content concentration: 100% by mass.
  • a conductive carbon material dispersion was prepared in the same manner.
  • Example 1-1 and Example 1-1 except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of a polyether antifoaming agent Disform CE-457 (manufactured by NOF Corporation, solid content concentration: 100% by mass).
  • a conductive carbon material dispersion was prepared in the same manner.
  • Example 1 except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of a polyether antifoaming agent, an antifoaming agent PF-H (manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass).
  • a conductive carbon material dispersion was prepared in the same manner as in -1.
  • Example 1 except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of a polyether antifoaming agent, an antifoaming agent PF-M (manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass).
  • a conductive carbon material dispersion was prepared in the same manner as in -1.
  • Example 2 except that the acetylene surfactant Orphine E-1004 was changed to 25 mg of a polyether antifoaming agent, an antifoaming agent PF-L (manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass).
  • PF-L an antifoaming agent manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass.
  • a conductive carbon material dispersion was prepared in the same manner as in -1.
  • Example 1-9 Example 1-1, except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of the fluorine-based antifoaming agent Floren AO-82 (manufactured by San Nopco, solid concentration 1.8% by mass).
  • a conductive carbon material dispersion was prepared by the method described above.
  • Example 1-10 Except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of a polyether antifoam Disperse CD-432 (manufactured by NOF Corporation, solid content concentration 100% by mass), Example 1-3 and A conductive carbon material dispersion was prepared in the same manner.
  • Example 2-1 Evaluation of conductive carbon material dispersion
  • the conductive carbon material dispersion prepared in Example 1-1 was added to a screw tube (manufactured by Maruemu Co., Ltd., No. 8), and shaken vigorously for 30 seconds to generate bubbles. After standing for 300 seconds, the liquid state of the conductive carbon material dispersion and the amount of bubbles on the liquid surface were visually confirmed. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
  • Example 2-2 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-2. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
  • Example 2-3 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-3. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
  • Example 2-4 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-4. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
  • Example 2-5 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-5. As a result, although the liquid state of the conductive carbon material dispersion changed and the CNTs aggregated, the bubbles disappeared and the liquid surface was exposed.
  • Example 2-6 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-6. As a result, although the liquid state of the conductive carbon material dispersion changed and aggregated, the bubbles disappeared and the liquid surface was exposed.
  • Example 2-7 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-7. As a result, although the liquid state of the conductive carbon material dispersion changed and the CNTs aggregated, the bubbles disappeared and the liquid surface was exposed.
  • Example 2-1 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-1. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
  • Example 2-2 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-2. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
  • Example 2-3 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-3. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
  • Example 2-4 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-4. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
  • Example 2-5 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-5. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
  • Example 2-6 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-6. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
  • Example 2-7 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-7. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
  • Example 2-8 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-8. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
  • Example 2-9 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-9. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
  • Example 2-10 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-10. As a result, the liquid state of the conductive carbon material dispersion changed, acetylene black aggregated, and the liquid surface was covered with bubbles.
  • Example 2-11 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the precursor dispersion B prepared in Production Example 1-2. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
  • Example 2-12 Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the precursor dispersion D prepared in Production Example 1-4. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
  • Table 1 A summary of Examples 2-1 to 2-7 and Comparative Examples 2-1 to 2-12 is shown in Table 1.
  • conductive carbon material dispersions prepared in Comparative Examples 2-1 to 2-8, 2-10 containing a polyether surfactant and Comparative Example 2-9 containing a fluorosurfactant In the conductive carbon material dispersion liquids prepared in Comparative Examples 2-11 and 12 to which no surfactant as a liquid or an antifoaming agent was added, when bubbles are generated, the bubbles do not disappear immediately.
  • Examples 2-1 to 2-4 containing an acetylene-based antifoaming agent examples 2-5 containing a silicone-based surfactant, Example 2-6 containing a metal soap-based antifoaming agent, acrylic-based antifoaming
  • the bubbles disappear immediately.
  • the conductive carbon material dispersion prepared in Example 2-5 containing a silicone surfactant, Example 2-6 containing a metal soap antifoaming agent, and Example 2-7 containing an acrylic antifoaming agent Then, the bubbles disappear immediately, but the liquid state of the conductive carbon material dispersion changes and aggregates.
  • the conductive carbon material dispersion liquid prepared in Examples 2-1 to 2-4 containing an acetylene-based antifoaming agent the bubbles disappeared immediately and a uniform dispersion state can be maintained.
  • Example 3-1 Coating of conductive carbon material dispersion
  • the conductive carbon material dispersion prepared in Example 1-1 was uniformly spread on an aluminum foil (thickness 15 ⁇ m) with a wire bar coater (select roller: OSP-30), and then dried at 150 ° C. for 20 minutes.
  • An aluminum foil hereinafter referred to as a composite current collector
  • the obtained composite current collector was cut into an area of 120 cm 2 and weighed, and then washed with a 0.1 mol / L dilute hydrochloric acid aqueous solution to remove the conductive binder layer.
  • the basis weight of the conductive binder layer was determined and found to be 268 mg / m 2 .
  • the film thickness was 0.199 micrometer.
  • the specific gravity of the conductive binder obtained from these values was 1.35 g / cm 3 .
  • Example 3-2 A composite current collector was obtained in the same manner as in Example 3-1, except that the selection roller: OSP-30 was changed to the selection roller: OSP-13. As a result of obtaining the basis weight of the obtained conductive binder layer, it was 147 mg / m 2 . The film thickness calculated from the basis weight and the specific gravity obtained in Example 3-1 was 0.109 ⁇ m.
  • Example 3-3 A composite current collector was obtained in the same manner as in Example 3-1, except that the selection roller: OSP-30 was changed to the selection roller: OSP-8. As a result of obtaining the basis weight of the obtained conductive binder layer, it was 93 mg / m 2 . The film thickness calculated from the basis weight and the specific gravity obtained in Example 3-1 was 0.069 ⁇ m.
  • Example 3-4 A composite current collector was obtained in the same manner as in Example 3-1, except that 10 g of the conductive carbon material dispersion prepared in Example 1-1 was diluted by adding 50 g of pure water. As a result of obtaining the basis weight of the obtained conductive binder layer, it was 19 mg / m 2 . The film thickness calculated from the basis weight and the specific gravity obtained in Example 3-1 was 0.014 ⁇ m.

Abstract

Provided is a conductive carbon material dispersion comprising a conductive carbon material and at least one defoaming agent selected from among acetylene-based surfactants, silicone-based surfactants, metal soap-based surfactants, and acrylic surfactants. The conductive carbon material dispersion can suppress the generation of bubbles in the conductive carbon material dispersion, can be uniformly applied, and can provide a uniform conductive thin film, even when a dispersant having a surfactant activity is used.

Description

導電性炭素材料分散液Conductive carbon material dispersion
 本発明は、導電性炭素材料分散液に関し、さらに詳述すると、導電性炭素材料と消泡剤とを含み、導電性薄膜用組成物として好適な導電性炭素材料分散液に関する。 The present invention relates to a conductive carbon material dispersion, and more specifically, relates to a conductive carbon material dispersion containing a conductive carbon material and an antifoaming agent and suitable as a composition for a conductive thin film.
 スマートフォンやデジタルカメラ、携帯ゲーム機などの携帯電子機器の小型軽量化や高機能化の要求に伴い、近年、高性能電池の開発が積極的に進められており、充電により繰り返し使用できる二次電池の需要が大きく伸びている。
 中でも、リチウムイオン二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いことなどから、現在最も精力的に開発が進められている二次電池である。
 また、近年の環境問題への取り組みから、電気自動車の開発も活発に進められており、その動力源としての二次電池には、より高い性能が求められるようになってきている。
In recent years, development of high-performance batteries has been actively promoted in response to demands for reducing the size and weight of mobile electronic devices such as smartphones, digital cameras, and portable game machines, and secondary batteries that can be used repeatedly by charging. Demand is growing significantly.
Among them, a lithium ion secondary battery is a secondary battery that has been developed most vigorously at present because it has a high energy density and a high voltage and has no memory effect during charging and discharging.
In addition, the development of electric vehicles has been actively promoted due to recent efforts to deal with environmental problems, and higher performance has been demanded for secondary batteries as a power source.
 ところで、リチウムイオン二次電池は、リチウムを吸蔵、放出できる正極と負極と、これらの間に介在するセパレータを容器内に収容し、その中に電解液(リチウムイオンポリマー二次電池の場合は液状電解液の代わりにゲル状または全固体型の電解質)を満たした構造を有する。
 正極および負極は、一般的に、リチウムを吸蔵、放出できる活物質と、主に炭素材料からなる導電材、さらにポリマーバインダーを含む組成物を、銅箔やアルミニウム箔などの集電体上に塗布することで製造される。このバインダーは、活物質と導電材、さらにこれらと金属箔を接着するために用いられ、ポリフッ化ビニリデン(PVdF)などのN-メチルピロリドン(NMP)に可溶なフッ素系樹脂や、オレフィン系重合体の水分散体などが市販されている。
By the way, a lithium ion secondary battery contains a positive electrode and a negative electrode capable of occluding and releasing lithium, and a separator interposed therebetween in a container, and an electrolyte solution (liquid in the case of a lithium ion polymer secondary battery) therein. It has a structure filled with a gel-like or all solid electrolyte instead of the electrolyte.
For the positive and negative electrodes, an active material capable of occluding and releasing lithium, a conductive material mainly composed of a carbon material, and a composition containing a polymer binder are generally applied on a current collector such as a copper foil or an aluminum foil. It is manufactured by doing. This binder is used to bond an active material and a conductive material, and further to the metal foil, and is a fluorine-based resin soluble in N-methylpyrrolidone (NMP) such as polyvinylidene fluoride (PVdF) or an olefin-based heavy polymer. Combined aqueous dispersions are commercially available.
 上述したように、リチウムイオン二次電池は電気自動車などの動力源としての応用も期待されており、これまで以上の長寿命や安全性が求められている。
 しかし、上述したバインダーの集電体に対する接着力は十分とは言えず、電極板の裁断工程や巻回工程等の製造工程時に、活物質や導電材の一部が集電体から剥離、脱落し、微小短絡や電池容量のばらつきを生じる原因となる。
 さらに、長期間の使用により、電解液によるバインダーの膨潤や、活物質のリチウム吸蔵、放出による体積変化に伴う電極合材の体積変化により、電極合材と集電体間の接触抵抗が増大したり、活物質や導電材の一部が集電体から剥離、脱落したりすることによる電池容量の劣化が起こるという問題や、さらには安全性の点で問題もある。
 特に、近年では正極系では固溶体系、負極系ではケイ素などの合金系といった、充放電容量が既存のものより大きく、そのために充放電による体積変化も大きい活物質の開発が進められており、上述した電極合材の集電体からの剥離は、早急に解決すべき問題であるといえる。
As described above, the lithium ion secondary battery is also expected to be applied as a power source for electric vehicles and the like, and a longer life and safety than ever before are required.
However, the adhesive strength of the binder to the current collector cannot be said to be sufficient, and part of the active material or conductive material is peeled off from the current collector during the manufacturing process such as the cutting process or winding process of the electrode plate. However, this may cause a minute short circuit and a variation in battery capacity.
Furthermore, the contact resistance between the electrode mixture and the current collector increases due to the volume change of the electrode mixture due to the swelling of the binder due to the electrolytic solution and the volume change due to the lithium occlusion and release of the active material after long-term use. In addition, there is a problem that battery capacity is deteriorated due to part of the active material or conductive material peeling off from the current collector or dropping off, and further, there is a problem in terms of safety.
In particular, in recent years, development of active materials such as solid solution systems in the positive electrode system and alloy systems such as silicon in the negative electrode system is larger than the existing ones, and therefore the volume change due to charge and discharge is large. It can be said that peeling of the electrode mixture from the current collector is a problem to be solved immediately.
 上記課題を解決する試みとして、集電体と電極合材との間に導電性の結着層を挿入する手法が開発されている。
 例えば、特許文献1では、界面活性剤であるオキサゾリン基を有するポリマーを分散剤とすることで、導電性炭素材料を分散させ、この導電性炭素材料分散液から得られた導電性薄膜(以下、導電性結着層とも称する)を備えた集電体(以下、複合集電体とも称する)が、集電体と電極合材の間の接触抵抗を低減でき、かつ、高速放電時の容量減少も抑制でき、さらに電池の劣化をも抑制できることが示されている。
As an attempt to solve the above problem, a method of inserting a conductive binder layer between a current collector and an electrode mixture has been developed.
For example, in Patent Document 1, a conductive carbon material is dispersed by using a surfactant-containing polymer having an oxazoline group as a dispersant, and a conductive thin film (hereinafter, referred to as a conductive thin film) obtained from this conductive carbon material dispersion. Current collector (hereinafter also referred to as a composite current collector) can reduce the contact resistance between the current collector and the electrode mixture, and reduce the capacity during high-speed discharge. It has been shown that the degradation of the battery can also be suppressed.
 しかし、上記のような導電性炭素材料分散液を用いる場合、塗工工程において泡が生じやすく、塗工液を製造する際に操作が煩雑になる点や、集電体に塗工する際に、泡に由来するハジキなどの塗装欠陥が生じて塗装の外観や電池としての性能を著しく損なう点などの新たな問題が生じた。特に水系分散液において、導電性炭素材料としてカーボンナノチューブを、分散剤としてオキサゾリン基を有するポリマーを用い、かつ、導電性結着層が低目付量である場合、この問題は顕著となっている。 However, when using the conductive carbon material dispersion liquid as described above, bubbles are easily generated in the coating process, and the operation becomes complicated when the coating liquid is manufactured. As a result, paint defects such as repelling derived from bubbles were generated, and new problems such as the point that the appearance of the paint and the performance as a battery were significantly impaired occurred. In particular, in an aqueous dispersion, when carbon nanotubes are used as the conductive carbon material, a polymer having an oxazoline group is used as the dispersant, and the conductive binding layer has a low basis weight, this problem becomes significant.
 これらの問題を解決すべく、界面活性作用を有する分散剤を用いた導電性炭素材料分散液に、消泡剤を加えて泡の発生を抑えることを試みてきたが、消泡剤を加えても消泡しなかったり、消泡剤が分散剤や導電性炭素材料と相互作用して導電性炭素材料が凝集し、均一な分散状態を保持できなくなる結果、均一な導電性薄膜を調製できなくなったりする場合があった。 In order to solve these problems, attempts have been made to suppress the generation of bubbles by adding an antifoaming agent to a conductive carbon material dispersion using a dispersing agent having a surface active action. However, the defoaming agent does not interact with the dispersing agent or conductive carbon material, and the conductive carbon material aggregates and cannot maintain a uniform dispersed state. As a result, a uniform conductive thin film cannot be prepared. There was a case.
特許第5773097号公報Japanese Patent No. 5773097
 本発明は、このような事情に鑑みてなされたものであり、界面活性作用を有する分散剤を用いた場合でも、導電性炭素材料分散液の泡の発生を抑制でき、均一に塗工可能で、均一な導電性薄膜を作製し得る導電性炭素材料分散液を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when a dispersant having a surface-active action is used, the generation of bubbles in the conductive carbon material dispersion liquid can be suppressed and coating can be performed uniformly. An object of the present invention is to provide a conductive carbon material dispersion that can produce a uniform conductive thin film.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、導電性炭素材料に対し、アセチレン系界面活性剤、シリコーン系界面活性剤、金属石鹸系界面活性剤、およびアクリル系界面活性剤から選ばれる少なくとも1種の消泡剤を添加することで、泡の発生を抑制できること、および特にアセチレン系界面活性剤を添加することで、特異的に導電性炭素材料の均一な分散状態を保持しつつ泡の発生を抑制でき、均一に塗工可能な導電性炭素材料分散液が得られることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have determined that an acetylene-based surfactant, a silicone-based surfactant, a metal soap-based surfactant, and an acrylic interface with respect to a conductive carbon material. By adding at least one antifoaming agent selected from activators, it is possible to suppress the generation of bubbles, and in particular, by adding an acetylene-based surfactant, specifically a uniformly dispersed state of the conductive carbon material The present inventors have found that a conductive carbon material dispersion liquid that can suppress the generation of bubbles while maintaining the viscosity and can be applied uniformly is obtained.
