WO2015037382A1 - Electrolyte solution and secondary battery - Google Patents

Electrolyte solution and secondary battery Download PDF

Info

Publication number
WO2015037382A1
WO2015037382A1 PCT/JP2014/071281 JP2014071281W WO2015037382A1 WO 2015037382 A1 WO2015037382 A1 WO 2015037382A1 JP 2014071281 W JP2014071281 W JP 2014071281W WO 2015037382 A1 WO2015037382 A1 WO 2015037382A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
electrolytic solution
Prior art date
Application number
PCT/JP2014/071281
Other languages
French (fr)
Japanese (ja)
Inventor
信也 須藤
伊紀子 島貫
川崎 大輔
石川 仁志
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015536497A priority Critical patent/JPWO2015037382A1/en
Publication of WO2015037382A1 publication Critical patent/WO2015037382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution and a secondary battery including the electrolytic solution.
  • One method for improving the performance of the secondary battery is to suppress the decomposition reaction of the electrolyte by forming a protective film on the electrode surface.
  • a method of forming a film on the electrode surface by adding an additive to the electrolytic solution has been proposed.
  • Patent Document 1 discloses a lithium ion secondary battery having an electrolytic solution containing a chain disulfonic acid ester compound and a cyclic monosulfonic acid ester compound or a chain disulfonic acid ester compound.
  • Patent Document 2 discloses at least one compound selected from a cyclic carbonate compound having an unsaturated bond and an acid anhydride, a sulfur-containing organic compound, a fluorine-containing aromatic compound having 9 or less carbon atoms, and an aliphatic hydrocarbon compound. And a secondary battery having an electrolytic solution containing at least one compound selected from fluorine-containing aliphatic hydrocarbon compounds.
  • Patent Document 3 has an electrolyte containing an aprotic solvent and a chain disulfonic acid ester compound, and has a negative electrode containing an oxide that absorbs and releases alkali metal or alkaline earth metal as a negative electrode active material.
  • a secondary battery is described.
  • Patent Document 4 discloses a secondary battery having a positive electrode including a lithium-containing composite oxide having an electrolytic solution containing an aprotic solvent and a chain disulfonic acid ester compound and having a charge / discharge region at 4.3 V or higher. Is described.
  • Patent Document 5 contains a monofluorophosphate and / or a difluorophosphate, and further includes a compound represented by a predetermined formula, a nitrile compound, an isocyanate compound, a phosphazene compound, a disulfonic acid ester compound, a sulfide compound, and a disulfide.
  • a nonaqueous electrolytic solution containing at least one compound selected from the group consisting of a compound, an acid anhydride, a lactone compound having a substituent at the ⁇ -position, and a compound having a carbon-carbon triple bond is described.
  • Patent Document 6 or 7 describes an electrolytic solution containing a sulfonic acid ester compound represented by a predetermined formula.
  • Patent Document 8 describes a secondary battery having an electrolytic solution containing a chain disulfonic acid ester compound.
  • Patent Document 9 describes a secondary battery having an electrolytic solution containing a chain disulfonic acid ester compound represented by the formula (II).
  • Patent Document 10 discloses a cyclic sulfonic acid ester compound having two sulfonyl groups.
  • Non-Patent Documents 1 to 3 disclose a method for producing a chain disulfonic acid ester compound.
  • An object of the present invention is to provide an electrolytic solution that has an excellent capacity retention rate and can suppress gas generation.
  • One of the embodiments is An electrolytic solution containing a supporting salt, a nonaqueous solvent that dissolves the supporting salt, a chain disulfone compound represented by the following formula (1), and an acid anhydride.
  • R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or An unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 1 (X 1 Is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is A hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or a halogen atom, R 3 and R 4 each independently represents a hydrogen atom, a substituted or unsubstit
  • One of the embodiments is a secondary battery having the above electrolytic solution.
  • Electrolytic Solution The electrolytic solution of the present embodiment includes a supporting salt, a nonaqueous solvent that dissolves the supporting salt, a chain disulfone compound represented by the formula (1), and an acid anhydride.
  • the capacity retention rate of the secondary battery can be improved, but it has been found that gas generation accompanying charging / discharging increases and the volume increase of the battery increases. .
  • an acid anhydride to an electrolytic solution containing a chain disulfone compound, even when the chain disulfone compound is included, gas generation can be suppressed while maintaining the effect of improving the capacity retention rate. I understood.
  • the following reason can be considered as a mechanism of the synergistic effect which suppresses gas generation by adding an acid anhydride to the electrolyte solution containing a chain
  • the chain disulfone compound represented by the formula (1) is decomposed by an electrochemical oxidation-reduction reaction during the charge / discharge reaction to form a film on the surface of the negative electrode, and decomposes the electrolytic solution and the supporting salt.
  • the chain disulfone compound alone can be suppressed, gas generation accompanying charge / discharge increases.
  • an acid anhydride is further added to the electrolyte solution in addition to the chain disulfone compound, the acid anhydride will be decomposed before the chain disulfonic acid at the first charge, and excessive decomposition of the chain disulfone compound will occur. Is suppressed.
  • an acid anhydride contributes also in formation of a film
  • the above theory is estimation and does not restrict
  • the chain disulfone compound in the present embodiment is represented by the following formula (1).
  • R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or An unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 1 (X 1 Is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is A hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or a halogen atom, R 3 and R 4 each independently represents a hydrogen atom, a substituted or unsubstit
  • fluoroalkyl group and “fluoroalkoxy group” each represent a group in which at least one hydrogen atom bonded to a carbon atom of a corresponding alkyl group or alkoxy group is substituted with a fluorine atom.
  • Fluoroalkyl group and “fluoroalkoxy group” are concepts including “perfluoroalkyl group” and “perfluoroalkoxy group”, respectively.
  • the “perfluoroalkyl group” and “perfluoroalkoxy group” represent groups in which all of the hydrogen atoms bonded to the carbon atoms of the corresponding alkyl group and alkoxy group are substituted with fluorine atoms, respectively.
  • n is preferably 1 or 2, and more preferably 1.
  • R 1 and R 2 are independent for each carbon atom to which they are bonded.
  • substituent for R 1 and R 2 include halogen atoms such as a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, a hydroxy group, an amino group, an alkyl group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Examples thereof include an alkoxy group, a fluoroalkyl group having 1 to 4 carbon atoms, and a fluoroalkoxy group having 1 to 4 carbon atoms.
  • R 1 and R 2 may each independently have one substituent and may have a plurality of substituents.
  • R 3 and R 4 examples include a halogen atom such as a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, a hydroxy group, an amino group, an alkyl group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 may each independently have one substituent and may have a plurality of substituents.
  • the alkyl group, alkoxy group, fluoroalkyl group, and fluoroalkoxy group may be linear or branched.
  • the alkyl group, alkoxy group, fluoroalkyl group, and fluoroalkoxy group may be linear or branched.
  • substituent in the “fluoroalkyl group” or “fluoroalkoxy group” is a substituent other than a fluorine atom.
  • chain disulfone compound one kind may be used alone, or two or more kinds may be used in combination.
  • n is preferably 1, and is preferably a compound represented by the following formula (2).
  • R 1 ⁇ R 4 are the same as R 1 ⁇ R 4 described for the above equation (1).
  • the chain disulfone compound represented by the formula (1) or (2) is an acyclic compound and can be produced without a cyclization reaction at the time of synthesis.
  • Non-Patent Documents 1 to 3 Can be synthesized. It can also be obtained as a by-product of the synthesis of the cyclic disulfonic acid ester disclosed in Patent Document 10.
  • the chain disulfone compound represented by the formula (1) is easy to synthesize, there is a possibility that an inexpensive electrolytic solution can be provided.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms. preferable.
  • R 1 and R 2 are more preferably each independently a hydrogen atom or a methyl group.
  • R 1 and R 2 are each particularly preferably a hydrogen atom.
  • n is 1, if R 1 and R 2 are hydrogen atoms, a methylene moiety sandwiched between two sulfonyl groups is activated, and reductive decomposition and film formation on the negative electrode are likely to occur.
  • R 3 and R 4 in formula (1) or (2) are each independently substituted or unsubstituted carbon from the viewpoints of stability of the compound, ease of synthesis of the compound, solubility in a solvent, price, and the like.
  • R 3 and R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted carbon group having 1 to 5 carbon atoms. More preferably, it is a 5 fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenoxy group.
  • R 3 and R 4 are more preferably each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms or a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms. Further, it is particularly preferable that one or both of R 3 and R 4 is a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms.
  • the substituted or unsubstituted alkyl group having 1 to 5 carbon atoms is preferably a methyl group or an ethyl group
  • the substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms is preferably a methoxy group or An ethoxy group is preferred.
  • the compound represented by the formula (1) particularly the compound represented by the formula (2) has a small LUMO because it has two sulfonyl groups, and solvent molecules and monosulfonic acids generally used in electrolytes. It has a smaller LUMO value than the ester. Therefore, the compound is easily reduced.
  • the following compound No. The LUMO of 1 is ⁇ 0.86 eV, which is a small value, according to semiempirical molecular orbital calculation.
  • the compound No. 1 is preceded by a solvent (LUMO: about 1.2 eV) composed of cyclic carbonates and chain carbonates. 1 reduction film is formed on the negative electrode.
  • membrane formed in the negative electrode plays the role which suppresses decomposition
  • the compound represented by the formula (2) has a form in which an electron-withdrawing sulfonyl group is bonded to a carbon atom via a methylene group, and reduction on the negative electrode by activation of the carbon atom of the methylene group. It is considered that decomposition and film formation are likely to occur.
  • chain disulfone compound represented by the formula (1) Specific examples of the chain disulfone compound represented by the formula (1) are shown below, but the present invention is not particularly limited thereto.
  • a chain disulfone compound may be used individually by 1 type, or may use 2 or more types together.
  • the content of the chain disulfone compound represented by the formula (1) in the electrolytic solution is not particularly limited, but is preferably 0.005 to 10% by mass. When the content of the chain disulfone compound is 0.005% by mass or more, a film forming effect can be sufficiently obtained. Moreover, when content of a chain
  • the content of the chain disulfone compound in the electrolytic solution is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more. preferable.
  • the content of the chain disulfone compound in the electrolytic solution is more preferably 8% by mass or less, further preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the acid anhydride in this embodiment is a compound having at least one acid anhydride structure in one molecule, and the type of acid anhydride is not limited.
  • the acid anhydride may be a compound having a plurality of acid anhydride structures in one molecule.
  • Examples of the acid anhydride in the present embodiment include an anhydride of carboxylic acid, an anhydride of sulfonic acid, and an anhydride of carboxylic acid and sulfonic acid.
  • carboxylic acid anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, crotonic anhydride, trifluoroacetic anhydride, pentafluoropropionic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride , Glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4,5,6- Tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenylsuccinic anhydride, 2-phenylglutaric anhydride, phthalic anhydride, pyromellitic anhydride, fluorosuccinic anhydride, tetra
  • sulfonic acid anhydride examples include methanesulfonic acid anhydride, ethanesulfonic acid anhydride, propanesulfonic acid anhydride, butanesulfonic acid anhydride, pentanesulfonic acid anhydride, hexanesulfonic acid anhydride, vinylsulfonic acid anhydride.
  • Benzenesulfonic acid anhydride trifluoromethanesulfonic acid anhydride, 2,2,2-trifluoroethanesulfonic acid anhydride, Pentafluoroethanesulfonic anhydride, 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride, 1,4-butanedisulfonic anhydride, 1,2-benzenedisulfonic anhydride, tetrafluoro -1,2-ethanedisulfonic anhydride, hexafluoro-1,3-propanedisulfonic anhydride, octafluoro-1,4-butanedisulfonic anhydride, 3-fluoro-1,2-benzenedisulfonic anhydride 4-fluoro-1,2-benzenedisulfonic anhydride 3,4,5,6-tetrafluoro-1,2-benzenedisulfonic anhydride and the like. These may be used alone or
  • carboxylic acid and sulfonic acid anhydrides include acetic acid methanesulfonic acid anhydride, ethane sulfonic acid anhydride, acetic acid propane sulfonic acid anhydride, propionic acid methanesulfonic acid anhydride, propionic acid ethanesulfonic acid anhydride , Propionic acid propanesulfonic acid anhydride, trifluoroacetic acid methanesulfonic acid anhydride, trifluoroacetic acid ethanesulfonic acid anhydride, trifluoroacetic acid propanesulfonic acid anhydride, acetic acid trifluoromethanesulfonic acid anhydride, acetic acid 2,2,2 -Trifluoroethanesulfonic anhydride, pentafluoroethanesulfonic acid anhydride, trifluoromethanesulfonic anhydride, trifluoroacetic acid 2,2,2-trifluor
  • R 11 represents a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms, a substituted or unsubstituted carbon group having 5 to 12 carbon atoms, and A cycloalkanediyl group, a substituted or unsubstituted benzenediyl group, or a divalent group having 2 to 6 carbon atoms to which an alkylene group is bonded via an ether bond).
  • R 103 represents a single bond, a double bond, a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 3 carbon atoms, an oxygen atom, or A divalent group having 2 to 4 carbon atoms to which an alkylene group is bonded via an ether bond).
  • the alkylene group and alkenylene group of R 11 and R 103 may be linear or branched.
  • the number of carbon atoms of the alkylene group represented by R 11 is preferably 1, 2, 3 or 4.
  • the carbon number of the alkenylene group of R 11 is preferably 2, 3 or 4.
  • the number of carbon atoms of the cycloalkanediyl group represented by R 11 is preferably 5, 6, 7, 8, 9, or 10.
  • R 11 is preferably a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms.
  • the substituent of R 11 or R 103 is, for example, an alkyl group having 1 to 5 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group), carbon C2-C6 alkenyl group (for example, vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group), C1-C5 alkoxy group (for example, methoxy group, ethoxy group, n-propoxy group) , Iso-propoxy group, n-butoxy group, tert-butoxy group), amino group (including dimethylamino group and methylamino group), carboxy group, hydroxy group, vinyl group, cyano group, or halogen atom (for example, chlorine Atom, bromine atom).
  • R 11 or R 103 may have one substituent or a plurality of substituents.
  • R 103 is a single bond or a double bond
  • a single bond or a double bond is formed between carbon atoms adjacent to R 103 .
  • R 103 is preferably a single bond, a double bond, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms.
  • cyclic carboxylic acid anhydride represented by the formula (I) include the following compounds.
  • R 101 and R 102 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a substituted or unsubstituted group, A heterocyclic group having 4 to 12 carbon atoms, or a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms.
  • the number of carbon atoms of the alkyl group is preferably 1, 2, 3, 4 or 5, and more preferably 1, 2, 3 or 4.
  • the aryl group preferably has 6, 7, 8, 9, or 10 carbon atoms.
  • the number of carbon atoms of the heterocyclic group is preferably 4, 5, 6, 7, 8, 9 or 10, and more preferably 4, 5, 6, 7 or 8.
  • the number of carbon atoms in the alkenyl group is preferably 2, 3, 4 or 5, and more preferably 2, 3 or 4.
  • the alkyl group or alkenyl group may be linear or branched.
  • R 101 and R 102 examples include an alkyl group having 1 to 5 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group), and a cycloalkyl group having 3 to 6 carbon atoms (for example, Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group), alkenyl group having 2 to 6 carbon atoms (for example, vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group), 1 to 5 carbon atoms Alkoxy groups (for example, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, tert-butoxy group), alkylcarbonyl group having 2 to 6 carbon atoms, aryl having 7 to 11 carbon atoms Carbonyl group, alkoxycarbonyl group, alk
  • An acid anhydride can be used alone or in combination of two or more.
  • R 101 and R 102 are preferably each independently an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group may be linear or branched.
  • the alkyl group preferably has 1, 2, 3 or 4 carbon atoms.
  • chain carboxylic acid anhydride represented by the formula (III) include the following compounds.
  • succinic anhydride and maleic anhydride are preferable.
  • chain carboxylic acid anhydride acetic anhydride, propionic anhydride, and butyric anhydride are preferable.
  • the content of the acid anhydride in the electrolytic solution is not particularly limited, but is preferably 0.005 to 10% by mass. When the content of the acid anhydride is 0.005% by mass, a synergistic effect between the chain disulfone compound and the acid anhydride can be effectively obtained. Moreover, when content of an acid anhydride is 10 mass% or less, it can suppress that the membrane
  • the content of the acid anhydride in the electrolytic solution is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more. . The content of the acid anhydride in the electrolytic solution is more preferably 8% by mass or less, further preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the molar ratio B / A between the concentration A of the chain disulfone compound in the electrolyte and the concentration B of the acid anhydride in the electrolyte is preferably in the range of 1/10 to 5/1. More preferably, it is in the range of 1/9 to 4/1.
  • the total content C of the concentration A of the chain disulfone compound in the electrolytic solution and the concentration B of the acid anhydride electrolytic solution is preferably in the range of 1.0 mol / L or less, and is preferably 0.75 mol / L. More preferably, it is in the following range, and further preferably in the range of 0.5 mol / L or less.
  • the electrolyte solution may contain other additives other than the chain disulfone compound and the acid anhydride, if necessary.
  • additives include an overcharge inhibitor and a surfactant.
