WO2018101140A1 - Additive for hydraulic-setting composition - Google Patents

Additive for hydraulic-setting composition Download PDF

Info

Publication number
WO2018101140A1
WO2018101140A1 PCT/JP2017/041961 JP2017041961W WO2018101140A1 WO 2018101140 A1 WO2018101140 A1 WO 2018101140A1 JP 2017041961 W JP2017041961 W JP 2017041961W WO 2018101140 A1 WO2018101140 A1 WO 2018101140A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
mass
hydraulic composition
acid
blast furnace
Prior art date
Application number
PCT/JP2017/041961
Other languages
French (fr)
Japanese (ja)
Inventor
佐川桂一郎
川上博行
浜口剛吏
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016231260A external-priority patent/JP6535316B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to MYPI2019002944A priority Critical patent/MY191258A/en
Publication of WO2018101140A1 publication Critical patent/WO2018101140A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/18Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/17Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
    • C04B7/19Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to an additive for a hydraulic composition using a blast furnace slag cement, a hydraulic composition, a method for producing a hydraulic composition, and a method for producing a cured product of the hydraulic composition.
  • Hydraulic powders such as cement and blast furnace slag are hardened by reacting with water, and are called mortar when mixed with sand and concrete when mixed with gravel. These materials have been used in various structures because they can be easily changed in form before curing. By adding a chemical agent to the concrete before curing, the strength of the cured body can be adjusted, workable time can be improved, workability can be improved, and the like.
  • Japanese Patent Application Laid-Open No. 2011-153068 discloses a rapid composition for a hydraulic composition comprising a specific compound (1) such as glycerin and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates.
  • a specific compound (1) such as glycerin
  • inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates.
  • An early strengthening agent for a hydraulic composition which is a strong agent and the molar ratio of compound (1) to inorganic salt A is 5/95 to 45/55 of compound (1) / inorganic salt A, is disclosed.
  • Japanese Patent Application Laid-Open No. 2011-162400 contains glycerin, one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and a naphthalene-based dispersant.
  • An additive composition for hydraulic compositions having a molar ratio of glycerin / inorganic salt A of 5/95 to 55/45 is disclosed.
  • Japanese Patent Application Laid-Open No. 2014-208574 discloses glycerin, hydroxymethanesulfonic acid or a salt thereof, a dispersant, a hydraulic powder, an aggregate, and water, and the content of glycerin is a hydraulic powder. 0.040 parts by mass or more and 0.280 parts by mass or less with respect to 100 parts by mass of the body, and the content of hydroxymethanesulfonic acid or a salt thereof is 0.010 parts by mass or more with respect to 100 parts by mass of the hydraulic powder.
  • a hydraulic composition that is 420 parts by weight or less is disclosed.
  • JP-A-61-117142 discloses a cement composition containing an aldehyde and bisulfite or an addition compound of the aldehyde and bisulfite and a water-soluble thiocyanate.
  • slag a substance containing a mineral component separated from a metal to be metallurgically separated by melting is generated as a by-product during iron smelting from ore.
  • This material is called slag.
  • slag has been actively used mainly as a raw material and product in the building materials field.
  • slag is used not only as a raw material but also as a product and a blended material in cement.
  • JP-A-2016-56083 discloses ⁇ -hydroxysulfonic acid or a salt thereof, a hydraulic powder and water, and the hydraulic composition has a slag ratio of 60% by mass or more in the hydraulic powder. Is disclosed.
  • a hydraulic composition using blast furnace slag cement is desired to further improve the initial strength, for example, the strength from 1 to 7 days of age, from the viewpoint of improving productivity.
  • the hydraulic composition further enhances the medium- to long-term strength from the viewpoint of quality improvement.
  • the present invention provides an additive for a hydraulic composition that is an additive for a hydraulic composition using blast furnace slag cement, and that provides a hydraulic composition having excellent initial strength of a cured product.
  • the present invention is an additive for a hydraulic composition using a blast furnace slag cement, and has a suitable workability, and a hydraulic composition excellent in strength and durability of a cured product is obtained. Additives for hydraulic compositions are provided.
  • the present invention relates to a hydraulic composition using a blast furnace slag cement containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof. Relating to additives.
  • the present invention also provides a hydraulic composition
  • a hydraulic composition comprising (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, a blast furnace slag cement, and water.
  • the present invention also provides a method for producing the hydraulic composition of the present invention, wherein (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof.
  • the present invention relates to a method for producing a hydraulic composition, in which salt, blast furnace slag cement, and water are mixed.
  • component (A) thiosulfuric acid or a salt thereof will be described as component (A), (B) thiocyanic acid or a salt thereof as component (B), and (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof as component (C). .
  • the additive for the hydraulic composition of the present invention comprises (A) component, (B) component, (C) component, and (D) lignin sulfonic acid and its derivative, lignin sulfonate and its derivative, and naphthalene sulfone.
  • the hydraulic composition of the present invention comprises (A) component, (B) component, (C) component, (D) lignin sulfonic acid or derivative thereof, lignin sulfonate or derivative thereof, and naphthalene sulfonate formaldehyde.
  • a hydraulic composition containing an admixture selected from a condensate or a salt thereof, a blast furnace slag cement, and water is included.
  • the manufacturing method of the hydraulic composition of this invention is a manufacturing method of the said hydraulic composition of this invention containing (D), Comprising: (A) component, (B) component, (C) component, (D) A hydraulic composition comprising admixture selected from lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof, a blast furnace slag cement, and water.
  • a hydraulic composition comprising admixture selected from lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof, a blast furnace slag cement, and water.
  • the present invention also provides: A step of producing a hydraulic composition by the production method of the present invention; Filling the mold with the obtained hydraulic composition and curing; Removing the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition;
  • the present invention relates to a method for producing a cured product of a hydraulic composition.
  • the present invention is an additive for a hydraulic composition using a blast furnace slag cement, and is excellent in initial strength of the cured body, for example, strength after 7 days (hereinafter referred to as 7-day strength).
  • Additives for hydraulic compositions from which the composition is obtained are provided.
  • the component (D) it is an additive for a hydraulic composition using a blast furnace slag cement, has an appropriate workability, and is excellent in strength and durability of a cured body.
  • An additive for a hydraulic composition is provided from which a hydraulic composition is obtained.
  • the salt of thiosulfuric acid is preferably an alkali metal salt such as sodium salt or potassium salt from the viewpoint of strength, for example, 7-day strength.
  • Alkali metal salts are also preferable from the viewpoint of fluidity.
  • Specific examples of the component (A) include sodium thiosulfate (Na 2 S 2 O 3 ), potassium thiosulfate (K 2 S 2 O 3 ), and lithium thiosulfate (Li 2 S 2 O 3 ).
  • the thiocyanic acid salt examples include alkali metal salts such as sodium salt and potassium salt, and alkaline earth metal salts such as calcium salt. From the viewpoint of strength, for example, 7-day strength, alkali metal salts are preferred. Alkali metal salts are also preferable from the viewpoint of fluidity.
  • R 1 and R 2 are each independently a hydrocarbon group which may have a proton or a hydroxy group, for example, an alkyl group having 1 to 10 carbon atoms which may have a hydroxy group. is there.
  • the ⁇ -hydroxysulfonic acid include those having 1 or more carbon atoms, preferably 10 or less, more preferably 6 or less, and still more preferably 4 or less. Specific examples include hydroxymethanesulfonic acid and 1,2-dihydroxypropane-2-sulfonic acid.
  • the salt of ⁇ -hydroxysulfonic acid include alkali metal salts such as sodium salt and potassium salt.
  • the ⁇ -hydroxysulfonic acid salt is preferably an ⁇ -hydroxysulfonic acid salt, more preferably an alkali metal of ⁇ -hydroxysulfonic acid, from the viewpoint of shortening the time required for the hydraulic composition to reach the required strength.
  • a salt more preferably a sodium salt of ⁇ -hydroxysulfonic acid.
  • the ⁇ -hydroxysulfonic acid or a salt thereof is preferably one or more compounds selected from hydroxymethanesulfonic acid, 1,2-dihydroxypropane-2-sulfonic acid, and salts thereof.
  • Component (D) The additive for the hydraulic composition of the present invention can contain the following component (D).
  • the additive containing the component (D) is a preferred embodiment of the present invention.
  • Component (D) is a dispersant in a hydraulic composition. It may have a function as a water reducing agent or AE agent.
  • Component can use a commercial item.
  • lignin sulfonic acid and salts thereof and derivatives thereof for example, as a water reducing agent and an AE water reducing agent, Master Pozzolith No. 70, Master Polyhed 15S series, Floric's Floric S series, Floric R series, Grace Chemical's Darrex WRDA, Nihon Seika's Plus Cleat NC, Plus Cleat R, Yamaso Chemical's Yamaso 80P , Yamaso 90 series, Yamaso 98 series, Yamaso 02NL-P, Yamaso 02NLR-P, Yamaso 09NL-P, Yamaso NLR-P, Takemoto Yushi Co., Ltd. Tupole EX60 series, Tupole LS-A series, Rigace ligace UA Series, Rigace UR series, Rigace VF series and the like.
  • lignin sulfonic acid derivatives Alkali metal salt, alkaline earth metal salt, ammonium salt, or amine salt of lignin sulfonic acid
  • II Lignin derivative in which an amine compound or an amino group is introduced into lignin sulfonate (for example, JP-A-2016-108183 issue)
  • III Lignin derivatives reacted with lignin sulfonate and formaldehyde (for example, JP-A-2015-229764)
  • IV Modified lignin such as oxidized lignin and sulfonated lignin (for example, JP 2003-2714 A)
  • V Lignin sulfonic acid compound polyol complex (for example, JP-A-2007-105899)
  • VI Modified lignin sulfonates of the following 1) to 3) (for example
  • Examples of the water-soluble monomer include at least one ionic functional group such as carboxyl group, hydroxyl group, sulfone group, nitroxyl group, carbonyl group, phosphoric acid group, amino group, and epoxy group, and other polar groups.
  • the compound which has the above is mentioned.
  • Lignin sulfonic acid A lignin derivative obtained by radical copolymerizing at least one water-soluble monomer with a radical initiator (usually on a functional group of the compound) Although not specifically limited, what is obtained by digesting wood by a sulfurous acid method is exemplified.
  • water-soluble monomers water-soluble monomers that can react with phenolic hydroxyl groups and / or alcoholic hydroxyl groups contained in lignin sulfonic acid compounds include alkylene oxides such as ethylene oxide and propylene oxide. Can be mentioned.
  • water-soluble monomers that can react with thiol groups contained in lignin sulfonic acid compounds include alkylene oxides such as ethylene oxide and propylene oxide, and alkylene imines such as ethylene imine and propylene imine. Is mentioned.
  • water-soluble monomers used for radical copolymerization monomers described in JP-A-2015-212216 [0071] to [0074], specifically acrylic acid, methacrylic acid, (meth) acrylic Examples include adducts having 1 to 500 moles of alkylene oxide having 2 to 18 carbon atoms to the acid, and alkylene oxide addition compounds obtained by adding 2 to 300 moles of alkylene oxide to allyl alcohol.
  • the naphthalene sulfonic acid formaldehyde condensate or a salt thereof is a condensate of naphthalene sulfonic acid and formaldehyde or a salt thereof.
  • the naphthalene sulfonic acid formaldehyde condensate may be used as a monomer, for example, methyl naphthalene, ethyl naphthalene, butyl naphthalene, hydroxy naphthalene, naphthalene carboxylic acid, anthracene, phenol, cresol, creosote oil, tar, melamine, as long as the performance is not impaired. It may be co-condensed with an aromatic compound capable of co-condensing with naphthalenesulfonic acid, such as urea, sulfanilic acid and / or derivatives thereof.
  • Naphthalene sulfonic acid formaldehyde condensate or salt thereof may be, for example, Mighty 150, Demol N, Demol RN, Demol MS, Demol SN-B, Demol SS-L (all manufactured by Kao Corporation), Cellflow 120, Labelin FD-40 Commercial products such as Labelin FM-45 (both manufactured by Daiichi Kogyo Co., Ltd.) can be used.
  • the naphthalene sulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 200,000 or less, from the viewpoint of centrifugal moldability and / or strength development of the cured product and improvement of fluidity of the hydraulic composition. Preferably it is 100,000 or less, More preferably, it is 80,000 or less, More preferably, it is 50,000 or less, More preferably, it is 30,000 or less.
  • the naphthalene sulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 1,000 or more from the viewpoint of centrifugal moldability and / or strength expression of the cured product and improvement of fluidity of the hydraulic composition.
  • the naphthalene sulfonic acid formaldehyde condensate may be in the acid state or neutralized.
  • the molecular weight of naphthalenesulfonic acid formaldehyde condensate or a salt thereof can be measured using gel permeation chromatography (GPC) under the following conditions.
  • Polystyrene sulfonate sodium equivalent (monodispersed sodium polystyrene sulfonate: molecular weight, 206, 1,800, 4,000, 8,000, 18,000, 35,000, 88,000, 780,000) Detector: Tosoh Corporation UV-8020
  • Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate or a salt thereof include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. Specifically, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used with respect to 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 105 ° C.
  • the neutralizing agent is preferably added in an amount of 1.0 to 1.1 moles per each of naphthalenesulfonic acid and unreacted sulfuric acid.
  • the water-insoluble matter which arises by neutralization can be removed, and preferably the separation by filtration is mentioned as the method.
  • an aqueous solution of a naphthalenesulfonic acid formaldehyde condensate water-soluble salt is obtained.
  • This aqueous solution can be used as it is as the aqueous solution of component (D).
  • the aqueous solution can be dried and pulverized to obtain a powdery salt of naphthalenesulfonic acid formaldehyde condensate, which can be used as the powdery component (D). Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like.
  • the additive for the hydraulic composition of the present invention comprises the component (A), preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
  • the additive for the hydraulic composition of the present invention comprises the component (B), preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
  • the additive for the hydraulic composition of the present invention comprises the component (C), preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
  • the additive of the present invention may be an additive composition containing the component (A), the component (B) and the component (C).
  • the additive of the present invention preferably contains water.
  • the additive for the hydraulic composition of the present invention contains the component (D)
  • the additive preferably contains the component (D) in an amount of 0.001% by mass or more, more preferably 0.01% by mass or more. And preferably 95% by mass or less, more preferably 70% by mass or less.
  • the additive of the present invention may be an additive composition containing the component (A), the component (B), the component (C) and the component (D). (D) It is preferable that the additive of this invention containing a component contains water.
  • a dispersant other than the component (D) can be further mixed from the viewpoint of improving workability.
  • the dispersant include a dispersant such as a phosphate ester polymer, a polycarboxylic acid copolymer, a sulfonic acid copolymer, a melamine polymer, and a phenol polymer.
  • the dispersant may be an admixture containing other components.
  • the additive for the hydraulic composition of the present invention contains a dispersant other than the component (D), it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass. % Or less, more preferably 70% by mass or less.
  • the additive for the hydraulic composition of the present invention can contain a polyol from the viewpoint of promoting the setting.
  • the polyol include divalent to hexavalent polyols. Specific examples include glycerin, alkylene oxide adducts of glycerol such as ethylene oxide adducts of glycerin, ethylene glycol, propylene glycol, diethylene glycol, saccharides and the like.
  • the polyol is preferably glycerin from the viewpoint of strength development.
  • the additive for the hydraulic composition of the present invention contains a polyol, it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70%. Contain less than mass%.
  • the additive for the hydraulic composition of the present invention can contain an alkanolamine.
  • the alkanolamine include alkanolamines having 1 to 3 alkanol groups having 1 to 5 carbon atoms. Specific examples of the alkanolamine include triethanolamine, diethanolamine, diisopropanol monoethanolamine, triisopropanolamine, methyldiethanolamine, and ethyldiethanolamine.
  • the alkanolamine is preferably methyldiethanolamine from the viewpoint of strength development.
  • the additive for the hydraulic composition of the present invention contains an alkanolamine, it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
  • the additive for the hydraulic composition of the present invention can further contain other components in order to entrain a predetermined amount of air.
  • resin soap saturated or unsaturated fatty acid, lauryl sulfate, alkylbenzene sulfonic acid or salt thereof, alkane sulfonate, polyoxyalkylene alkyl (or alkylphenyl) ether, polyoxyalkylene alkyl (or alkylphenyl) ether sulfate or salt thereof
  • AE agents such as polyoxyalkylene alkyl (or alkylphenyl) ether phosphates or salts thereof, protein materials, alkenyl succinic acid, ⁇ -olefin sulfonate, and the like.
  • the additive for the hydraulic composition of the present invention includes oxycarboxylic acid type retarders such as gluconic acid, glucoheptonic acid, arabonic acid, malic acid, citric acid, dextrin, monosaccharide, oligosaccharide, polysaccharide, etc.
  • Sugar retarders such as sugar retarders and sugar alcohol retarders; foaming agents; thickeners; silica sand; soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, calcium bromide, calcium iodide, iron chloride
  • Fasteners or accelerators such as chlorides such as magnesium chloride, carbonates, formic acid or salts thereof; foaming agents; waterproofing agents such as resin acids or salts thereof, fatty acid esters, oils and fats, silicones, paraffin, asphalt, waxes, etc.
  • the additive for the hydraulic composition of the present invention includes rust preventives such as nitrite, phosphate and zinc oxide; celluloses such as methylcellulose and hydroxyethylcellulose; natural such as ⁇ -1,3-glucan and xanthan gum
  • rust preventives such as nitrite, phosphate and zinc oxide
  • celluloses such as methylcellulose and hydroxyethylcellulose
  • natural such as ⁇ -1,3-glucan and xanthan gum
  • Water-soluble polymers such as synthetic systems such as physical systems, polyacrylic acid amides, polyethylene glycol, ethylene oxide adducts of oleyl alcohol or reaction products thereof with vinylcyclohexene diepoxide; polymer emulsions such as alkyl (meth) acrylates Can also be contained.
  • the additive of the present invention is for a hydraulic composition using blast furnace slag cement.
  • the blast furnace slag cement preferably contains 5% by mass to 95% by mass of cement and 5% by mass to 70% by mass of blast furnace slag.
  • the content of cement and blast furnace slag is also preferably in the range described below.
  • the present invention relates to a hydraulic property of a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof using a blast furnace slag cement.
  • Use as an additive for compositions is provided.
  • the present invention also uses a blast furnace slag cement as a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof.
  • a method for use as an additive for hydraulic compositions is provided.
  • the present invention also provides a hydraulic composition using a blast furnace slag cement in which (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof are mixed.
  • a method for producing a product additive The present invention also provides (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, and (D) ligninsulfonic acid and a derivative thereof, ligninsulfone.
  • compositions comprising an acid salt and derivatives thereof, and an admixture selected from naphthalene sulfonate formaldehyde condensate and salts thereof as an additive for hydraulic compositions using blast furnace slag cement.
  • the present invention also provides (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, and (D) ligninsulfonic acid and a derivative thereof, ligninsulfone.
  • the present invention also provides (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, and (D) ligninsulfonic acid and a derivative thereof, ligninsulfone.
  • a method for producing an additive for a hydraulic composition using a blast furnace slag cement in which an admixture selected from an acid salt and a derivative thereof, and a naphthalenesulfonate formaldehyde condensate and a salt thereof are mixed.
  • the matters described in the additives for hydraulic compositions of the present invention can be appropriately applied to these uses or methods.
  • the content in the additive for a hydraulic composition of the present invention can be replaced with a mixed amount.
  • the hydraulic composition of the present invention contains (A) component, (B) component, (C) component, blast furnace slag cement, and water. Moreover, the hydraulic composition of this invention contains (A) component, (B) component, (C) component, (D) component, blast furnace slag cement, and water. Specific examples and preferred embodiments of the component (A), the component (B), the component (C), and the component (D) are the same as those of the additive of the present invention. Moreover, it is preferable that the hydraulic composition of this invention contains a polyol and an alkanolamine.
  • the hydraulic composition of the present invention can contain a dispersant other than the component (D). Specific examples and preferred embodiments of the dispersant, polyol, and alkanolamine other than the component (D) are the same as those of the additive of the present invention.
  • the blast furnace slag cement contains cement and blast furnace slag.
  • Blast furnace slag cement may use cement and blast furnace slag separately when mixing materials. Further, a stimulant such as gypsum may be added.
  • the cement is preferably Portland cement.
  • the blast furnace slag cement is cement, preferably 5% by mass or more, more preferably 30% by mass or more, further preferably 40% by mass or more, and preferably 95% by mass or less, more preferably 80% by mass or less, still more preferably. Contains 70% by mass or less.
  • As the blast furnace slag, slowly cooled slag and quenched slag are known. Quenched slag is also known as blast furnace granulated slag. In the present invention, quenching slag is preferred.
  • the blast furnace slag cement is preferably blast furnace slag, preferably 5 mass% or more, more preferably 20 mass% or more, still more preferably 30 mass% or more, and preferably 95 mass% or less, more preferably 70 mass% or less, Preferably it is 60 mass% or less, More preferably, it contains less than 60 mass%.
  • An example of the blast furnace slag cement is a blast furnace slag cement having a blast furnace slag content of 5% by mass or more and less than 30% by mass.
  • the blast furnace slag cement whose content of a blast furnace slag is 30 mass% or more and less than 60 mass% is mentioned.
  • the blast furnace slag cement whose content of a blast furnace slag is 60 mass% or more and less than 70 mass% is mentioned.
  • blast furnace cement type A blast furnace cement type B
  • blast furnace cement type C specified in JIS R 5211
  • the blast furnace slag cement is preferably blast furnace cement type B or C, and more preferably blast furnace cement type B.
  • three types of blast furnace cement, A type, B type, and C type are specified depending on the amount of blast furnace slag. Some are composed of Portland cement and blast furnace slag, others are composed of clinker, gypsum, small amounts of mixed components and blast furnace slag.
  • JIS R 5211 blast furnace cement is used in the present invention, the entire blast furnace cement is used as the amount of blast furnace slag cement.
  • the hydraulic composition of the present invention is obtained by adding thiosulfuric acid or a salt thereof as component (A) to blast furnace slag cement from the viewpoint of initial strength, for example, strength from 1 to 7 days of age, salt resistance, and fluidity.
  • thiosulfuric acid or a salt thereof as component (A)
  • component (A) thiosulfuric acid or a salt thereof as component (A)
  • 0.001% by mass or more Preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and from the viewpoint of workability, preferably 3.0% by mass or less, more preferably 2.0 mass% or less, More preferably, it contains 1.0 mass% or less.
  • the hydraulic composition of the present invention preferably contains thiocyanic acid or a salt thereof as component (B) with respect to blast furnace slag cement from the viewpoint of initial strength, for example, strength from 1 to 7 days of age and fluidity.
  • (C) component ⁇ -hydroxyalkanesulfonic acid or a salt thereof is added to blast furnace slag cement in terms of initial strength, for example, strength from 1 to 7 days of age and fluidity. Therefore, preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, still more preferably 0.01% by mass or more, and from the viewpoint of workability, preferably 3.0% by mass or less, more preferably Is contained in an amount of 2.0% by mass or less, more preferably 1.0% by mass or less, and still more preferably 0.5% by mass or less.
  • the hydraulic composition of the present invention contains the component (D), from the viewpoint of workability, the hydraulic composition is lignin sulfonic acid or a derivative thereof (D) component, lignin from the blast furnace slag cement.
  • An admixture selected from a sulfonate or a derivative thereof and a naphthalenesulfonate formaldehyde condensate or a salt thereof is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.1%. From the viewpoint of the mass% or more and strength, it is preferably 5 mass% or less, more preferably 3 mass% or less, still more preferably 2 mass% or less.
  • the dispersant is preferably 0.001% by mass or more, more preferably from the viewpoint of workability with respect to the blast furnace slag cement. 0.01% by mass or more, and preferably 5% by mass or less, more preferably 3% by mass or less.
  • the polyol is preferably 0.001% by mass or more, more preferably 0, from the viewpoint of strength, for example, 7-day strength and fluidity, with respect to the blast furnace slag cement. From the viewpoint of workability, it is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.25% by mass or less.
  • the amount of polyol may be 0% by weight.
  • the alkanolamine is preferably 0.001% by mass or more, more preferably 0.01% from the viewpoint of improving the strength for 7 days with respect to the blast furnace slag cement. % Or more, and from the viewpoint of workability, the content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less.
  • the amount of alkanolamine may be 0% by weight.
  • the hydraulic composition of the present invention preferably contains blast furnace slag cement and water at a mass ratio of water / blast furnace slag cement of 40% by mass to 60% by mass.
  • the mass ratio of water / blast furnace slag cement is more preferably 42% by mass or more, further preferably 45% by mass or more, and more preferably 58% by mass or less, and further preferably 55% by mass or less.
  • the mass ratio of water / blast furnace slag cement is the mass percentage (mass%) of blast furnace slag cement and water mixed for the preparation of the hydraulic composition, and the mass of water / mass of blast furnace slag cement ⁇ 100. Is calculated by
  • the hydraulic composition of the present invention can contain an aggregate.
  • Aggregates include fine aggregates and coarse aggregates. Fine aggregates are preferably mountain sand, land sand, river sand and crushed sand, and coarse aggregates are preferably mountain gravel, land gravel, river gravel and crushed stone. .
  • lightweight aggregates may be used.
  • the term “aggregate” is based on “Concrete Overview” (published on June 10, 1998, published by Technical Shoin). The content of the aggregate can be used in a range of mortar or concrete that is usually used.
  • the hydraulic composition of the present invention can also contain other optional components described in the additive of the present invention.
  • the hydraulic composition of the present invention has improved compressive strength during curing, especially initial strength, for example, strength after 7 days.
  • initial strength for example, strength after 7 days.
  • strength starts from the time when blast furnace slag cement and water first contacted at the time of preparation of a hydraulic composition.
  • the hydraulic composition of the present invention in particular, the hydraulic composition of the present invention containing the component (D) has good physical properties related to workability such as fluidity, and has strength and durability upon curing. It will be improved. In general, the durability of the cured body is ensured by mixing appropriate air into the hydraulic composition, but the hydraulic composition of the present invention, particularly, the hydraulic composition of the present invention containing the component (D). As for the thing, it is easy to secure the amount of air, and the amount of AE agent added can be reduced. In addition, the hydraulic composition of the present invention, in particular the hydraulic composition of the present invention containing the component (D), has a compressive strength equal to or higher than that of the conventional one when the amount of air is the same. .
  • the hydraulic composition of the present invention can be used as a material for concrete structures and concrete products. Since the concrete using the hydraulic composition of the present invention has improved initial compressive strength such as 7 days after contact with water, for example, the same demolding time as that of concrete using ordinary cement can be obtained. In addition, the hydraulic composition of the present invention has advantages in that long-term strength can be improved and chemical resistance can be improved as compared with concrete using ordinary Portland cement or blast furnace slag cement. Furthermore, the hydraulic composition of the present invention is a hydraulic powder (fly ash, silica fume, limestone, etc.) having a low initial age strength after water contact within a range that does not impair the proportion of slag in the hydraulic powder. Even if it mix
  • the hydraulic composition of the present invention includes mortar and concrete.
  • the hydraulic composition of the present invention can be used for box culverts (walls), bridge substructures, tunnel linings, marine structures, PC structures, ground improvement, grout, cold, etc. It is also useful in the field.
  • the present invention relates to a hydraulic property of a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, blast furnace slag cement, and water.
  • a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, a blast furnace slag cement, and water.
  • a method for use as a hydraulic composition is provided.
  • the present invention also includes (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, (D) ligninsulfonic acid or a derivative thereof, ligninsulfonic acid.
  • A thiosulfuric acid or a salt thereof
  • B thiocyanic acid or a salt thereof
  • C ⁇ -hydroxyalkanesulfonic acid or a salt thereof
  • D ligninsulfonic acid or a derivative thereof, ligninsulfonic acid.
  • a composition comprising a salt or derivative thereof, and an admixture selected from naphthalenesulfonate formaldehyde condensate or salt thereof, a blast furnace slag cement, and water as a hydraulic composition.
  • the present invention also includes (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) ⁇ -hydroxyalkanesulfonic acid or a salt thereof, (D) ligninsulfonic acid or a derivative thereof, ligninsulfonic acid.
  • A thiosulfuric acid or a salt thereof
  • B thiocyanic acid or a salt thereof
  • C ⁇ -hydroxyalkanesulfonic acid or a salt thereof
  • D ligninsulfonic acid or a derivative thereof, ligninsulfonic acid.
  • a method of using as a hydraulic composition, a composition containing a salt or a derivative thereof, an admixture selected from a naphthalenesulfonate formaldehyde condensate or a salt thereof, a blast furnace slag cement, and water.
  • the matters described in the additives for hydraulic compositions of the present invention can be appropriately applied to these uses
  • the manufacturing method of the hydraulic composition of this invention mixes (A) component, (B) component, (C) component, blast furnace slag cement, and water. Moreover, the manufacturing method of the hydraulic composition of this invention mixes (A) component, (B) component, (C) component, (D) component, blast furnace slag cement, and water. Specific examples and preferred embodiments of the component (A), the component (B), the component (C), and the component (D) are the same as those of the additive of the present invention. Moreover, in the manufacturing method of the hydraulic composition of this invention, it is preferable to mix a polyol and an alkanolamine.
  • dispersing agents other than (D) component can be mixed.
  • Specific examples and preferred embodiments of the dispersant, polyol, and alkanolamine other than the component (D) are the same as those of the additive of the present invention.
  • the content in the hydraulic composition of the present invention can be replaced with a mixed amount.
  • the manufacturing method of the hydraulic composition of the present invention is suitable as the manufacturing method of the hydraulic composition of the present invention.
  • blast furnace slag cement is mixed with (A) component thiosulfuric acid or a salt thereof, (B) component thiocyanic acid or a salt thereof, and (C) component ⁇ -hydroxyalkanesulfonic acid.
  • a salt thereof an admixture selected from (D) component lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof, if necessary, water, and optionally
  • a hydraulic composition is obtained by adding and mixing a dispersant other than the component (D), optionally glycerin, optionally alkanolamine, and optionally aggregate.
  • a mixture containing (A) component, (B) component, (C) component and water or (A) component, (B) component, (C) component, (D) component and water-containing mixture And blast furnace slag cement are preferably mixed.
  • (A) component, (B) component, (C) component, (D) component if necessary, water, optionally glycerin, optionally A mixture containing an alkanolamine, a component (A), a component (B), a component (C), a component (D), water, and optionally a dispersant other than the component (D); It is preferable to use a mixture containing optionally glycerin, optionally alkanolamine, and optionally AE agent.
  • Blast furnace slag cement (A) component thiosulfuric acid or salt thereof, (B) component thiocyanic acid or salt thereof, (C) component ⁇ -hydroxyalkanesulfonic acid or salt thereof, (D) component lignin sulfonic acid or The admixture selected from the derivative, lignin sulfonate or derivative thereof, naphthalene sulfonate formaldehyde condensate or salt thereof, dispersant other than component (D), glycerin, alkanolamine, aggregate, and water are mixed.
  • (A) component, (B) component, (C) component, (D) component, dispersant other than (D), glycerin, alkanolamine and water are mixed in advance, It is preferable to mix with blast furnace slag cement and aggregate. Moreover, it is preferable to mix a blast furnace slag cement and an aggregate beforehand. Mixing with blast furnace slag cement, aggregate, and water can be carried out using a mortar mixer, tilting type, horizontal biaxial type, pan type or the like. It is preferable to use a mixture in which a dispersant other than the components (A), (B), (C), (D), and (D), glycerin, and alkanolamine are added to water. In addition, the above components and materials are preferably mixed for 30 seconds or longer, more preferably 1 minute or longer, and preferably 10 minutes or shorter, more preferably 5 minutes or shorter.
  • the amount of air in the obtained hydraulic composition tends to increase.
  • the amount of air in the hydraulic composition increases, the strength of the cured body decreases, but the hydraulic composition of the present invention improves the strength of the cured body regardless of the amount of air. Therefore, for example, when the amount of air may be the same as the conventional level, a hardened body with high strength can be obtained while reducing the amount of AE agent or AE water reducing agent added.
  • the method for producing a cured product of the hydraulic composition of the present invention comprises: A step of producing a hydraulic composition by the production method of the present invention; Filling the mold with the obtained hydraulic composition and curing; Removing the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition; Have
  • the process for producing the hydraulic composition by the production method of the present invention is as described above.
  • the uncured hydraulic composition after preparation is filled into the mold, cured, and cured.
  • the formwork include a structure formwork and a concrete product formwork.
  • the method of filling the mold include a method of directly feeding from a mixer, a method of pumping the hydraulic composition with a pump and introducing it into the mold. When filling the mold and after filling, vibration may be added from the viewpoint of improving fillability.
  • the curing temperature of the hydraulic composition filled in the mold is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, preferably lower than 50 ° C., more preferably 40 ° C. or lower, and 30 ° C. or lower. Further preferred.
  • air curing at room temperature can be performed.
  • the heat curing time is short from the viewpoint of reducing energy.
  • the heat curing time may be 0 hour. That is, it is not necessary to perform heat curing.
  • the cured composition of the hydraulic composition is obtained by demolding from the mold.
  • the obtained cured product can be used for the uses described in the hydraulic composition.
  • the time from contact of water with the hydraulic powder to demolding is 4 hours from the viewpoint of obtaining strength necessary for demolding and improving the production cycle. It is preferably 14 days or less.
  • the method for producing a cured body of the hydraulic composition of the present invention since the curing of the hydraulic composition is promoted, it is possible to shorten the time from preparation of the hydraulic composition to demolding.
  • Example ⁇ Example 1a and Comparative Example 1a> A cured mortar was produced and evaluated for strength. The blending, preparation and evaluation of mortar are described below.
  • the addition amount (mass%) with respect to the cement (C) of each component is as Table 2, and it added and used for kneading water so that it might become the addition amount shown in Table 2.
  • Sodium thiosulfate the table was expressed as Na 2 S 2 O 3.
  • Sodium thiocyanate was indicated as NaSCN in the table.
  • Sodium ⁇ -hydroxymethanesulfonate was represented as HMS in the table.
  • Cement Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., density 3.16 g / cm 3 , indicated as OPC in the table) or blast furnace cement B type (manufactured by Taiheiyo Cement Co., Ltd., density 3.04 g) / Cm 3 , indicated as BB in the table.)
  • Fine aggregate (S): produced in Jyoyo, mountain sand, FM 2.67, density 2.56 g / cm 3
  • the number of days from the preparation of the mortar started from the time when the water first contacted the cement during the preparation of the mortar.
  • the relative value with respect to the strength of the reference product is shown in Table 2 as the strength ratio (%).
  • a comparative example in which no additive is used is shown as a standard for each cement type.
  • Example 2a and Comparative Example 2a> A cured mortar was produced in the same manner as in Example 1a, and the strength was evaluated. However, the components added to the mortar were added to the kneading water (W) as additives (I), (II) or (III) having the composition shown in Table 3. Additives (I), (II) or (III) were used so that the amount added to cement (C) was as shown in Table 4. The results are shown in Table 4. In addition, the relative value of intensity
  • Example 3a and Comparative Example 3a> Under the compounding conditions shown in Table 5, a cured product was produced in accordance with JIS R 5201, and the strength was measured for 7 days. The results are shown in Table 6.
  • the same BB (type blast furnace cement B) as Example 1a was used for the cement.
  • the fine aggregate (S) standard sand for cement strength test (manufactured by Cement Association) was used. Further, the same additives (I) and (II) as in Example 2a were used.
  • Example 4a and Comparative Example 4a> A cured mortar was produced in the same manner as in Example 3a, and the strength was evaluated. However, the cement shown in Table 7 was used. BFS in Table 7 is blast furnace slag fine powder (with gypsum, manufactured by Esment Kanto Co., Ltd., Blaine specific surface area 4,000 cm 2 / g). The results are shown in Table 7. In addition, the relative value of intensity
  • the concrete blending components are shown below.
  • Admixture (1) AE water reducing agent (standard type) containing lignin sulfonic acid, manufactured by BASF Japan Ltd., Master Pozzolith No. 70
  • Admixture (2) AE agent, Master Air 202 manufactured by BASF Japan Water (W): Kneaded water obtained by adding a mixture containing the admixtures in Table 9 and the additives in Table 9 to tap water
  • the additive (I) was added to the kneaded water so that the amount of solid content added to the hydraulic powder (P) (total of OPC and BFS) was as shown in Table 9.
  • the room temperature at the time of concrete preparation was 20 degreeC.
  • the amount of air in the uncured concrete was measured in accordance with JIS A 1128 “Test method by pressure of air amount in fresh concrete”. The results are shown in Table 9.
  • the mass% of the admixtures (1) and (2) is mass% based on the apparent amount added to the hydraulic powder (P) (total of OPC and BFS).
  • the addition amount of the additive (I) is the solid content addition amount (mass%) relative to the hydraulic powder (P) (total of OPC and BFS).
  • Example 6a and Comparative Example 6a> A hardened concrete was produced in the same manner as in Example 5a, and the strength was evaluated. However, the mixing conditions of concrete were as shown in Table 10. Moreover, the intensity
  • the mass% of the admixtures (1) and (2) is mass% based on the apparent amount added to the hydraulic powder (P) (total of OPC and BFS).
  • the addition amount of the additive (I) is the solid content addition amount (mass%) relative to the hydraulic powder (P) (total of OPC and BFS).
  • Example 7a and Comparative Example 7a A hardened concrete was produced in the same manner as in Example 5a, and the strength was evaluated. However, the mixing conditions of concrete were as shown in Table 12. The cement, additives and admixtures are as follows. The amounts of additives and admixtures added were as shown in Table 13. The curing temperature was as shown in Table 13. Cement: The same BB (type blast furnace cement B) as in Example 1a was used. Additive: Additive (II) of Example 2a was used. Admixture (1) and Admixture (2): The same as in Example 5a was used.
  • Admixture (3) AE water reducing agent (high function type), manufactured by Kao Corporation, Mighty 1000S (polycarboxylic acid type special surfactant and natural resin acid derivative) Intensity was measured as 1-day intensity, 2-day intensity, 3-day intensity, 7-day intensity, 28-day intensity, and 91-day intensity. The results are shown in Table 13. In addition, the relative value of intensity
  • the mass% of the admixture (1), the admixture (2), and the admixture (3) is mass% based on the apparent amount added to the cement (BB).
  • the addition amount of the additive (II) is the addition amount (% by mass) of the solid content with respect to the cement (BB).
  • Example 1b ⁇ Example 1b, Comparative Example 1b, and Reference Example 1b> Mortar and its hardened
  • the blending, preparation and evaluation of mortar are described below.
  • each component was kneaded according to JIS R 5201 to obtain a mortar.
  • a universal mixing stirrer model: 5DM-03- ⁇
  • the kneading water was obtained by mixing a mixture containing each component (shown as an additive for convenience) and an admixture (d1) in Table 15 with water.
  • Sodium thiosulfate the table was expressed as Na 2 S 2 O 3.
  • Sodium thiocyanate was indicated as NaSCN in the table.
  • Sodium ⁇ -hydroxymethanesulfonate was represented as HMS in the table.
  • Cement Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., density 3.16 g / cm 3 , expressed as OPC in the table) and blast furnace slag (containing blast furnace slag fine powder, gypsum, Sment Kanto Co., Ltd.) Blast furnace cement in which a Blaine specific surface area of 4,000 cm 2 / g, expressed as BFS in the table) was mixed at a 50/50 mass ratio.
  • Admixture (d1) AE water reducing agent (standard type) containing lignin sulfonic acid, BASF Japan Ltd., Master Pozzolith No. 70
  • the addition amount of the admixture (d1) is the apparent addition amount (mass%) with respect to the cement (C) (total of OPC and BFS).
  • the addition amount of additive (I) is the addition amount (mass%) of solid content with respect to cement (C) (total of OPC and BFS).
  • Example 2b ⁇ Example 2b, Comparative Example 2b, and Reference Example 2b> Mortar was manufactured and fluidity was evaluated. The blending, preparation and evaluation of mortar are described below.
  • Mortar formulation Table 17 shows the mortar formulation conditions.
  • the blending ingredients of the mortar and the mortar mixer are as follows.
  • Fine aggregate (S): produced in Jyoyo, mountain sand, FM 2.67, density 2.56 g / cm 3 ⁇
  • Mortar mixer Universal mixing stirrer manufactured by Dalton Co., Ltd. Model: 5DM-03- ⁇
  • Admixtures (d2) and (d3) are as follows. ⁇ Admixture (d2): Polycarboxylic acid dispersant, Mighty 21HP, manufactured by Kao Corporation ⁇ Admixture (d3): Naphthalenesulfonic acid formaldehyde high condensate, high-performance water reducing agent, Mighty 150, manufactured by Kao Corporation
  • the addition amounts of the admixtures (d1), (d2), and (d3) are apparent addition amounts (mass%) with respect to the cement (C) (OPC or BB).
  • the addition amount of additives (I), (II), and (III) is the mass% of solid content with respect to cement (C) (OPC or BB).
  • Example 3b and Comparative Example 3b Concrete and its hardened body were manufactured, and the strength of the concrete slump and hardened body was evaluated. The blending, preparation and evaluation of concrete are described below.
  • (2) Concrete blending Table 19 shows the concrete blending conditions.
  • Additive (I) was added to water so that the amount of solid content added to hydraulic powder (P) (total of OPC and BFS) was as shown in Table 20.
  • the slump of uncured concrete was measured according to JIS A 1101 “Concrete slump test method”. The results are shown in Table 20. Further, the amount of air in the uncured concrete was measured in accordance with JIS A 1128 “Test method by pressure of air amount in fresh concrete”. The results are shown in Table 20.
  • the addition amount of the admixture (d1) and the admixture (d4) is the apparent addition amount (mass%) relative to the hydraulic powder (P) (total of OPC and BFS). Moreover, in Table 20, the addition amount of the additive (I) is mass% of solid content with respect to the hydraulic powder (P) (total of OPC and BFS).
  • Example 3b-1 the amount of admixture (d4) added was reduced, but the amount of air increased compared to Comparative Example 3b-1, and the compression strength after 3 days and 7 days was improved. Yes.
  • Example 4b and Comparative Example 4b Concrete and its hardened body were produced in the same manner as in Example 3b, and the slump and strength were evaluated. However, the mixing conditions of concrete were as shown in Table 21. Moreover, the intensity
  • the addition amount of the admixture (d1) and the admixture (d4) is the apparent addition amount (mass%) with respect to the hydraulic powder (P) (total of OPC and BFS). Moreover, in Table 22, the addition amount of the additive (I) is mass% of solid content with respect to the hydraulic powder (P) (total of OPC and BFS).
  • Example 5b and Comparative Example 5b Concrete and its hardened body were produced in the same manner as in Example 3b, and the slump and strength were evaluated.
  • the concrete flow was measured in accordance with JIS A 1150 “Concrete Slump Flow Test Method”. However, the mixing conditions of concrete were as shown in Table 23.
  • the same BB (type blast furnace cement B) as in Example 2b was used as the cement.
  • the additive (II) of Example 2b was used in the amount shown in Table 24.
  • Table 24 shows the setting time in accordance with JIS A 1123 “Concrete Bleeding Test Method”. In addition, the room temperature at the time of concrete preparation and the curing temperature were 10 degreeC.
  • the addition amounts of the admixture (d1) and the admixture (d5) are apparent addition amounts (mass%) with respect to the cement (BB). Moreover, in Table 24, the addition amount of additive (II) is the mass% of solid content with respect to cement (BB).