 すなわち、本発明は、
1. 導電性炭素材料と、アセチレン系界面活性剤、シリコーン系界面活性剤、金属石鹸系界面活性剤およびアクリル系界面活性剤から選ばれる1種または2種以上の消泡剤とを含むことを特徴とする導電性炭素材料分散液、
2. 前記消泡剤が、アセチレン系界面活性剤を含む1の導電性炭素材料分散液、
3. さらに、界面活性作用を有する導電性炭素材料分散剤と、分散媒とを含む1または2の導電性炭素材料分散液、
4. 前記導電性炭素材料が、黒鉛、カーボンブラック、およびカーボンナノチューブから選ばれる1種または2種以上を含む1~3のいずれかの導電性炭素材料分散液、
5. 前記導電性炭素材料が、カーボンナノチューブを含む1~4のいずれかの導電性炭素材料分散液、
6. 前記分散媒が、水を含む3~5のいずれかの導電性炭素材料分散液、
7. 前記導電性炭素材料分散剤が、側鎖にオキサゾリン基を有するポリマーを含む3~6のいずれかの導電性炭素材料分散液、
8. 前記側鎖にオキサゾリン基を有するポリマーが、下記式(1)で表されるオキサゾリンモノマーの重合物である7の導電性炭素材料分散液、
Figure JPOXMLDOC01-appb-C000002
(式中、Xは、重合性炭素-炭素二重結合含有基を表し、R1~R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1~5のアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。)
9. 前記重合性炭素-炭素二重結合を含む鎖状炭化水素基が、炭素数2~8のアルケニル基である8の導電性炭素材料分散液、
10. 前記オキサゾリンモノマーが、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-4-エチル-2-オキサゾリン、2-ビニル-4-プロピル-2-オキサゾリン、2-ビニル-4-ブチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-ビニル-5-エチル-2-オキサゾリン、2-ビニル-5-プロピル-2-オキサゾリン、2-ビニル-5-ブチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-4-エチル-2-オキサゾリン、2-イソプロペニル-4-プロピル-2-オキサゾリン、2-イソプロペニル-4-ブチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-5-プロピル-2-オキサゾリンおよび2-イソプロペニル-5-ブチル-2-オキサゾリンからなる群から選ばれる1種または2種以上である8の導電性炭素材料分散液、
11. 前記オキサゾリンモノマーが、2-イソプロペニル-2-オキサゾリンである10の導電性炭素材料分散液、
12. 架橋剤を含む1~11のいずれかの導電性炭素材料分散液、
13. 前記架橋剤が、オキサゾリン基と架橋反応を起こす化合物を含む12の導電性炭素材料分散液、
14. 前記オキサゾリン基と架橋反応を起こす化合物が、酸触媒の存在下で架橋反応性を発揮する、合成高分子の金属塩および天然高分子の金属塩、並びに加熱により架橋反応性を発揮する、合成高分子のアンモニウム塩および天然高分子のアンモニウム塩から選ばれる化合物を含む13の導電性炭素材料分散液、
15. 前記オキサゾリン基と架橋反応を起こす化合物が、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースアンモニウムおよびアルギン酸アンモニウムから選ばれる化合物を含む14の導電性炭素材料分散液、
16. マトリックスとなるポリマーを含む1~15のいずれかの導電性炭素材料分散液、
17. 1~16のいずれかの導電性炭素材料分散液から得られる導電性結着層、
18. 厚みが、5μm以下である17の導電性結着層、
19. 厚みが、1μm以下である17の導電性結着層、
20. 厚みが、0.5μm以下である17の導電性結着層、
21. 集電基板と、この基板上に形成された、17~20のいずれかの導電性結着層と、を備えるエネルギー貯蔵デバイスの電極用複合集電体、
22. 21のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極、
23. 21のエネルギー貯蔵デバイスの電極用複合集電体と、この複合集電体の前記導電性結着層上に形成された活物質層とを備える22のエネルギー貯蔵デバイス用電極、
24. 22または23のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス、
25. リチウムイオン二次電池である24のエネルギー貯蔵デバイス、
26. 導電性炭素材料、界面活性作用を有する導電性炭素材料分散剤、分散媒、およびアセチレン系界面活性剤を混合することを特徴とする泡立ちが抑制された導電性炭素材料分散液の製造方法、
27. 導電性炭素材料、界面活性作用を有する導電性炭素材料分散剤、分散媒、およびアセチレン系界面活性剤を混合することを特徴とする導電性炭素材料分散液の消泡方法
を提供する。
That is, the present invention
1. It includes a conductive carbon material and one or more antifoaming agents selected from acetylene surfactants, silicone surfactants, metal soap surfactants, and acrylic surfactants. Conductive carbon material dispersion,
2. 1 conductive carbon material dispersion liquid in which the antifoaming agent contains an acetylene-based surfactant;
3. Furthermore, 1 or 2 conductive carbon material dispersion liquid containing the conductive carbon material dispersing agent which has surface active action, and a dispersion medium,
4). The conductive carbon material dispersion liquid according to any one of 1 to 3, wherein the conductive carbon material includes one or more selected from graphite, carbon black, and carbon nanotubes,
5). The conductive carbon material is a conductive carbon material dispersion liquid of any one of 1 to 4, wherein the conductive carbon material contains carbon nanotubes,
6). The dispersion medium is any one of 3 to 5 conductive carbon material dispersion liquid containing water,
7). The conductive carbon material dispersion liquid according to any one of 3 to 6, wherein the conductive carbon material dispersant contains a polymer having an oxazoline group in a side chain;
8). The conductive carbon material dispersion liquid of 7, wherein the polymer having an oxazoline group in the side chain is a polymer of an oxazoline monomer represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000002
(Wherein X represents a polymerizable carbon-carbon double bond-containing group, and R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or a carbon number of 6 Represents an aryl group having ˜20 or an aralkyl group having 7 to 20 carbon atoms.)
9. A conductive carbon material dispersion of 8, wherein the chain hydrocarbon group containing a polymerizable carbon-carbon double bond is an alkenyl group having 2 to 8 carbon atoms;
10. The oxazoline monomer is 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2 -Vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl -5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4 -Propyl-2-oxazoline, 2-isopropenyl-4-butyl-2-oxazoline, 2-isopropenyl-5-methyl 1 selected from the group consisting of -2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-5-propyl-2-oxazoline and 2-isopropenyl-5-butyl-2-oxazoline 8 conductive carbon material dispersions that are seeds or two or more kinds,
11. 10 conductive carbon material dispersions wherein the oxazoline monomer is 2-isopropenyl-2-oxazoline;
12 Any one of the conductive carbon material dispersions 1 to 11 containing a crosslinking agent;
13. 12 conductive carbon material dispersions, wherein the crosslinking agent comprises a compound that causes a crosslinking reaction with an oxazoline group,
14 A compound that undergoes a crosslinking reaction with the oxazoline group exhibits a crosslinking reactivity in the presence of an acid catalyst, a synthetic polymer metal salt and a natural polymer metal salt, and exhibits a crosslinking reactivity when heated. 13 conductive carbon material dispersions containing a compound selected from ammonium salts of molecules and ammonium salts of natural polymers,
15. 14 conductive substances, wherein the compound causing a crosslinking reaction with the oxazoline group includes a compound selected from lithium polyacrylate, sodium polyacrylate, ammonium polyacrylate, lithium carboxymethylcellulose, sodium carboxymethylcellulose, ammonium carboxymethylcellulose, and ammonium alginate. Carbon material dispersion,
16. 1 to 15 of a conductive carbon material dispersion containing a polymer to be a matrix,
17. A conductive binder layer obtained from the conductive carbon material dispersion liquid of any one of 1 to 16,
18. 17 conductive binder layers having a thickness of 5 μm or less,
19. 17 conductive binder layers having a thickness of 1 μm or less,
20. 17 conductive binder layers having a thickness of 0.5 μm or less,
21. A composite current collector for an electrode of an energy storage device, comprising: a current collecting substrate; and any one of conductive bonding layers 17 to 20 formed on the substrate,
22. An electrode for an energy storage device comprising a composite current collector for an electrode of 21 energy storage devices,
23. 22 energy storage device electrodes comprising 21 energy storage device electrode composite current collectors and an active material layer formed on the conductive binder layer of the composite current collectors,
24. An energy storage device comprising 22 or 23 electrodes for energy storage devices,
25. 24 energy storage devices which are lithium ion secondary batteries,
26. A method for producing a conductive carbon material dispersion liquid with suppressed foaming, comprising mixing a conductive carbon material, a conductive carbon material dispersant having a surface-active action, a dispersion medium, and an acetylene-based surfactant;
27. Provided is a method for defoaming a conductive carbon material dispersion, comprising mixing a conductive carbon material, a conductive carbon material dispersant having a surface active action, a dispersion medium, and an acetylene surfactant.
 本発明の導電性炭素材料分散液は、泡立ちにくいため、その調製および均一塗工が容易であり、当該分散液を基材上に塗工することで容易に均一な薄膜を得ることができる。
 得られる薄膜は、高導電性を示すことから、導電性薄膜の製造に適しており、かつ、基材に対する密着性に優れている薄膜を与えるのみならず、湿式法によって再現性よく効率的に大面積の薄膜を形成することができるから、エネルギー貯蔵デバイス用途だけでなく、各種半導体材料、電導体材料等として幅広い用途に好適に用いることができる。
 特に、集電基板に対する接着性に優れた導電性薄膜を形成できることから、エネルギー貯蔵デバイス電極を構成する集電基板と活物質等とを接合する導電性結着層を形成するための導電性薄膜用組成物として好適である。
 この導電性結着層を用いることで、エネルギー貯蔵デバイスの電気抵抗を低くすることができるため、特に電気自動車用途など瞬間的に大電流が必要な用途において電圧降下を起こすことなく電流を取り出すことができると同時に、長寿命化を図ることができる。
Since the conductive carbon material dispersion of the present invention is difficult to foam, its preparation and uniform coating are easy, and a uniform thin film can be easily obtained by coating the dispersion on a substrate.
Since the obtained thin film exhibits high conductivity, it is suitable for the production of a conductive thin film and not only provides a thin film with excellent adhesion to a substrate, but also efficiently by a wet method with good reproducibility. Since a thin film having a large area can be formed, it can be suitably used not only for energy storage devices but also for various applications such as various semiconductor materials and conductor materials.
In particular, since a conductive thin film having excellent adhesion to the current collector substrate can be formed, the conductive thin film for forming a conductive binder layer for joining the current collector substrate constituting the energy storage device electrode and the active material, etc. It is suitable as a composition for use.
By using this conductive binder layer, the electrical resistance of the energy storage device can be lowered, so that current can be taken out without causing a voltage drop, especially in applications that require a large current instantaneously, such as in electric vehicles. At the same time, the service life can be extended.
 以下、本発明についてさらに詳しく説明する。
 本発明に係る導電性炭素材料分散液は、導電性炭素材料と、アセチレン系界面活性剤、シリコーン系界面活性剤、金属石鹸系界面活性剤およびアクリル系界面活性剤から選ばれる1種または2種以上の消泡剤とを含むものである。
 特に、導電性炭素材料の凝集を抑制して均一分散性を保つことを考慮すると、アセチレン系界面活性剤を含む消泡剤が好ましく、アセチレン系界面活性剤を50質量%以上含む消泡剤が好ましく、アセチレン系界面活性剤を80質量%以上含む消泡剤がより好ましく、アセチレン系界面活性剤のみ(100質量%)からなる消泡剤が最適である。
 また、本発明の導電性炭素材料分散液において、消泡剤の使用量は、特に限定されるものではないが、泡立ち抑制効果を十分に発揮させるとともに、導電性炭素材料の凝集を抑制して均一分散性を保つことを考慮すると、分散液全体に対して、0.001~1.0質量%が好ましく、0.01~0.5質量%がより好ましい。
Hereinafter, the present invention will be described in more detail.
The conductive carbon material dispersion according to the present invention is one or two selected from conductive carbon materials, acetylene surfactants, silicone surfactants, metal soap surfactants, and acrylic surfactants. The above-mentioned antifoaming agent is included.
In particular, in consideration of maintaining the uniform dispersibility by suppressing aggregation of the conductive carbon material, an antifoaming agent containing an acetylene surfactant is preferable, and an antifoaming agent containing 50% by mass or more of an acetylene surfactant is preferable. Preferably, an antifoaming agent containing 80% by mass or more of an acetylenic surfactant is more preferable, and an antifoaming agent consisting of only an acetylenic surfactant (100% by mass) is optimal.
Further, in the conductive carbon material dispersion of the present invention, the amount of the antifoaming agent is not particularly limited, but while sufficiently exerting the foaming suppression effect, the aggregation of the conductive carbon material is suppressed. In view of maintaining uniform dispersibility, the content is preferably 0.001 to 1.0 mass%, more preferably 0.01 to 0.5 mass%, based on the entire dispersion.
 本発明で消泡剤として用いられるアセチレン系界面活性剤の具体例としては、特に限定されるものではないが、下記式(A)で表されるアセチレングリコールのエトキシル化体を含む界面活性剤を用いることが好ましい。 Specific examples of the acetylene-based surfactant used as an antifoaming agent in the present invention are not particularly limited, but a surfactant containing an ethoxylated acetylene glycol represented by the following formula (A) is used. It is preferable to use it.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(A)において、R5~R8は、互いに独立して、炭素数1~10のアルキル基を表し、nおよびmは、互いに独立して0以上の整数を表すが、n+m=0~40である。
 炭素数1~10のアルキル基の具体例としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
In the formula (A), R 5 to R 8 each independently represents an alkyl group having 1 to 10 carbon atoms, and n and m each independently represent an integer of 0 or more, but n + m = 0 to 40.
Specific examples of the alkyl group having 1 to 10 carbon atoms may be linear, branched, or cyclic. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec -Butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
 上記式(A)で表されるアセチレングリコールの具体例としては、2,5,8,11-テトラメチル-6-ドデシン-5,8-ジオール、5,8-ジメチル-6-ドデシン-5,8-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、4,7-ジメチル-5-デシン-4,7-ジオール、2,3,6,7-テトラメチル-4-オクチン-3,6-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエトキシル化体(エチレンオキサイド付加モル数:1.3)、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエトキシル化体(エチレンオキサイド付加モル数:4)、3,6-ジメチル-4-オクチン-3,6-ジオールのエトキシル化体(エチレンオキサイド付加モル数:4)、2,5,8,11-テトラメチル-6-ドデシン-5,8-ジオールのエトキシル化体(エチレンオキサイド付加モル数:6)2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエトキシル化体(エチレンオキサイド付加モル数:10)、2,4,7,9-テトラメチル-5-デシン-4,7-ジオールのエトキシル化体(エチレンオキサイド付加モル数:30)、3,6-ジメチル-4-オクチン-3,6-ジオールのエトキシル化体(エチレンオキサイド付加モル数:20)等が挙げられ、これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the acetylene glycol represented by the above formula (A) include 2,5,8,11-tetramethyl-6-dodecin-5,8-diol, 5,8-dimethyl-6-dodecin-5, 8-diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 4,7-dimethyl-5-decyne-4,7-diol, 2,3,6,7-tetra Methyl-4-octyne-3,6-diol, 3,6-dimethyl-4-octyne-3,6-diol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,4,7, Ethoxylate of 9-tetramethyl-5-decyne-4,7-diol (number of moles of ethylene oxide added: 1.3), 2,4,7,9-tetramethyl-5-decyne-4,7-diol Of ethoxylate (added moles of ethylene oxide) 4), Ethoxylated form of 3,6-dimethyl-4-octyne-3,6-diol (number of moles of ethylene oxide added: 4), 2,5,8,11-tetramethyl-6-dodecin-5,8 -Ethoxylated form of diol (ethylene oxide addition moles: 6) 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylated form (ethylene oxide addition moles: 10), 2 , 4,7,9-Tetramethyl-5-decyne-4,7-diol ethoxylate (ethylene oxide addition moles: 30), 3,6-dimethyl-4-octyne-3,6-diol ethoxyl (Emethylene oxide addition mole number: 20) etc. are mentioned, These may be used individually by 1 type, or may be used in combination of 2 or more type.
 本発明で使用可能なアセチレン系界面活性剤は、市販品として入手することもでき、そのような市販品としては、例えば、オルフィンD-10PG(日信化学工業(株)製、有効成分50質量%、淡黄色液体)、オルフィンE-1004(日信化学工業(株)製、有効成分100質量%、淡黄色液体)、オルフィンE-1010(日信化学工業(株)製、有効成分100質量%、淡黄色液体)、オルフィンE-1020(日信化学工業(株)製、有効成分100質量%、淡黄色液体)、オルフィンE-1030W(日信化学工業(株)製、有効成分75質量%、淡黄色液体)、サーフィノール420(日信化学工業(株)製、有効成分100質量%、淡黄粘稠体)、サーフィノール440(日信化学工業(株)製、有効成分100質量%、淡黄粘稠体)、サーフィノール104E(日信化学工業(株)製、有効成分50質量%、淡黄粘稠体)等が挙げられる。 The acetylene-based surfactant that can be used in the present invention can also be obtained as a commercial product. Examples of such a commercial product include Olphine D-10PG (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 50 mass). %, Pale yellow liquid), Olphine E-1004 (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100% by mass, pale yellow liquid), Olphine E-1010 (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100% by mass) %, Pale yellow liquid), Olphine E-1020 (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100% by mass, pale yellow liquid), Olphine E-1030W (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 75 masses) %, Light yellow liquid), Surfynol 420 (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100 mass%, pale yellow viscous substance), Surfynol 440 (manufactured by Nissin Chemical Industry Co., Ltd., active ingredient 100 mass) %, Yellow viscous 稠体), SURFYNOL 104E (Nisshin Chemical Industry Co., Ltd., effective component 50 mass%, light yellow viscous 稠体), and the like.
 本発明で消泡剤として用いられるシリコーン系界面活性剤としては、特に限定されるものではなく、少なくともシリコーン鎖を含んでいれば、直鎖状、分岐鎖状、環状のいずれでもよく、また、疎水性基および親水性基のいずれを含んでいてもよい。
 疎水性基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等のアルキル基;シクロヘキシル基等の環状アルキル基;フェニル基等の芳香族炭化水素基などが挙げられる。
 親水性基の具体例としては、アミノ基、チオール基、水酸基、アルコキシ基、カルボン酸,スルホン酸,リン酸,硝酸およびそれらの有機塩や無機塩、エステル基、アルデヒド基、グリセロール基、ヘテロ環基等が挙げられる。
The silicone surfactant used as an antifoaming agent in the present invention is not particularly limited, and may be linear, branched, or cyclic as long as it contains at least a silicone chain. Either a hydrophobic group or a hydrophilic group may be contained.
