WO2018101109A1 - Composite processing system and composite processing method - Google Patents
Composite processing system and composite processing method Download PDFInfo
- Publication number
- WO2018101109A1 WO2018101109A1 PCT/JP2017/041721 JP2017041721W WO2018101109A1 WO 2018101109 A1 WO2018101109 A1 WO 2018101109A1 JP 2017041721 W JP2017041721 W JP 2017041721W WO 2018101109 A1 WO2018101109 A1 WO 2018101109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- correction value
- cutting
- value
- grinding
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims description 174
- 239000002131 composite material Substances 0.000 title claims description 10
- 238000003672 processing method Methods 0.000 title claims description 5
- 238000005520 cutting process Methods 0.000 claims abstract description 459
- 238000000227 grinding Methods 0.000 claims abstract description 331
- 238000005259 measurement Methods 0.000 claims abstract description 115
- 238000013461 design Methods 0.000 claims abstract description 64
- 238000012937 correction Methods 0.000 claims description 419
- 238000003754 machining Methods 0.000 claims description 170
- 238000000034 method Methods 0.000 claims description 77
- 230000008569 process Effects 0.000 claims description 75
- 238000003860 storage Methods 0.000 claims description 39
- 230000008859 change Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 238000007730 finishing process Methods 0.000 description 13
- 238000003780 insertion Methods 0.000 description 11
- 230000037431 insertion Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 101150004094 PRO2 gene Proteins 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 101100084404 Mus musculus Prodh gene Proteins 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/20—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q41/00—Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to a combined processing system and a combined processing method.
- the present invention has been made in view of the above reasons, and an object thereof is to provide a high-throughput composite processing system and a composite processing method.
- the combined machining system of the present invention is A first processing device that processes the workpiece based on a target value of the workpiece dimension determined by a design value of the workpiece dimension and a correction value for the design value;
- a measuring unit that measures the dimension of the workpiece processed by the first processing apparatus; measures the dimension of the workpiece processed by the measuring unit; and the first processing for the workpiece after processing
- a second processing device that performs the same or similar processing as the processing performed by the device; Correction value generation for generating a new correction value using at least one of the measured value of the dimension of the processed workpiece measured by the measurement unit, the design value, and the correction value
- the first processing apparatus processes another workpiece having the same design value as the workpiece based on a target value of a workpiece dimension determined by the design value and a new correction value generated by the correction value generation unit.
- the second processing apparatus has a measuring unit that measures the dimensions of the workpiece processed by the first processing apparatus. Then, the first processing device processes the workpiece based on the target value of the workpiece dimension determined by the design value and the correction value of the workpiece dimension, the second processing device processes the first processing device by the measuring unit. Measure the dimensions of the workpiece. Thereby, while the 2nd processing device is measuring the size of the work which the 1st processing device processed by the measuring part, since the 1st processing device can process other work in parallel, compounding Throughput of the entire processing system is improved.
- Sequence diagram showing an example of the operation of the combined machining system according to the second embodiment Sequence diagram showing an example of the operation of the combined machining system according to the second embodiment Sequence diagram showing an example of the operation of the combined machining system according to the second embodiment
- the combined machining system according to Embodiment 1 of the present invention includes one cutting device and one grinding device. Then, the combined machining system measures the dimensions of the workpiece cut by the cutting apparatus using the grinding apparatus. Then, the combined machining system adjusts the cutting depth of the tool of the cutting apparatus based on the measured value of the workpiece dimension obtained by the measurement.
- the combined machining system includes a cutting device 1, a grinding device 2, and a correction value generator 4, as shown in FIG.
- the white arrow indicates the flow of loading the workpiece W
- the broken arrow indicates input / output of various information between the cutting apparatus 1, the grinding apparatus 2, and the correction value generation unit 4.
- Solid arrows indicate input / output of various information in the cutting apparatus 1 or the grinding apparatus 2.
- the cutting device 1 and the grinding device 2 correspond to a first processing device and a second processing device described in the claims, respectively.
- the cutting device 1 is constituted by, for example, an NC (Numerical Control) lathe.
- the cutting apparatus 1 includes a cutting unit 101 and a cutting control unit 102 that controls the cutting unit 101.
- the cutting unit 101 is a part that processes the workpiece W, and includes a chuck, a spindle stock, a spindle, a tool rest, and a cutting tool.
- the tool is referred to as a tool.
- the cutting control unit 102 includes a computer that controls the cutting unit 101 by outputting a control signal to the cutting unit 101 via an interface.
- the cutting control unit 102 generates a control signal for controlling the cutting of the tool into the workpiece W by the cutting amount based on the cutting amount of the tool determined by the design value and the correction value of the workpiece W. 101. Then, the cutting unit 101 cuts the workpiece W in such a manner that the tool is cut into the workpiece W by a cutting amount corresponding to the input control signal. Specifically, as shown in FIG. 2, the cutting unit 101 has a cylindrical shape attached to the chuck in order to cut the workpiece W and set the measured value Dr of the diameter of the workpiece W to the design value Dd.
- the work W is rotated around the central axis J1 as indicated by an arrow AR1, and the tool B is cut by a cutting amount corresponding to the design value Dd of the dimension of the work W. That is, when a new correction value is input from the correction value generation unit 4, the cutting control unit 102 performs control corresponding to the target value of the workpiece W dimension determined by the design value of the workpiece W dimension and the new correction value. A signal is output to the cutting unit 101. And the cutting part 101 processes the other workpiece
- the grinding device 2 is constituted by, for example, a mechanical grinding machine having a function of measuring the dimension of the workpiece W, and performs grinding processing that is similar to the cutting processing performed by the cutting device 1 on the workpiece W after cutting. Do.
- similar processing means that some of the effects given to the workpiece W by processing are common.
- the grinding process is common to the cutting process in that the dimension of the workpiece W is reduced by cutting the workpiece W.
- the grinding apparatus 2 controls the measuring instrument 201 that measures the dimensions of the workpiece W input from the cutting apparatus 1, the measurement control unit 202 that controls the measuring instrument 201, the grinding unit 203, and the grinding unit 203. And a grinding control unit 204.
- the measurement control unit 202 measures the maximum dimensions D1, D2, and D3 in a plurality of radial directions (three directions in FIG. 3) of the workpiece W that intersect each other.
- FIG. 3 shows an example of measuring the maximum dimensions D1, D2, and D3 in three directions
- the radial direction to be measured is not limited to three directions, and may be two directions, for example. There may be four or more directions.
- the measuring instrument 201 has a work holding part (not shown) that holds the work W so as to be rotatable around its central axis J1.
- the measurement control unit 202 controls the measuring instrument 201 to measure the three radial maximum dimensions D1, D2, and D3 shown in FIG. 3 while rotating the workpiece W around the central axis J1 by 60 degrees. To do. In this way, the measurement control unit 202 acquires the maximum dimension value in the plurality of radial directions of the workpiece W. Then, the measurement control unit 202 specifies and outputs the minimum value from the plurality of acquired maximum dimension values.
- the measuring device 200 and the measurement control unit 202 constitute a measuring unit 200 that measures the dimensions of the workpiece W cut by the cutting apparatus 1.
- the grinding part 203 has a grindstone and a holding table for holding the workpiece W in a rotatable manner.
- the grinding control unit 204 includes a computer that controls the grinding unit 203 by outputting a control signal to the grinding unit 203 via an interface.
- the measurement control unit 202 stores information indicating a tolerance upper limit value that is an upper limit value of a tolerance of a dimension of the workpiece W, a tolerance lower limit value that is a lower limit value of the tolerance, and a design value of the workpiece W. It has a grinding device storage unit (not shown) which is a processing device storage unit. Then, the measurement control unit 202 calculates a dimensional error obtained by subtracting the design value from the measurement value of the workpiece W.
- This dimensional error indicates a positive value when the measured value exceeds the design value, and indicates a negative value when the measured value is less than the design value.
- the measurement control unit 202 determines that the machining accuracy is OK when the dimensional error of the workpiece W is equal to or smaller than the tolerance upper limit value and equal to or larger than the tolerance lower limit value. On the other hand, when the dimensional error of the workpiece W exceeds the tolerance upper limit value or when the dimensional error of the workpiece W is less than the tolerance lower limit value, the measurement control unit 202 determines that the machining accuracy is NG.
- the grinding control unit 204 when the measurement control unit 202 determines that the dimensional error of the workpiece W exceeds the tolerance upper limit value, the grinding control unit 204 outputs a control signal for executing grinding to the grinding processing unit 203. And the grinding process part 203 performs a grinding process with respect to the workpiece
- the grinding control unit 204 when the measurement control unit 202 determines that the dimensional error of the workpiece W is less than the tolerance lower limit value, the grinding control unit 204 outputs a control signal for discharging the workpiece W to the grinding processing unit 203. Then, the grinding unit 203 discharges the workpiece W based on the input control signal.
- the dimensional error being less than the tolerance lower limit means that the dimensional error is a negative value and the absolute value of the dimensional error exceeds the absolute value of the tolerance lower limit.
- the grinding unit 203 grinds the work W by pressing the grindstone against the cylindrical work W rotatably held on the holding table. On the other hand, when the grinding process unit 203 skips the grinding process, the grinding process unit 203 does not perform the grinding process on the work W and discharges the work W from the grinding apparatus 2.
- the correction value generation unit 4 is configured by a computer, and the measured value of the dimension of the cut workpiece W measured by the measuring unit 200, the design value of the dimension of the workpiece W, and the target value of the dimension of the workpiece W From this, a new correction value is generated. Specifically, the correction value generation unit 4 holds a design value of the dimension of the workpiece W in advance, acquires a correction value that has already been set from the cutting control unit 102 of the cutting apparatus 1, and performs grinding processing. The measurement value of the dimension of the workpiece W is acquired from the measurement control unit 202 of the apparatus 2. And the correction value production
- (New correction value) (correction value already set) ⁇ (measured value ⁇ design value) Equation (1)
- the design value Dd of the diameter of the workpiece W is 10 mm
- the already set correction value is 0 mm.
- the target value of the diameter of the workpiece W set in the cutting control unit 102 is 10 mm.
- the cutting control unit 102 outputs a control signal for controlling the tool to be cut into the workpiece W so that the diameter of the workpiece W becomes a target value of 10 mm.
- the measured value Dr of the diameter of the workpiece W after being cut by the cutting device 1 is 11 mm.
- (measured value Dr ⁇ design value Dd) is 1 mm.
- the target value of the diameter of the workpiece W set in the cutting control unit 102 is updated to 9 mm obtained by adding a new correction value ⁇ 1 mm to the design value 10 mm of the workpiece W diameter.
- the workpiece W is a columnar member as shown in FIG.
- the measurement control unit 202 measures the three radial maximum dimensions D1, D2, and D3 for the workpiece W as described above.
- the correction value generation unit 4 employs the minimum value among the measured values of the three radial maximum dimensions D1, D2, and D3 as the measured value of the diameter of the workpiece W. Thereby, for example, as shown in FIG. 3, even when a burr WB exists in the work W, the influence of the burr WB on the measured value of the diameter of the work W can be suppressed. Further, not only the burr WB but also the workpiece W has a groove, the diameter can be measured.
- the correction value generation unit 4 outputs information indicating the new correction value calculated using the relational expression (1) described above to the cutting control unit 102 of the cutting apparatus 1. Then, the cutting control unit 102 updates the target value already set in the cutting control unit 102 to a new target value determined by the design value of the workpiece W and the new correction value input from the correction value generation unit 4. To do.
- step S1 the workpiece
- work W is thrown into the cutting apparatus 1 (step S2).
- the cutting apparatus 1 sets the input completion signal to ON (step S2).
- the input completion signal is set to OFF (step S4).
- the length of the first period ⁇ T1 is set based on the time required for the cutting apparatus 1 to output various types of information to the correction value generation unit 4.
- the various information includes, for example, information indicating a correction value and a program number.
- the correction value generation unit 4 sets a skip signal instructing to skip the update of the correction value of the cutting apparatus 1 to OFF (step S5).
- the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to OFF (step S6). Thereafter, the workpiece W processed by the cutting apparatus 1 one cycle before is conveyed from the cutting apparatus 1 to the grinding apparatus 2.
- the cutting apparatus 1 roughly processes the workpiece W (step S7).
- the cutting apparatus 1 rotates the columnar workpiece W mounted on the chuck and cuts the workpiece W by pressing the tool B against the workpiece W.
- the cutting control unit 102 performs a cutting process based on a cutting amount of the tool determined by the design value and the correction value of the workpiece W to control to cut the tool into the workpiece W by the cutting amount.
- Output to the unit 101 the cutting unit 101 cuts the workpiece W in such a manner that the tool is cut into the workpiece W by a cutting amount corresponding to the input control signal.
- the grinding device 2 discharges the workpiece W processed by the grinding device 2 one cycle before from the grinding device 2 (step S8).
- step S9 the workpiece W transferred from the cutting apparatus 1 to the grinding apparatus 2 is put into the grinding apparatus 2 (step S9).
- the grinding apparatus 2 measures three radial dimensions while rotating the workpiece W around the central axis J1 by 60 degrees (step S10). Then, the grinding device 2 sets the minimum value of the three measured values as the measured value of the dimension of the workpiece W. Thereafter, the grinding apparatus 2 calculates a dimensional error by subtracting the design value from the measured value of the dimension of the workpiece W, and determines the machining accuracy of the workpiece W based on the dimensional error. Specifically, the grinding apparatus 2 holds a tolerance upper limit value corresponding to a tolerance upper limit value set in advance for the workpiece W and a tolerance lower limit value corresponding to a tolerance lower limit value.
- machining accuracy OK when the dimensional error of the workpiece W is within the tolerance, the grinding apparatus 2 determines that the machining accuracy is good (hereinafter referred to as “machining accuracy OK”). On the other hand, when the dimensional error of the workpiece W is out of the tolerance, the grinding apparatus 2 determines that the machining accuracy is poor (hereinafter referred to as “machining accuracy NG”).
- the grinding apparatus 2 determines that the workpiece W has a processing accuracy of NG and the dimensional error of the workpiece W exceeds the tolerance upper limit value (step S11).
- the grinding device 2 outputs processing accuracy determination information indicating the processing accuracy NG to the correction value generation unit 4 (step S12).
- Step S13 information indicating the measured value of the dimension of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4.
- step S14 the grinding apparatus 2 performs a grinding process (finishing process) (step S14).
- the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. .
- the correction value generation unit 4 determines that these program numbers are the same (step S15).
- the correction value generation unit 4 includes a correction value set in the cutting control unit 102 of the cutting apparatus 1, a correction value that the correction value generation unit 4 has recently set for the cutting control unit 102, and Are determined to be the same. Then, it is assumed that the correction value generation unit 4 determines that these correction values are the same (step S16). In this case, the correction value generation unit 4 determines whether or not the dimensional error of the workpiece W is within an invariable range in which the correction value is not changed based on the measurement value of the workpiece W dimension. This invariable range is also a range where adjustment of the cutting depth of the tool of the cutting part 101 of the cutting apparatus 1 is not performed.
- the invariable range is set based on, for example, the performance of the cutting apparatus 1 or the type of tool used in the cutting apparatus 1.
- the correction value generation unit 4 holds information indicating an invariable range upper limit L3 and an invariable range lower limit L2 indicating the upper limit value and lower limit value of the invariable range.
- the invariable range is included within the tolerance of the workpiece W. Therefore, when the machining accuracy determination information indicates the machining accuracy NG, the correction value generation unit 4 determines that the dimensional error of the workpiece W is outside the invariable range.
- correction value generation unit 4 determines that the adjustment of the cutting depth of the tool is necessary (step S17).
- the correction value generation unit 4 calculates a new correction value using the relational expression (1) described above (step S18).
- the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to ON, and outputs information indicating the new correction value to the cutting apparatus 1 (step S19).
- the cutting apparatus 1 updates the correction value held by itself to the new correction value (step S20).
- the cutting apparatus 1 updates the correction value to a new correction value even if the dimensional error of the workpiece W is within the tolerance.
- the cutting apparatus 1 finishes the workpiece W (step S21).
- the cutting control unit 102 controls to cut the tool into the workpiece W by the cutting amount based on the cutting amount of the tool determined by the design value of the workpiece W and the new correction value after update.
- a control signal is output to the cutting unit 101.
- the cutting unit 101 cuts the workpiece W in such a manner that the tool is cut into the workpiece W by a cutting amount corresponding to the input control signal.
- the cutting apparatus 1 discharges the workpiece W (step S22).
- step S23 it is assumed that the grinding apparatus 2 determines that the workpiece W has the machining accuracy OK as shown in FIG. 5 (step S23).
- the grinding apparatus 2 discharges the workpiece W without executing the grinding process (step S24).
- machining accuracy determination information indicating the machining accuracy OK is output from the grinding device 2 to the correction value generation unit 4 (step S25).
- step S26 information indicating the measured value of the dimension of the workpiece W and the program number is output from the grinding apparatus 2 to the correction value generation unit 4 (step S26).
- the program number is a number assigned to the program used by the grinding apparatus 2.
- the correction value generation unit 4 determines whether the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. .
- the correction value generation unit 4 determines that these program numbers are the same (step S27).
- the correction value generation unit 4 determines that these program numbers are the same, the correction value set in the cutting control unit 102 of the cutting apparatus 1 and the correction value generation unit 4 are the cutting control unit most recently. 102, it is determined whether or not the set correction value is the same. Then, it is assumed that the correction value generation unit 4 determines that these correction values are the same (step S28).
- correction value generation unit 4 determines that it is not necessary to adjust the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1 (step S29).
- the correction value generation unit 4 sets ON a skip signal that instructs to skip the update of the correction value of the cutting apparatus 1 (step S30).
- the cutting apparatus 1 performs finishing without updating the correction value (step S31).
- the cutting apparatus 1 discharges the workpiece W (step S32).
- the grinding apparatus 2 includes the measuring unit 200 that measures the dimensions of the workpiece W cut by the cutting apparatus 1. Then, the cutting apparatus 1 cuts the workpiece W based on the target value of the dimension of the workpiece W obtained by adding a correction value to the design value of the dimension of the workpiece W, and the grinding apparatus 2 is operated by the measuring unit 200. The dimension of the workpiece W cut by the cutting apparatus 1 is measured. Thereby, while the grinding device 2 measures the dimensions of the workpiece W cut by the cutting device 1 by the measuring unit 200, the cutting device 1 cuts another workpiece W in parallel. Therefore, the throughput of the combined machining system as a whole is improved.
- the combined machining system according to the present embodiment improves the throughput of the workpiece W compared to a configuration in which, for example, the machining of the workpiece W and the measurement of the dimension of the workpiece W after the machining are performed with the same apparatus.
- the manufacturing efficiency is improved.
- the cutting with the cutting device 1 with a larger amount of removal of the workpiece W and a longer processing time than the grinding with the grinding device 2 is performed. Is shortened.
- the grinding machine storage unit of the grinding machine 2 has a tolerance upper limit value that is an upper limit value of the tolerance of the dimension of the workpiece W and a tolerance lower limit value that is a lower limit value of the tolerance. And the information indicating that.
- the grinding apparatus 2 determines that the dimensional error exceeds the tolerance upper limit value, the grinding apparatus 2 performs the grinding process on the workpiece W cut by the cutting apparatus 1.
- the grinding apparatus 2 determines that the dimensional error is less than the tolerance lower limit value, the grinding apparatus 2 skips execution of the grinding process on the work W and discharges the work W. Accordingly, only necessary grinding is performed while maintaining the processing accuracy of the workpiece W with high accuracy, and thus there is an advantage that throughput is improved by shortening the processing time and manufacturing efficiency is also improved.
- the measuring unit 200 has the maximum dimension of the workpiece W in three directions intersecting each other. Outputs the minimum measured value.
- the dimension of the workpiece W can be accurately measured even when the burrs WB exist in a part of the workpiece W. Accordingly, it is possible to set an appropriate correction value in the cutting control unit 102 of the cutting apparatus 1.
- the measuring instrument 201 included in the grinding apparatus 2 a measuring instrument originally included in the grinding unit 203 of the grinding apparatus 2 can be employed. Therefore, since it is not necessary to newly provide the cutting device 1 with a function of measuring the dimension of the workpiece W, there is an advantage that the cost for updating the cutting device 1 is reduced.
- the combined machining system according to the present embodiment is the same as the combined machining system according to the first embodiment in that it includes a cutting device that cuts a workpiece and a grinding device that grinds the workpiece.
- the complex machining system according to the present embodiment is different from the complex machining system according to the first embodiment in that an intermediate machining device that performs machining on a workpiece machined by a machining device is provided. Then, in the combined machining system according to the present embodiment, the dimensions of the workpiece that has been machined by the machining apparatus and then machined by the intermediate machining apparatus are measured, and cutting is performed based on the measurement value obtained by the measurement. Adjust the cutting depth of the tool of the processing equipment.
- the combined machining system includes a cutting device 1, an intermediate processing device 3, a grinding device 2, and a correction value generation unit 4.
- the meanings of the white arrow, the broken line arrow, and the solid line arrow are the same as those in FIG. 1 of the first embodiment.
- the same reference numerals are given to the same configurations as those in the first embodiment.
- a program number assigned to a program for controlling the cutting unit 101 according to the specification of the workpiece W and a correction value according to the specification of the workpiece W are set.
- the cutting control unit 102 cuts the workpiece W based on the program and the correction value according to the specification of the workpiece W.
- the program according to the specification of the workpiece W is to determine, for example, the position of the workpiece W in the central axis direction and the cutting depth of the tool of the cutting unit 101.
- the grinding device storage unit of the grinding device 2 further stores information indicating an invariable range that is included in the tolerance of the workpiece W and in which the correction value is not changed.
- the correction value generation unit 4 determines that the dimensional error of the workpiece W is included in the tolerance, the correction value generation unit 4 determines that the dimensional error of the workpiece W is included in the invariable range stored in the grinding device storage unit. Skips generation of correction values.
- the correction value generation unit 4 determines that the dimensional error of the workpiece W is outside the invariable range, it generates a new correction value.
- the intermediate processing device 3 includes a machining device for processing the workpiece W, a coating device for coating, or a cleaning device for cleaning the workpiece W.
- step S33 the workpiece W is thrown into the cutting apparatus.
- the cutting apparatus 1 sets the input completion signal for notifying that the input of the workpiece W to the cutting apparatus 1 has been completed to ON (step S34).
- the correction value is a correction value set in the cutting control unit 102 of the cutting apparatus 1.
- the program number is a number assigned to the program used by the cutting control unit 102.
- the correction value generation unit 4 sets the input number count value X indicating the input number of the work W to be input to the cutting apparatus 1 to 1 within a preset first period ⁇ T1. Increment by (step S36).
- the cutting apparatus 1 sets the input completion signal to OFF after the first period ⁇ T1 has elapsed since the input completion signal was set to ON (step S37).
- the length of the first period ⁇ T1 is set based on, for example, the time required for the correction value generation unit 4 to increment the insertion number count value X indicating the number of input workpieces W by one.
- n indicates the number of intermediate processing apparatuses 3.
- the correction value generation unit 4 sets the skip signal that instructs to skip the update of the correction value of the cutting apparatus 1 to ON (step S39).
- the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to OFF (step S40). Thereafter, the workpiece W processed by the cutting apparatus 1 one cycle before is conveyed from the cutting apparatus 1 to the intermediate processing apparatus 3.
- the cutting apparatus 1 performs rough machining of the workpiece W (step S41).
- step S42 the cutting apparatus 1 performs the finishing process without updating the correction value (step S42).
- the intermediate processing device 3 discharges the workpiece W processed by the intermediate processing device 3 one cycle before (step S43).
- step S44 the workpiece W transferred from the cutting apparatus 1 to the intermediate processing apparatus 3 is put into the intermediate processing apparatus 3 (step S44). Thereafter, the workpiece W processed by the intermediate processing device 3 one cycle before is conveyed from the intermediate processing device 3 to the grinding processing device 2.
- the intermediate processing device 3 performs intermediate processing on the workpiece W input to the intermediate processing device 3 (step S45).
- the grinding apparatus 2 discharges the workpiece W processed one cycle before (step S46).
- step S47 the workpiece W transferred from the intermediate processing device 3 to the grinding device 2 is put into the grinding device 2 (step S47).
- the grinding apparatus 2 measures the dimension of the workpiece W (step S48). Thereafter, the grinding apparatus 2 determines whether or not the dimensional error of the workpiece W is within the tolerance set based on the required specifications of the workpiece W based on the measured value of the dimension of the workpiece W.
- the grinding apparatus 2 holds information indicating a tolerance upper limit value L ⁇ b> 4 indicating a tolerance upper limit value, a lower limit value, and a tolerance lower limit value L ⁇ b> 1.
- the grinding apparatus 2 calculates a dimensional error L obtained by subtracting the design value from the measured value of the dimension of the workpiece W, and when the dimensional error L exceeds the tolerance upper limit value L4 or less than the tolerance lower limit value L1. If there is, it is determined that the machining accuracy is NG. In FIG. 8, “adjustment required” indicates that adjustment of the cutting amount of the tool used by the cutting apparatus 1 is necessary. On the other hand, when the dimensional error L of the workpiece W is not more than the tolerance upper limit L4 and not less than the tolerance lower limit L1, the grinding apparatus 2 determines that the machining accuracy is OK.
- step S49 it is assumed that the grinding apparatus 2 determines that the workpiece W has the machining accuracy NG and the dimensional error is less than the tolerance lower limit value (step S49).
- the grinding device 2 outputs processing accuracy determination information indicating the processing accuracy NG to the correction value generation unit 4 (step S50).
- Step S51 information indicating the measurement value of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4.
- the grinding apparatus 2 issues an alarm indicating that the workpiece W is a defective product (step S52).
- step S53 the grinding apparatus 2 stops the operation of the grinding unit 203 (step S53).
- the grinding apparatus 2 discharges the workpiece W (step S54).
- the cutting device 1 discharges the workpiece W (step S55), and the next cycle Migrate to
- the cutting apparatus 1 sets the input completion signal to ON (step S57).
- step S58 information indicating the correction value set in the cutting control unit 102 of the cutting device 1 and the program number assigned to the program for controlling the cutting unit 101 is obtained from the cutting device 1 as a correction value generation unit. 4 (step S58).
- the correction value generation unit 4 calculates a count value X indicating the number of input workpieces W into the cutting apparatus 1 stored by itself within a preset first period ⁇ T1. Increment by 1 (step S59).
- the cutting apparatus 1 sets the insertion completion signal to OFF after the first period ⁇ T1 has elapsed since the insertion completion signal was set to ON (step S60).
- the correction value generation unit 4 sets the skip signal instructing to skip the update of the correction value of the cutting apparatus 1 to OFF (step S62).
- a correction signal for instructing to update the correction value of the cutting apparatus 1 is set to OFF (step S63). Thereafter, the workpiece W processed by the cutting apparatus 1 one cycle before is conveyed from the cutting apparatus 1 to the intermediate processing apparatus 3.
- the cutting apparatus 1 performs rough machining of the workpiece W (step S64).
- the intermediate processing device 3 discharges the workpiece W processed one cycle before (step S65).
- step S66 the workpiece W transferred from the cutting device 1 to the intermediate processing device 3 is put into the intermediate processing device 3 (step S66).
- the intermediate processing device 3 performs an intermediate processing on the workpiece W put into the intermediate processing device 3 (step S67).
- the grinding apparatus 2 discharges the workpiece W processed one cycle before (step S68).
- step S69 the workpiece W transferred from the intermediate processing device 3 to the grinding device 2 is put into the grinding device 2 (step S69).
- the grinding apparatus 2 measures the dimension of the workpiece W (step S70).