Abstract

The present invention pertains to an additive for a hydraulic-setting composition, the additive containing thiosulfuric acid or a salt thereof, thiocyanic acid or a salt thereof, and an α-hydroxyalkanesulfonic acid or a salt thereof.

Description

水硬性組成物用の添加剤Additives for hydraulic compositions
 本発明は、高炉スラグセメントを用いた水硬性組成物用の添加剤、水硬性組成物、水硬性組成物の製造方法、及び水硬性組成物の硬化体の製造方法に関する。 The present invention relates to an additive for a hydraulic composition using a blast furnace slag cement, a hydraulic composition, a method for producing a hydraulic composition, and a method for producing a cured product of the hydraulic composition.
背景技術
 セメントや高炉スラグなどの水硬性粉体は、水と反応して硬化する性質があり、砂と混合することでモルタル、さらに砂利と混合することでコンクリートと呼ばれる。これらの材料は、硬化前は容易にその形態を変えることができるため、様々な構造物に用いられてきた。硬化前のコンクリートなどに、化学薬剤を添加することで、硬化体の強度の調整、作業可能時間の改善、ワーカビリティの改善などを行うことができる。
Background Art Hydraulic powders such as cement and blast furnace slag are hardened by reacting with water, and are called mortar when mixed with sand and concrete when mixed with gravel. These materials have been used in various structures because they can be easily changed in form before curing. By adding a chemical agent to the concrete before curing, the strength of the cured body can be adjusted, workable time can be improved, workability can be improved, and the like.
 特開2011-153068号公報には、グリセリン等の特定の化合物(1)と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとからなる水硬性組成物用早強剤であって、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である水硬性組成物用早強剤が開示されている。 Japanese Patent Application Laid-Open No. 2011-153068 discloses a rapid composition for a hydraulic composition comprising a specific compound (1) such as glycerin and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates. An early strengthening agent for a hydraulic composition, which is a strong agent and the molar ratio of compound (1) to inorganic salt A is 5/95 to 45/55 of compound (1) / inorganic salt A, is disclosed.
 特開2011-162400号公報には、グリセリンと、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aと、ナフタレン系分散剤とを含有し、グリセリンと無機塩Aのモル比がグリセリン/無機塩Aで5/95~55/45である、水硬性組成物用添加剤組成物が開示されている。 Japanese Patent Application Laid-Open No. 2011-162400 contains glycerin, one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and a naphthalene-based dispersant. An additive composition for hydraulic compositions having a molar ratio of glycerin / inorganic salt A of 5/95 to 55/45 is disclosed.
 特開2014-208574号公報には、グリセリンと、ヒドロキシメタンスルフォン酸又はその塩と、分散剤と、水硬性粉体と、骨材と、水とを含有し、グリセリンの含有量が水硬性粉体100質量部に対し0.040質量部以上、0.280質量部以下であり、ヒドロキシメタンスルフォン酸又はその塩の含有量が水硬性粉体100質量部に対し0.010質量部以上、0.420質量部以下である、水硬性組成物が開示されている。 Japanese Patent Application Laid-Open No. 2014-208574 discloses glycerin, hydroxymethanesulfonic acid or a salt thereof, a dispersant, a hydraulic powder, an aggregate, and water, and the content of glycerin is a hydraulic powder. 0.040 parts by mass or more and 0.280 parts by mass or less with respect to 100 parts by mass of the body, and the content of hydroxymethanesulfonic acid or a salt thereof is 0.010 parts by mass or more with respect to 100 parts by mass of the hydraulic powder. A hydraulic composition that is 420 parts by weight or less is disclosed.
 特開昭61-117142号公報には、アルデヒド及び亜硫酸水素塩又は該アルデヒドと亜硫酸水素塩との付加化合物、並びに、水溶性チオシアン酸塩を含むセメント組成物が開示されている。 JP-A-61-117142 discloses a cement composition containing an aldehyde and bisulfite or an addition compound of the aldehyde and bisulfite and a water-soluble thiocyanate.
 一方、鉄鋼産業では、鉱石からの鉄製錬時の副産物として、冶金対象とする金属から溶融によって分離された鉱物成分を含む物質が発生する。この物質は、スラグと呼ばれている。従来、スラグは、主に建材分野の原料、製品の一部として積極的に活用されてきており、特にセメント分野においては、原料としてだけではなく、セメントに配合した製品、混合材としても使用されている。
 特開2016-56083号公報には、α-ヒドロキシスルホン酸又はその塩、水硬性粉体及び水を含有し、水硬性粉体中、スラグの割合が60質量%以上である、水硬性組成物が開示されている。
On the other hand, in the steel industry, a substance containing a mineral component separated from a metal to be metallurgically separated by melting is generated as a by-product during iron smelting from ore. This material is called slag. Conventionally, slag has been actively used mainly as a raw material and product in the building materials field. In particular, in the cement field, slag is used not only as a raw material but also as a product and a blended material in cement. ing.
JP-A-2016-56083 discloses α-hydroxysulfonic acid or a salt thereof, a hydraulic powder and water, and the hydraulic composition has a slag ratio of 60% by mass or more in the hydraulic powder. Is disclosed.
発明の概要
 高炉スラグセメントを用いた水硬性組成物は、生産性向上の観点から、初期強度、例えば材齢1日から7日の強度をより向上させることが望まれる。また、水硬性組成物は、品質向上の観点から、中長期強度をより向上させることが望まれる。
 本発明は、高炉スラグセメントを用いた水硬性組成物用の添加剤であって、硬化体の初期強度に優れた水硬性組成物が得られる、水硬性組成物用の添加剤を提供する。
 また、本発明は、高炉スラグセメントを用いた水硬性組成物用の添加剤であって、適切な作業性を有し、硬化体の強度および耐久性に優れた水硬性組成物が得られる、水硬性組成物用の添加剤を提供する。
SUMMARY OF THE INVENTION A hydraulic composition using blast furnace slag cement is desired to further improve the initial strength, for example, the strength from 1 to 7 days of age, from the viewpoint of improving productivity. In addition, it is desired that the hydraulic composition further enhances the medium- to long-term strength from the viewpoint of quality improvement.
The present invention provides an additive for a hydraulic composition that is an additive for a hydraulic composition using blast furnace slag cement, and that provides a hydraulic composition having excellent initial strength of a cured product.
Further, the present invention is an additive for a hydraulic composition using a blast furnace slag cement, and has a suitable workability, and a hydraulic composition excellent in strength and durability of a cured product is obtained. Additives for hydraulic compositions are provided.
 本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、及び(C)α-ヒドロキシアルカンスルホン酸又はその塩を含有する、高炉スラグセメントを用いた水硬性組成物用の添加剤に関する。 The present invention relates to a hydraulic composition using a blast furnace slag cement containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) α-hydroxyalkanesulfonic acid or a salt thereof. Relating to additives.
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、高炉スラグセメント、及び水を含有する、水硬性組成物に関する。 The present invention also provides a hydraulic composition comprising (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, a blast furnace slag cement, and water. Related to things.
 また、本発明は、前記本発明の水硬性組成物の製造方法であって、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、高炉スラグセメント、及び水を混合する、水硬性組成物の製造方法に関する。 The present invention also provides a method for producing the hydraulic composition of the present invention, wherein (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof. The present invention relates to a method for producing a hydraulic composition, in which salt, blast furnace slag cement, and water are mixed.
 以下、(A)チオ硫酸又はその塩を(A)成分、(B)チオシアン酸又はその塩を(B)成分、(C)α-ヒドロキシアルカンスルホン酸又はその塩を(C)成分として説明する。 Hereinafter, (A) thiosulfuric acid or a salt thereof will be described as component (A), (B) thiocyanic acid or a salt thereof as component (B), and (C) α-hydroxyalkanesulfonic acid or a salt thereof as component (C). .
 本発明の水硬性組成物用の添加剤は、(A)成分、(B)成分、(C)成分、並びに(D)リグニンスルホン酸及びその誘導体、リグニンスルホン酸塩及びその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物及びその塩から選ばれる混和剤を含有する、高炉スラグセメントを用いた水硬性組成物用の添加剤を含む。 The additive for the hydraulic composition of the present invention comprises (A) component, (B) component, (C) component, and (D) lignin sulfonic acid and its derivative, lignin sulfonate and its derivative, and naphthalene sulfone. An additive for a hydraulic composition using a blast furnace slag cement containing an admixture selected from an acid salt formaldehyde condensate and a salt thereof.
 また、本発明の水硬性組成物は、(A)成分、(B)成分、(C)成分、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、高炉スラグセメント、並びに水を含有する、水硬性組成物を含む。 Further, the hydraulic composition of the present invention comprises (A) component, (B) component, (C) component, (D) lignin sulfonic acid or derivative thereof, lignin sulfonate or derivative thereof, and naphthalene sulfonate formaldehyde. A hydraulic composition containing an admixture selected from a condensate or a salt thereof, a blast furnace slag cement, and water is included.
 また、本発明の水硬性組成物の製造方法は、(D)を含有する前記本発明の水硬性組成物の製造方法であって、(A)成分、(B)成分、(C)成分、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、高炉スラグセメント、並びに水を混合する、水硬性組成物の製造方法を含む。 Moreover, the manufacturing method of the hydraulic composition of this invention is a manufacturing method of the said hydraulic composition of this invention containing (D), Comprising: (A) component, (B) component, (C) component, (D) A hydraulic composition comprising admixture selected from lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof, a blast furnace slag cement, and water. Includes manufacturing methods.
 以下、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤を(D)成分として説明する。 Hereinafter, an admixture selected from (D) lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof will be described as the component (D).
 また、本発明は、
 前記本発明の製造方法で水硬性組成物を製造する工程と、
 得られた水硬性組成物を型枠に充填して硬化させる工程と、
 硬化した水硬性組成物を型枠から脱型して水硬性組成物の硬化体を得る工程と、
を有する、水硬性組成物の硬化体の製造方法に関する。
The present invention also provides:
A step of producing a hydraulic composition by the production method of the present invention;
Filling the mold with the obtained hydraulic composition and curing;
Removing the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition;
The present invention relates to a method for producing a cured product of a hydraulic composition.
 本発明によれば、高炉スラグセメントを用いた水硬性組成物用の添加剤であって、硬化体の初期強度、例えば7日後の強度(以下、7日強度と記す。)に優れた水硬性組成物が得られる水硬性組成物用の添加剤が提供される。
 また、(D)成分を用いる本発明によれば、高炉スラグセメントを用いた水硬性組成物用の添加剤であって、適切な作業性を有し、硬化体の強度および耐久性に優れた水硬性組成物が得られる、水硬性組成物用の添加剤が提供される。
According to the present invention, it is an additive for a hydraulic composition using a blast furnace slag cement, and is excellent in initial strength of the cured body, for example, strength after 7 days (hereinafter referred to as 7-day strength). Additives for hydraulic compositions from which the composition is obtained are provided.
Further, according to the present invention using the component (D), it is an additive for a hydraulic composition using a blast furnace slag cement, has an appropriate workability, and is excellent in strength and durability of a cured body. An additive for a hydraulic composition is provided from which a hydraulic composition is obtained.
発明を実施するための形態
<水硬性組成物用の添加剤>
〔(A)成分〕
 (A)成分のうち、チオ硫酸の塩は、強度、例えば7日強度の観点から、ナトリウム塩、カリウム塩などのアルカリ金属塩が好ましい。アルカリ金属塩は、流動性の観点からも好ましい。(A)成分としては、具体的には、チオ硫酸ナトリウム(Na)、チオ硫酸カリウム(K)、チオ硫酸リチウム(Li)が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION <Additive for Hydraulic Composition>
[Component (A)]
Among the components (A), the salt of thiosulfuric acid is preferably an alkali metal salt such as sodium salt or potassium salt from the viewpoint of strength, for example, 7-day strength. Alkali metal salts are also preferable from the viewpoint of fluidity. Specific examples of the component (A) include sodium thiosulfate (Na 2 S 2 O 3 ), potassium thiosulfate (K 2 S 2 O 3 ), and lithium thiosulfate (Li 2 S 2 O 3 ). .
〔(B)成分〕
 (B)成分のうち、チオシアン酸の塩は、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩などのアルカリ土類金属塩が挙げられる。強度、例えば7日強度の観点から、アルカリ金属塩が好ましい。アルカリ金属塩は、流動性の観点からも好ましい。
[(B) component]
Among the components (B), examples of the thiocyanic acid salt include alkali metal salts such as sodium salt and potassium salt, and alkaline earth metal salts such as calcium salt. From the viewpoint of strength, for example, 7-day strength, alkali metal salts are preferred. Alkali metal salts are also preferable from the viewpoint of fluidity.
〔(C)成分〕
 α-ヒドロキシアルカンスルホン酸は、下記式で表される化合物である。
[Component (C)]
α-Hydroxyalkanesulfonic acid is a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、R、Rは、それぞれ独立に、プロトン又はヒドロキシ基を有していても良い炭化水素基、例えば、ヒドロキシ基を有していても良い炭素数1以上10以下のアルキル基である。
 α-ヒドロキシスルホン酸としては、炭素数1以上、そして、好ましくは10以下、より好ましくは6以下、更に好ましくは4以下のものが挙げられる。具体的には、ヒドロキシメタンスルホン酸、1,2-ジヒドロキシプロパン-2-スルホン酸が挙げられる。
 α-ヒドロキシスルホン酸の塩は、ナトリウム塩、カリウム塩などのアルカリ金属塩が挙げられる。α-ヒドロキシスルホン酸の塩は、水硬性組成物が必要な強度に達するまでの時間を短縮する観点から、好ましくはα-ヒドロキシスルホン酸塩であり、より好ましくはα-ヒドロキシスルホン酸のアルカリ金属塩であり、更に好ましくはα-ヒドロキシスルホン酸のナトリウム塩である。
Here, R 1 and R 2 are each independently a hydrocarbon group which may have a proton or a hydroxy group, for example, an alkyl group having 1 to 10 carbon atoms which may have a hydroxy group. is there.
Examples of the α-hydroxysulfonic acid include those having 1 or more carbon atoms, preferably 10 or less, more preferably 6 or less, and still more preferably 4 or less. Specific examples include hydroxymethanesulfonic acid and 1,2-dihydroxypropane-2-sulfonic acid.
Examples of the salt of α-hydroxysulfonic acid include alkali metal salts such as sodium salt and potassium salt. The α-hydroxysulfonic acid salt is preferably an α-hydroxysulfonic acid salt, more preferably an alkali metal of α-hydroxysulfonic acid, from the viewpoint of shortening the time required for the hydraulic composition to reach the required strength. A salt, more preferably a sodium salt of α-hydroxysulfonic acid.
 α-ヒドロキシスルホン酸又はその塩は、ヒドロキシメタンスルホン酸、1,2-ジヒドロキシプロパン-2-スルホン酸、及びこれらの塩から選ばれる1種以上の化合物が好ましい。 The α-hydroxysulfonic acid or a salt thereof is preferably one or more compounds selected from hydroxymethanesulfonic acid, 1,2-dihydroxypropane-2-sulfonic acid, and salts thereof.
 α-ヒドロキシスルホン酸又はその塩は、市販品を用いることができる。 Commercially available products can be used for α-hydroxysulfonic acid or a salt thereof.
〔(D)成分〕
 本発明の水硬性組成物用の添加剤は、下記(D)成分を含有することができる。(D)成分を含有する添加剤は、本発明の好ましい態様である。
(D)成分:リグニンスルホン酸及びその誘導体、リグニンスルホン酸塩及びその誘導体、並びにナフタレンスルホン酸塩ホルムアルデヒド縮合物及びその塩から選ばれる混和剤
 (D)成分は、水硬性組成物において、分散剤、減水剤、AE剤としての機能を有するものであってよい。
[Component (D)]
The additive for the hydraulic composition of the present invention can contain the following component (D). The additive containing the component (D) is a preferred embodiment of the present invention.
Component (D): Admixture selected from lignin sulfonic acid and derivatives thereof, lignin sulfonate and derivatives thereof, and naphthalene sulfonate formaldehyde condensates and salts thereof. Component (D) is a dispersant in a hydraulic composition. It may have a function as a water reducing agent or AE agent.
 (D)成分は、市販品を用いることが出来る。リグニンスルホン酸及びその塩並びにそれらの誘導体では、例えば、減水剤およびAE減水剤として、BASFジャパン社のマスターポゾリスNo.70、マスターポリヒード15Sシリーズ、フローリック社のフローリックSシリーズ、フローリックRシリーズ、グレースケミカル社のダーレックスWRDA、日本シーカ社のプラスクリートNC、プラスクリートR、山宗化学社のヤマソー80P、ヤマソー90シリーズ、ヤマソー98シリーズ、ヤマソー02NL-P、ヤマソー02NLR-P、ヤマソー09NL-P、ヤマソーNLR-P、竹本油脂社のチューポールEX60シリーズ、チューポールLS-Aシリーズ、リグエース社のリグエースUAシリーズ、リグエースURシリーズ、リグエースVFシリーズなどが挙げられる。 (D) Component can use a commercial item. In the case of lignin sulfonic acid and salts thereof and derivatives thereof, for example, as a water reducing agent and an AE water reducing agent, Master Pozzolith No. 70, Master Polyhed 15S series, Floric's Floric S series, Floric R series, Grace Chemical's Darrex WRDA, Nihon Seika's Plus Cleat NC, Plus Cleat R, Yamaso Chemical's Yamaso 80P , Yamaso 90 series, Yamaso 98 series, Yamaso 02NL-P, Yamaso 02NLR-P, Yamaso 09NL-P, Yamaso NLR-P, Takemoto Yushi Co., Ltd. Tupole EX60 series, Tupole LS-A series, Rigace ligace UA Series, Rigace UR series, Rigace VF series and the like.
 リグニンスルホン酸の誘導体、及びリグニンスルホン酸塩又はその誘導体の具体例を以下に挙げる。
(I)リグニンスルホン酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、又はアミン塩
(II)リグニンスルホン酸塩にアミン化合物又はアミノ基が導入されたリグニン誘導体(例えば、特開2016-108183号)
(III)リグニンスルホン酸塩とホルムアルデヒドと反応させたリグニン誘導体(例えば、特開2015-229764号)
(IV)酸化リグニン、スルホン化リグニンなどの変性リグニン(例えば、特開2003-2714号)
(V)リグニンスルホン酸化合物ポリオール複合体(例えば、特開2007-105899号)
(VI)下記1)~3)のリグニンスルホン酸塩変性物(例えば、特開2007-261119号)
 1)リグニンスルホン酸又はその塩と、官能基を有するアクリル系モノマーとをグラフト共重合したリグニンスルホン酸塩変性物
 2)リグニンスルホン酸又はその塩と、官能基を有するビニル系モノマーとをグラフト共重合したリグニンスルホン酸塩変性物
 3)リグニンスルホン酸又はその塩にナフタレンスルホン酸塩ホルムアルデヒド縮合物を付加したリグニンスルホン酸塩変性物
(VII)リグニンスルホン酸塩にポリアルキレングリコール化合物を導入したリグニン誘
導体(例えば、特開2015-193804号)
(VIII)リグニンスルホン酸系化合物と水溶性単量体との反応物(例えば、特開2011-240224号)
 ここで、リグニンスルホン酸系化合物としては、リグニンのヒドロキシフェニルプロパン構造の側鎖α位の炭素が開裂してスルホン基が導入された骨格を有する化合物が挙げられる。
 また、水溶性単量体としては、例えば、カルボキシル基、ヒドロキシル基、スルホン基、ニトロキシル基、カルボニル基、リン酸基、アミノ基、エポキシ基などのイオン性官能基、その他極性基を少なくとも1種類以上有する化合物が挙げられる。
(IX)下記4)~5)のリグニンスルホン酸誘導体(例えば、特開2015-212216号)
 4)リグニンスルホン酸系化合物に含まれるフェノール性ヒドロキシル基、アルコール性ヒドロキシル基、チオール基などの官能基に、少なくとも1種の水溶性単量体を反応させて得られるリグニン誘導体
 5)リグニンスルホン酸系化合物に(通常は該化合物の官能基に)、少なくとも1種の水溶性単量体を、ラジカル開始剤を用いてラジカル共重合することによって得られるリグニン誘導体
 ここで、リグニンスルホン酸系化合物は、特に限定されないが、木材を亜硫酸法によって蒸解して得られるものが例示される。
 また、水溶性単量体のうち、リグニンスルホン酸系化合物に含まれるフェノール性ヒドロキシル基および/またはアルコール性ヒドロキシル基と反応し得る水溶性単量体として、エチレンオキシドやプロピレンオキシドなどのアルキレンオキシドなどが挙げられる。
 また、水溶性単量体のうち、リグニンスルホン酸系化合物に含まれるチオール基と反応し得る水溶性単量体として、エチレンオキシドやプロピレンオキシドなどのアルキレンオキシド、エチレンイミンやプロピレンイミンなどのアルキレンイミンなどが挙げられる。
 また、ラジカル共重合に用いる水溶性単量体として、特開2015-212216号の[0071]~[0074]に記載の単量体、具体的には、アクリル酸、メタクリル酸、(メタ)アクリル酸への炭素原子数2~18のアルキレンオキシドの1~500モル付加物類、アリルアルコールにアルキレンオキシドを2~300モル付加して得られるアルキレンオキシド付加化合物類等が挙げられる。
Specific examples of lignin sulfonic acid derivatives and lignin sulfonates or derivatives thereof are given below.
(I) Alkali metal salt, alkaline earth metal salt, ammonium salt, or amine salt of lignin sulfonic acid (II) Lignin derivative in which an amine compound or an amino group is introduced into lignin sulfonate (for example, JP-A-2016-108183 issue)
(III) Lignin derivatives reacted with lignin sulfonate and formaldehyde (for example, JP-A-2015-229764)
(IV) Modified lignin such as oxidized lignin and sulfonated lignin (for example, JP 2003-2714 A)
(V) Lignin sulfonic acid compound polyol complex (for example, JP-A-2007-105899)
(VI) Modified lignin sulfonates of the following 1) to 3) (for example, JP 2007-261119 A)
1) Modified lignin sulfonate by graft copolymerization of lignin sulfonic acid or its salt and an acrylic monomer having a functional group 2) Graft copolymer of lignin sulfonic acid or its salt and a vinyl monomer having a functional group Polymerized lignin sulfonate modified product 3) Lignin sulfonate modified product obtained by adding naphthalene sulfonate formaldehyde condensate to lignin sulfonic acid or its salt (VII) Lignin derivative with polyalkylene glycol compound introduced into lignin sulfonate (For example, JP-A-2015-193804)
(VIII) Reaction product of lignin sulfonic acid compound and water-soluble monomer (for example, JP 2011-240224)
Here, examples of the lignin sulfonic acid compound include compounds having a skeleton in which the carbon at the α-position of the side chain of the hydroxyphenylpropane structure of lignin is cleaved to introduce a sulfone group.
Examples of the water-soluble monomer include at least one ionic functional group such as carboxyl group, hydroxyl group, sulfone group, nitroxyl group, carbonyl group, phosphoric acid group, amino group, and epoxy group, and other polar groups. The compound which has the above is mentioned.
(IX) Lignin sulfonic acid derivatives of the following 4) to 5) (for example, JP-A-2015-212216)
4) A lignin derivative obtained by reacting at least one water-soluble monomer with a functional group such as a phenolic hydroxyl group, an alcoholic hydroxyl group, or a thiol group contained in a lignin sulfonic acid compound. 5) Lignin sulfonic acid. A lignin derivative obtained by radical copolymerizing at least one water-soluble monomer with a radical initiator (usually on a functional group of the compound) Although not specifically limited, what is obtained by digesting wood by a sulfurous acid method is exemplified.
Among water-soluble monomers, water-soluble monomers that can react with phenolic hydroxyl groups and / or alcoholic hydroxyl groups contained in lignin sulfonic acid compounds include alkylene oxides such as ethylene oxide and propylene oxide. Can be mentioned.