Specific examples of the hydrophobic group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n- Examples thereof include alkyl groups such as heptyl group, n-octyl group, n-nonyl group and n-decyl group; cyclic alkyl groups such as cyclohexyl group; aromatic hydrocarbon groups such as phenyl group.
Specific examples of hydrophilic groups include amino groups, thiol groups, hydroxyl groups, alkoxy groups, carboxylic acids, sulfonic acids, phosphoric acids, nitric acids and their organic and inorganic salts, ester groups, aldehyde groups, glycerol groups, heterocyclic rings. Groups and the like.
 シリコーン系界面活性剤の具体例としては、ジメチルシリコーン、メチルフェニルシリコーン、クロロフェニルシリコーン、アルキル変性シリコーン、フッ素変性シリコーン、アミノ変性シリコーン、アルコール変性シリコーン、フェノール変性シリコーン、カルボキシ変性シリコーン、エポキシ変性シリコーン、脂肪酸エステル変性シリコーン、ポリエーテル変性シリコーン等が挙げられる。 Specific examples of silicone surfactants include dimethyl silicone, methylphenyl silicone, chlorophenyl silicone, alkyl modified silicone, fluorine modified silicone, amino modified silicone, alcohol modified silicone, phenol modified silicone, carboxy modified silicone, epoxy modified silicone, fatty acid. Examples thereof include ester-modified silicone and polyether-modified silicone.
 本発明で使用可能なシリコーン系界面活性剤は、市販品として入手することもでき、そのような市販品としては、BYK-300、BYK-301、BYK-302、BYK-306、BYK-307、BYK-310、BYK-313、BYK-320BYK-333、BYK-341、BYK-345、BYK-346、BYK-347、BYK-348、BYK-349(以上商品名、ビックケミー・ジャパン(株)製)、KM-80、KF-351A、KF-352A、KF-353、KF-354L、KF-355A、KF-615A、KF-945、KF-640、KF-642、KF-643、KF-6020、X-22-4515、KF-6011、KF-6012、KF-6015、KF-6017(以上商品名、信越化学工業(株)製)、SH-28PA、SH8400、SH-190、SF-8428(以上商品名、東レ・ダウコーニング(株)製)、ポリフローKL-245、ポリフローKL-270、ポリフローKL-100(以上商品名、共栄社化学(株)製)、シルフェイスSAG002、シルフェイスSAG005、シルフェイスSAG0085(以上商品名、日信化学工業(株)製)等が挙げられる。 Silicone-based surfactants that can be used in the present invention can also be obtained as commercial products, such as BYK-300, BYK-301, BYK-302, BYK-306, BYK-307, BYK-310, BYK-313, BYK-320BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, BYK-349 (above trade names, manufactured by BYK Japan KK) , KM-80, KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X -22-4515, KF-6011, KF-6012, KF-6015, KF-6017 (Manufactured by Gaku Kogyo Co., Ltd.), SH-28PA, SH8400, SH-190, SF-8428 (trade name, manufactured by Toray Dow Corning Co., Ltd.), Polyflow KL-245, Polyflow KL-270, Polyflow KL-100 (The trade name, manufactured by Kyoeisha Chemical Co., Ltd.), Silface SAG002, Silface SAG005, Silface SAG0085 (The trade name, manufactured by Nissin Chemical Industry Co., Ltd.) and the like.
 本発明で消泡剤として用いられる金属石鹸系界面活性剤は、特に限定されるものではなく、少なくともカルシウム、マグネシウム等の多価金属イオンを含む、直鎖状、分岐鎖状、環状のいずれの構造の金属石鹸であってもよい。
 より具体的には、ステアリン酸アルミニウム、ステアリン酸マンガン、ステアリン酸コバルト、ステアリン酸銅、ステアリン酸鉄、ステアリン酸ニッケル、ステアリン酸カルシウム、ラウリン酸亜鉛、ベヘニン酸マグネシウム等の炭素数12~22の脂肪酸と金属(アルカリ土類金属、アルミニウム、マンガン、コバルト、銅、鉄、亜鉛、ニッケル等)との塩が挙げられる。
 本発明で使用可能な金属石鹸系界面活性剤は、市販品として入手することもでき、そのような市販品としては、例えば、ノプコNXZ(商品名、サンノプコ(株)製)等が挙げられる。
The metal soap surfactant used as an antifoaming agent in the present invention is not particularly limited, and includes any of linear, branched, and cyclic containing at least a polyvalent metal ion such as calcium and magnesium. It may be a structured metal soap.
More specifically, fatty acids having 12 to 22 carbon atoms such as aluminum stearate, manganese stearate, cobalt stearate, copper stearate, iron stearate, nickel stearate, calcium stearate, zinc laurate, magnesium behenate and the like And salts with metals (alkaline earth metals, aluminum, manganese, cobalt, copper, iron, zinc, nickel, etc.).
The metal soap-based surfactant that can be used in the present invention can also be obtained as a commercial product. Examples of such a commercial product include Nopco NXZ (trade name, manufactured by San Nopco Co., Ltd.).
 本発明で消泡剤として用いられるアクリル系界面活性剤は、少なくともアクリル系モノマーを重合させて得られるポリマーであれば、特に限定されるものではないが、少なくともアクリル酸アルキルエステルを重合させて得られるポリマーが好ましく、少なくともアルキル基の炭素数が2~9であるアクリル酸アルキルエステルを重合させて得られるポリマーがより好ましい。
 アルキル基の炭素数が2~9であるアクリル酸アルキルエステルの具体例としては、アクリル酸エチルエステル、アクリル酸n-プロピルエステル、アクリル酸イソプロピルエステル、アクリル酸n-ブチルエステル、アクリル酸イソブチルエステル、アクリル酸t-ブチルエステル、アクリル酸n-オクチルエステル、アクリル酸2-エチルヘキシルエステル、アクリル酸イソノニルエステル等が挙げられる。
The acrylic surfactant used as an antifoaming agent in the present invention is not particularly limited as long as it is a polymer obtained by polymerizing at least an acrylic monomer, but is obtained by polymerizing at least an alkyl acrylate. The polymer obtained is preferably a polymer obtained by polymerizing an alkyl acrylate having at least 2 to 9 carbon atoms in the alkyl group.
Specific examples of the acrylic acid alkyl ester having 2 to 9 carbon atoms in the alkyl group include acrylic acid ethyl ester, acrylic acid n-propyl ester, acrylic acid isopropyl ester, acrylic acid n-butyl ester, acrylic acid isobutyl ester, Examples thereof include t-butyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate and the like.
 本発明で使用可能なアクリル系界面活性剤は、市販品として入手することもでき、そのような市販品としては、例えば、1970,230,LF-1980,LF-1982(-50),LF-1983(-50),LF-1984(-50),LHP-95,LHP-96,UVX-35,UVX-36,UVX-270、UVX-271,UVX-272,AQ-7120,AQ-7130(以上、楠本化成(株)製商品名)、BYK-350,BYK-352,BYK-354,BYK-355,BYK-358,BYK-380,BYK-381,BYK-392(以上、ビックケミー・ジャパン(株)製商品名)、ポリフローNo.7、ポリフローNo.50E、ポリフローNo.85、ポリフローNo.90、ポリフローNo.95、フローレンAC-220F、ポリフローKL-800(以上、共栄社化学(株)製商品名)、ニューコールシリーズ(日本乳化剤(株)製)等が挙げられる。 The acrylic surfactant that can be used in the present invention can also be obtained as a commercially available product. Examples of such commercially available products include 1970, 230, LF-1980, LF-1982 (-50), LF- 1983 (-50), LF-1984 (-50), LHP-95, LHP-96, UVX-35, UVX-36, UVX-270, UVX-271, UVX-272, AQ-7120, AQ-7130 ( As mentioned above, trade names manufactured by Enomoto Kasei Co., Ltd.), BYK-350, BYK-352, BYK-354, BYK-355, BYK-358, BYK-380, BYK-381, BYK-392 (above, Big Chemie Japan ( Product name), Polyflow No. 7, Polyflow No. 50E, Polyflow No. 85, Polyflow No. 90, polyflow no. 95, Florene AC-220F, Polyflow KL-800 (above, trade name, manufactured by Kyoeisha Chemical Co., Ltd.), New Coal series (produced by Nippon Emulsifier Co., Ltd.)
 導電性炭素材料としては、特に限定されるものではないが、二次電池の結着層を形成するために用いる場合、繊維状導電性カーボン材料、層状導電性カーボン材料、粒子状導電性カーボン材料が好ましい。なお、これらの導電性炭素材料は、それぞれ単独で、または2種以上組み合わせて用いることができる。 The conductive carbon material is not particularly limited, but when used for forming a binding layer of a secondary battery, a fibrous conductive carbon material, a layered conductive carbon material, a particulate conductive carbon material. Is preferred. These conductive carbon materials can be used alone or in combination of two or more.
 繊維状導電性カーボン材料の具体例としては、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等が挙げられるが、導電性、分散性、入手性などの観点からCNTが好ましい。
 CNTは、一般的に、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって作製されるが、本発明で使用されるCNTはいずれの方法で得られたものでもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTと記載)と、2枚のグラフェン・シートが同心円状に巻かれた2層CNT(以下、DWCNTと記載)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(以下、MWCNTと記載)とがあるが、本発明においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、または複数を組み合わせて使用できる。
 なお、上記の方法でSWCNT、DWCNTやMWCNTを作製する際には、ニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存することがあることから、この不純物の除去や精製を必要とする場合がある。不純物の除去には、硝酸、硫酸などによる酸処理とともに超音波処理することが有効である。しかし、硝酸、硫酸などによる酸処理ではCNTを構成するπ共役系が破壊され、CNT本来の特性が損なわれてしまう可能性があるため、適切な条件で精製して使用することが望ましい。
Specific examples of the fibrous conductive carbon material include carbon nanotubes (CNT) and carbon nanofibers (CNF). CNT is preferable from the viewpoint of conductivity, dispersibility, availability, and the like.
CNTs are generally produced by arc discharge, chemical vapor deposition (CVD), laser ablation, etc., but the CNTs used in the present invention may be obtained by any method. . In addition, single-walled CNT (hereinafter referred to as SWCNT) in which one carbon film (graphene sheet) is wound in a cylindrical shape and two-layered CNT in which two graphene sheets are wound in a concentric shape. (Hereinafter referred to as DWCNT) and multi-layer CNT (hereinafter referred to as MWCNT) in which a plurality of graphene sheets are concentrically wound, but in the present invention, SWCNT, DWCNT, and MWCNT are each a single unit, Or a combination of several can be used.
In addition, when producing SWCNT, DWCNT and MWCNT by the above method, catalyst metals such as nickel, iron, cobalt, yttrium may remain, so that removal or purification of this impurity may be required. is there. In order to remove impurities, it is effective to perform ultrasonic treatment together with acid treatment with nitric acid, sulfuric acid or the like. However, acid treatment with nitric acid, sulfuric acid or the like destroys the π-conjugated system constituting CNT and may impair the original characteristics of CNT. Therefore, it is desirable to purify and use under appropriate conditions.
 本発明で使用可能なCNTの具体例としては、スパーグロス法CNT〔国立研究開発法人 新エネルギー・産業技術総合開発機構製〕、eDIPS‐CNT〔国立研究開発法人 新エネルギー・産業技術総合開発機構製〕、SWNTシリーズ〔(株)名城ナノカーボン製:商品名〕、VGCFシリーズ〔昭和電工(株)製:商品名〕、FloTubeシリーズ〔CNano Technology社製:商品名〕、AMC〔宇部興産(株)製:商品名〕、NANOCYL NC7000シリーズ〔Nanocyl S.A. 社製:商品名〕、Baytubes〔BAYER社製:商品名〕、GRAPHISTRENGTH〔アルケマ社製:商品名〕、MWNT7〔保土谷化学工業(株)製:商品名〕、ハイペリオンCNT〔Hypeprion Catalysis International社製:商品名〕等が挙げられる。 Specific examples of CNTs that can be used in the present invention include spar gloss CNT (made by National Research and Development Corporation, Shinshin Energy and Industrial Technology Development Organization), eDIPS-CNT (made by National Research and Development Corporation, Shinshin Energy and Industrial Technology Development Organization). ], SWNT series [made by Meijo Nanocarbon Co., Ltd .: trade name], VGCF series [made by Showa Denko Co., Ltd .: trade name], FloTube series [made by CNano Technology Co., Ltd .: trade name], AMC [Ube Industries, Ltd.] Manufactured: trade name], NANOCYL NC7000 series [manufactured by Nanocyl. SA Ltd .: trade name], Baytubes [manufactured by BAYER: trade name], GRAPHISTRENGTH [manufactured by Arkema: trade name], MWNT7 [Hodogaya Chemical Co., Ltd. ): Product name], Hyperion CNT [Hyperion® Catalysis® International: product name].
 層状導電性カーボン材料の具体例としては、黒鉛、グラフェン等が挙げられる。黒鉛については、特に制限はなく、市販の各種黒鉛を用いることができる。
 グラフェンは、1原子の厚さのsp2結合炭素原子のシートであって、炭素原子とその結合からできた蜂の巣のような六角形格子構造をとっており、その厚さは、0.38nm程度と言われている。また、市販の酸化グラフェンの他に、黒鉛をHummers法により処理して得られる酸化グラフェンを用いてもよい。
Specific examples of the layered conductive carbon material include graphite and graphene. The graphite is not particularly limited, and various commercially available graphites can be used.
Graphene is a sheet of sp2 bonded carbon atoms with a thickness of 1 atom, and has a hexagonal lattice structure like a honeycomb made of carbon atoms and their bonds, and its thickness is about 0.38 nm. It is said. In addition to commercially available graphene oxide, graphene oxide obtained by processing graphite by the Hummers method may be used.
 粒子状導電性カーボン材料の具体例としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等のカーボンブラックなどが挙げられる。これらのカーボンブラックについては、特に制限はなく、市販の各種カーボンブラックを用いることができ、その粒子径は、5~500nmが好ましい。 Specific examples of the particulate conductive carbon material include carbon black such as furnace black, channel black, acetylene black, and thermal black. These carbon blacks are not particularly limited, and various commercially available carbon blacks can be used, and the particle diameter is preferably 5 to 500 nm.
 溶媒としては、純水;テトラヒドロフラン(THF)、ジエチルエーテル、1,2-ジメトキシエタン(DME)等のエーテル類;塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、イソプロパノール、n-プロパノール等のアルコール類;n-ヘプタン、n-ヘキサン、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;エチレングリコール、プロピレングリコール等のグリコール類などの有機溶媒を、単独で、または2種以上組み合わせて用いることができるが、低コストであり、安全性も高く、環境負荷も小さいという点から、少なくとも純水を含む溶媒が好ましく、純水単独溶媒がより好ましい。 Solvents include pure water; ethers such as tetrahydrofuran (THF), diethyl ether, 1,2-dimethoxyethane (DME); halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane; N, N Amides such as dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP); ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methanol, ethanol, Alcohols such as isopropanol and n-propanol; aliphatic hydrocarbons such as n-heptane, n-hexane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethylene glycol monoethyl ether, ethylene glycol Glycol ethers such as coal monobutyl ether and propylene glycol monomethyl ether; organic solvents such as glycols such as ethylene glycol and propylene glycol can be used alone or in combination of two or more, but they are inexpensive and safe. From the viewpoint of high performance and low environmental burden, a solvent containing at least pure water is preferable, and a pure water single solvent is more preferable.
 本発明で用いる導電性炭素材料分散剤は、導電性炭素材料を溶媒に分散することができる限り特に限定されるものではないが、乾燥して得られる導電性薄膜に強度を持たせられることから界面活性作用を有する高分子系分散剤であることが好ましい。 The conductive carbon material dispersant used in the present invention is not particularly limited as long as the conductive carbon material can be dispersed in a solvent. However, the conductive thin film obtained by drying can have strength. A polymer dispersant having a surface active action is preferred.
 界面活性作用を有する高分子系分散剤の具体例としては、オキサゾリンポリマー;ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール類;ポリアクリルアミド;ポリスチレンスルホン酸;ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸アンモニウム等のポリ(メタ)アクリル酸誘導体;ポリビニルアルコール、ポリビニルアセタール等のポリビニルアルコール誘導体;メチルセルロース、カルボキシセルロース、ヒドロキシメチルセルロース等のセルロース誘導体;デンプン、リグニンスルホン酸塩、アルギン酸ナトリウム等の天然高分子およびその誘導体、これらの重合体の構成単位である重合性単量体の二種以上の共重合体またはその他の単量体との共重合体、クラウンエーテル類等の相間移動触媒と称されるもの等が挙げられるが、二次電池の結着層を形成するために用いる場合、分散性、溶解性、集電基板との密着性などの観点からオキサゾリンポリマーが好ましい。 Specific examples of the polymeric dispersant having a surface active action include oxazoline polymers; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; polyacrylamide; polystyrene sulfonic acid; poly (meth) acrylic acid, poly (meth) acrylic Poly (meth) acrylic acid derivatives such as sodium acid and ammonium poly (meth) acrylate; polyvinyl alcohol derivatives such as polyvinyl alcohol and polyvinyl acetal; cellulose derivatives such as methylcellulose, carboxycellulose and hydroxymethylcellulose; starch, lignin sulfonate, Natural polymers such as sodium alginate and derivatives thereof, copolymers of polymerizable monomers that are constituent units of these polymers, or copolymers with other monomers Examples include phase transfer catalysts such as crown ethers, etc., but when used for forming a binding layer of a secondary battery, viewpoints such as dispersibility, solubility, and adhesion to a current collector substrate To oxazoline polymers are preferred.