  • the non-aqueous solvent is not particularly limited, and examples thereof include carbonates such as cyclic carbonates and chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers, and chain ethers. And fluorine derivatives thereof. These can be used individually by 1 type or in combination of 2 or more types.
  • cyclic carbonates examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC).
  • chain carbonates examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • Examples of the aliphatic carboxylic acid esters include methyl formate, methyl acetate, and ethyl propionate.
  • Examples of ⁇ -lactones include ⁇ -butyrolactone.
  • Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran.
  • chain ethers examples include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), and the like.
  • non-aqueous solvents include, for example, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives , Sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, N-methylpyrrolidone, fluorinated carboxylic acid ester, methyl-2 , 2,2-trifluoroethyl carbonate, methyl-2,2,3,3,3-pentafluoropropyl carbonate, trifluoromethyl ethylene carbonate, monofluoromethyl ethyl Emissions carbonate, difluoromethyl
  • the non-aqueous solvent preferably contains carbonates.
  • the carbonates include cyclic carbonates or chain carbonates. Since carbonates have a large relative dielectric constant, the ion dissociation property of the electrolytic solution is improved, and further, the viscosity of the electrolytic solution is lowered, so that the ion mobility is improved.
  • carbonates having a carbonate structure are used as the non-aqueous solvent for the electrolytic solution, the carbonates tend to decompose and generate gas containing CO 2 .
  • the problem of blistering appears prominently and tends to lead to performance degradation.
  • the electrolytic solution preferably contains carbonates as a non-aqueous solvent in addition to the chain disulfone compound and the acid anhydride.
  • the content of carbonates in the electrolytic solution is, for example, 30% by mass or more, preferably 50% by mass or more, and more preferably 70% by mass or more.
  • the supporting salt is not particularly limited, for example, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 And lithium salts such as SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 .
  • a supporting salt can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the supporting salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l. By setting the concentration of the supporting salt within this range, it becomes easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
  • the secondary battery of the present embodiment includes a negative electrode having a negative electrode active material.
  • the negative electrode active material can be bound on the negative electrode current collector by a negative electrode binder.
  • a negative electrode active material layer including a negative electrode active material and a negative electrode binder is formed on a negative electrode current collector can be used.
  • a negative electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the metal (a) include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Two or more of these metals or alloys may be used in combination. These metals or alloys may contain one or more non-metallic elements. Among these, it is preferable to use silicon, tin, or an alloy thereof as the negative electrode active material. By using silicon or tin as the negative electrode active material, a lithium secondary battery excellent in weight energy density and volume energy density can be provided.
  • the metal oxide (b) examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. Among these, it is preferable to use silicon oxide as the negative electrode active material.
  • the metal oxide (b) can contain one or more elements selected from nitrogen, boron and sulfur in a range of, for example, 0.1 to 5% by mass.
  • Examples of the carbon material (c) include graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • the negative electrode binder is not particularly limited, and examples thereof include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and styrene-butadiene copolymer rubber. , Polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid and the like.
  • the negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • This negative electrode active material layer can be formed by a general slurry coating method.
  • a negative electrode can be obtained by preparing a slurry containing a negative electrode active material, a negative electrode binder, and a solvent, applying the slurry onto a negative electrode current collector, drying, and pressing as necessary. it can.
  • Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method.
  • a negative electrode can also be obtained by forming a negative electrode active material layer in advance and then forming a thin film of copper, nickel or an alloy thereof as a current collector by a method such as vapor deposition or sputtering.
  • a water-dispersed polymer can be used as the negative electrode binder.
  • the negative electrode binder can be used in an aqueous dispersion state.
  • the water-dispersed polymer include styrene butadiene polymer, acrylic acid polymer, polytetrafluoroethylene, polyacrylate, and polyurethane. These polymers can be used by dispersing in water. More specifically, examples of the water-dispersed polymer include natural rubber (NR), styrene butadiene rubber (SBR), acrylonitrile / butadiene copolymer rubber (NBR), and methyl methacrylate / butadiene copolymer rubber (MBR).
  • NR natural rubber
  • SBR styrene butadiene rubber
  • NBR acrylonitrile / butadiene copolymer rubber
  • MRR methyl methacrylate / butadiene copolymer rubber
  • Chloroprene rubber (CR), acrylic rubber (ABR), styrene butadiene / styrene copolymer (SBS), butyl rubber (IIR), thiocol, urethane rubber, silicon rubber, or fluorine rubber. These can be used individually by 1 type or in combination of 2 or more types.
  • an aqueous dispersion polymer as a negative electrode binder, it is preferable to use an aqueous thickener.
  • the aqueous thickener include methyl cellulose, carboxymethyl cellulose (CMC), carboxymethyl cellulose sodium salt, carboxymethyl cellulose lithium salt, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, sodium polyacrylate, polyacrylic acid. , Polyethylene glycol, or polyethylene oxide. These can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the negative electrode binder is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the content of the water-based thickener is, for example, 0.1 to 5.0 parts by weight, preferably 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the negative electrode active material.
  • water is preferably used as the dispersion medium
  • a water-soluble solvent such as an alcohol solvent, an amine solvent, a carboxylic acid solvent, or a ketone solvent may be included as the dispersion medium.
  • the negative electrode can be produced, for example, as follows. First, a negative electrode active material, an aqueous thickener, an aqueous dispersion polymer, and water are kneaded to prepare a negative electrode slurry. Next, this aqueous slurry is applied to a negative electrode current collector, dried, and pressed to produce a negative electrode.
  • the amount of water contained in the negative electrode active material layer after producing the negative electrode is preferably 50 to 1000 ppm. Further, the amount of water contained in the negative electrode active material layer is more preferably 500 ppm or less.
  • the amount of water contained in the negative electrode active material layer can be controlled by, for example, a drying process after the negative electrode active material layer is formed.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include a foil, a flat plate, and a mesh.
  • the negative electrode active material layer may contain a conductive aid such as carbon from the viewpoint of improving conductivity.
  • the negative electrode slurry may contain other components as necessary, and examples of the other components include a surfactant and an antifoaming material.
  • the negative electrode slurry contains a surfactant, the dispersion stability of the negative electrode binder can be improved. Moreover, foaming at the time of apply
  • the secondary battery of this embodiment includes a positive electrode having a positive electrode active material.
  • the positive electrode active material can be bound on the positive electrode current collector by a positive electrode binder.
  • a positive electrode in which a positive electrode active material layer including a positive electrode active material and a positive electrode binder is formed on a positive electrode current collector can be used.
  • the positive electrode active material is not particularly limited, and examples thereof include lithium composite oxide and lithium iron phosphate. Further, at least part of the transition metal of these lithium composite oxides may be replaced with another element. Alternatively, a lithium composite oxide having a plateau at 4.2 V or more at the metal lithium counter electrode potential can be used. Examples of the lithium composite oxide include spinel type lithium manganese composite oxide, olivine type lithium containing composite oxide, and reverse spinel type lithium containing composite oxide.
  • lithium composite oxide examples include lithium manganate having a layered structure such as LiMnO 2 and Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), lithium manganate having a spinel structure, or lithium manganate
  • a part of Mn is replaced with at least one element selected from the group consisting of Li, Mg, Al, Co, B, Ti and Zn
  • lithium cobaltate such as LiCoO 2 or part of Co of lithium cobaltate Is replaced with at least one element selected from the group consisting of Ni, Al, Mn, Mg, Zr, Ti, and Zn
  • lithium nickelate such as LiNiO 2 or a part of Ni in lithium nickelate is Co, Al Replaced with at least one element selected from the group consisting of Mn, Mg, Zr, Ti, Zn
  • LiN i 1/3 Co 1/3 Mn 1/3 O 2 or other specific transition metals such as lithium transition metal oxides, or some of the transition metals of the lithium transition metal oxides may be Co, Al, Mn And those substituted with at
  • lithium composite oxide a compound represented by the following formula is preferably exemplified.
  • x satisfies 0 ⁇ x ⁇ 2
  • a satisfies 0 ⁇ a ⁇ 1.2
  • M is at least one element selected from the group consisting of Ni, Co, Fe, Cr and Cu. .
  • an active material that operates at a potential of 4.5 V or higher with respect to lithium (hereinafter also referred to as a 5 V class active material) can be used from the viewpoint that a high voltage can be obtained.
  • a 5V class active material gas generation due to decomposition of the electrolytic solution or the like is likely to occur, but gas generation can be suppressed by using the electrolytic solution containing the compound of the present embodiment.
  • a lithium manganese composite oxide represented by the following formula (A) can be used as the 5V class active material.
  • M is Co, Ni, Fe, Cr.
  • Y is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K and Ca, and Z is F and Cl. At least one selected from the group consisting of:
  • a spinel compound represented by the following formula (B) is preferably used among such metal complex oxides from the viewpoint of obtaining a sufficient capacity and extending the life.
  • A is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti and Si. is there.).
  • an olivine-type positive electrode active material As an active material that operates at a potential of 4.5 V or higher with respect to lithium, an olivine-type positive electrode active material can be given.
  • the olivine-type 5V active material include LiCoPO 4 and LiNiPO 4 .
  • Si composite oxide As an active material that operates at a potential of 4.5 V or more with respect to lithium, Si composite oxide can be given.
  • Si complex oxide the compound shown by a following formula (C) is mentioned, for example.
  • M is at least one selected from the group consisting of Mn, Fe and Co).
  • the active material that operates at a potential of 4.5 V or more with respect to lithium may have a layered structure.
  • a 5V class active material containing a layered structure the compound shown by following formula (D) is mentioned, for example.
  • M1 is at least one selected from the group consisting of Ni, Co, and Fe.
  • M2 is at least one selected from the group consisting of Li, Mg, and Al. 0.1 ⁇ x ⁇ 0.5, 0.05 ⁇ y ⁇ 0.3).
  • lithium metal composite oxides represented by the following (E) to (G) can be used.
  • M is at least one selected from the group consisting of Co and Ni).
  • M is composed of Li, Co, and Ni. At least one selected from the group).
  • the positive electrode can be manufactured as follows, for example. First, a positive electrode slurry containing a positive electrode active material, a positive electrode binder, and a solvent (and a conductive auxiliary material if necessary) is prepared. This positive electrode slurry is applied onto a positive electrode current collector, dried, and pressurized as necessary to form a positive electrode active material layer on the positive electrode current collector, thereby producing a positive electrode.
  • the positive electrode binder is not particularly limited, and for example, the same as the negative electrode binder can be used. From the viewpoint of versatility and low cost, polyvinylidene fluoride is preferred.
  • the content of the positive electrode binder is preferably in the range of 1 to 25 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of the binding force and energy density which are in a trade-off relationship. The range is more preferably in the range of 2 to 10 parts by mass.
  • binders other than polyvinylidene fluoride include, for example, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, Examples include polypropylene, polyethylene, polyimide, or polyamideimide.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode current collector is not particularly limited, and examples thereof include aluminum, titanium, tantalum, nickel, silver, and alloys thereof.
  • Examples of the shape of the positive electrode current collector include a foil, a flat plate, and a mesh.
  • As the positive electrode current collector an aluminum foil can be suitably used.
  • a conductive auxiliary material may be added for the purpose of reducing the impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the separator is not particularly limited.
  • a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used.
  • the ceramic coat separator which formed the coating containing a ceramic in the polymer base material used as a separator can also be used.
  • stacked them can also be used as a separator.
  • Exterior Body is not particularly limited, and for example, a laminate film can be used.
  • a laminated film such as polypropylene or polyethylene coated with aluminum or silica can be used.
  • the distortion of the electrode laminate becomes very large when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It tends to lead to battery volume change and electrode stack deformation.
  • the secondary battery according to the present embodiment can overcome such problems by using the electrolytic solution of the present embodiment.
  • the structure of the secondary battery according to the present embodiment is not particularly limited by the present invention.
  • an electrode laminate in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are provided.
  • the structure included in the exterior body can be given.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a basic configuration of the secondary battery according to the present embodiment.
  • the positive electrode active material layer 1 is formed on the positive electrode current collector 3.
  • the negative electrode active material layer 2 is formed on the negative electrode current collector 4.
  • the positive electrode and the negative electrode are disposed to face each other with the separator 5 interposed therebetween.
  • the separator 5 is laminated and disposed substantially parallel to the positive electrode active material layer 1 and the negative electrode active material layer 2.
  • a pair of positive and negative electrodes and an electrolytic solution are enclosed in outer casings 6 and 7.
  • a positive electrode tab 9 connected to the positive electrode and a negative electrode tab 8 connected to the negative electrode are provided so as to be exposed from the exterior body.
  • the shape of the secondary battery according to the present embodiment is not particularly limited, and examples thereof include a laminate outer shape, a cylindrical shape, a square shape, a coin shape, and a button shape.
  • Example 1 ⁇ Negative electrode> Graphite was used as the negative electrode active material.
  • SBR the rubber particle dispersion (solid content 40 mass%) was used, and it measured and used so that the solid content of the binder might become the said mass ratio.
  • ⁇ Positive electrode> As the positive electrode active material, a mixture in which LiMn 2 O 4 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 were mixed at a mass ratio of 25:75 was used. This positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and further pressed to produce a positive electrode.
  • Electrode laminate The obtained positive electrode and negative electrode were laminated via a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained.
  • the above compound (201) as an acid anhydride is used as a supporting salt so that the content in the electrolytic solution is 0.5% by mass so that the content of 1 in the electrolytic solution is 1.7% by mass.
  • LiPF 6 was added to each of the mixed solvents so that the concentration in the electrolytic solution was 1 mol / L to prepare an electrolytic solution.
  • the electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Thereafter, the outer package was sealed while reducing the pressure to 0.1 atm, and a lithium ion secondary battery was produced.
  • volume increase amount was calculated as a relative value as follows. First, “volume increase rate (%)” was calculated by ⁇ (volume after charge / discharge) / (volume before start of charge / discharge) ⁇ 1 ⁇ ⁇ 100 (unit:%). And the relative value when the volume increase rate in the comparative example 1 was set to 1 was calculated, and it was set as the volume increase amount. (Capacity maintenance rate at 45 ° C) Next, the manufactured secondary battery was subjected to a charge and discharge test in a voltage range of 3.0 V to 4.15 V in a thermostat kept at 45 ° C., and the capacity retention rate (%) was evaluated. As a standard for the current value, Ic was the current that used up the initial discharge amount of the battery in one hour. Charging was performed at a current value Ic up to 4.15 V, followed by constant voltage charging for 2.5 hours in total. The discharge was a constant current discharge to 3.0 V at a current value Ic.
  • Capacity maintenance ratio (%) was calculated by (discharge capacity after 200 cycles) / (discharge capacity after 5 cycles) ⁇ 100 (unit:%).
  • Example 2 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the compound (301) was used instead of the compound (201) as the acid anhydride. The results are shown in Table 1.
  • Example 3 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the compound (202) was used instead of the compound (201) as the acid anhydride. The results are shown in Table 1.
  • Example 4 As a chain disulfone compound, Compound No. In place of Compound No. 1 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that 2. The results are shown in Table 1.
  • the secondary battery according to the embodiment of the present invention includes, for example, an electric vehicle, a plug-in hybrid vehicle, a driving device such as an electric motorcycle and an electric assist bicycle, tools such as an electric tool, an electronic device such as a portable terminal and a laptop computer,
  • the present invention can be applied to storage batteries for household power storage systems and solar power generation systems.