Among water-soluble monomers, water-soluble monomers that can react with thiol groups contained in lignin sulfonic acid compounds include alkylene oxides such as ethylene oxide and propylene oxide, and alkylene imines such as ethylene imine and propylene imine. Is mentioned.
In addition, as water-soluble monomers used for radical copolymerization, monomers described in JP-A-2015-212216 [0071] to [0074], specifically acrylic acid, methacrylic acid, (meth) acrylic Examples include adducts having 1 to 500 moles of alkylene oxide having 2 to 18 carbon atoms to the acid, and alkylene oxide addition compounds obtained by adding 2 to 300 moles of alkylene oxide to allyl alcohol.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、ナフタレンスルホン酸とホルムアルデヒドとの縮合物又はその塩である。ナフタレンスルホン酸ホルムアルデヒド縮合物は、性能を損なわない限り、単量体として、例えばメチルナフタレン、エチルナフタレン、ブチルナフタレン、ヒドロキシナフタレン、ナフタレンカルボン酸、アントラセン、フェノール、クレゾール、クレオソート油、タール、メラミン、尿素、スルファニル酸及び/又はこれらの誘導体などのような、ナフタレンスルホン酸と共縮合可能な芳香族化合物と共縮合させても良い。 The naphthalene sulfonic acid formaldehyde condensate or a salt thereof is a condensate of naphthalene sulfonic acid and formaldehyde or a salt thereof. The naphthalene sulfonic acid formaldehyde condensate may be used as a monomer, for example, methyl naphthalene, ethyl naphthalene, butyl naphthalene, hydroxy naphthalene, naphthalene carboxylic acid, anthracene, phenol, cresol, creosote oil, tar, melamine, as long as the performance is not impaired. It may be co-condensed with an aromatic compound capable of co-condensing with naphthalenesulfonic acid, such as urea, sulfanilic acid and / or derivatives thereof.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、例えば、マイテイ150、デモール N、デモール RN、デモール MS、デモールSN-B、デモール SS-L(いずれも花王株式会社製)、セルフロー 120、ラベリン FD-40、ラベリン FM-45(いずれも第一工業株式会社製)などのような市販品を用いることができる。 Naphthalene sulfonic acid formaldehyde condensate or salt thereof may be, for example, Mighty 150, Demol N, Demol RN, Demol MS, Demol SN-B, Demol SS-L (all manufactured by Kao Corporation), Cellflow 120, Labelin FD-40 Commercial products such as Labelin FM-45 (both manufactured by Daiichi Kogyo Co., Ltd.) can be used.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、遠心成型性及び/又は硬化体の強度発現の観点と水硬性組成物の流動性向上の観点から、重量平均分子量が、好ましくは200,000以下、より好ましくは100,000以下、更に好ましくは80,000以下、より更に好ましくは50,000以下、より更に好ましくは30,000以下である。そして、ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩は、遠心成型性及び/又は硬化体の強度発現の観点と水硬性組成物の流動性向上の観点から、重量平均分子量が、好ましくは1,000以上、より好ましくは3,000以上、更に好ましくは4,000以上、より更に好ましくは5,000以上である。ナフタレンスルホン酸ホルムアルデヒド縮合物は酸の状態あるいは中和物であってもよい。 The naphthalene sulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 200,000 or less, from the viewpoint of centrifugal moldability and / or strength development of the cured product and improvement of fluidity of the hydraulic composition. Preferably it is 100,000 or less, More preferably, it is 80,000 or less, More preferably, it is 50,000 or less, More preferably, it is 30,000 or less. The naphthalene sulfonic acid formaldehyde condensate or salt thereof has a weight average molecular weight of preferably 1,000 or more from the viewpoint of centrifugal moldability and / or strength expression of the cured product and improvement of fluidity of the hydraulic composition. More preferably, it is 3,000 or more, More preferably, it is 4,000 or more, More preferably, it is 5,000 or more. The naphthalene sulfonic acid formaldehyde condensate may be in the acid state or neutralized.
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩の分子量は下記条件にてゲルパーミエーションクロマトグラフィ(GPC)を用いて測定することができる。
[GPC条件]
カラム:G4000SWXL+G2000SWXL(東ソー株式会社)
溶離液:30mM CHCOONa/CHCN=6/4
流量:0.7ml/min
検出:UV280nm
サンプルサイズ:0.2mg/ml
標準物質:西尾工業(株)製 ポリスチレンスルホン酸ソーダ換算(単分散ポリスチレンスルホン酸ナトリウム:分子量、206、1,800、4,000、8,000、18,000、35,000、88,000、780,000)
検出器:東ソー株式会社 UV-8020
The molecular weight of naphthalenesulfonic acid formaldehyde condensate or a salt thereof can be measured using gel permeation chromatography (GPC) under the following conditions.
[GPC conditions]
Column: G4000SWXL + G2000SWXL (Tosoh Corporation)
Eluent: 30 mM CH 3 COONa / CH 3 CN = 6/4
Flow rate: 0.7ml / min
Detection: UV280nm
Sample size: 0.2 mg / ml
Standard substance: manufactured by Nishio Kogyo Co., Ltd. Polystyrene sulfonate sodium equivalent (monodispersed sodium polystyrene sulfonate: molecular weight, 206, 1,800, 4,000, 8,000, 18,000, 35,000, 88,000, 780,000)
Detector: Tosoh Corporation UV-8020
 ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩の製造方法は、例えば、ナフタレンスルホン酸とホルムアルデヒドとを縮合反応により縮合物を得る方法が挙げられる。前記縮合物の中和を行ってもよい。また、中和で副生する水不溶解物を除去してもよい。具体的には、ナフタレンスルホン酸を得るために、ナフタレン1モルに対して、硫酸1.2~1.4モルを用い、150~165℃で2~5時間反応させてスルホン化物を得る。次いで、該スルホン化物1モルに対して、ホルムアルデヒドとして0.93~0.99モルとなるようにホルマリンを85~105℃で、3~6時間かけて滴下し、滴下後95~105℃で縮合反応を行う。更に、得られる縮合物の水溶液は酸性度が高いので貯槽等の金属腐食を抑制する観点から、得られた縮合物に、水と中和剤を加え、80~95℃で中和工程を行うことができる。中和剤は、ナフタレンスルホン酸と未反応硫酸に対してそれぞれ1.0~1.1モル倍添加することが好ましい。また、中和により生じる水不溶解物を除去することができ、その方法として好ましくは濾過による分離が挙げられる。これらの工程によって、ナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩の水溶液が得られる。この水溶液は、そのまま(D)成分の水溶液として使用することができる。更に必要に応じて該水溶液を乾燥、粉末化して粉末状のナフタレンスルホン酸ホルムアルデヒド縮合物の塩を得ることができ、これを粉末状の(D)成分として使用することができる。
 乾燥、粉末化は、噴霧乾燥、ドラム乾燥、凍結乾燥等により行うことができる。
Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate or a salt thereof include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. Specifically, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used with respect to 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 105 ° C. over 3 to 6 hours to form 0.93 to 0.99 mol of formaldehyde with respect to 1 mol of the sulfonated product, followed by condensation at 95 to 105 ° C. Perform the reaction. Further, since the aqueous solution of the resulting condensate has a high acidity, water and a neutralizing agent are added to the obtained condensate from the viewpoint of suppressing metal corrosion in storage tanks, and a neutralization step is performed at 80 to 95 ° C. be able to. The neutralizing agent is preferably added in an amount of 1.0 to 1.1 moles per each of naphthalenesulfonic acid and unreacted sulfuric acid. Moreover, the water-insoluble matter which arises by neutralization can be removed, and preferably the separation by filtration is mentioned as the method. By these steps, an aqueous solution of a naphthalenesulfonic acid formaldehyde condensate water-soluble salt is obtained. This aqueous solution can be used as it is as the aqueous solution of component (D). Further, if necessary, the aqueous solution can be dried and pulverized to obtain a powdery salt of naphthalenesulfonic acid formaldehyde condensate, which can be used as the powdery component (D).
Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like.
〔添加剤の組成等〕
 本発明の水硬性組成物用の添加剤は、(A)成分を、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。
[Additive composition, etc.]
The additive for the hydraulic composition of the present invention comprises the component (A), preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
 本発明の水硬性組成物用の添加剤は、(B)成分を、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。 The additive for the hydraulic composition of the present invention comprises the component (B), preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
 本発明の水硬性組成物用の添加剤は、(C)成分を、好ましくは0.0001質量%以上、より好ましくは0.001質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。 The additive for the hydraulic composition of the present invention comprises the component (C), preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
 本発明の添加剤は、(A)成分、(B)成分及び(C)成分を含有する添加剤組成物であってよい。
 本発明の添加剤は、水を含有することが好ましい。
The additive of the present invention may be an additive composition containing the component (A), the component (B) and the component (C).
The additive of the present invention preferably contains water.
 本発明の水硬性組成物用の添加剤が(D)成分を含有する場合、該添加剤は、(D)成分を、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。 When the additive for the hydraulic composition of the present invention contains the component (D), the additive preferably contains the component (D) in an amount of 0.001% by mass or more, more preferably 0.01% by mass or more. And preferably 95% by mass or less, more preferably 70% by mass or less.
 本発明の添加剤は、(A)成分、(B)成分、(C)成分及び(D)成分を含有する添加剤組成物であってよい。
 (D)成分を含有する本発明の添加剤は、水を含有することが好ましい。
The additive of the present invention may be an additive composition containing the component (A), the component (B), the component (C) and the component (D).
(D) It is preferable that the additive of this invention containing a component contains water.
 本発明の水硬性組成物用の添加剤では、作業性向上の観点から、更に、(D)成分以外の分散剤を混合することができる。
 分散剤としては、リン酸エステル系重合体、ポリカルボン酸系共重合体、スルホン酸系共重合体、メラミン系重合体、フェノール系重合体等の分散剤が挙げられる。分散剤は他の成分を配合した混和剤であっても良い。
 本発明の水硬性組成物用の添加剤が(D)成分以外の分散剤を含有する場合、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。
In the additive for the hydraulic composition of the present invention, a dispersant other than the component (D) can be further mixed from the viewpoint of improving workability.
Examples of the dispersant include a dispersant such as a phosphate ester polymer, a polycarboxylic acid copolymer, a sulfonic acid copolymer, a melamine polymer, and a phenol polymer. The dispersant may be an admixture containing other components.
When the additive for the hydraulic composition of the present invention contains a dispersant other than the component (D), it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass. % Or less, more preferably 70% by mass or less.
 本発明の水硬性組成物用の添加剤は、凝結促進の観点から、ポリオールを含有することができる。ポリオールとしては、2価以上6価以下のポリオールが挙げられる。具体的には、グリセリン、グリセリンのエチレンオキサイド付加物等のグリセリンのアルキレンオキサイド付加物、エチレングリコール、プロピレングリコール、ジエチレングリコール、糖類等が挙げられる。ポリオールは、強度発現性の観点から、グリセリンが好ましい。
 本発明の水硬性組成物用の添加剤がポリオールを含有する場合、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。
The additive for the hydraulic composition of the present invention can contain a polyol from the viewpoint of promoting the setting. Examples of the polyol include divalent to hexavalent polyols. Specific examples include glycerin, alkylene oxide adducts of glycerol such as ethylene oxide adducts of glycerin, ethylene glycol, propylene glycol, diethylene glycol, saccharides and the like. The polyol is preferably glycerin from the viewpoint of strength development.
When the additive for the hydraulic composition of the present invention contains a polyol, it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70%. Contain less than mass%.
 本発明の水硬性組成物用の添加剤は、アルカノールアミンを含有することができる。アルカノールアミンは、炭素数1以上5以下のアルカノール基を1個以上3個以下有するアルカノールアミンが挙げられる。具体的には、アルカノールアミンは、トリエタノールアミン、ジエタノールアミン、ジイソプロパノールモノエタノールアミン、トリイソプロパノールアミン、メチルジエタノールアミン、エチルジエタノールアミン等が挙げられる。アルカノールアミンは、強度発現性の観点からメチルジエタノールアミンが好ましい。
 本発明の水硬性組成物用の添加剤がアルカノールアミンを含有する場合、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下含有する。
The additive for the hydraulic composition of the present invention can contain an alkanolamine. Examples of the alkanolamine include alkanolamines having 1 to 3 alkanol groups having 1 to 5 carbon atoms. Specific examples of the alkanolamine include triethanolamine, diethanolamine, diisopropanol monoethanolamine, triisopropanolamine, methyldiethanolamine, and ethyldiethanolamine. The alkanolamine is preferably methyldiethanolamine from the viewpoint of strength development.
When the additive for the hydraulic composition of the present invention contains an alkanolamine, it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and preferably 95% by mass or less, more preferably 70% by mass or less is contained.
 本発明の水硬性組成物用の添加剤は、所定の空気量を連行するため、更にその他の成分を含有することもできる。例えば、樹脂石鹸、飽和もしくは不飽和脂肪酸、ラウリルサルフェート、アルキルベンゼンスルホン酸又はその塩、アルカンスルホネート、ポリオキシアルキレンアルキル(又はアルキルフェニル)エーテル、ポリオキシアルキレンアルキル(又はアルキルフェニル)エーテル硫酸エステル又はその塩、ポリオキシアルキレンアルキル(又はアルキルフェニル)エーテルリン酸エステル又はその塩、蛋白質材料、アルケニルコハク酸、α-オレフィンスルホネート等のAE剤が挙げられる。 The additive for the hydraulic composition of the present invention can further contain other components in order to entrain a predetermined amount of air. For example, resin soap, saturated or unsaturated fatty acid, lauryl sulfate, alkylbenzene sulfonic acid or salt thereof, alkane sulfonate, polyoxyalkylene alkyl (or alkylphenyl) ether, polyoxyalkylene alkyl (or alkylphenyl) ether sulfate or salt thereof AE agents such as polyoxyalkylene alkyl (or alkylphenyl) ether phosphates or salts thereof, protein materials, alkenyl succinic acid, α-olefin sulfonate, and the like.
 また、本発明の水硬性組成物用の添加剤は、グルコン酸、グルコヘプトン酸、アラボン酸、リンゴ酸、クエン酸等のオキシカルボン酸系遅延剤、デキストリン、単糖類、オリゴ糖類、多糖類等の糖系遅延剤、糖アルコール系遅延剤等の遅延剤;起泡剤;増粘剤;珪砂;塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム、臭化カルシウム、沃化カルシウム等の可溶性カルシウム塩、塩化鉄、塩化マグネシウム等の塩化物等、炭酸塩、蟻酸又はその塩等の早強剤又は促進剤;発泡剤;樹脂酸又はその塩、脂肪酸エステル、油脂、シリコーン、パラフィン、アスファルト、ワックス等の防水剤;流動化剤;ジメチルポリシロキサン系、ポリアルキレングリコール脂肪酸エステル系、鉱油系、油脂系、オキシアルキレン系、アルコール系、アミド系等の消泡剤を含有することもできる。 Further, the additive for the hydraulic composition of the present invention includes oxycarboxylic acid type retarders such as gluconic acid, glucoheptonic acid, arabonic acid, malic acid, citric acid, dextrin, monosaccharide, oligosaccharide, polysaccharide, etc. Sugar retarders such as sugar retarders and sugar alcohol retarders; foaming agents; thickeners; silica sand; soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, calcium bromide, calcium iodide, iron chloride Fasteners or accelerators such as chlorides such as magnesium chloride, carbonates, formic acid or salts thereof; foaming agents; waterproofing agents such as resin acids or salts thereof, fatty acid esters, oils and fats, silicones, paraffin, asphalt, waxes, etc. Fluidizing agent; dimethylpolysiloxane, polyalkylene glycol fatty acid ester, mineral oil, fat, oxyalkylene, alcohol, amino It may also contain an anti-foaming agent such as a system.
 また、本発明の水硬性組成物用の添加剤は、亜硝酸塩、燐酸塩、酸化亜鉛等の防錆剤;メチルセルロース、ヒドロキシエチルセルロース等のセルロース系、β-1,3-グルカン、キサンタンガム等の天然物系、ポリアクリル酸アミド、ポリエチレングリコール、オレイルアルコールのエチレンオキシド付加物もしくはこれとビニルシクロヘキセンジエポキシドとの反応物等の合成系等の水溶性高分子;(メタ)アクリル酸アルキル等の高分子エマルジョンを含有することもできる。 Further, the additive for the hydraulic composition of the present invention includes rust preventives such as nitrite, phosphate and zinc oxide; celluloses such as methylcellulose and hydroxyethylcellulose; natural such as β-1,3-glucan and xanthan gum Water-soluble polymers such as synthetic systems such as physical systems, polyacrylic acid amides, polyethylene glycol, ethylene oxide adducts of oleyl alcohol or reaction products thereof with vinylcyclohexene diepoxide; polymer emulsions such as alkyl (meth) acrylates Can also be contained.
 本発明の添加剤は、高炉スラグセメントを用いた水硬性組成物用である。高炉スラグセメントは、セメントを5質量%以上95質量%以下、高炉スラグを5質量%以上70質量%以下含有することが好ましい。セメントと高炉スラグの含有量は、後述する範囲も好ましい。 The additive of the present invention is for a hydraulic composition using blast furnace slag cement. The blast furnace slag cement preferably contains 5% by mass to 95% by mass of cement and 5% by mass to 70% by mass of blast furnace slag. The content of cement and blast furnace slag is also preferably in the range described below.
 本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、及び(C)α-ヒドロキシアルカンスルホン酸又はその塩を含有する組成物の、高炉スラグセメントを用いた水硬性組成物用の添加剤としての使用を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、及び(C)α-ヒドロキシアルカンスルホン酸又はその塩を含有する組成物を、高炉スラグセメントを用いた水硬性組成物用の添加剤として用いる方法を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、及び(C)α-ヒドロキシアルカンスルホン酸又はその塩を混合する、高炉スラグセメントを用いた水硬性組成物用の添加剤の製造方法を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、並びに(D)リグニンスルホン酸及びその誘導体、リグニンスルホン酸塩及びその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物及びその塩から選ばれる混和剤を含有する組成物の、高炉スラグセメントを用いた水硬性組成物用の添加剤としての使用を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、並びに(D)リグニンスルホン酸及びその誘導体、リグニンスルホン酸塩及びその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物及びその塩から選ばれる混和剤を含有する組成物を、高炉スラグセメントを用いた水硬性組成物用の添加剤として用いる方法を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、並びに(D)リグニンスルホン酸及びその誘導体、リグニンスルホン酸塩及びその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物及びその塩から選ばれる混和剤を混合する、高炉スラグセメントを用いた水硬性組成物用の添加剤の製造方法を提供する。
 これらの使用又は方法には、本発明の水硬性組成物用の添加剤で述べた事項を適宜適用することができる。本発明の水硬性組成物用の添加剤の製造方法においては、本発明の水硬性組成物用の添加剤における含有量を混合量に置き換えて適用することができる。
The present invention relates to a hydraulic property of a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) α-hydroxyalkanesulfonic acid or a salt thereof using a blast furnace slag cement. Use as an additive for compositions is provided.
The present invention also uses a blast furnace slag cement as a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) α-hydroxyalkanesulfonic acid or a salt thereof. A method for use as an additive for hydraulic compositions is provided.
The present invention also provides a hydraulic composition using a blast furnace slag cement in which (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) α-hydroxyalkanesulfonic acid or a salt thereof are mixed. Provided is a method for producing a product additive.
The present invention also provides (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, and (D) ligninsulfonic acid and a derivative thereof, ligninsulfone. The use of a composition comprising an acid salt and derivatives thereof, and an admixture selected from naphthalene sulfonate formaldehyde condensate and salts thereof as an additive for hydraulic compositions using blast furnace slag cement is provided.
The present invention also provides (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, and (D) ligninsulfonic acid and a derivative thereof, ligninsulfone. Provided is a method of using a composition containing an acid salt and a derivative thereof, and an admixture selected from naphthalene sulfonate formaldehyde condensate and a salt thereof as an additive for a hydraulic composition using a blast furnace slag cement.
The present invention also provides (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, and (D) ligninsulfonic acid and a derivative thereof, ligninsulfone. Provided is a method for producing an additive for a hydraulic composition using a blast furnace slag cement, in which an admixture selected from an acid salt and a derivative thereof, and a naphthalenesulfonate formaldehyde condensate and a salt thereof are mixed.
The matters described in the additives for hydraulic compositions of the present invention can be appropriately applied to these uses or methods. In the method for producing an additive for a hydraulic composition of the present invention, the content in the additive for a hydraulic composition of the present invention can be replaced with a mixed amount.
<水硬性組成物>
 本発明の水硬性組成物は、(A)成分、(B)成分、(C)成分、高炉スラグセメント、及び水を含有する。また、本発明の水硬性組成物は、(A)成分、(B)成分、(C)成分、(D)成分、高炉スラグセメント、及び水を含有する。(A)成分、(B)成分、(C)成分、及び(D)成分の具体例及び好ましい態様は、本発明の添加剤と同じである。
 また、本発明の水硬性組成物は、ポリオール、アルカノールアミンを含有することが好ましい。本発明の水硬性組成物は、(D)成分以外の分散剤を含有することができる。(D)成分以外の分散剤、ポリオール、アルカノールアミンの具体例及び好ましい態様は、本発明の添加剤と同じである。
<Hydraulic composition>
The hydraulic composition of the present invention contains (A) component, (B) component, (C) component, blast furnace slag cement, and water. Moreover, the hydraulic composition of this invention contains (A) component, (B) component, (C) component, (D) component, blast furnace slag cement, and water. Specific examples and preferred embodiments of the component (A), the component (B), the component (C), and the component (D) are the same as those of the additive of the present invention.
Moreover, it is preferable that the hydraulic composition of this invention contains a polyol and an alkanolamine. The hydraulic composition of the present invention can contain a dispersant other than the component (D). Specific examples and preferred embodiments of the dispersant, polyol, and alkanolamine other than the component (D) are the same as those of the additive of the present invention.
 高炉スラグセメントは、セメントと、高炉スラグとを含有する。高炉スラグセメントは、材料の混合時に、セメントと高炉スラグとを別々に用いてもよい。更に、石膏等の刺激剤を加えてもよい。セメントは、ポルトランドセメントが好ましい。