- step S71 the grinding apparatus 2 determines that the workpiece W has a processing accuracy of NG and the dimensional error exceeds the tolerance upper limit value.
- the grinding apparatus 2 outputs machining accuracy determination information indicating the machining accuracy NG to the correction value generation unit 4 (step S72).
- Step S73 information indicating the measured value of the dimension of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4.
- step S74 the grinding apparatus 2 performs a grinding process (finishing process) (step S74).
- the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. Then, it is assumed that the correction value generation unit 4 determines that these program numbers are the same (step S75).
- step S76 whether or not the correction value set in the cutting control unit 102 of the cutting apparatus 1 and the correction value set by the correction value generation unit 4 most recently for the cutting control unit 102 are the same. Determine. If the correction value generation unit 4 determines that these correction values are the same (step S76), the dimensional error of the workpiece W is the invariable range in which the correction value does not change based on the measurement value of the dimension of the workpiece W It is determined whether it is in. Here, as shown in FIG. 8, it is assumed that the dimensional error L of the workpiece W exceeds the upper limit value L3 of the invariable range or is less than the lower limit value L2 of the invariable range. In this case, the correction value generation unit 4 determines that it is necessary to generate a new correction value, that is, it is necessary to adjust the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1.
- correction value generation unit 4 determines that adjustment of the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1 is necessary (step S77).
- the correction value generation unit 4 calculates a new correction value using the relational expression (1) described above (step S78).
- the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to ON, and outputs information indicating the new correction value to the cutting apparatus 1 (step S79). .
- the cutting apparatus 1 updates the correction value held by itself to the new correction value (step S80).
- the cutting device 1 discharges the workpiece W (step S82), and the next cycle Migrate to
- step S83 it is assumed that the grinding apparatus 2 determines that the workpiece W has the machining accuracy OK (step S83).
- the grinding apparatus 2 discharges the workpiece W without executing the grinding process (step S84).
- machining accuracy determination information indicating machining accuracy OK is output from the grinding device 2 to the correction value generation unit 4 (step S85).
- Step S86 information indicating the measured value of the dimension of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4.
- the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. Here, it is assumed that the correction value generation unit 4 determines that these program numbers are the same (step S87).
- the correction value generation unit 4 includes a correction value set in the cutting control unit 102 of the cutting apparatus 1, a correction value that the correction value generation unit 4 has recently set for the cutting control unit 102, and Are determined to be the same. Then, it is assumed that the correction value generation unit 4 determines that these correction values are the same (step S88).
- correction value generation unit 4 determines that adjustment of the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1 is unnecessary (step S89).
- the correction value generation unit 4 sets a skip signal that instructs to skip the update of the correction value of the cutting apparatus 1 to ON (step S90).
- the cutting apparatus 1 performs finishing without updating the correction value (step S91).
- the cutting device 1 discharges the workpiece W (step S92), and the next Transition to a cycle.
- This cutting control process is started, for example, when the user turns on the power to the cutting apparatus 1.
- the cutting control unit 102 determines whether or not the insertion of the workpiece W into the cutting apparatus 1 is detected (step S101).
- the cutting control unit 102 maintains the standby state unless detecting the insertion of the workpiece W (step S101: No).
- step S101 when the cutting control unit 102 detects the loading of the workpiece W into the cutting apparatus 1 (step S101: Yes), it sets the loading completion signal to ON (step S102). Next, after executing the processing of step S102, the cutting control unit 102 sets the insertion completion signal to OFF after the preset first period ⁇ T1 (step S103). Subsequently, the cutting control unit 102 performs rough machining of the workpiece W by controlling the cutting unit 101 based on the target value of the dimension of the workpiece W determined by the design value of the dimension of the workpiece W and the correction value for the design value. Execute (Step S104).
- the cutting control unit 102 determines whether or not the skip signal input from the correction value generating unit 4 is set to OFF after the rough machining in Step S104 is completed (Step S105). When the cutting control unit 102 determines that the skip signal is set to ON (step S105: No), the cutting control unit 102 executes a process of step S109 described later.
- step S105 determines whether the correction signal input from the correction value generation unit 4 is set to ON.
- step S106 determines whether the correction signal input from the correction value generation unit 4 is set to ON.
- the cutting control unit 102 controls the cutting unit 101 to perform the finishing process of the workpiece W (step S109). Subsequently, the cutting control unit 102 discharges the workpiece W from the cutting apparatus 1 (step S110). Thereafter, the cutting control unit 102 executes the process of step S101 again.
- This grinding control process is started, for example, when the user turns on the power to the grinding apparatus 2.
- the grinding control unit 204 determines whether or not the insertion of the workpiece W into the grinding apparatus 2 is detected (step S301). The grinding control unit 204 maintains the standby state unless detecting the input of the workpiece W (step S301: No).
- step S301 when the grinding control unit 204 detects the input of the workpiece W to the grinding apparatus 2 (step S301: Yes), the grinding control unit 204 sets a measurement start signal for instructing the measurement control unit 202 to start measurement (step S301). S302). Next, the grinding control unit 204 determines whether or not the measurement completion signal input from the measurement control unit 202 is set to ON (step S303). As long as the measurement completion signal is set to OFF (step S303: No), the grinding control unit 204 maintains the standby state.
- step S303: Yes when the grinding control unit 204 determines that the measurement completion signal is set to ON (step S303: Yes), the grinding control unit 204 acquires machining accuracy determination information for the workpiece W from the measurement control unit 202 (step S304). Subsequently, the grinding control unit 204 determines from the content of the machining accuracy determination information whether the measurement control unit 202 has determined that the workpiece W has the machining accuracy NG and the dimensional error is less than the tolerance lower limit ( Step S305). If the measurement control unit 202 determines that the workpiece W has a processing accuracy of NG and the dimensional error is less than the tolerance lower limit (step S305: Yes), the grinding control unit 204 issues an alarm (step (step S305). In step S306, the grinding unit 203 is stopped (step S307). Thereafter, the grinding control unit 204 discharges the workpiece W from the grinding apparatus 2 (step S308), and then executes the process of step S301 again.
- step S305 it is assumed that the measurement control unit 202 has not determined that the workpiece W has the machining accuracy NG and the dimensional error is less than the tolerance lower limit (step S305: No).
- the grinding control unit 204 determines whether or not the measurement control unit 202 determines that the workpiece W has the processing accuracy NG and the dimensional error exceeds the tolerance upper limit value from the content of the processing accuracy determination information. (Step S309). If the measurement control unit 202 determines that the machining accuracy is OK for the workpiece W (step S309: No), the grinding control unit 204 executes a process of step S311 described later.
- step S309 Yes
- the grinding control unit 204 causes the grinding processing unit 203 to The finishing process is executed under the control (step S310).
- step S310 the grinding control unit 204 ejects the workpiece W from the grinding apparatus 2 (step S311), and executes the process of step S301 again.
- the measurement control unit 202 determines whether or not the measurement start signal input from the grinding control unit 204 is set to ON (step S501). As long as the measurement start signal is set to OFF (step S501: No), the measurement control unit 202 maintains the standby state. On the other hand, when the measurement control unit 202 determines that the measurement start signal is set to ON (step S501: Yes), the measurement control unit 202 controls the measuring device 201 to measure the dimension of the workpiece W (step S502).
- the measurement control unit 202 calculates a dimensional error by subtracting the design value from the measurement value of the dimension of the workpiece W, and determines the machining accuracy of the workpiece W (step S503).
- the measurement control unit 202 determines that the machining accuracy is OK when the dimensional error of the workpiece W is not more than the tolerance upper limit value and is not less than the tolerance lower limit value.
- the measurement control unit 202 determines that the machining accuracy is NG.
- the measurement control unit 202 sets the measurement completion signal output to the grinding control unit 204 to ON (step S504).
- the measurement control unit 202 sets the measurement completion signal to OFF after the elapse of a preset fourth period (step S505), and then executes the process of step S501 again.
- correction value setting processing executed by the correction value generation unit 4 according to the present embodiment will be described with reference to FIGS. 15 and 16.
- This correction value setting process is started when the user turns on the power to both the cutting apparatus 1 and the grinding apparatus 2, for example.
- the correction value generation unit 4 determines whether or not the input completion signal input from the cutting apparatus 1 is set to ON (step S601). As long as the input completion signal is set to OFF (No in step S601), the correction value generation unit 4 maintains the standby state. On the other hand, if the correction value generation unit 4 determines that the insertion completion signal is set to ON (step S601: Yes), the correction value generation unit 4 acquires information indicating the current correction value of the cutting control unit 102 of the cutting apparatus 1 ( Step S602). Further, the correction value generation unit 4 acquires information indicating the program number assigned to the program for the cutting control unit 102 to control the cutting unit 101 from the cutting control unit 102 (step S603).
- the correction value generation unit 4 increments the count value X of the loading counter indicating the number of workpieces W loaded into the cutting apparatus 1 by 1 (step S604). Subsequently, the correction value generation unit 4 determines whether or not the count value X of the insertion counter is less than a value (n + 1) obtained by adding 1 to the number of intermediate machining apparatuses 3 (step S605). If the correction value generation unit 4 determines that the count value X of the insertion counter is equal to or greater than the value n + 1 (step S605: No), the correction signal generation unit 4 sets the skip signal output to the cutting apparatus 1 to OFF (step S606).
- step S605 when the correction value generation unit 4 determines that the count value X of the insertion counter is less than the value n + 1 (step S605: Yes), the correction signal generation unit 4 sets the skip signal output to the cutting apparatus 1 to ON (step S607). Thereafter, the correction value generation unit 4 sets the correction signal to OFF (step S608).
- the correction value generation unit 4 determines whether or not the measurement completion signal input from the measurement control unit 202 is set to ON (step S609). As long as the measurement completion signal is set to OFF (step S609: No), the correction value generation unit 4 maintains the standby state. On the other hand, if the correction value generation unit 4 determines that the measurement completion signal is set to ON (step S609: Yes), the correction value generation unit 4 acquires processing accuracy determination information from the measurement control unit 202 (step S610). Subsequently, the correction value generation unit 4 acquires a measurement value of the dimension of the workpiece W from the measurement control unit 202 (step S611). Further, as shown in FIG. 16, the correction value generation unit 4 acquires information indicating a program number assigned to a program for controlling the grinding unit 203 from the grinding control unit 204 (step S612).
- the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same (step S613). If the correction value generation unit 4 determines that these program numbers are different (step S613: No), the correction value generation unit 4 clears the count value X of the input number counter to “0” (step S614), and then performs the process of step S618 described later. Execute. On the other hand, when the correction value generation unit 4 determines that these program numbers are the same (step S613: Yes), the correction value set in the cutting control unit 102 of the cutting apparatus 1 and the correction value generation unit 4 Determines whether or not the set correction value is the same for the cutting control unit 102 most recently (step S615). If the correction value generation unit 4 determines that these correction values are different (step S615: No), after clearing the count value X of the input number counter to “0” (step S614), the process of step S618 described later is performed. Execute.
- step S615 determines whether or not the dimensional error of the workpiece W is within the tolerance based on the measurement value of the dimension of the workpiece W. Is determined (step S616). If the correction value generation unit 4 determines that the dimensional error of the workpiece W is outside the tolerance (step S616: No), the correction value generation unit 4 performs a process of step S619 described later. On the other hand, when the correction value generation unit 4 determines that the dimensional error of the workpiece W is within the tolerance (step S616: Yes), the correction value generation unit 4 determines whether the dimensional error of the workpiece W is within the invariable range (step S617). .
- step S617 When the correction value generation unit 4 determines that the dimensional error of the workpiece W is within the invariable range (step S617: Yes), the skip signal output to the cutting control unit 102 of the cutting apparatus 1 is set to ON (step S618). ). Thereafter, the correction value generation unit 4 executes the process of step S601 in FIG. 15 again.
- step S617 determines that the dimension error of the workpiece W is outside the invariable range
- step S617 determines that the dimension error of the workpiece W is outside the invariable range
- the cutting depth of the tool of the cutting apparatus 1 is determined based on the measured value of the dimension of the workpiece W that has been machined by the intermediate machining apparatus 3. Make adjustments. Thereby, it becomes possible to adjust the cutting depth of the tool of the cutting apparatus 1 in consideration of the influence of the machining by the intermediate machining apparatus 3 on the machining accuracy of the workpiece W. Therefore, there is an advantage that the machining quality of the workpiece W is improved.
- the grinding machine storage unit of the grinding machine 2 stores information indicating an invariable range that is included in the tolerance and does not change the correction value.
- This invariable range corresponds to a range for a dimensional error in which the correction value generation unit 4 skips generation of a new correction value.
- the correction value generation unit 4 generates a new correction value if it is determined that the dimensional error is outside the invariable range.
- the correction value generation unit 4 determines that the dimensional error of the workpiece W is within the invariable range, the correction value generation unit 4 skips generation of a new correction value. That is, the cutting apparatus 1 does not update the correction value when the dimensional error of the workpiece W is within the invariable range. Thereby, since the adjustment frequency of the cutting depth of the tool of the cutting part 101 of the cutting apparatus 1 can be reduced, the operation rate of the cutting apparatus 1 can be improved.
- the size of the workpiece W that the grinding device 2 has cut by the cutting device 1 by the measuring unit 200 is measured.
- the cutting apparatus 1 can cut other workpieces in parallel. Therefore, the throughput of the combined machining system as a whole can be improved.
- the present invention is not limited to the above-described embodiments.
- it may be a combined processing system that includes a plurality of processing devices that perform cutting processing, and a workpiece that has been processed by a plurality of processing devices that perform cutting processing is input to one processing device that performs grinding processing. .
- the combined machining system includes two cutting devices 1, 5, one grinding device 2, and a correction value generation unit 4.
- the cutting device 5 is configured by, for example, an NC lathe device, like the cutting device 1.
- the cutting unit 501 and the cutting control unit 502 have the same configuration as the cutting unit 101 and the cutting control unit 102 of the cutting apparatus 1.
- the measurement control unit 202 of the grinding apparatus 2 measures the dimensions of the workpieces W1 and W2 input from the cutting apparatus 1 and the cutting apparatus 5, and measures the dimensions of the workpieces W1 and W2. Based on the dimensional error obtained by subtracting the design value from the value, the machining accuracy of the workpieces W1 and W2 is determined.
- the correction value generation unit 4 determines whether or not the cutting depth of the tool of the cutting device 1 or the cutting device 5 needs to be adjusted based on the dimensional errors of the workpieces W1 and W2.
- generation part 4 determines with adjustment of the cutting amount of a tool about the cutting apparatus 1 or the cutting apparatus 5, it is necessary to adjust the cutting of the tool of the cutting apparatus 1 or the cutting apparatus 5 which needs adjustment. A new correction value corresponding to the amount is calculated.
- the cutting apparatus 1 when the workpiece W1 is input to the cutting apparatus 1, the cutting apparatus 1 performs rough machining on the workpiece W1, and then receives a correction signal or a skip signal from the correction value generation unit 4. It is output to the grinding device 2.
- a correction signal is output from the correction value generation unit 4
- the grinding apparatus 2 updates the correction value and performs finishing.
- a skip signal is output from the correction value generation unit 4
- the grinding apparatus 2 performs finishing without updating the correction value.
- the grinding device 2 discharges the workpiece W1 after finishing.
- the cutting apparatus 5 performs rough machining of the workpiece W2, and then determines whether or not it is necessary to update the correction value according to the correction signal output from the correction value generation unit 4 or the skip signal. To do. Thereafter, finishing is performed and the workpiece W2 is discharged.
- the workpiece W1 discharged from the cutting apparatus 1 or the workpiece W2 discharged from the cutting apparatus 5 is conveyed to the grinding apparatus 2 and is input to the grinding apparatus 2.
- the grinding device 2 measures the dimensions of the workpieces W1 and W2. Then, the grinding apparatus 2 determines whether or not grinding is necessary based on the measured values of the dimensions of the workpieces W1 and W2. Here, when the grinding apparatus 2 determines that the grinding process is necessary, the grinding apparatus 2 executes the grinding process and then discharges the workpieces W1 and W2. On the other hand, when the grinding apparatus 2 determines that the grinding process is unnecessary, the grinding apparatus 2 discharges the workpieces W1 and W2 without executing the grinding process.
- the correction value generation unit 4 calculates the dimensional error of the workpieces W1 and W2 by subtracting the design value from the measured values of the dimensions of the workpieces W1 and W2 measured by the grinding apparatus 2. Then, the correction value generation unit 4 controls the cutting control of the cutting device 1 or the cutting device 5 according to whether or not the dimensional errors of the workpieces W1 and W2 are within a preset invariable range. A new correction value to be set in the unit 502 is calculated. When the dimensional error of the workpieces W1 and W2 is outside the invariable range, the correction value generator 4 calculates a new correction value and outputs it to the cutting devices 1 and 5. In this case, the cutting apparatuses 1 and 5 adjust the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
- the number of cutting devices is not limited to two, The structure provided with three or more cutting devices. It may be.
- Embodiment 1 an example of a combined machining system including one grinding apparatus 2 has been described, but the number of grinding apparatuses is not limited to one. For example, it may be a combined machining system including a plurality of grinding machines.
- the combined machining system includes one cutting device 1, grinding devices 2 and 6 that perform two grinding operations, and a correction value generation unit 4.
- the grinding apparatus 6 is composed of, for example, a mechanical grinding machine having a function of measuring the dimension of the workpiece W4.
- the measuring device 601, the measurement control unit 602, the grinding processing unit 603, and the grinding control unit 604 have the same configuration as the measuring device 201, the measurement control unit 202, the grinding processing unit 203, and the grinding control unit 204 of the grinding device 2.
- the measurement control unit 202 of the grinding apparatus 2 is obtained by measuring the dimension of the workpiece W3 input from the cutting apparatus 1 and subtracting the design value from the measured value of the dimension of the workpiece W3, as in the first embodiment. Based on the dimensional error, the machining accuracy of the workpieces W3 and W4 is determined.
- the measurement control unit 602 of the grinding device 6 also measures the dimensions of the workpiece W4 input from the cutting device 1 in the same manner as the grinding device 2, and subtracts the design value from the measured value of the dimensions of the workpiece W4. Based on the dimensional error obtained, the machining accuracy of the workpiece W4 is determined.
- the correction value generation unit 4 determines whether or not it is necessary to adjust the cutting depth of the tool of the cutting apparatus 1 based on the dimensional errors of the workpieces W3 and W4. When the correction value generation unit 4 determines that the cutting depth of the tool needs to be adjusted for the cutting device 1, the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 102 of the cutting device 1.
- the cutting apparatus 1 performs correction from the correction value generation unit 4 after rough machining of the workpieces W3 and W4 is performed.
- a signal or skip signal is output.
- the correction signal is output, the correction value is updated to perform the finishing process, and when the skip signal is output, the correction value is not updated and the finishing process is performed.
- the workpieces W3 and 4 are discharged.
- the workpieces W3 and 4 discharged from the cutting apparatus 1 are conveyed to the grinding apparatus 2 and the grinding apparatus 6, respectively, and are input to the grinding apparatus 2 and the grinding apparatus 6.
- the grinding device 2 measures the dimension of the workpiece W3. Then, the grinding apparatus 2 determines whether or not the grinding process is necessary based on the measured value of the dimension of the workpiece W3. Here, if the grinding apparatus 2 determines that the grinding process is necessary, the grinding apparatus 2 executes the grinding process and then discharges the workpiece W3. On the other hand, when the grinding apparatus 2 determines that the grinding process is unnecessary, the grinding apparatus 2 discharges the workpiece W3 without executing the grinding process.
- the grinding device 6 also measures the dimensions of the workpiece W4, as with the grinding device 2, and determines whether or not grinding is necessary based on the measured value of the dimensions of the workpiece W4. Then, the grinding apparatus 6 discharges the workpiece W4 after performing the grinding process according to the determination result of the necessity of the grinding process.
- the correction value generation unit 4 calculates the dimensional error of the workpieces W3 and W4 by subtracting the design value from the measured values of the dimensions of the workpieces W3 and W4 measured by the grinding device 2 and the grinding device 6. Then, the correction value generation unit 4 determines a new correction value to be set in the cutting control unit 102 of the cutting apparatus 1 depending on whether or not the dimensional error of the workpieces W3 and W4 is within a preset invariable range. Is calculated. When the dimensional error of the workpieces W3 and W4 is outside the invariable range, the correction value generation unit 4 calculates a new correction value and outputs it to the cutting apparatus 1. In this case, the cutting apparatus 1 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
- the number of grinding processing apparatuses is not limited to two.
- it may be a combined machining system including three or more grinding machines.
- the same effect as that of the first embodiment can be obtained even in a combined machining system including a machining apparatus that performs one cutting process and a machining apparatus that performs a plurality of grinding processes.
- the workpiece W is cut only once by one cutting device 1, then processed by the intermediate processing device 3, and then grinding is performed once by one grinding device 2.
- An example of a combined machining system that only performs is described.
- the present invention is not limited to this, for example, a composite in which the workpiece W is cut a plurality of times by a plurality of cutting devices and then processed by an intermediate processing device and then a plurality of grinding devices by a plurality of grinding devices. It may be a processing system.
- the combined machining system includes two cutting devices 1 and 5, two grinding devices 2 and 6, an intermediate machining device 3, and a correction value generation unit 4. .
- the same components as those in the second embodiment are denoted by the same reference numerals as those in FIG. The symbol is attached.
- the measurement control unit 202 of the grinding apparatus 2 measures the dimension of the workpiece W input from the intermediate machining apparatus 3 and subtracts the design value from the measured value of the dimension of the workpiece W in the same manner as in the second embodiment. A dimension error is calculated, and the machining accuracy of the workpiece W is determined based on the dimension error. Then, the correction value generation unit 4 determines whether or not the adjustment of the cutting depth of the tool of the cutting apparatus 1 is necessary based on the dimensional error of the workpiece W calculated by the measurement control unit 202 of the grinding apparatus 2. When the correction value generation unit 4 determines that the cutting depth of the tool needs to be adjusted for the cutting device 1, the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 102 of the cutting device 1.
- the measurement control unit 602 of the grinding apparatus 6 measures the dimensions of the workpiece W input from the grinding apparatus 2 in the same manner as in the second embodiment, and subtracts the design value from the measured value of the dimensions of the workpiece W. Thus, the dimensional error is calculated, and the machining accuracy of the workpiece W is determined based on the dimensional error. Then, the correction value generation unit 4 determines whether or not it is necessary to adjust the cutting depth of the tool of the cutting device 5 based on the dimensional error of the workpiece W calculated by the measurement control unit 602 of the grinding device 6.
- the correction value generation unit 4 determines that the cutting depth of the tool needs to be adjusted for the cutting device 5
- the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 502 of the cutting device 5. That is, the cutting device 1, the cutting device 5, the intermediate processing device 3, the grinding device 2, and the correction value generation unit 4 constitute a combined machining system similar to that of the second embodiment, The machining apparatus 3, the grinding apparatus 2, the grinding apparatus 6, and the correction value generation unit 4 constitute a combined machining system similar to that of the second embodiment.
- the cutting devices 1 and 5 cut different portions of the workpiece W, and the grinding devices 2 and 6 are respectively cut by the cutting devices 1 and 5 on the workpiece W. Grind the part that was cut.
- the cutting apparatus 1 executes rough machining of the workpiece W and then follows a correction signal or a skip signal output from the correction value generation unit 4. Then, it is determined whether or not the correction value needs to be updated. Thereafter, finishing is performed and the workpiece W is discharged.
- the workpiece W discharged from the cutting apparatus 1 is conveyed to the cutting apparatus 5 and is input to the cutting apparatus 5.
- the cutting device 5 When the workpiece W is input to the cutting device 5, the cutting device 5 performs rough machining of the workpiece W in the same manner as the cutting device 1, and then outputs a correction signal or a skip signal from the correction value generation unit 4. Is done. When the correction signal is output, the correction value is updated to perform the finishing process, and when the skip signal is output, the correction value is not updated and the finishing process is performed. After executing the finishing process, the workpiece W is discharged. The workpiece W discharged from the cutting device 5 is transported to the intermediate processing device 3 and input to the intermediate processing device 3. When the workpiece W is thrown into the intermediate machining device 3, the intermediate machining device 3 performs processing on the workpiece W and then discharges the workpiece W. The workpiece W discharged from the intermediate processing device 3 is conveyed to the grinding device 2 and is input to the grinding device 2.
- the grinding device 2 When the workpiece W is input to the grinding device 2, the grinding device 2 measures the dimensions of the workpiece W. Then, the grinding apparatus 2 determines whether or not grinding is necessary based on the measured value of the dimension of the workpiece W. Here, if the grinding apparatus 2 determines that the grinding process is necessary, the grinding apparatus 2 performs the grinding process and then discharges the workpiece W. On the other hand, if the grinding apparatus 2 determines that the grinding process is unnecessary, the grinding apparatus 2 discharges the workpiece W without performing the grinding process. The workpiece W discharged from the grinding apparatus 2 is conveyed to the grinding apparatus 6 and is input to the grinding apparatus 6. When the workpiece W is input to the grinding device 6, the grinding device 6 measures the dimension of the workpiece W.
- the grinding device 6 determines whether or not grinding is necessary based on the measured value of the dimension of the workpiece W.
- the grinding apparatus 6 determines that the grinding process is necessary, the grinding apparatus 6 performs the grinding process and then discharges the workpiece W.
- the grinding apparatus 6 determines that the grinding process is unnecessary, the grinding apparatus 6 discharges the workpiece W without executing the grinding process.
- the grinding device 6 discharges the workpiece W without performing the grinding process.
- the correction value generation unit 4 calculates the dimension error of the workpiece W by subtracting the design value from the measured value of the dimension of the workpiece W measured by each of the grinding apparatuses 2 and 6. Then, the correction value generation unit 4 is set in the cutting control unit 102 of the cutting apparatus 1 according to whether or not the dimensional error of the workpiece W calculated by the grinding apparatus 2 is within a preset invariable range. A new correction value to be calculated is calculated. When the dimensional error of the workpiece W calculated by the grinding device 2 is outside the invariable range, the correction value generation unit 4 calculates a new correction value and outputs it to the cutting device 1. In this case, the cutting apparatus 1 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
- the correction value generation unit 4 is set in the cutting control unit 502 of the cutting device 5 according to whether or not the dimensional error of the workpiece W calculated by the grinding device 6 is within a preset invariable range. A new correction value to be calculated is calculated. When the dimensional error of the workpiece W calculated by the grinding apparatus 6 is outside the invariable range, the correction value generation unit 4 calculates a new correction value and outputs it to the cutting apparatus 5. In this case, the cutting apparatus 5 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
- FIG. 19 although shown about the structure provided with the two cutting processing apparatuses 1 and 5 and the two grinding processing apparatuses 2 and 6, the number of each of a cutting processing apparatus and a grinding processing apparatus is not limited to this. For example, it may be a combined processing system including three or more cutting devices or grinding devices. Further, FIG. 19 shows a combined machining system including one intermediate machining device 3, but the number of intermediate machining devices 3 is not limited to one. For example, a combined machining system including a plurality of intermediate machining devices may be used. In addition, FIG. 19 shows a configuration including one correction value generation unit 4, but the number of correction value generation units 4 is not limited to one, and a composite including a plurality of correction value generation units 4. It may be a processing system.
- the workpiece W is subjected to a plurality of cutting processes by a plurality of cutting apparatuses, and then subjected to a process by an intermediate processing apparatus, and then a plurality of grinding processes are performed by a plurality of grinding apparatuses.
- the same effects as those of the combined machining system according to the second embodiment can be obtained.