Abstract

The purpose of the present invention is to provide an electrolyte solution which is capable of suppressing gas generation. One embodiment of the present invention is an electrolyte solution which contains a supporting salt, a nonaqueous solvent that dissolves the supporting salt, a chain disulfone compound represented by formula (1), and an acid anhydride. This embodiment of the present invention is able to provide an electrolyte solution which has excellent capacitance retention rate and is capable of suppressing gas generation.

Description

電解液及び二次電池Electrolyte and secondary battery
 本発明は、電解液及び該電解液を含む二次電池に関する。 The present invention relates to an electrolytic solution and a secondary battery including the electrolytic solution.
 モバイル型タブレット端末、スマートフォン、電気自動車、定置用蓄電システムなどの急速な市場拡大に伴い、性能に優れた二次電池が求められている。 Along with the rapid market expansion of mobile tablet terminals, smartphones, electric cars, stationary storage systems, etc., secondary batteries with excellent performance are required.
 二次電池の性能を向上させる方法の一つとして、電極表面に保護膜を形成することにより電解液の分解反応を抑制する方法が挙げられる。例えば、電解液に添加剤を含ませることにより、電極表面に皮膜を形成させる方法が提案されている。 One method for improving the performance of the secondary battery is to suppress the decomposition reaction of the electrolyte by forming a protective film on the electrode surface. For example, a method of forming a film on the electrode surface by adding an additive to the electrolytic solution has been proposed.
 特許文献1には、鎖状ジスルホン酸エステル化合物と、環状モノスルホン酸エステル化合物若しくは鎖状ジスルホン酸エステル化合物と、を含む電解液を有するリチウムイオン二次電池が開示されている。 Patent Document 1 discloses a lithium ion secondary battery having an electrolytic solution containing a chain disulfonic acid ester compound and a cyclic monosulfonic acid ester compound or a chain disulfonic acid ester compound.
 特許文献2には、不飽和結合を有する環状炭酸エステル化合物及び酸無水物から選ばれる少なくとも一種の化合物と、含硫黄有機化合物と、炭素数9以下のフッ素含有芳香族化合物、脂肪族炭化水素化合物及びフッ素含有脂肪族炭化水素化合物から選ばれる少なくとも一種の化合物を含有する電解液を有する二次電池が記載されている。 Patent Document 2 discloses at least one compound selected from a cyclic carbonate compound having an unsaturated bond and an acid anhydride, a sulfur-containing organic compound, a fluorine-containing aromatic compound having 9 or less carbon atoms, and an aliphatic hydrocarbon compound. And a secondary battery having an electrolytic solution containing at least one compound selected from fluorine-containing aliphatic hydrocarbon compounds.
 特許文献3には、非プロトン性溶媒と、鎖状ジスルホン酸エステル化合物とを含む電解液を有し、負極活物質としてアルカリ金属又はアルカリ土類金属を吸蔵・放出する酸化物を含む負極を有する二次電池が記載されている。 Patent Document 3 has an electrolyte containing an aprotic solvent and a chain disulfonic acid ester compound, and has a negative electrode containing an oxide that absorbs and releases alkali metal or alkaline earth metal as a negative electrode active material. A secondary battery is described.
 特許文献4には、非プロトン性溶媒と、鎖状ジスルホン酸エステル化合物とを含む電解液を有し、4.3V以上に充放電領域を有するリチウム含有複合酸化物を含む正極を有する二次電池が記載されている。 Patent Document 4 discloses a secondary battery having a positive electrode including a lithium-containing composite oxide having an electrolytic solution containing an aprotic solvent and a chain disulfonic acid ester compound and having a charge / discharge region at 4.3 V or higher. Is described.
 特許文献5には、モノフルオロリン酸塩及び/又はジフルオロリン酸塩を含有し、更に、所定式で表される化合物、ニトリル化合物、イソシアネート化合物、ホスファゼン化合物、ジスルホン酸エステル化合物、スルフィド化合物、ジスルフィド化合物、酸無水物、α位に置換基を有するラクトン化合物及び炭素-炭素三重結合を有する化合物からなる群より選ばれる少なくとも1種の化合物を含有する非水電解液が記載されている。 Patent Document 5 contains a monofluorophosphate and / or a difluorophosphate, and further includes a compound represented by a predetermined formula, a nitrile compound, an isocyanate compound, a phosphazene compound, a disulfonic acid ester compound, a sulfide compound, and a disulfide. A nonaqueous electrolytic solution containing at least one compound selected from the group consisting of a compound, an acid anhydride, a lactone compound having a substituent at the α-position, and a compound having a carbon-carbon triple bond is described.
 特許文献6又は7には、所定式で表されるスルホン酸エステル化合物を含む電解液が記載されている。 Patent Document 6 or 7 describes an electrolytic solution containing a sulfonic acid ester compound represented by a predetermined formula.
 特許文献8には、鎖状ジスルホン酸エステル化合物を含む電解液を有する二次電池が記載されている。 Patent Document 8 describes a secondary battery having an electrolytic solution containing a chain disulfonic acid ester compound.
 特許文献9には、式(II)で表される鎖状ジスルホン酸エステル化合物を含む電解液を有する二次電池が記載されている。 Patent Document 9 describes a secondary battery having an electrolytic solution containing a chain disulfonic acid ester compound represented by the formula (II).
 特許文献10にはスルホニル基を2個有する環式スルホン酸エステル化合物が開示されている。 Patent Document 10 discloses a cyclic sulfonic acid ester compound having two sulfonyl groups.
 非特許文献1~3には鎖状ジスルホン酸エステル化合物の製造方法が開示されている。 Non-Patent Documents 1 to 3 disclose a method for producing a chain disulfonic acid ester compound.
特開2006-324194号公報JP 2006-324194 A 特開2003-331915号公報JP 2003-331915 A 特開2005-203341号公報Japanese Patent Laid-Open No. 2005-203341 特開2005-203342号公報JP 2005-203342 A 特開2008-277004号公報JP 2008-277004 A 特開2007-73318号公報JP 2007-73318 A 特開2013-109930号公報JP 2013-109930 A 特開2006-244776号公報JP 2006-244776 特開2011-187235号公報JP 2011-187235 A 特公平5-44946号公報Japanese Patent Publication No. 5-44946
 しかしながら、二次電池のさらなる高性能化が要求されており、種々の電池特性の改善が求められている。 However, there is a demand for higher performance of secondary batteries, and various battery characteristics are required to be improved.
 本発明の目的は、容量維持率に優れ、ガス発生を抑制可能な電解液を提供することである。 An object of the present invention is to provide an electrolytic solution that has an excellent capacity retention rate and can suppress gas generation.
 本実施形態の一つは、
 支持塩と、該支持塩を溶解する非水溶媒と、下記式(1)で表される鎖状ジスルホン化合物と、酸無水物と、を含む電解液である。
One of the embodiments is
An electrolytic solution containing a supporting salt, a nonaqueous solvent that dissolves the supporting salt, a chain disulfone compound represented by the following formula (1), and an acid anhydride.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (式(1)において、nは、1,2又は3の整数である。R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、-SO(Xは、置換若しくは無置換の炭素数1~5のアルキル基を示す)、-SY(Yは、置換若しくは無置換の炭素数1~5のアルキル基を示す)、-COZ(Zは、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)、又はハロゲン原子を示す。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、置換若しくは無置換のフェノキシ基、ヒドロキシ基、ハロゲン原子、-NX(X及びXは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)、又は-NYCONY(Y~Yは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)を示す。)。 (In the formula (1), n is an integer of 1, 2 or 3. R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or An unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 1 (X 1 Is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is A hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or a halogen atom, R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms. Group, substituted or unsubstituted carbon number An alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a hydroxy group, a halogen atom, —NX 2 X 3 (X 2 and X 3 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or —NY 2 CONY 3 Y 4 (Y 2 to Y 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms).
 本実施形態の一つは、上記電解液を有する二次電池である。 One of the embodiments is a secondary battery having the above electrolytic solution.
 本実施形態によれば、容量維持率に優れ、ガス発生を抑制可能な電解液を提供することができる。 According to this embodiment, it is possible to provide an electrolytic solution that has an excellent capacity retention rate and can suppress gas generation.
本実施形態の二次電池の構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the secondary battery of this embodiment.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 [1]電解液
 本実施形態の電解液は、支持塩と、該支持塩を溶解する非水溶媒と、式(1)で表される鎖状ジスルホン化合物と、酸無水物と、を含む。
[1] Electrolytic Solution The electrolytic solution of the present embodiment includes a supporting salt, a nonaqueous solvent that dissolves the supporting salt, a chain disulfone compound represented by the formula (1), and an acid anhydride.
 鎖状ジスルホン化合物を電解液に添加した場合、二次電池の容量維持率を向上させることができるが、充放電に伴うガス発生が増加し、電池の体積増加が大きくなってしまうことがわかった。本実施形態では、鎖状ジスルホン化合物を含む電解液に酸無水物を加えることにより、鎖状ジスルホン化合物を含む場合でも、容量維持率の向上効果を保持しつつ、ガス発生を抑制することができることがわかった。 When the chain disulfone compound is added to the electrolytic solution, the capacity retention rate of the secondary battery can be improved, but it has been found that gas generation accompanying charging / discharging increases and the volume increase of the battery increases. . In this embodiment, by adding an acid anhydride to an electrolytic solution containing a chain disulfone compound, even when the chain disulfone compound is included, gas generation can be suppressed while maintaining the effect of improving the capacity retention rate. I understood.
 鎖状ジスルホン化合物を含む電解液に酸無水物を加えることでガス発生を抑制する相乗効果のメカニズムとしては、以下の理由が考えられる。上述のように、式(1)で表される鎖状ジスルホン化合物は、充放電反応時の電気化学的酸化還元反応により分解して負極表面に皮膜を形成し、電解液や支持塩の分解を抑制することができるが、鎖状ジスルホン化合物単独では、充放電に伴うガス発生が増加してしまう。そこで、鎖状ジスルホン化合物に加えて、酸無水物を電解液にさらに添加すると、初回充電時に酸無水物が鎖状ジスルホン酸より先に分解されるようになり、鎖状ジスルホン化合物の過度な分解が抑制される。また、皮膜の形成にも鎖状ジスルホン酸に加えて酸無水物が寄与し、良好な皮膜が形成される。その結果、本実施形態の電解液は、容量維持率の向上効果を保持しつつ、ガス発生を抑制することができるものと考えられる。なお、以上の理論は推測であり、本発明を制限するものではない。 The following reason can be considered as a mechanism of the synergistic effect which suppresses gas generation by adding an acid anhydride to the electrolyte solution containing a chain | strand-shaped disulfone compound. As described above, the chain disulfone compound represented by the formula (1) is decomposed by an electrochemical oxidation-reduction reaction during the charge / discharge reaction to form a film on the surface of the negative electrode, and decomposes the electrolytic solution and the supporting salt. Although the chain disulfone compound alone can be suppressed, gas generation accompanying charge / discharge increases. Therefore, if an acid anhydride is further added to the electrolyte solution in addition to the chain disulfone compound, the acid anhydride will be decomposed before the chain disulfonic acid at the first charge, and excessive decomposition of the chain disulfone compound will occur. Is suppressed. Moreover, in addition to chain | strand-shaped disulfonic acid, an acid anhydride contributes also in formation of a film | membrane, and a favorable film | membrane is formed. As a result, it is considered that the electrolytic solution of the present embodiment can suppress gas generation while maintaining the effect of improving the capacity retention rate. In addition, the above theory is estimation and does not restrict | limit this invention.
 以下、本発明の構成要素について説明する。 Hereinafter, the components of the present invention will be described.
 <鎖状ジスルホン化合物>
 本実施形態における鎖状ジスルホン化合物は、下記式(1)で表される。
<Linear disulfone compound>
The chain disulfone compound in the present embodiment is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 (式(1)において、nは、1,2又は3の整数である。R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、-SO(Xは、置換若しくは無置換の炭素数1~5のアルキル基を示す)、-SY(Yは、置換若しくは無置換の炭素数1~5のアルキル基を示す)、-COZ(Zは、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)、又はハロゲン原子を示す。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、置換若しくは無置換のフェノキシ基、ヒドロキシ基、ハロゲン原子、-NX(X及びXは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)、又は-NYCONY(Y~Yは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)を示す。)。 (In the formula (1), n is an integer of 1, 2 or 3. R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or An unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 1 (X 1 Is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is A hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or a halogen atom, R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms. Group, substituted or unsubstituted carbon number An alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a hydroxy group, a halogen atom, —NX 2 X 3 (X 2 and X 3 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or —NY 2 CONY 3 Y 4 (Y 2 to Y 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms).
 本明細書において、「フルオロアルキル基」及び「フルオロアルコキシ基」は、それぞれ対応するアルキル基又はアルコキシ基の炭素原子に結合した水素原子の少なくとも1つがフッ素原子により置換された基を表す。 In the present specification, “fluoroalkyl group” and “fluoroalkoxy group” each represent a group in which at least one hydrogen atom bonded to a carbon atom of a corresponding alkyl group or alkoxy group is substituted with a fluorine atom.
 「フルオロアルキル基」及び「フルオロアルコキシ基」は、それぞれ、「パーフルオロアルキル基」及び「パーフルオロアルコキシ基」を含む概念である。なお、「パーフルオロアルキル基」及び「パーフルオロアルコキシ基」は、それぞれ対応するアルキル基及びアルコキシ基の炭素原子に結合した水素原子の全てがフッ素原子により置換された基を表す。 “Fluoroalkyl group” and “fluoroalkoxy group” are concepts including “perfluoroalkyl group” and “perfluoroalkoxy group”, respectively. The “perfluoroalkyl group” and “perfluoroalkoxy group” represent groups in which all of the hydrogen atoms bonded to the carbon atoms of the corresponding alkyl group and alkoxy group are substituted with fluorine atoms, respectively.