 高炉スラグセメントは、セメントを、好ましくは5質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上、そして、好ましくは95質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下含有する。
 高炉スラグは、徐冷スラグと急冷スラグとが知られている。急冷スラグは、高炉水砕スラグとしても知られている。本発明では、急冷スラグが好ましい。
 高炉スラグセメントは、高炉スラグを、好ましくは5質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、そして、好ましくは95質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、より更に好ましくは60質量%未満含有する。
 高炉スラグセメントとして、高炉スラグの含有量が5質量%以上30質量%未満である高炉スラグセメントが挙げられる。また、高炉スラグセメントとして、高炉スラグの含有量が30質量%以上60質量%未満である高炉スラグセメントが挙げられる。また、高炉スラグセメントとして、高炉スラグの含有量が60質量%以上70質量%未満である高炉スラグセメントが挙げられる。
The blast furnace slag cement contains cement and blast furnace slag. Blast furnace slag cement may use cement and blast furnace slag separately when mixing materials. Further, a stimulant such as gypsum may be added. The cement is preferably Portland cement.
The blast furnace slag cement is cement, preferably 5% by mass or more, more preferably 30% by mass or more, further preferably 40% by mass or more, and preferably 95% by mass or less, more preferably 80% by mass or less, still more preferably. Contains 70% by mass or less.
As the blast furnace slag, slowly cooled slag and quenched slag are known. Quenched slag is also known as blast furnace granulated slag. In the present invention, quenching slag is preferred.
The blast furnace slag cement is preferably blast furnace slag, preferably 5 mass% or more, more preferably 20 mass% or more, still more preferably 30 mass% or more, and preferably 95 mass% or less, more preferably 70 mass% or less, Preferably it is 60 mass% or less, More preferably, it contains less than 60 mass%.
An example of the blast furnace slag cement is a blast furnace slag cement having a blast furnace slag content of 5% by mass or more and less than 30% by mass. Moreover, as a blast furnace slag cement, the blast furnace slag cement whose content of a blast furnace slag is 30 mass% or more and less than 60 mass% is mentioned. Moreover, as a blast furnace slag cement, the blast furnace slag cement whose content of a blast furnace slag is 60 mass% or more and less than 70 mass% is mentioned.
 高炉スラグセメントは、JIS R 5211に規定される高炉セメントA種、高炉セメントB種、高炉セメントC種を使用することができる。高炉スラグセメントは、高炉セメントB種、C種が好ましく、高炉セメントB種がより好ましい。JIS R 5211では、高炉セメントは、高炉スラグの分量によって、A種、B種、C種の3種類が規定されている。それらは,ポルトランドセメント及び高炉スラグで構成されるものと、クリンカー、せっこう、少量混合成分及び高炉スラグで構成されるものとがある。本発明でJIS R 5211の高炉セメントを用いる場合、当該高炉セメント全体を高炉スラグセメントの量とする。 As the blast furnace slag cement, blast furnace cement type A, blast furnace cement type B and blast furnace cement type C specified in JIS R 5211 can be used. The blast furnace slag cement is preferably blast furnace cement type B or C, and more preferably blast furnace cement type B. According to JIS R 5211, three types of blast furnace cement, A type, B type, and C type, are specified depending on the amount of blast furnace slag. Some are composed of Portland cement and blast furnace slag, others are composed of clinker, gypsum, small amounts of mixed components and blast furnace slag. When JIS R 5211 blast furnace cement is used in the present invention, the entire blast furnace cement is used as the amount of blast furnace slag cement.
 本発明の水硬性組成物は、高炉スラグセメントに対して、(A)成分のチオ硫酸又はその塩を、初期強度、たとえば材齢1日から7日の強度と耐塩性と流動性の観点から、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、そして、作業性の観点から、好ましくは3.0質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.0質量%以下含有する。 The hydraulic composition of the present invention is obtained by adding thiosulfuric acid or a salt thereof as component (A) to blast furnace slag cement from the viewpoint of initial strength, for example, strength from 1 to 7 days of age, salt resistance, and fluidity. , Preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and from the viewpoint of workability, preferably 3.0% by mass or less, more preferably 2.0 mass% or less, More preferably, it contains 1.0 mass% or less.
 本発明の水硬性組成物は、高炉スラグセメントに対して、(B)成分のチオシアン酸又はその塩を、初期強度、たとえば材齢1日から7日の強度と流動性の観点から、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上、そして、作業性の観点から、好ましくは3.0質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.0質量%以下含有する。 The hydraulic composition of the present invention preferably contains thiocyanic acid or a salt thereof as component (B) with respect to blast furnace slag cement from the viewpoint of initial strength, for example, strength from 1 to 7 days of age and fluidity. 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.05% by mass or more, and from the viewpoint of workability, preferably 3.0% by mass or less, more preferably 2.0%. It is contained by mass% or less, more preferably 1.0 mass% or less.
 本発明の水硬性組成物は、高炉スラグセメントに対して、(C)成分のα-ヒドロキシアルカンスルホン酸又はその塩を、初期強度、たとえば材齢1日から7日の強度と流動性の観点から、好ましくは0.0001質量%以上、より好ましくは0.001質量%以上、更に好ましくは0.01質量%以上、そして、作業性の観点から、好ましくは3.0質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.0質量%以下、より更に好ましくは0.5質量%以下含有する。 In the hydraulic composition of the present invention, (C) component α-hydroxyalkanesulfonic acid or a salt thereof is added to blast furnace slag cement in terms of initial strength, for example, strength from 1 to 7 days of age and fluidity. Therefore, preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, still more preferably 0.01% by mass or more, and from the viewpoint of workability, preferably 3.0% by mass or less, more preferably Is contained in an amount of 2.0% by mass or less, more preferably 1.0% by mass or less, and still more preferably 0.5% by mass or less.
 本発明の水硬性組成物が(D)成分を含有する場合、該水硬性組成物は、作業性の観点から、高炉スラグセメントに対して、(D)成分のリグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤を、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、そして、強度の観点から、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下含有する。 When the hydraulic composition of the present invention contains the component (D), from the viewpoint of workability, the hydraulic composition is lignin sulfonic acid or a derivative thereof (D) component, lignin from the blast furnace slag cement. An admixture selected from a sulfonate or a derivative thereof and a naphthalenesulfonate formaldehyde condensate or a salt thereof is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.1%. From the viewpoint of the mass% or more and strength, it is preferably 5 mass% or less, more preferably 3 mass% or less, still more preferably 2 mass% or less.
 本発明の水硬性組成物が(D)成分以外の分散剤を含有する場合、高炉スラグセメントに対して、作業性の観点から、分散剤を、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、好ましくは5質量%以下、より好ましくは3質量%以下含有する。 When the hydraulic composition of the present invention contains a dispersant other than the component (D), the dispersant is preferably 0.001% by mass or more, more preferably from the viewpoint of workability with respect to the blast furnace slag cement. 0.01% by mass or more, and preferably 5% by mass or less, more preferably 3% by mass or less.
 本発明の水硬性組成物がポリオールを含有する場合、高炉スラグセメントに対して、強度、例えば7日強度と流動性の観点から、ポリオールを、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、作業性の観点から、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.25質量%以下含有する。ポリオールの量は、0質量%であっても良い。 When the hydraulic composition of the present invention contains a polyol, the polyol is preferably 0.001% by mass or more, more preferably 0, from the viewpoint of strength, for example, 7-day strength and fluidity, with respect to the blast furnace slag cement. From the viewpoint of workability, it is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.25% by mass or less. The amount of polyol may be 0% by weight.
 本発明の水硬性組成物がアルカノールアミンを含有する場合、高炉スラグセメントに対して、7日強度向上の観点から、アルカノールアミンを、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、そして、作業性の観点から、好ましくは1.0質量%以下、より好ましくは0.5質量%以下含有する。アルカノールアミンの量は、0質量%であっても良い。 When the hydraulic composition of the present invention contains an alkanolamine, the alkanolamine is preferably 0.001% by mass or more, more preferably 0.01% from the viewpoint of improving the strength for 7 days with respect to the blast furnace slag cement. % Or more, and from the viewpoint of workability, the content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less. The amount of alkanolamine may be 0% by weight.
 本発明の水硬性組成物は、高炉スラグセメントと水とを、水/高炉スラグセメントの質量比が40質量%以上60質量%以下で含有することが好ましい。水/高炉スラグセメントの質量比は、より好ましくは42質量%以上、更に好ましくは45質量%以上、そして、より好ましくは58質量%以下、更に好ましくは55質量%以下である。ここで、水/高炉スラグセメントの質量比は、水硬性組成物の調製のために混合する高炉スラグセメントと水の質量百分率(質量%)であり、水の質量/高炉スラグセメントの質量×100により算出される。 The hydraulic composition of the present invention preferably contains blast furnace slag cement and water at a mass ratio of water / blast furnace slag cement of 40% by mass to 60% by mass. The mass ratio of water / blast furnace slag cement is more preferably 42% by mass or more, further preferably 45% by mass or more, and more preferably 58% by mass or less, and further preferably 55% by mass or less. Here, the mass ratio of water / blast furnace slag cement is the mass percentage (mass%) of blast furnace slag cement and water mixed for the preparation of the hydraulic composition, and the mass of water / mass of blast furnace slag cement × 100. Is calculated by
 本発明の水硬性組成物は、骨材を含有することができる。骨材としては、細骨材や粗骨材等が挙げられ、細骨材は、山砂、陸砂、川砂、砕砂が好ましく、粗骨材は山砂利、陸砂利、川砂利、砕石が好ましい。用途によっては、軽量骨材を使用してもよい。なお、骨材の用語は、「コンクリート総覧」(1998年6月10日、技術書院発行)による。骨材の含有量は、通常に用いられるモルタルやコンクリートでの範囲で用いることができる。 The hydraulic composition of the present invention can contain an aggregate. Aggregates include fine aggregates and coarse aggregates. Fine aggregates are preferably mountain sand, land sand, river sand and crushed sand, and coarse aggregates are preferably mountain gravel, land gravel, river gravel and crushed stone. . Depending on the application, lightweight aggregates may be used. The term “aggregate” is based on “Concrete Overview” (published on June 10, 1998, published by Technical Shoin). The content of the aggregate can be used in a range of mortar or concrete that is usually used.
 本発明の水硬性組成物は、本発明の添加剤で述べた、他の任意の成分を含有することもできる。 The hydraulic composition of the present invention can also contain other optional components described in the additive of the present invention.
 本発明の水硬性組成物は、硬化時の圧縮強度、なかでも初期強度、例えば、7日後の強度が向上されたものとなる。なお、強度の対象となる期間(例えば7日後)は、水硬性組成物の調製の際、最初に高炉スラグセメントと水とが接触した時点を起点とする。 The hydraulic composition of the present invention has improved compressive strength during curing, especially initial strength, for example, strength after 7 days. In addition, the period (for example, after 7 days) used as the object of intensity | strength starts from the time when blast furnace slag cement and water first contacted at the time of preparation of a hydraulic composition.
 また、本発明の水硬性組成物、とりわけ、(D)成分を含有する本発明の水硬性組成物は、流動性などの作業性に関与する物性が良好で、硬化時の強度と耐久性が向上されたものとなる。一般に、硬化体の耐久性は、水硬性組成物に適切な空気を混入させることで確保されるが、本発明の水硬性組成物、とりわけ、(D)成分を含有する本発明の水硬性組成物は、空気量の確保が容易であり、AE剤の添加量を低減することが可能となる。また、本発明の水硬性組成物、とりわけ、(D)成分を含有する本発明の水硬性組成物は、空気量が同程度の場合では、従来のものよりも同等以上の圧縮強度が得られる。 In addition, the hydraulic composition of the present invention, in particular, the hydraulic composition of the present invention containing the component (D) has good physical properties related to workability such as fluidity, and has strength and durability upon curing. It will be improved. In general, the durability of the cured body is ensured by mixing appropriate air into the hydraulic composition, but the hydraulic composition of the present invention, particularly, the hydraulic composition of the present invention containing the component (D). As for the thing, it is easy to secure the amount of air, and the amount of AE agent added can be reduced. In addition, the hydraulic composition of the present invention, in particular the hydraulic composition of the present invention containing the component (D), has a compressive strength equal to or higher than that of the conventional one when the amount of air is the same. .
 本発明の水硬性組成物は、コンクリート構造物やコンクリート製品の材料として用いることができる。本発明の水硬性組成物を用いたコンクリートは、接水から7日後といった初期圧縮強度が向上するため、例えば、通常のセメントを用いたコンクリートと同様の脱型時間を得ることが出来る。また、本発明の水硬性組成物は、普通ポルトランドセメントや高炉スラグセメントを用いたコンクリートと比較して、長期強度の向上が望める、化学抵抗性が向上する等の利点を有する。更に、本発明の水硬性組成物は、接水後の初期材齢強度が低い水硬性粉体(フライアッシュ、シリカフューム、石灰石等)を、水硬性粉体中のスラグの割合を損なわない範囲で配合、置換しても、同等以上の、初期圧縮強度、例えば接水から7日後の圧縮強度を得ることが出来る、等の利点を有する。 The hydraulic composition of the present invention can be used as a material for concrete structures and concrete products. Since the concrete using the hydraulic composition of the present invention has improved initial compressive strength such as 7 days after contact with water, for example, the same demolding time as that of concrete using ordinary cement can be obtained. In addition, the hydraulic composition of the present invention has advantages in that long-term strength can be improved and chemical resistance can be improved as compared with concrete using ordinary Portland cement or blast furnace slag cement. Furthermore, the hydraulic composition of the present invention is a hydraulic powder (fly ash, silica fume, limestone, etc.) having a low initial age strength after water contact within a range that does not impair the proportion of slag in the hydraulic powder. Even if it mix | blends and substitutes, it has the advantage of being able to obtain the initial compression strength of the same or more, for example, the compression strength after seven days from water contact, etc.
 本発明の水硬性組成物としては、モルタル、コンクリートが挙げられる。また、本発明の水硬性組成物は、ボックスカルバート(壁)用、橋梁下部工用、トンネル覆工用、海洋構造物用、PC構造物用、地盤改良用、グラウト用、寒中用等の何れの分野においても有用である。 The hydraulic composition of the present invention includes mortar and concrete. In addition, the hydraulic composition of the present invention can be used for box culverts (walls), bridge substructures, tunnel linings, marine structures, PC structures, ground improvement, grout, cold, etc. It is also useful in the field.
 本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、高炉スラグセメント、及び水を含有する組成物の、水硬性組成物としての使用を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、高炉スラグセメント、及び水を含有する組成物を、水硬性組成物として用いる方法を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、高炉スラグセメント、並びに水を含有する組成物の、水硬性組成物としての使用を提供する。
 また、本発明は、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、高炉スラグセメント、並びに水を含有する組成物を、水硬性組成物として用いる方法を提供する。
 これらの使用又は方法には、本発明の水硬性組成物用の添加剤で述べた事項を適宜適用することができる。
The present invention relates to a hydraulic property of a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, blast furnace slag cement, and water. Provided for use as a composition.
The present invention also provides a composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, a blast furnace slag cement, and water. A method for use as a hydraulic composition is provided.
The present invention also includes (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, (D) ligninsulfonic acid or a derivative thereof, ligninsulfonic acid. Provided is a use of a composition comprising a salt or derivative thereof, and an admixture selected from naphthalenesulfonate formaldehyde condensate or salt thereof, a blast furnace slag cement, and water as a hydraulic composition.
The present invention also includes (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, (D) ligninsulfonic acid or a derivative thereof, ligninsulfonic acid. Provided is a method of using, as a hydraulic composition, a composition containing a salt or a derivative thereof, an admixture selected from a naphthalenesulfonate formaldehyde condensate or a salt thereof, a blast furnace slag cement, and water.
The matters described in the additives for hydraulic compositions of the present invention can be appropriately applied to these uses or methods.
<水硬性組成物の製造方法>
 本発明の水硬性組成物の製造方法は、(A)成分、(B)成分、(C)成分、高炉スラグセメント、及び水を混合する。また、本発明の水硬性組成物の製造方法は、(A)成分、(B)成分、(C)成分、(D)成分、高炉スラグセメント、及び水を混合する。(A)成分、(B)成分、(C)成分、及び(D)成分の具体例及び好ましい態様は、本発明の添加剤と同じである。
 また、本発明の水硬性組成物の製造方法では、ポリオール、アルカノールアミンを混合することが好ましい。また、本発明の水硬性組成物の製造方法では、(D)成分以外の分散剤を混合することができる。(D)成分以外の分散剤、ポリオール、アルカノールアミンの具体例及び好ましい態様は、本発明の添加剤と同じである。
 本発明の水硬性組成物の製造方法においては、本発明の水硬性組成物における含有量を混合量に置き換えて適用することができる。
 本発明の水硬性組成物の製造方法は、本発明の水硬性組成物の製造方法として好適である。
<Method for producing hydraulic composition>
The manufacturing method of the hydraulic composition of this invention mixes (A) component, (B) component, (C) component, blast furnace slag cement, and water. Moreover, the manufacturing method of the hydraulic composition of this invention mixes (A) component, (B) component, (C) component, (D) component, blast furnace slag cement, and water. Specific examples and preferred embodiments of the component (A), the component (B), the component (C), and the component (D) are the same as those of the additive of the present invention.
Moreover, in the manufacturing method of the hydraulic composition of this invention, it is preferable to mix a polyol and an alkanolamine. Moreover, in the manufacturing method of the hydraulic composition of this invention, dispersing agents other than (D) component can be mixed. Specific examples and preferred embodiments of the dispersant, polyol, and alkanolamine other than the component (D) are the same as those of the additive of the present invention.
In the method for producing a hydraulic composition of the present invention, the content in the hydraulic composition of the present invention can be replaced with a mixed amount.
The manufacturing method of the hydraulic composition of the present invention is suitable as the manufacturing method of the hydraulic composition of the present invention.
 水硬性組成物を調製する工程では、高炉スラグセメントに、(A)成分のチオ硫酸又はその塩と、(B)成分のチオシアン酸又はその塩と、(C)成分のα-ヒドロキシアルカンスルホン酸又はその塩と、必要により(D)成分のリグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤と、水と、任意に(D)成分以外の分散剤と、任意にグリセリンと、任意にアルカノールアミンと、任意に骨材とを添加し混合することにより、水硬性組成物が得られる。本発明では、(A)成分、(B)成分、(C)成分及び水を含有する混合物又は(A)成分、(B)成分、(C)成分、(D)成分及び水を含有する混合物と、高炉スラグセメントとを混合することが好ましい。安定した物性を有する水硬性組成物を得る観点から、(A)成分と、(B)成分と、(C)成分と、必要により(D)成分と、水と、任意にグリセリンと、任意にアルカノールアミンとを含有する混合物や、(A)成分と、(B)成分と、(C)成分と、必要により(D)成分と、水と、任意に(D)成分以外の分散剤と、任意にグリセリンと、任意にアルカノールアミンと、任意にAE剤と、を含有する混合物を用いることが好ましい。 In the step of preparing the hydraulic composition, blast furnace slag cement is mixed with (A) component thiosulfuric acid or a salt thereof, (B) component thiocyanic acid or a salt thereof, and (C) component α-hydroxyalkanesulfonic acid. Or a salt thereof, an admixture selected from (D) component lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof, if necessary, water, and optionally A hydraulic composition is obtained by adding and mixing a dispersant other than the component (D), optionally glycerin, optionally alkanolamine, and optionally aggregate. In the present invention, a mixture containing (A) component, (B) component, (C) component and water or (A) component, (B) component, (C) component, (D) component and water-containing mixture And blast furnace slag cement are preferably mixed. From the viewpoint of obtaining a hydraulic composition having stable physical properties, (A) component, (B) component, (C) component, (D) component, if necessary, water, optionally glycerin, optionally A mixture containing an alkanolamine, a component (A), a component (B), a component (C), a component (D), water, and optionally a dispersant other than the component (D); It is preferable to use a mixture containing optionally glycerin, optionally alkanolamine, and optionally AE agent.
 高炉スラグセメント、(A)成分のチオ硫酸又はその塩、(B)成分のチオシアン酸又はその塩、(C)成分のα-ヒドロキシアルカンスルホン酸又はその塩、(D)成分のリグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、(D)成分以外の分散剤、グリセリン、アルカノールアミン、骨材、及び水を混合する場合、これらを円滑に混合する観点から、(A)成分、(B)成分、(C)成分、(D)成分、(D)以外の分散剤、グリセリン、アルカノールアミン及び水を予め混合し、高炉スラグセメントと骨材に混合することが好ましい。また、高炉スラグセメントと骨材とを予め混合することが好ましい。
 高炉スラグセメント、骨材、及び水との混合は、モルタルミキサー、傾動型、水平二軸型、パン型等のミキサーを用いて行うことができる。水に、(A)成分、(B)成分、(C)成分、(D)成分、(D)成分以外の分散剤、グリセリン、アルカノールアミンを添加した混合物を用いることが好ましい。