 オキサゾリンポリマーとしては、主鎖を構成する繰り返し単位に直接またはアルキレン基等のスペーサー基を介してオキサゾリン基が結合した重合体であれば特に限定されるものではないが、具体的には、式(1)で示されるような2位に重合性炭素-炭素二重結合含有基を有するオキサゾリンモノマーをラジカル重合して得られる、オキサゾリン環の2位でポリマー主鎖またはスペーサー基に結合した繰り返し単位を有する、側鎖にオキサゾリン基を有するビニル系ポリマーが好ましい。 The oxazoline polymer is not particularly limited as long as it is a polymer in which an oxazoline group is bonded directly to a repeating unit constituting the main chain or via a spacer group such as an alkylene group. A repeating unit bonded to a polymer main chain or a spacer group at the 2-position of the oxazoline ring, obtained by radical polymerization of an oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2-position as shown in 1) A vinyl polymer having an oxazoline group in the side chain is preferred.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記Xは、重合性炭素-炭素二重結合含有基を表し、R1~R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1~5のアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。
 オキサゾリンモノマーが有する重合性炭素-炭素二重結合含有基としては、重合性炭素-炭素二重結合を含んでいれば特に限定されるものではないが、重合性炭素-炭素二重結合を含む鎖状炭化水素基が好ましく、例えば、ビニル基、アリル基、イソプロペニル基などの炭素数2~8のアルケニル基等が好ましい。
 ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~5のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロヘキシル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、キシリル基、トリル基、ビフェニル基、ナフチル基等が挙げられる。
 炭素数7~20のアラルキル基の具体例としては、ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等が挙げられる。
X represents a polymerizable carbon-carbon double bond-containing group, and R 1 to R 4 are independently of each other a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or a 6 to 20 carbon atoms. An aryl group or an aralkyl group having 7 to 20 carbon atoms is represented.
The polymerizable carbon-carbon double bond-containing group of the oxazoline monomer is not particularly limited as long as it contains a polymerizable carbon-carbon double bond, but a chain containing a polymerizable carbon-carbon double bond. And a hydrocarbon group having 2 to 8 carbon atoms such as vinyl group, allyl group and isopropenyl group is preferable.
Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group having 1 to 5 carbon atoms may be linear, branched or cyclic, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group. Tert-butyl group, n-pentyl group, cyclohexyl group and the like.
Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl group, xylyl group, tolyl group, biphenyl group, naphthyl group and the like.
Specific examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, phenylethyl group, phenylcyclohexyl group and the like.
 式(1)で示される2位に重合性炭素-炭素二重結合含有基を有するオキサゾリンモノマーの具体例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-4-エチル-2-オキサゾリン、2-ビニル-4-プロピル-2-オキサゾリン、2-ビニル-4-ブチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-ビニル-5-エチル-2-オキサゾリン、2-ビニル-5-プロピル-2-オキサゾリン、2-ビニル-5-ブチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-4-エチル-2-オキサゾリン、2-イソプロペニル-4-プロピル-2-オキサゾリン、2-イソプロペニル-4-ブチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-5-プロピル-2-オキサゾリン、2-イソプロペニル-5-ブチル-2-オキサゾリン等が挙げられるが、入手容易性などの点から、2-イソプロペニル-2-オキサゾリンが好ましい。 Specific examples of the oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2-position represented by the formula (1) include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2-vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2- Vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl-5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4- Methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4-propyl-2-oxazoline, 2- Sopropenyl-4-butyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-5-propyl-2-oxazoline, 2 -Isopropenyl-5-butyl-2-oxazoline and the like can be mentioned, but 2-isopropenyl-2-oxazoline is preferable from the viewpoint of availability.
 また、水系溶媒を用いて導電性炭素材料分散剤を調製することを考慮すると、オキサゾリンポリマーも水溶性であることが好ましい。
 このような水溶性のオキサゾリンポリマーは、上記式(1)で表されるオキサゾリンモノマーのホモポリマーでもよいが、水への溶解性をより高めるため、上記オキサゾリンモノマーと親水性官能基を有する(メタ)アクリル酸エステル系モノマーとの少なくとも2種のモノマーをラジカル重合させて得られたものであることが好ましい。
In consideration of preparing the conductive carbon material dispersant using an aqueous solvent, the oxazoline polymer is also preferably water-soluble.
Such a water-soluble oxazoline polymer may be a homopolymer of the oxazoline monomer represented by the above formula (1), but has a oxazoline monomer and a hydrophilic functional group in order to further enhance the solubility in water (meta ) It is preferable to be obtained by radical polymerization of at least two monomers with an acrylate monomer.
 親水性官能基を有する(メタ)アクリル系モノマーの具体例としては、(メタ)アクリル酸、アクリル酸2-ヒドロキシエチル、アクリル酸メトキシポリエチレングリコール、アクリル酸とポリエチレングリコールとのモノエステル化物、アクリル酸2-アミノエチルおよびその塩、メタクリル酸2-ヒドロキシエチル、メタクリル酸メトキシポリエチレングリコール、メタクリル酸とポリエチレングリコールとのモノエステル化物、メタクリル酸2-アミノエチルおよびその塩、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸アンモニウム、(メタ)アクリルニトリル、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、スチレンスルホン酸ナトリウム等が挙げられ、これらは、単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸とポリエチレングリコールとのモノエステル化物が好適である。 Specific examples of the (meth) acrylic monomer having a hydrophilic functional group include (meth) acrylic acid, 2-hydroxyethyl acrylate, methoxypolyethylene glycol acrylate, monoesterified product of acrylic acid and polyethylene glycol, acrylic acid 2-aminoethyl and its salt, 2-hydroxyethyl methacrylate, methoxypolyethylene glycol methacrylate, monoesterified product of methacrylic acid and polyethylene glycol, 2-aminoethyl methacrylate and its salt, sodium (meth) acrylate, ( Ammonium methacrylate, (meth) acrylonitrile, (meth) acrylamide, N-methylol (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, sodium styrenesulfonate, etc. The like, which may be used singly or may be used in combination of two or more. Among these, (meth) acrylic acid methoxypolyethylene glycol and monoesterified products of (meth) acrylic acid and polyethylene glycol are preferable.
 また、本発明においては、得られるオキサゾリンポリマーの導電性炭素材料分散能に悪影響を及ぼさない範囲で、上記オキサゾリンモノマーおよび親水性官能基を有する(メタ)アクリル系モノマー以外のその他のモノマーを併用することができる。
 その他のモノマーの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸エステルモノマー;エチレン、プロピレン、ブテン、ペンテン等のα-オレフィン系モノマー;塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロオレフィン系モノマー;スチレン、α-メチルスチレン等のスチレン系モノマー;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル系モノマー;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマーなどが挙げられ、これらはそれぞれ単独で用いても、2種以上組み合わせて用いてもよい。
In the present invention, the oxazoline monomer and other monomers other than the (meth) acrylic monomer having a hydrophilic functional group are used in combination as long as the conductive carbon material dispersibility of the obtained oxazoline polymer is not adversely affected. be able to.
Specific examples of other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, (meth) acrylic. (Meth) acrylic acid ester monomers such as perfluoroethyl acid and phenyl (meth) acrylate; α-olefin monomers such as ethylene, propylene, butene and pentene; haloolefins such as vinyl chloride, vinylidene chloride and vinyl fluoride Monomers: Styrene monomers such as styrene and α-methyl styrene; Vinyl ester monomers such as vinyl acetate and vinyl propionate; Vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether, and the like. But two or more A combination of the above may also be used.
 本発明で用いるオキサゾリンポリマーの製造に用いられるモノマー成分において、オキサゾリンモノマーの含有率は、得られるオキサゾリンポリマーのCNT分散能をより高めるという点から、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がより一層好ましい。なお、モノマー成分におけるオキサゾリンモノマーの含有率の上限値は100質量%であり、この場合は、オキサゾリンモノマーのホモポリマーが得られる。
 一方、得られるオキサゾリンポリマーの水溶性をより高めるという点から、モノマー成分における親水性官能基を有する(メタ)アクリル系モノマーの含有率は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がより一層好ましい。
 また、モノマー成分におけるその他の単量体の含有率は、上述のとおり、得られるオキサゾリンポリマーのCNT分散能に影響を与えない範囲であり、また、その種類によって異なるため一概には決定できないが、5~95質量%、好ましくは10~90質量%の範囲で適宜設定すればよい。
In the monomer component used in the production of the oxazoline polymer used in the present invention, the content of the oxazoline monomer is preferably 10% by mass or more, more preferably 20% by mass or more from the viewpoint of further increasing the CNT dispersibility of the obtained oxazoline polymer. Preferably, 30% by mass or more is even more preferable. In addition, the upper limit of the content rate of the oxazoline monomer in a monomer component is 100 mass%, and the homopolymer of an oxazoline monomer is obtained in this case.
On the other hand, the content of the (meth) acrylic monomer having a hydrophilic functional group in the monomer component is preferably 10% by mass or more, more preferably 20% by mass or more from the viewpoint of further increasing the water solubility of the obtained oxazoline polymer. 30% by mass or more is even more preferable.
In addition, as described above, the content of other monomers in the monomer component is a range that does not affect the CNT dispersibility of the obtained oxazoline polymer, and since it varies depending on the type, it cannot be determined unconditionally. What is necessary is just to set suitably in the range of 5-95 mass%, Preferably it is 10-90 mass%.
 オキサゾリンポリマーの平均分子量は特に限定されるものではないが、重量平均分子量が1,000~2,000,000であることが好ましい。当該ポリマーの重量平均分子量が1,000未満であると、導電性炭素材料の分散能が著しく低下する、または分散能を発揮しなくなる虞がある。一方、重量平均分子量が2,000,000を超えると、分散処理における取り扱いが極めて困難となる虞がある。重量平均分子量が2,000~1,000,000のオキサゾリンポリマーがより好ましい。
 なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィーによる測定値(ポリスチレン換算)である。
The average molecular weight of the oxazoline polymer is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000. When the weight average molecular weight of the polymer is less than 1,000, there is a possibility that the dispersibility of the conductive carbon material is remarkably lowered or the dispersibility is not exhibited. On the other hand, if the weight average molecular weight exceeds 2,000,000, handling in the dispersion treatment may become extremely difficult. An oxazoline polymer having a weight average molecular weight of 2,000 to 1,000,000 is more preferable.
In addition, the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
 本発明で使用可能なオキサゾリンポリマーは、上記モノマーを従来公知のラジカル重合にて合成することができるが、市販品として入手することもでき、そのような市販品としては、例えば、エポクロスWS-300((株)日本触媒製、固形分濃度10質量%、水溶液)、エポクロスWS-700((株)日本触媒製、固形分濃度25質量%、水溶液)、エポクロスWS-500((株)日本触媒製、固形分濃度39質量%、水/1-メトキシ-2-プロパノール溶液)、Poly(2-ethyl-2-oxazoline)(Aldrich)、Poly(2-ethyl-2-oxazoline)(AlfaAesar)、Poly(2-ethyl-2-oxazoline)(VWR International,LLC)等が挙げられる。
 なお、溶液として市販されている場合、そのまま使用しても、目的とする溶媒に置換してから使用してもよい。
The oxazoline polymer that can be used in the present invention can be synthesized by a conventional radical polymerization of the above-mentioned monomers, but can also be obtained as a commercial product, and as such a commercial product, for example, Epocross WS-300 (Manufactured by Nippon Shokubai Co., Ltd., solid content concentration 10% by mass, aqueous solution), Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd., solid content concentration 25% by mass, aqueous solution), Epocross WS-500 (manufactured by Nippon Shokubai Co., Ltd.) Manufactured, solid content concentration 39% by mass, water / 1-methoxy-2-propanol solution), Poly (2-ethyl-2-oxazoline) (Aldrich), Poly (2-ethyl-2-oxazoline) (AlfaAesar), Poly (2-ethyl-2-oxazole) (VWR International, LLC) etc. Is mentioned.
In addition, when it is marketed as a solution, it may be used as it is, or it may be used after substituting with the target solvent.
 本発明において、導電性炭素材料分散剤と導電性炭素材料との混合比率は、質量比で100:1~1:100程度とすることができる。
 また、分散液中における界面活性剤の濃度は、導電性炭素材料を溶媒に分散させうる濃度であれば特に限定されるものではないが、本発明においては、分散液中に0.001~50質量%程度とすることが好ましく、0.01~40質量%程度とすることがより好ましい。
 さらに、この分散液中における導電性炭素材料の濃度は、薄膜に要求される機械的、電気的、熱的特性などにおいて変化するものであり、また、少なくとも導電性炭素材料の一部が孤立分散する限りにおいて任意であるが、本発明においては、分散液中に0.001~50質量%程度とすることが好ましく、0.01~40質量%程度とすることがより好ましく、0.02~30質量%程度とすることがより一層好ましい。
In the present invention, the mixing ratio of the conductive carbon material dispersant to the conductive carbon material can be about 100: 1 to 1: 100 by mass ratio.
The concentration of the surfactant in the dispersion is not particularly limited as long as the conductive carbon material can be dispersed in a solvent. In the present invention, the concentration of the surfactant is 0.001 to 50. It is preferably about mass%, more preferably about 0.01 to 40 mass%.
Furthermore, the concentration of the conductive carbon material in the dispersion changes in the mechanical, electrical, and thermal characteristics required for the thin film, and at least a part of the conductive carbon material is isolated and dispersed. In the present invention, it is preferably about 0.001 to 50% by mass, more preferably about 0.01 to 40% by mass, and more preferably 0.02 to More preferably, it is about 30% by mass.
 なお、本発明の導電性炭素材料分散液は、上述した溶媒に可溶な架橋剤を含んでいてもよい。架橋剤としては、用いる分散剤と架橋反応を起こす化合物、自己架橋する化合物のどちらでもよいが、得られる薄膜の耐溶剤性をより高めるという点から、分散剤と反応して架橋構造を形成する架橋剤が好ましい。 The conductive carbon material dispersion of the present invention may contain a crosslinking agent that is soluble in the above-described solvent. The crosslinking agent may be either a compound that causes a crosslinking reaction with the dispersant to be used or a compound that self-crosslinks, but reacts with the dispersant to form a crosslinked structure from the viewpoint of further improving the solvent resistance of the resulting thin film. A crosslinking agent is preferred.
 分散剤と架橋反応を起こす化合物としては、例えば、分散剤がオキサゾリンポリマーであれば、カルボキシル基、水酸基、チオール基、アミノ基、スルフィン酸基、エポキシ基等のオキサゾリン基との反応性を有する官能基を2個以上有する化合物であれば特に限定されるものではないが、カルボキシル基を2個以上有する化合物が好ましい。なお、薄膜形成時の加熱や、酸触媒の存在下で上記官能基が生じて架橋反応を起こす官能基、例えば、カルボン酸のナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等を有する化合物も架橋剤として用いることができる。
 これらの化合物の具体例としては、酸触媒の存在下で架橋反応性を発揮する、ポリアクリル酸やそのコポリマー等の合成高分子およびカルボキシメチルセルロースやアルギン酸といった天然高分子の金属塩、加熱により架橋反応性を発揮する、上記合成高分子および天然高分子のアンモニウム塩等が挙げられるが、特に、酸触媒の存在下や加熱条件下で架橋反応性を発揮するポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリアクリル酸アンモニウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースアンモニウム等が好ましい。
As the compound that causes a crosslinking reaction with the dispersant, for example, if the dispersant is an oxazoline polymer, a functional group having reactivity with an oxazoline group such as a carboxyl group, a hydroxyl group, a thiol group, an amino group, a sulfinic acid group, and an epoxy group. Although it will not specifically limit if it is a compound which has two or more groups, The compound which has two or more carboxyl groups is preferable. In addition, a compound having a functional group that causes a crosslinking reaction by heating during thin film formation or in the presence of an acid catalyst, such as a sodium salt, potassium salt, lithium salt, or ammonium salt of a carboxylic acid is also crosslinked. It can be used as an agent.
Specific examples of these compounds include metal salts of synthetic polymers such as polyacrylic acid and copolymers thereof and natural polymers such as carboxymethylcellulose and alginic acid that exhibit crosslinking reactivity in the presence of an acid catalyst, and crosslinking reaction by heating. Examples include ammonium salts of the above-described synthetic polymers and natural polymers that exhibit the properties, in particular, sodium polyacrylate, lithium polyacrylate, which exhibit crosslinking reactivity in the presence of an acid catalyst or under heating conditions, Ammonium polyacrylate, sodium carboxymethyl cellulose, lithium carboxymethyl cellulose, carboxymethyl cellulose ammonium and the like are preferable.