 式(1)において、nは、1又は2であることが好ましく、1であることがより好ましい。 In the formula (1), n is preferably 1 or 2, and more preferably 1.
 式(1)において、R及びRは、結合する炭素原子ごとに独立している。
 R及びRの置換基としては、例えば、塩素原子、フッ素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、アミノ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフルオロアルキル基、又は炭素数1~4のフルオロアルコキシ基が挙げられる。R及びRは、それぞれ独立して、1つの置換基を有していてもよく、複数の置換基を有していてもよい。
In formula (1), R 1 and R 2 are independent for each carbon atom to which they are bonded.
Examples of the substituent for R 1 and R 2 include halogen atoms such as a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, a hydroxy group, an amino group, an alkyl group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Examples thereof include an alkoxy group, a fluoroalkyl group having 1 to 4 carbon atoms, and a fluoroalkoxy group having 1 to 4 carbon atoms. R 1 and R 2 may each independently have one substituent and may have a plurality of substituents.
 R及びRの置換基としては、例えば、塩素原子、フッ素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、アミノ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフルオロアルキル基、炭素数1~4のフルオロアルコキシ基、又は、炭素数1~4のアルキル基若しくは炭素数1~4のアルコキシ基に-SO-を含む基(例えば、-OSOCHSOCl)を導入した基が挙げられる。R及びRは、それぞれ独立して、1つの置換基を有していてもよく、複数の置換基を有していてもよい。 Examples of the substituent for R 3 and R 4 include a halogen atom such as a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, a hydroxy group, an amino group, an alkyl group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. An alkoxy group, a fluoroalkyl group having 1 to 4 carbon atoms, a fluoroalkoxy group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms or a group containing —SO 2 — in an alkoxy group having 1 to 4 carbon atoms (For example, —OSO 2 CH 2 SO 2 Cl) is introduced. R 3 and R 4 may each independently have one substituent and may have a plurality of substituents.
 置換基中に炭素原子が含まれる場合、この炭素原子は「置換もしくは無置換の炭素数1~5のアルキル基」等の記載における「炭素数」の数には含まれない。 When a carbon atom is contained in the substituent, this carbon atom is not included in the number of “carbon number” in the description such as “substituted or unsubstituted alkyl group having 1 to 5 carbon atoms”.
 R及びRにおいて、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基は、直鎖状であってもよく、分岐鎖状であってもよい。また、R及びRにおいて、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基は、直鎖状であってもよく、分岐鎖状であってもよい。 In R 1 and R 2 , the alkyl group, alkoxy group, fluoroalkyl group, and fluoroalkoxy group may be linear or branched. In R 3 and R 4 , the alkyl group, alkoxy group, fluoroalkyl group, and fluoroalkoxy group may be linear or branched.
 また、「フルオロアルキル基」又は「フルオロアルコキシ基」における置換基は、フッ素原子以外の置換基である。 Further, the substituent in the “fluoroalkyl group” or “fluoroalkoxy group” is a substituent other than a fluorine atom.
 鎖状ジスルホン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the chain disulfone compound, one kind may be used alone, or two or more kinds may be used in combination.
 式(1)で表される鎖状ジスルホン化合物は、nが1であることが好ましく、下記式(2)で表される化合物であることが好ましい。 In the chain disulfone compound represented by the formula (1), n is preferably 1, and is preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 式(2)において、R~Rは上述の式(1)について説明したR~Rと同じである。 In the formula (2), R 1 ~ R 4 are the same as R 1 ~ R 4 described for the above equation (1).
 式(1)又は(2)で表される鎖状ジスルホン化合物は、非環式化合物であり、合成時に環化反応を伴わないで製造可能であり、例えば非特許文献1~3を参考にして合成することができる。また、特許文献10に示される環式ジスルホン酸エステルの合成の副生成物として得ることもできる。このように、式(1)で表される鎖状ジスルホン化合物は合成の工程が容易であるため、安価な電解液を提供できる可能性がある。 The chain disulfone compound represented by the formula (1) or (2) is an acyclic compound and can be produced without a cyclization reaction at the time of synthesis. For example, referring to Non-Patent Documents 1 to 3 Can be synthesized. It can also be obtained as a by-product of the synthesis of the cyclic disulfonic acid ester disclosed in Patent Document 10. As described above, since the chain disulfone compound represented by the formula (1) is easy to synthesize, there is a possibility that an inexpensive electrolytic solution can be provided.
 式(1)又は(2)のR及びRは、電極上でおこる皮膜の形成の容易性、化合物の安定性、取り扱いの容易性、溶媒への溶解性、化合物の合成の容易性、価格などの観点から、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、ハロゲン原子、又は-SO(Xは置換もしくは無置換の炭素数1~5のアルキル基を示す)であることが好ましい。また、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、又は置換若しくは無置換の炭素数1~5のフルオロアルキル基であることがより好ましい。また、R及びRは、それぞれ独立に、水素原子又はメチル基であることがさらに好ましい。また、R及びRは、それぞれ水素原子であることが特に好ましい。特にnが1の場合、R及びRが水素原子であると、二つのスルホニル基で挟まれたメチレン部位が活性化し、負極上での還元分解及び皮膜形成が起こりやすくなると考えられる。 R 1 and R 2 in formula (1) or (2) are the ease of film formation on the electrode, the stability of the compound, the ease of handling, the solubility in a solvent, the ease of synthesis of the compound, From the viewpoint of price and the like, each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a halogen atom, or —SO 2 X 1 (X 1 represents a substituted or unsubstituted carbon number of 1 to 5 It is preferable that it represents an alkyl group. R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms. preferable. R 1 and R 2 are more preferably each independently a hydrogen atom or a methyl group. R 1 and R 2 are each particularly preferably a hydrogen atom. In particular, when n is 1, if R 1 and R 2 are hydrogen atoms, a methylene moiety sandwiched between two sulfonyl groups is activated, and reductive decomposition and film formation on the negative electrode are likely to occur.
 式(1)又は(2)のR及びRは、化合物の安定性、化合物の合成の容易性、溶媒への溶解性、価格などの観点から、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換のフェノキシ基、ヒドロキシ基、ハロゲン原子、又は-NX(X及びXは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)であることが好ましい。また、R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、又は置換若しくは無置換のフェノキシ基であることがより好ましい。また、R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、又は置換若しくは無置換の炭素数1~5のアルコキシ基であることがさらに好ましい。また、R及びRのどちらか一方又は両方が置換若しくは無置換の炭素数1~5のアルコキシ基であることが特に好ましい。また、同様の理由から、上記置換若しくは無置換の炭素数1~5のアルキル基としてはメチル基又はエチル基が好ましく、上記置換若しくは無置換の炭素数1~5のアルコキシ基としてはメトキシ基又はエトキシ基が好ましい。 R 3 and R 4 in formula (1) or (2) are each independently substituted or unsubstituted carbon from the viewpoints of stability of the compound, ease of synthesis of the compound, solubility in a solvent, price, and the like. An alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a hydroxy group, a halogen atom, or —NX 2 X 3 (X 2 and X 3 are Each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms). R 3 and R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted carbon group having 1 to 5 carbon atoms. More preferably, it is a 5 fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenoxy group. R 3 and R 4 are more preferably each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms or a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms. Further, it is particularly preferable that one or both of R 3 and R 4 is a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms. For the same reason, the substituted or unsubstituted alkyl group having 1 to 5 carbon atoms is preferably a methyl group or an ethyl group, and the substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms is preferably a methoxy group or An ethoxy group is preferred.
 式(1)で表される化合物、特に式(2)で表される化合物は、スルホニル基を二つ有しているためLUMOが小さく、電解液に一般的に用いられる溶媒分子やモノスルホン酸エステルよりも小さい値のLUMOを持つ。そのため、該化合物は還元され易い。例えば、以下に示す化合物No.1のLUMOは、半経験的分子軌道計算によると、-0.86eVであり、小さい値である。そのため、環状カーボネート類や鎖状カーボネート類からなる溶媒(LUMO:約1.2eV)より先に化合物No.1の還元皮膜が負極に形成される。そして、負極に形成された皮膜は、溶媒分子の分解を抑制する役割を担うと考えられる。該皮膜は、溶媒分子の分解を抑制するため、高抵抗性の溶媒分子の分解皮膜が負極上に形成されにくくなる。そのため、電池特性の向上が期待できる。また、式(2)で表される化合物は、炭素原子に電子吸引性のスルホニル基がメチレン基を介して結合した形になっており、メチレン基の炭素原子の活性化によって負極上での還元分解及び皮膜形成が起こりやすくなると考えられる。 The compound represented by the formula (1), particularly the compound represented by the formula (2) has a small LUMO because it has two sulfonyl groups, and solvent molecules and monosulfonic acids generally used in electrolytes. It has a smaller LUMO value than the ester. Therefore, the compound is easily reduced. For example, the following compound No. The LUMO of 1 is −0.86 eV, which is a small value, according to semiempirical molecular orbital calculation. For this reason, the compound No. 1 is preceded by a solvent (LUMO: about 1.2 eV) composed of cyclic carbonates and chain carbonates. 1 reduction film is formed on the negative electrode. And it is thought that the film | membrane formed in the negative electrode plays the role which suppresses decomposition | disassembly of a solvent molecule. Since the film suppresses the decomposition of the solvent molecules, a highly resistant solvent molecule decomposition film is hardly formed on the negative electrode. Therefore, improvement in battery characteristics can be expected. In addition, the compound represented by the formula (2) has a form in which an electron-withdrawing sulfonyl group is bonded to a carbon atom via a methylene group, and reduction on the negative electrode by activation of the carbon atom of the methylene group. It is considered that decomposition and film formation are likely to occur.
 以下に式(1)で表される鎖状ジスルホン化合物の具体例を示すが、本発明はこれらに特に限定されるものではない。 Specific examples of the chain disulfone compound represented by the formula (1) are shown below, but the present invention is not particularly limited thereto.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 鎖状ジスルホン化合物は、一種を単独で使用しても二種以上を併用してもよい。
 式(1)で表される鎖状ジスルホン化合物の電解液中の含有量は、特に制限されるものではないが、0.005~10質量%であることが好ましい。鎖状ジスルホン化合物の含有量が0.005質量%以上の場合、皮膜形成効果を十分に得ることができる。また、鎖状ジスルホン化合物の含有量が10質量%以下の場合、電解液の粘性の増加及びそれに伴う抵抗の増加を抑制することができる。鎖状ジスルホン化合物の電解液中の含有量は、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましく、0.5質量%以上であることが特に好ましい。また、鎖状ジスルホン化合物の電解液中の含有量は、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。
A chain disulfone compound may be used individually by 1 type, or may use 2 or more types together.
The content of the chain disulfone compound represented by the formula (1) in the electrolytic solution is not particularly limited, but is preferably 0.005 to 10% by mass. When the content of the chain disulfone compound is 0.005% by mass or more, a film forming effect can be sufficiently obtained. Moreover, when content of a chain | strand-shaped disulfone compound is 10 mass% or less, the increase in the viscosity of electrolyte solution and the increase in resistance accompanying it can be suppressed. The content of the chain disulfone compound in the electrolytic solution is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more. preferable. The content of the chain disulfone compound in the electrolytic solution is more preferably 8% by mass or less, further preferably 5% by mass or less, and particularly preferably 3% by mass or less.
 <酸無水物>
 本実施形態における酸無水物は、酸無水物構造を1分子中に少なくとも1つ有する化合物であり、酸無水物の種類は限定されるものではない。また、酸無水物は酸無水物構造を1分子中に複数個有する化合物であってもよい。本実施形態における酸無水物としては、カルボン酸の無水物、スルホン酸の無水物、カルボン酸とスルホン酸との無水物が挙げられる。
<Acid anhydride>
The acid anhydride in this embodiment is a compound having at least one acid anhydride structure in one molecule, and the type of acid anhydride is not limited. The acid anhydride may be a compound having a plurality of acid anhydride structures in one molecule. Examples of the acid anhydride in the present embodiment include an anhydride of carboxylic acid, an anhydride of sulfonic acid, and an anhydride of carboxylic acid and sulfonic acid.
 カルボン酸無水物の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水クロトン酸、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、フェニルコハク酸無水物、2-フェニルグルタル酸無水物、無水フタル酸、無水ピロメリット酸、フルオロコハク酸無水物、テトラフルオロコハク酸無水物等が挙げられる。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。 Specific examples of carboxylic acid anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, crotonic anhydride, trifluoroacetic anhydride, pentafluoropropionic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride , Glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, 3,4,5,6- Tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phenylsuccinic anhydride, 2-phenylglutaric anhydride, phthalic anhydride, pyromellitic anhydride, fluorosuccinic anhydride, tetrafluoro And succinic anhydride. These may be used alone or in combination of two or more.
 スルホン酸無水物の具体例としては、メタンスルホン酸無水物、エタンスルホン酸無水物、プロパンスルホン酸無水物、ブタンスルホン酸無水物、ペンタンスルホン酸無水物、ヘキサンスルホン酸無水物、ビニルスルホン酸無水物、ベンゼンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、2,2,2-トリフルオロエタンスルホン酸無水物、