 また、前記の成分及び材料を、好ましくは30秒間以上、より好ましくは1分間以上、そして、好ましくは10分間以下、より好ましくは5分間以下混合する。
Blast furnace slag cement, (A) component thiosulfuric acid or salt thereof, (B) component thiocyanic acid or salt thereof, (C) component α-hydroxyalkanesulfonic acid or salt thereof, (D) component lignin sulfonic acid or The admixture selected from the derivative, lignin sulfonate or derivative thereof, naphthalene sulfonate formaldehyde condensate or salt thereof, dispersant other than component (D), glycerin, alkanolamine, aggregate, and water are mixed. In this case, from the viewpoint of smoothly mixing them, (A) component, (B) component, (C) component, (D) component, dispersant other than (D), glycerin, alkanolamine and water are mixed in advance, It is preferable to mix with blast furnace slag cement and aggregate. Moreover, it is preferable to mix a blast furnace slag cement and an aggregate beforehand.
Mixing with blast furnace slag cement, aggregate, and water can be carried out using a mortar mixer, tilting type, horizontal biaxial type, pan type or the like. It is preferable to use a mixture in which a dispersant other than the components (A), (B), (C), (D), and (D), glycerin, and alkanolamine are added to water.
In addition, the above components and materials are preferably mixed for 30 seconds or longer, more preferably 1 minute or longer, and preferably 10 minutes or shorter, more preferably 5 minutes or shorter.
 本発明の製造方法では、得られた水硬性組成物中の空気量が増加する傾向を示す。一般に、水硬性組成物中の空気量が増えると、硬化体の強度は低下するが、本発明の水硬性組成物は、空気量の多寡に関わらず硬化体の強度が向上する。そのため、例えば、空気量が従来の水準と同じ程度でよい場合は、AE剤やAE減水剤の添加量を減らしつつ、強度の高い硬化体を得ることができる。 In the production method of the present invention, the amount of air in the obtained hydraulic composition tends to increase. In general, when the amount of air in the hydraulic composition increases, the strength of the cured body decreases, but the hydraulic composition of the present invention improves the strength of the cured body regardless of the amount of air. Therefore, for example, when the amount of air may be the same as the conventional level, a hardened body with high strength can be obtained while reducing the amount of AE agent or AE water reducing agent added.
<水硬性組成物の硬化体の製造方法>
 本発明の水硬性組成物の硬化体の製造方法は、
 前記本発明の製造方法で水硬性組成物を製造する工程と、
 得られた水硬性組成物を型枠に充填して硬化させる工程と、
 硬化した水硬性組成物を型枠から脱型して水硬性組成物の硬化体を得る工程と、
を有する。
<Method for producing a cured product of hydraulic composition>
The method for producing a cured product of the hydraulic composition of the present invention comprises:
A step of producing a hydraulic composition by the production method of the present invention;
Filling the mold with the obtained hydraulic composition and curing;
Removing the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition;
Have
 前記本発明の製造方法で水硬性組成物を製造する工程については、前記の通りである。 The process for producing the hydraulic composition by the production method of the present invention is as described above.
 水硬性組成物を型枠に充填し硬化させる工程では、調製後の未硬化の水硬性組成物を型枠に充填し養生を行い硬化させる。型枠として、構造物の型枠、コンクリート製品用の型枠等が挙げられる。型枠への充填方法として、ミキサーから直接投入する方法、水硬性組成物をポンプで圧送して型枠に導入する方法等が挙げられる。型枠に充填する際及び充填後には、充填性を向上させる観点から、振動を付加しても良い。 In the step of filling and hardening the hydraulic composition into the mold, the uncured hydraulic composition after preparation is filled into the mold, cured, and cured. Examples of the formwork include a structure formwork and a concrete product formwork. Examples of the method of filling the mold include a method of directly feeding from a mixer, a method of pumping the hydraulic composition with a pump and introducing it into the mold. When filling the mold and after filling, vibration may be added from the viewpoint of improving fillability.
 本発明の水硬性組成物の硬化体の製造方法では、水硬性組成物の養生の際、硬化を促進するために蒸気加熱等の追加的なエネルギーを加えても良い。本発明では、型枠に充填した水硬性組成物の養生温度は、0℃以上が好ましく、5℃以上がより好ましく、そして、50℃未満が好ましく、40℃以下がより好ましく、30℃以下が更に好ましい。養生として室温での気中養生などを行うことができる。 In the method for producing a cured body of the hydraulic composition of the present invention, additional energy such as steam heating may be added to accelerate curing when curing the hydraulic composition. In the present invention, the curing temperature of the hydraulic composition filled in the mold is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, preferably lower than 50 ° C., more preferably 40 ° C. or lower, and 30 ° C. or lower. Further preferred. As curing, air curing at room temperature can be performed.
 蒸気等の加熱養生をする場合でも、エネルギーを削減する観点から、加熱養生の時間は短いことが好ましい。加熱養生の時間は0時間であってもよい。つまり、加熱養生を行わなくても良い。 Even in the case of heat curing such as steam, it is preferable that the heat curing time is short from the viewpoint of reducing energy. The heat curing time may be 0 hour. That is, it is not necessary to perform heat curing.
 硬化した水硬性組成物を型枠から脱型して水硬性組成物の硬化体を得る工程では、型枠から脱型して水硬性組成物の硬化体を得る。得られた硬化体は、水硬性組成物で述べた用途に用いることができる。 In the step of demolding the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition, the cured composition of the hydraulic composition is obtained by demolding from the mold. The obtained cured product can be used for the uses described in the hydraulic composition.
 本発明では、水硬性組成物の調製で水硬性粉体に水を接触させてから脱型するまでの時間は、脱型に必要な強度を得る観点と製造サイクルを向上する観点から、4時間以上14日以下が好ましい。本発明の水硬性組成物の硬化体の製造方法は、水硬性組成物の硬化が促進されるため、水硬性組成物の調製から脱型するまでの時間を短縮することも可能である。 In the present invention, in the preparation of the hydraulic composition, the time from contact of water with the hydraulic powder to demolding is 4 hours from the viewpoint of obtaining strength necessary for demolding and improving the production cycle. It is preferably 14 days or less. In the method for producing a cured body of the hydraulic composition of the present invention, since the curing of the hydraulic composition is promoted, it is possible to shorten the time from preparation of the hydraulic composition to demolding.
実施例
<実施例1a及び比較例1a>
 モルタルの硬化体を製造し、強度を評価した。モルタルの配合、調製、評価について、それぞれ以下に記載した。
Example <Example 1a and Comparative Example 1a>
A cured mortar was produced and evaluated for strength. The blending, preparation and evaluation of mortar are described below.
(1)モルタルの調製
 表1に示す配合条件で、モルタルミキサー(株式会社ダルトン製 万能混合撹拌機 型式:5DM-03-γ)に、セメント(C)、細骨材(S)を投入し、空練りを10秒行い、練り水(W)を加え、低速回転(回転数63rpm)にて120秒間混練した。ここで、練り水は、表2の各成分(便宜的に添加剤と表示した)と水とを含む混合物と水とを混合して得た。
 なお、各成分のセメント(C)に対する添加量(質量%)は表2の通りであり、表2に示す添加量となるように練り水に添加して用いた。
 また、チオ硫酸ナトリウムは、表中、Naと表記した。チオシアン酸ナトリウムは、表中、NaSCNと表記した。α-ヒドロキシメタンスルホン酸ナトリウムは、表中、HMSと表記した。
(1) Preparation of mortar Under the blending conditions shown in Table 1, cement (C) and fine aggregate (S) were put into a mortar mixer (universal mixing stirrer model: 5DM-03-γ manufactured by Dalton Co., Ltd.) Empty kneading was performed for 10 seconds, kneading water (W) was added, and the mixture was kneaded for 120 seconds at a low speed rotation (rotation speed: 63 rpm). Here, the kneading water was obtained by mixing water and a mixture containing each component shown in Table 2 (for convenience, indicated as an additive) and water.
In addition, the addition amount (mass%) with respect to the cement (C) of each component is as Table 2, and it added and used for kneading water so that it might become the addition amount shown in Table 2.
Sodium thiosulfate, the table was expressed as Na 2 S 2 O 3. Sodium thiocyanate was indicated as NaSCN in the table. Sodium α-hydroxymethanesulfonate was represented as HMS in the table.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
・セメント(C):普通ポルトランドセメント(太平洋セメント株式会社製、密度3.16g/cm,表中、OPCと表示した。)又は、高炉セメントB種(太平洋セメント株式会社製,密度3.04g/cm、表中、BBと表示した。)
・細骨材(S):城陽産、山砂、FM=2.67、密度2.56g/cm
・水(W):水道水に、表2の各成分と水とを含む混合物を添加して得た練り水
Cement (C): Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., density 3.16 g / cm 3 , indicated as OPC in the table) or blast furnace cement B type (manufactured by Taiheiyo Cement Co., Ltd., density 3.04 g) / Cm 3 , indicated as BB in the table.)
Fine aggregate (S): produced in Jyoyo, mountain sand, FM = 2.67, density 2.56 g / cm 3
Water (W): Kneaded water obtained by adding a mixture containing each component of Table 2 and water to tap water
(2)モルタル硬化体の評価
 上記で得られたモルタルについて、以下に示す試験法にしたがって、モルタル硬化体の1日後および7日後の強度を評価した。結果を表2に示した。
 JIS A 1132に基づき、プラスチック製のコンクリート供試体成形型枠(商品名プラモールド、株式会社マルイ、円柱型、底面の直径5cm、高さ10cm)の型枠に、二層詰め方式によりモルタルを充填し、20℃の室内にて気中(20℃)養生を行い硬化させ供試体を作製した。モルタル調製から1日後に硬化した供試体を型枠から脱型し、7日後まで水中(20℃)養生を行った。
 圧縮強度は、JIS A 1108に基づいて測定した。モルタル調製からの日数は、モルタル調製の際に、最初に水とセメントが接した時点を起点とした。基準品の強度に対する相対値を強度比(%)として表2に併記した。基準品は、セメント種ごとに、添加剤を使用しない比較例を基準として示した。
(2) Evaluation of mortar cured body About the mortar obtained above, the strength of the mortar cured body after 1 day and after 7 days was evaluated according to the test method shown below. The results are shown in Table 2.
Based on JIS A 1132, plastic concrete specimen molding mold (trade name: Plastic Mold, Marui Co., Ltd., cylindrical mold, bottom diameter 5cm, height 10cm) is filled with mortar by two-layer packing method. Then, it was cured in the air (20 ° C.) in a room at 20 ° C. and cured to prepare a specimen. A specimen cured one day after the preparation of the mortar was removed from the mold and cured under water (20 ° C.) until seven days later.
The compressive strength was measured based on JIS A 1108. The number of days from the preparation of the mortar started from the time when the water first contacted the cement during the preparation of the mortar. The relative value with respect to the strength of the reference product is shown in Table 2 as the strength ratio (%). For the standard product, a comparative example in which no additive is used is shown as a standard for each cement type.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2中、添加量は、セメント(C)に対する固形分の質量%である。 In Table 2, the addition amount is mass% of solid content with respect to cement (C).
 表2の比較例1a-1~1a-10の結果から、普通ポルトランドセメントを用いた場合は、本発明の添加剤を全て添加しても、7日強度が向上しないことがわかる。
 表2の比較例1a-11~1a-17と実施例1a-1~1a-3の結果から、高炉セメントB種を用いた場合は、本発明の添加剤を全て添加することで、7日強度が向上することがわかる。
From the results of Comparative Examples 1a-1 to 1a-10 in Table 2, it can be seen that when ordinary Portland cement is used, the strength is not improved for 7 days even when all the additives of the present invention are added.
From the results of Comparative Examples 1a-11 to 1a-17 and Examples 1a-1 to 1a-3 in Table 2, when all types of additives of the present invention were added, 7 days were It can be seen that the strength is improved.
<実施例2a及び比較例2a>
 実施例1aと同様にモルタルの硬化体を製造し、強度を評価した。ただし、モルタルに添加する成分は、表3の組成の添加剤(I)、(II)又は(III)として練り水(W)に添加した。添加剤(I)、(II)又は(III)は、セメント(C)に対する添加量が表4の通りとなるように用いた。結果を表4に示した。なお、強度の相対値は、セメント種ごとに、添加剤を使用しない比較例を基準として示した。
<Example 2a and Comparative Example 2a>
A cured mortar was produced in the same manner as in Example 1a, and the strength was evaluated. However, the components added to the mortar were added to the kneading water (W) as additives (I), (II) or (III) having the composition shown in Table 3. Additives (I), (II) or (III) were used so that the amount added to cement (C) was as shown in Table 4. The results are shown in Table 4. In addition, the relative value of intensity | strength was shown on the basis of the comparative example which does not use an additive for every cement kind.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4中、添加量は、セメント(C)に対する固形分の質量%である。 In Table 4, the addition amount is mass% of solid content with respect to cement (C).
<実施例3a及び比較例3a>
 表5に示す配合条件で、JIS R 5201に準拠して、硬化体を製造し、7日強度を測定した。結果を表6に示した。尚、セメントは実施例1aと同じBB(高炉セメントB種)を用いた。また、細骨材(S)はセメント強さ試験用標準砂(一般社団法人セメント協会製)を用いた。また、添加剤(I)、(II)は、実施例2aと同じものを用いた。
<Example 3a and Comparative Example 3a>
Under the compounding conditions shown in Table 5, a cured product was produced in accordance with JIS R 5201, and the strength was measured for 7 days. The results are shown in Table 6. In addition, the same BB (type blast furnace cement B) as Example 1a was used for the cement. As the fine aggregate (S), standard sand for cement strength test (manufactured by Cement Association) was used. Further, the same additives (I) and (II) as in Example 2a were used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6中、添加量は、セメント(C)に対する固形分の質量%である。 In Table 6, the addition amount is mass% of solid content with respect to cement (C).
<実施例4a及び比較例4a>
 実施例3aと同様にモルタルの硬化体を製造し、強度を評価した。
 但し、セメントは表7に示すものを用いた。表7中のBFSは、高炉スラグ微粉末(石膏入り、エスメント関東株式会社製、ブレーン比表面積4,000cm/g)である。
 結果を表7に示した。尚、強度の相対値は、セメント種ごとに、添加剤を使用しない比較例を基準として示した。
<Example 4a and Comparative Example 4a>
A cured mortar was produced in the same manner as in Example 3a, and the strength was evaluated.
However, the cement shown in Table 7 was used. BFS in Table 7 is blast furnace slag fine powder (with gypsum, manufactured by Esment Kanto Co., Ltd., Blaine specific surface area 4,000 cm 2 / g).
The results are shown in Table 7. In addition, the relative value of intensity | strength was shown on the basis of the comparative example which does not use an additive for every cement kind.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7中、添加量は、セメント(C)に対する固形分の質量%である。 In Table 7, the addition amount is mass% of solid content with respect to cement (C).
<実施例5a及び比較例5a>
 表8に示す配合条件で、コンクリートを製造した。
 コンクリート配合成分を以下に示す。
・セメント(OPC):普通ポルトランドセメント(太平洋セメント株式会社)、密度3.16g/cm
・高炉スラグ(BFS):高炉スラグ微粉末(石膏入り、エスメント関東株式会社製))、ブレーン比表面積4,000cm/g
・細骨材(S1): 砕砂、粗粒率=2.97、密度2.63g/cm
・細骨材(S2): 砕砂、粗粒率=1.67、密度2.60g/cm
・粗骨材(G1): 砕石、20-10mm 実績率62.0%、密度2.65g/cm
・粗骨材(G2): 砕石、10-5mm 実績率62.1%、密度2.65g/cm
・添加剤(I):表3に示すものと同一のものを用いた。
・混和剤(1):リグニンスルホン酸を含むAE減水剤(標準型)、BASFジャパン株式会社製、マスターポゾリスNo.70
・混和剤(2):AE剤、BASFジャパン株式会社製 マスターエア202
・水(W):水道水に、表9の混和剤と表9の添加剤を含む混合物を添加して得た練り水
<Example 5a and Comparative Example 5a>
Concrete was manufactured under the blending conditions shown in Table 8.
The concrete blending components are shown below.
Cement (OPC): ordinary Portland cement (Pacific Cement Co., Ltd.), density 3.16 g / cm 3
・ Blast furnace slag (BFS): ground powder of blast furnace slag (with gypsum, manufactured by Esmento Kanto Co., Ltd.), Blaine specific surface area 4,000 cm 2 / g
Fine aggregate (S1): Crushed sand, coarse particle rate = 2.97, density 2.63 g / cm 3
-Fine aggregate (S2): Crushed sand, coarse grain ratio = 1.67, density 2.60 g / cm 3
Coarse aggregate (G1): crushed stone, 20-10 mm, actual rate 62.0%, density 2.65 g / cm 3
Coarse aggregate (G2): crushed stone, 10-5 mm, actual rate 62.1%, density 2.65 g / cm 3
Additive (I): The same one as shown in Table 3 was used.
Admixture (1): AE water reducing agent (standard type) containing lignin sulfonic acid, manufactured by BASF Japan Ltd., Master Pozzolith No. 70
Admixture (2): AE agent, Master Air 202 manufactured by BASF Japan
Water (W): Kneaded water obtained by adding a mixture containing the admixtures in Table 9 and the additives in Table 9 to tap water
(1)コンクリートの調製
 表8に示す配合条件で、コンクリートミキサーに、高炉スラグを含む水硬性粉体(OPCとBFSの混合物)、細骨材、粗骨材を投入し、空練りを15秒間行い、混和剤(1)と混和剤(2)と添加剤(I)を含む練り水(W)を加えて、30秒間混練した後、かき落としを行い、更に60秒間混練し、コンクリートを得た。混和剤(1)、混和剤(2)は、水硬性粉体(P)(OPCとBFSの合計)に対する見かけの添加量が表9の通りになるように練り水に加えた。また、添加剤(I)は、水硬性粉体(P)(OPCとBFSの合計)に対する固形分の添加量が表9の通りになるように練り水に加えた。尚、コンクリート調製時の室温は20℃であった。
 また、未硬化のコンクリートの空気量を、JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法」に準拠して測定した。結果を表9に示した。
(1) Preparation of concrete Under the blending conditions shown in Table 8, hydraulic powder containing blast furnace slag (mixture of OPC and BFS), fine aggregate, and coarse aggregate are put into a concrete mixer, and empty kneading is performed for 15 seconds. After adding the kneading water (W) containing the admixture (1), the admixture (2) and the additive (I), kneading for 30 seconds, scraping off, and further kneading for 60 seconds to obtain concrete . Admixture (1) and Admixture (2) were added to the kneaded water so that the apparent addition amount to the hydraulic powder (P) (total of OPC and BFS) was as shown in Table 9. In addition, the additive (I) was added to the kneaded water so that the amount of solid content added to the hydraulic powder (P) (total of OPC and BFS) was as shown in Table 9. In addition, the room temperature at the time of concrete preparation was 20 degreeC.
Further, the amount of air in the uncured concrete was measured in accordance with JIS A 1128 “Test method by pressure of air amount in fresh concrete”. The results are shown in Table 9.
(2)コンクリート硬化体の評価
 コンクリートを、JIS A 1132「コンクリートの強度試験用供試体の作り方」に基づいて、20度の条件で養生、脱型後、硬化体を室温(20℃)で放置し、水硬性組成物の調製の際に最初に水と水硬性粉体とが接触した時点から3日後、及び7日後に、JIS A 1108「コンクリートの圧縮強度試験方法」に基づいて、硬化体の圧縮強度を測定した。結果を表9に、3日強度、7日強度として示した。
(2) Evaluation of hardened concrete body After curing and demolding the concrete under the condition of 20 degrees based on JIS A 1132 “How to make a specimen for concrete strength test”, the hardened body is left at room temperature (20 ° C.). In the preparation of the hydraulic composition, after 3 days and 7 days after the first contact between the water and the hydraulic powder, the cured product was obtained in accordance with JIS A 1108 “Method for testing compressive strength of concrete”. The compressive strength of was measured. The results are shown in Table 9 as 3-day intensity and 7-day intensity.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9中、混和剤(1)及び(2)の質量%は、水硬性粉体(P)(OPCとBFSの合計)に対する見かけの添加量に基づく質量%である。
 表9中、添加剤(I)の添加量は、水硬性粉体(P)(OPCとBFSの合計)に対する固形分の添加量(質量%)である。
In Table 9, the mass% of the admixtures (1) and (2) is mass% based on the apparent amount added to the hydraulic powder (P) (total of OPC and BFS).
In Table 9, the addition amount of the additive (I) is the solid content addition amount (mass%) relative to the hydraulic powder (P) (total of OPC and BFS).
<実施例6a及び比較例6a>
 実施例5aと同様にコンクリートの硬化体を製造し、強度を評価した。ただし、コンクリートの配合条件は表10の通りとした。また、強度は、3日強度、7日強度、28日強度、及び91日強度を測定した。結果を表11に示した。尚、供試体寸法はφ100mm×200mmとした。尚、コンクリート調製時の室温は20℃であった。
<Example 6a and Comparative Example 6a>
A hardened concrete was produced in the same manner as in Example 5a, and the strength was evaluated. However, the mixing conditions of concrete were as shown in Table 10. Moreover, the intensity | strength measured 3 day intensity | strength, 7 day intensity | strength, 28 day intensity | strength, and 91 day intensity | strength. The results are shown in Table 11. The specimen size was set to φ100 mm × 200 mm. In addition, the room temperature at the time of concrete preparation was 20 degreeC.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11中、混和剤(1)及び(2)の質量%は、水硬性粉体(P)(OPCとBFSの合計)に対する見かけの添加量に基づく質量%である。
 表11中、添加剤(I)の添加量は、水硬性粉体(P)(OPCとBFSの合計)に対する固形分の添加量(質量%)である。
In Table 11, the mass% of the admixtures (1) and (2) is mass% based on the apparent amount added to the hydraulic powder (P) (total of OPC and BFS).
In Table 11, the addition amount of the additive (I) is the solid content addition amount (mass%) relative to the hydraulic powder (P) (total of OPC and BFS).
 比較例6a-1及び実施例6a-2より、添加剤(I)を用いることで、圧縮強度が向上することが分かる。 From Comparative Example 6a-1 and Example 6a-2, it can be seen that the compressive strength is improved by using the additive (I).
<実施例7a及び比較例7a>
 実施例5aと同様にコンクリートの硬化体を製造し、強度を評価した。ただし、コンクリートの配合条件は表12の通りとした。セメント、添加剤、混和剤は下記の通りである。添加剤、混和剤の添加量は、表13の通りとした。また、養生温度は、表13の通りとした。
・セメント:実施例1aと同じBB(高炉セメントB種)を用いた。
・添加剤:実施例2aの添加剤(II)を用いた。
・混和剤(1)及び混和剤(2):実施例5aと同じものを用いた。
・混和剤(3):AE減水剤(高機能型)、花王株式会社製、マイテイ1000S(ポリカルボン酸型特殊界面活性剤及び天然樹脂酸誘導体)
 強度は、1日強度、2日強度、3日強度、7日強度、28日強度、及び91日強度を測定した。結果を表13に示した。なお、強度の相対値は、同じコンクリート配合で、添加剤の添加量及び養生温度が同じ条件にあり、添加剤を使用しない比較例を基準として示した。
<Example 7a and Comparative Example 7a>
A hardened concrete was produced in the same manner as in Example 5a, and the strength was evaluated. However, the mixing conditions of concrete were as shown in Table 12. The cement, additives and admixtures are as follows. The amounts of additives and admixtures added were as shown in Table 13. The curing temperature was as shown in Table 13.