- Each processing apparatus may be configured to include an identification information reading unit that reads identification information carved into a part of the workpiece W.
- the combined machining system includes a cutting device 21, a grinding device 22, an intermediate processing device 3, a correction value generation unit 24, and a cutting control of the cutting device 21.
- a correction value storage unit 25 that stores a correction value to be set in the unit 102.
- the cutting device 21 includes a cutting unit 101, a cutting control unit 102, and an identification information reading unit 213 that reads identification information engraved on a part of the workpiece W.
- the grinding apparatus 22 includes a measuring instrument 201, a measurement control unit 202, a grinding processing unit 203, a grinding control unit 204, and an identification information reading unit 225.
- the identification information reading unit 213 corresponds to the first identification information reading unit described in the claims
- the identification information reading unit 225 corresponds to the second identification information reading unit described in the claims.
- the identification information reading units 213 and 225 recognize, for example, an identification unit engraved on the workpiece W by analyzing an image captured by the imaging unit and an imaging unit (not illustrated) that captures a part of the workpiece W. An image recognition unit (not shown).
- the identification information reading units 213 and 225 output the recognized identification information of the workpiece W to the correction value generation unit 24.
- the correction value storage unit 25 includes a storage device, and stores a correction value to be set in the cutting control unit 102 of the cutting device 21 in association with the identification information of the workpiece W.
- the correction value generation unit 24 cuts the workpiece to which the same identification information as the workpiece W11 is given.
- the necessity of adjusting the cutting depth of the tool of the processing device 21 is determined.
- the correction value generation unit 24 determines that it is necessary to adjust the cutting depth of the tool of the cutting device 21 for the workpiece to which the same identification information as that of the workpiece W11 is given, the correction value generation unit 24 has already sent to the cutting control unit 102 of the cutting device 21.
- the set correction value is acquired and a new correction value is calculated.
- the correction value generation unit 24 stores the calculated new correction value in the correction value storage unit 25 in a form associated with the identification information of the workpiece W11.
- the identification information reading unit 213 of the cutting device 21 reads the identification information engraved on a part of the workpiece W12 and outputs it to the correction value generation unit 24.
- the correction value generation unit 24 reads from the correction value storage unit 25 of the workpiece W11.
- a correction value associated with the identification information is acquired.
- the correction value generation unit 24 outputs the correction value acquired from the correction value storage unit 25 to the cutting control unit 102 of the cutting device 21.
- the cutting device 21 when the workpiece W11 is put into the cutting device 21, the cutting device 21 reads the identification information engraved on a part of the workpiece W11 and executes rough machining of the workpiece W. After that, a correction signal or a skip signal is output from the correction value generation unit 24. When the correction signal is output, the correction value is updated to perform the finishing process, and when the skip signal is output, the correction value is not updated and the finishing process is performed. Thereafter, the cutting device 21 discharges the workpiece W. The workpiece W11 discharged from the cutting device 21 is transported to the intermediate processing device 3 and thrown into the intermediate processing device 3.
- the intermediate processing device 3 executes processing on the workpiece W and then discharges the workpiece W11.
- the workpiece W discharged from the intermediate processing device 3 is conveyed to the grinding device 22 and is input to the grinding device 22.
- the grinding device 22 When the workpiece W11 is put into the grinding device 22, the grinding device 22 reads the identification information engraved on a part of the workpiece W11 and measures the dimension of the workpiece W11. Then, the grinding device 22 determines whether or not grinding is necessary based on the measured value of the dimension of the workpiece W11. Here, when the grinding apparatus 22 determines that the grinding process is necessary, the grinding apparatus 22 performs the grinding process and then discharges the workpiece W11. On the other hand, when determining that the grinding process is unnecessary, the grinding apparatus 22 discharges the workpiece W11 without performing the grinding process.
- the correction value generation unit 24 acquires the measured value of the dimension of the workpiece W11 and the identification information of the workpiece W11 from the grinding device 22. Then, the correction value generation unit 24 calculates the dimensional error of the workpiece W11 by subtracting the design value from the measured value of the dimension of the workpiece W11 measured by the grinding device 22. Then, the correction value generation unit 24 is set in the cutting control unit 102 of the cutting device 21 according to whether or not the dimensional error of the workpiece W11 calculated by the grinding device 22 is within a preset invariable range. A new correction value to be calculated is calculated. The correction value generation unit 24 calculates a new correction value when the dimensional error of the workpiece W11 calculated by the grinding device 22 is outside the invariable range.
- the correction value generation unit 24 stores the calculated new correction value in the correction value storage unit 25 in a form associated with the identification information of the workpiece W11. Thereafter, when the workpiece W12 is input to the cutting device 21, the identification information reading unit 213 of the cutting device 21 reads the identification information engraved on a part of the workpiece W12 and outputs it to the correction value generation unit 24.
- the correction value generation unit 24 reads from the correction value storage unit 25 of the workpiece W11. A correction value associated with the identification information is acquired.
- the correction value generation unit 24 outputs the correction value acquired from the correction value storage unit 25 to the cutting control unit 102 of the cutting device 21.
- the cutting apparatus 1 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 24.
- the composite processing system provided with the one intermediate processing apparatus 3 was shown, the number of the intermediate processing apparatuses 3 is not limited to one.
- a combined machining system including a plurality of intermediate machining devices may be used.
- a workpiece of the same type as the workpiece is thrown into the cutting device 1 until the workpiece machined by the cutting device 1 is put into the grinding device 2.
- the correction value of the cutting control unit 102 of the cutting apparatus 1 cannot be updated. Accordingly, for example, in a combined machining system including n (n is an integer of 1 or more) intermediate machining devices 3, cutting is performed on n workpieces in a state where the cutting depth of the tool of the machining device 1 is not appropriate. There is a risk that.
- the correction value calculated based on the measured value of the dimension of the workpiece W11 measured by the grinding apparatus 22 is associated with the identification information of the workpiece W11 in the correction value storage unit. 25. Then, when the workpiece W12 partially engraved with the identification information identical to the identification information of the workpiece W11 is input to the cutting device 21, the correction value generation unit 24 reads the correction value from the correction value storage unit 25. A correction value associated with the identification information of the workpiece W11 is acquired and output to the cutting device 21. Thereby, since the cutting apparatus 21 can perform a cutting process in the state which adjusted the tool to the appropriate cutting amount with respect to each input workpiece
- the correction value generation unit 4 is set in the cutting control unit 102 of the cutting apparatus 1 based on the measured value of the workpiece dimension measured by the grinding apparatus 2 and the design value of the workpiece dimension.
- An example in which a new correction value is calculated has been described.
- the present invention is not limited to this.
- the correction value generation unit 4 determines the number of workpieces input to the cutting apparatus 1 and the workpiece dimensions in addition to the measurement values of the workpiece dimensions and the design values of the workpiece dimensions.
- a configuration may be used in which a new correction value is calculated based on correlation information indicating a correlation with a measurement value.
- the combined machining system includes a cutting apparatus 1, a grinding apparatus 2, an intermediate machining apparatus 3, a correction value generation unit 34, a result storage unit 35, and a correlation.
- An information storage unit 36 In FIG. 21, the same reference numerals as those in FIG.
- the record storage unit 35 is configured from a storage device, and stores record information indicating a record of a work cut by the cutting apparatus 1.
- This performance information includes the number of workpieces inserted into the machining apparatus 1, the program number assigned to the program used for machining each workpiece, the measured value of the workpiece dimensions, and the cutting performed at the time of machining each workpiece.
- the correction value set in the control unit 102 is associated with the information.
- the correlation information storage unit 36 stores correlation information indicating the correlation between the number of workpieces input to the cutting apparatus 1 and the measured value as shown in FIG. The correlation information is created individually for each program number (for example, Pro1, Pro2, Pro3, Pro4).
- the correction value generation unit 34 counts the number of workpieces W input to the cutting apparatus 1. This number of inputs is the total number of inputs since the tool was changed in the cutting apparatus 1.
- the correction value generation unit 34 converts the input measurement value into the measurement value that is already stored in the result storage unit 35. The results are stored in the result storage unit 35 in association with the corresponding number of inputs, program number, and correction value.
- the number of inputs is the number of workpieces input to the cutting apparatus 1 when the workpiece W21 is input to the cutting apparatus 1
- the program number is the program number of the program used for cutting the workpiece W21. is there.
- the correction value is a correction value used for cutting the workpiece W21.
- the correction value generation unit 34 includes information indicating a program number assigned to the program used for cutting the input workpiece W from the cutting apparatus 1.
- the correction value is acquired and the result storage unit 35 stores it. Further, the correction value generating unit 34 increments the number of input corresponding to the acquired program number and correction value by one. Then, the correction value generation unit 34 individually inputs the number of workpieces for each program number based on the record information stored in the record storage unit 35 so far when the tool is exchanged in the cutting apparatus 1. Correlation information representing the correlation between the measured value and the measured value is generated and stored in the correlation information storage unit 36.
- generation part 34 will determine the necessity of adjustment of the cutting depth of the tool of the cutting device 1 about the workpiece
- the correction value generation unit 34 calculates the actual value from the input measurement value based on the correlation information stored in the correlation information storage unit 36. Calculate machining dimensions. For example, it is assumed that the program number of the program used for cutting the workpiece W21 is “Pro2”.
- the correction value generation unit 34 specifies the measurement values Dr1 and Dr2 corresponding to the numbers M1 and M2, respectively, based on the correlation information stored in the correlation information storage unit 36 (see FIG. 22). Next, the correction value generation unit 34 calculates a corrected measurement value corresponding to the sum of the dimension value and the measurement value obtained by subtracting the measurement value Dr1 from the measurement value Dr2.
- generation part 34 calculates a correction value newly using the relational expression of following formula (2).
- (New correction value) (correction value already set) ⁇ (corrected measurement value ⁇ design value) (2) Then, the correction value generation unit 34 outputs the calculated new correction value to the cutting control unit 102 of the cutting apparatus 1.
- the correction value generation unit 34 performs cutting based on the correlation information indicating the correlation between the number of workpieces inserted in the cutting apparatus 1 and the measurement value of the workpiece dimensions, which is stored in the result storage unit 35.
- a new correction value to be set in the cutting control unit 102 of the processing apparatus 1 is calculated.
- a new correction value to be set in the cutting control unit 102 of the cutting apparatus 1 is determined. Therefore, since an appropriate correction value is set by the cutting control unit 102, there is an advantage that the machining accuracy of the cutting apparatus 1 is improved and the defect rate of the workpiece is reduced.
- the correction value generation part 4 demonstrated the example which acquires the program number provided to the program used for control of the cutting part 101 from the cutting control part 102 of the cutting apparatus 1, it is in process.
- the program number is not limited as long as the information specifies the specifications of the workpiece W.
- the correction value generation unit 4 may acquire various parameters set according to the specifications of the workpiece W to be processed by the cutting control unit 102 from the cutting control unit 102.
- Embodiment 2 the configuration in which only one intermediate processing device 3 is provided has been described, but the number of intermediate processing devices 3 is not limited to one.
- the structure which equips the intermediate processing apparatus 3 (n is an integer greater than or equal to 2) units may be sufficient, or the structure which does not include the intermediate processing apparatus 3 may be sufficient.
- the present invention is not limited thereto, and for example, two cutting devices 1 are provided.
- the measurement part 200 may be configured to be provided in any one of the cutting devices 1. Or the structure provided with the two grinding
- the present invention can be suitably used for a complex machining system and a machining center including an NC lathe and a mechanical grinder.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Automatic Control Of Machine Tools (AREA)
- Multi-Process Working Machines And Systems (AREA)
- General Factory Administration (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
A cutting device (1) cuts a workpiece (W) on the basis of a target value for dimensions of the workpiece (W) determined according to a design value for the dimensions of the workpiece (W) and a corrected value for the design value. A grinding device (2) has a measurement unit (200) for measuring the dimensions of the cut workpiece (W). The grinding device (2) grinds the cut workpiece (W) after the dimensions of the cut workpiece (W) have been measured by the measurement unit (200). A corrected value generation unit (4) newly generates a corrected value according to the specifications of the workpiece (W) based on the measurement value of the dimensions of the workpiece (W) measured by the measurement unit (200), the design value of the dimensions of the workpiece (W), and the previously set corrected value. The cutting device (1) cuts the workpiece (W) and other workpieces having the same specifications on the basis of the corrected value newly generated by the corrected value generation unit (4).
Description
本発明は、複合加工システムおよび複合加工方法に関する。
The present invention relates to a combined processing system and a combined processing method.
ワークの切削加工後に、ワークの寸法を計測し、ワークの寸法の計測値から設計値を差し引いて得られる寸法誤差に基づいて、次に同一仕様のワークを切削加工する際の切削加工条件を設定する複合加工機が提案されている(例えば特許文献1参照)。この複合加工機は、ワークの切削加工後に、同一仕様のワークを切削加工する際の切削加工条件を逐次修正することにより、複合加工機で使用する工具の摩耗または工具のたわみによる切削加工条件のずれを解消し、高精度な切削加工を持続的に実現させている。
After cutting the workpiece, measure the workpiece dimensions and set the cutting conditions for the next machining of the workpiece with the same specifications based on the dimensional error obtained by subtracting the design value from the measured workpiece dimensions. A multi-task machine has been proposed (see, for example, Patent Document 1). In this multi-task machine, after cutting the workpiece, the cutting conditions when cutting a workpiece of the same specification are sequentially corrected, so that the cutting process conditions due to wear or deflection of the tool used in the multi-task machine are adjusted. Displacement is eliminated and high-precision cutting is continuously realized.
しかしながら、特許文献1に記載された複合加工機では、ワークの切削加工と、切削加工後のワークの寸法の計測とが、同一の複合加工機内で実行される。従って、この複合加工機では、切削加工後のワークの寸法の計測を実行している間、他のワークの切削加工が待たされることになる。そうすると、複合加工機のスループットが低下してしまう。
However, in the combined processing machine described in Patent Document 1, workpiece cutting and measurement of the dimension of the workpiece after cutting are performed in the same combined processing machine. Therefore, in this multi-tasking machine, while the measurement of the dimension of the workpiece after cutting is being performed, cutting of another workpiece is awaited. If it does so, the throughput of a multi-tasking machine will fall.
本発明は、上記事由に鑑みてなされたものであり、高スループットの複合加工システムおよび複合加工方法を提供することを目的とする。
The present invention has been made in view of the above reasons, and an object thereof is to provide a high-throughput composite processing system and a composite processing method.
上記目的を達成するために、本発明に係る複合加工システムは、
ワークの寸法の設計値と前記設計値に対する補正値とにより定まる前記ワークの寸法の目標値に基づいて、前記ワークを加工する第1加工装置と、
前記第1加工装置により加工された前記ワークの寸法を計測する計測部を有し、前記計測部により加工した前記ワークの寸法を計測するとともに、加工後の前記ワークに対して、前記第1加工装置が行う加工と同一または類似の加工を行う第2加工装置と、
前記計測部により計測された、加工された前記ワークの寸法の計測値と、前記設計値と、前記補正値と、のうちの少なくとも1つを用いて、新たな補正値を生成する補正値生成部と、を備え、
前記第1加工装置は、前記設計値と前記補正値生成部が生成した新たな補正値とにより定まるワークの寸法の目標値に基づいて、前記ワークと同一の設計値を有する他のワークを加工する。 In order to achieve the above object, the combined machining system of the present invention is
A first processing device that processes the workpiece based on a target value of the workpiece dimension determined by a design value of the workpiece dimension and a correction value for the design value;
A measuring unit that measures the dimension of the workpiece processed by the first processing apparatus; measures the dimension of the workpiece processed by the measuring unit; and the first processing for the workpiece after processing A second processing device that performs the same or similar processing as the processing performed by the device;
Correction value generation for generating a new correction value using at least one of the measured value of the dimension of the processed workpiece measured by the measurement unit, the design value, and the correction value And comprising
The first processing apparatus processes another workpiece having the same design value as the workpiece based on a target value of a workpiece dimension determined by the design value and a new correction value generated by the correction value generation unit. To do.
ワークの寸法の設計値と前記設計値に対する補正値とにより定まる前記ワークの寸法の目標値に基づいて、前記ワークを加工する第1加工装置と、
前記第1加工装置により加工された前記ワークの寸法を計測する計測部を有し、前記計測部により加工した前記ワークの寸法を計測するとともに、加工後の前記ワークに対して、前記第1加工装置が行う加工と同一または類似の加工を行う第2加工装置と、
前記計測部により計測された、加工された前記ワークの寸法の計測値と、前記設計値と、前記補正値と、のうちの少なくとも1つを用いて、新たな補正値を生成する補正値生成部と、を備え、
前記第1加工装置は、前記設計値と前記補正値生成部が生成した新たな補正値とにより定まるワークの寸法の目標値に基づいて、前記ワークと同一の設計値を有する他のワークを加工する。 In order to achieve the above object, the combined machining system of the present invention is
A first processing device that processes the workpiece based on a target value of the workpiece dimension determined by a design value of the workpiece dimension and a correction value for the design value;
A measuring unit that measures the dimension of the workpiece processed by the first processing apparatus; measures the dimension of the workpiece processed by the measuring unit; and the first processing for the workpiece after processing A second processing device that performs the same or similar processing as the processing performed by the device;
Correction value generation for generating a new correction value using at least one of the measured value of the dimension of the processed workpiece measured by the measurement unit, the design value, and the correction value And comprising
The first processing apparatus processes another workpiece having the same design value as the workpiece based on a target value of a workpiece dimension determined by the design value and a new correction value generated by the correction value generation unit. To do.
本発明によれば、第2加工装置が、第1加工装置が加工したワークの寸法を計測する計測部を有する。そして、第1加工装置が、ワークの寸法の設計値と補正値とにより定まるワークの寸法の目標値に基づいて、ワークを加工し、第2加工装置が、計測部により第1加工装置が加工したワークの寸法を計測する。これにより、第2加工装置が、計測部により第1加工装置が加工したワークの寸法を計測している間、第1加工装置が、並行して他のワークを加工することができるので、複合加工システム全体としてのスループットが向上する。
According to the present invention, the second processing apparatus has a measuring unit that measures the dimensions of the workpiece processed by the first processing apparatus. Then, the first processing device processes the workpiece based on the target value of the workpiece dimension determined by the design value and the correction value of the workpiece dimension, the second processing device processes the first processing device by the measuring unit. Measure the dimensions of the workpiece. Thereby, while the 2nd processing device is measuring the size of the work which the 1st processing device processed by the measuring part, since the 1st processing device can process other work in parallel, compounding Throughput of the entire processing system is improved.
(実施の形態1)
以下、本発明の実施の形態1に係る複合加工システムについて図面を参照しながら説明する。本実施の形態に係る複合加工システムは、1つの切削加工装置と1つの研削加工装置とを備える。そして、複合加工システムは、切削加工装置で切削加工されたワークの寸法を、研削加工装置において計測する。そして、複合加工システムは、計測により得られるワークの寸法の計測値に基づいて、切削加工装置の工具の切込み量を調整する。 (Embodiment 1)
Hereinafter, the combined machining system according toEmbodiment 1 of the present invention will be described with reference to the drawings. The combined machining system according to the present embodiment includes one cutting device and one grinding device. Then, the combined machining system measures the dimensions of the workpiece cut by the cutting apparatus using the grinding apparatus. Then, the combined machining system adjusts the cutting depth of the tool of the cutting apparatus based on the measured value of the workpiece dimension obtained by the measurement.
以下、本発明の実施の形態1に係る複合加工システムについて図面を参照しながら説明する。本実施の形態に係る複合加工システムは、1つの切削加工装置と1つの研削加工装置とを備える。そして、複合加工システムは、切削加工装置で切削加工されたワークの寸法を、研削加工装置において計測する。そして、複合加工システムは、計測により得られるワークの寸法の計測値に基づいて、切削加工装置の工具の切込み量を調整する。 (Embodiment 1)
Hereinafter, the combined machining system according to
本実施の形態に係る複合加工システムは、図1に示すように、切削加工装置1と、研削加工装置2と、補正値生成部4と、を備える。なお、図1において、白矢印は、ワークWの投入フローを示し、破線矢印は、切削加工装置1、研削加工装置2および補正値生成部4の間における各種情報の入出力を示す。また、実線矢印は、切削加工装置1内部または研削加工装置2内部における各種情報の入出力を示す。切削加工装置1、研削加工装置2は、それぞれ特許請求の範囲に記載の第1加工装置、第2加工装置に相当する。切削加工装置1は、例えばNC(Numerical Control)旋盤から構成される。切削加工装置1は、切削加工部101と、切削加工部101を制御する切削制御部102と、を有する。切削加工部101は、ワークWを加工する部分であり、チャックと主軸台と主軸と刃物台とバイトとを有する。以下、バイトのことを工具と称する。切削制御部102は、インタフェースを介して切削加工部101へ制御信号を出力することにより、切削加工部101を制御するコンピュータから構成される。ところで、ワークWをその設計値通りに切削加工しようとする場合、切削加工の目標値は、使用する切削加工装置1の特性に応じて設計値に補正値を加えて補正した値とする必要がある。従って、切削制御部102は、ワークWの設計値と補正値とにより定まる工具の切込み量に基づいて、当該切込み量だけ工具をワークWへ切り込ませるよう制御するための制御信号を切削加工部101へ出力する。そして、切削加工部101は、入力される制御信号に対応する切込み量だけ工具をワークWへ切り込ませる形でワークWを切削加工する。具体的には、切削加工部101は、図2に示すように、ワークWを切削してワークWの直径の計測値Drをその設計値Ddにするために、チャックに装着された円柱状のワークWを矢印AR1に示すように中心軸J1周りに回転させるとともに、工具BをワークWの寸法の設計値Ddに対応する切込み量だけ切込む。即ち、切削制御部102は、補正値生成部4から新たな補正値が入力されると、ワークWの寸法の設計値と新たな補正値とにより定まるワークWの寸法の目標値に対応する制御信号を切削加工部101へ出力する。そして、切削加工部101は、入力される制御信号に基づいて、ワークWと同一の寸法の設計値を有する他のワークWを加工する。
The combined machining system according to the present embodiment includes a cutting device 1, a grinding device 2, and a correction value generator 4, as shown in FIG. In FIG. 1, the white arrow indicates the flow of loading the workpiece W, and the broken arrow indicates input / output of various information between the cutting apparatus 1, the grinding apparatus 2, and the correction value generation unit 4. Solid arrows indicate input / output of various information in the cutting apparatus 1 or the grinding apparatus 2. The cutting device 1 and the grinding device 2 correspond to a first processing device and a second processing device described in the claims, respectively. The cutting device 1 is constituted by, for example, an NC (Numerical Control) lathe. The cutting apparatus 1 includes a cutting unit 101 and a cutting control unit 102 that controls the cutting unit 101. The cutting unit 101 is a part that processes the workpiece W, and includes a chuck, a spindle stock, a spindle, a tool rest, and a cutting tool. Hereinafter, the tool is referred to as a tool. The cutting control unit 102 includes a computer that controls the cutting unit 101 by outputting a control signal to the cutting unit 101 via an interface. By the way, when the workpiece W is to be machined according to the design value, the target value of the machining needs to be a value obtained by adding a correction value to the design value according to the characteristics of the cutting apparatus 1 to be used. is there. Therefore, the cutting control unit 102 generates a control signal for controlling the cutting of the tool into the workpiece W by the cutting amount based on the cutting amount of the tool determined by the design value and the correction value of the workpiece W. 101. Then, the cutting unit 101 cuts the workpiece W in such a manner that the tool is cut into the workpiece W by a cutting amount corresponding to the input control signal. Specifically, as shown in FIG. 2, the cutting unit 101 has a cylindrical shape attached to the chuck in order to cut the workpiece W and set the measured value Dr of the diameter of the workpiece W to the design value Dd. The work W is rotated around the central axis J1 as indicated by an arrow AR1, and the tool B is cut by a cutting amount corresponding to the design value Dd of the dimension of the work W. That is, when a new correction value is input from the correction value generation unit 4, the cutting control unit 102 performs control corresponding to the target value of the workpiece W dimension determined by the design value of the workpiece W dimension and the new correction value. A signal is output to the cutting unit 101. And the cutting part 101 processes the other workpiece | work W which has the design value of the same dimension as the workpiece | work W based on the input control signal.
研削加工装置2は、例えばワークWの寸法を計測する機能を有する機械研削盤から構成され、切削加工後のワークWに対して切削加工装置1が行う切削加工と類似の加工である研削加工を行う。ここで、類似の加工とは、加工によりワークWに与える効果の一部が共通することを意味する。例えば研削加工は、ワークWを削ることによりワークWの寸法を小さくするという点で切削加工と共通する。研削加工装置2は、切削加工装置1から投入されるワークWの寸法を計測する計測器201と、計測器201を制御する計測制御部202と、研削加工部203と、研削加工部203を制御する研削制御部204と、を有する。ワークWの形状が、例えば図3に示すような円柱状であるとする。この場合、計測制御部202は、ワークWの互いに交差する複数の径方向(図3では3方向)における最大寸法D1、D2、D3を計測する。なお、図3では、3方向における最大寸法D1、D2、D3を計測する例について示しているが、計測する径方向は3方向に限定されるものではなく、例えば2方向であってもよいし4方向以上であってもよい。ここにおいて、計測器201は、ワークWをその中心軸J1周りに回転自在に保持するワーク保持部(図示せず)を有する。そして、計測制御部202は、計測器201を制御して、ワークWをその中心軸J1周りに60度ずつ回転させながら図3に示す3箇所の径方向の最大寸法D1、D2、D3を計測する。このようにして、計測制御部202は、ワークWの複数の径方向での最大寸法値を取得する。そして、計測制御部202は、取得した複数の最大寸法値の中から最小値を特定して出力する。この計測器201と計測制御部202とから、切削加工装置1が切削加工したワークWの寸法を計測する計測部200が構成されている。
The grinding device 2 is constituted by, for example, a mechanical grinding machine having a function of measuring the dimension of the workpiece W, and performs grinding processing that is similar to the cutting processing performed by the cutting device 1 on the workpiece W after cutting. Do. Here, similar processing means that some of the effects given to the workpiece W by processing are common. For example, the grinding process is common to the cutting process in that the dimension of the workpiece W is reduced by cutting the workpiece W. The grinding apparatus 2 controls the measuring instrument 201 that measures the dimensions of the workpiece W input from the cutting apparatus 1, the measurement control unit 202 that controls the measuring instrument 201, the grinding unit 203, and the grinding unit 203. And a grinding control unit 204. Assume that the shape of the workpiece W is, for example, a columnar shape as shown in FIG. In this case, the measurement control unit 202 measures the maximum dimensions D1, D2, and D3 in a plurality of radial directions (three directions in FIG. 3) of the workpiece W that intersect each other. Although FIG. 3 shows an example of measuring the maximum dimensions D1, D2, and D3 in three directions, the radial direction to be measured is not limited to three directions, and may be two directions, for example. There may be four or more directions. Here, the measuring instrument 201 has a work holding part (not shown) that holds the work W so as to be rotatable around its central axis J1. Then, the measurement control unit 202 controls the measuring instrument 201 to measure the three radial maximum dimensions D1, D2, and D3 shown in FIG. 3 while rotating the workpiece W around the central axis J1 by 60 degrees. To do. In this way, the measurement control unit 202 acquires the maximum dimension value in the plurality of radial directions of the workpiece W. Then, the measurement control unit 202 specifies and outputs the minimum value from the plurality of acquired maximum dimension values. The measuring device 200 and the measurement control unit 202 constitute a measuring unit 200 that measures the dimensions of the workpiece W cut by the cutting apparatus 1.