 なお、オキサゾリン基と架橋反応を起こす化合物は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(和光純薬工業(株)製、重合度2,700~7,500)、カルボキシメチルセルロースナトリウム(和光純薬工業(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、アロンA-30(ポリアクリル酸アンモニウム、東亞合成(株)製、固形分濃度32質量%、水溶液)、DN-800H(カルボキシメチルセルロースアンモニウム、ダイセルファインケム(株)製)、アルギン酸アンモニウム((株)キミカ製)等が挙げられる。 The compound that causes a crosslinking reaction with the oxazoline group can also be obtained as a commercial product. Examples of such a commercial product include sodium polyacrylate (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization 2,700). -7,500), sodium carboxymethylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.), sodium alginate (manufactured by Kanto Chemical Co., Ltd., deer grade 1), Aron A-30 (ammonium polyacrylate, Toagosei Co., Ltd.) Manufactured, solid content concentration 32% by mass, aqueous solution), DN-800H (carboxymethyl cellulose ammonium, manufactured by Daicel Finechem Co., Ltd.), ammonium alginate (produced by Kimika Co., Ltd.), and the like.
 自己架橋する化合物としては、例えば、水酸基に対してアルデヒド基、エポキシ基、ビニル基、イソシアネート基、アルコキシ基、カルボキシル基に対してアルデヒド基、アミノ基、イソシアネート基、エポキシ基、アミノ基に対してイソシアネート基、アルデヒド基などの、互いに反応する架橋性官能基を同一分子内に有している化合物や、同じ架橋性官能基同士で反応する水酸基(脱水縮合)、メルカプト基(ジスルフィド結合)、エステル基(クライゼン縮合)、シラノール基(脱水縮合)、ビニル基、アクリル基等を有している化合物などが挙げられる。
 自己架橋する化合物の具体例としては、酸触媒の存在下で架橋反応性を発揮する多官能アクリレート、テトラアルコキシシラン、ブロックイソシアネート基を有するモノマーおよび水酸基、カルボン酸、アミノ基の少なくとも1つを有するモノマーのブロックコポリマー等が挙げられる。
Examples of the self-crosslinking compound include an aldehyde group, an epoxy group, a vinyl group, an isocyanate group, an alkoxy group, and a carboxyl group with respect to a hydroxyl group, an aldehyde group, an amino group, an isocyanate group, an epoxy group, and an amino group. Compounds that have crosslinkable functional groups that react with each other in the same molecule, such as isocyanate groups and aldehyde groups, hydroxyl groups that react with the same crosslinkable functional groups (dehydration condensation), mercapto groups (disulfide bonds), esters And compounds having a group (Claisen condensation), a silanol group (dehydration condensation), a vinyl group, an acrylic group, and the like.
Specific examples of the self-crosslinking compound include polyfunctional acrylate that exhibits crosslinking reactivity in the presence of an acid catalyst, tetraalkoxysilane, a monomer having a blocked isocyanate group, and at least one of a hydroxyl group, a carboxylic acid, and an amino group. Examples include monomer block copolymers.
 このような自己架橋する架橋剤は、市販品として入手することもでき、そのような市販品としては、例えば、多官能アクリレートでは、A-9300(エトキシ化イソシアヌル酸トリアクリレート、新中村化学工業(株)製)、A-GLY-9E(Ethoxylated glycerine triacrylate(EO9mol)、新中村化学工業(株)製)、A-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学工業(株)製)、テトラアルコキシシランでは、テトラメトキシシラン(東京化成工業(株)製)、テトラエトキシシラン(東横化学(株)製)、ブロックイソシアネート基を有するポリマーでは、エラストロンシリーズE-37、H-3、H38、BAP、NEW BAP-15、C-52、F-29、W-11P、MF-9、MF-25K(第一工業製薬(株)製)等が挙げられる。 Such a self-crosslinking crosslinking agent can also be obtained as a commercial product. Examples of such a commercial product include A-9300 (ethoxylated isocyanuric acid triacrylate, Shin-Nakamura Chemical ( ), A-GLY-9E (Ethoxylatedinglycerine triacrylate (EO9 mol), Shin-Nakamura Chemical Co., Ltd.), A-TMMT (pentaerythritol tetraacrylate, Shin-Nakamura Chemical Co., Ltd.), tetraalkoxysilane In the case of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), tetraethoxysilane (manufactured by Toyoko Chemical Co., Ltd.), and polymers having a blocked isocyanate group, Elastron series E-37, H-3, H38, BAP, NEW BAP-15, C-52, F-2 9, W-11P, MF-9, MF-25K (Daiichi Kogyo Seiyaku Co., Ltd.).
 上述した各架橋剤は、それぞれ単独で用いても、2種類以上組み合わせて用いてもよい。
 架橋剤の添加量は、使用する溶媒、使用する基材、要求される粘度、要求される膜形状などにより変動するが、分散剤に対して0.001~80質量%が好ましく、0.01~50質量%がより好ましく、0.05~40質量%がより一層好ましい。
 本発明では、架橋反応を促進するための触媒として、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等の酸性化合物、および/または2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、有機スルホン酸アルキルエステル等の熱酸発生剤を添加することができる。
 触媒の添加量は、分散剤に対し、0.0001~20質量%、好ましくは0.0005~10質量%、より好ましくは0.001~3質量%である。
Each of the above-mentioned crosslinking agents may be used alone or in combination of two or more.
The addition amount of the crosslinking agent varies depending on the solvent used, the substrate used, the required viscosity, the required film shape, etc., but is preferably 0.001 to 80% by mass with respect to the dispersant, Is more preferably from 50 to 50% by mass, and even more preferably from 0.05 to 40% by mass.
In the present invention, as a catalyst for accelerating the crosslinking reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid And / or a thermal acid generator such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and organic sulfonic acid alkyl ester can be added. .
The addition amount of the catalyst is 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, and more preferably 0.001 to 3% by mass with respect to the dispersant.
 さらに、本発明の導電性炭素材料分散液には、マトリックスとなる高分子を添加してもよい。
 マトリックス高分子としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕などのフッ素系樹脂、ポリビニルピロリドン、エチレン-プロピレン-ジエン三元共重合体、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)などのポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)、スチレン-ブタジエンゴムなどのポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアクリル酸ナトリウム、PMMA(ポリメチルメタクリレート)などの(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペートなどのポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、カルボキシメチルセルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂や、ポリアニリンおよびその半酸化体であるエメラルジンベース;ポリチオフェン;ポリピロール;ポリフェニレンビニレン;ポリフェニレン;ポリアセチレン等の導電性高分子、さらにはエポキシ樹脂;ウレタンアクリレート;フェノール樹脂;メラミン樹脂;尿素樹脂;アルキド樹脂等の熱硬化性樹脂や光硬化性樹脂などが挙げられるが、本発明の導電性炭素材料分散液においては、溶媒として水を用いることが好適であることから、マトリックス高分子としても水溶性のもの、例えば、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム、水溶性セルロースエーテル、アルギン酸ナトリウム、ポリビニルアルコール、ポリスチレンスルホン酸、ポリエチレングリコール等が挙げられるが、特に、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム等が好適である。
Furthermore, a polymer serving as a matrix may be added to the conductive carbon material dispersion of the present invention.
Examples of the matrix polymer include polyvinylidene fluoride (PVdF), polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer [P (VDF-HFP)], Fluorine resin such as vinylidene fluoride-trichloroethylene copolymer [P (VDF-CTFE)], polyvinyl pyrrolidone, ethylene-propylene-diene terpolymer, PE (polyethylene), PP (polypropylene), Polyolefin resins such as EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer); PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (Acry Polystyrene resins such as nitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer), styrene-butadiene rubber; polycarbonate resin; vinyl chloride resin; polyamide resin; polyimide resin; (Meth) acrylic resins such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprolactone, poly Polyethylene resins such as butylene succinate and polyethylene succinate / adipate; polyphenylene ether resin; modified polyphenylene ether resin; polyacetal resin; polysulfone resin Polyphenylene sulfide resin; polyvinyl alcohol resin; polyglycolic acid; modified starch; cellulose acetate, carboxymethyl cellulose, cellulose triacetate; chitin, chitosan; thermoplastic resin such as lignin, emeraldine base that is polyaniline and its half-oxidized body; polythiophene; Polypyrrole; polyphenylene vinylene; polyphenylene; conductive polymer such as polyacetylene; and epoxy resin; urethane acrylate; phenol resin; melamine resin; urea resin; thermosetting resin such as alkyd resin; In the conductive carbon material dispersion liquid of the present invention, it is preferable to use water as a solvent, so that the matrix polymer is also water-soluble, such as sodium polyacrylate, calcium carbonate. Examples thereof include sodium boxymethylcellulose, water-soluble cellulose ether, sodium alginate, polyvinyl alcohol, polystyrene sulfonic acid, polyethylene glycol and the like, and particularly, sodium polyacrylate and sodium carboxymethylcellulose are preferable.
 マトリックス高分子は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(和光純薬工業(株)製、重合度2,700~7,500)、カルボキシメチルセルロースナトリウム(和光純薬工業(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、メトローズSHシリーズ(ヒドロキシプロピルメチルセルロース、信越化学工業(株)製)、メトローズSEシリーズ(ヒドロキシエチルメチルセルロース、信越化学工業(株)製)、JC-25(完全ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JM-17(中間ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JP-03(部分ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、ポリスチレンスルホン酸(Aldrich社製、固形分濃度18質量%、水溶液)等が挙げられる。
 マトリックス高分子の含有量は、特に限定されるものではないが、分散液中に、0.0001~99質量%程度とすることが好ましく、0.001~90質量%程度とすることがより好ましい。
The matrix polymer can also be obtained as a commercial product. Examples of such a commercial product include sodium polyacrylate (manufactured by Wako Pure Chemical Industries, Ltd., degree of polymerization 2,700 to 7,500), carboxy Sodium methylcellulose (manufactured by Wako Pure Chemical Industries, Ltd.), sodium alginate (manufactured by Kanto Chemical Co., Ltd., deer grade 1), Metrol's SH series (hydroxypropylmethylcellulose, Shin-Etsu Chemical Co., Ltd.), Metrolose SE series (hydroxyl) Ethyl methyl cellulose, manufactured by Shin-Etsu Chemical Co., Ltd.), JC-25 (completely saponified polyvinyl alcohol, manufactured by Nippon Vineyard Poval Co., Ltd.), JM-17 (intermediate saponified polyvinyl alcohol, Nippon Vinegared / Poval) Manufactured by Co., Ltd.), JP-03 (partially saponified polyvinyl alcohol, Nippon Vinegar Poval) Ltd.), polystyrene sulfonic acid (Aldrich Corp., solid concentration 18 wt%, aqueous solution), and the like.
The content of the matrix polymer is not particularly limited, but is preferably about 0.0001 to 99% by mass, more preferably about 0.001 to 90% by mass in the dispersion. .
 本発明の導電性炭素材料分散液の調製法は任意であり、界面活性剤、導電性炭素材料、溶媒および消泡剤、並びに必要に応じて用いられる架橋剤およびマトリックス高分子を任意の順序で混合して分散液を調製すればよい。
 この際、界面活性剤、導電性炭素材料および溶媒からなる混合物を分散処理することが好ましく、この処理により、導電性炭素材料の分散割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミルなどを用いる湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられるが、特に、ジェットミルを用いた湿式処理や超音波処理が好適である。
 なお、消泡剤は、分散処理をする前に加えておくことで分散処理の際の泡立ちを抑制できるため好ましいが、界面活性剤による導電性炭素材料の分散を阻害する場合もあるため、分散処理をした後に加えてもよい。
 また、架橋剤やマトリックス高分子も、これら以外の成分を含む分散液を調製した後に加えてもよい。
 以上のようにして調製された導電性炭素材料分散液では、分散剤が導電性炭素材料の表面に物理吸着して複合体を形成しているものと推測される。
The method for preparing the conductive carbon material dispersion of the present invention is arbitrary, and the surfactant, the conductive carbon material, the solvent and the antifoaming agent, and the cross-linking agent and matrix polymer used as necessary are in any order. A dispersion may be prepared by mixing.
At this time, it is preferable to disperse a mixture of a surfactant, a conductive carbon material and a solvent, and this treatment can further improve the dispersion ratio of the conductive carbon material. Examples of the dispersion treatment include mechanical treatment, wet treatment using a ball mill, bead mill, jet mill, etc., and ultrasonic treatment using a bath-type or probe-type sonicator. In particular, wet treatment using a jet mill. Or sonication is preferred.
An antifoaming agent is preferable because it can suppress foaming during the dispersion treatment by adding it before the dispersion treatment, but it may inhibit the dispersion of the conductive carbon material by the surfactant. It may be added after processing.
Moreover, you may add a crosslinking agent and a matrix polymer, after preparing the dispersion liquid containing components other than these.
In the conductive carbon material dispersion prepared as described above, it is presumed that the dispersant is physically adsorbed on the surface of the conductive carbon material to form a composite.
 本発明の導電性炭素材料分散液を用いた導電性薄膜作製にあたっては、薄膜を形成したい基板や形成物上に、上述した導電性炭素材料分散液(導電性薄膜用組成物)を塗布し、これを自然または加熱乾燥し、導電性結着層を形成して作製することができる。
 基板や形成物としては、特に制限されるものではなく、例えば、銅、アルミニウム、ニッケル、金、銀等の金属およびそれらの合金;カーボン材料;金属酸化物;導電性高分子;ポリエチレン、ポリエチレンテレフタラート、ポリプロピレン、ポリイミド等の合成高分子;セルロース、キトサン等の天然高分子などを用いることができる。
 その厚みは特に限定されるものではないが、本発明においては、1~100μmが好ましい。
In producing a conductive thin film using the conductive carbon material dispersion liquid of the present invention, the conductive carbon material dispersion liquid (composition for conductive thin film) described above is applied onto a substrate or a product on which a thin film is to be formed. This can be produced by natural or heat drying to form a conductive binder layer.
The substrate and the formed product are not particularly limited. For example, metals such as copper, aluminum, nickel, gold, silver, and alloys thereof; carbon materials; metal oxides; conductive polymers; Synthetic polymers such as tarate, polypropylene and polyimide; natural polymers such as cellulose and chitosan can be used.
The thickness is not particularly limited, but is preferably 1 to 100 μm in the present invention.
 本発明の導電性炭素材料分散液から得られる導電性薄膜は、エネルギー貯蔵デバイスの電極を構成する集電基板と活物質層との間に介在し、両者を結着させる導電性結着層に特に適している。
 本発明において、エネルギー貯蔵デバイスとしては、電気二重層キャパシタ、リチウム二次電池、リチウムイオン二次電池、プロトンポリマー電池、ニッケル水素電池、アルミ固体コンデンサ、電解コンデンサ、鉛蓄電池等の各種エネルギー貯蔵デバイスが挙げられるが、本発明の導電性炭素材料分散液から得られる導電性薄膜は、特に、電気二重層キャパシタ、リチウムイオン二次電池の電極に好適に適用することができる。
The conductive thin film obtained from the conductive carbon material dispersion of the present invention is interposed between the current collecting substrate constituting the electrode of the energy storage device and the active material layer, and is formed into a conductive binding layer that binds both. Especially suitable.
In the present invention, as the energy storage device, various energy storage devices such as an electric double layer capacitor, a lithium secondary battery, a lithium ion secondary battery, a proton polymer battery, a nickel metal hydride battery, an aluminum solid capacitor, an electrolytic capacitor, and a lead storage battery. Although mentioned, the electroconductive thin film obtained from the electroconductive carbon material dispersion liquid of this invention can be applied suitably for the electrode of an electrical double layer capacitor and a lithium ion secondary battery especially.
 本発明の導電性薄膜用組成物を用いた電極作製にあたっては、まず、集電基板と導電性結着層とからなる複合集電体を作製することが好ましい。この複合集電体は、集電基板上に、上述した導電性炭素材料分散液(導電性薄膜用組成物)を塗布し、これを自然または加熱乾燥し、導電性結着層を形成して作製することができる。
 集電基板としては、従来、エネルギー貯蔵デバイス用電極の集電基板として用いられているものから適宜選択すればよく、例えば、銅、アルミニウム、ニッケル、金、銀およびそれらの合金やカーボン材料、金属酸化物、導電性高分子等の薄膜を用いることができる。
 その厚みは、特に限定されるものではないが、本発明においては、1~100μmが好ましい。
In preparing an electrode using the composition for conductive thin film of the present invention, it is preferable to first prepare a composite current collector comprising a current collector substrate and a conductive binder layer. In this composite current collector, the conductive carbon material dispersion liquid (composition for conductive thin film) described above is applied onto a current collector substrate, and this is naturally or heat-dried to form a conductive binder layer. Can be produced.
The current collecting substrate may be appropriately selected from those conventionally used as a current collecting substrate for electrodes for energy storage devices. For example, copper, aluminum, nickel, gold, silver, alloys thereof, carbon materials, metals A thin film such as an oxide or a conductive polymer can be used.
The thickness is not particularly limited, but is preferably 1 to 100 μm in the present invention.
 本発明における導電性結着層の厚さは、電池のエネルギー密度を向上させ、導電性結着層のバルク抵抗を低減させることを考慮すると、5μm以下が好ましく、1μm以下がより好ましく、0.5μm以下がより一層好ましい。
 導電性結着層の厚さは、導電性結着層の断面を走査型顕微鏡(以下、SEM)により観察する方法や、目付量を導電性結着層の比重で割ることで算出することができる。
 導電性結着層の断面は、例えば、複合集電体を裂いたり、イオンビームにより加工したりすることで得ることができる。
The thickness of the conductive binder layer in the present invention is preferably 5 μm or less, more preferably 1 μm or less, in consideration of improving the energy density of the battery and reducing the bulk resistance of the conductive binder layer. 5 μm or less is even more preferable.