Cement: The same BB (type blast furnace cement B) as in Example 1a was used.
Additive: Additive (II) of Example 2a was used.
Admixture (1) and Admixture (2): The same as in Example 5a was used.
Admixture (3): AE water reducing agent (high function type), manufactured by Kao Corporation, Mighty 1000S (polycarboxylic acid type special surfactant and natural resin acid derivative)
Intensity was measured as 1-day intensity, 2-day intensity, 3-day intensity, 7-day intensity, 28-day intensity, and 91-day intensity. The results are shown in Table 13. In addition, the relative value of intensity | strength was shown on the basis of the comparative example which does not use an additive in the same concrete mixing | blending, the addition amount of an additive, and curing temperature in the same conditions.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表13中、混和剤(1)、混和剤(2)、混和剤(3)の質量%は、セメント(BB)に対する見かけの添加量に基づく質量%である。
 表13中、添加剤(II)の添加量は、セメント(BB)に対する固形分の添加量(質量%)である。
In Table 13, the mass% of the admixture (1), the admixture (2), and the admixture (3) is mass% based on the apparent amount added to the cement (BB).
In Table 13, the addition amount of the additive (II) is the addition amount (% by mass) of the solid content with respect to the cement (BB).
<実施例1b、比較例1b及び参考例1b>
 モルタル及びその硬化体を製造し、モルタルの流動性及び硬化体の強度を評価した。モルタルの配合、調製、評価について、それぞれ以下に記載した。
<Example 1b, Comparative Example 1b, and Reference Example 1b>
Mortar and its hardened | cured material were manufactured, and the fluidity | liquidity of the mortar and the intensity | strength of the hardened | cured material were evaluated. The blending, preparation and evaluation of mortar are described below.
(1)モルタルの調製
 表14に示す配合条件で、各成分を、JIS R 5201に準拠して混練し、モルタルを得た。モルタルミキサーは、株式会社ダルトン製 万能混合撹拌機(型式:5DM-03-γ)を用いた。ここで、練り水は、表15の各成分(便宜的に添加剤と表示した)及び混和剤(d1)を含む混合物と水とを混合して得た。
 また、チオ硫酸ナトリウムは、表中、Naと表記した。チオシアン酸ナトリウムは、表中、NaSCNと表記した。α-ヒドロキシメタンスルホン酸ナトリウムは、表中、HMSと表記した。
(1) Preparation of mortar Under the blending conditions shown in Table 14, each component was kneaded according to JIS R 5201 to obtain a mortar. As the mortar mixer, a universal mixing stirrer (model: 5DM-03-γ) manufactured by Dalton Co., Ltd. was used. Here, the kneading water was obtained by mixing a mixture containing each component (shown as an additive for convenience) and an admixture (d1) in Table 15 with water.
Sodium thiosulfate, the table was expressed as Na 2 S 2 O 3. Sodium thiocyanate was indicated as NaSCN in the table. Sodium α-hydroxymethanesulfonate was represented as HMS in the table.
・セメント(C):普通ポルトランドセメント(太平洋セメント株式会社製、密度3.16g/cm、表中、OPCと表記した。)と、高炉スラグ(高炉スラグ微粉末、石膏入り、エスメント関東株式会社製、ブレーン比表面積4,000cm/g、表中、BFSと表記した。)とを、50/50質量比で混合した高炉セメント。
・細骨材(S):セメント強さ試験用標準砂(一般社団法人セメント協会製)
・水(W):水道水に、添加剤及び下記混和剤(d1)を含む混合物を添加して得た練り水
・混和剤(d1):リグニンスルホン酸を含むAE減水剤(標準型)、BASFジャパン株式会社製、マスターポゾリスNo.70
Cement (C): Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., density 3.16 g / cm 3 , expressed as OPC in the table) and blast furnace slag (containing blast furnace slag fine powder, gypsum, Sment Kanto Co., Ltd.) Blast furnace cement in which a Blaine specific surface area of 4,000 cm 2 / g, expressed as BFS in the table) was mixed at a 50/50 mass ratio.
-Fine aggregate (S): Standard sand for cement strength test (manufactured by Cement Association)
Water (W): Kneading water obtained by adding a mixture containing an additive and the following admixture (d1) to tap water. Admixture (d1): AE water reducing agent (standard type) containing lignin sulfonic acid, BASF Japan Ltd., Master Pozzolith No. 70
(2)モルタル流動性の評価
 モルタルの流動性を、JIS R 5201に従って測定を行った。なお、JIS R 5201記載の落下運動は行っていない。
(2) Evaluation of mortar fluidity The fluidity of mortar was measured according to JIS R5201. In addition, the drop motion described in JIS R 5201 is not performed.
(3)モルタル硬化体の評価
 上記で得られたモルタルについて、以下に示す試験法にしたがって、モルタル硬化体の3日後の強度を評価した。結果を表16に示した。
 JIS A 1132に基づき、プラスチック製のコンクリート供試体成形型枠(商品名プラモールド、株式会社マルイ、円柱型、底面の直径5cm、高さ10cm)の型枠に、二層詰め方式によりモルタルを充填し、20℃の室内にて気中(20℃)養生を行い硬化させ供試体を作製した。モルタル調製から1日後に硬化した供試体を型枠から脱型し、3日後まで水中(20℃)養生を行った。
 圧縮強度は、JIS A 1108に基づいて測定した。モルタル調製からの日数は、モルタル調製の際に、最初に水とセメントが接した時点を起点とした。基準品の強度に対する相対値を強度比(%)として表16に併記した。
(3) Evaluation of mortar cured body About the mortar obtained above, the strength after 3 days of the mortar cured body was evaluated according to the test method shown below. The results are shown in Table 16.
Based on JIS A 1132, plastic concrete specimen molding mold (trade name: Plastic Mold, Marui Co., Ltd., cylindrical mold, bottom diameter 5cm, height 10cm) is filled with mortar by two-layer packing method. Then, it was cured in the air (20 ° C.) in a room at 20 ° C. and cured to prepare a specimen. A specimen cured one day after the preparation of the mortar was removed from the mold, and was cured under water (20 ° C.) until three days later.
The compressive strength was measured based on JIS A 1108. The number of days from the preparation of the mortar started from the time when the water first contacted the cement during the preparation of the mortar. The relative value with respect to the strength of the reference product is also shown in Table 16 as the strength ratio (%).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表16中、混和剤(d1)の添加量は、セメント(C)(OPCとBFSの合計)に対する見かけの添加量(質量%)である。また、表16中、添加剤(I)の添加量は、セメント(C)(OPCとBFSの合計)に対する固形分の添加量(質量%)である。 In Table 16, the addition amount of the admixture (d1) is the apparent addition amount (mass%) with respect to the cement (C) (total of OPC and BFS). Moreover, in Table 16, the addition amount of additive (I) is the addition amount (mass%) of solid content with respect to cement (C) (total of OPC and BFS).
 表16の比較例1b-1、参考例1b-2~1b-5、比較例1b-6の結果から、本発明の添加剤を添加し、混和剤を添加しない場合は、高炉スラグセメントを用いた水硬性組成物の流動性は向上しないが、圧縮強度は向上することがわかる。
 表16の比較例1b-1、参考例1b-2~1b-5、比較例1b-6と実施例1b-1~1b-2の結果から、本発明の添加剤を添加し、混和剤を添加した場合は、高炉スラグセメントを用いた水硬性組成物の流動性と圧縮強度の両方が向上することがわかる。
From the results of Comparative Example 1b-1, Reference Examples 1b-2 to 1b-5, and Comparative Example 1b-6 in Table 16, when the additive of the present invention is added and no admixture is added, blast furnace slag cement is used. It can be seen that the fluidity of the existing hydraulic composition is not improved, but the compressive strength is improved.
From the results of Comparative Example 1b-1, Reference Examples 1b-2 to 1b-5, Comparative Example 1b-6 and Examples 1b-1 to 1b-2 in Table 16, the additive of the present invention was added and the admixture was added. When it adds, it turns out that both the fluidity | liquidity and compressive strength of the hydraulic composition using a blast furnace slag cement improve.
<実施例2b、比較例2b及び参考例2b>
 モルタルを製造し、流動性を評価した。モルタルの配合、調製、評価について、それぞれ以下に記載した。
<Example 2b, Comparative Example 2b, and Reference Example 2b>
Mortar was manufactured and fluidity was evaluated. The blending, preparation and evaluation of mortar are described below.
(1)モルタル配合
 モルタルの配合条件を表17に示す。
 モルタルの配合成分及びモルタルミキサーは以下のものである。
・水(W):水道水に、添加剤(I)、(II)又は(III)、及び混和剤(d1)、(d2)、又は(d3)を添加して得た練り水
・セメント(C):普通ポルトランドセメント(太平洋セメント株式会社製、密度3.16g/cm、表中、OPCと表示した。)又は高炉セメントB種(太平洋セメント株式会社製、密度3.04g/cm、表中、BBと表示した。)
・細骨材(S):城陽産、山砂、FM=2.67、密度2.56g/cm
・モルタルミキサー:株式会社ダルトン製 万能混合撹拌機 型式:5DM-03-γ
(1) Mortar formulation Table 17 shows the mortar formulation conditions.
The blending ingredients of the mortar and the mortar mixer are as follows.
Water (W): Kneaded water / cement obtained by adding additive (I), (II) or (III) and admixture (d1), (d2), or (d3) to tap water C): Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., density 3.16 g / cm 3 , indicated as OPC in the table) or blast furnace cement B type (manufactured by Taiheiyo Cement Co., Ltd., density 3.04 g / cm 3) In the table, indicated as BB.)
Fine aggregate (S): produced in Jyoyo, mountain sand, FM = 2.67, density 2.56 g / cm 3
・ Mortar mixer: Universal mixing stirrer manufactured by Dalton Co., Ltd. Model: 5DM-03-γ
(2)添加剤及び混和剤
 添加剤(I)、(II)又は(III)は、表15のものを用いた。
 混和剤(d1)は、実施例1bと同じものを用いた。
 混和剤(d2)、(d3)は、以下のものである。
・混和剤(d2):ポリカルボン酸系分散剤、マイテイ21HP、花王株式会社製
・混和剤(d3):ナフタレンスルホン酸ホルムアルデヒド高縮合物、高性能減水剤、マイテイ150、花王株式会社製
(2) Additives and admixtures The additives (I), (II) or (III) used were those in Table 15.
The same admixture (d1) as in Example 1b was used.
Admixtures (d2) and (d3) are as follows.
・ Admixture (d2): Polycarboxylic acid dispersant, Mighty 21HP, manufactured by Kao Corporation ・ Admixture (d3): Naphthalenesulfonic acid formaldehyde high condensate, high-performance water reducing agent, Mighty 150, manufactured by Kao Corporation
(3)モルタルの調製
 表17に示す配合条件で、モルタルミキサーに、セメント(C)、細骨材(S)を投入し空練りを10秒行い、表18の成分(添加剤及び/又は混和剤)を含有する水(W)を加え、低速回転(回転数63rpm)にて120秒間混練した。ここで、練り水は、表18の各成分(添加剤及び/又は混和剤)と水とを含む混合物と水とを混合して得た。
 なお、各成分のセメント(C)に対する添加量(質量%)は表18の通りであり、表18に示す添加量となるように練り水に添加して用いた。
(3) Preparation of mortar Under the blending conditions shown in Table 17, cement (C) and fine aggregate (S) were put into a mortar mixer and kneaded for 10 seconds, and the components shown in Table 18 (additives and / or blends) Water (W) containing the agent was added, and kneaded for 120 seconds at a low speed rotation (rotation speed: 63 rpm). Here, the kneading water was obtained by mixing water and a mixture containing each component (additive and / or admixture) in Table 18 and water.
In addition, the addition amount (mass%) with respect to the cement (C) of each component is as Table 18, and it added and used for kneading water so that it might become the addition amount shown in Table 18.
(4)モルタル流動性の評価
 モルタルの流動性を、JIS R 5201に従って測定を行った。なお、JIS R 5201記載の落下運動は行っていない。
 なお、流動性の相対値は、試験群ごとに、添加剤を使用しない比較例を基準として示した。
(4) Evaluation of mortar fluidity The fluidity of mortar was measured according to JIS R5201. In addition, the drop motion described in JIS R 5201 is not performed.
In addition, the relative value of fluidity | liquidity was shown on the basis of the comparative example which does not use an additive for every test group.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表18中、混和剤(d1)、(d2)、(d3)の添加量は、セメント(C)(OPC又はBB)に対する見かけの添加量(質量%)である。また、表18中、添加剤(I)、(II)、(III)の添加量は、セメント(C)(OPC又はBB)に対する固形分の質量%である。 In Table 18, the addition amounts of the admixtures (d1), (d2), and (d3) are apparent addition amounts (mass%) with respect to the cement (C) (OPC or BB). Moreover, in Table 18, the addition amount of additives (I), (II), and (III) is the mass% of solid content with respect to cement (C) (OPC or BB).
 表18の結果から、セメントが高炉セメントであり、混和剤がリグニンスルホン酸ナトリウム塩(混和剤(d1))又はナフタレンスルホン酸ホルムアルデヒド縮合物の塩(混和剤(d3))であるモルタル配合に、本発明の添加剤(I)、(II)又は(III)を添加することにより、流動性が向上することがわかる。 From the results of Table 18, the mortar formulation in which the cement is blast furnace cement and the admixture is lignin sulfonic acid sodium salt (admixture (d1)) or naphthalenesulfonic acid formaldehyde condensate salt (admixture (d3)), It turns out that fluidity | liquidity improves by adding the additive (I), (II) or (III) of this invention.
<実施例3b及び比較例3b>
 コンクリート及びその硬化体を製造し、コンクリートのスランプと硬化体の強度を評価した。コンクリートの配合、調製、評価について、それぞれ以下に記載した。
<Example 3b and Comparative Example 3b>
Concrete and its hardened body were manufactured, and the strength of the concrete slump and hardened body was evaluated. The blending, preparation and evaluation of concrete are described below.
(1)コンクリート配合
 コンクリートの配合条件を表19に示す。
 コンクリートの配合成分は以下のものである。
・練り水(W):水道水
・セメント(OPC):太平洋セメント株式会社製、普通ポルトランドセメント、密度3.16g/cm
・高炉スラグ(BFS):エスメント関東株式会社製、高炉スラグ微粉末(石膏入り)、ブレーン比表面積4,000cm/g
・細骨材(S1): 砕砂、粗粒率=2.97、密度2.63g/cm
・細骨材(S2): 砕砂、粗粒率=1.67、密度2.60g/cm
・粗骨材(G1): 砕石、20-10mm 実績率62.0%、密度2.65g/cm
・粗骨材(G2): 砕石、10-5mm 実績率62.1%、密度2.65g/cm
・添加剤(I):実施例1bで用いたものと同じものを用いた。
・混和剤(d1):実施例1bで用いたものと同じものを用いた。
・混和剤(d4):AE剤、BASFジャパン株式会社製、マスターエア202
(1) Concrete blending Table 19 shows the concrete blending conditions.
The components of the concrete are as follows.
・ Kneaded water (W): tap water and cement (OPC): Taiheiyo Cement Co., Ltd., ordinary Portland cement, density 3.16 g / cm 3
・ Blast furnace slag (BFS): manufactured by Esment Kanto Co., Ltd., blast furnace slag fine powder (with gypsum), Blaine specific surface area 4,000 cm 2 / g
Fine aggregate (S1): Crushed sand, coarse particle rate = 2.97, density 2.63 g / cm 3
-Fine aggregate (S2): Crushed sand, coarse grain ratio = 1.67, density 2.60 g / cm 3
Coarse aggregate (G1): crushed stone, 20-10 mm, actual rate 62.0%, density 2.65 g / cm 3
Coarse aggregate (G2): crushed stone, 10-5 mm, actual rate 62.1%, density 2.65 g / cm 3
Additive (I): The same one as used in Example 1b was used.
Admixture (d1): The same one as used in Example 1b was used.
Admixture (d4): AE agent, manufactured by BASF Japan, Master Air 202
(2)コンクリートの調製
 表19に示す配合条件で、コンクリートミキサーに、高炉スラグを含む水硬性粉体(OPCとBFSの混合物)、細骨材、粗骨材を投入し、空練りを15秒間行い、添加剤(I)、混和剤(d1)、混和剤(d4)の少なくとも何れかを含む練り水(W)を加えて、30秒間混練した後、かき落としを行い、更に60秒混練し、コンクリートを得た。混和剤(d1)、混和剤(d4)は、水硬性粉体(P)(OPCとBFSの合計)に対する見かけの添加量が表20の通りとなるように水に加えた。また、添加剤(I)は、水硬性粉体(P)(OPCとBFSの合計)に対する固形分の添加量が表20の通りとなるように水に加えた。
 なお、未硬化のコンクリートのスランプを、JIS A 1101「コンクリートのスランプ試験方法」に準拠して測定した。結果を表20に示した。
 また、未硬化のコンクリートの空気量を、JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法」に準拠して測定した。結果を表20に示した。
(2) Preparation of concrete Under the blending conditions shown in Table 19, hydraulic powder containing blast furnace slag (mixture of OPC and BFS), fine aggregate, and coarse aggregate are put into a concrete mixer, and kneaded for 15 seconds. After adding kneading water (W) containing at least one of additive (I), admixture (d1), and admixture (d4), kneading for 30 seconds, scraping, and kneading for 60 seconds, Got concrete. The admixture (d1) and the admixture (d4) were added to water so that the apparent addition amount to the hydraulic powder (P) (total of OPC and BFS) was as shown in Table 20. Additive (I) was added to water so that the amount of solid content added to hydraulic powder (P) (total of OPC and BFS) was as shown in Table 20.
The slump of uncured concrete was measured according to JIS A 1101 “Concrete slump test method”. The results are shown in Table 20.
Further, the amount of air in the uncured concrete was measured in accordance with JIS A 1128 “Test method by pressure of air amount in fresh concrete”. The results are shown in Table 20.
(3)コンクリート硬化体の評価
 コンクリートを、JIS A 1132「コンクリートの強度試験用供試体の作り方」に基づいて、20度の条件で養生、脱型後、硬化体を室温(20℃)で放置し、水硬性組成物の調製の際に最初に水と水硬性粉体とが接触した時点から1日後、3日後、及び7日後に、JIS A 1108「コンクリートの圧縮強度試験方法」に基づいて、硬化体の圧縮強度を測定した。結果を表20に、1日強度、3日強度、7日強度として示した。
(3) Evaluation of hardened concrete body After curing and demolding the concrete under the condition of 20 degrees according to JIS A 1132 “How to make a specimen for concrete strength test”, the hardened body is left at room temperature (20 ° C.). 1 day, 3 days, and 7 days after the first contact between water and the hydraulic powder during the preparation of the hydraulic composition, based on JIS A 1108 “Compressive strength test method for concrete” The compressive strength of the cured product was measured. The results are shown in Table 20 as 1-day intensity, 3-day intensity, and 7-day intensity.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表20中、混和剤(d1)、混和剤(d4)の添加量は、水硬性粉体(P)(OPCとBFSの合計)に対する見かけの添加量(質量%)である。また、表20中、添加剤(I)の添加量は、水硬性粉体(P)(OPCとBFSの合計)に対する固形分の質量%である。 In Table 20, the addition amount of the admixture (d1) and the admixture (d4) is the apparent addition amount (mass%) relative to the hydraulic powder (P) (total of OPC and BFS). Moreover, in Table 20, the addition amount of the additive (I) is mass% of solid content with respect to the hydraulic powder (P) (total of OPC and BFS).
 表20の結果から、本発明の添加剤を添加すると、空気量が増え、流動性が向上することが分かる。実施例3b-1では、混和剤(d4)の添加量を低減しているが、比較例3b-1よりも空気量が増えており、しかも、3日後、7日後の圧縮強度が向上している。 From the results of Table 20, it can be seen that when the additive of the present invention is added, the amount of air is increased and the fluidity is improved. In Example 3b-1, the amount of admixture (d4) added was reduced, but the amount of air increased compared to Comparative Example 3b-1, and the compression strength after 3 days and 7 days was improved. Yes.
<実施例4b及び比較例4b>
 実施例3bと同様にコンクリート及びその硬化体を製造し、スランプと強度を評価した。ただし、コンクリートの配合条件は表21の通りとした。また、強度は、1日強度、及び3日強度を測定した。結果を表22に示した。
<Example 4b and Comparative Example 4b>
Concrete and its hardened body were produced in the same manner as in Example 3b, and the slump and strength were evaluated. However, the mixing conditions of concrete were as shown in Table 21. Moreover, the intensity | strength measured 1 day intensity | strength and 3 day intensity | strength. The results are shown in Table 22.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表22中、混和剤(d1)及び、混和剤(d4)の添加量は、水硬性粉体(P)(OPCとBFSの合計)に対する見かけの添加量(質量%)である。また、表22中、添加剤(I)の添加量は、水硬性粉体(P)(OPCとBFSの合計)に対する固形分の質量%である。 In Table 22, the addition amount of the admixture (d1) and the admixture (d4) is the apparent addition amount (mass%) with respect to the hydraulic powder (P) (total of OPC and BFS). Moreover, in Table 22, the addition amount of the additive (I) is mass% of solid content with respect to the hydraulic powder (P) (total of OPC and BFS).
 表22の結果、中でも比較例4b-1と実施例4b-3との対比から、空気量を同じにしても、本発明の添加剤を加えた方が流動性と3日強度が向上することが分かる。 As a result of Table 22, in comparison with Comparative Example 4b-1 and Example 4b-3, the fluidity and 3-day strength are improved by adding the additive of the present invention even when the air amount is the same. I understand.
<実施例5b及び比較例5b>
 実施例3bと同様にコンクリート及びその硬化体を製造し、スランプと強度を評価した。また、コンクリートのフローを、JIS A 1150「コンクリートのスランプフロー試験方法」に準拠して測定した。ただし、コンクリートの配合条件は表23の通りとした。セメントは、実施例2bと同じBB(高炉セメントB種)を用いた。また、添加剤は、実施例2bの添加剤(II)を表24の量で用いた。また、JIS A 1123「コンクリートのブリーディング試験方法」に準拠して凝結時間を表24に示した。尚、コンクリート調製時の室温、及び、養生温度は10℃であった。また、強度は、12時間強度、18時間強度、及び24時間強度を測定した。結果を表24に示した。
・混和剤(d5):AE減水剤(標準形)、花王株式会社製、マイテイ1000S(ポリカルボン酸型特殊界面活性剤及び天然樹脂酸誘導体)
<Example 5b and Comparative Example 5b>
Concrete and its hardened body were produced in the same manner as in Example 3b, and the slump and strength were evaluated. The concrete flow was measured in accordance with JIS A 1150 “Concrete Slump Flow Test Method”. However, the mixing conditions of concrete were as shown in Table 23. The same BB (type blast furnace cement B) as in Example 2b was used as the cement. As the additive, the additive (II) of Example 2b was used in the amount shown in Table 24. Table 24 shows the setting time in accordance with JIS A 1123 “Concrete Bleeding Test Method”. In addition, the room temperature at the time of concrete preparation and the curing temperature were 10 degreeC. Moreover, the intensity | strength measured 12 hours intensity | strength, 18 hours intensity | strength, and 24 hours intensity | strength. The results are shown in Table 24.
Admixture (d5): AE water reducing agent (standard form), manufactured by Kao Corporation, Mighty 1000S (polycarboxylic acid type special surfactant and natural resin acid derivative)
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表24中、混和剤(d1)、混和剤(d5)の添加量は、セメント(BB)に対する見かけの添加量(質量%)である。また、表24中、添加剤(II)の添加量は、セメント(BB)に対する固形分の質量%である。 In Table 24, the addition amounts of the admixture (d1) and the admixture (d5) are apparent addition amounts (mass%) with respect to the cement (BB). Moreover, in Table 24, the addition amount of additive (II) is the mass% of solid content with respect to cement (BB).
 表24の結果から、本発明の添加剤を加えると、流動性が向上し、凝結時間を短くし、短期強度を向上できることが分かる。 From the results of Table 24, it can be seen that when the additive of the present invention is added, the fluidity is improved, the setting time is shortened, and the short-term strength can be improved.