ペンタフルオロエタンスルホン酸無水物、1,2-エタンジスルホン酸無水物、1,3-プロパンジスルホン酸無水物、1,4-ブタンジスルホン酸無水物、1,2-ベンゼンジスルホン酸無水物、テトラフルオロ-1,2-エタンジスルホン酸無水物、ヘキサフルオロ-1,3-プロパンジスルホン酸無水物、オクタフルオロ-1,4-ブタンジスルホン酸無水物、3-フルオロ-1,2-ベンゼンジスルホン酸無水物、4-フルオロ-1,2-ベンゼンジスルホン酸無水物3,4,5,6-テトラフルオロ-1,2-ベンゼンジスルホン酸無水物等が挙げられる。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。
Specific examples of the sulfonic acid anhydride include methanesulfonic acid anhydride, ethanesulfonic acid anhydride, propanesulfonic acid anhydride, butanesulfonic acid anhydride, pentanesulfonic acid anhydride, hexanesulfonic acid anhydride, vinylsulfonic acid anhydride. Benzenesulfonic acid anhydride, trifluoromethanesulfonic acid anhydride, 2,2,2-trifluoroethanesulfonic acid anhydride,
Pentafluoroethanesulfonic anhydride, 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride, 1,4-butanedisulfonic anhydride, 1,2-benzenedisulfonic anhydride, tetrafluoro -1,2-ethanedisulfonic anhydride, hexafluoro-1,3-propanedisulfonic anhydride, octafluoro-1,4-butanedisulfonic anhydride, 3-fluoro-1,2-benzenedisulfonic anhydride 4-fluoro-1,2- benzenedisulfonic anhydride 3,4,5,6-tetrafluoro-1,2-benzenedisulfonic anhydride and the like. These may be used alone or in combination of two or more.
 カルボン酸とスルホン酸の無水物の具体例としては、酢酸メタンスルホン酸無水物、酢酸エタンスルホン酸無水物、酢酸プロパンスルホン酸無水物、プロピオン酸メタンスルホン酸無水物、プロピオン酸エタンスルホン酸無水物、プロピオン酸プロパンスルホン酸無水物、トリフルオロ酢酸メタンスルホン酸無水物、トリフルオロ酢酸エタンスルホン酸無水物、トリフルオロ酢酸プロパンスルホン酸無水物、酢酸トリフルオロメタンスルホン酸無水物、酢酸2,2,2-トリフルオロエタンスルホン酸無水物、酢酸ペンタフルオロエタンスルホン酸無水物、トリフルオロ酢酸トリフルオロメタンスルホン酸無水物、トリフルオロ酢酸2,2,2-トリフルオロエタンスルホン酸無水物、トリフルオロ酢酸ペンタフルオロエタンスルホン酸無水物、3-スルホプロピオン酸無水物、2-メチル-3-スルホプロピオン酸無水物、2,2-ジメチル-3-スルホプロピオン酸無水物、2-エチル-3-スルホプロピオン酸無水物、2,2-ジエチル-3-スルホプロピオン酸無水物、2-フルオロ-3-スルホプロピオン酸無水物、2,2-ジフルオロ-3-スルホプロピオン酸無水物、2,2,3,3-テトラフルオロ-3-スルホプロピオン酸無水物、2-スルホ安息香酸無水物、3-フルオロ-2-スルホ安息香酸無水物、4-フルオロ-2-スルホ安息香酸無水物、5-フルオロ-2-スルホ安息香酸無水物、6-フルオロ-2-スルホ安息香酸無水物、3,6-ジフルオロ-2-スルホ安息香酸無水物、3,4,5、6-テトラフルオロ-2-スルホ安息香酸無水物、3-トリフルオロメチル-2-スルホ安息香酸無水物、4-トリフルオロメチル-2-スルホ安息香酸無水物、5-トリフルオロメチル-2-スルホ安息香酸無水物、6-トリフルオロメチル-2-スルホ安息香酸無水物等が挙げられる。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。 Specific examples of carboxylic acid and sulfonic acid anhydrides include acetic acid methanesulfonic acid anhydride, ethane sulfonic acid anhydride, acetic acid propane sulfonic acid anhydride, propionic acid methanesulfonic acid anhydride, propionic acid ethanesulfonic acid anhydride , Propionic acid propanesulfonic acid anhydride, trifluoroacetic acid methanesulfonic acid anhydride, trifluoroacetic acid ethanesulfonic acid anhydride, trifluoroacetic acid propanesulfonic acid anhydride, acetic acid trifluoromethanesulfonic acid anhydride, acetic acid 2,2,2 -Trifluoroethanesulfonic anhydride, pentafluoroethanesulfonic acid anhydride, trifluoromethanesulfonic anhydride, trifluoroacetic acid 2,2,2-trifluoroethanesulfonic anhydride, pentafluorotrifluoroacetate No ethanesulfonic acid 3-sulfopropionic anhydride, 2-methyl-3-sulfopropionic anhydride, 2,2-dimethyl-3-sulfopropionic anhydride, 2-ethyl-3-sulfopropionic anhydride, 2, 2-diethyl-3-sulfopropionic anhydride, 2-fluoro-3-sulfopropionic anhydride, 2,2-difluoro-3-sulfopropionic anhydride, 2,2,3,3-tetrafluoro-3 -Sulfopropionic anhydride, 2-sulfobenzoic anhydride, 3-fluoro-2-sulfobenzoic anhydride, 4-fluoro-2-sulfobenzoic anhydride, 5-fluoro-2-sulfobenzoic anhydride 6-fluoro-2-sulfobenzoic anhydride, 3,6-difluoro-2-sulfobenzoic anhydride, 3,4,5,6-tetrafluoro-2-sulfobenzoic anhydride, 3- Trifluoromethyl-2-sulfobenzoic anhydride, 4-trifluoromethyl-2-sulfobenzoic anhydride, 5-trifluoromethyl-2-sulfobenzoic anhydride, 6-trifluoromethyl-2-sulfobenzoic acid An acid anhydride etc. are mentioned. These may be used alone or in combination of two or more.
 酸無水物は、カルボン酸無水物であることが好ましい。また、カルボン酸無水物は、下記式(I)又は(II)で表される環状カルボン酸無水物又は下記式(III)で表される鎖状カルボン酸無水物であることが好ましく、下記式(I)又は(II)で表される環状カルボン酸無水物であることがより好ましく、下記式(II)で表される環状カルボン酸無水物であることがさらに好ましい。 The acid anhydride is preferably a carboxylic acid anhydride. The carboxylic acid anhydride is preferably a cyclic carboxylic acid anhydride represented by the following formula (I) or (II) or a chain carboxylic acid anhydride represented by the following formula (III). The cyclic carboxylic acid anhydride represented by (I) or (II) is more preferred, and the cyclic carboxylic acid anhydride represented by the following formula (II) is more preferred.
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
 (式(I)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基、置換若しくは無置換の炭素数5~12のシクロアルカンジイル基、置換若しくは無置換のベンゼンジイル基、又はエーテル結合を介してアルキレン基が結合した炭素数2~6の2価の基を示す。)。 (In formula (I), R 11 represents a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms, a substituted or unsubstituted carbon group having 5 to 12 carbon atoms, and A cycloalkanediyl group, a substituted or unsubstituted benzenediyl group, or a divalent group having 2 to 6 carbon atoms to which an alkylene group is bonded via an ether bond).
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
 (式(II)において、R103は、単結合、二重結合、置換若しくは無置換の炭素数1~3のアルキレン基、置換若しくは無置換の炭素数2~3のアルケニレン基、酸素原子、又はエーテル結合を介してアルキレン基が結合した炭素数2~4の2価の基を示す。)。 (In the formula (II), R 103 represents a single bond, a double bond, a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 3 carbon atoms, an oxygen atom, or A divalent group having 2 to 4 carbon atoms to which an alkylene group is bonded via an ether bond).
 式(I)又は(II)において、R11及びR103のアルキレン基及びアルケニレン基は、直鎖状であっても分岐鎖状であってもよい。
 式(I)において、R11のアルキレン基の炭素数は、1,2,3又は4であることが好ましい。R11のアルケニレン基の炭素数は、2,3又は4であることが好ましい。
 式(I)において、R11のシクロアルカンジイル基の炭素数は、5,6,7,8,9又は10であることが好ましい。
 式(I)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基であることが好ましい。
In the formula (I) or (II), the alkylene group and alkenylene group of R 11 and R 103 may be linear or branched.
In the formula (I), the number of carbon atoms of the alkylene group represented by R 11 is preferably 1, 2, 3 or 4. The carbon number of the alkenylene group of R 11 is preferably 2, 3 or 4.
In the formula (I), the number of carbon atoms of the cycloalkanediyl group represented by R 11 is preferably 5, 6, 7, 8, 9, or 10.
In the formula (I), R 11 is preferably a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms.
 式(I)又は(II)において、R11又はR103の置換基は、例えば、炭素数1~5のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、炭素数2~6のアルケニル基(例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基)、炭素数1~5のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基)、アミノ基(ジメチルアミノ基、メチルアミノ基を含む)、カルボキシ基、ヒドロキシ基、ビニル基、シアノ基、又はハロゲン原子(例えば、塩素原子、臭素原子)である。R11又はR103は、1つの置換基を有していてもよく、複数の置換基を有していてもよい。 In the formula (I) or (II), the substituent of R 11 or R 103 is, for example, an alkyl group having 1 to 5 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group), carbon C2-C6 alkenyl group (for example, vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group), C1-C5 alkoxy group (for example, methoxy group, ethoxy group, n-propoxy group) , Iso-propoxy group, n-butoxy group, tert-butoxy group), amino group (including dimethylamino group and methylamino group), carboxy group, hydroxy group, vinyl group, cyano group, or halogen atom (for example, chlorine Atom, bromine atom). R 11 or R 103 may have one substituent or a plurality of substituents.
 なお、R103が単結合又は二重結合の場合は、R103に隣接する炭素原子間で単結合又は二重結合が形成されていることを表す。 Note that when R 103 is a single bond or a double bond, a single bond or a double bond is formed between carbon atoms adjacent to R 103 .
 式(II)において、R103は、単結合、二重結合、置換若しくは無置換の炭素数1~5のアルキレン基、又は置換若しくは無置換の炭素数2~5のアルケニレン基であることが好ましい。 In formula (II), R 103 is preferably a single bond, a double bond, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms. .
 式(I)で表される環状カルボン酸無水物の例としては、具体的には、以下の化合物が挙げられる。 Specific examples of the cyclic carboxylic acid anhydride represented by the formula (I) include the following compounds.
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
 (式(III)において、R101及びR102は、それぞれ独立に、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数6~12のアリール基、置換若しくは無置換の炭素数4~12の複素環基、又は置換若しくは無置換の炭素数2~6のアルケニル基を示す。)。 (In Formula (III), R 101 and R 102 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a substituted or unsubstituted group, A heterocyclic group having 4 to 12 carbon atoms, or a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms.
 式(III)のR101及びR102において、アルキル基の炭素数は、1,2,3,4又は5であることが好ましく、1,2,3又は4であることがより好ましい。アリール基の炭素数は、6,7,8,9又は10であることが好ましい。複素環基の炭素数は、4,5,6,7,8,9又は10であることが好ましく、4,5,6,7又は8であることがより好ましい。アルケニル基の炭素数は、2,3,4又は5であることが好ましく、2,3又は4であることがより好ましい。また、アルキル基又はアルケニル基は、直鎖状であってもよく、分岐鎖状であってもよい。 In R 101 and R 102 of the formula (III), the number of carbon atoms of the alkyl group is preferably 1, 2, 3, 4 or 5, and more preferably 1, 2, 3 or 4. The aryl group preferably has 6, 7, 8, 9, or 10 carbon atoms. The number of carbon atoms of the heterocyclic group is preferably 4, 5, 6, 7, 8, 9 or 10, and more preferably 4, 5, 6, 7 or 8. The number of carbon atoms in the alkenyl group is preferably 2, 3, 4 or 5, and more preferably 2, 3 or 4. Moreover, the alkyl group or alkenyl group may be linear or branched.
 R101及びR102の置換基は、例えば、炭素数1~5のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、炭素数3~6のシクロアルキル基(例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基)、炭素数2~6のアルケニル基(例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基)、炭素数1~5のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基)、炭素数2~6のアルキルカルボニル基、炭素数7~11のアリールカルボニル基、炭素数2~6のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基)、炭素数7~11のアリールオキシカルボニル基、炭素数2~6のアルキルカルボニルオキシ基、炭素数7~11のアリールカルボニルオキシ基、炭素数6~12のアリール基(例えば、フェニル基、ナフチル基)、炭素数6~10のアリールオキシ基(例えば、フェノキシ基、ナフトキシ基)、炭素数1~5のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、iso-プロピルチオ基、n-ブチルチオ基、tert-ブチルチオ基)、炭素数6~10のアリールチオ基(例えば、フェニルチオ基、ナフチルチオ基)、炭素数2~6のアルキルチオカルボニル基、炭素数7~11のアリールチオカルボニル基、炭素数1~5のアルキルスルフィニル基、炭素数6~10のアリールスルフィニル基、炭素数1~5のアルキルスルホニル基、炭素数6~10のアリールスルホニル基、炭素数4~8のヘテロ原子含有芳香族環基(例えば、フリル基、チエニル基)、アミノ基(ジメチルアミノ基、メチルアミノ基を含む)、カルボキシ基、ヒドロキシ基、シアノ基、又はハロゲン原子(例えば、塩素原子、臭素原子)である。R101及びR102は、それぞれ独立して、1つの置換基を有していてもよく、複数の置換基を有していてもよい。 Examples of the substituent for R 101 and R 102 include an alkyl group having 1 to 5 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group), and a cycloalkyl group having 3 to 6 carbon atoms (for example, Cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group), alkenyl group having 2 to 6 carbon atoms (for example, vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group), 1 to 5 carbon atoms Alkoxy groups (for example, methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, tert-butoxy group), alkylcarbonyl group having 2 to 6 carbon atoms, aryl having 7 to 11 carbon atoms Carbonyl group, alkoxycarbonyl group having 2 to 6 carbon atoms (for example, methoxycarbonyl group, ethoxycarbonyl group, tert-but Sicarbonyl group), aryloxycarbonyl group having 7 to 11 carbon atoms, alkylcarbonyloxy group having 2 to 6 carbon atoms, arylcarbonyloxy group having 7 to 11 carbon atoms, aryl group having 6 to 12 carbon atoms (for example, phenyl Group, naphthyl group), aryloxy group having 6 to 10 carbon atoms (for example, phenoxy group, naphthoxy group), alkylthio group having 1 to 5 carbon atoms (for example, methylthio group, ethylthio group, n-propylthio group, iso-propylthio group) Group, n-butylthio group, tert-butylthio group), arylthio group having 6 to 10 carbon atoms (for example, phenylthio group, naphthylthio group), alkylthiocarbonyl group having 2 to 6 carbon atoms, arylthiocarbonyl having 7 to 11 carbon atoms Group, alkylsulfinyl group having 1 to 5 carbon atoms, arylsulfinyl group having 6 to 10 carbon atoms Group, alkylsulfonyl group having 1 to 5 carbon atoms, arylsulfonyl group having 6 to 10 carbon atoms, heteroatom-containing aromatic ring group having 4 to 8 carbon atoms (for example, furyl group, thienyl group), amino group (dimethylamino) Group, including a methylamino group), a carboxy group, a hydroxy group, a cyano group, or a halogen atom (for example, a chlorine atom or a bromine atom). R 101 and R 102 may each independently have one substituent, and may have a plurality of substituents.
 酸無水物は1種を単独で又は2種以上を混合して用いることができる。 An acid anhydride can be used alone or in combination of two or more.
 式(III)において、R101及びR102は、それぞれ独立に、炭素数1~5のアルキル基であることが好ましい。アルキル基は、直鎖状であっても分岐鎖状であってもよい。アルキル基の炭素数は、1,2,3又は4であることが好ましい。 In the formula (III), R 101 and R 102 are preferably each independently an alkyl group having 1 to 5 carbon atoms. The alkyl group may be linear or branched. The alkyl group preferably has 1, 2, 3 or 4 carbon atoms.
 式(III)で表される鎖状カルボン酸無水物の例としては、具体的には、以下の化合物が挙げられる。 Specific examples of the chain carboxylic acid anhydride represented by the formula (III) include the following compounds.
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000039
 