The thickness of the conductive binder layer can be calculated by observing the cross section of the conductive binder layer with a scanning microscope (hereinafter referred to as SEM) or by dividing the basis weight by the specific gravity of the conductive binder layer. it can.
The cross section of the conductive binder layer can be obtained, for example, by tearing the composite current collector or processing with an ion beam.
 目付量は、導電性結着層の面積(m2)に対する導電性結着層の質量(g)の割合であり、導電性結着層がパターン状に形成されている場合、当該面積は導電性結着層のみの面積であり、パターン状に形成された導電性結着層の間に露出する集電基板の面積を含まない。
 導電性結着層の質量は、例えば、複合集電体から適当な大きさの試験片を切り出し、その質量W0を測定し、その後、複合集電体から導電性結着層を剥離し、導電性結着層を剥離した後の質量W1を測定し、その差(W0-W1)から算出する、あるいは、予め集電基板の質量W2を測定しておき、その後、導電性結着層を形成した複合集電体の質量W3を測定し、その差(W3-W2)から算出することができる。
 導電性結着層を剥離する方法としては、例えば導電性結着層が溶解、もしくは膨潤する溶剤に、導電性結着層を浸漬させ、布等で導電性結着層をふき取るなどの方法が挙げられる。
The basis weight is the ratio of the mass (g) of the conductive binder layer to the area (m 2 ) of the conductive binder layer, and when the conductive binder layer is formed in a pattern, the area is conductive It is the area of only the conductive binding layer, and does not include the area of the current collector substrate exposed between the conductive binding layers formed in a pattern.
For the mass of the conductive binder layer, for example, a test piece of an appropriate size is cut out from the composite current collector, its mass W0 is measured, and then the conductive binder layer is peeled off from the composite current collector. Measure the mass W1 after peeling off the conductive binder layer, and calculate from the difference (W0-W1), or measure the mass W2 of the current collector substrate in advance, and then form the conductive binder layer The mass W3 of the composite current collector measured can be measured and calculated from the difference (W3-W2).
As a method of peeling the conductive binder layer, for example, a method of immersing the conductive binder layer in a solvent in which the conductive binder layer is dissolved or swells and wiping the conductive binder layer with a cloth or the like is available. Can be mentioned.
 導電性結着層の比重は、例えば、目付量を膜厚で割ることで算出することができる。また、ビーズ置換法、タップ密度測定などにより測定することができる。 The specific gravity of the conductive binder layer can be calculated, for example, by dividing the basis weight by the film thickness. Further, it can be measured by a bead replacement method, a tap density measurement or the like.
 膜厚は、公知の方法で調整することができる。例えば、塗布により導電性結着層を形成する場合、導電性結着層を形成するための塗工液(CNT含有組成物)の固形分濃度、塗布回数、塗工機の塗工液投入口のクリアランスなどを変えることで調整できる。
 目付量を多くしたい場合は、固形分濃度を高くしたり、塗布回数を増やしたり、クリアランスを大きくしたりする。目付量を少なくしたい場合は、固形分濃度を低くしたり、塗布回数を減らしたり、クリアランスを小さくしたりする。
The film thickness can be adjusted by a known method. For example, when a conductive binder layer is formed by coating, the solid content concentration of the coating liquid (CNT-containing composition) for forming the conductive binder layer, the number of coating times, and the coating liquid inlet of the coating machine It can be adjusted by changing the clearance.
To increase the weight per unit area, increase the solid content concentration, increase the number of coatings, or increase the clearance. When it is desired to reduce the basis weight, the solid content concentration is decreased, the number of coatings is decreased, or the clearance is decreased.
 塗布方法としては、例えば、スピンコート法、ディップコート法、フローコート法、インクジェット法、スプレーコート法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、フレキソ印刷法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等が挙げられるが、作業効率等の点から、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法が好適である。
 加熱乾燥する場合の温度も任意であるが、50~200℃程度が好ましく、80~150℃程度がより好ましい。
Examples of coating methods include spin coating, dip coating, flow coating, ink jet, spray coating, bar coating, gravure coating, slit coating, roll coating, flexographic printing, transfer printing, Brush coating, blade coating method, air knife coating method, etc. are mentioned, but from the viewpoint of work efficiency etc., inkjet method, casting method, dip coating method, bar coating method, blade coating method, roll coating method, gravure coating method, A flexographic printing method and a spray coating method are suitable.
The temperature for drying by heating is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
 さらに、エネルギー貯蔵デバイス電極は、上記複合集電体の導電性結着層上に、活物質層を形成して作製することができる。
 ここで、活物質としては、従来、エネルギー貯蔵デバイス用電極に用いられている各種活物質を用いることができる。
 例えば、リチウム二次電池やリチウムイオン二次電池の場合、正極活物質としてリチウムイオンを吸着・離脱可能なカルコゲン化合物またはリチウムイオン含有カルコゲン化合物、ポリアニオン系化合物、硫黄単体およびその化合物等を用いることができる。
 このようなリチウムイオンを吸着離脱可能なカルコゲン化合物の具体例としては、FeS2、TiS2、MoS2、V26、V613、MnO2等が挙げられる。
 リチウムイオン含有カルコゲン化合物の具体例としては、LiCoO2、LiMnO2、LiMn24、LiMo24、LiV38、LiNiO2、LixNiy1-y2(但し、Mは、Co、Mn、Ti、Cr,V、Al、Sn、Pb、およびZnから選ばれる少なくとも1種以上の金属元素を表し、0.05≦x≦1.10、0.5≦y≦1.0)等が挙げられる。
 ポリアニオン系化合物の具体例としては、LiFePO4等が挙げられる。
 硫黄化合物の具体例としては、Li2S、ルベアン酸等が挙げられる。
Furthermore, the energy storage device electrode can be produced by forming an active material layer on the conductive binding layer of the composite current collector.
Here, as an active material, the various active materials conventionally used for the electrode for energy storage devices can be used.
For example, in the case of a lithium secondary battery or a lithium ion secondary battery, a chalcogen compound capable of adsorbing / leaving lithium ions or a lithium ion-containing chalcogen compound, a polyanion compound, a simple substance of sulfur and a compound thereof may be used as a positive electrode active material. it can.
Specific examples of the chalcogen compound that can adsorb and desorb lithium ions include FeS 2 , TiS 2 , MoS 2 , V 2 O 6 , V 6 O 13 , and MnO 2 .
Specific examples of the lithium ion-containing chalcogen compound include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiMo 2 O 4 , LiV 3 O 8 , LiNiO 2 , Li x Ni y M 1-y O 2 (where M is Represents at least one metal element selected from Co, Mn, Ti, Cr, V, Al, Sn, Pb, and Zn, and 0.05 ≦ x ≦ 1.10, 0.5 ≦ y ≦ 1. 0) and the like.
Specific examples of the polyanionic compound include LiFePO 4 .
Specific examples of the sulfur compound include Li 2 S and rubeanic acid.
 一方、上記負極を構成する負極活物質としては、アルカリ金属、アルカリ合金、リチウムイオンを吸蔵・放出する周期表4~15族の元素から選ばれる少なくとも1種の単体、酸化物、硫化物、窒化物、またはリチウムイオンを可逆的に吸蔵・放出可能な炭素材料を使用することができる。
 アルカリ金属としては、Li、Na、K等が挙げられ、アルカリ金属合金の具体例としては、金属Li、Li-Al、Li-Mg、Li-Al-Ni、Na、Na-Hg、Na-Zn等が挙げられる。
 リチウムイオンを吸蔵放出する周期表4~15族の元素から選ばれる少なくとも1種の元素の単体の具体例としては、ケイ素やスズ、アルミニウム、亜鉛、砒素等が挙げられる。
 同じく酸化物の具体例としては、スズケイ素酸化物(SnSiO3)、リチウム酸化ビスマス(Li3BiO4)、リチウム酸化亜鉛(Li2ZnO2)、リチウム酸化チタン(Li4Ti512)等が挙げられる。
 同じく硫化物の具体例としては、リチウム硫化鉄(LixFeS2(0≦x≦3))、リチウム硫化銅(LixCuS(0≦x≦3))等が挙げられる。
 同じく窒化物としては、リチウム含有遷移金属窒化物が挙げられ、その具体例としては、LixyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、リチウム鉄窒化物(Li3FeN4)等が挙げられる。
 リチウムイオンを可逆的に吸蔵・放出可能な炭素材料の具体例としては、黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、カーボンナノチューブ、またはこれらの焼結体等が挙げられる。
On the other hand, as the negative electrode active material constituting the negative electrode, at least one element selected from alkali metals, alkali alloys, and elements of Groups 4 to 15 of the periodic table that occlude / release lithium ions, oxides, sulfides, nitrides Or a carbon material capable of reversibly occluding and releasing lithium ions can be used.
Examples of the alkali metal include Li, Na, and K. Specific examples of the alkali metal alloy include metals Li, Li—Al, Li—Mg, Li—Al—Ni, Na, Na—Hg, and Na—Zn. Etc.
Specific examples of at least one element selected from Group 4 to 15 elements of the periodic table that store and release lithium ions include silicon, tin, aluminum, zinc, and arsenic.
Similarly, specific examples of the oxide include tin silicon oxide (SnSiO 3 ), lithium bismuth oxide (Li 3 BiO 4 ), lithium zinc oxide (Li 2 ZnO 2 ), lithium titanium oxide (Li 4 Ti 5 O 12 ), and the like. Is mentioned.
Similarly, specific examples of sulfides include lithium iron sulfide (Li x FeS 2 (0 ≦ x ≦ 3)), lithium copper sulfide (Li x CuS (0 ≦ x ≦ 3)), and the like.
The same nitride, lithium-containing transition metal nitrides and the like, and specific examples thereof, Li x M y N (M = Co, Ni, Cu, 0 ≦ x ≦ 3,0 ≦ y ≦ 0.5) And lithium iron nitride (Li 3 FeN 4 ).
Specific examples of the carbon material capable of reversibly occluding and releasing lithium ions include graphite, carbon black, coke, glassy carbon, carbon fiber, carbon nanotube, or a sintered body thereof.
 また、電気二重層キャパシタの場合、活物質として炭素質材料を用いることができる。
 この炭素質材料の具体例としては、活性炭等が挙げられ、例えば、フェノール樹脂を炭化後、賦活処理して得られた活性炭が挙げられる。
In the case of an electric double layer capacitor, a carbonaceous material can be used as an active material.
Specific examples of the carbonaceous material include activated carbon and the like, for example, activated carbon obtained by carbonizing a phenol resin and then activating treatment.
 なお、本発明の電極には、上記活物質の他に、導電助剤を添加することもできる。導電助剤の具体例としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等が挙げられる。 In addition to the above active material, a conductive additive can also be added to the electrode of the present invention. Specific examples of the conductive aid include carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, titanium oxide, ruthenium oxide, aluminum, nickel and the like.
 活物質層は、以上で説明した活物質、バインダーポリマーおよび必要に応じて溶媒を含む電極スラリーを、導電性結着層上に塗布し、自然または加熱乾燥して形成することができる。
 バインダーポリマーとしては、公知の材料から適宜選択して用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリビニルピロリドン、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン-プロピレン-ジエン三元共重合体、スチレン-ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアニリン等の導電性高分子などが挙げられる。
 なお、バインダーポリマーの添加量は、活物質100質量部に対して、0.1~20質量部、特に、1~10質量部が好ましい。
 溶媒としては、上記オキサゾリンポリマーで例示した溶媒が挙げられ、それらの中からバインダーの種類に応じて適宜選択すればよいが、PVdF等の非水溶性のバインダーの場合はNMPが好適であり、PAA等の水溶性のバインダーの場合は水が好適である。
The active material layer can be formed by applying the electrode slurry containing the active material, the binder polymer, and, if necessary, the solvent described above onto the conductive binder layer and naturally or by heating and drying.
The binder polymer can be appropriately selected from known materials and used, for example, polyvinylidene fluoride (PVdF), polyvinylpyrrolidone, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride- Hexafluoropropylene copolymer [P (VDF-HFP)], vinylidene fluoride-trichloroethylene copolymer [P (VDF-CTFE)], polyvinyl alcohol, polyimide, ethylene-propylene-diene ternary copolymer Examples thereof include conductive polymers such as coalescence, styrene-butadiene rubber, carboxymethyl cellulose (CMC), polyacrylic acid (PAA), and polyaniline.
The added amount of the binder polymer is preferably 0.1 to 20 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the active material.
Examples of the solvent include those exemplified for the above oxazoline polymer, and may be appropriately selected according to the type of the binder, but in the case of a water-insoluble binder such as PVdF, NMP is preferable, and PAA In the case of a water-soluble binder such as water, water is preferred.
 電極スラリーの塗布方法としては、上述した導電性結着層形成用組成物と同様の手法が挙げられる。
 また、加熱乾燥する場合の温度も任意であるが、50~200℃程度が好ましく、80~150℃程度がより好ましい。
Examples of the method for applying the electrode slurry include the same method as that for the conductive binder layer forming composition described above.
The temperature for drying by heating is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
 本発明に係るエネルギー貯蔵デバイスは、上述した電極を備えたものであり、より具体的には、少なくとも一対の正負極と、これら各極間に介在するセパレータと、電解質とを備えて構成され、正負極の少なくとも一方が、上述したエネルギー貯蔵デバイス用電極から構成される。
 このエネルギー貯蔵デバイスは、電極に上述したエネルギー貯蔵デバイス用電極を用いることにその特徴があるため、その他のデバイス構成部材であるセパレータや、電解質などは、公知の材料から適宜選択して用いることができる。
 セパレータの具体例としては、セルロース系セパレータ、ポリオレフィン系セパレータ等が挙げられる。
 電解質としては、液体、固体のいずれでもよく、また水系、非水系のいずれでもよいが、本発明のエネルギー貯蔵デバイス用電極は、非水系電解質を用いたデバイスに適用した場合にも実用上十分な性能を発揮させ得る。
An energy storage device according to the present invention includes the above-described electrodes, and more specifically, includes at least a pair of positive and negative electrodes, a separator interposed between these electrodes, and an electrolyte. At least one of the positive and negative electrodes is composed of the above-described electrode for energy storage device.
Since this energy storage device is characterized by the use of the above-mentioned electrode for energy storage device as an electrode, other device constituent members such as separators and electrolytes may be appropriately selected from known materials and used. it can.
Specific examples of the separator include a cellulose separator and a polyolefin separator.
The electrolyte may be either liquid or solid, and may be either aqueous or non-aqueous. The electrode for an energy storage device of the present invention is practically sufficient even when applied to a device using a non-aqueous electrolyte. Performance can be demonstrated.
 非水系電解質としては、電解質塩を非水系有機溶媒に溶かしてなる非水系電解液が挙げられる。
 電解質塩としては、4フッ化硼酸リチウム、6フッ化リン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム等のリチウム塩;テトラメチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムヘキサフルオロホスフェート、テトラプロピルアンモニウムヘキサフルオロホスフェート、メチルトリエチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムパークロレート等の4級アンモニウム塩などが挙げられる。
 非水系有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート;アセトニトリルなどのニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
Examples of the non-aqueous electrolyte include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous organic solvent.
Examples of electrolyte salts include lithium salts such as lithium tetrafluoroborate, lithium hexafluorophosphate, lithium perchlorate, and lithium trifluoromethanesulfonate; tetramethylammonium hexafluorophosphate, tetraethylammonium hexafluorophosphate, tetrapropylammonium hexa Examples thereof include quaternary ammonium salts such as fluorophosphate, methyltriethylammonium hexafluorophosphate, tetraethylammonium tetrafluoroborate, and tetraethylammonium perchlorate.
Examples of the non-aqueous organic solvent include alkylene carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; dialkyl carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; nitriles such as acetonitrile; and amides such as dimethylformamide. .
 以下、製造例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した測定装置は以下のとおりである。
(1)プローブ型超音波照射装置
 装置:Hielscher Ultrasonics社製、UIP1000
(2)ワイヤーバーコーター(薄膜作製)
 装置:(株)エスエムテー製 PM-9050MC
(3)セレクトローラー
 松尾産業(株)製 OSP-30、OSP-13、OSP-8
EXAMPLES Hereinafter, although a manufacture example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. The measuring devices used are as follows.
(1) Probe-type ultrasonic irradiation device Device: manufactured by Hielscher Ultrasonics, UIP1000
(2) Wire bar coater (thin film production)
Equipment: PM-9050MC manufactured by SMT Co., Ltd.