研削加工部203は、砥石とワークWを回転自在に保持する保持台とを有する。研削制御部204は、インタフェースを介して研削加工部203へ制御信号を出力することにより、研削加工部203を制御するコンピュータから構成される。また、計測制御部202は、ワークWの寸法の公差の上限値である公差上限値と、公差の下限値である公差下限値と、ワークWの設計値と、を示す情報を記憶する第2加工装置記憶部である研削加工装置記憶部(図示せず)を有する。そして、計測制御部202は、ワークWの計測値から設計値を差し引いて得られる寸法誤差を算出する。この寸法誤差は、計測値が設計値を超える場合、正の値を示し、計測値が設計値未満の場合、負の値を示す。計測制御部202は、ワークWの寸法誤差が公差上限値以下であり且つ公差下限値以上である場合、加工精度OKと判定する。一方、計測制御部202は、ワークWの寸法誤差が公差上限値を超える場合、或いは、ワークWの寸法誤差が公差下限値未満である場合、加工精度NGと判定する。ここで、研削制御部204は、計測制御部202によりワークWの寸法誤差が公差上限値を超えると判定されると、研削加工を実行するための制御信号を研削加工部203へ出力する。そして、研削加工部203は、入力される制御信号に基づいて、切削加工装置1が切削加工したワークWに対して、研削加工を実行する。一方、研削制御部204は、計測制御部202によりワークWの寸法誤差が公差下限値未満であると判定されると、ワークWを排出するための制御信号を研削加工部203へ出力する。そして、研削加工部203は、入力される制御信号に基づいて、ワークWを排出する。ここで、寸法誤差が、公差下限値未満とは、寸法誤差が負の値であり、寸法誤差の絶対値が公差下限値の絶対値を超えていることを意味する。研削加工部203は、保持台に回転自在に保持された円柱状のワークWに、砥石を回転させながら押し当てることによりワークWを研削する。一方、研削加工部203は、研削加工をスキップする場合、ワークWに対して、研削加工を実行せず、ワークWを研削加工装置2から排出する。
The grinding part 203 has a grindstone and a holding table for holding the workpiece W in a rotatable manner. The grinding control unit 204 includes a computer that controls the grinding unit 203 by outputting a control signal to the grinding unit 203 via an interface. Further, the measurement control unit 202 stores information indicating a tolerance upper limit value that is an upper limit value of a tolerance of a dimension of the workpiece W, a tolerance lower limit value that is a lower limit value of the tolerance, and a design value of the workpiece W. It has a grinding device storage unit (not shown) which is a processing device storage unit. Then, the measurement control unit 202 calculates a dimensional error obtained by subtracting the design value from the measurement value of the workpiece W. This dimensional error indicates a positive value when the measured value exceeds the design value, and indicates a negative value when the measured value is less than the design value. The measurement control unit 202 determines that the machining accuracy is OK when the dimensional error of the workpiece W is equal to or smaller than the tolerance upper limit value and equal to or larger than the tolerance lower limit value. On the other hand, when the dimensional error of the workpiece W exceeds the tolerance upper limit value or when the dimensional error of the workpiece W is less than the tolerance lower limit value, the measurement control unit 202 determines that the machining accuracy is NG. Here, when the measurement control unit 202 determines that the dimensional error of the workpiece W exceeds the tolerance upper limit value, the grinding control unit 204 outputs a control signal for executing grinding to the grinding processing unit 203. And the grinding process part 203 performs a grinding process with respect to the workpiece | work W which the cutting apparatus 1 cut based on the input control signal. On the other hand, when the measurement control unit 202 determines that the dimensional error of the workpiece W is less than the tolerance lower limit value, the grinding control unit 204 outputs a control signal for discharging the workpiece W to the grinding processing unit 203. Then, the grinding unit 203 discharges the workpiece W based on the input control signal. Here, the dimensional error being less than the tolerance lower limit means that the dimensional error is a negative value and the absolute value of the dimensional error exceeds the absolute value of the tolerance lower limit. The grinding unit 203 grinds the work W by pressing the grindstone against the cylindrical work W rotatably held on the holding table. On the other hand, when the grinding process unit 203 skips the grinding process, the grinding process unit 203 does not perform the grinding process on the work W and discharges the work W from the grinding apparatus 2.
補正値生成部4は、コンピュータから構成され、計測部200により計測された、切削加工されたワークWの寸法の計測値と、ワークWの寸法の設計値と、ワークWの寸法の目標値と、から、新たな補正値を生成する。具体的には、補正値生成部4は、予めワークWの寸法の設計値を保持しており、切削加工装置1の切削制御部102から既に設定されている補正値を取得するとともに、研削加工装置2の計測制御部202からワークWの寸法の計測値を取得する。そして、補正値生成部4は、下記式(1)の関係式を用いて、新たな補正値を算出する。
(新たな補正値)=(既に設定されている補正値)-(計測値-設計値)・・・式(1)
例えば、図2に示すように、ワークWの直径の設計値Ddが10mmであり、既に設定されている補正値が0mmであったとする。この場合、切削制御部102に設定されるワークWの直径の目標値は、10mmである。この場合、切削制御部102は、ワークWの直径を目標値10mmにするように工具をワークWへ切り込ませるよう制御するための制御信号を切削加工部101へ出力する。そして、切削加工装置1により切削加工を行った後のワークWの直径の計測値Drが11mmであったとする。この場合、(計測値Dr-設計値Dd)は1mmになる。そうすると、新たな補正値は、0mm-1mm=-1mmに設定される。このとき、切削制御部102に設定されるワークWの直径の寸法の目標値は、ワークWの直径の設計値10mmに新たな補正値-1mmを加えた9mmに更新される。また、ワークWが、図3に示すような円柱状の部材であるとする。そして、計測制御部202が、前述のように、ワークWについて、3箇所の径方向の最大寸法D1、D2、D3を計測するとする。この場合、補正値生成部4は、3箇所の径方向の最大寸法D1、D2、D3の計測値のうちの最小値を、ワークWの直径の計測値として採用する。これにより、例えば図3に示すように、ワークWにバリWBが存在する場合でも、バリWBによるワークWの直径の計測値への影響を抑制することができる。また、バリWBのみでなくワークWに溝がある場合にも直径の計測が可能である。補正値生成部4は、前述の式(1)の関係式を用いて算出した新たな補正値を示す情報を切削加工装置1の切削制御部102へ出力する。そして、切削制御部102は、既に切削制御部102に設定されている目標値を、ワークWの設計値と補正値生成部4から入力される新たな補正値とにより定まる新たな目標値に更新する。 The correctionvalue generation unit 4 is configured by a computer, and the measured value of the dimension of the cut workpiece W measured by the measuring unit 200, the design value of the dimension of the workpiece W, and the target value of the dimension of the workpiece W From this, a new correction value is generated. Specifically, the correction value generation unit 4 holds a design value of the dimension of the workpiece W in advance, acquires a correction value that has already been set from the cutting control unit 102 of the cutting apparatus 1, and performs grinding processing. The measurement value of the dimension of the workpiece W is acquired from the measurement control unit 202 of the apparatus 2. And the correction value production | generation part 4 calculates a new correction value using the relational expression of following formula (1).
(New correction value) = (correction value already set) − (measured value−design value) Equation (1)
For example, as illustrated in FIG. 2, it is assumed that the design value Dd of the diameter of the workpiece W is 10 mm, and the already set correction value is 0 mm. In this case, the target value of the diameter of the workpiece W set in the cuttingcontrol unit 102 is 10 mm. In this case, the cutting control unit 102 outputs a control signal for controlling the tool to be cut into the workpiece W so that the diameter of the workpiece W becomes a target value of 10 mm. Then, it is assumed that the measured value Dr of the diameter of the workpiece W after being cut by the cutting device 1 is 11 mm. In this case, (measured value Dr−design value Dd) is 1 mm. Then, the new correction value is set to 0 mm-1 mm = -1 mm. At this time, the target value of the diameter of the workpiece W set in the cutting control unit 102 is updated to 9 mm obtained by adding a new correction value −1 mm to the design value 10 mm of the workpiece W diameter. Further, it is assumed that the workpiece W is a columnar member as shown in FIG. Then, it is assumed that the measurement control unit 202 measures the three radial maximum dimensions D1, D2, and D3 for the workpiece W as described above. In this case, the correction value generation unit 4 employs the minimum value among the measured values of the three radial maximum dimensions D1, D2, and D3 as the measured value of the diameter of the workpiece W. Thereby, for example, as shown in FIG. 3, even when a burr WB exists in the work W, the influence of the burr WB on the measured value of the diameter of the work W can be suppressed. Further, not only the burr WB but also the workpiece W has a groove, the diameter can be measured. The correction value generation unit 4 outputs information indicating the new correction value calculated using the relational expression (1) described above to the cutting control unit 102 of the cutting apparatus 1. Then, the cutting control unit 102 updates the target value already set in the cutting control unit 102 to a new target value determined by the design value of the workpiece W and the new correction value input from the correction value generation unit 4. To do.
(新たな補正値)=(既に設定されている補正値)-(計測値-設計値)・・・式(1)
例えば、図2に示すように、ワークWの直径の設計値Ddが10mmであり、既に設定されている補正値が0mmであったとする。この場合、切削制御部102に設定されるワークWの直径の目標値は、10mmである。この場合、切削制御部102は、ワークWの直径を目標値10mmにするように工具をワークWへ切り込ませるよう制御するための制御信号を切削加工部101へ出力する。そして、切削加工装置1により切削加工を行った後のワークWの直径の計測値Drが11mmであったとする。この場合、(計測値Dr-設計値Dd)は1mmになる。そうすると、新たな補正値は、0mm-1mm=-1mmに設定される。このとき、切削制御部102に設定されるワークWの直径の寸法の目標値は、ワークWの直径の設計値10mmに新たな補正値-1mmを加えた9mmに更新される。また、ワークWが、図3に示すような円柱状の部材であるとする。そして、計測制御部202が、前述のように、ワークWについて、3箇所の径方向の最大寸法D1、D2、D3を計測するとする。この場合、補正値生成部4は、3箇所の径方向の最大寸法D1、D2、D3の計測値のうちの最小値を、ワークWの直径の計測値として採用する。これにより、例えば図3に示すように、ワークWにバリWBが存在する場合でも、バリWBによるワークWの直径の計測値への影響を抑制することができる。また、バリWBのみでなくワークWに溝がある場合にも直径の計測が可能である。補正値生成部4は、前述の式(1)の関係式を用いて算出した新たな補正値を示す情報を切削加工装置1の切削制御部102へ出力する。そして、切削制御部102は、既に切削制御部102に設定されている目標値を、ワークWの設計値と補正値生成部4から入力される新たな補正値とにより定まる新たな目標値に更新する。 The correction
(New correction value) = (correction value already set) − (measured value−design value) Equation (1)
For example, as illustrated in FIG. 2, it is assumed that the design value Dd of the diameter of the workpiece W is 10 mm, and the already set correction value is 0 mm. In this case, the target value of the diameter of the workpiece W set in the cutting
次に、本実施の形態に係る複合加工システムの動作について図4および図5を参照しながら説明する。まず、ワークWが切削加工装置1に投入される(ステップS1)。
Next, the operation of the combined machining system according to the present embodiment will be described with reference to FIGS. First, the workpiece | work W is thrown into the cutting apparatus 1 (step S1).
次に、切削加工装置1は投入完了信号をONに設定する(ステップS2)。
Next, the cutting apparatus 1 sets the input completion signal to ON (step S2).
続いて、現在切削加工装置1に設定されている補正値と、切削加工装置1に設定されているプログラム番号とを示す情報が、切削加工装置1から補正値生成部4へ出力される(ステップS3)。
Subsequently, information indicating the correction value currently set in the cutting apparatus 1 and the program number set in the cutting apparatus 1 is output from the cutting apparatus 1 to the correction value generation unit 4 (step). S3).
その後、投入完了信号がONに設定されてから第1期間△T1だけ経過した後、投入完了信号をOFFに設定する(ステップS4)。この第1期間ΔT1の長さは、切削加工装置1が各種情報を補正値生成部4へ出力するのに要する時間に基づいて設定される。この各種情報には、例えば補正値とプログラム番号とを示す情報が含まれる。
Thereafter, after the first period ΔT1 has elapsed since the input completion signal is set to ON, the input completion signal is set to OFF (step S4). The length of the first period ΔT1 is set based on the time required for the cutting apparatus 1 to output various types of information to the correction value generation unit 4. The various information includes, for example, information indicating a correction value and a program number.
次に、補正値生成部4は、切削加工装置1の補正値の更新をスキップするよう指令するスキップ信号をOFFに設定する(ステップS5)。
Next, the correction value generation unit 4 sets a skip signal instructing to skip the update of the correction value of the cutting apparatus 1 to OFF (step S5).
続いて、補正値生成部4は、切削加工装置1の補正値を更新するよう指令する補正信号をOFFに設定する(ステップS6)。その後、1サイクル前に切削加工装置1が加工したワークWが、切削加工装置1から研削加工装置2へ搬送される。
Subsequently, the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to OFF (step S6). Thereafter, the workpiece W processed by the cutting apparatus 1 one cycle before is conveyed from the cutting apparatus 1 to the grinding apparatus 2.
続いて、切削加工装置1は、ワークWを粗加工する(ステップS7)。切削加工装置1は、図2に示すように、チャックに装着された円柱状のワークWを回転させるとともに、工具BをワークWに押し当てることによりワークWを切削する。このとき、切削制御部102は、ワークWの設計値と補正値とにより定まる工具の切込み量に基づいて、当該切込み量だけ工具をワークWへ切り込ませるよう制御するための制御信号を切削加工部101へ出力する。そして、切削加工部101は、入力される制御信号に対応する切込み量だけ工具をワークWへ切り込ませる形でワークWを切削する。
Subsequently, the cutting apparatus 1 roughly processes the workpiece W (step S7). As shown in FIG. 2, the cutting apparatus 1 rotates the columnar workpiece W mounted on the chuck and cuts the workpiece W by pressing the tool B against the workpiece W. At this time, the cutting control unit 102 performs a cutting process based on a cutting amount of the tool determined by the design value and the correction value of the workpiece W to control to cut the tool into the workpiece W by the cutting amount. Output to the unit 101. Then, the cutting unit 101 cuts the workpiece W in such a manner that the tool is cut into the workpiece W by a cutting amount corresponding to the input control signal.
次に、研削加工装置2は、1サイクル前に研削加工装置2が加工したワークWを研削加工装置2から排出する(ステップS8)。
Next, the grinding device 2 discharges the workpiece W processed by the grinding device 2 one cycle before from the grinding device 2 (step S8).
続いて、切削加工装置1から研削加工装置2へ搬送されたワークWが、研削加工装置2に投入される(ステップS9)。
Subsequently, the workpiece W transferred from the cutting apparatus 1 to the grinding apparatus 2 is put into the grinding apparatus 2 (step S9).
その後、研削加工装置2は、ワークWをその中心軸J1周りに60度ずつ回転させながら3箇所の径方向の寸法を計測する(ステップS10)。そして、研削加工装置2は、計測された3つの計測値の最小値をワークWの寸法の計測値とする。その後、研削加工装置2は、ワークWの寸法の計測値から設計値を差し引くことにより寸法誤差を算出し、寸法誤差に基づいて、ワークWの加工精度を判定する。具体的には、研削加工装置2は、ワークWについて予め設定された公差の上限値に相当する公差上限値と、公差の下限値に相当する公差下限値と、を保持している。そして、研削加工装置2は、ワークWの寸法誤差が公差内である場合、加工精度が良好である(以下、「加工精度OK」と称する。)と判定する。一方、研削加工装置2は、ワークWの寸法誤差が公差外である場合、加工精度が悪い(以下、「加工精度NG」と称する。)と判定する。
Thereafter, the grinding apparatus 2 measures three radial dimensions while rotating the workpiece W around the central axis J1 by 60 degrees (step S10). Then, the grinding device 2 sets the minimum value of the three measured values as the measured value of the dimension of the workpiece W. Thereafter, the grinding apparatus 2 calculates a dimensional error by subtracting the design value from the measured value of the dimension of the workpiece W, and determines the machining accuracy of the workpiece W based on the dimensional error. Specifically, the grinding apparatus 2 holds a tolerance upper limit value corresponding to a tolerance upper limit value set in advance for the workpiece W and a tolerance lower limit value corresponding to a tolerance lower limit value. Then, when the dimensional error of the workpiece W is within the tolerance, the grinding apparatus 2 determines that the machining accuracy is good (hereinafter referred to as “machining accuracy OK”). On the other hand, when the dimensional error of the workpiece W is out of the tolerance, the grinding apparatus 2 determines that the machining accuracy is poor (hereinafter referred to as “machining accuracy NG”).
ここで、研削加工装置2が、ワークWについて加工精度NGであり且つワークWの寸法誤差が公差上限値を超えていると判定したとする(ステップS11)。
Here, it is assumed that the grinding apparatus 2 determines that the workpiece W has a processing accuracy of NG and the dimensional error of the workpiece W exceeds the tolerance upper limit value (step S11).
次に、研削加工装置2は、加工精度NGを示す加工精度判定情報を補正値生成部4へ出力する(ステップS12)。
Next, the grinding device 2 outputs processing accuracy determination information indicating the processing accuracy NG to the correction value generation unit 4 (step S12).
続いて、ワークWの寸法の計測値と研削加工装置2の研削加工部203を制御するためのプログラムに付与されたプログラム番号とを示す情報が、研削加工装置2から補正値生成部4へ出力される(ステップS13)。
Subsequently, information indicating the measured value of the dimension of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4. (Step S13).
その後、研削加工装置2は、研削加工(仕上げ加工)を実行する(ステップS14)。
Thereafter, the grinding apparatus 2 performs a grinding process (finishing process) (step S14).
次に、補正値生成部4は、加工精度判定情報が入力されると、切削加工装置1から取得したプログラム番号と研削加工装置2から取得したプログラム番号とが同一であるか否かを判定する。ここで、補正値生成部4が、これらのプログラム番号が同一であると判定したとする(ステップS15)。
Next, when the machining accuracy determination information is input, the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. . Here, it is assumed that the correction value generation unit 4 determines that these program numbers are the same (step S15).
続いて、補正値生成部4は、切削加工装置1の切削制御部102に設定されている補正値と、補正値生成部4が直近に切削制御部102に対して、設定した補正値と、が同一であるか否かを判定する。そして、補正値生成部4は、これらの補正値が同一であると判定したとする(ステップS16)。この場合、補正値生成部4は、ワークWの寸法の計測値に基づいて、ワークWの寸法誤差が補正値の変更を行わない不変範囲内であるか否かを判定する。この不変範囲は、切削加工装置1の切削加工部101の工具の切込み量の調整を行わない範囲でもある。そして、この不変範囲は、例えば、切削加工装置1の性能または切削加工装置1で使用される工具の種類に基づいて設定される。ここにおいて、補正値生成部4は、例えば図8に示すように、不変範囲の上限値、下限値を示す不変範囲上限値L3、不変範囲下限値L2を示す情報を保持している。不変範囲は、ワークWの公差内に含まれる。従って、補正値生成部4は、加工精度判定情報が加工精度NGを示す場合、ワークWの寸法誤差が不変範囲の外であると判定する。
Subsequently, the correction value generation unit 4 includes a correction value set in the cutting control unit 102 of the cutting apparatus 1, a correction value that the correction value generation unit 4 has recently set for the cutting control unit 102, and Are determined to be the same. Then, it is assumed that the correction value generation unit 4 determines that these correction values are the same (step S16). In this case, the correction value generation unit 4 determines whether or not the dimensional error of the workpiece W is within an invariable range in which the correction value is not changed based on the measurement value of the workpiece W dimension. This invariable range is also a range where adjustment of the cutting depth of the tool of the cutting part 101 of the cutting apparatus 1 is not performed. The invariable range is set based on, for example, the performance of the cutting apparatus 1 or the type of tool used in the cutting apparatus 1. Here, for example, as shown in FIG. 8, the correction value generation unit 4 holds information indicating an invariable range upper limit L3 and an invariable range lower limit L2 indicating the upper limit value and lower limit value of the invariable range. The invariable range is included within the tolerance of the workpiece W. Therefore, when the machining accuracy determination information indicates the machining accuracy NG, the correction value generation unit 4 determines that the dimensional error of the workpiece W is outside the invariable range.
図4に戻って、補正値生成部4が、工具の切込み量の調整が必要であると判定したとする(ステップS17)。
Returning to FIG. 4, it is assumed that the correction value generation unit 4 determines that the adjustment of the cutting depth of the tool is necessary (step S17).
この場合、補正値生成部4は、前述の式(1)の関係式を用いて、新たな補正値を算出する(ステップS18)。
In this case, the correction value generation unit 4 calculates a new correction value using the relational expression (1) described above (step S18).
その後、補正値生成部4は、切削加工装置1の補正値を更新するよう指令する補正信号をONに設定し、新たな補正値を示す情報を切削加工装置1へ出力する(ステップS19)。
Thereafter, the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to ON, and outputs information indicating the new correction value to the cutting apparatus 1 (step S19).
一方、切削加工装置1は、補正値生成部4から新たな補正値を示す情報が入力されると、自己が保持する補正値を新たな補正値に更新する(ステップS20)。ここにおいて、切削加工装置1は、ワークWの寸法誤差が公差内であっても補正値を新たな補正値に更新する。
On the other hand, when the information indicating the new correction value is input from the correction value generation unit 4, the cutting apparatus 1 updates the correction value held by itself to the new correction value (step S20). Here, the cutting apparatus 1 updates the correction value to a new correction value even if the dimensional error of the workpiece W is within the tolerance.
次に、切削加工装置1は、ワークWを仕上げ加工する(ステップS21)。このとき、切削制御部102は、ワークWの設計値と更新後の新たな補正値とにより定まる工具の切込み量に基づいて、当該切込み量だけ工具をワークWへ切り込ませるよう制御するための制御信号を切削加工部101へ出力する。そして、切削加工部101は、入力される制御信号に対応する切込み量だけ工具をワークWへ切り込ませる形でワークWを切削する。
Next, the cutting apparatus 1 finishes the workpiece W (step S21). At this time, the cutting control unit 102 controls to cut the tool into the workpiece W by the cutting amount based on the cutting amount of the tool determined by the design value of the workpiece W and the new correction value after update. A control signal is output to the cutting unit 101. Then, the cutting unit 101 cuts the workpiece W in such a manner that the tool is cut into the workpiece W by a cutting amount corresponding to the input control signal.
続いて、切削加工装置1は、ワークWを排出する(ステップS22)。
Subsequently, the cutting apparatus 1 discharges the workpiece W (step S22).
別サイクルにおいて、研削加工装置2が、図5に示すように、ワークWについて加工精度OKと判定したとする(ステップS23)。
In another cycle, it is assumed that the grinding apparatus 2 determines that the workpiece W has the machining accuracy OK as shown in FIG. 5 (step S23).
この場合、研削加工装置2は、研削加工を実行することなく、ワークWを排出する(ステップS24)。
In this case, the grinding apparatus 2 discharges the workpiece W without executing the grinding process (step S24).
その後、加工精度OKを示す加工精度判定情報が、研削加工装置2から補正値生成部4へ出力される(ステップS25)。
Thereafter, machining accuracy determination information indicating the machining accuracy OK is output from the grinding device 2 to the correction value generation unit 4 (step S25).
次に、ワークWの寸法の計測値とプログラム番号とを示す情報が、研削加工装置2から補正値生成部4へ出力される(ステップS26)。ここで、プログラム番号は、研削加工装置2が使用するプログラムに付与された番号である。
Next, information indicating the measured value of the dimension of the workpiece W and the program number is output from the grinding apparatus 2 to the correction value generation unit 4 (step S26). Here, the program number is a number assigned to the program used by the grinding apparatus 2.
続いて、補正値生成部4は、加工精度判定情報が入力されると、切削加工装置1から取得したプログラム番号と研削加工装置2から取得したプログラム番号とが同一であるか否かを判定する。ここで、補正値生成部4が、これらのプログラム番号が同一であると判定したとする(ステップS27)。
Subsequently, when the machining accuracy determination information is input, the correction value generation unit 4 determines whether the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. . Here, it is assumed that the correction value generation unit 4 determines that these program numbers are the same (step S27).
その後、補正値生成部4は、これらのプログラム番号が同一であると判定すると、切削加工装置1の切削制御部102に設定されている補正値と、補正値生成部4が直近に切削制御部102に対して、設定した補正値と、が同一であるか否かを判定する。そして、補正値生成部4は、これらの補正値が同一であると判定したとする(ステップS28)。
Thereafter, when the correction value generation unit 4 determines that these program numbers are the same, the correction value set in the cutting control unit 102 of the cutting apparatus 1 and the correction value generation unit 4 are the cutting control unit most recently. 102, it is determined whether or not the set correction value is the same. Then, it is assumed that the correction value generation unit 4 determines that these correction values are the same (step S28).
次に、補正値生成部4が、切削加工装置1の切削加工部101の工具の切込み量の調整が不要であると判定したとする(ステップS29)。
Next, it is assumed that the correction value generation unit 4 determines that it is not necessary to adjust the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1 (step S29).
続いて、補正値生成部4は、切削加工装置1の補正値の更新をスキップするよう指令するスキップ信号をONに設定する(ステップS30)。
Subsequently, the correction value generation unit 4 sets ON a skip signal that instructs to skip the update of the correction value of the cutting apparatus 1 (step S30).
その後、切削加工装置1は、補正値を更新せずに、仕上げ加工を実行する(ステップS31)。
Thereafter, the cutting apparatus 1 performs finishing without updating the correction value (step S31).
次に、切削加工装置1は、ワークWを排出する(ステップS32)。
Next, the cutting apparatus 1 discharges the workpiece W (step S32).
以上説明したように、本実施の形態に係る複合加工システムによれば、研削加工装置2が、切削加工装置1が切削加工したワークWの寸法を計測する計測部200を有する。そして、切削加工装置1が、ワークWの寸法の設計値に補正値を加えてなるワークWの寸法の目標値に基づいて、ワークWを切削加工し、研削加工装置2が、計測部200により切削加工装置1が切削加工したワークWの寸法を計測する。これにより、研削加工装置2が、計測部200により切削加工装置1が切削加工したワークWの寸法を計測している間、切削加工装置1が、並行して他のワークWを切削加工することができるので、複合加工システム全体としてのスループットが向上する。
As described above, according to the combined machining system according to the present embodiment, the grinding apparatus 2 includes the measuring unit 200 that measures the dimensions of the workpiece W cut by the cutting apparatus 1. Then, the cutting apparatus 1 cuts the workpiece W based on the target value of the dimension of the workpiece W obtained by adding a correction value to the design value of the dimension of the workpiece W, and the grinding apparatus 2 is operated by the measuring unit 200. The dimension of the workpiece W cut by the cutting apparatus 1 is measured. Thereby, while the grinding device 2 measures the dimensions of the workpiece W cut by the cutting device 1 by the measuring unit 200, the cutting device 1 cuts another workpiece W in parallel. Therefore, the throughput of the combined machining system as a whole is improved.
また、本実施の形態に係る複合加工システムは、例えばワークWの切削加工と切削加工後のワークWの寸法の計測とを同一の装置で行う構成に比べて、ワークWのスループットを向上させることができ、製造効率が向上するという利点がある。また、ワークWの切削加工装置1への投入待ち時間が短縮されるので、研削加工装置2での研削加工に比べてワークWの除去量が多く加工時間の長い切削加工装置1での切削加工に要する時間が短縮される。
In addition, the combined machining system according to the present embodiment improves the throughput of the workpiece W compared to a configuration in which, for example, the machining of the workpiece W and the measurement of the dimension of the workpiece W after the machining are performed with the same apparatus. There is an advantage that the manufacturing efficiency is improved. In addition, since the waiting time for loading the workpiece W into the cutting device 1 is shortened, the cutting with the cutting device 1 with a larger amount of removal of the workpiece W and a longer processing time than the grinding with the grinding device 2 is performed. Is shortened.