 環状カルボン酸無水物としては、無水コハク酸、無水マレイン酸が好ましい。 As the cyclic carboxylic acid anhydride, succinic anhydride and maleic anhydride are preferable.
 鎖状カルボン酸無水物としては、無水酢酸、無水プロピオン酸、無水酪酸が好ましい。 As the chain carboxylic acid anhydride, acetic anhydride, propionic anhydride, and butyric anhydride are preferable.
 酸無水物の電解液中の含有量は、特に制限されるものではないが、0.005~10質量%であることが好ましい。酸無水物の含有量が0.005質量%の場合、鎖状ジスルホン化合物と酸無水物との相乗効果を効果的に得ることができる。また、酸無水物の含有量が10質量%以下の場合、酸無水物の分解による皮膜が厚く形成されることを抑制でき、容量維持率などの電池特性への影響を少なくできる。酸無水物の電解液中の含有量は、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましく、0.5質量%以上であることが特に好ましい。また、酸無水物の電解液中の含有量は、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。 The content of the acid anhydride in the electrolytic solution is not particularly limited, but is preferably 0.005 to 10% by mass. When the content of the acid anhydride is 0.005% by mass, a synergistic effect between the chain disulfone compound and the acid anhydride can be effectively obtained. Moreover, when content of an acid anhydride is 10 mass% or less, it can suppress that the membrane | film | coat by decomposition | disassembly of an acid anhydride is formed thick, and can reduce influence on battery characteristics, such as a capacity | capacitance maintenance factor. The content of the acid anhydride in the electrolytic solution is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more. . The content of the acid anhydride in the electrolytic solution is more preferably 8% by mass or less, further preferably 5% by mass or less, and particularly preferably 3% by mass or less.
 本実施形態において、鎖状ジスルホン化合物の電解液中の濃度Aと酸無水物の電解液中の濃度Bのモル比率B/Aが、1/10~5/1の範囲にあることが好ましく、1/9~4/1の範囲にあることがより好ましい。 In this embodiment, the molar ratio B / A between the concentration A of the chain disulfone compound in the electrolyte and the concentration B of the acid anhydride in the electrolyte is preferably in the range of 1/10 to 5/1. More preferably, it is in the range of 1/9 to 4/1.
 また、鎖状ジスルホン化合物の電解液中の濃度Aと酸無水物の電解液中の濃度Bの合計の含有量Cが1.0mol/L以下の範囲にあることが好ましく、0.75mol/L以下の範囲にあることがより好ましく、0.5mol/L以下の範囲にあることがさらに好ましい。鎖状ジスルホン化合物の濃度Aと酸無水物の濃度Bをこのような範囲に設定することにより、容量維持率の向上あるいは維持する効果を得つつ、ガス発生の抑制効果をより効果的に得ることができる。 Further, the total content C of the concentration A of the chain disulfone compound in the electrolytic solution and the concentration B of the acid anhydride electrolytic solution is preferably in the range of 1.0 mol / L or less, and is preferably 0.75 mol / L. More preferably, it is in the following range, and further preferably in the range of 0.5 mol / L or less. By setting the concentration A of the chain disulfone compound and the concentration B of the acid anhydride in such a range, the effect of suppressing gas generation can be obtained more effectively while obtaining the effect of improving or maintaining the capacity retention rate. Can do.
 また、電解液には、必要に応じて、鎖状ジスルホン化合物および酸無水物以外のその他の添加剤も含ませることができる。その他の添加剤としては、例えば、過充電防止剤、界面活性剤等が挙げられる。 In addition, the electrolyte solution may contain other additives other than the chain disulfone compound and the acid anhydride, if necessary. Examples of other additives include an overcharge inhibitor and a surfactant.
 <非水溶媒>
 非水溶媒としては、特に制限されるものではないが、例えば、環状カーボネート類及び鎖状カーボネート類等のカーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類、並びにそれらのフッ素誘導体等が挙げられる。これらは、一種を単独で、又は二種以上を組み合わせて使用することができる。
<Nonaqueous solvent>
The non-aqueous solvent is not particularly limited, and examples thereof include carbonates such as cyclic carbonates and chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, and chain ethers. And fluorine derivatives thereof. These can be used individually by 1 type or in combination of 2 or more types.
 環状カーボネート類としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等が挙げられる。 Examples of cyclic carbonates include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC).
 鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等が挙げられる。 Examples of chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
 脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル等が挙げられる。 Examples of the aliphatic carboxylic acid esters include methyl formate, methyl acetate, and ethyl propionate.
 γ-ラクトン類としては、例えば、γ-ブチロラクトン等が挙げられる。
 環状エーテル類としては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。
Examples of γ-lactones include γ-butyrolactone.
Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran.
 鎖状エーテル類としては、例えば、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等が挙げられる。 Examples of chain ethers include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), and the like.
 非水溶媒としては、その他にも、例えば、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、N-メチルピロリドン、フッ素化カルボン酸エステル、メチル-2,2,2-トリフルオロエチルカーボネート、メチル-2,2,3,3,3-ペンタフルオロプロピルカーボネート、トリフルオロメチルエチレンカーボネート、モノフルオロメチルエチレンカーボネート、ジフルオロメチルエチレンカーボネート、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、モノフルオロエチレンカーボネート等が挙げられる。これらは、一種を単独で、又は二種以上を組み合わせて使用することができる。 Other non-aqueous solvents include, for example, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives , Sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, N-methylpyrrolidone, fluorinated carboxylic acid ester, methyl-2 , 2,2-trifluoroethyl carbonate, methyl-2,2,3,3,3-pentafluoropropyl carbonate, trifluoromethyl ethylene carbonate, monofluoromethyl ethyl Emissions carbonate, difluoromethyl ethylene carbonate, 4,5-difluoro-1,3-dioxolan-2-one, mono-fluoroethylene carbonate, and the like. These can be used individually by 1 type or in combination of 2 or more types.
 非水溶媒は、カーボネート類を含むことが好ましい。カーボネート類は、環状カーボネート類又は鎖状カーボネート類を含む。カーボネート類は、比誘電率が大きいため電解液のイオン解離性が向上し、さらに、電解液の粘度が下がるのでイオン移動度が向上するという利点を有する。しかし、カーボネート構造を有するカーボネート類を電解液の非水溶媒として用いると、カーボネート類が分解してCOを含むガスが発生する傾向がある。とくに積層ラミネート型の二次電池の場合、電池内部でガスが生じると膨れの問題が顕著に現れ、性能低下に繋がりやすい。そこで、本実施形態では、カーボネート類を含む非水溶媒に本実施形態の化合物を添加しておくことにより、鎖状ジスルホン化合物及び酸無水物により形成されるSEI皮膜がカーボネート類の分解を抑制し、ガスの発生を抑制することができる。したがって、本実施形態において、電解液は鎖状ジスルホン化合物及び酸無水物に加え、カーボネート類を非水溶媒として含むことが好ましい。このような構成とすることにより、カーボネート類を非水溶媒として用いてもガス発生を低減でき、優れた性能を有する二次電池を提供することができる。カーボネート類の電解液中の含有量は、例えば、30質量%以上であり、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The non-aqueous solvent preferably contains carbonates. The carbonates include cyclic carbonates or chain carbonates. Since carbonates have a large relative dielectric constant, the ion dissociation property of the electrolytic solution is improved, and further, the viscosity of the electrolytic solution is lowered, so that the ion mobility is improved. However, when carbonates having a carbonate structure are used as the non-aqueous solvent for the electrolytic solution, the carbonates tend to decompose and generate gas containing CO 2 . In particular, in the case of a laminated laminate type secondary battery, when gas is generated inside the battery, the problem of blistering appears prominently and tends to lead to performance degradation. Therefore, in this embodiment, by adding the compound of this embodiment to a non-aqueous solvent containing carbonates, the SEI film formed by the chain disulfone compound and the acid anhydride suppresses decomposition of the carbonates. Gas generation can be suppressed. Therefore, in the present embodiment, the electrolytic solution preferably contains carbonates as a non-aqueous solvent in addition to the chain disulfone compound and the acid anhydride. With such a configuration, even when carbonates are used as a non-aqueous solvent, gas generation can be reduced, and a secondary battery having excellent performance can be provided. The content of carbonates in the electrolytic solution is, for example, 30% by mass or more, preferably 50% by mass or more, and more preferably 70% by mass or more.
 <支持塩>
 支持塩としては、特に制限されるものではないが、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、又は二種以上を組み合わせて使用することができる。
<Supporting salt>
As the supporting salt, is not particularly limited, for example, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 And lithium salts such as SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 . A supporting salt can be used individually by 1 type or in combination of 2 or more types.
 支持塩の電解液中の濃度は、0.5~1.5mol/lであることが好ましい。支持塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易くなる。 The concentration of the supporting salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l. By setting the concentration of the supporting salt within this range, it becomes easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
 [2]負極
 本実施形態の二次電池は、負極活物質を有する負極を備える。負極活物質は負極結着剤によって負極集電体上に結着されることができる。負極としては、例えば、負極集電体上に、負極活物質と負極結着剤を含む負極活物質層が形成されたものを用いることができる。
[2] Negative Electrode The secondary battery of the present embodiment includes a negative electrode having a negative electrode active material. The negative electrode active material can be bound on the negative electrode current collector by a negative electrode binder. As the negative electrode, for example, one in which a negative electrode active material layer including a negative electrode active material and a negative electrode binder is formed on a negative electrode current collector can be used.
 負極活物質としては、特に制限されるものではないが、例えば、リチウム金属、リチウムと合金可能な金属(a)、リチウムイオンを吸蔵、放出し得る金属酸化物(b)、又はリチウムイオンを吸蔵、放出し得る炭素材料(c)等が挙げられる。負極活物質は、一種を単独で、又は二種以上を組み合わせて用いることができる。 Although it does not restrict | limit especially as a negative electrode active material, For example, the metal (a) which can be alloyed with lithium metal, lithium, the metal oxide (b) which can occlude and discharge | release lithium ion, or occlude lithium ion And carbon material (c) that can be released. A negative electrode active material can be used individually by 1 type or in combination of 2 or more types.
 金属(a)としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、又はこれらの2種以上の合金等が挙げられる。これらの金属又は合金は2種以上混合して用いてもよい。これらの金属又は合金は1種以上の非金属元素を含んでもよい。これらの中でも、負極活物質としてシリコン、スズ、又はこれらの合金を用いることが好ましい。シリコン又はスズを負極活物質として用いることにより、重量エネルギー密度や体積エネルギー密度に優れたリチウム二次電池を提供することができる。 Examples of the metal (a) include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. It is done. Two or more of these metals or alloys may be used in combination. These metals or alloys may contain one or more non-metallic elements. Among these, it is preferable to use silicon, tin, or an alloy thereof as the negative electrode active material. By using silicon or tin as the negative electrode active material, a lithium secondary battery excellent in weight energy density and volume energy density can be provided.
 金属酸化物(b)としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、又はこれらの複合物等が挙げられる。これらの中でも、負極活物質として酸化シリコンを用いることが好ましい。また、金属酸化物(b)は、窒素、ホウ素及びイオウの中から選ばれる一種又は二種以上の元素を、例えば0.1~5質量%の範囲で含有することができる。 Examples of the metal oxide (b) include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. Among these, it is preferable to use silicon oxide as the negative electrode active material. The metal oxide (b) can contain one or more elements selected from nitrogen, boron and sulfur in a range of, for example, 0.1 to 5% by mass.
 炭素材料(c)としては、例えば、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、又はこれらの複合物等が挙げられる。 Examples of the carbon material (c) include graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
 負極結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等が挙げられる。 The negative electrode binder is not particularly limited, and examples thereof include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and styrene-butadiene copolymer rubber. , Polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid and the like.
 負極は、例えば、負極集電体上に、負極活物質と負極結着剤を含む負極活物質層を形成することで作製することができる。この負極活物質層は、一般的なスラリー塗布法で形成することができる。具体的には、負極活物質、負極結着剤および溶媒を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥し、必要に応じて加圧することで、負極を得ることができる。負極スラリーの塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法が挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法で銅、ニッケル又はそれらの合金の薄膜を集電体として形成して、負極を得ることもできる。 The negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. This negative electrode active material layer can be formed by a general slurry coating method. Specifically, a negative electrode can be obtained by preparing a slurry containing a negative electrode active material, a negative electrode binder, and a solvent, applying the slurry onto a negative electrode current collector, drying, and pressing as necessary. it can. Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method. A negative electrode can also be obtained by forming a negative electrode active material layer in advance and then forming a thin film of copper, nickel or an alloy thereof as a current collector by a method such as vapor deposition or sputtering.
 また、負極結着剤としては、水分散系ポリマーを用いることができる。負極結着剤は、水系のディスパージョン状態で用いることができる。水分散系ポリマーとしては、例えば、スチレンブタジエン系ポリマー、アクリル酸系ポリマー、ポリテトラフルオロエチレン、ポリアクリレート、ポリウレタンなどが挙げられる。これらのポリマーを水に分散させて用いることができる。より具体的には、水分散系ポリマーとしては、例えば、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、アクリロニトリル・ブタジエン共重合体ゴム(NBR)、メチルメタクリレート・ブタジエン共重合体ゴム(MBR)、クロロプレンゴム(CR)、アクリルゴム(ABR)、スチレンブタジエン・スチレン共重合体(SBS)、ブチルゴム(IIR)、チオコール、ウレタンゴム、ケイ素ゴム、又はフッ素ゴム等が挙げられる。これらは、一種を単独で、又は二種以上を組み合わせて用いることができる。 Also, as the negative electrode binder, a water-dispersed polymer can be used. The negative electrode binder can be used in an aqueous dispersion state. Examples of the water-dispersed polymer include styrene butadiene polymer, acrylic acid polymer, polytetrafluoroethylene, polyacrylate, and polyurethane. These polymers can be used by dispersing in water. More specifically, examples of the water-dispersed polymer include natural rubber (NR), styrene butadiene rubber (SBR), acrylonitrile / butadiene copolymer rubber (NBR), and methyl methacrylate / butadiene copolymer rubber (MBR). Chloroprene rubber (CR), acrylic rubber (ABR), styrene butadiene / styrene copolymer (SBS), butyl rubber (IIR), thiocol, urethane rubber, silicon rubber, or fluorine rubber. These can be used individually by 1 type or in combination of 2 or more types.
 また、水分散系ポリマーを負極結着剤として用いる場合、水系増粘剤を用いることが好ましい。水系増粘剤としては、例えば、メチルセルロース、カルボキシメチルセルロース(CMC)、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースリチウム塩、ヒドロキシエチルセルロース、ポリエチレンオキサイド、ポリビニルアルコール(PVA)、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリエチレングリコール、又はポリエチレンオキサイド等を挙げることができる。これらは、一種を単独で、又は二種以上を組み合わせて用いることができる。
 負極結着剤の量は、負極活物質100質量部に対して、5~25質量部であることが好ましい。
Moreover, when using an aqueous dispersion polymer as a negative electrode binder, it is preferable to use an aqueous thickener. Examples of the aqueous thickener include methyl cellulose, carboxymethyl cellulose (CMC), carboxymethyl cellulose sodium salt, carboxymethyl cellulose lithium salt, hydroxyethyl cellulose, polyethylene oxide, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, sodium polyacrylate, polyacrylic acid. , Polyethylene glycol, or polyethylene oxide. These can be used individually by 1 type or in combination of 2 or more types.
The amount of the negative electrode binder is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 水系増粘剤の含有量は、例えば、負極活物質100質量部に対して、0.1~5.0質量部であり、好ましくは、0.5~3.0質量部である。 The content of the water-based thickener is, for example, 0.1 to 5.0 parts by weight, preferably 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the negative electrode active material.
 分散媒体しては水を用いることが好ましいが、水の他に、アルコール系溶剤、アミン系溶剤、カルボン酸系溶剤、ケトン系溶剤などの水溶性溶剤を分散媒体として含んでいてもよい。 Although water is preferably used as the dispersion medium, in addition to water, a water-soluble solvent such as an alcohol solvent, an amine solvent, a carboxylic acid solvent, or a ketone solvent may be included as the dispersion medium.
 負極は、例えば、以下のように作製することができる。まず、負極活物質と、水系増粘剤と、水分散系ポリマーと、水と、を混練し、負極スラリーを調製する。次に、この水性スラリーを負極集電体に塗布して乾燥させ、プレスして負極を作製する。 The negative electrode can be produced, for example, as follows. First, a negative electrode active material, an aqueous thickener, an aqueous dispersion polymer, and water are kneaded to prepare a negative electrode slurry. Next, this aqueous slurry is applied to a negative electrode current collector, dried, and pressed to produce a negative electrode.
 負極を作製した後の負極活物質層に含まれる水分量は、50~1000ppmであることが好ましい。また、負極活物質層に含まれる水分量は、500ppm以下であることがより好ましい。 The amount of water contained in the negative electrode active material layer after producing the negative electrode is preferably 50 to 1000 ppm. Further, the amount of water contained in the negative electrode active material layer is more preferably 500 ppm or less.
 負極活物質層に含まれる水分量は、例えば、負極活物質層を形成した後の乾燥工程により制御することができる。 The amount of water contained in the negative electrode active material layer can be controlled by, for example, a drying process after the negative electrode active material layer is formed.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、例えば、箔、平板状、メッシュ状等が挙げられる。 As the negative electrode current collector, aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include a foil, a flat plate, and a mesh.
 負極活物質層は、導電性を向上させる観点から、カーボン等の導電助剤を含んでいてもよい。 The negative electrode active material layer may contain a conductive aid such as carbon from the viewpoint of improving conductivity.
 負極スラリーは、必要に応じてその他の成分を含んでも良く、その他の成分としては、例えば、界面活性剤、消泡材等が挙げられる。負極スラリーが界面活性剤を含有することにより、負極結着剤の分散安定性を向上させることができる。また、負極スラリーが消泡剤を含有することにより、界面活性剤を含有させたスラリーを塗布する際の泡立ちを抑制することができる。 The negative electrode slurry may contain other components as necessary, and examples of the other components include a surfactant and an antifoaming material. When the negative electrode slurry contains a surfactant, the dispersion stability of the negative electrode binder can be improved. Moreover, foaming at the time of apply | coating the slurry containing surfactant can be suppressed because a negative electrode slurry contains an antifoamer.
 [3]正極
 本実施形態の二次電池は、正極活物質を有する正極を備える。正極活物質は正極結着剤によって正極集電体上に結着されることができる。正極は、正極集電体上に、正極活物質と正極結着剤を含む正極活物質層が形成されたものを用いることができる。
[3] Positive Electrode The secondary battery of this embodiment includes a positive electrode having a positive electrode active material. The positive electrode active material can be bound on the positive electrode current collector by a positive electrode binder. As the positive electrode, a positive electrode in which a positive electrode active material layer including a positive electrode active material and a positive electrode binder is formed on a positive electrode current collector can be used.
 正極活物質としては、特に制限されるものではないが、例えば、リチウム複合酸化物やリン酸鉄リチウムが挙げられる。また、これらのリチウム複合酸化物の遷移金属の少なくとも一部を他元素で置き換えたものでもよい。また、金属リチウム対極電位で4.2V以上にプラトーを有するリチウム複合酸化物を用いることもできる。リチウム複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が挙げられる。 The positive electrode active material is not particularly limited, and examples thereof include lithium composite oxide and lithium iron phosphate. Further, at least part of the transition metal of these lithium composite oxides may be replaced with another element. Alternatively, a lithium composite oxide having a plateau at 4.2 V or more at the metal lithium counter electrode potential can be used. Examples of the lithium composite oxide include spinel type lithium manganese composite oxide, olivine type lithium containing composite oxide, and reverse spinel type lithium containing composite oxide.