(3) Select Roller Matsuo Sangyo Co., Ltd. OSP-30, OSP-13, OSP-8
[1]前駆体分散液の調製
[製造例1-1]
 オキサゾリンポリマーを含む水溶液であるエポクロスWS-700((株)日本触媒製、固形分濃度25質量%、重量平均分子量4×104、オキサゾリン基量4.5mmol/g)2.0gと、蒸留水47.5gとを混合し、さらにそこへ導電性炭素材料である多層CNT(Nanocyl社製“NC7000”)0.5gを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて室温で30分間超音波処理を行い、CNTが均一に分散した前駆体分散液Aを調製した。
[1] Preparation of precursor dispersion [Production Example 1-1]
Epocross WS-700 (produced by Nippon Shokubai Co., Ltd., solid concentration 25 mass%, weight average molecular weight 4 × 10 4 , oxazoline group amount 4.5 mmol / g) 2.0 g which is an aqueous solution containing an oxazoline polymer, and distilled water 47.5 g was mixed, and further, 0.5 g of multi-walled CNT (“NC7000” manufactured by Nanocyl), which is a conductive carbon material, was mixed therewith. The obtained mixture was subjected to ultrasonic treatment at room temperature for 30 minutes using a probe type ultrasonic irradiation device to prepare a precursor dispersion A in which CNTs were uniformly dispersed.
[製造例1-2]
 ポリアクリル酸アンモニウム(PAA-NH4)を含む水溶液であるアロンA-30(東亞合成(株)、固形分濃度31.6質量%)0.7gと、アルギン酸アンモニウム(アルギン酸NH4)((株)キミカ)の1%水溶液20gと、蒸留水29.3gとを混合した。得られた溶液と、製造例1-1の前駆体分散液A50gとを混合して、CNTが均一に分散した前駆体分散液Bを調製した。
[Production Example 1-2]
Aron A-30 (Toagosei Co., Ltd., solid concentration 31.6% by mass) 0.7 g which is an aqueous solution containing ammonium polyacrylate (PAA-NH 4 ) and ammonium alginate (alginate NH 4 ) ((stock ) 20 g of 1% aqueous solution of Kimika) and 29.3 g of distilled water were mixed. The obtained solution was mixed with 50 g of the precursor dispersion A of Production Example 1-1 to prepare a precursor dispersion B in which CNTs were uniformly dispersed.
[製造例1-3]
 導電性炭素材料を、アセチレンブラック(電気化学工業(株)社製“デンカブラック”)0.5gに変えた以外は、製造例1-1と同様の方法で前駆体分散液Cを調製した。
[Production Example 1-3]
A precursor dispersion C was prepared in the same manner as in Production Example 1-1 except that the conductive carbon material was changed to 0.5 g of acetylene black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.).
[製造例1-4]
 前駆体分散液Aを、前駆体分散液Cに変えた以外は、製造例1-2と同様の方法で導電前駆体分散液Dを調製した。
[Production Example 1-4]
A conductive precursor dispersion D was prepared in the same manner as in Production Example 1-2 except that the precursor dispersion A was changed to the precursor dispersion C.
[2]導電性炭素材料分散液の調製
[実施例1-1]
 製造例1-2で調製した前駆体分散液B50gと、アセチレン系界面活性剤(消泡剤)オルフィンE-1004(日信化学工業(株)製、固形分濃度100質量%)25mgとを混合し、導電性炭素材料分散液を調製した。
[2] Preparation of conductive carbon material dispersion [Example 1-1]
50 g of the precursor dispersion B prepared in Production Example 1-2 and 25 mg of acetylene surfactant (antifoaming agent) Olphine E-1004 (manufactured by Nissin Chemical Industry Co., Ltd., solid content concentration: 100% by mass) are mixed. Thus, a conductive carbon material dispersion was prepared.
[実施例1-2]
 アセチレン系界面活性剤オルフィンE-1004を、アセチレン系界面活性剤サーフィノール420(日信化学工業(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Example 1-2]
Example 1-1, except that acetylene surfactant Olfine E-1004 was changed to 25 mg of acetylene surfactant Surfynol 420 (manufactured by Nissin Chemical Industry Co., Ltd., solid concentration 100 mass%). A conductive carbon material dispersion was prepared by the method described above.
[実施例1-3]
 製造例1-4で調製した前駆体分散液D50gと、アセチレン系界面活性剤オルフィンE-1004(日信化学工業(株)製、固形分濃度100質量%)25mgとを混合し、導電性炭素材料分散液を調製した。
[Example 1-3]
50 g of the precursor dispersion D prepared in Production Example 1-4 and 25 mg of acetylene surfactant Olfine E-1004 (manufactured by Nissin Chemical Industry Co., Ltd., solid content concentration: 100% by mass) are mixed to form conductive carbon. A material dispersion was prepared.
[実施例1-4]
 アセチレン系界面活性剤オルフィンE-1004を、アセチレン系界面活性剤サーフィノール420(日信化学工業(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-3と同様の方法で導電性炭素材料分散液を調製した。
[Example 1-4]
Except for changing the acetylene surfactant Olphine E-1004 to 25 mg of acetylene surfactant Surfynol 420 (manufactured by Nissin Chemical Industry Co., Ltd., solid content concentration: 100% by mass), the same as in Example 1-3 A conductive carbon material dispersion was prepared by the method described above.
[実施例1-5]
 アセチレン系界面活性剤オルフィンE-1004を、シリコーン系消泡剤ポリフローKL100(共栄社化学(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Example 1-5]
Except for changing the acetylene surfactant Olphine E-1004 to 25 mg of a silicone antifoaming agent Polyflow KL100 (manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 100% by mass), the same method as in Example 1-1. A conductive carbon material dispersion was prepared.
[実施例1-6]
 アセチレン系界面活性剤オルフィンE-1004を、金属石鹸系消泡剤ノプコNXZ(サンノプコ(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Example 1-6]
The same method as in Example 1-1, except that the acetylene-based surfactant Olphine E-1004 was changed to 25 mg of a metal soap-based antifoaming agent Nopco NXZ (manufactured by San Nopco, solid content concentration 100% by mass). A conductive carbon material dispersion was prepared.
[実施例1-7]
 アセチレン系界面活性剤オルフィンE-1004を、アクリル系消泡剤ポリフローKL800(共栄社化学(株)製、固形分濃度93質量%)26.9mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Example 1-7]
Except for changing the acetylene surfactant Olphine E-1004 to 26.9 mg of acrylic antifoaming agent Polyflow KL800 (manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 93 mass%) 26.9 mg, the same as Example 1-1 A conductive carbon material dispersion was prepared by the method.
[比較例1-1]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤SN デフォーマー170(サンノプコ(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例2-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-1]
The same method as in Example 2-1, except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of the polyether antifoam SN deformer 170 (manufactured by San Nopco, solid content concentration 100% by mass). A conductive carbon material dispersion was prepared.
[比較例1-2]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤SN デフォーマー260(サンノプコ(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-2]
The same method as in Example 1-1, except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of the polyether antifoam SN deformer 260 (manufactured by San Nopco, solid concentration 100% by mass). A conductive carbon material dispersion was prepared.
[比較例1-3]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤ディスホームCC-438(日油(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-3]
Example 1-1 and Example 1-1 were used except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of the polyether antifoam Disperse CC-438 (manufactured by NOF Corporation, solid content concentration: 100% by mass). A conductive carbon material dispersion was prepared in the same manner.
[比較例1-4]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤ディスホームCD-432(日油(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-4]
Example 1-1 is the same as Example 1-1 except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of a polyether antifoaming agent Distro CD-432 (manufactured by NOF Corporation, solid content concentration: 100% by mass). A conductive carbon material dispersion was prepared in the same manner.
[比較例1-5]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤ディスホームCE-457(日油(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-5]
Example 1-1 and Example 1-1 except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of a polyether antifoaming agent Disform CE-457 (manufactured by NOF Corporation, solid content concentration: 100% by mass). A conductive carbon material dispersion was prepared in the same manner.
[比較例1-6]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤 消泡剤PF-H(和光純薬工業(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-6]
Example 1 except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of a polyether antifoaming agent, an antifoaming agent PF-H (manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass). A conductive carbon material dispersion was prepared in the same manner as in -1.
[比較例1-7]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤 消泡剤PF-M(和光純薬工業(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-7]
Example 1 except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of a polyether antifoaming agent, an antifoaming agent PF-M (manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass). A conductive carbon material dispersion was prepared in the same manner as in -1.
[比較例1-8]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤 消泡剤PF-L(和光純薬工業(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例2-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-8]
Example 2 except that the acetylene surfactant Orphine E-1004 was changed to 25 mg of a polyether antifoaming agent, an antifoaming agent PF-L (manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration: 100% by mass). A conductive carbon material dispersion was prepared in the same manner as in -1.
[比較例1-9]
 アセチレン系界面活性剤オルフィンE-1004を、フッ素系消泡剤フローレンAO-82(サンノプコ(株)製、固形分濃度1.8質量%)25mgに変えた以外は、実施例1-1と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-9]
Example 1-1, except that the acetylene surfactant Olfine E-1004 was changed to 25 mg of the fluorine-based antifoaming agent Floren AO-82 (manufactured by San Nopco, solid concentration 1.8% by mass). A conductive carbon material dispersion was prepared by the method described above.
[比較例1-10]
 アセチレン系界面活性剤オルフィンE-1004を、ポリエーテル系消泡剤ディスホームCD-432(日油(株)製、固形分濃度100質量%)25mgに変えた以外は、実施例1-3と同様の方法で導電性炭素材料分散液を調製した。
[Comparative Example 1-10]
Except that the acetylene surfactant Olphine E-1004 was changed to 25 mg of a polyether antifoam Disperse CD-432 (manufactured by NOF Corporation, solid content concentration 100% by mass), Example 1-3 and A conductive carbon material dispersion was prepared in the same manner.
[3]導電性炭素材料分散液の評価
[実施例2-1]
 実施例1-1で調製した導電性炭素材料分散液をスクリュー管((株)マルエム製、No.8)に加え、ハンドシェイクにて30秒間激しく振とうして泡を発生させた。300秒間静置した後、導電性炭素材料分散液の液状態と、液面の泡の量を目視にて確認した。その結果、導電性炭素材料分散液の液状態は保持されており、泡は消えて液面が露出していた。
[3] Evaluation of conductive carbon material dispersion [Example 2-1]
The conductive carbon material dispersion prepared in Example 1-1 was added to a screw tube (manufactured by Maruemu Co., Ltd., No. 8), and shaken vigorously for 30 seconds to generate bubbles. After standing for 300 seconds, the liquid state of the conductive carbon material dispersion and the amount of bubbles on the liquid surface were visually confirmed. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
[実施例2-2]
 導電性炭素材料分散液を、実施例1-2で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されており、泡は消えて液面が露出していた。
[Example 2-2]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-2. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
[実施例2-3]
 導電性炭素材料分散液を、実施例1-3で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されており、泡は消えて液面が露出していた。
[Example 2-3]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-3. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
[実施例2-4]
 導電性炭素材料分散液を、実施例1-4で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されており、泡は消えて液面が露出していた。
[Example 2-4]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-4. As a result, the liquid state of the conductive carbon material dispersion was maintained, the bubbles disappeared, and the liquid surface was exposed.
[実施例2-5]
 導電性炭素材料分散液を、実施例1-5で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集したものの、泡は消えて液面が露出していた。
[Example 2-5]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-5. As a result, although the liquid state of the conductive carbon material dispersion changed and the CNTs aggregated, the bubbles disappeared and the liquid surface was exposed.
[実施例2-6]
 導電性炭素材料分散液を、実施例1-6で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化して凝集したものの、泡は消えて液面が露出していた。
[Example 2-6]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-6. As a result, although the liquid state of the conductive carbon material dispersion changed and aggregated, the bubbles disappeared and the liquid surface was exposed.
[実施例2-7]
 導電性炭素材料分散液を、実施例1-7で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集したものの、泡は消えて液面が露出していた。
[Example 2-7]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Example 1-7. As a result, although the liquid state of the conductive carbon material dispersion changed and the CNTs aggregated, the bubbles disappeared and the liquid surface was exposed.
[比較例2-1]
 導電性炭素材料分散液を、比較例1-1で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集し、液面は泡に覆われていた。
[Comparative Example 2-1]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-1. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
[比較例2-2]
 導電性炭素材料分散液を、比較例1-2で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集し、液面は泡に覆われていた。
[Comparative Example 2-2]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-2. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
[比較例2-3]
 導電性炭素材料分散液を、比較例1-3で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集し、液面は泡に覆われていた。
[Comparative Example 2-3]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-3. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
[比較例2-4]
 導電性炭素材料分散液を、比較例1-4で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集し、液面は泡に覆われていた。
[Comparative Example 2-4]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-4. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
[比較例2-5]
 導電性炭素材料分散液を、比較例1-5で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集し、液面は泡に覆われていた。
[Comparative Example 2-5]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-5. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
[比較例2-6]
 導電性炭素材料分散液を、比較例1-6で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されたが、液面は泡に覆われていた。
[Comparative Example 2-6]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-6. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
[比較例2-7]
 導電性炭素材料分散液を、比較例1-7で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されたが、液面は泡に覆われていた。
[Comparative Example 2-7]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-7. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
[比較例2-8]
 導電性炭素材料分散液を、比較例1-8で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されたが、液面は泡に覆われていた。
[Comparative Example 2-8]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-8. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
[比較例2-9]
 導電性炭素材料分散液を、比較例1-9で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してCNTが凝集し、液面は泡に覆われていた。
[Comparative Example 2-9]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-9. As a result, the liquid state of the conductive carbon material dispersion changed, the CNTs aggregated, and the liquid surface was covered with bubbles.
[比較例2-10]
 導電性炭素材料分散液を、比較例1-10で調製した導電性炭素材料分散液に変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態が変化してアセチレンブラックが凝集し、液面は泡に覆われていた。
[Comparative Example 2-10]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the conductive carbon material dispersion prepared in Comparative Example 1-10. As a result, the liquid state of the conductive carbon material dispersion changed, acetylene black aggregated, and the liquid surface was covered with bubbles.
[比較例2-11]
 導電性炭素材料分散液を、製造例1-2で調製した前駆体分散液Bに変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されたが、液面は泡に覆われていた。
[Comparative Example 2-11]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the precursor dispersion B prepared in Production Example 1-2. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
[比較例2-12]
 導電性炭素材料分散液を、製造例1-4で調製した前駆体分散液Dに変えた以外は、実施例2-1と同様の方法で評価した。その結果、導電性炭素材料分散液の液状態は保持されたが、液面は泡に覆われていた。
 上記実施例2-1~2-7および比較例2-1~2-12のまとめを表1に示す。
[Comparative Example 2-12]
Evaluation was made in the same manner as in Example 2-1, except that the conductive carbon material dispersion was changed to the precursor dispersion D prepared in Production Example 1-4. As a result, the liquid state of the conductive carbon material dispersion liquid was maintained, but the liquid surface was covered with bubbles.
A summary of Examples 2-1 to 2-7 and Comparative Examples 2-1 to 2-12 is shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、ポリエーテル系界面活性剤を含む比較例2-1~2-8,2-10、フッ素系界面活性剤を含む比較例2-9で調製した導電性炭素材料分散液、消泡剤となる界面活性剤を添加していない比較例2-11、12で調製した導電性炭素材料分散液は、泡を発生させた場合、泡が直ぐに消えない。
 一方、アセチレン系消泡剤を含む実施例2-1~2-4、シリコーン系界面活性剤を含む実施例2-5、金属石鹸系消泡剤を含む実施例2-6、アクリル系消泡剤を含む実施例2-7で調製した導電性炭素材料分散液では、泡が直ぐに消える。
 さらに、シリコーン系界面活性剤を含む実施例2-5、金属石鹸系消泡剤を含む実施例2-6、アクリル系消泡剤を含む実施例2-7で調製した導電性炭素材料分散液では、泡は直ぐに消えるが、導電性炭素材料分散液の液状態が変化して凝集してしまう。それに対して、アセチレン系消泡剤を含む実施例2-1~2-4で調整した導電性炭素材料分散液では、泡が直ぐに消え、均一な分散液状態も保持できている。
As shown in Table 1, conductive carbon material dispersions prepared in Comparative Examples 2-1 to 2-8, 2-10 containing a polyether surfactant and Comparative Example 2-9 containing a fluorosurfactant In the conductive carbon material dispersion liquids prepared in Comparative Examples 2-11 and 12 to which no surfactant as a liquid or an antifoaming agent was added, when bubbles are generated, the bubbles do not disappear immediately.
On the other hand, Examples 2-1 to 2-4 containing an acetylene-based antifoaming agent, Examples 2-5 containing a silicone-based surfactant, Example 2-6 containing a metal soap-based antifoaming agent, acrylic-based antifoaming In the conductive carbon material dispersion prepared in Example 2-7 containing the agent, the bubbles disappear immediately.
Furthermore, the conductive carbon material dispersion prepared in Example 2-5 containing a silicone surfactant, Example 2-6 containing a metal soap antifoaming agent, and Example 2-7 containing an acrylic antifoaming agent Then, the bubbles disappear immediately, but the liquid state of the conductive carbon material dispersion changes and aggregates. In contrast, in the conductive carbon material dispersion liquid prepared in Examples 2-1 to 2-4 containing an acetylene-based antifoaming agent, the bubbles disappeared immediately and a uniform dispersion state can be maintained.