更に、本実施の形態に係る複合加工システムでは、研削加工装置2の研削加工装置記憶部が、ワークWの寸法の公差の上限値である公差上限値と、公差の下限値である公差下限値と、を示す情報を記憶する。そして、研削加工装置2は、寸法誤差が公差上限値を超えると判定すると、切削加工装置1が切削加工したワークWに対して、研削加工を実行する。一方、研削加工装置2は、寸法誤差が公差下限値未満であると判定すると、ワークWに対する研削加工の実行をスキップしてワークWを排出する。これにより、ワークWの加工精度を高い精度で維持しつつ、必要な研削加工のみを行うので、加工時間の短縮によりスループットが向上し、製造効率も向上するという利点がある。
Furthermore, in the combined machining system according to the present embodiment, the grinding machine storage unit of the grinding machine 2 has a tolerance upper limit value that is an upper limit value of the tolerance of the dimension of the workpiece W and a tolerance lower limit value that is a lower limit value of the tolerance. And the information indicating that. When the grinding apparatus 2 determines that the dimensional error exceeds the tolerance upper limit value, the grinding apparatus 2 performs the grinding process on the workpiece W cut by the cutting apparatus 1. On the other hand, if the grinding apparatus 2 determines that the dimensional error is less than the tolerance lower limit value, the grinding apparatus 2 skips execution of the grinding process on the work W and discharges the work W. Accordingly, only necessary grinding is performed while maintaining the processing accuracy of the workpiece W with high accuracy, and thus there is an advantage that throughput is improved by shortening the processing time and manufacturing efficiency is also improved.
更に、本実施の形態に係る複合加工システムでは、例えばワークWの形状が、図3に示すような円柱状である場合、計測部200が、互いに交差する3つの方向におけるワークWの最大寸法の計測値の最小値を出力する。これにより、例えば図3に示すように、ワークWの一部にバリWBが存在する場合でもワークWの寸法を正確に計測することができる。従って、切削加工装置1の切削制御部102に適切な補正値を設定することが可能となる。
Furthermore, in the combined machining system according to the present embodiment, for example, when the shape of the workpiece W is a cylindrical shape as shown in FIG. 3, the measuring unit 200 has the maximum dimension of the workpiece W in three directions intersecting each other. Outputs the minimum measured value. Thereby, for example, as shown in FIG. 3, the dimension of the workpiece W can be accurately measured even when the burrs WB exist in a part of the workpiece W. Accordingly, it is possible to set an appropriate correction value in the cutting control unit 102 of the cutting apparatus 1.
また、本実施の形態に係る複合加工システムにおいて、研削加工装置2が有する計測器201として、研削加工装置2の研削加工部203が元々有する計測器を採用することができる。従って、切削加工装置1にワークWの寸法を計測する機能を新たに設ける必要がないので、切削加工装置1の更新のためのコストが削減されるという利点がある。
Moreover, in the combined machining system according to the present embodiment, as the measuring instrument 201 included in the grinding apparatus 2, a measuring instrument originally included in the grinding unit 203 of the grinding apparatus 2 can be employed. Therefore, since it is not necessary to newly provide the cutting device 1 with a function of measuring the dimension of the workpiece W, there is an advantage that the cost for updating the cutting device 1 is reduced.
(実施の形態2)
本実施の形態に係る複合加工システムは、ワークを切削加工する切削加工装置とワークを研削加工する研削加工装置とを備える点では実施の形態1に係る複合加工システムと同様である。但し、本実施の形態に係る複合加工システムは、切削加工装置で加工されたワークに対して、加工を施す中間加工装置を備える点が実施の形態1に係る複合加工システムと相違する。そして、本実施の形態に係る複合加工システムでは、切削加工装置で切削加工され、その後、中間加工装置で加工されたワークについて、その寸法を計測し、計測により得られる計測値に基づいて、切削加工装置の工具の切込み量を調整する。 (Embodiment 2)
The combined machining system according to the present embodiment is the same as the combined machining system according to the first embodiment in that it includes a cutting device that cuts a workpiece and a grinding device that grinds the workpiece. However, the complex machining system according to the present embodiment is different from the complex machining system according to the first embodiment in that an intermediate machining device that performs machining on a workpiece machined by a machining device is provided. Then, in the combined machining system according to the present embodiment, the dimensions of the workpiece that has been machined by the machining apparatus and then machined by the intermediate machining apparatus are measured, and cutting is performed based on the measurement value obtained by the measurement. Adjust the cutting depth of the tool of the processing equipment.
本実施の形態に係る複合加工システムは、ワークを切削加工する切削加工装置とワークを研削加工する研削加工装置とを備える点では実施の形態1に係る複合加工システムと同様である。但し、本実施の形態に係る複合加工システムは、切削加工装置で加工されたワークに対して、加工を施す中間加工装置を備える点が実施の形態1に係る複合加工システムと相違する。そして、本実施の形態に係る複合加工システムでは、切削加工装置で切削加工され、その後、中間加工装置で加工されたワークについて、その寸法を計測し、計測により得られる計測値に基づいて、切削加工装置の工具の切込み量を調整する。 (Embodiment 2)
The combined machining system according to the present embodiment is the same as the combined machining system according to the first embodiment in that it includes a cutting device that cuts a workpiece and a grinding device that grinds the workpiece. However, the complex machining system according to the present embodiment is different from the complex machining system according to the first embodiment in that an intermediate machining device that performs machining on a workpiece machined by a machining device is provided. Then, in the combined machining system according to the present embodiment, the dimensions of the workpiece that has been machined by the machining apparatus and then machined by the intermediate machining apparatus are measured, and cutting is performed based on the measurement value obtained by the measurement. Adjust the cutting depth of the tool of the processing equipment.
本実施の形態に係る複合加工システムは、図6に示すように、切削加工装置1と、中間加工装置3と、研削加工装置2と、補正値生成部4と、を備える。なお、図6において、白矢印、破線矢印および実線矢印の意味は、実施の形態1の図1と同様である。また、図6において、実施の形態1と同様の構成については同一の符号を付している。
As shown in FIG. 6, the combined machining system according to the present embodiment includes a cutting device 1, an intermediate processing device 3, a grinding device 2, and a correction value generation unit 4. In FIG. 6, the meanings of the white arrow, the broken line arrow, and the solid line arrow are the same as those in FIG. 1 of the first embodiment. In FIG. 6, the same reference numerals are given to the same configurations as those in the first embodiment.
切削加工装置1の切削制御部102には、ワークWの仕様に応じて切削加工部101を制御するためのプログラムに付与されたプログラム番号と、ワークWの仕様に応じた補正値と、が設定されている。そして、切削制御部102は、ワークWの仕様に応じたプログラムおよび補正値に基づいて、ワークWを切削加工する。例えばワークWが、円柱状でありその中心軸方向における位置によって径が異なる仕様であるとする。この場合、ワークWの仕様に応じたプログラムは、例えばワークWの中心軸方向における位置と切削加工部101の工具の切込み量とを定めるものでとなる。研削加工装置2の研削加工装置記憶部は、ワークWの公差に含まれ且つ補正値が変更されない不変範囲を示す情報を更に記憶している。そして、補正値生成部4は、ワークWの寸法誤差が公差に含まれると判定された場合、ワークWの寸法誤差が研削加工装置記憶部が記憶する不変範囲に含まれると判定すると、新たな補正値の生成をスキップする。一方、補正値生成部4は、ワークWの寸法誤差が不変範囲の外であると判定すると、新たな補正値を生成する。
In the cutting control unit 102 of the cutting apparatus 1, a program number assigned to a program for controlling the cutting unit 101 according to the specification of the workpiece W and a correction value according to the specification of the workpiece W are set. Has been. Then, the cutting control unit 102 cuts the workpiece W based on the program and the correction value according to the specification of the workpiece W. For example, it is assumed that the workpiece W has a cylindrical shape and the diameter varies depending on the position in the central axis direction. In this case, the program according to the specification of the workpiece W is to determine, for example, the position of the workpiece W in the central axis direction and the cutting depth of the tool of the cutting unit 101. The grinding device storage unit of the grinding device 2 further stores information indicating an invariable range that is included in the tolerance of the workpiece W and in which the correction value is not changed. When the correction value generation unit 4 determines that the dimensional error of the workpiece W is included in the tolerance, the correction value generation unit 4 determines that the dimensional error of the workpiece W is included in the invariable range stored in the grinding device storage unit. Skips generation of correction values. On the other hand, if the correction value generation unit 4 determines that the dimensional error of the workpiece W is outside the invariable range, it generates a new correction value.
中間加工装置3は、ワークWを加工する機械加工装置、塗装する塗装装置またはワークWを洗浄する洗浄装置のような装置から構成される。
The intermediate processing device 3 includes a machining device for processing the workpiece W, a coating device for coating, or a cleaning device for cleaning the workpiece W.
次に、本実施の形態に係る複合加工システムの動作について図7から図11を参照しながら説明する。まず、ワークWが切削加工装置へ投入される(ステップS33)。
Next, the operation of the combined machining system according to the present embodiment will be described with reference to FIGS. First, the workpiece W is thrown into the cutting apparatus (step S33).
次に、切削加工装置1は、ワークWの切削加工装置1への投入が完了した旨を通知するための投入完了信号をONに設定する(ステップS34)。
Next, the cutting apparatus 1 sets the input completion signal for notifying that the input of the workpiece W to the cutting apparatus 1 has been completed to ON (step S34).
続いて、補正値とプログラム番号とを示す情報が、切削加工装置1から補正値生成部4へ出力される(ステップS35)。ここで、補正値は、切削加工装置1の切削制御部102に設定されている補正値である。また、プログラム番号は、切削制御部102が使用するプログラムに付与された番号である。
Subsequently, information indicating the correction value and the program number is output from the cutting apparatus 1 to the correction value generation unit 4 (step S35). Here, the correction value is a correction value set in the cutting control unit 102 of the cutting apparatus 1. The program number is a number assigned to the program used by the cutting control unit 102.
一方、補正値生成部4は、投入完了信号がONすると、予め設定された第1期間△T1内に、切削加工装置1へのワークWの投入する投入数を示す投入数カウント値Xを1だけインクリメントする(ステップS36)。
On the other hand, when the input completion signal is turned ON, the correction value generation unit 4 sets the input number count value X indicating the input number of the work W to be input to the cutting apparatus 1 to 1 within a preset first period ΔT1. Increment by (step S36).
その後、切削加工装置1は、投入完了信号がONに設定されてから第1期間△T1だけ経過した後、投入完了信号をOFFに設定する(ステップS37)。この第1期間△T1の長さは、例えば補正値生成部4がワークWの投入数を示す投入数カウント値Xを1だけインクリメントするのに要する時間に基づいて設定される。
Thereafter, the cutting apparatus 1 sets the input completion signal to OFF after the first period ΔT1 has elapsed since the input completion signal was set to ON (step S37). The length of the first period ΔT1 is set based on, for example, the time required for the correction value generation unit 4 to increment the insertion number count value X indicating the number of input workpieces W by one.
一方、補正値生成部4により、投入数カウント値Xが数n+1(n=1の場合は2)よりも小さいと判定されたとする(ステップS38)。ここで、nは中間加工装置3の台数を示す。
On the other hand, suppose that the correction value generation unit 4 determines that the input number count value X is smaller than the number n + 1 (2 when n = 1) (step S38). Here, n indicates the number of intermediate processing apparatuses 3.
この場合、補正値生成部4は、切削加工装置1の補正値の更新をスキップするよう指令するスキップ信号をONに設定する(ステップS39)。
In this case, the correction value generation unit 4 sets the skip signal that instructs to skip the update of the correction value of the cutting apparatus 1 to ON (step S39).
次に、補正値生成部4は、切削加工装置1の補正値を更新するよう指令する補正信号をOFFに設定する(ステップS40)。その後、1サイクル前に切削加工装置1が加工したワークWが、切削加工装置1から中間加工装置3へ搬送される。
Next, the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to OFF (step S40). Thereafter, the workpiece W processed by the cutting apparatus 1 one cycle before is conveyed from the cutting apparatus 1 to the intermediate processing apparatus 3.
続いて、切削加工装置1は、ワークWの粗加工を実行する(ステップS41)。
Subsequently, the cutting apparatus 1 performs rough machining of the workpiece W (step S41).
その後、切削加工装置1は、ステップS41の粗加工が完了した後において、スキップ信号がONに設定されている場合、補正値の更新を行わずに仕上げ加工を実行する(ステップS42)。
Thereafter, if the skip signal is set to ON after the rough machining in step S41 is completed, the cutting apparatus 1 performs the finishing process without updating the correction value (step S42).
また、中間加工装置3は、1サイクル前に中間加工装置3が加工したワークWを排出する(ステップS43)。
Further, the intermediate processing device 3 discharges the workpiece W processed by the intermediate processing device 3 one cycle before (step S43).
次に、切削加工装置1から中間加工装置3へ搬送されたワークWが、中間加工装置3に投入される(ステップS44)。その後、1サイクル前に中間加工装置3が加工したワークWが、中間加工装置3から研削加工装置2へ搬送される。
Next, the workpiece W transferred from the cutting apparatus 1 to the intermediate processing apparatus 3 is put into the intermediate processing apparatus 3 (step S44). Thereafter, the workpiece W processed by the intermediate processing device 3 one cycle before is conveyed from the intermediate processing device 3 to the grinding processing device 2.
続いて、中間加工装置3が、中間加工装置3に投入されたワークWを中間加工する(ステップS45)。
Subsequently, the intermediate processing device 3 performs intermediate processing on the workpiece W input to the intermediate processing device 3 (step S45).
その後、研削加工装置2は、1サイクル前に加工したワークWを排出する(ステップS46)。
Thereafter, the grinding apparatus 2 discharges the workpiece W processed one cycle before (step S46).
次に、中間加工装置3から研削加工装置2へ搬送されたワークWが、研削加工装置2へ投入される(ステップS47)。
Next, the workpiece W transferred from the intermediate processing device 3 to the grinding device 2 is put into the grinding device 2 (step S47).
続いて、研削加工装置2は、ワークWの寸法を計測する(ステップS48)。その後、研削加工装置2は、ワークWの寸法の計測値に基づいて、ワークWの寸法誤差がワークWの要求仕様に基づいて設定された公差内であるか否かを判定する。ここにおいて、研削加工装置2は、例えば図8に示すように、ワークWの寸法の公差の上限値、下限値を示す公差上限値L4、公差下限値L1を示す情報を保持している。そして、研削加工装置2は、ワークWの寸法の計測値から設計値を差し引いて得られる寸法誤差Lを算出し、寸法誤差Lが公差上限値L4を超えている場合または公差下限値L1未満である場合、加工精度NGと判定する。なお、図8において、「調整要」とは、切削加工装置1が使用する工具の切込み量の調整が必要であることを示している。一方、研削加工装置2は、ワークWの寸法誤差Lが公差上限値L4以下であり且つ公差下限値L1以上である場合、加工精度OKと判定する。
Subsequently, the grinding apparatus 2 measures the dimension of the workpiece W (step S48). Thereafter, the grinding apparatus 2 determines whether or not the dimensional error of the workpiece W is within the tolerance set based on the required specifications of the workpiece W based on the measured value of the dimension of the workpiece W. Here, for example, as shown in FIG. 8, the grinding apparatus 2 holds information indicating a tolerance upper limit value L <b> 4 indicating a tolerance upper limit value, a lower limit value, and a tolerance lower limit value L <b> 1. Then, the grinding apparatus 2 calculates a dimensional error L obtained by subtracting the design value from the measured value of the dimension of the workpiece W, and when the dimensional error L exceeds the tolerance upper limit value L4 or less than the tolerance lower limit value L1. If there is, it is determined that the machining accuracy is NG. In FIG. 8, “adjustment required” indicates that adjustment of the cutting amount of the tool used by the cutting apparatus 1 is necessary. On the other hand, when the dimensional error L of the workpiece W is not more than the tolerance upper limit L4 and not less than the tolerance lower limit L1, the grinding apparatus 2 determines that the machining accuracy is OK.
図7に戻って、その後、研削加工装置2が、ワークWについて加工精度NGであり且つ寸法誤差が公差下限値未満であると判定したとする(ステップS49)。
7, after that, it is assumed that the grinding apparatus 2 determines that the workpiece W has the machining accuracy NG and the dimensional error is less than the tolerance lower limit value (step S49).
この場合、研削加工装置2は、加工精度NGを示す加工精度判定情報を補正値生成部4へ出力する(ステップS50)。
In this case, the grinding device 2 outputs processing accuracy determination information indicating the processing accuracy NG to the correction value generation unit 4 (step S50).
その後、ワークWの寸法の計測値と研削加工装置2の研削加工部203を制御するためのプログラムに付与されたプログラム番号とを示す情報が、研削加工装置2から補正値生成部4へ出力される(ステップS51)。
Thereafter, information indicating the measurement value of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4. (Step S51).
次に、図9に示すように、研削加工装置2は、ワークWが不良品である旨を示すアラームを発報する(ステップS52)。
Next, as shown in FIG. 9, the grinding apparatus 2 issues an alarm indicating that the workpiece W is a defective product (step S52).
続いて、研削加工装置2は、研削加工部203の動作を停止させる(ステップS53)。
Subsequently, the grinding apparatus 2 stops the operation of the grinding unit 203 (step S53).
その後、研削加工装置2は、ワークWを排出する(ステップS54)。
Thereafter, the grinding apparatus 2 discharges the workpiece W (step S54).
そして、切削加工装置1、中間加工装置3および研削加工装置2を含むライン内に存在する各装置による加工が完了すると、切削加工装置1がワークWを排出して(ステップS55)、次のサイクルに移行する。
Then, when the processing by each device existing in the line including the cutting device 1, the intermediate processing device 3, and the grinding device 2 is completed, the cutting device 1 discharges the workpiece W (step S55), and the next cycle Migrate to
その後、ワークWが切削加工装置1へ投入されるとする(ステップS56)。
Thereafter, it is assumed that the workpiece W is thrown into the cutting apparatus 1 (step S56).
この場合、切削加工装置1は、投入完了信号をONに設定する(ステップS57)。
In this case, the cutting apparatus 1 sets the input completion signal to ON (step S57).
次に、切削加工装置1の切削制御部102に設定された補正値と切削加工部101を制御するためのプログラムに付与されたプログラム番号とを示す情報が、切削加工装置1から補正値生成部4へ出力される(ステップS58)。
Next, information indicating the correction value set in the cutting control unit 102 of the cutting device 1 and the program number assigned to the program for controlling the cutting unit 101 is obtained from the cutting device 1 as a correction value generation unit. 4 (step S58).
一方、補正値生成部4は、投入完了信号がONになると、予め設定された第1期間△T1内に、自己が記憶する切削加工装置1へのワークWの投入数を示すカウント値Xを1だけインクリメントする(ステップS59)。
On the other hand, when the input completion signal is turned ON, the correction value generation unit 4 calculates a count value X indicating the number of input workpieces W into the cutting apparatus 1 stored by itself within a preset first period ΔT1. Increment by 1 (step S59).
また、切削加工装置1は、投入完了信号がONに設定されてから第1期間△T1だけ経過した後、投入完了信号をOFFに設定する(ステップS60)。
Further, the cutting apparatus 1 sets the insertion completion signal to OFF after the first period ΔT1 has elapsed since the insertion completion signal was set to ON (step S60).
ここで、補正値生成部4が投入数カウンタの値Xが中間加工装置3の台数よりも1だけ大きい数n+1(n=1の場合は2)以上であると判定したとする(ステップS61)。
Here, it is assumed that the correction value generation unit 4 determines that the value X of the input number counter is equal to or greater than the number n + 1 (2 when n = 1) that is one greater than the number of intermediate machining apparatuses 3 (step S61). .
この場合、補正値生成部4は、切削加工装置1の補正値の更新をスキップするよう指令するスキップ信号をOFFに設定する(ステップS62)。
In this case, the correction value generation unit 4 sets the skip signal instructing to skip the update of the correction value of the cutting apparatus 1 to OFF (step S62).
また、切削加工装置1の補正値を更新するよう指令する補正信号をOFFに設定する(ステップS63)。その後、1サイクル前に切削加工装置1が加工したワークWが、切削加工装置1から中間加工装置3へ搬送される。
Also, a correction signal for instructing to update the correction value of the cutting apparatus 1 is set to OFF (step S63). Thereafter, the workpiece W processed by the cutting apparatus 1 one cycle before is conveyed from the cutting apparatus 1 to the intermediate processing apparatus 3.
続いて、切削加工装置1は、ワークWの粗加工を実行する(ステップS64)。
Subsequently, the cutting apparatus 1 performs rough machining of the workpiece W (step S64).
その後、中間加工装置3は、1サイクル前に加工したワークWを排出する(ステップS65)。
Thereafter, the intermediate processing device 3 discharges the workpiece W processed one cycle before (step S65).
次に、切削加工装置1から中間加工装置3へ搬送されたワークWが、中間加工装置3に投入される(ステップS66)。
Next, the workpiece W transferred from the cutting device 1 to the intermediate processing device 3 is put into the intermediate processing device 3 (step S66).
続いて、中間加工装置3が、中間加工装置3に投入されたワークWを中間加工する(ステップS67)。
Subsequently, the intermediate processing device 3 performs an intermediate processing on the workpiece W put into the intermediate processing device 3 (step S67).
その後、研削加工装置2は、1サイクル前に加工したワークWを排出する(ステップS68)。
Thereafter, the grinding apparatus 2 discharges the workpiece W processed one cycle before (step S68).
次に、中間加工装置3から研削加工装置2へ搬送されたワークWが、研削加工装置2へ投入される(ステップS69)。
Next, the workpiece W transferred from the intermediate processing device 3 to the grinding device 2 is put into the grinding device 2 (step S69).
続いて、図10に示すように、研削加工装置2は、ワークWの寸法を計測する(ステップS70)。
Subsequently, as shown in FIG. 10, the grinding apparatus 2 measures the dimension of the workpiece W (step S70).
その後、研削加工装置2は、ワークWについて加工精度NGであり且つ寸法誤差が公差上限値を超えていると判定したとする(ステップS71)。
Thereafter, it is assumed that the grinding apparatus 2 determines that the workpiece W has a processing accuracy of NG and the dimensional error exceeds the tolerance upper limit value (step S71).
この場合、研削加工装置2は、加工精度NGを示す加工精度判定情報を補正値生成部4へ出力する(ステップS72)。
In this case, the grinding apparatus 2 outputs machining accuracy determination information indicating the machining accuracy NG to the correction value generation unit 4 (step S72).
続いて、ワークWの寸法の計測値と研削加工装置2の研削加工部203を制御するためのプログラムに付与されたプログラム番号とを示す情報が、研削加工装置2から補正値生成部4へ出力される(ステップS73)。
Subsequently, information indicating the measured value of the dimension of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4. (Step S73).
その後、研削加工装置2は、研削加工(仕上げ加工)を実行する(ステップS74)。
Thereafter, the grinding apparatus 2 performs a grinding process (finishing process) (step S74).
一方、補正値生成部4は、加工精度判定情報が入力されると、切削加工装置1から取得したプログラム番号と研削加工装置2から取得したプログラム番号とが同一であるか否かを判定する。そして、補正値生成部4は、これらのプログラム番号が同一であると判定したとする(ステップS75)。
On the other hand, when the machining accuracy determination information is input, the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. Then, it is assumed that the correction value generation unit 4 determines that these program numbers are the same (step S75).
次に、切削加工装置1の切削制御部102に設定されている補正値と、補正値生成部4が直近に切削制御部102に対して、設定した補正値と、が同一であるか否かを判定する。そして、補正値生成部4は、これらの補正値が同一であると判定すると(ステップS76)、ワークWの寸法の計測値に基づいて、ワークWの寸法誤差が、補正値を変更しない不変範囲内であるか否かを判定する。ここにおいて、図8に示すように、ワークWの寸法誤差Lが不変範囲の上限値L3を超えている場合または不変範囲の下限値L2未満であるとする。この場合、補正値生成部4は、新たな補正値を生成する必要がある、即ち、切削加工装置1の切削加工部101の工具の切込み量の調整が必要であると判定する。
Next, whether or not the correction value set in the cutting control unit 102 of the cutting apparatus 1 and the correction value set by the correction value generation unit 4 most recently for the cutting control unit 102 are the same. Determine. If the correction value generation unit 4 determines that these correction values are the same (step S76), the dimensional error of the workpiece W is the invariable range in which the correction value does not change based on the measurement value of the dimension of the workpiece W It is determined whether it is in. Here, as shown in FIG. 8, it is assumed that the dimensional error L of the workpiece W exceeds the upper limit value L3 of the invariable range or is less than the lower limit value L2 of the invariable range. In this case, the correction value generation unit 4 determines that it is necessary to generate a new correction value, that is, it is necessary to adjust the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1.
ここで、補正値生成部4が、切削加工装置1の切削加工部101の工具の切込み量の調整が必要であると判定したとする(ステップS77)。
Here, it is assumed that the correction value generation unit 4 determines that adjustment of the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1 is necessary (step S77).
この場合、補正値生成部4は、前述の式(1)の関係式を用いて、新たな補正値を算出する(ステップS78)。
In this case, the correction value generation unit 4 calculates a new correction value using the relational expression (1) described above (step S78).
続いて、補正値生成部4は、切削加工装置1の補正値を更新するよう指令する補正信号をONに設定し、新たな補正値を示す情報を切削加工装置1へ出力する(ステップS79)。
Subsequently, the correction value generation unit 4 sets the correction signal instructing to update the correction value of the cutting apparatus 1 to ON, and outputs information indicating the new correction value to the cutting apparatus 1 (step S79). .
一方、切削加工装置1は、補正値生成部4から新たな補正値を示す情報が入力されると、自己が保持する補正値を新たな補正値に更新する(ステップS80)。
On the other hand, when information indicating a new correction value is input from the correction value generation unit 4, the cutting apparatus 1 updates the correction value held by itself to the new correction value (step S80).
その後、切削加工装置1は、ワークWを仕上げ加工する(ステップS81)。
Thereafter, the cutting apparatus 1 finishes the workpiece W (step S81).
そして、切削加工装置1、中間加工装置3および研削加工装置2を含むライン内に存在する各装置による加工が完了すると、切削加工装置1がワークWを排出して(ステップS82)、次のサイクルに移行する。
Then, when the processing by each device existing in the line including the cutting device 1, the intermediate processing device 3, and the grinding device 2 is completed, the cutting device 1 discharges the workpiece W (step S82), and the next cycle Migrate to
また、図11に示すように、研削加工装置2が、ワークWについて加工精度OKと判定したとする(ステップS83)。
Further, as shown in FIG. 11, it is assumed that the grinding apparatus 2 determines that the workpiece W has the machining accuracy OK (step S83).
この場合、研削加工装置2は、研削加工を実行することなく、ワークWを排出する(ステップS84)。
In this case, the grinding apparatus 2 discharges the workpiece W without executing the grinding process (step S84).
次に、加工精度OKを示す加工精度判定情報が、研削加工装置2から補正値生成部4へ出力される(ステップS85)。
Next, machining accuracy determination information indicating machining accuracy OK is output from the grinding device 2 to the correction value generation unit 4 (step S85).