 リチウム複合酸化物としては、例えば、LiMnO、LiMn(0<x<2)等の層状構造を持つマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、またはこれらのマンガン酸リチウムのMnの一部をLi、Mg、Al、Co、B,Ti,Znからなる群より選ばれる少なくとも1つの元素で置き換えたもの;LiCoO等のコバルト酸リチウム、またはコバルト酸リチウムのCoの一部をNi,Al、Mn、Mg、Zr,Ti,Znからなる群より選ばれる少なくとも1つの元素で置き換えたもの;LiNiO等のニッケル酸リチウム、またはニッケル酸リチウムのNiの一部をCo、Al、Mn、Mg、Zr,Ti,Znからなる群より選ばれる少なくとも1つの元素で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物、または該リチウム遷移金属酸化物の遷移金属の一部をCo、Al、Mn、Mg、Zrからなる群より選ばれる少なくとも1つの元素で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの等が挙げられる。特に、リチウム複合酸化物としては、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.4、γ≦0.4)、またはこれらの複合酸化物の遷移金属の一部をAl,Mg,Zrからなる群より選ばれる少なくとも1つの元素で置き換えたものが好ましい。これらのリチウム複合酸化物は一種を単独で使用してもよいし、二種以上を組み合わせて用いてもよい。 Examples of the lithium composite oxide include lithium manganate having a layered structure such as LiMnO 2 and Li x Mn 2 O 4 (0 <x <2), lithium manganate having a spinel structure, or lithium manganate A part of Mn is replaced with at least one element selected from the group consisting of Li, Mg, Al, Co, B, Ti and Zn; lithium cobaltate such as LiCoO 2 or part of Co of lithium cobaltate Is replaced with at least one element selected from the group consisting of Ni, Al, Mn, Mg, Zr, Ti, and Zn; lithium nickelate such as LiNiO 2 or a part of Ni in lithium nickelate is Co, Al Replaced with at least one element selected from the group consisting of Mn, Mg, Zr, Ti, Zn; LiN i 1/3 Co 1/3 Mn 1/3 O 2 or other specific transition metals such as lithium transition metal oxides, or some of the transition metals of the lithium transition metal oxides may be Co, Al, Mn And those substituted with at least one element selected from the group consisting of Mg, Zr; and those lithium transition metal oxides in which Li is excessive in comparison with the stoichiometric composition. In particular, as the lithium composite oxide, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2), or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.4, γ ≦ 0.4), or a part of transition metals of these composite oxides may be Al, Mg, Zr. Those substituted with at least one element selected from the group consisting of: These lithium composite oxides may be used alone or in combination of two or more.
 リチウム複合酸化物としては、下記の式で表される化合物が好ましく挙げられる。 As the lithium composite oxide, a compound represented by the following formula is preferably exemplified.
 Li(MMn2-x)O Li a (M x Mn 2-x ) O 4
 (上記の式において、xは0<x<2を満たし、aは0<a<1.2を満たし、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種の元素である。)。 (In the above formula, x satisfies 0 <x <2, a satisfies 0 <a <1.2, and M is at least one element selected from the group consisting of Ni, Co, Fe, Cr and Cu. .)
 また、正極活物質としては、高電圧が得られるという観点から、リチウムに対して4.5V以上の電位で動作する活物質(以下、5V級活物質とも称す)を用いることができる。5V級活物質を用いた場合、電解液の分解等によるガス発生が起こり易いが、本実施形態の化合物を含む電解液を用いることにより、ガス発生を抑制できる。 As the positive electrode active material, an active material that operates at a potential of 4.5 V or higher with respect to lithium (hereinafter also referred to as a 5 V class active material) can be used from the viewpoint that a high voltage can be obtained. When a 5V class active material is used, gas generation due to decomposition of the electrolytic solution or the like is likely to occur, but gas generation can be suppressed by using the electrolytic solution containing the compound of the present embodiment.
 5V級活物質としては、例えば、下記式(A)で表されるリチウムマンガン複合酸化物を用いることができる。 As the 5V class active material, for example, a lithium manganese composite oxide represented by the following formula (A) can be used.
   Li(MMn2-x-y)(O4-w)   (A) Li a (M x Mn 2-xy Y y ) (O 4-w Z w ) (A)
 (式(A)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1である。MはCo、Ni、Fe、Cr及びCuからなる群より選ばれる少なくとも一種である。Yは、Li、B、Na、Mg、Al、Ti、Si、K及びCaからなる群より選ばれる少なくとも一種である。Zは、F及びClからなる群より選ばれる少なくとも一種である。)。 (In formula (A), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, and 0 ≦ w ≦ 1. M is Co, Ni, Fe, Cr. And Y is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K and Ca, and Z is F and Cl. At least one selected from the group consisting of:
 また、5V級活物質としては、十分な容量を得ることと高寿命化の観点から、このような金属複合酸化物の中でも、下記式(B)で表されるスピネル型化合物が好ましく用いられる。 Also, as the 5V class active material, a spinel compound represented by the following formula (B) is preferably used among such metal complex oxides from the viewpoint of obtaining a sufficient capacity and extending the life.
   LiNiMn2-x-y     (B) LiNi x Mn 2-xy A y O 4 (B)
 (式(B)中、0.4<x<0.6、0≦y<0.3、Aは、Li、B、Na、Mg、Al、Ti及びSiからなる群より選ばれる少なくとも一種である。)。 (In the formula (B), 0.4 <x <0.6, 0 ≦ y <0.3, A is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti and Si. is there.).
 式(B)中、0≦y<0.2であることがより好ましい。 In the formula (B), it is more preferable that 0 ≦ y <0.2.
 また、リチウムに対して4.5V以上の電位で動作する活物質としては、オリビン型の正極活物質が挙げられる。オリビン型の5V活物質としては、例えば、LiCoPO、又はLiNiPOが挙げられる。 As an active material that operates at a potential of 4.5 V or higher with respect to lithium, an olivine-type positive electrode active material can be given. Examples of the olivine-type 5V active material include LiCoPO 4 and LiNiPO 4 .
 また、リチウムに対して4.5V以上の電位で動作する活物質としては、Si複合酸化物が挙げられる。このようなSi複合酸化物としては、例えば、下記式(C)で示される化合物が挙げられる。 In addition, as an active material that operates at a potential of 4.5 V or more with respect to lithium, Si composite oxide can be given. As such Si complex oxide, the compound shown by a following formula (C) is mentioned, for example.
   LiMSiO4   (C) Li 2 MSiO 4 (C)
 (式(C)中、Mは、Mn、Fe及びCoからなる群より選ばれる少なくとも一種である)。 (In formula (C), M is at least one selected from the group consisting of Mn, Fe and Co).
 また、リチウムに対して4.5V以上の電位で動作する活物質は、層状構造を有していてもよい。層状構造を含む5V級活物質としては、例えば、下記式(D)で示される化合物が挙げられる。 Further, the active material that operates at a potential of 4.5 V or more with respect to lithium may have a layered structure. As a 5V class active material containing a layered structure, the compound shown by following formula (D) is mentioned, for example.
   Li(M1M2Mn2-x-y)O   (D) Li (M1 x M2 y Mn 2 -x-y) O 2 (D)
 (式(D)中、M1は、Ni、Co及びFeからなる群より選ばれる少なくとも一種である。M2は、Li、Mg及びAlからなる群より選ばれる少なくとも一種である。0.1<x<0.5、0.05<y<0.3)。 (In Formula (D), M1 is at least one selected from the group consisting of Ni, Co, and Fe. M2 is at least one selected from the group consisting of Li, Mg, and Al. 0.1 <x <0.5, 0.05 <y <0.3).
 5V級活物質としては、下記(E)~(G)で示されるリチウム金属複合酸化物を用いることができる。 As the 5V class active material, lithium metal composite oxides represented by the following (E) to (G) can be used.
   LiMPO   (E) LiMPO 4 (E)
 (式(E)中、Mは、Co及びNiからなる群より選ばれる少なくとも一種である。)。 (In formula (E), M is at least one selected from the group consisting of Co and Ni).
   Li(MMn)O   (F) Li (M y Mn z ) O 2 (F)
 (式(F)中、0.1≦y≦0.5、0.33≦z≦0.7であって、Mは、Li、Co及びNiからなる群より選ばれる少なくとも一種である。)。 (In formula (F), 0.1 ≦ y ≦ 0.5, 0.33 ≦ z ≦ 0.7, and M is at least one selected from the group consisting of Li, Co, and Ni.) .
   Li(LiMn)O   (G) Li (Li x M y Mn z ) O 2 (G)
 (式(G)中、0.1≦x<0.3、0.1≦y≦0.4、0.33≦z≦0.7であって、Mは、Li、Co及びNiからなる群より選ばれる少なくとも一種である。)。 (In Formula (G), 0.1 ≦ x <0.3, 0.1 ≦ y ≦ 0.4, 0.33 ≦ z ≦ 0.7, and M is composed of Li, Co, and Ni. At least one selected from the group).
 正極は、例えば、以下のように作製することができる。まず、正極活物質、正極結着剤及び溶媒(さらに必要により導電補助材)を含む正極スラリーを調製する。この正極スラリーを正極集電体上に塗布し、乾燥し、必要に応じて加圧することにより、正極集電体上に正極活物質層を形成し、正極を作製する。 The positive electrode can be manufactured as follows, for example. First, a positive electrode slurry containing a positive electrode active material, a positive electrode binder, and a solvent (and a conductive auxiliary material if necessary) is prepared. This positive electrode slurry is applied onto a positive electrode current collector, dried, and pressurized as necessary to form a positive electrode active material layer on the positive electrode current collector, thereby producing a positive electrode.
 正極結着剤としては、特に制限されるものではないが、例えば、負極結着剤と同様のものを用いることができる。汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。正極結着剤の含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して1~25質量部の範囲であることが好ましく、2~20質量部の範囲であることがより好ましく、2~10質量部の範囲であることがさらに好ましい。ポリフッ化ビニリデン(PVdF)以外の結着剤としては、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、又はポリアミドイミド等が挙げられる。溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)を用いることができる。 The positive electrode binder is not particularly limited, and for example, the same as the negative electrode binder can be used. From the viewpoint of versatility and low cost, polyvinylidene fluoride is preferred. The content of the positive electrode binder is preferably in the range of 1 to 25 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of the binding force and energy density which are in a trade-off relationship. The range is more preferably in the range of 2 to 10 parts by mass. Examples of binders other than polyvinylidene fluoride (PVdF) include, for example, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, Examples include polypropylene, polyethylene, polyimide, or polyamideimide. As the solvent, for example, N-methyl-2-pyrrolidone (NMP) can be used.
 正極集電体としては、特に制限されるものではないが、例えば、アルミニウム、チタン、タンタル、ニッケル、銀、又はそれらの合金が挙げられる。正極集電体の形状としては、例えば、箔、平板状、メッシュ状が挙げられる。正極集電体としては、アルミニウム箔を好適に用いることができる。 The positive electrode current collector is not particularly limited, and examples thereof include aluminum, titanium, tantalum, nickel, silver, and alloys thereof. Examples of the shape of the positive electrode current collector include a foil, a flat plate, and a mesh. As the positive electrode current collector, an aluminum foil can be suitably used.
 正極の作製に際して、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 In the production of the positive electrode, a conductive auxiliary material may be added for the purpose of reducing the impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 [4]セパレータ
 セパレータとしては、特に制限されるものではないが、例えば、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、セパレータとして用いられるポリマー基材にセラミックを含むコーティングを形成したセラミックコートセパレータを用いることもできる。また、セパレータとしては、それらを積層したものを用いることもできる。
[4] Separator The separator is not particularly limited. For example, a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, as a separator, the ceramic coat separator which formed the coating containing a ceramic in the polymer base material used as a separator can also be used. Moreover, what laminated | stacked them can also be used as a separator.
 [5]外装体
 外装体としては、特に制限されるものではないが、例えば、ラミネートフィルムを用いることができる。例えば積層ラミネート型の二次電池の場合、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。
[5] Exterior Body The exterior body is not particularly limited, and for example, a laminate film can be used. For example, in the case of a laminated laminate type secondary battery, a laminated film such as polypropylene or polyethylene coated with aluminum or silica can be used.
 外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、ガスが発生すると電極積層体の歪みが非常に大きくなる。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くするため、内部に余分な空間がなく、ガスが発生した場合にそれが直ちに電池の体積変化や電極積層体の変形につながりやすい。しかし、本実施形態に係る二次電池は、本実施形態の電解液を用いることにより、このような問題を克服することができる。 In the case of a secondary battery using a laminate film as the exterior body, the distortion of the electrode laminate becomes very large when gas is generated, compared to a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than the atmospheric pressure, so there is no extra space inside, and if gas is generated, it is immediately It tends to lead to battery volume change and electrode stack deformation. However, the secondary battery according to the present embodiment can overcome such problems by using the electrolytic solution of the present embodiment.
 [6]二次電池
 本実施形態に係る二次電池の構成としては、特に本願発明が制限されるものではないが、例えば、正極および負極が対向配置された電極積層体と、電解液とが外装体に内包されている構成を挙げることができる。
[6] Secondary Battery The structure of the secondary battery according to the present embodiment is not particularly limited by the present invention. For example, an electrode laminate in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are provided. The structure included in the exterior body can be given.
 以下、例として積層ラミネート型のリチウムイオン二次電池について説明する。図1は、本実施形態による二次電池の基本構成の一例を示す概略構成図である。正極においては、正極活物質層1が正極集電体3上に成膜されている。負極においては、負極活物質層2が負極集電体4上に成膜されている。これらの正極と負極は、セパレータ5を介して対向配置されている。セパレータ5は、正極活物質層1及び負極活物質層2に対して略平行に積層配置されている。正極および負極の電極対と電解液が外装体6および7に内包されている。正極に接続された正極タブ9と、負極に接続された負極タブ8が、外装体から露出するように設けられている。本実施形態による二次電池の形状としては、特に制限はないが、例えば、ラミネート外装型、円筒型、角型、コイン型、ボタン型などが挙げられる。 Hereinafter, a laminated laminate type lithium ion secondary battery will be described as an example. FIG. 1 is a schematic configuration diagram illustrating an example of a basic configuration of the secondary battery according to the present embodiment. In the positive electrode, the positive electrode active material layer 1 is formed on the positive electrode current collector 3. In the negative electrode, the negative electrode active material layer 2 is formed on the negative electrode current collector 4. The positive electrode and the negative electrode are disposed to face each other with the separator 5 interposed therebetween. The separator 5 is laminated and disposed substantially parallel to the positive electrode active material layer 1 and the negative electrode active material layer 2. A pair of positive and negative electrodes and an electrolytic solution are enclosed in outer casings 6 and 7. A positive electrode tab 9 connected to the positive electrode and a negative electrode tab 8 connected to the negative electrode are provided so as to be exposed from the exterior body. The shape of the secondary battery according to the present embodiment is not particularly limited, and examples thereof include a laminate outer shape, a cylindrical shape, a square shape, a coin shape, and a button shape.
 以下、本発明の実施形態を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the embodiments of the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
 (実施例1)
 <負極>
 負極活物質として、黒鉛を用いた。この負極活物質と、負極結着剤としてのスチレン-ブタジエン共重合ゴム(SBR)と、増粘剤としてカルボキシメチルセルロース(CMC)と、導電補助材としてのアセチレンブラックとを、96:2:1:1の質量比で計量した。なお、SBRとしては、ゴム粒子分散体(固形分40質量%)を用い、結着材の固形分が上記質量比となるように計量して用いた。
Example 1
<Negative electrode>
Graphite was used as the negative electrode active material. 96: 2: 1: This negative electrode active material, styrene-butadiene copolymer rubber (SBR) as a negative electrode binder, carboxymethyl cellulose (CMC) as a thickener, and acetylene black as a conductive auxiliary material. Weighed at a mass ratio of 1. In addition, as SBR, the rubber particle dispersion (solid content 40 mass%) was used, and it measured and used so that the solid content of the binder might become the said mass ratio.
 そして、これらを水と混合して、負極スラリーを調製した。負極スラリーを厚さ10μmの銅箔に塗布した後に、窒素雰囲気下で熱処理を行って乾燥させ、負極を作製した。 And these were mixed with water and the negative electrode slurry was prepared. After applying the negative electrode slurry to a copper foil having a thickness of 10 μm, heat treatment was performed in a nitrogen atmosphere and drying was performed to prepare a negative electrode.
 <正極>
 正極活物質として、LiMnとLiNi0.5Co0.2Mn0.3を25:75の質量比にて混合した混合物を用いた。この正極活物質と、導電補助材としてのカーボンブラックと、正極結着剤としてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。そして、これらをN-メチルピロリドンと混合して、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
<Positive electrode>
As the positive electrode active material, a mixture in which LiMn 2 O 4 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 were mixed at a mass ratio of 25:75 was used. This positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 μm, dried, and further pressed to produce a positive electrode.
 <電極積層体>
 得られた正極と負極を、セパレータとしてのポリプロピレン多孔質フィルムを介して積層した。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらに、その溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極積層体を得た。
<Electrode laminate>
The obtained positive electrode and negative electrode were laminated via a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained.
 <電解液>
 非水溶媒としてECとDECの混合溶媒(体積比:EC/DEC=30/70)を用いた。そして、式(1)で表される鎖状ジスルホン化合物としての上記化合物No.1を電解液中の含有量が1.7質量%となるように、酸無水物としての上記化合物(201)を電解液中の含有量が0.5質量%となるように、支持塩としてのLiPFを電解液中の濃度が1mol/Lとなるように、それぞれ混合溶媒に添加し、電解液を調製した。
<Electrolyte>
A mixed solvent of EC and DEC (volume ratio: EC / DEC = 30/70) was used as the non-aqueous solvent. And said compound No. as a chain | strand-shaped disulfone compound represented by Formula (1). As a supporting salt, the above compound (201) as an acid anhydride is used as a supporting salt so that the content in the electrolytic solution is 0.5% by mass so that the content of 1 in the electrolytic solution is 1.7% by mass. LiPF 6 was added to each of the mixed solvents so that the concentration in the electrolytic solution was 1 mol / L to prepare an electrolytic solution.
 <二次電池>
 電極積層体を外装体としてのアルミニウムラミネートフィルム内に収容し、外装体内部に電解液を注入した。その後、0.1気圧まで減圧しつつ外装体を封止し、リチウムイオン二次電池を作製した。
<Secondary battery>
The electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Thereafter, the outer package was sealed while reducing the pressure to 0.1 atm, and a lithium ion secondary battery was produced.
 <評価>
 (初回充放電における体積増加量)
 作製した2次電池に対し、25℃に保った恒温槽中で、4.15Vまでの充電及び3.0Vまでの放電を1回行った。そして、その充放電の前後での二次電池の体積増加量を評価した。なお、体積は、アルキメデス法を用いて測定した。
<Evaluation>
(Volume increase in first charge / discharge)
The manufactured secondary battery was charged up to 4.15 V and discharged up to 3.0 V once in a thermostat kept at 25 ° C. And the volume increase amount of the secondary battery before and after the charging / discharging was evaluated. The volume was measured using the Archimedes method.
 「体積増加量」は相対値として以下のように算出した。まず、「体積増加率(%)」を、{(充放電後の体積)/(充放電開始前の体積)-1}×100(単位:%)で算出した。そして、比較例1における体積増加率を1とした場合の相対値を算出し、体積増加量とした。
 (45℃における容量維持率)
 次に、作製した二次電池に対し、45℃に保った恒温槽中で、3.0Vから4.15Vの電圧範囲で充放電を繰り返す試験を行い、容量維持率(%)について評価した。電流値の基準として、その電池の初回の放電量を1時間で使い切る電流をIcとした。充電は、電流値Icで4.15Vまで充電した後、合計で2.5時間定電圧充電を行った。放電は、電流値Icで3.0Vまで定電流放電した。
The “volume increase amount” was calculated as a relative value as follows. First, “volume increase rate (%)” was calculated by {(volume after charge / discharge) / (volume before start of charge / discharge) −1} × 100 (unit:%). And the relative value when the volume increase rate in the comparative example 1 was set to 1 was calculated, and it was set as the volume increase amount.
(Capacity maintenance rate at 45 ° C)
Next, the manufactured secondary battery was subjected to a charge and discharge test in a voltage range of 3.0 V to 4.15 V in a thermostat kept at 45 ° C., and the capacity retention rate (%) was evaluated. As a standard for the current value, Ic was the current that used up the initial discharge amount of the battery in one hour. Charging was performed at a current value Ic up to 4.15 V, followed by constant voltage charging for 2.5 hours in total. The discharge was a constant current discharge to 3.0 V at a current value Ic.
 「容量維持率(%)」は、(200サイクル後の放電容量)/(5サイクル後の放電容量)×100(単位:%)で算出した。 “Capacity maintenance ratio (%)” was calculated by (discharge capacity after 200 cycles) / (discharge capacity after 5 cycles) × 100 (unit:%).
 結果を表1に示す。 The results are shown in Table 1.
 (実施例2)
 酸無水物として化合物(201)の代わりに上記化合物(301)を用いたこと以外は、実施例1と同様にして二次電池を作製し、評価した。結果を表1に示す。
(Example 2)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the compound (301) was used instead of the compound (201) as the acid anhydride. The results are shown in Table 1.
 (実施例3)
 酸無水物として化合物(201)の代わりに上記化合物(202)を用いたこと以外は、実施例1と同様にして二次電池を作製し、評価した。結果を表1に示す。
Example 3
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the compound (202) was used instead of the compound (201) as the acid anhydride. The results are shown in Table 1.
 (実施例4)
 鎖状ジスルホン化合物として化合物No.1の代わりに化合物No.2を用いたこと以外は、実施例1と同様にして二次電池を作製し、評価した。結果を表1に示す。
Example 4
As a chain disulfone compound, Compound No. In place of Compound No. 1 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that 2. The results are shown in Table 1.
 (比較例1)
 酸無水物を用いなかったこと以外は、実施例1と同様にして二次電池を作製し、評価した。結果を表1に示す。
(Comparative Example 1)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the acid anhydride was not used. The results are shown in Table 1.
 (比較例2)
 鎖状ジスルホン化合物及び酸無水物を用いなかったこと以外は、実施例1と同様にして二次電池を作製し、評価した。結果を表1に示す。
(Comparative Example 2)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the chain disulfone compound and the acid anhydride were not used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000040
 