[4]導電性炭素材料分散液の塗工
[実施例3-1]
 実施例1-1で調製した導電性炭素材料分散液を、アルミ箔(厚み15μm)上にワイヤーバーコーター(セレクトローラー:OSP-30)で均一に展開した後、150℃で20分乾燥し、塗装欠陥がない均一な導電性結着層を具備するアルミ箔(以下、複合集電体)を得た。得られた複合集電体を120cm2の面積に切り出して質量測定した後、0.1mol/Lの希塩酸水溶液で擦り洗いすることで導電性結着層を除去した。残ったアルミ箔の質量測定を行い、導電性結着層の除去前後での質量変化を面積で割ることで、導電性結着層の目付量を求めた結果、268mg/m2であった。
 また、複合集電体を裂いて作製した断面を、SEMにより観察した結果、膜厚は0.199μmであった。これらの値から求めた導電性結着層の比重は、1.35g/cm3であった。
[4] Coating of conductive carbon material dispersion [Example 3-1]
The conductive carbon material dispersion prepared in Example 1-1 was uniformly spread on an aluminum foil (thickness 15 μm) with a wire bar coater (select roller: OSP-30), and then dried at 150 ° C. for 20 minutes. An aluminum foil (hereinafter referred to as a composite current collector) having a uniform conductive binder layer free from coating defects was obtained. The obtained composite current collector was cut into an area of 120 cm 2 and weighed, and then washed with a 0.1 mol / L dilute hydrochloric acid aqueous solution to remove the conductive binder layer. As a result of measuring the mass of the remaining aluminum foil and dividing the mass change before and after the removal of the conductive binder layer by the area, the basis weight of the conductive binder layer was determined and found to be 268 mg / m 2 .
Moreover, as a result of observing the cross section produced by tearing a composite electrical power collector by SEM, the film thickness was 0.199 micrometer. The specific gravity of the conductive binder obtained from these values was 1.35 g / cm 3 .
[実施例3-2]
 セレクトローラー:OSP-30をセレクトローラー:OSP-13に変えた以外は、実施例3-1と同様にして複合集電体を得た。得られた導電性結着層の目付量を求めた結果、147mg/m2であった。目付量と、実施例3-1で求めた比重から算出した膜厚は、0.109μmであった。
[Example 3-2]
A composite current collector was obtained in the same manner as in Example 3-1, except that the selection roller: OSP-30 was changed to the selection roller: OSP-13. As a result of obtaining the basis weight of the obtained conductive binder layer, it was 147 mg / m 2 . The film thickness calculated from the basis weight and the specific gravity obtained in Example 3-1 was 0.109 μm.
[実施例3-3]
 セレクトローラー:OSP-30をセレクトローラー:OSP-8に変えた以外は、実施例3-1と同様にして複合集電体を得た。得られた導電性結着層の目付量を求めた結果、93mg/m2であった。目付量と、実施例3-1で求めた比重から算出した膜厚は、0.069μmであった。
[Example 3-3]
A composite current collector was obtained in the same manner as in Example 3-1, except that the selection roller: OSP-30 was changed to the selection roller: OSP-8. As a result of obtaining the basis weight of the obtained conductive binder layer, it was 93 mg / m 2 . The film thickness calculated from the basis weight and the specific gravity obtained in Example 3-1 was 0.069 μm.
[実施例3-4]
 実施例1-1で調製した導電性炭素材料分散液10gに、純水50gを加えて希釈した以外は、実施例3-1と同様にして複合集電体を得た。得られた導電性結着層の目付量を求めた結果、19mg/m2であった。目付量と、実施例3-1で求めた比重から算出した膜厚は、0.014μmであった。
[Example 3-4]
A composite current collector was obtained in the same manner as in Example 3-1, except that 10 g of the conductive carbon material dispersion prepared in Example 1-1 was diluted by adding 50 g of pure water. As a result of obtaining the basis weight of the obtained conductive binder layer, it was 19 mg / m 2 . The film thickness calculated from the basis weight and the specific gravity obtained in Example 3-1 was 0.014 μm.

Claims (27)

  1.  導電性炭素材料と、アセチレン系界面活性剤、シリコーン系界面活性剤、金属石鹸系界面活性剤およびアクリル系界面活性剤から選ばれる1種または2種以上の消泡剤とを含むことを特徴とする導電性炭素材料分散液。 It includes a conductive carbon material and one or more antifoaming agents selected from acetylene surfactants, silicone surfactants, metal soap surfactants, and acrylic surfactants. Conductive carbon material dispersion.
  2.  前記消泡剤が、アセチレン系界面活性剤を含む請求項1記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to claim 1, wherein the antifoaming agent contains an acetylene surfactant.
  3.  さらに、界面活性作用を有する導電性炭素材料分散剤と、分散媒とを含む請求項1または2記載の導電性炭素材料分散液。 The conductive carbon material dispersion liquid according to claim 1 or 2, further comprising a conductive carbon material dispersant having a surface active action and a dispersion medium.
  4.  前記導電性炭素材料が、黒鉛、カーボンブラック、およびカーボンナノチューブから選ばれる1種または2種以上を含む請求項1~3のいずれか1項記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to any one of claims 1 to 3, wherein the conductive carbon material contains one or more selected from graphite, carbon black, and carbon nanotubes.
  5.  前記導電性炭素材料が、カーボンナノチューブを含む請求項1~4のいずれか1項記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to any one of claims 1 to 4, wherein the conductive carbon material contains carbon nanotubes.
  6.  前記分散媒が、水を含む請求項3~5のいずれか1項記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to any one of claims 3 to 5, wherein the dispersion medium contains water.
  7.  前記導電性炭素材料分散剤が、側鎖にオキサゾリン基を有するポリマーを含む請求項3~6のいずれか1項記載の導電性炭素材料分散液。 The conductive carbon material dispersion liquid according to any one of claims 3 to 6, wherein the conductive carbon material dispersant contains a polymer having an oxazoline group in a side chain.
  8.  前記側鎖にオキサゾリン基を有するポリマーが、下記式(1)で表されるオキサゾリンモノマーの重合物である請求項7記載の導電性炭素材料分散液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、重合性炭素-炭素二重結合含有基を表し、R1~R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1~5のアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。)
    The conductive carbon material dispersion liquid according to claim 7, wherein the polymer having an oxazoline group in the side chain is a polymer of an oxazoline monomer represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X represents a polymerizable carbon-carbon double bond-containing group, and R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or a carbon number of 6 Represents an aryl group having ˜20 or an aralkyl group having 7 to 20 carbon atoms.)
  9.  前記重合性炭素-炭素二重結合を含む鎖状炭化水素基が、炭素数2~8のアルケニル基である請求項8記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to claim 8, wherein the chain hydrocarbon group containing a polymerizable carbon-carbon double bond is an alkenyl group having 2 to 8 carbon atoms.
  10.  前記オキサゾリンモノマーが、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-4-エチル-2-オキサゾリン、2-ビニル-4-プロピル-2-オキサゾリン、2-ビニル-4-ブチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-ビニル-5-エチル-2-オキサゾリン、2-ビニル-5-プロピル-2-オキサゾリン、2-ビニル-5-ブチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-4-エチル-2-オキサゾリン、2-イソプロペニル-4-プロピル-2-オキサゾリン、2-イソプロペニル-4-ブチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-5-プロピル-2-オキサゾリンおよび2-イソプロペニル-5-ブチル-2-オキサゾリンからなる群から選ばれる1種または2種以上である請求項8記載の導電性炭素材料分散液。 The oxazoline monomer is 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2 -Vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl -5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4 -Propyl-2-oxazoline, 2-isopropenyl-4-butyl-2-oxazoline, 2-isopropenyl-5-methyl Selected from the group consisting of ru-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-5-propyl-2-oxazoline and 2-isopropenyl-5-butyl-2-oxazoline The conductive carbon material dispersion according to claim 8, which is one type or two or more types.
  11.  前記オキサゾリンモノマーが、2-イソプロペニル-2-オキサゾリンである請求項10記載の導電性炭素材料分散液。 11. The conductive carbon material dispersion according to claim 10, wherein the oxazoline monomer is 2-isopropenyl-2-oxazoline.
  12.  架橋剤を含む請求項1~11のいずれか1項記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to any one of claims 1 to 11, comprising a crosslinking agent.
  13.  前記架橋剤が、オキサゾリン基と架橋反応を起こす化合物を含む請求項12記載の導電性炭素材料分散液。 The conductive carbon material dispersion according to claim 12, wherein the crosslinking agent contains a compound that causes a crosslinking reaction with an oxazoline group.
  14.  前記オキサゾリン基と架橋反応を起こす化合物が、酸触媒の存在下で架橋反応性を発揮する、合成高分子の金属塩および天然高分子の金属塩、並びに加熱により架橋反応性を発揮する、合成高分子のアンモニウム塩および天然高分子のアンモニウム塩から選ばれる化合物を含む請求項13記載の導電性炭素材料分散液。 A compound that undergoes a crosslinking reaction with the oxazoline group exhibits a crosslinking reactivity in the presence of an acid catalyst, a synthetic polymer metal salt and a natural polymer metal salt, and exhibits a crosslinking reactivity when heated. The conductive carbon material dispersion according to claim 13, comprising a compound selected from an ammonium salt of a molecule and an ammonium salt of a natural polymer.
  15.  前記オキサゾリン基と架橋反応を起こす化合物が、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースアンモニウムおよびアルギン酸アンモニウムから選ばれる化合物を含む請求項14記載の導電性炭素材料分散液。 The compound that causes a crosslinking reaction with the oxazoline group includes a compound selected from lithium polyacrylate, sodium polyacrylate, ammonium polyacrylate, lithium carboxymethylcellulose, sodium carboxymethylcellulose, carboxymethylcellulose ammonium, and ammonium alginate. Conductive carbon material dispersion liquid.
  16.  マトリックスとなるポリマーを含む請求項1~15のいずれか1項記載の導電性炭素材料分散液。 The conductive carbon material dispersion liquid according to any one of claims 1 to 15, comprising a polymer to be a matrix.
  17.  請求項1~16のいずれか1項記載の導電性炭素材料分散液から得られる導電性結着層。 A conductive tie layer obtained from the conductive carbon material dispersion according to any one of claims 1 to 16.
  18.  厚みが、5μm以下である請求項17記載の導電性結着層。 The conductive binding layer according to claim 17, wherein the thickness is 5 μm or less.
  19.  厚みが、1μm以下である請求項17記載の導電性結着層。 The conductive binder layer according to claim 17, wherein the thickness is 1 μm or less.
  20.  厚みが、0.5μm以下である請求項17記載の導電性結着層。 The conductive binding layer according to claim 17, wherein the thickness is 0.5 μm or less.
  21.  集電基板と、この基板上に形成された、請求項17~20のいずれか1項記載の導電性結着層と、を備えるエネルギー貯蔵デバイスの電極用複合集電体。 21. A composite current collector for an electrode of an energy storage device, comprising: a current collecting substrate; and the conductive binder layer according to any one of claims 17 to 20 formed on the substrate.
  22.  請求項21記載のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極。 The electrode for energy storage devices provided with the composite electrical power collector for electrodes of the energy storage device of Claim 21.
  23.  請求項21記載のエネルギー貯蔵デバイスの電極用複合集電体と、この複合集電体の前記導電性結着層上に形成された活物質層とを備える請求項22記載のエネルギー貯蔵デバイス用電極。 The electrode for energy storage devices of Claim 22 provided with the composite electrical power collector for electrodes of the energy storage device of Claim 21, and the active material layer formed on the said electroconductive binding layer of this composite current collector. .
  24.  請求項22または23記載のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス。 An energy storage device comprising the electrode for an energy storage device according to claim 22 or 23.
  25.  リチウムイオン二次電池である請求項24記載のエネルギー貯蔵デバイス。 The energy storage device according to claim 24, which is a lithium ion secondary battery.
  26.  導電性炭素材料、界面活性作用を有する導電性炭素材料分散剤、分散媒、およびアセチレン系界面活性剤を混合することを特徴とする泡立ちが抑制された導電性炭素材料分散液の製造方法。 A method for producing a conductive carbon material dispersion liquid in which foaming is suppressed, comprising mixing a conductive carbon material, a conductive carbon material dispersant having a surfactant activity, a dispersion medium, and an acetylene surfactant.
  27.  導電性炭素材料、界面活性作用を有する導電性炭素材料分散剤、分散媒、およびアセチレン系界面活性剤を混合することを特徴とする導電性炭素材料分散液の消泡方法。 A method for defoaming a conductive carbon material dispersion, comprising mixing a conductive carbon material, a conductive carbon material dispersant having a surface-active action, a dispersion medium, and an acetylene surfactant.
PCT/JP2017/042729 2016-12-02 2017-11-29 Conductive carbon material dispersion WO2018101294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554177A JP7081493B2 (en) 2016-12-02 2017-11-29 Conductive carbon material dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235156 2016-12-02
JP2016235156 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018101294A1 true WO2018101294A1 (en) 2018-06-07

Family

ID=62242419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042729 WO2018101294A1 (en) 2016-12-02 2017-11-29 Conductive carbon material dispersion

Country Status (3)

Country Link
JP (1) JP7081493B2 (en)
TW (1) TW201833203A (en)
WO (1) WO2018101294A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029471A (en) * 2018-08-20 2020-02-27 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and use thereof
WO2022124160A1 (en) * 2020-12-11 2022-06-16 株式会社豊田自動織機 Electrode for power storage device and method for manufacturing same
US11658302B2 (en) 2019-11-15 2023-05-23 Arakawa Chemical Industries, Ltd. Conductive carbon material dispersing agent for lithium ion battery, slurry for lithium ion battery electrode, electrode for lithium ion battery, and lithium ion battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236258A (en) * 1987-03-20 1988-10-03 Sanyo Electric Co Ltd Manufacture of positive electrode of nonaqueous electrolyte battery
JP2003142105A (en) * 2001-06-22 2003-05-16 Natl Starch & Chem Investment Holding Corp Cathode coating dispersion
WO2005121263A1 (en) * 2004-06-09 2005-12-22 Nippon Kayaku Kabushiki Kaisha Aqueous dispersion, ink composition and inkjet recording method using same
JP2008056914A (en) * 2006-07-31 2008-03-13 Honda Motor Co Ltd Aqueous primer paint composition and method of forming paint film
JP2009109910A (en) * 2007-10-31 2009-05-21 Sumitomo Rubber Ind Ltd Surface-treating liquid for conductive elastic layer, method of surface treatment of the same, and surface-treated conductive member
WO2011062232A1 (en) * 2009-11-18 2011-05-26 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
WO2014042080A1 (en) * 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
WO2015029949A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
WO2015037382A1 (en) * 2013-09-13 2015-03-19 日本電気株式会社 Electrolyte solution and secondary battery
JP2015065141A (en) * 2013-08-29 2015-04-09 ダイソー株式会社 Binder for battery electrode, electrode using the same, and battery
WO2016067824A1 (en) * 2014-10-27 2016-05-06 第一工業製薬株式会社 Aqueous dispersion of polyurethane resin and coating agent for plastic film using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043228A (en) 2008-08-18 2010-02-25 Toyo Ink Mfg Co Ltd Electrically-conductive ink

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236258A (en) * 1987-03-20 1988-10-03 Sanyo Electric Co Ltd Manufacture of positive electrode of nonaqueous electrolyte battery
JP2003142105A (en) * 2001-06-22 2003-05-16 Natl Starch & Chem Investment Holding Corp Cathode coating dispersion
WO2005121263A1 (en) * 2004-06-09 2005-12-22 Nippon Kayaku Kabushiki Kaisha Aqueous dispersion, ink composition and inkjet recording method using same
JP2008056914A (en) * 2006-07-31 2008-03-13 Honda Motor Co Ltd Aqueous primer paint composition and method of forming paint film
JP2009109910A (en) * 2007-10-31 2009-05-21 Sumitomo Rubber Ind Ltd Surface-treating liquid for conductive elastic layer, method of surface treatment of the same, and surface-treated conductive member
WO2011062232A1 (en) * 2009-11-18 2011-05-26 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
WO2014042080A1 (en) * 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
WO2015029949A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2015065141A (en) * 2013-08-29 2015-04-09 ダイソー株式会社 Binder for battery electrode, electrode using the same, and battery
WO2015037382A1 (en) * 2013-09-13 2015-03-19 日本電気株式会社 Electrolyte solution and secondary battery
WO2016067824A1 (en) * 2014-10-27 2016-05-06 第一工業製薬株式会社 Aqueous dispersion of polyurethane resin and coating agent for plastic film using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029471A (en) * 2018-08-20 2020-02-27 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and use thereof
US11658302B2 (en) 2019-11-15 2023-05-23 Arakawa Chemical Industries, Ltd. Conductive carbon material dispersing agent for lithium ion battery, slurry for lithium ion battery electrode, electrode for lithium ion battery, and lithium ion battery
WO2022124160A1 (en) * 2020-12-11 2022-06-16 株式会社豊田自動織機 Electrode for power storage device and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2018101294A1 (en) 2019-10-24
JP7081493B2 (en) 2022-06-07
TW201833203A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
US11326010B2 (en) Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
US10749172B2 (en) Electrode for energy storage devices
EP3401982B1 (en) Electrode for energy storage devices
JP7081493B2 (en) Conductive carbon material dispersion
TW201831574A (en) Conductive composition
JP7021641B2 (en) Method for manufacturing thin film containing conductive carbon material
WO2018101300A1 (en) Production method for thin film containing conductive carbon material
EP3780157A1 (en) Energy storage device electrode and energy storage device
EP3780191A1 (en) Undercoat foil for energy storage device electrode
JPWO2020090343A1 (en) Composition for forming an active material complex, an active material complex, and a method for producing an active material complex.
WO2022230517A1 (en) Composition for forming thin film for energy storage device electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875236

Country of ref document: EP

Kind code of ref document: A1