続いて、ワークWの寸法の計測値と研削加工装置2の研削加工部203を制御するためのプログラムに付与されたプログラム番号とを示す情報が、研削加工装置2から補正値生成部4へ出力される(ステップS86)。
Subsequently, information indicating the measured value of the dimension of the workpiece W and the program number assigned to the program for controlling the grinding unit 203 of the grinding apparatus 2 is output from the grinding apparatus 2 to the correction value generation unit 4. (Step S86).
その後、補正値生成部4は、加工精度判定情報が入力されると、切削加工装置1から取得したプログラム番号と研削加工装置2から取得したプログラム番号とが同一であるか否かを判定する。ここで、補正値生成部4が、これらのプログラム番号が同一であると判定したとする(ステップS87)。
Thereafter, when the machining accuracy determination information is input, the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same. Here, it is assumed that the correction value generation unit 4 determines that these program numbers are the same (step S87).
この場合、補正値生成部4は、切削加工装置1の切削制御部102に設定されている補正値と、補正値生成部4が直近に切削制御部102に対して、設定した補正値と、が同一であるか否かを判定する。そして、補正値生成部4は、これらの補正値が同一であると判定したとする(ステップS88)。
In this case, the correction value generation unit 4 includes a correction value set in the cutting control unit 102 of the cutting apparatus 1, a correction value that the correction value generation unit 4 has recently set for the cutting control unit 102, and Are determined to be the same. Then, it is assumed that the correction value generation unit 4 determines that these correction values are the same (step S88).
次に、補正値生成部4が、切削加工装置1の切削加工部101の工具の切込み量の調整が不要であると判定したとする(ステップS89)。
Next, it is assumed that the correction value generation unit 4 determines that adjustment of the cutting depth of the tool of the cutting unit 101 of the cutting apparatus 1 is unnecessary (step S89).
続いて、補正値生成部4は、切削加工装置1の補正値の更新をスキップするよう指令するスキップ信号をONに設定する(ステップS90)。
Subsequently, the correction value generation unit 4 sets a skip signal that instructs to skip the update of the correction value of the cutting apparatus 1 to ON (step S90).
その後、切削加工装置1は補正値を更新せずに、仕上げ加工を実行する(ステップS91)。
Thereafter, the cutting apparatus 1 performs finishing without updating the correction value (step S91).
次に、切削加工装置1、中間加工装置3および研削加工装置2を含むライン内に存在する各装置による加工が完了すると、切削加工装置1がワークWを排出して(ステップS92)、次のサイクルに移行する。
Next, when the processing by each device existing in the line including the cutting device 1, the intermediate processing device 3, and the grinding device 2 is completed, the cutting device 1 discharges the workpiece W (step S92), and the next Transition to a cycle.
次に、本実施の形態に係る切削加工装置の切削制御部102が実行する切削制御処理について図12を参照しながら説明する。この切削制御処理は、例えばユーザが切削加工装置1へ電源を投入したことを契機として開始される。
Next, cutting control processing executed by the cutting control unit 102 of the cutting apparatus according to the present embodiment will be described with reference to FIG. This cutting control process is started, for example, when the user turns on the power to the cutting apparatus 1.
まず、切削制御部102は、切削加工装置1へのワークWの投入を検知したか否かを判定する(ステップS101)。切削制御部102は、ワークWの投入を検知しない限り(ステップS101:No)、待機状態を維持する。
First, the cutting control unit 102 determines whether or not the insertion of the workpiece W into the cutting apparatus 1 is detected (step S101). The cutting control unit 102 maintains the standby state unless detecting the insertion of the workpiece W (step S101: No).
一方、切削制御部102は、切削加工装置1へのワークWの投入を検知すると(ステップS101:Yes)、投入完了信号をONに設定する(ステップS102)。次に、切削制御部102は、ステップS102の処理を実行した後、予め設定された第1期間△T1経過後、投入完了信号をOFFに設定する(ステップS103)。続いて、切削制御部102は、ワークWの寸法の設計値と設計値に対する補正値とにより定まるワークWの寸法の目標値に基づいて、切削加工部101を制御してワークWの粗加工を実行する(ステップS104)。
On the other hand, when the cutting control unit 102 detects the loading of the workpiece W into the cutting apparatus 1 (step S101: Yes), it sets the loading completion signal to ON (step S102). Next, after executing the processing of step S102, the cutting control unit 102 sets the insertion completion signal to OFF after the preset first period ΔT1 (step S103). Subsequently, the cutting control unit 102 performs rough machining of the workpiece W by controlling the cutting unit 101 based on the target value of the dimension of the workpiece W determined by the design value of the dimension of the workpiece W and the correction value for the design value. Execute (Step S104).
その後、切削制御部102は、ステップS104の粗加工が完了した後、補正値生成部4から入力されるスキップ信号がOFFに設定されているか否かを判定する(ステップS105)。切削制御部102は、スキップ信号がONに設定されていると判定すると(ステップS105:No)、後述のステップS109の処理を実行する。
After that, the cutting control unit 102 determines whether or not the skip signal input from the correction value generating unit 4 is set to OFF after the rough machining in Step S104 is completed (Step S105). When the cutting control unit 102 determines that the skip signal is set to ON (step S105: No), the cutting control unit 102 executes a process of step S109 described later.
一方、切削制御部102は、スキップ信号がOFFに設定されていると判定すると(ステップS105:Yes)、補正値生成部4から入力される補正信号がONに設定されているか否かを判定する(ステップS106)。切削制御部102は、補正信号がOFFに設定されていると判定すると(ステップS106:No)、再びステップS105の処理を実行する。一方、切削制御部102は、補正信号がONに設定されていると判定すると(ステップS106:Yes)、補正値生成部4から新たな補正値を取得し(ステップS107)、自己が管理する補正値を新たな補正値で更新する(ステップS108)。これにより、切削制御部102は、ワークWの寸法の設計値と更新された新たな補正値とにより定まるワークWの寸法の目標値に基づいて、切削加工部101を制御してワークWの切削加工を実行する。
On the other hand, when the cutting control unit 102 determines that the skip signal is set to OFF (step S105: Yes), the cutting control unit 102 determines whether the correction signal input from the correction value generation unit 4 is set to ON. (Step S106). When the cutting control unit 102 determines that the correction signal is set to OFF (step S106: No), the cutting control unit 102 executes the process of step S105 again. On the other hand, when the cutting control unit 102 determines that the correction signal is set to ON (step S106: Yes), the cutting control unit 102 acquires a new correction value from the correction value generation unit 4 (step S107), and the correction managed by itself. The value is updated with a new correction value (step S108). Thereby, the cutting control unit 102 controls the cutting unit 101 based on the target value of the dimension of the workpiece W determined by the design value of the dimension of the workpiece W and the updated new correction value to cut the workpiece W. Perform machining.
次に、切削制御部102は、切削加工部101を制御して、ワークWの仕上げ加工を実行する(ステップS109)。続いて、切削制御部102は、ワークWを切削加工装置1から排出する(ステップS110)。その後、切削制御部102は、再びステップS101の処理を実行する。
Next, the cutting control unit 102 controls the cutting unit 101 to perform the finishing process of the workpiece W (step S109). Subsequently, the cutting control unit 102 discharges the workpiece W from the cutting apparatus 1 (step S110). Thereafter, the cutting control unit 102 executes the process of step S101 again.
次に、本実施の形態に係る研削加工装置の研削制御部204が実行する研削制御処理について図13を参照しながら説明する。この研削制御処理は、例えばユーザが研削加工装置2へ電源を投入したことを契機として開始される。
Next, a grinding control process executed by the grinding control unit 204 of the grinding apparatus according to the present embodiment will be described with reference to FIG. This grinding control process is started, for example, when the user turns on the power to the grinding apparatus 2.
まず、研削制御部204は、研削加工装置2へのワークWの投入を検知したか否かを判定する(ステップS301)。研削制御部204は、ワークWの投入を検知しない限り(ステップS301:No)、待機状態を維持する。
First, the grinding control unit 204 determines whether or not the insertion of the workpiece W into the grinding apparatus 2 is detected (step S301). The grinding control unit 204 maintains the standby state unless detecting the input of the workpiece W (step S301: No).
一方、研削制御部204は、研削加工装置2へのワークWの投入を検知すると(ステップS301:Yes)、計測制御部202へ計測開始を指令するための計測開始信号をONに設定する(ステップS302)。次に、研削制御部204は、計測制御部202から入力される計測完了信号がONに設定されているか否かを判定する(ステップS303)。研削制御部204は、計測完了信号がOFFに設定されている限り(ステップS303:No)、待機状態を維持する。
On the other hand, when the grinding control unit 204 detects the input of the workpiece W to the grinding apparatus 2 (step S301: Yes), the grinding control unit 204 sets a measurement start signal for instructing the measurement control unit 202 to start measurement (step S301). S302). Next, the grinding control unit 204 determines whether or not the measurement completion signal input from the measurement control unit 202 is set to ON (step S303). As long as the measurement completion signal is set to OFF (step S303: No), the grinding control unit 204 maintains the standby state.
一方、研削制御部204は、計測完了信号がONに設定されたと判定すると(ステップS303:Yes)、計測制御部202からワークWについての加工精度判定情報を取得する(ステップS304)。続いて、研削制御部204は、加工精度判定情報の内容から、計測制御部202によりワークWについて加工精度NGであり且つ寸法誤差が公差下限値未満であると判定されたか否かを判定する(ステップS305)。計測制御部202が、ワークWについて加工精度NGであり且つ寸法誤差が公差下限値未満であると判定したとすると(ステップS305:Yes)、研削制御部204は、アラームを発報して(ステップS306)、研削加工部203を停止させる(ステップS307)。その後、研削制御部204は、ワークWを研削加工装置2から排出させてから(ステップS308)、再びステップS301の処理を実行する。
On the other hand, when the grinding control unit 204 determines that the measurement completion signal is set to ON (step S303: Yes), the grinding control unit 204 acquires machining accuracy determination information for the workpiece W from the measurement control unit 202 (step S304). Subsequently, the grinding control unit 204 determines from the content of the machining accuracy determination information whether the measurement control unit 202 has determined that the workpiece W has the machining accuracy NG and the dimensional error is less than the tolerance lower limit ( Step S305). If the measurement control unit 202 determines that the workpiece W has a processing accuracy of NG and the dimensional error is less than the tolerance lower limit (step S305: Yes), the grinding control unit 204 issues an alarm (step (step S305). In step S306, the grinding unit 203 is stopped (step S307). Thereafter, the grinding control unit 204 discharges the workpiece W from the grinding apparatus 2 (step S308), and then executes the process of step S301 again.
一方、計測制御部202が、ワークWについて加工精度NGであり且つ寸法誤差が公差下限値未満であると判定しなかったとする(ステップS305:No)。この場合、研削制御部204は、加工精度判定情報の内容から、計測制御部202によりワークWについて加工精度NGであり且つ寸法誤差が公差上限値を超えていると判定されたか否かを判定する(ステップS309)。計測制御部202が、ワークWについて加工精度OKと判定したとすると(ステップS309:No)、研削制御部204は、後述のステップS311の処理を実行する。一方、計測制御部202が、ワークWについて加工精度NGであり且つ寸法誤差が公差上限値を超えていると判定したとすると(ステップS309:Yes)、研削制御部204は、研削加工部203を制御して、仕上げ加工を実行する(ステップS310)。次に、研削制御部204は、ステップS310の仕上げ加工が完了すると、ワークWを研削加工装置2から排出し(ステップS311)、再びステップS301の処理を実行する。
On the other hand, it is assumed that the measurement control unit 202 has not determined that the workpiece W has the machining accuracy NG and the dimensional error is less than the tolerance lower limit (step S305: No). In this case, the grinding control unit 204 determines whether or not the measurement control unit 202 determines that the workpiece W has the processing accuracy NG and the dimensional error exceeds the tolerance upper limit value from the content of the processing accuracy determination information. (Step S309). If the measurement control unit 202 determines that the machining accuracy is OK for the workpiece W (step S309: No), the grinding control unit 204 executes a process of step S311 described later. On the other hand, if the measurement control unit 202 determines that the workpiece W has the machining accuracy NG and the dimensional error exceeds the tolerance upper limit value (step S309: Yes), the grinding control unit 204 causes the grinding processing unit 203 to The finishing process is executed under the control (step S310). Next, when the finishing process of step S310 is completed, the grinding control unit 204 ejects the workpiece W from the grinding apparatus 2 (step S311), and executes the process of step S301 again.
次に、本実施の形態に係る研削加工装置の計測制御部202が実行する計測制御処理について図14を参照しながら説明する。この計測制御処理は、例えばユーザが研削加工装置2へ電源を投入したことを契機として開始される。
Next, measurement control processing executed by the measurement control unit 202 of the grinding apparatus according to the present embodiment will be described with reference to FIG. This measurement control process is started when the user turns on the power to the grinding apparatus 2, for example.
まず、計測制御部202は、研削制御部204から入力される計測開始信号がONに設定されているか否かを判定する(ステップS501)。計測制御部202は、計測開始信号がOFFに設定されている限り(ステップS501:No)、待機状態を維持する。一方、計測制御部202は、計測開始信号がONに設定されていると判定すると(ステップS501:Yes)、計測器201を制御して、ワークWの寸法の計測を実行する(ステップS502)。
First, the measurement control unit 202 determines whether or not the measurement start signal input from the grinding control unit 204 is set to ON (step S501). As long as the measurement start signal is set to OFF (step S501: No), the measurement control unit 202 maintains the standby state. On the other hand, when the measurement control unit 202 determines that the measurement start signal is set to ON (step S501: Yes), the measurement control unit 202 controls the measuring device 201 to measure the dimension of the workpiece W (step S502).
次に、計測制御部202は、ワークWの寸法についての計測値から設計値を差し引くことにより寸法誤差を算出し、ワークWの加工精度を判定する(ステップS503)。ここで、計測制御部202は、ワークWの寸法誤差が公差上限値以下であり且つ公差下限値以上である場合、加工精度OKと判定する。一方、計測制御部202は、ワークWの寸法誤差が公差上限値を超える場合、或いは、ワークWの寸法誤差が公差下限値未満である場合、加工精度NGと判定する。続いて、計測制御部202は、研削制御部204へ出力する計測完了信号をONに設定する(ステップS504)。その後、計測制御部202は、予め設定された第4期間経過後、計測完了信号をOFFに設定した後(ステップS505)、再びステップS501の処理を実行する。
Next, the measurement control unit 202 calculates a dimensional error by subtracting the design value from the measurement value of the dimension of the workpiece W, and determines the machining accuracy of the workpiece W (step S503). Here, the measurement control unit 202 determines that the machining accuracy is OK when the dimensional error of the workpiece W is not more than the tolerance upper limit value and is not less than the tolerance lower limit value. On the other hand, when the dimensional error of the workpiece W exceeds the tolerance upper limit value or when the dimensional error of the workpiece W is less than the tolerance lower limit value, the measurement control unit 202 determines that the machining accuracy is NG. Subsequently, the measurement control unit 202 sets the measurement completion signal output to the grinding control unit 204 to ON (step S504). Thereafter, the measurement control unit 202 sets the measurement completion signal to OFF after the elapse of a preset fourth period (step S505), and then executes the process of step S501 again.
次に、本実施の形態に係る補正値生成部4が実行する補正値設定処理について図15および図16を参照しながら説明する。この補正値設定処理は、例えばユーザが切削加工装置1と研削加工装置2との両方へ電源を投入したことを契機として開始される。
Next, correction value setting processing executed by the correction value generation unit 4 according to the present embodiment will be described with reference to FIGS. 15 and 16. This correction value setting process is started when the user turns on the power to both the cutting apparatus 1 and the grinding apparatus 2, for example.
まず、補正値生成部4は、図15に示すように、切削加工装置1から入力される投入完了信号がONに設定されているか否かを判定する(ステップS601)。補正値生成部4は、投入完了信号がOFFに設定されている限り(ステップS601:No)、待機状態を維持する。一方、補正値生成部4は、投入完了信号がONに設定されていると判定すると(ステップS601:Yes)、切削加工装置1の切削制御部102の現在の補正値を示す情報を取得する(ステップS602)。また、補正値生成部4は、切削制御部102から切削制御部102が切削加工部101を制御するためのプログラムに付与されたプログラム番号を示す情報を取得する(ステップS603)。
First, as shown in FIG. 15, the correction value generation unit 4 determines whether or not the input completion signal input from the cutting apparatus 1 is set to ON (step S601). As long as the input completion signal is set to OFF (No in step S601), the correction value generation unit 4 maintains the standby state. On the other hand, if the correction value generation unit 4 determines that the insertion completion signal is set to ON (step S601: Yes), the correction value generation unit 4 acquires information indicating the current correction value of the cutting control unit 102 of the cutting apparatus 1 ( Step S602). Further, the correction value generation unit 4 acquires information indicating the program number assigned to the program for the cutting control unit 102 to control the cutting unit 101 from the cutting control unit 102 (step S603).
次に、補正値生成部4は、切削加工装置1へのワークWの投入数を示す投入カウンタのカウント値Xを1だけインクリメントする(ステップS604)。続いて、補正値生成部4は、投入カウンタのカウント値Xが中間加工装置3の台数に1を加えた値(n+1)未満であるか否かを判定する(ステップS605)。補正値生成部4は、投入カウンタのカウント値Xが値n+1以上であると判定すると(ステップS605:No)、切削加工装置1へ出力するスキップ信号をOFFに設定する(ステップS606)。一方、補正値生成部4は、投入カウンタのカウント値Xが値n+1未満であると判定すると(ステップS605:Yes)、切削加工装置1へ出力するスキップ信号をONに設定する(ステップS607)。その後、補正値生成部4は、補正信号をOFFに設定する(ステップS608)。
Next, the correction value generation unit 4 increments the count value X of the loading counter indicating the number of workpieces W loaded into the cutting apparatus 1 by 1 (step S604). Subsequently, the correction value generation unit 4 determines whether or not the count value X of the insertion counter is less than a value (n + 1) obtained by adding 1 to the number of intermediate machining apparatuses 3 (step S605). If the correction value generation unit 4 determines that the count value X of the insertion counter is equal to or greater than the value n + 1 (step S605: No), the correction signal generation unit 4 sets the skip signal output to the cutting apparatus 1 to OFF (step S606). On the other hand, when the correction value generation unit 4 determines that the count value X of the insertion counter is less than the value n + 1 (step S605: Yes), the correction signal generation unit 4 sets the skip signal output to the cutting apparatus 1 to ON (step S607). Thereafter, the correction value generation unit 4 sets the correction signal to OFF (step S608).
次に、補正値生成部4は、計測制御部202から入力される計測完了信号がONに設定されているか否かを判定する(ステップS609)。補正値生成部4は、計測完了信号がOFFに設定されている限り(ステップS609:No)、待機状態を維持する。一方、補正値生成部4は、計測完了信号がONに設定されていると判定すると(ステップS609:Yes)、計測制御部202から加工精度判定情報を取得する(ステップS610)。続いて、補正値生成部4は、計測制御部202からワークWの寸法の計測値を取得する(ステップS611)。また、補正値生成部4は、図16に示すように、研削制御部204から研削加工部203を制御するためのプログラムに付与されたプログラム番号を示す情報を取得する(ステップS612)。
Next, the correction value generation unit 4 determines whether or not the measurement completion signal input from the measurement control unit 202 is set to ON (step S609). As long as the measurement completion signal is set to OFF (step S609: No), the correction value generation unit 4 maintains the standby state. On the other hand, if the correction value generation unit 4 determines that the measurement completion signal is set to ON (step S609: Yes), the correction value generation unit 4 acquires processing accuracy determination information from the measurement control unit 202 (step S610). Subsequently, the correction value generation unit 4 acquires a measurement value of the dimension of the workpiece W from the measurement control unit 202 (step S611). Further, as shown in FIG. 16, the correction value generation unit 4 acquires information indicating a program number assigned to a program for controlling the grinding unit 203 from the grinding control unit 204 (step S612).
その後、補正値生成部4は、切削加工装置1から取得したプログラム番号と研削加工装置2から取得したプログラム番号とが同一であるか否かを判定する(ステップS613)。補正値生成部4は、これらのプログラム番号が異なると判定すると(ステップS613:No)、投入数カウンタのカウント値Xを「0」にクリアしてから(ステップS614)、後述のステップS618の処理を実行する。一方、補正値生成部4は、これらのプログラム番号が同一であると判定すると(ステップS613:Yes)、切削加工装置1の切削制御部102に設定されている補正値と、補正値生成部4が直近に切削制御部102に対して、設定した補正値と、が同一であるか否かを判定する(ステップS615)。補正値生成部4は、これらの補正値が異なると判定すると(ステップS615:No)、投入数カウンタのカウント値Xを「0」にクリアしてから(ステップS614)、後述のステップS618の処理を実行する。
Thereafter, the correction value generation unit 4 determines whether or not the program number acquired from the cutting apparatus 1 and the program number acquired from the grinding apparatus 2 are the same (step S613). If the correction value generation unit 4 determines that these program numbers are different (step S613: No), the correction value generation unit 4 clears the count value X of the input number counter to “0” (step S614), and then performs the process of step S618 described later. Execute. On the other hand, when the correction value generation unit 4 determines that these program numbers are the same (step S613: Yes), the correction value set in the cutting control unit 102 of the cutting apparatus 1 and the correction value generation unit 4 Determines whether or not the set correction value is the same for the cutting control unit 102 most recently (step S615). If the correction value generation unit 4 determines that these correction values are different (step S615: No), after clearing the count value X of the input number counter to “0” (step S614), the process of step S618 described later is performed. Execute.
一方、補正値生成部4は、これらの補正値が同一であると判定すると(ステップS615:Yes)、ワークWの寸法の計測値に基づいて、ワークWの寸法誤差が公差内であるか否かを判定する(ステップS616)。補正値生成部4は、ワークWの寸法誤差が公差外であると判定すると(ステップS616:No)、後述のステップS619の処理を実行する。一方、補正値生成部4は、ワークWの寸法誤差が公差内であると判定すると(ステップS616:Yes)、ワークWの寸法誤差が不変範囲内であるか否かを判定する(ステップS617)。補正値生成部4は、ワークWの寸法誤差が不変範囲内であると判定すると(ステップS617:Yes)、切削加工装置1の切削制御部102へ出力するスキップ信号をONに設定する(ステップS618)。その後、補正値生成部4は、再び図15のステップS601の処理を実行する。
On the other hand, if the correction value generation unit 4 determines that these correction values are the same (step S615: Yes), whether or not the dimensional error of the workpiece W is within the tolerance based on the measurement value of the dimension of the workpiece W. Is determined (step S616). If the correction value generation unit 4 determines that the dimensional error of the workpiece W is outside the tolerance (step S616: No), the correction value generation unit 4 performs a process of step S619 described later. On the other hand, when the correction value generation unit 4 determines that the dimensional error of the workpiece W is within the tolerance (step S616: Yes), the correction value generation unit 4 determines whether the dimensional error of the workpiece W is within the invariable range (step S617). . When the correction value generation unit 4 determines that the dimensional error of the workpiece W is within the invariable range (step S617: Yes), the skip signal output to the cutting control unit 102 of the cutting apparatus 1 is set to ON (step S618). ). Thereafter, the correction value generation unit 4 executes the process of step S601 in FIG. 15 again.
また、補正値生成部4は、ワークWの寸法誤差が不変範囲の外であると判定すると(ステップS617:No)、切削加工装置1の切削制御部102に設定する新たな補正値を算出する(ステップS619)。続いて、補正値生成部4は、切削制御部102へ出力する補正信号をONに設定する(ステップS620)。その後、再び図15のステップS601の処理を実行する。
Further, when the correction value generation unit 4 determines that the dimension error of the workpiece W is outside the invariable range (step S617: No), the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 102 of the cutting apparatus 1. (Step S619). Subsequently, the correction value generation unit 4 sets the correction signal output to the cutting control unit 102 to ON (step S620). Thereafter, the process of step S601 in FIG. 15 is executed again.
以上説明したように、本実施の形態に係る複合加工システムによれば、中間加工装置3により加工が施されたワークWの寸法の計測値に基づいて、切削加工装置1の工具の切込み量の調整を行う。これにより、中間加工装置3での加工がワークWの加工精度に与える影響を考慮した形で、切削加工装置1の工具の切込み量の調整を行うことが可能になる。従って、ワークWの加工品質が向上するという利点がある。
As described above, according to the combined machining system according to the present embodiment, the cutting depth of the tool of the cutting apparatus 1 is determined based on the measured value of the dimension of the workpiece W that has been machined by the intermediate machining apparatus 3. Make adjustments. Thereby, it becomes possible to adjust the cutting depth of the tool of the cutting apparatus 1 in consideration of the influence of the machining by the intermediate machining apparatus 3 on the machining accuracy of the workpiece W. Therefore, there is an advantage that the machining quality of the workpiece W is improved.
また、本実施の形態に係る複合加工システムによれば、研削加工装置2の研削加工装置記憶部が、公差に含まれ且つ補正値を変更しない不変範囲を示す情報を記憶している。この不変範囲は、補正値生成部4が新たな補正値の生成をスキップする寸法誤差に対する範囲に相当する。そして、補正値生成部4は、研削加工装置2により、寸法誤差が公差に含まれると判定された場合でも、寸法誤差が不変範囲の外であると判定すると、新たな補正値を生成する。これにより、切削加工装置1の工具の切込み量を、ワークWの寸法誤差が公差を外れる状態になる前に事前に適切な切込み量に調整することができるので、ワークWの加工精度を高い状態で維持することができる。また、補正値生成部4は、ワークWの寸法誤差が不変範囲内であると判定すると、新たな補正値の生成をスキップする。即ち、切削加工装置1は、ワークWの寸法誤差が不変範囲内である場合、補正値の更新を実行しない。これにより、切削加工装置1の切削加工部101の工具の切込み量の調整頻度を低減することができるので、切削加工装置1の稼働率を向上させることができる。
Further, according to the combined machining system according to the present embodiment, the grinding machine storage unit of the grinding machine 2 stores information indicating an invariable range that is included in the tolerance and does not change the correction value. This invariable range corresponds to a range for a dimensional error in which the correction value generation unit 4 skips generation of a new correction value. And even if it is determined by the grinding apparatus 2 that the dimensional error is included in the tolerance, the correction value generation unit 4 generates a new correction value if it is determined that the dimensional error is outside the invariable range. Thereby, since the cutting depth of the tool of the cutting apparatus 1 can be adjusted to an appropriate cutting depth in advance before the dimensional error of the workpiece W is out of tolerance, the machining accuracy of the workpiece W is high. Can be maintained. If the correction value generation unit 4 determines that the dimensional error of the workpiece W is within the invariable range, the correction value generation unit 4 skips generation of a new correction value. That is, the cutting apparatus 1 does not update the correction value when the dimensional error of the workpiece W is within the invariable range. Thereby, since the adjustment frequency of the cutting depth of the tool of the cutting part 101 of the cutting apparatus 1 can be reduced, the operation rate of the cutting apparatus 1 can be improved.
また、本実施の形態に係る複合加工システムによれば、実施の形態1に係る複合加工システムと同様に、研削加工装置2が、計測部200により切削加工装置1が切削加工したワークWの寸法を計測している間、切削加工装置1が、並行して他のワークを切削加工することができる。従って、複合加工システム全体としてのスループットの向上が図られる。
In addition, according to the combined machining system according to the present embodiment, as in the combined machining system according to the first embodiment, the size of the workpiece W that the grinding device 2 has cut by the cutting device 1 by the measuring unit 200 is measured. During the measurement, the cutting apparatus 1 can cut other workpieces in parallel. Therefore, the throughput of the combined machining system as a whole can be improved.