Claims (23)

  1.  (A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、及び(C)α-ヒドロキシアルカンスルホン酸又はその塩を含有する、高炉スラグセメントを用いた水硬性組成物用の添加剤。 An additive for a hydraulic composition using a blast furnace slag cement, containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) α-hydroxyalkanesulfonic acid or a salt thereof.
  2.  (D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤を含有する、請求項1記載の添加剤。 (D) The additive according to claim 1, comprising an admixture selected from lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalene sulfonate formaldehyde condensate or a salt thereof.
  3.  高炉スラグセメントが、セメントを5質量%以上95質量%以下、高炉スラグを5質量%以上70質量%以下含有する、請求項1又は2記載の添加剤。 The additive according to claim 1 or 2, wherein the blast furnace slag cement contains 5 to 95% by mass of cement and 5 to 70% by mass of blast furnace slag.
  4.  (A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、高炉スラグセメント、及び水を含有する、水硬性組成物。 A hydraulic composition containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, a blast furnace slag cement, and water.
  5.  (D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤を含有する、請求項4記載の水硬性組成物。 (D) The hydraulic composition of Claim 4 containing the admixture chosen from a lignin sulfonic acid or its derivative (s), a lignin sulfonate or its derivative (s), and a naphthalene sulfonate formaldehyde condensate or its salt.
  6.  高炉スラグセメントに対して、(D)を0.001質量%以上5質量%以下含有する、請求項5記載の水硬性組成物。 The hydraulic composition of Claim 5 which contains 0.001 mass% or more and 5 mass% or less of (D) with respect to a blast furnace slag cement.
  7.  高炉スラグセメントが、セメントを5質量%以上95質量%以下、高炉スラグを5質量%以上70質量%以下含有する、請求項4~6の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 6, wherein the blast furnace slag cement contains 5 mass% to 95 mass% of cement and 5 mass% to 70 mass% of blast furnace slag.
  8.  高炉スラグセメントに対して、(A)チオ硫酸又はその塩を0.001質量%以上3.0質量%以下含有する、請求項4~7の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 7, comprising (A) thiosulfuric acid or a salt thereof in an amount of 0.001% by mass to 3.0% by mass with respect to the blast furnace slag cement.
  9.  高炉スラグセメントに対して、(B)チオシアン酸又はその塩を0.001質量%以上3.0質量%以下含有する、請求項4~8の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 8, comprising (B) thiocyanic acid or a salt thereof in an amount of 0.001% by mass to 3.0% by mass with respect to the blast furnace slag cement.
  10.  高炉スラグセメントに対して、(C)α-ヒドロキシアルカンスルホン酸又はその塩を0.0001質量%以上3.0質量%以下含有する、請求項4~9の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 9, comprising (C) α-hydroxyalkanesulfonic acid or a salt thereof in an amount of 0.0001 mass% to 3.0 mass% with respect to the blast furnace slag cement. object.
  11.  ポリオールを含有する、請求項4~10の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 10, comprising a polyol.
  12.  高炉スラグセメントに対して、ポリオールを0.001質量%以上1.0質量%以下含有する、請求項11記載の水硬性組成物。 The hydraulic composition of Claim 11 which contains a polyol 0.001 mass% or more and 1.0 mass% or less with respect to a blast furnace slag cement.
  13.  ポリオールがグリセリンである、請求項11又は12記載の水硬性組成物。 The hydraulic composition according to claim 11 or 12, wherein the polyol is glycerin.
  14.  アルカノールアミンを含有する、請求項4~13の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 13, comprising an alkanolamine.
  15.  高炉スラグセメントに対して、アルカノールアミンを0.001質量%以上1.0質量%以下含有する、請求項14記載の水硬性組成物。 The hydraulic composition of Claim 14 which contains 0.001 mass% or more and 1.0 mass% or less of alkanolamine with respect to a blast furnace slag cement.
  16.  アルカノールアミンがメチルジエタノールアミンである、請求項14又は15記載の水硬性組成物。 The hydraulic composition according to claim 14 or 15, wherein the alkanolamine is methyldiethanolamine.
  17.  骨材を含有する、請求項4~16の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 16, comprising an aggregate.
  18.  高炉スラグセメントと水とを、水/高炉スラグセメントの質量比が40質量%以上60質量%以下となるように含有する、請求項4~17の何れか1項記載の水硬性組成物。 The hydraulic composition according to any one of claims 4 to 17, comprising a blast furnace slag cement and water so that a mass ratio of water / blast furnace slag cement is 40% by mass or more and 60% by mass or less.
  19.  請求項4~18の何れか1項記載の水硬性組成物の製造方法であって、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、高炉スラグセメント、及び水を混合する、水硬性組成物の製造方法。 The method for producing a hydraulic composition according to any one of claims 4 to 18, comprising (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, and (C) an α-hydroxyalkanesulfonic acid. Or the manufacturing method of the hydraulic composition which mixes the salt, blast furnace slag cement, and water.
  20.  (A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩及び水を含有する混合物と、高炉スラグセメントとを混合する、請求項19記載の水硬性組成物の製造方法。 20. A mixture containing (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof and water, and blast furnace slag cement are mixed. A method for producing a hydraulic composition.
  21.  請求項5~18のうち請求項5又は6を引用する何れか1項記載の水硬性組成物の製造方法であって、(A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、高炉スラグセメント、並びに水を混合する、水硬性組成物の製造方法。 A method for producing a hydraulic composition according to any one of claims 5 to 18, wherein (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) an admixture selected from α-hydroxyalkanesulfonic acid or a salt thereof, (D) ligninsulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and a naphthalenesulfonate formaldehyde condensate or a salt thereof, blast furnace slag A method for producing a hydraulic composition, comprising mixing cement and water.
  22.  (A)チオ硫酸又はその塩、(B)チオシアン酸又はその塩、(C)α-ヒドロキシアルカンスルホン酸又はその塩、(D)リグニンスルホン酸又はその誘導体、リグニンスルホン酸塩又はその誘導体、及びナフタレンスルホン酸塩ホルムアルデヒド縮合物又はその塩から選ばれる混和剤、並びに水を含有する混合物と、高炉スラグセメントとを混合する、請求項21記載の水硬性組成物の製造方法。 (A) thiosulfuric acid or a salt thereof, (B) thiocyanic acid or a salt thereof, (C) α-hydroxyalkanesulfonic acid or a salt thereof, (D) lignin sulfonic acid or a derivative thereof, lignin sulfonate or a derivative thereof, and The method for producing a hydraulic composition according to claim 21, wherein an admixture selected from naphthalene sulfonate formaldehyde condensate or a salt thereof and a mixture containing water and blast furnace slag cement are mixed.
  23.  請求項19~22の何れか1項記載の製造方法で水硬性組成物を製造する工程と、
     得られた水硬性組成物を型枠に充填して硬化させる工程と、
     硬化した水硬性組成物を型枠から脱型して水硬性組成物の硬化体を得る工程と、
    を有する、水硬性組成物の硬化体の製造方法。
    A step of producing a hydraulic composition by the production method according to any one of claims 19 to 22;
    Filling the mold with the obtained hydraulic composition and curing;
    Removing the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition;
    The manufacturing method of the hardening body of a hydraulic composition which has.
PCT/JP2017/041961 2016-11-29 2017-11-22 Additive for hydraulic-setting composition WO2018101140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2019002944A MY191258A (en) 2016-11-29 2017-11-22 Additive for hydraulic composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-231261 2016-11-29
JP2016231260A JP6535316B2 (en) 2016-11-29 2016-11-29 Additives for hydraulic compositions
JP2016-231260 2016-11-29
JP2016231261 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018101140A1 true WO2018101140A1 (en) 2018-06-07