Figure JPOXMLDOC01-appb-T000040
 
 この出願は、2013年9月13日に出願された日本出願特願2013-190747を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-190747 filed on September 13, 2013, the entire disclosure of which is incorporated herein.
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 本発明の実施形態による二次電池は、例えば、電気自動車やプラグインハイブリッド自動車、電動バイク、電動アシスト自転車などの駆動用機器、電動工具などの工具類、携帯端末やノートパソコンなどの電子機器、家庭用蓄電システムや太陽光発電システムなどの蓄電池などに適用できる。 The secondary battery according to the embodiment of the present invention includes, for example, an electric vehicle, a plug-in hybrid vehicle, a driving device such as an electric motorcycle and an electric assist bicycle, tools such as an electric tool, an electronic device such as a portable terminal and a laptop computer, The present invention can be applied to storage batteries for household power storage systems and solar power generation systems.
 1 正極活物質層
 2 負極活物質層
 3 正極集電体
 4 負極集電体
 5 セパレータ
 6 ラミネート外装体
 7 ラミネート外装体
 8 負極タブ
 9 正極タブ
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Laminate exterior 7 Laminate exterior 8 Negative electrode tab 9 Positive electrode tab

Claims (20)

  1.  支持塩と、該支持塩を溶解する非水溶媒と、下記式(1)で表される鎖状ジスルホン化合物と、酸無水物と、を含む電解液;
    Figure JPOXMLDOC01-appb-C000001
     (式(1)において、nは、1,2又は3の整数である。R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、-SO(Xは、置換若しくは無置換の炭素数1~5のアルキル基を示す)、-SY(Yは、置換若しくは無置換の炭素数1~5のアルキル基を示す)、-COZ(Zは、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)、又はハロゲン原子を示す。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、置換若しくは無置換のフェノキシ基、ヒドロキシ基、ハロゲン原子、-NX(X及びXは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)、又は-NYCONY(Y~Yは、それぞれ独立に、水素原子、又は置換若しくは無置換の炭素数1~5のアルキル基を示す)を示す。)。
    An electrolytic solution comprising a supporting salt, a nonaqueous solvent that dissolves the supporting salt, a chain disulfone compound represented by the following formula (1), and an acid anhydride;
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), n is an integer of 1, 2 or 3. R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or An unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 1 (X 1 Is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is A hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or a halogen atom, R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms. Group, substituted or unsubstituted carbon number An alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a hydroxy group, a halogen atom, —NX 2 X 3 (X 2 and X 3 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), or —NY 2 CONY 3 Y 4 (Y 2 to Y 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms).
  2.  前記式(1)において、nが1である請求項1に記載の電解液。 The electrolytic solution according to claim 1, wherein n is 1 in the formula (1).
  3.  前記式(1)において、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルキル基であり、R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、又は置換若しくは無置換のフェノキシ基である請求項1又は2に記載の電解液。 In the formula (1), R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms. Each of R 3 and R 4 independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted carbon group having 1 to 5 carbon atoms; The electrolytic solution according to claim 1 or 2, which is a 5 fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenoxy group.
  4.  前記酸無水物は、カルボン酸無水物である請求項1乃至3のいずれかに記載の電解液。 The electrolytic solution according to any one of claims 1 to 3, wherein the acid anhydride is a carboxylic acid anhydride.
  5.  前記カルボン酸無水物は、下記式(I)で表される環状カルボン酸無水物である請求項4に記載の電解液;
    Figure JPOXMLDOC01-appb-C000002
     
     (式(I)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基、置換若しくは無置換の炭素数5~12のシクロアルカンジイル基、置換若しくは無置換のベンゼンジイル基、又はエーテル結合を介してアルキレン基が結合した炭素数2~6の2価の基を示す。)。
    The electrolytic solution according to claim 4, wherein the carboxylic acid anhydride is a cyclic carboxylic acid anhydride represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000002

    (In formula (I), R 11 represents a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms, a substituted or unsubstituted carbon group having 5 to 12 carbon atoms, and A cycloalkanediyl group, a substituted or unsubstituted benzenediyl group, or a divalent group having 2 to 6 carbon atoms to which an alkylene group is bonded via an ether bond).
  6.  前記式(I)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基である請求項5に記載の電解液。 6. The electrolytic solution according to claim 5, wherein in the formula (I), R 11 is a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms.
  7.  前記カルボン酸無水物は、下記式(III)で表される鎖状カルボン酸無水物である請求項4に記載の電解液;
    Figure JPOXMLDOC01-appb-C000003
     
     (式(III)において、R101及びR102は、それぞれ独立に、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数6~12のアリール基、置換若しくは無置換の炭素数4~12の複素環基、又は置換若しくは無置換の炭素数2~6のアルケニル基を示す。)。
    The electrolytic solution according to claim 4, wherein the carboxylic acid anhydride is a chain carboxylic acid anhydride represented by the following formula (III):
    Figure JPOXMLDOC01-appb-C000003

    (In Formula (III), R 101 and R 102 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a substituted or unsubstituted group, A heterocyclic group having 4 to 12 carbon atoms, or a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms.
  8.  前記酸無水物は、スルホン酸無水物である請求項1乃至3のいずれかに記載の電解液。 The electrolytic solution according to any one of claims 1 to 3, wherein the acid anhydride is a sulfonic acid anhydride.
  9.  前記酸無水物は、カルボン酸とスルホン酸の無水物である請求項1乃至3のいずれかに記載の電解液。 The electrolytic solution according to any one of claims 1 to 3, wherein the acid anhydride is an anhydride of carboxylic acid and sulfonic acid.
  10.  前記鎖状ジスルホン化合物の電解液中の含有量が、0.005~10質量%である請求項1乃至9のいずれかに記載の電解液。 10. The electrolytic solution according to claim 1, wherein the content of the chain disulfone compound in the electrolytic solution is 0.005 to 10% by mass.
  11.  前記酸無水物の電解液中の含有量が、0.005~10質量%である請求項1乃至10のいずれかに記載の電解液。 11. The electrolytic solution according to claim 1, wherein the content of the acid anhydride in the electrolytic solution is 0.005 to 10% by mass.
  12.  前記鎖状ジスルホン化合物の電解液中の濃度Aと前記酸無水物の電解液中の濃度Bのモル比率B/Aが、1/10~5/1の範囲にある、請求項1乃至11のいずれかに記載の電解液。 The molar ratio B / A between the concentration A of the chain disulfone compound in the electrolyte and the concentration B of the acid anhydride in the electrolyte is in the range of 1/10 to 5/1. The electrolyte solution in any one.
  13.  前記式(1)において、nが1であり、
     前記酸無水物は、カルボン酸無水物である請求項1に記載の電解液。
    In the formula (1), n is 1,
    The electrolytic solution according to claim 1, wherein the acid anhydride is a carboxylic acid anhydride.
  14.  前記式(1)において、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルキル基であり、R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~5のアルキル基、置換若しくは無置換の炭素数1~5のアルコキシ基、置換若しくは無置換の炭素数1~5のフルオロアルキル基、置換若しくは無置換の炭素数1~5のフルオロアルコキシ基、又は置換若しくは無置換のフェノキシ基である請求項13に記載の電解液。 In the formula (1), R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms. Each of R 3 and R 4 independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted carbon group having 1 to 5 carbon atoms; The electrolytic solution according to claim 13, which is a 5 fluoroalkyl group, a substituted or unsubstituted fluoroalkoxy group having 1 to 5 carbon atoms, or a substituted or unsubstituted phenoxy group.
  15.   前記カルボン酸無水物は、下記式(I)で表される環状カルボン酸無水物である請求項13又は14に記載の電解液;
    Figure JPOXMLDOC01-appb-C000004
     
     (式(I)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基、置換若しくは無置換の炭素数5~12のシクロアルカンジイル基、置換若しくは無置換のベンゼンジイル基、又はエーテル結合を介してアルキレン基が結合した炭素数2~6の2価の基を示す。)。
    The electrolytic solution according to claim 13 or 14, wherein the carboxylic acid anhydride is a cyclic carboxylic acid anhydride represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000004

    (In formula (I), R 11 represents a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms, a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms, a substituted or unsubstituted carbon group having 5 to 12 carbon atoms, and A cycloalkanediyl group, a substituted or unsubstituted benzenediyl group, or a divalent group having 2 to 6 carbon atoms to which an alkylene group is bonded via an ether bond).
  16.  前記式(I)において、R11は、置換若しくは無置換の炭素数2~5のアルキレン基、置換若しくは無置換の炭素数2~5のアルケニレン基である請求項15に記載の電解液。 16. The electrolytic solution according to claim 15, wherein in the formula (I), R 11 is a substituted or unsubstituted alkylene group having 2 to 5 carbon atoms or a substituted or unsubstituted alkenylene group having 2 to 5 carbon atoms.
  17.  前記鎖状ジスルホン化合物の電解液中の含有量が、0.005~10質量%であり、
     前記酸無水物の電解液中の含有量が、0.005~10質量%である請求項16に記載の電解液。
    The content of the chain disulfone compound in the electrolytic solution is 0.005 to 10% by mass,
    The electrolytic solution according to claim 16, wherein the content of the acid anhydride in the electrolytic solution is 0.005 to 10% by mass.
  18.  前記鎖状ジスルホン化合物の電解液中の濃度Aと前記酸無水物の電解液中の濃度Bのモル比率B/Aが、1/10~5/1の範囲にある請求項17に記載の電解液。 The electrolysis according to claim 17, wherein the molar ratio B / A of the concentration A of the chain disulfone compound in the electrolytic solution and the concentration B of the acid anhydride in the electrolytic solution is in the range of 1/10 to 5/1. liquid.
  19.  前記カルボン酸無水物は、下記式(III)で表される鎖状カルボン酸無水物である請求項13又は14に記載の電解液;
    Figure JPOXMLDOC01-appb-C000005
     
     (式(III)において、R101及びR102は、それぞれ独立に、置換若しくは無置換の炭素数1~6のアルキル基、置換若しくは無置換の炭素数6~12のアリール基、置換若しくは無置換の炭素数4~12の複素環基、又は置換若しくは無置換の炭素数2~6のアルケニル基を示す。)。
    The electrolytic solution according to claim 13 or 14, wherein the carboxylic acid anhydride is a chain carboxylic acid anhydride represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000005

    (In Formula (III), R 101 and R 102 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a substituted or unsubstituted group, A heterocyclic group having 4 to 12 carbon atoms, or a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms.
  20.  請求項1乃至19のいずれかに記載の電解液を有する二次電池。 A secondary battery comprising the electrolytic solution according to any one of claims 1 to 19.
PCT/JP2014/071281 2013-09-13 2014-08-12 Electrolyte solution and secondary battery WO2015037382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015536497A JPWO2015037382A1 (en) 2013-09-13 2014-08-12 Electrolyte and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190747 2013-09-13
JP2013190747 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037382A1 true WO2015037382A1 (en) 2015-03-19

Family

ID=52665501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071281 WO2015037382A1 (en) 2013-09-13 2014-08-12 Electrolyte solution and secondary battery

Country Status (2)

Country Link
JP (1) JPWO2015037382A1 (en)
WO (1) WO2015037382A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199063A1 (en) * 2014-06-23 2015-12-30 日本電気株式会社 Nonaqueous electrolytic solution and secondary cell
CN106505249A (en) * 2016-12-15 2017-03-15 东莞市杉杉电池材料有限公司 A kind of lithium-ion battery electrolytes and the lithium ion battery containing the electrolyte
WO2018101294A1 (en) * 2016-12-02 2018-06-07 日産化学工業株式会社 Conductive carbon material dispersion
CN109037776A (en) * 2017-06-09 2018-12-18 宁德时代新能源科技股份有限公司 Electrolyte and battery comprising same
EP3444887A3 (en) * 2017-08-16 2019-02-27 Samsung Electronics Co., Ltd. Disulfonate-based additive and lithium secondary battery comprising the same
CN109687021A (en) * 2018-12-18 2019-04-26 东莞市杉杉电池材料有限公司 A kind of high temp resistance lithium ion cell nonaqueous electrolytic solution
WO2023068807A1 (en) * 2021-10-19 2023-04-27 주식회사 엘지에너지솔루션 Lithium secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158035A (en) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2006278106A (en) * 2005-03-29 2006-10-12 Nec Corp Electrolyte for secondary battery and secondary battery using the same
JP2009070827A (en) * 2003-12-15 2009-04-02 Nec Corp Secondary battery
JP2010198922A (en) * 2009-02-25 2010-09-09 Sony Corp Secondary battery
JP2011066004A (en) * 2010-11-01 2011-03-31 Nec Corp Electrolyte for secondary battery and secondary battery
JP2012230809A (en) * 2011-04-26 2012-11-22 Sony Corp Secondary battery, electronic device, electric power tool, electric vehicle, and power storage system
JP2012238459A (en) * 2011-05-11 2012-12-06 Sony Corp Secondary battery, electronic apparatus, electric tool, electric vehicle, and power storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158035A (en) * 2000-11-20 2002-05-31 Mitsui Chemicals Inc Non-aqueous electrolyte and secondary battery using the same
JP2009070827A (en) * 2003-12-15 2009-04-02 Nec Corp Secondary battery
JP2006278106A (en) * 2005-03-29 2006-10-12 Nec Corp Electrolyte for secondary battery and secondary battery using the same
JP2010198922A (en) * 2009-02-25 2010-09-09 Sony Corp Secondary battery
JP2011066004A (en) * 2010-11-01 2011-03-31 Nec Corp Electrolyte for secondary battery and secondary battery
JP2012230809A (en) * 2011-04-26 2012-11-22 Sony Corp Secondary battery, electronic device, electric power tool, electric vehicle, and power storage system
JP2012238459A (en) * 2011-05-11 2012-12-06 Sony Corp Secondary battery, electronic apparatus, electric tool, electric vehicle, and power storage system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199063A1 (en) * 2014-06-23 2015-12-30 日本電気株式会社 Nonaqueous electrolytic solution and secondary cell
US10978737B2 (en) 2014-06-23 2021-04-13 Nec Corporation Nonaqueous electrolyte solution and secondary battery
JPWO2018101294A1 (en) * 2016-12-02 2019-10-24 日産化学株式会社 Conductive carbon material dispersion
WO2018101294A1 (en) * 2016-12-02 2018-06-07 日産化学工業株式会社 Conductive carbon material dispersion
JP7081493B2 (en) 2016-12-02 2022-06-07 日産化学株式会社 Conductive carbon material dispersion
CN106505249B (en) * 2016-12-15 2021-01-05 东莞市杉杉电池材料有限公司 Lithium ion battery electrolyte and lithium ion battery containing same
CN106505249A (en) * 2016-12-15 2017-03-15 东莞市杉杉电池材料有限公司 A kind of lithium-ion battery electrolytes and the lithium ion battery containing the electrolyte
CN109037776A (en) * 2017-06-09 2018-12-18 宁德时代新能源科技股份有限公司 Electrolyte and battery comprising same
EP3444887A3 (en) * 2017-08-16 2019-02-27 Samsung Electronics Co., Ltd. Disulfonate-based additive and lithium secondary battery comprising the same
US11038202B2 (en) 2017-08-16 2021-06-15 Samsung Electronics Co., Ltd. Bis(phenyl) methanedisulfonate-based additive and lithium secondary battery comprising the same
CN109687021A (en) * 2018-12-18 2019-04-26 东莞市杉杉电池材料有限公司 A kind of high temp resistance lithium ion cell nonaqueous electrolytic solution
CN109687021B (en) * 2018-12-18 2020-12-11 东莞市杉杉电池材料有限公司 High-temperature-resistant non-aqueous electrolyte for lithium ion battery
WO2023068807A1 (en) * 2021-10-19 2023-04-27 주식회사 엘지에너지솔루션 Lithium secondary battery

Also Published As

Publication number Publication date
JPWO2015037382A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP2019117814A (en) Electrolytic solution and secondary battery
JP7421199B2 (en) Electrolytes and non-aqueous electrolytes for power storage devices
WO2015037382A1 (en) Electrolyte solution and secondary battery
JP6620742B2 (en) Secondary battery
WO2018016195A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
JP4819409B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
JP2019169302A (en) Electrolyte for power storage device and nonaqueous electrolyte solution
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
JP6760269B2 (en) Lithium ion secondary battery
JP6398984B2 (en) New compounds, electrolytes and secondary batteries
JP7084607B2 (en) Non-aqueous electrolyte for power storage devices
JP2019169304A (en) Nonaqueous electrolyte solution for power storage device
CN111971841B (en) Nonaqueous electrolyte for electricity storage device
US20210184259A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
JP6451638B2 (en) NOVEL COMPOUND, ELECTROLYTE SOLUTION AND SECONDARY BATTERY, ELECTRIC VEHICLE AND POWER SYSTEM
TWI772486B (en) Use of additives and lithium-ion batteries
JP2017168344A (en) Nonaqueous electrolyte solution for power storage device
JP2019169363A (en) Electrolyte for power storage device and nonaqueous electrolyte solution
WO2015037379A1 (en) Novel compound, electrolyte, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844191

Country of ref document: EP

Kind code of ref document: A1