(変形例)
以上、本発明の各実施の形態について説明したが、本発明は前述の実施の形態に限定されるものではない。例えば、切削加工を行う加工装置を複数台備え、複数台の切削加工を行う加工装置で切削加工されたワークが1台の研削加工を行う加工装置へ投入される複合加工システムであってもよい。 (Modification)
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, it may be a combined processing system that includes a plurality of processing devices that perform cutting processing, and a workpiece that has been processed by a plurality of processing devices that perform cutting processing is input to one processing device that performs grinding processing. .
以上、本発明の各実施の形態について説明したが、本発明は前述の実施の形態に限定されるものではない。例えば、切削加工を行う加工装置を複数台備え、複数台の切削加工を行う加工装置で切削加工されたワークが1台の研削加工を行う加工装置へ投入される複合加工システムであってもよい。 (Modification)
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, it may be a combined processing system that includes a plurality of processing devices that perform cutting processing, and a workpiece that has been processed by a plurality of processing devices that perform cutting processing is input to one processing device that performs grinding processing. .
この変形例に係る複合加工システムは、例えば図17に示すように、2つの切削加工装置1、5と、1つの研削加工装置2と、補正値生成部4と、を備える。なお、図17において実施の形態1と同様の構成については、図1と同一の符号を付している。切削加工装置5は、切削加工装置1と同様に、例えばNC旋盤装置から構成される。切削加工部501と切削制御部502とは、切削加工装置1の切削加工部101と切削制御部102と同様の構成である。
For example, as shown in FIG. 17, the combined machining system according to this modification includes two cutting devices 1, 5, one grinding device 2, and a correction value generation unit 4. In FIG. 17, the same reference numerals as those in FIG. The cutting device 5 is configured by, for example, an NC lathe device, like the cutting device 1. The cutting unit 501 and the cutting control unit 502 have the same configuration as the cutting unit 101 and the cutting control unit 102 of the cutting apparatus 1.
研削加工装置2の計測制御部202は、実施の形態1と同様に、切削加工装置1、切削加工装置5から投入されるワークW1、W2の寸法を計測し、ワークW1、W2の寸法の計測値から設計値を差し引いて得られる寸法誤差に基づいて、ワークW1、W2の加工精度を判定する。補正値生成部4は、ワークW1、W2の寸法誤差に基づいて、切削加工装置1または切削加工装置5の工具の切込み量の調整要否を判定する。そして、補正値生成部4は、切削加工装置1または切削加工装置5について工具の切込み量の調整が必要であると判定すると、調整が必要な切削加工装置1または切削加工装置5の工具の切込み量に対応する新たな補正値を算出する。
As in the first embodiment, the measurement control unit 202 of the grinding apparatus 2 measures the dimensions of the workpieces W1 and W2 input from the cutting apparatus 1 and the cutting apparatus 5, and measures the dimensions of the workpieces W1 and W2. Based on the dimensional error obtained by subtracting the design value from the value, the machining accuracy of the workpieces W1 and W2 is determined. The correction value generation unit 4 determines whether or not the cutting depth of the tool of the cutting device 1 or the cutting device 5 needs to be adjusted based on the dimensional errors of the workpieces W1 and W2. And if the correction value production | generation part 4 determines with adjustment of the cutting amount of a tool about the cutting apparatus 1 or the cutting apparatus 5, it is necessary to adjust the cutting of the tool of the cutting apparatus 1 or the cutting apparatus 5 which needs adjustment. A new correction value corresponding to the amount is calculated.
図17に示す複合加工システムでは、ワークW1が切削加工装置1へ投入されると、切削加工装置1が、ワークW1の粗加工を実行した後、補正値生成部4から補正信号またはスキップ信号が研削加工装置2へ出力される。補正値生成部4から補正信号が出力された場合、研削加工装置2は、補正値を更新して仕上げ加工を実施する。一方、補正値生成部4からスキップ信号が出力された場合、研削加工装置2は、補正値を更新せず仕上げ加工を実施する。研削加工装置2は、仕上げ加工完了後、ワークW1を排出する。
In the combined machining system shown in FIG. 17, when the workpiece W1 is input to the cutting apparatus 1, the cutting apparatus 1 performs rough machining on the workpiece W1, and then receives a correction signal or a skip signal from the correction value generation unit 4. It is output to the grinding device 2. When a correction signal is output from the correction value generation unit 4, the grinding apparatus 2 updates the correction value and performs finishing. On the other hand, when a skip signal is output from the correction value generation unit 4, the grinding apparatus 2 performs finishing without updating the correction value. The grinding device 2 discharges the workpiece W1 after finishing.
切削加工装置5も、切削加工装置1と同様にして、ワークW2の粗加工を実行した後、補正値生成部4から出力される補正信号または、スキップ信号に従い、補正値更新の要否を判断する。その後、仕上げ加工を実行し、ワークW2を排出する。
Similarly to the cutting apparatus 1, the cutting apparatus 5 performs rough machining of the workpiece W2, and then determines whether or not it is necessary to update the correction value according to the correction signal output from the correction value generation unit 4 or the skip signal. To do. Thereafter, finishing is performed and the workpiece W2 is discharged.
切削加工装置1から排出されたワークW1または切削加工装置5から排出されたワークW2は、研削加工装置2へ搬送されて研削加工装置2へ投入される。
The workpiece W1 discharged from the cutting apparatus 1 or the workpiece W2 discharged from the cutting apparatus 5 is conveyed to the grinding apparatus 2 and is input to the grinding apparatus 2.
ワークW1、W2が研削加工装置2へ投入されると、研削加工装置2は、ワークW1、W2の寸法を計測する。そして、研削加工装置2は、ワークW1、W2の寸法の計測値に基づいて、研削加工の要否を判定する。ここで、研削加工装置2は、研削加工が必要と判定すると、研削加工を実行してから、ワークW1、W2を排出する。一方、研削加工装置2は、研削加工が不要と判定すると、研削加工を実行せずにワークW1、W2を排出する。
When the workpieces W1 and W2 are put into the grinding device 2, the grinding device 2 measures the dimensions of the workpieces W1 and W2. Then, the grinding apparatus 2 determines whether or not grinding is necessary based on the measured values of the dimensions of the workpieces W1 and W2. Here, when the grinding apparatus 2 determines that the grinding process is necessary, the grinding apparatus 2 executes the grinding process and then discharges the workpieces W1 and W2. On the other hand, when the grinding apparatus 2 determines that the grinding process is unnecessary, the grinding apparatus 2 discharges the workpieces W1 and W2 without executing the grinding process.
一方、補正値生成部4は、研削加工装置2で計測されたワークW1、W2の寸法の計測値から設計値を差し引くことによりワークW1、W2の寸法誤差を算出する。そして、補正値生成部4は、ワークW1、W2の寸法誤差が予め設定された不変範囲内であるか否かに応じて、切削加工装置1の切削制御部102または切削加工装置5の切削制御部502に設定すべき新たな補正値を算出する。補正値生成部4は、ワークW1、W2の寸法誤差が不変範囲の外である場合、新たな補正値を算出して切削加工装置1、5へ出力する。この場合、切削加工装置1、5は、補正値生成部4から入力される新たな補正値で、自己が保持する補正値を更新することにより、工具の切込み量を調整する。
On the other hand, the correction value generation unit 4 calculates the dimensional error of the workpieces W1 and W2 by subtracting the design value from the measured values of the dimensions of the workpieces W1 and W2 measured by the grinding apparatus 2. Then, the correction value generation unit 4 controls the cutting control of the cutting device 1 or the cutting device 5 according to whether or not the dimensional errors of the workpieces W1 and W2 are within a preset invariable range. A new correction value to be set in the unit 502 is calculated. When the dimensional error of the workpieces W1 and W2 is outside the invariable range, the correction value generator 4 calculates a new correction value and outputs it to the cutting devices 1 and 5. In this case, the cutting apparatuses 1 and 5 adjust the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
なお、図17では、2つの切削加工装置1,5を備える構成の例を示しているが、切削加工装置の台数は2台に限定されるものではなく、切削加工装置を3台以上備える構成であってもよい。
In addition, in FIG. 17, although the example of a structure provided with the two cutting devices 1 and 5 is shown, the number of cutting devices is not limited to two, The structure provided with three or more cutting devices. It may be.
本構成によれば、複数の切削加工を行う加工装置と、1つの研削加工を行う加工装置と、を備える複合加工システムにおいても、実施の形態1に係る複合加工システムと同様の効果を奏する。
According to this configuration, even in a combined machining system including a machining apparatus that performs a plurality of cutting processes and a machining apparatus that performs one grinding process, the same effects as the combined machining system according to the first embodiment can be obtained.
実施の形態1では、1つの研削加工装置2を備える複合加工システムの例について説明したが、研削加工装置の台数は1台に限定されるものではない。例えば、複数の研削加工装置を備える複合加工システムであってもよい。
In Embodiment 1, an example of a combined machining system including one grinding apparatus 2 has been described, but the number of grinding apparatuses is not limited to one. For example, it may be a combined machining system including a plurality of grinding machines.
この変形例に係る複合加工システムは、例えば図18に示すように、1つの切削加工装置1と、2つの研削加工を行う研削加工装置2、6と、補正値生成部4と、を備える。なお、図18において実施の形態1と同様の構成については、図1と同一の符号を付している。研削加工装置6は、研削加工装置2と同様に、例えばワークW4の寸法を計測する機能を有する機械研削盤から構成される。計測器601、計測制御部602、研削加工部603および研削制御部604は、研削加工装置2の計測器201、計測制御部202、研削加工部203および研削制御部204と同様の構成である。
For example, as shown in FIG. 18, the combined machining system according to this modification includes one cutting device 1, grinding devices 2 and 6 that perform two grinding operations, and a correction value generation unit 4. In FIG. 18, the same reference numerals as those in FIG. As with the grinding apparatus 2, the grinding apparatus 6 is composed of, for example, a mechanical grinding machine having a function of measuring the dimension of the workpiece W4. The measuring device 601, the measurement control unit 602, the grinding processing unit 603, and the grinding control unit 604 have the same configuration as the measuring device 201, the measurement control unit 202, the grinding processing unit 203, and the grinding control unit 204 of the grinding device 2.
研削加工装置2の計測制御部202は、実施の形態1と同様に、切削加工装置1から投入されるワークW3の寸法を計測し、ワークW3の寸法の計測値から設計値を差し引いて得られる寸法誤差に基づいて、ワークW3、W4の加工精度を判定する。また、研削加工装置6の計測制御部602も、研削加工装置2と同様に、切削加工装置1から投入されるワークW4の寸法を計測し、ワークW4の寸法の計測値から設計値を差し引いて得られる寸法誤差に基づいて、ワークW4の加工精度を判定する。補正値生成部4は、ワークW3、W4の寸法誤差に基づいて、切削加工装置1の工具の切込み量の調整要否を判定する。そして、補正値生成部4は、切削加工装置1について工具の切込み量の調整が必要であると判定すると、切削加工装置1の切削制御部102に設定する新たな補正値を算出する。
The measurement control unit 202 of the grinding apparatus 2 is obtained by measuring the dimension of the workpiece W3 input from the cutting apparatus 1 and subtracting the design value from the measured value of the dimension of the workpiece W3, as in the first embodiment. Based on the dimensional error, the machining accuracy of the workpieces W3 and W4 is determined. The measurement control unit 602 of the grinding device 6 also measures the dimensions of the workpiece W4 input from the cutting device 1 in the same manner as the grinding device 2, and subtracts the design value from the measured value of the dimensions of the workpiece W4. Based on the dimensional error obtained, the machining accuracy of the workpiece W4 is determined. The correction value generation unit 4 determines whether or not it is necessary to adjust the cutting depth of the tool of the cutting apparatus 1 based on the dimensional errors of the workpieces W3 and W4. When the correction value generation unit 4 determines that the cutting depth of the tool needs to be adjusted for the cutting device 1, the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 102 of the cutting device 1.
図18に示す複合加工システムでは、ワークW3、4が切削加工装置1へ投入されると、切削加工装置1が、ワークW3、W4の粗加工が実行された後、補正値生成部4から補正信号またはスキップ信号が出力される。補正信号が出力された場合は、補正値を更新して仕上げ加工を実施し、スキップ信号が出力された場合は、補正値を更新せず仕上げ加工を実施する。仕上げ加工を実行した後、ワークW3、4を排出する。切削加工装置1から排出されたワークW3、4は、それぞれ研削加工装置2、研削加工装置6へ搬送されて研削加工装置2、研削加工装置6へ投入される。
In the combined machining system shown in FIG. 18, when the workpieces W3 and W4 are input to the cutting apparatus 1, the cutting apparatus 1 performs correction from the correction value generation unit 4 after rough machining of the workpieces W3 and W4 is performed. A signal or skip signal is output. When the correction signal is output, the correction value is updated to perform the finishing process, and when the skip signal is output, the correction value is not updated and the finishing process is performed. After finishing, the workpieces W3 and 4 are discharged. The workpieces W3 and 4 discharged from the cutting apparatus 1 are conveyed to the grinding apparatus 2 and the grinding apparatus 6, respectively, and are input to the grinding apparatus 2 and the grinding apparatus 6.
ワークW3が研削加工装置2へ投入されると、研削加工装置2は、ワークW3の寸法を計測する。そして、研削加工装置2は、ワークW3の寸法の計測値に基づいて、研削加工の要否を判定する。ここで、研削加工装置2は、研削加工が必要と判定すると、研削加工を実行してから、ワークW3を排出する。一方、研削加工装置2は、研削加工が不要と判定すると、研削加工を実行せずにワークW3を排出する。また、研削加工装置6も、研削加工装置2と同様に、ワークW4の寸法を計測し、ワークW4の寸法の計測値に基づいて、研削加工の要否を判定する。そして、研削加工装置6は、研削加工の要否の判定結果に応じて、研削加工を実行した後、ワークW4を排出する。
When the workpiece W3 is input to the grinding device 2, the grinding device 2 measures the dimension of the workpiece W3. Then, the grinding apparatus 2 determines whether or not the grinding process is necessary based on the measured value of the dimension of the workpiece W3. Here, if the grinding apparatus 2 determines that the grinding process is necessary, the grinding apparatus 2 executes the grinding process and then discharges the workpiece W3. On the other hand, when the grinding apparatus 2 determines that the grinding process is unnecessary, the grinding apparatus 2 discharges the workpiece W3 without executing the grinding process. The grinding device 6 also measures the dimensions of the workpiece W4, as with the grinding device 2, and determines whether or not grinding is necessary based on the measured value of the dimensions of the workpiece W4. Then, the grinding apparatus 6 discharges the workpiece W4 after performing the grinding process according to the determination result of the necessity of the grinding process.
一方、補正値生成部4は、研削加工装置2、研削加工装置6で計測されたワークW3、W4の寸法の計測値から設計値を差し引くことによりワークW3、W4の寸法誤差を算出する。そして、補正値生成部4は、ワークW3、W4の寸法誤差が予め設定された不変範囲内であるか否かに応じて、切削加工装置1の切削制御部102に設定すべき新たな補正値を算出する。補正値生成部4は、ワークW3、W4の寸法誤差が不変範囲の外である場合、新たな補正値を算出して切削加工装置1へ出力する。この場合、切削加工装置1は、補正値生成部4から入力される新たな補正値で、自己が保持する補正値を更新することにより、工具の切込み量を調整する。
On the other hand, the correction value generation unit 4 calculates the dimensional error of the workpieces W3 and W4 by subtracting the design value from the measured values of the dimensions of the workpieces W3 and W4 measured by the grinding device 2 and the grinding device 6. Then, the correction value generation unit 4 determines a new correction value to be set in the cutting control unit 102 of the cutting apparatus 1 depending on whether or not the dimensional error of the workpieces W3 and W4 is within a preset invariable range. Is calculated. When the dimensional error of the workpieces W3 and W4 is outside the invariable range, the correction value generation unit 4 calculates a new correction value and outputs it to the cutting apparatus 1. In this case, the cutting apparatus 1 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
なお、図18では、2つの研削加工装置2、6を備える複合加工システムの例を示しているが、研削加工装置の台数は2台に限定されるものではない。例えば、研削加工装置を3台以上備える複合加工システムであってもよい。
In addition, in FIG. 18, although the example of the composite processing system provided with the two grinding processing apparatuses 2 and 6 is shown, the number of grinding processing apparatuses is not limited to two. For example, it may be a combined machining system including three or more grinding machines.
本構成によれば、1つの切削加工を行う加工装置と、複数の研削加工を行う加工装置と、を備える複合加工システムにおいても、実施の形態1と同様の効果を奏する。
According to this configuration, the same effect as that of the first embodiment can be obtained even in a combined machining system including a machining apparatus that performs one cutting process and a machining apparatus that performs a plurality of grinding processes.
なお、前述の各変形例では、切削加工装置と研削加工装置とのいずれか一方を1つだけ備える構成について説明したが、これに限らず、例えば複数の切削加工装置と、複数の研削加工装置と、を備える複合加工システムであってもよい。
In each of the above-described modified examples, the configuration including only one of the cutting device and the grinding device has been described. However, the present invention is not limited to this. For example, a plurality of cutting devices and a plurality of grinding devices are provided. And a combined machining system.
実施の形態2では、ワークWに対して、1つの切削加工装置1で切削加工を1回だけ行った後、中間加工装置3による処理を経て、1つの研削加工装置2で研削加工を1回だけ行う複合加工システムの例について説明した。但し、これに限らず、例えばワークWに対して、複数の切削加工装置により複数回切削加工を行った後、中間加工装置による処理を経て、複数の研削加工装置により複数回研削加工を行う複合加工システムであってもよい。
In the second embodiment, the workpiece W is cut only once by one cutting device 1, then processed by the intermediate processing device 3, and then grinding is performed once by one grinding device 2. An example of a combined machining system that only performs is described. However, the present invention is not limited to this, for example, a composite in which the workpiece W is cut a plurality of times by a plurality of cutting devices and then processed by an intermediate processing device and then a plurality of grinding devices by a plurality of grinding devices. It may be a processing system.
この変形例に係る複合加工システムは、例えば図19に示すように、2つの切削加工装置1、5と、2つの研削加工装置2、6と、中間加工装置3と、補正値生成部4と、を備える。なお、図19において実施の形態2と同様の構成については、図6と同一の符号を付し、前述の各変形例に係る複合加工システムと同様の構成については、図17、図18と同一の符号を付している。
For example, as shown in FIG. 19, the combined machining system according to this modification includes two cutting devices 1 and 5, two grinding devices 2 and 6, an intermediate machining device 3, and a correction value generation unit 4. . In FIG. 19, the same components as those in the second embodiment are denoted by the same reference numerals as those in FIG. The symbol is attached.
研削加工装置2の計測制御部202は、実施の形態2と同様にして、中間加工装置3から投入されるワークWの寸法を計測し、ワークWの寸法の計測値から設計値を差し引くことにより寸法誤差を算出し、その寸法誤差に基づいてワークWの加工精度を判定する。そして、補正値生成部4は、研削加工装置2の計測制御部202が算出したワークWの寸法誤差に基づいて、切削加工装置1の工具の切込み量の調整要否を判定する。そして、補正値生成部4は、切削加工装置1について工具の切込み量の調整が必要であると判定すると、切削加工装置1の切削制御部102に設定する新たな補正値を算出する。また、研削加工装置6の計測制御部602は、実施の形態2と同様にして、研削加工装置2から投入されるワークWの寸法を計測し、ワークWの寸法の計測値から設計値を差し引くことにより寸法誤差を算出し、その寸法誤差に基づいてワークWの加工精度を判定する。そして、補正値生成部4は、研削加工装置6の計測制御部602が算出したワークWの寸法誤差に基づいて、切削加工装置5の工具の切込み量の調整要否を判定する。そして、補正値生成部4は、切削加工装置5について工具の切込み量の調整が必要であると判定すると、切削加工装置5の切削制御部502に設定する新たな補正値を算出する。即ち、切削加工装置1と切削加工装置5および中間加工装置3と研削加工装置2と補正値生成部4とから、実施の形態2と同様の複合加工システムが構成され、切削加工装置5と中間加工装置3および研削加工装置2と研削加工装置6と補正値生成部4とから、実施の形態2と同様の複合加工システムが構成されている。
The measurement control unit 202 of the grinding apparatus 2 measures the dimension of the workpiece W input from the intermediate machining apparatus 3 and subtracts the design value from the measured value of the dimension of the workpiece W in the same manner as in the second embodiment. A dimension error is calculated, and the machining accuracy of the workpiece W is determined based on the dimension error. Then, the correction value generation unit 4 determines whether or not the adjustment of the cutting depth of the tool of the cutting apparatus 1 is necessary based on the dimensional error of the workpiece W calculated by the measurement control unit 202 of the grinding apparatus 2. When the correction value generation unit 4 determines that the cutting depth of the tool needs to be adjusted for the cutting device 1, the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 102 of the cutting device 1. Further, the measurement control unit 602 of the grinding apparatus 6 measures the dimensions of the workpiece W input from the grinding apparatus 2 in the same manner as in the second embodiment, and subtracts the design value from the measured value of the dimensions of the workpiece W. Thus, the dimensional error is calculated, and the machining accuracy of the workpiece W is determined based on the dimensional error. Then, the correction value generation unit 4 determines whether or not it is necessary to adjust the cutting depth of the tool of the cutting device 5 based on the dimensional error of the workpiece W calculated by the measurement control unit 602 of the grinding device 6. When the correction value generation unit 4 determines that the cutting depth of the tool needs to be adjusted for the cutting device 5, the correction value generation unit 4 calculates a new correction value to be set in the cutting control unit 502 of the cutting device 5. That is, the cutting device 1, the cutting device 5, the intermediate processing device 3, the grinding device 2, and the correction value generation unit 4 constitute a combined machining system similar to that of the second embodiment, The machining apparatus 3, the grinding apparatus 2, the grinding apparatus 6, and the correction value generation unit 4 constitute a combined machining system similar to that of the second embodiment.
図19に示す複合加工システムでは、切削加工装置1、5が、ワークWにおける互いに異なる箇所を切削加工し、研削加工装置2、6が、それぞれワークWにおける切削加工装置1、5により切削加工された箇所を研削加工する。この複合加工システムでは、ワークWが切削加工装置1へ投入されると、切削加工装置1が、ワークWの粗加工を実行した後、補正値生成部4から出力される補正信号またはスキップ信号に従い、補正値更新の要否を判断する。その後、仕上げ加工を実行し、ワークWを排出する。切削加工装置1から排出されたワークWは、切削加工装置5へ搬送され切削加工装置5へ投入される。ワークWが切削加工装置5へ投入されると、切削加工装置5が、切削加工装置1と同様に、ワークWの粗加工を実行した後、補正値生成部4から補正信号またはスキップ信号が出力される。補正信号が出力された場合は、補正値を更新して仕上げ加工を実施し、スキップ信号が出力された場合は、補正値を更新せず仕上げ加工を実施する。仕上げ加工を実行した後、ワークWを排出する。切削加工装置5から排出されたワークWは、中間加工装置3へ搬送され中間加工装置3へ投入される。ワークWが中間加工装置3へ投入されると、中間加工装置3が、ワークWに対して処理を実行してからワークWを排出する。中間加工装置3から排出されたワークWは、研削加工装置2へ搬送されて研削加工装置2へ投入される。
In the combined machining system shown in FIG. 19, the cutting devices 1 and 5 cut different portions of the workpiece W, and the grinding devices 2 and 6 are respectively cut by the cutting devices 1 and 5 on the workpiece W. Grind the part that was cut. In this combined machining system, when the workpiece W is input to the cutting apparatus 1, the cutting apparatus 1 executes rough machining of the workpiece W and then follows a correction signal or a skip signal output from the correction value generation unit 4. Then, it is determined whether or not the correction value needs to be updated. Thereafter, finishing is performed and the workpiece W is discharged. The workpiece W discharged from the cutting apparatus 1 is conveyed to the cutting apparatus 5 and is input to the cutting apparatus 5. When the workpiece W is input to the cutting device 5, the cutting device 5 performs rough machining of the workpiece W in the same manner as the cutting device 1, and then outputs a correction signal or a skip signal from the correction value generation unit 4. Is done. When the correction signal is output, the correction value is updated to perform the finishing process, and when the skip signal is output, the correction value is not updated and the finishing process is performed. After executing the finishing process, the workpiece W is discharged. The workpiece W discharged from the cutting device 5 is transported to the intermediate processing device 3 and input to the intermediate processing device 3. When the workpiece W is thrown into the intermediate machining device 3, the intermediate machining device 3 performs processing on the workpiece W and then discharges the workpiece W. The workpiece W discharged from the intermediate processing device 3 is conveyed to the grinding device 2 and is input to the grinding device 2.
ワークWが研削加工装置2へ投入されると、研削加工装置2は、ワークWの寸法を計測する。そして、研削加工装置2は、ワークWの寸法の計測値に基づいて、研削加工の要否を判定する。ここで、研削加工装置2は、研削加工が必要と判定すると、研削加工を実行してから、ワークWを排出する。一方、研削加工装置2は、研削加工が不要と判定すると、研削加工を実行せずにワークWを排出する。研削加工装置2から排出されたワークWは、研削加工装置6へ搬送され研削加工装置6へ投入される。ワークWが研削加工装置6へ投入されると、研削加工装置6は、ワークWの寸法を計測する。そして、研削加工装置6は、ワークWの寸法の計測値に基づいて、研削加工の要否を判定する。ここで、研削加工装置6は、研削加工が必要と判定すると、研削加工を実行してから、ワークWを排出する。一方、研削加工装置6は、研削加工が不要と判定すると、研削加工を実行せずにワークWを排出する。また、研削加工装置6は、切削加工装置2においてワークWに対して研削加工を実行せずにワークWを排出した場合も、研削加工を実行せずにワークWを排出する。
When the workpiece W is input to the grinding device 2, the grinding device 2 measures the dimensions of the workpiece W. Then, the grinding apparatus 2 determines whether or not grinding is necessary based on the measured value of the dimension of the workpiece W. Here, if the grinding apparatus 2 determines that the grinding process is necessary, the grinding apparatus 2 performs the grinding process and then discharges the workpiece W. On the other hand, if the grinding apparatus 2 determines that the grinding process is unnecessary, the grinding apparatus 2 discharges the workpiece W without performing the grinding process. The workpiece W discharged from the grinding apparatus 2 is conveyed to the grinding apparatus 6 and is input to the grinding apparatus 6. When the workpiece W is input to the grinding device 6, the grinding device 6 measures the dimension of the workpiece W. Then, the grinding device 6 determines whether or not grinding is necessary based on the measured value of the dimension of the workpiece W. Here, when the grinding apparatus 6 determines that the grinding process is necessary, the grinding apparatus 6 performs the grinding process and then discharges the workpiece W. On the other hand, when the grinding apparatus 6 determines that the grinding process is unnecessary, the grinding apparatus 6 discharges the workpiece W without executing the grinding process. In addition, even when the workpiece W is discharged without performing the grinding process on the workpiece W in the cutting device 2, the grinding device 6 discharges the workpiece W without performing the grinding process.