Family

ID=62241359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041961 WO2018101140A1 (en) 2016-11-29 2017-11-22 Additive for hydraulic-setting composition

Country Status (2)

Country Link
MY (1) MY191258A (en)
WO (1) WO2018101140A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021840A (en) * 1983-07-12 1985-02-04 日曹マスタ−ビルダ−ズ株式会社 Cement composition
JPS61117142A (en) * 1984-11-08 1986-06-04 藤沢薬品工業株式会社 Cement composition
JPH09156977A (en) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2000344561A (en) * 1999-03-29 2000-12-12 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2015086130A (en) * 2013-09-27 2015-05-07 花王株式会社 Method of producing hydraulic powder
JP2016056083A (en) * 2014-09-05 2016-04-21 花王株式会社 Hydraulic composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021840A (en) * 1983-07-12 1985-02-04 日曹マスタ−ビルダ−ズ株式会社 Cement composition
JPS61117142A (en) * 1984-11-08 1986-06-04 藤沢薬品工業株式会社 Cement composition
JPH09156977A (en) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2000344561A (en) * 1999-03-29 2000-12-12 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2015086130A (en) * 2013-09-27 2015-05-07 花王株式会社 Method of producing hydraulic powder
JP2016056083A (en) * 2014-09-05 2016-04-21 花王株式会社 Hydraulic composition

Also Published As

Publication number Publication date
MY191258A (en) 2022-06-11

Similar Documents

Publication Publication Date Title
EP2520553B1 (en) Hardening accelerator for hydraulic composition
JP6077156B2 (en) Dispersant composition for hydraulic composition
AU2010291308A1 (en) Sprayable hydraulic binder composition and method of use
JP4798806B2 (en) Low shrinkage AE concrete composition using blast furnace cement
JP6171038B2 (en) Dispersant composition for hydraulic composition
JP5744702B2 (en) Additive for hydraulic composition
JP6535316B2 (en) Additives for hydraulic compositions
JP5660724B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP2017214251A (en) Dispersant composition for hydraulic compositions
WO2018101140A1 (en) Additive for hydraulic-setting composition
JP6727182B2 (en) Additives for hydraulic compositions
JP6077157B2 (en) Dispersant composition for hydraulic composition
JP6482034B2 (en) Hydraulic composition for centrifugal molding
JP6444726B2 (en) Hydraulic composition for centrifugal molding
JP5342187B2 (en) Admixture for concrete
WO2018199056A1 (en) Additive for hydraulic composition
JP5344692B2 (en) Preparation method of AE concrete using blast furnace cement and AE concrete
JP6650262B2 (en) Surface aesthetic improver composition for hydraulic composition
JP5554080B2 (en) Additive composition for hydraulic composition
JP3665804B2 (en) Ready-mixed concrete for high-strength wet spraying, method for forming a high-strength hardened body to be sprayed, and high-strength hardened body to be obtained by spraying the same
JP5759802B2 (en) Method for producing cured body of hydraulic composition
JP7020668B2 (en) Additives for hydraulic composition and method for preparing hydraulic composition
JP6422324B2 (en) Hydraulic composition for centrifugal molding
JP2018043919A (en) Dispersant composition for hydraulic composition
JPS6235988B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875264

Country of ref document: EP

Kind code of ref document: A1