一方、補正値生成部4は、研削加工装置2、6それぞれで計測されたワークWの寸法の計測値から設計値を差し引くことによりワークWの寸法誤差を算出する。そして、補正値生成部4は、研削加工装置2で算出されたワークWの寸法誤差が予め設定された不変範囲内であるか否かに応じて、切削加工装置1の切削制御部102に設定すべき新たな補正値を算出する。補正値生成部4は、研削加工装置2で算出されたワークWの寸法誤差が不変範囲の外である場合、新たな補正値を算出して切削加工装置1へ出力する。
この場合、切削加工装置1は、補正値生成部4から入力される新たな補正値で、自己が保持する補正値を更新することにより、工具の切込み量を調整する。 On the other hand, the correctionvalue generation unit 4 calculates the dimension error of the workpiece W by subtracting the design value from the measured value of the dimension of the workpiece W measured by each of the grinding apparatuses 2 and 6. Then, the correction value generation unit 4 is set in the cutting control unit 102 of the cutting apparatus 1 according to whether or not the dimensional error of the workpiece W calculated by the grinding apparatus 2 is within a preset invariable range. A new correction value to be calculated is calculated. When the dimensional error of the workpiece W calculated by the grinding device 2 is outside the invariable range, the correction value generation unit 4 calculates a new correction value and outputs it to the cutting device 1.
In this case, thecutting apparatus 1 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
この場合、切削加工装置1は、補正値生成部4から入力される新たな補正値で、自己が保持する補正値を更新することにより、工具の切込み量を調整する。 On the other hand, the correction
In this case, the
また、補正値生成部4は、研削加工装置6で算出されたワークWの寸法誤差が予め設定された不変範囲内であるか否かに応じて、切削加工装置5の切削制御部502に設定すべき新たな補正値を算出する。補正値生成部4は、研削加工装置6で算出されたワークWの寸法誤差が不変範囲の外である場合、新たな補正値を算出して切削加工装置5へ出力する。この場合、切削加工装置5は、補正値生成部4から入力される新たな補正値で、自己が保持する補正値を更新することにより、工具の切込み量を調整する。
Further, the correction value generation unit 4 is set in the cutting control unit 502 of the cutting device 5 according to whether or not the dimensional error of the workpiece W calculated by the grinding device 6 is within a preset invariable range. A new correction value to be calculated is calculated. When the dimensional error of the workpiece W calculated by the grinding apparatus 6 is outside the invariable range, the correction value generation unit 4 calculates a new correction value and outputs it to the cutting apparatus 5. In this case, the cutting apparatus 5 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 4.
なお、図19では、2つの切削加工装置1、5と2つの研削加工装置2、6とを備える構成について示しているが、切削加工装置および研削加工装置それぞれの台数はこれに限定されない。例えば、切削加工装置または研削加工装置を3台以上備える複合加工システムであってもよい。更に、図19では、1つの中間加工装置3を備える複合加工システムを示したが、中間加工装置3の台数は1台に限定されるものではない。例えば、複数の中間加工装置を備える複合加工システムであってもよい。また、図19では、1つの補正値生成部4を備える構成を示しているが、補正値生成部4の数は1つに限定されるものではなく、複数の補正値生成部4を備える複合加工システムであってもよい。
In addition, in FIG. 19, although shown about the structure provided with the two cutting processing apparatuses 1 and 5 and the two grinding processing apparatuses 2 and 6, the number of each of a cutting processing apparatus and a grinding processing apparatus is not limited to this. For example, it may be a combined processing system including three or more cutting devices or grinding devices. Further, FIG. 19 shows a combined machining system including one intermediate machining device 3, but the number of intermediate machining devices 3 is not limited to one. For example, a combined machining system including a plurality of intermediate machining devices may be used. In addition, FIG. 19 shows a configuration including one correction value generation unit 4, but the number of correction value generation units 4 is not limited to one, and a composite including a plurality of correction value generation units 4. It may be a processing system.
本構成によれば、ワークWに対して、複数の切削加工装置により複数回切削加工を行った後、中間加工装置による処理を経て、複数の研削加工装置により複数回研削加工を行う複合加工システムにおいても、実施の形態2に係る複合加工システムと同様の効果を奏する。
According to this configuration, the workpiece W is subjected to a plurality of cutting processes by a plurality of cutting apparatuses, and then subjected to a process by an intermediate processing apparatus, and then a plurality of grinding processes are performed by a plurality of grinding apparatuses. The same effects as those of the combined machining system according to the second embodiment can be obtained.
実施の形態2に係る複合加工システムにおいて、ワークWの一部に、ワークWの形状および大きさにより分類されるワークWの仕様を識別する識別情報が刻まれている場合、切削加工装置および研削加工装置それぞれが、ワークWの一部に刻まれた識別情報を読み取る識別情報読取部を備える構成であってもよい。
In the combined machining system according to the second embodiment, when the identification information for identifying the specification of the workpiece W classified by the shape and size of the workpiece W is engraved in a part of the workpiece W, the cutting apparatus and the grinding Each processing apparatus may be configured to include an identification information reading unit that reads identification information carved into a part of the workpiece W.
この変形例に係る複合加工システムは、例えば図20に示すように、切削加工装置21と、研削加工装置22と、中間加工装置3と、補正値生成部24と、切削加工装置21の切削制御部102に設定されるべき補正値を記憶する補正値記憶部25と、を備える。なお、図20において実施の形態2と同様の構成については、図6と同一の符号を付している。切削加工装置21は、切削加工部101と、切削制御部102と、ワークWの一部に刻まれた識別情報を読み取る識別情報読取部213と、を有する。また、研削加工装置22は、計測器201と、計測制御部202と、研削加工部203と、研削制御部204と、識別情報読取部225と、を有する。ここで、識別情報読取部213は、特許請求の範囲に記載の第1識別情報読取部に相当し、識別情報読取部225は、特許請求の範囲に記載の第2識別情報読取部に相当する。識別情報読取部213、225は、例えばワークWの一部を撮像する撮像部(図示せず)と、撮像部により撮像された画像を解析することによりワークWに刻まれた識別情報を認識する画像認識部(図示せず)と、を有する。識別情報読取部213、225は、認識したワークWの識別情報を、補正値生成部24へ出力する。
For example, as shown in FIG. 20, the combined machining system according to this modification includes a cutting device 21, a grinding device 22, an intermediate processing device 3, a correction value generation unit 24, and a cutting control of the cutting device 21. A correction value storage unit 25 that stores a correction value to be set in the unit 102. In FIG. 20, the same reference numerals as those in FIG. The cutting device 21 includes a cutting unit 101, a cutting control unit 102, and an identification information reading unit 213 that reads identification information engraved on a part of the workpiece W. The grinding apparatus 22 includes a measuring instrument 201, a measurement control unit 202, a grinding processing unit 203, a grinding control unit 204, and an identification information reading unit 225. Here, the identification information reading unit 213 corresponds to the first identification information reading unit described in the claims, and the identification information reading unit 225 corresponds to the second identification information reading unit described in the claims. . The identification information reading units 213 and 225 recognize, for example, an identification unit engraved on the workpiece W by analyzing an image captured by the imaging unit and an imaging unit (not illustrated) that captures a part of the workpiece W. An image recognition unit (not shown). The identification information reading units 213 and 225 output the recognized identification information of the workpiece W to the correction value generation unit 24.
補正値記憶部25は、ストレージ装置から構成され、切削加工装置21の切削制御部102に設定されるべき補正値を、ワークWの識別情報と対応づけて記憶している。補正値生成部24は、研削加工装置22から、ワークW11の寸法の計測値を示す情報とワークW11の識別情報とが入力されると、ワークW11と同一の識別情報が付与されたワークについて切削加工装置21の工具の切込み量の調整の要否を判定する。補正値生成部24は、ワークW11と同一の識別情報が付与されたワークについて切削加工装置21の工具の切込み量の調整が必要であると判定すると、切削加工装置21の切削制御部102に既に設定されている補正値を取得して新たな補正値を算出する。そして、補正値生成部24は、算出した新たな補正値を、ワークW11の識別情報に対応づけた形で補正値記憶部25に記憶させる。その後、切削加工装置21へワークW12が投入されると、切削加工装置21の識別情報読取部213が、ワークW12の一部に刻まれた識別情報を読み取って補正値生成部24へ出力する。ここで、補正値生成部24は、切削加工装置21の識別情報読取部213から入力されたワークW12の識別情報がワークW11と同一の識別情報である場合、補正値記憶部25からワークW11の識別情報に対応付けられた補正値を取得する。そして、補正値生成部24は、補正値記憶部25から取得した補正値を、切削加工装置21の切削制御部102へ出力する。
The correction value storage unit 25 includes a storage device, and stores a correction value to be set in the cutting control unit 102 of the cutting device 21 in association with the identification information of the workpiece W. When the information indicating the measurement value of the dimension of the workpiece W11 and the identification information of the workpiece W11 are input from the grinding device 22, the correction value generation unit 24 cuts the workpiece to which the same identification information as the workpiece W11 is given. The necessity of adjusting the cutting depth of the tool of the processing device 21 is determined. When the correction value generation unit 24 determines that it is necessary to adjust the cutting depth of the tool of the cutting device 21 for the workpiece to which the same identification information as that of the workpiece W11 is given, the correction value generation unit 24 has already sent to the cutting control unit 102 of the cutting device 21. The set correction value is acquired and a new correction value is calculated. Then, the correction value generation unit 24 stores the calculated new correction value in the correction value storage unit 25 in a form associated with the identification information of the workpiece W11. Thereafter, when the workpiece W12 is input to the cutting device 21, the identification information reading unit 213 of the cutting device 21 reads the identification information engraved on a part of the workpiece W12 and outputs it to the correction value generation unit 24. Here, when the identification information of the workpiece W12 input from the identification information reading unit 213 of the cutting device 21 is the same identification information as that of the workpiece W11, the correction value generation unit 24 reads from the correction value storage unit 25 of the workpiece W11. A correction value associated with the identification information is acquired. Then, the correction value generation unit 24 outputs the correction value acquired from the correction value storage unit 25 to the cutting control unit 102 of the cutting device 21.
図20に示す複合加工システムでは、ワークW11が切削加工装置21へ投入されると、切削加工装置21が、ワークW11の一部に刻まれた識別情報を読み取るとともに、ワークWの粗加工を実行した後、補正値生成部24から補正信号またはスキップ信号が出力される。補正信号が出力された場合は、補正値を更新して仕上げ加工を実施し、スキップ信号が出力された場合は、補正値を更新せず仕上げ加工を実施する。その後、切削加工装置21は、ワークWを排出する。切削加工装置21から排出されたワークW11は、中間加工装置3へ搬送され中間加工装置3へ投入される。ワークW11が中間加工装置3へ投入されると、中間加工装置3が、ワークWに対して、処理を実行してからワークW11を排出する。中間加工装置3から排出されたワークWは、研削加工装置22へ搬送されて研削加工装置22へ投入される。
In the combined machining system shown in FIG. 20, when the workpiece W11 is put into the cutting device 21, the cutting device 21 reads the identification information engraved on a part of the workpiece W11 and executes rough machining of the workpiece W. After that, a correction signal or a skip signal is output from the correction value generation unit 24. When the correction signal is output, the correction value is updated to perform the finishing process, and when the skip signal is output, the correction value is not updated and the finishing process is performed. Thereafter, the cutting device 21 discharges the workpiece W. The workpiece W11 discharged from the cutting device 21 is transported to the intermediate processing device 3 and thrown into the intermediate processing device 3. When the workpiece W11 is input to the intermediate processing device 3, the intermediate processing device 3 executes processing on the workpiece W and then discharges the workpiece W11. The workpiece W discharged from the intermediate processing device 3 is conveyed to the grinding device 22 and is input to the grinding device 22.
ワークW11が研削加工装置22へ投入されると、研削加工装置22は、ワークW11の一部に刻まれた識別情報を読み取るとともに、ワークW11の寸法を計測する。そして、研削加工装置22は、ワークW11の寸法の計測値に基づいて、研削加工の要否を判定する。ここで、研削加工装置22は、研削加工が必要と判定すると、研削加工を実行してから、ワークW11を排出する。一方、研削加工装置22は、研削加工が不要と判定すると、研削加工を実行せずにワークW11を排出する。
When the workpiece W11 is put into the grinding device 22, the grinding device 22 reads the identification information engraved on a part of the workpiece W11 and measures the dimension of the workpiece W11. Then, the grinding device 22 determines whether or not grinding is necessary based on the measured value of the dimension of the workpiece W11. Here, when the grinding apparatus 22 determines that the grinding process is necessary, the grinding apparatus 22 performs the grinding process and then discharges the workpiece W11. On the other hand, when determining that the grinding process is unnecessary, the grinding apparatus 22 discharges the workpiece W11 without performing the grinding process.
一方、補正値生成部24は、研削加工装置22からワークW11の寸法の計測値とワークW11の識別情報とを取得する。そして、補正値生成部24は、研削加工装置22で計測されたワークW11の寸法の計測値から設計値を差し引くことによりワークW11の寸法誤差を算出する。そして、補正値生成部24は、研削加工装置22で算出されたワークW11の寸法誤差が予め設定された不変範囲内であるか否かに応じて、切削加工装置21の切削制御部102に設定すべき新たな補正値を算出する。補正値生成部24は、研削加工装置22で算出されたワークW11の寸法誤差が不変範囲の外である場合、新たな補正値を算出する。そして、補正値生成部24は、算出した新たな補正値を、ワークW11の識別情報に対応づけた形で補正値記憶部25に記憶させる。その後、切削加工装置21へワークW12が投入されると、切削加工装置21の識別情報読取部213が、ワークW12の一部に刻まれた識別情報を読み取って補正値生成部24へ出力する。ここで、補正値生成部24は、切削加工装置21の識別情報読取部213から入力されたワークW12の識別情報がワークW11と同一の識別情報である場合、補正値記憶部25からワークW11の識別情報に対応付けられた補正値を取得する。そして、補正値生成部24は、補正値記憶部25から取得した補正値を、切削加工装置21の切削制御部102へ出力する。この場合、切削加工装置1は、補正値生成部24から入力される新たな補正値で、自己が保持する補正値を更新することにより、工具の切込み量を調整する。
On the other hand, the correction value generation unit 24 acquires the measured value of the dimension of the workpiece W11 and the identification information of the workpiece W11 from the grinding device 22. Then, the correction value generation unit 24 calculates the dimensional error of the workpiece W11 by subtracting the design value from the measured value of the dimension of the workpiece W11 measured by the grinding device 22. Then, the correction value generation unit 24 is set in the cutting control unit 102 of the cutting device 21 according to whether or not the dimensional error of the workpiece W11 calculated by the grinding device 22 is within a preset invariable range. A new correction value to be calculated is calculated. The correction value generation unit 24 calculates a new correction value when the dimensional error of the workpiece W11 calculated by the grinding device 22 is outside the invariable range. Then, the correction value generation unit 24 stores the calculated new correction value in the correction value storage unit 25 in a form associated with the identification information of the workpiece W11. Thereafter, when the workpiece W12 is input to the cutting device 21, the identification information reading unit 213 of the cutting device 21 reads the identification information engraved on a part of the workpiece W12 and outputs it to the correction value generation unit 24. Here, when the identification information of the workpiece W12 input from the identification information reading unit 213 of the cutting device 21 is the same identification information as that of the workpiece W11, the correction value generation unit 24 reads from the correction value storage unit 25 of the workpiece W11. A correction value associated with the identification information is acquired. Then, the correction value generation unit 24 outputs the correction value acquired from the correction value storage unit 25 to the cutting control unit 102 of the cutting device 21. In this case, the cutting apparatus 1 adjusts the cutting depth of the tool by updating the correction value held by itself with the new correction value input from the correction value generation unit 24.
なお、図20では、1つの中間加工装置3を備える複合加工システムを示したが、中間加工装置3の台数は1台に限定されるものではない。例えば、複数の中間加工装置を備える複合加工システムであってもよい。
In addition, in FIG. 20, although the composite processing system provided with the one intermediate processing apparatus 3 was shown, the number of the intermediate processing apparatuses 3 is not limited to one. For example, a combined machining system including a plurality of intermediate machining devices may be used.
ところで、実施の形態2に係る複合加工システムでは、切削加工装置1により加工されたワークが研削加工装置2へ投入されるまでの間、そのワークと同種のワークが切削加工装置1に投入されても切削加工装置1の切削制御部102の補正値を更新することができない。これにより、例えばn(nは1以上の整数)台の中間加工装置3を備える複合加工システムでは、切削加工装置1の工具の切込み量が適切でない状態で、n個のワークについて切削加工がなされてしまう虞がある。
By the way, in the combined machining system according to the second embodiment, a workpiece of the same type as the workpiece is thrown into the cutting device 1 until the workpiece machined by the cutting device 1 is put into the grinding device 2. Also, the correction value of the cutting control unit 102 of the cutting apparatus 1 cannot be updated. Accordingly, for example, in a combined machining system including n (n is an integer of 1 or more) intermediate machining devices 3, cutting is performed on n workpieces in a state where the cutting depth of the tool of the machining device 1 is not appropriate. There is a risk that.
これに対して、本構成によれば、研削加工装置22において計測されるワークW11の寸法の計測値に基づいて算出した補正値が、ワークW11の識別情報に対応づけた形で補正値記憶部25に記憶される。そして、補正値生成部24は、切削加工装置21にワークW11の識別情報と同一の識別情報が一部に刻まれたワークW12が切削加工装置21へ投入されると、補正値記憶部25からワークW11の識別情報に対応づけられた補正値を取得して切削加工装置21へ出力する。これにより、切削加工装置21は、投入されるワークそれぞれに対して、工具を適切な切込み量に調整した状態で切削加工を実行することができるので、ワークの不良率を低減できる。
On the other hand, according to this configuration, the correction value calculated based on the measured value of the dimension of the workpiece W11 measured by the grinding apparatus 22 is associated with the identification information of the workpiece W11 in the correction value storage unit. 25. Then, when the workpiece W12 partially engraved with the identification information identical to the identification information of the workpiece W11 is input to the cutting device 21, the correction value generation unit 24 reads the correction value from the correction value storage unit 25. A correction value associated with the identification information of the workpiece W11 is acquired and output to the cutting device 21. Thereby, since the cutting apparatus 21 can perform a cutting process in the state which adjusted the tool to the appropriate cutting amount with respect to each input workpiece | work, it can reduce the defect rate of a workpiece | work.
実施の形態2では、補正値生成部4が、研削加工装置2で計測されたワークの寸法の計測値とワークの寸法の設計値とに基づいて、切削加工装置1の切削制御部102に設定する新たな補正値を算出する例について説明した。但し、これに限らず、例えば補正値生成部4が、ワークの寸法の計測値とワークの寸法の設計値とに加えて、切削加工装置1へ投入されたワークの投入数とワークの寸法の計測値との相関関係を示す相関情報に基づいて、新たな補正値を算出する構成であってもよい。
In the second embodiment, the correction value generation unit 4 is set in the cutting control unit 102 of the cutting apparatus 1 based on the measured value of the workpiece dimension measured by the grinding apparatus 2 and the design value of the workpiece dimension. An example in which a new correction value is calculated has been described. However, the present invention is not limited to this. For example, the correction value generation unit 4 determines the number of workpieces input to the cutting apparatus 1 and the workpiece dimensions in addition to the measurement values of the workpiece dimensions and the design values of the workpiece dimensions. A configuration may be used in which a new correction value is calculated based on correlation information indicating a correlation with a measurement value.
この変形例に係る複合加工システムは、例えば図21に示すように、切削加工装置1と、研削加工装置2と、中間加工装置3と、補正値生成部34と、実績記憶部35と、相関情報記憶部36と、を備える。なお、図21において実施の形態2と同様の構成については、図6と同一の符号を付している。実績記憶部35は、ストレージ装置から構成され、切削加工装置1で切削加工されたワークに関する実績を示す実績情報を記憶する。この実績情報は、切削加工装置1へのワークの投入数と、各ワークの切削加工に使用されたプログラムに付与されたプログラム番号と、ワークの寸法の計測値と、各ワークの切削加工時に切削制御部102に設定されていた補正値と、が対応づけられた情報である。相関情報記憶部36は、図22に示すような、切削加工装置1へのワークの投入数と、計測値と、の相関関係を示す相関情報を記憶する。相関情報は、プログラム番号(例えば、Pro1、Pro2、Pro3、Pro4)毎に個別に作成される。
For example, as shown in FIG. 21, the combined machining system according to this modification includes a cutting apparatus 1, a grinding apparatus 2, an intermediate machining apparatus 3, a correction value generation unit 34, a result storage unit 35, and a correlation. An information storage unit 36. In FIG. 21, the same reference numerals as those in FIG. The record storage unit 35 is configured from a storage device, and stores record information indicating a record of a work cut by the cutting apparatus 1. This performance information includes the number of workpieces inserted into the machining apparatus 1, the program number assigned to the program used for machining each workpiece, the measured value of the workpiece dimensions, and the cutting performed at the time of machining each workpiece. The correction value set in the control unit 102 is associated with the information. The correlation information storage unit 36 stores correlation information indicating the correlation between the number of workpieces input to the cutting apparatus 1 and the measured value as shown in FIG. The correlation information is created individually for each program number (for example, Pro1, Pro2, Pro3, Pro4).
図21に戻って、補正値生成部34は、切削加工装置1へのワークWの投入数をカウントしている。この投入数は、切削加工装置1において工具の交換がなされてからの総投入数である。補正値生成部34は、研削加工装置2からワークW21の寸法の計測値を示す情報が入力されると、入力された計測値を、既に実績記憶部35に記憶されている、この計測値に対応する投入数、プログラム番号および補正値に対応づけて実績記憶部35に記憶させる。ここで、投入数は、ワークW21の切削加工装置1への投入時における切削加工装置1へのワークの投入数であり、プログラム番号は、ワークW21の切削加工に使用されたプログラムのプログラム番号である。また、補正値は、ワークW21の切削加工に使用された補正値である。その後、ワークWが切削加工装置1へ投入されると、補正値生成部34は、切削加工装置1から、投入されたワークWの切削加工に使用するプログラムに付与されたプログラム番号を示す情報と補正値とを取得して実績記憶部35が記憶する。また、補正値生成部34は、取得したプログラム番号および補正値に対応する投入数を1だけインクリメントする。そして、補正値生成部34は、切削加工装置1において工具の交換が実施される際、それまでに実績記憶部35が記憶してきた実績情報に基づいて、プログラム番号毎に個別にワークの投入数と計測値との相関関係を表す相関情報を生成して相関情報記憶部36に記憶させる。
21, the correction value generation unit 34 counts the number of workpieces W input to the cutting apparatus 1. This number of inputs is the total number of inputs since the tool was changed in the cutting apparatus 1. When the information indicating the measurement value of the dimension of the workpiece W21 is input from the grinding apparatus 2, the correction value generation unit 34 converts the input measurement value into the measurement value that is already stored in the result storage unit 35. The results are stored in the result storage unit 35 in association with the corresponding number of inputs, program number, and correction value. Here, the number of inputs is the number of workpieces input to the cutting apparatus 1 when the workpiece W21 is input to the cutting apparatus 1, and the program number is the program number of the program used for cutting the workpiece W21. is there. The correction value is a correction value used for cutting the workpiece W21. Thereafter, when the workpiece W is input to the cutting apparatus 1, the correction value generation unit 34 includes information indicating a program number assigned to the program used for cutting the input workpiece W from the cutting apparatus 1. The correction value is acquired and the result storage unit 35 stores it. Further, the correction value generating unit 34 increments the number of input corresponding to the acquired program number and correction value by one. Then, the correction value generation unit 34 individually inputs the number of workpieces for each program number based on the record information stored in the record storage unit 35 so far when the tool is exchanged in the cutting apparatus 1. Correlation information representing the correlation between the measured value and the measured value is generated and stored in the correlation information storage unit 36.
また、補正値生成部34は、研削加工装置2からワークW21の寸法の計測値を示す情報が入力されると、ワークW21について切削加工装置1の工具の切込み量の調整の要否を判定する。補正値生成部34は、ワークW21について切削加工装置1の工具の切込み量の調整が必要であると判定すると、相関情報記憶部36が記憶する相関情報に基づいて、入力された計測値から実加工寸法を算出する。例えば、ワークW21の切削加工に使用するプログラムのプログラム番号が「Pro2」であるとする。また、ワークW21の切削加工装置1への投入時における切削加工装置1へのワークの投入数がM1であり、ワークW21の寸法の計測値を示す情報が研削加工装置2から補正値生成部34へ入力された時点における切削加工装置1へのワークの投入数がM2とする。この場合、補正値生成部34は、相関情報記憶部36が記憶する相関情報に基づいて、投入数M1、M2それぞれに対応する計測値Dr1、Dr2を特定する(図22参照)。次に、補正値生成部34は、計測値Dr2から計測値Dr1を差し引いて得られる寸法値と計測値との和に相当する修正計測値を算出する。そして、補正値生成部34は、下記式(2)の関係式を用いて、新たに補正値を算出する。
(新たな補正値)=(既に設定されている補正値)-(修正計測値-設計値)・・・式(2)
そして、補正値生成部34は、算出した新たな補正値を、切削加工装置1の切削制御部102へ出力する。 Moreover, when the information which shows the measured value of the dimension of the workpiece | work W21 is input from the grindingdevice 2, the correction value production | generation part 34 will determine the necessity of adjustment of the cutting depth of the tool of the cutting device 1 about the workpiece | work W21. . When the correction value generation unit 34 determines that the adjustment of the cutting depth of the tool of the cutting apparatus 1 is necessary for the workpiece W21, the correction value generation unit 34 calculates the actual value from the input measurement value based on the correlation information stored in the correlation information storage unit 36. Calculate machining dimensions. For example, it is assumed that the program number of the program used for cutting the workpiece W21 is “Pro2”. Further, when the workpiece W21 is input to the cutting apparatus 1, the number of workpieces input to the cutting apparatus 1 is M1, and information indicating the measured value of the dimension of the workpiece W21 is supplied from the grinding apparatus 2 to the correction value generation unit 34. It is assumed that the number of workpieces input to the cutting apparatus 1 at the time of input to is M2. In this case, the correction value generation unit 34 specifies the measurement values Dr1 and Dr2 corresponding to the numbers M1 and M2, respectively, based on the correlation information stored in the correlation information storage unit 36 (see FIG. 22). Next, the correction value generation unit 34 calculates a corrected measurement value corresponding to the sum of the dimension value and the measurement value obtained by subtracting the measurement value Dr1 from the measurement value Dr2. And the correction value production | generation part 34 calculates a correction value newly using the relational expression of following formula (2).
(New correction value) = (correction value already set) − (corrected measurement value−design value) (2)
Then, the correctionvalue generation unit 34 outputs the calculated new correction value to the cutting control unit 102 of the cutting apparatus 1.
(新たな補正値)=(既に設定されている補正値)-(修正計測値-設計値)・・・式(2)
そして、補正値生成部34は、算出した新たな補正値を、切削加工装置1の切削制御部102へ出力する。 Moreover, when the information which shows the measured value of the dimension of the workpiece | work W21 is input from the grinding
(New correction value) = (correction value already set) − (corrected measurement value−design value) (2)
Then, the correction
本構成によれば、補正値生成部34が、実績記憶部35が記憶する、切削加工装置1におけるワークの投入数とワークの寸法の計測値との相関関係を示す相関情報に基づいて、切削加工装置1の切削制御部102に設定すべき新たな補正値を算出する。これにより、ワークが切削加工装置1へ投入されてから研削加工装置2へ投入されるまでの間に、切削加工装置1でのワークの切削加工が実行されたことによる切削加工装置1の切削性能の変動を考慮して、切削加工装置1の切削制御部102に設定されるべき新たな補正値が決定される。従って、切削制御部102により適切な補正値が設定されるので、切削加工装置1の加工精度が向上し、ワークの不良率が低減するという利点がある。
According to this configuration, the correction value generation unit 34 performs cutting based on the correlation information indicating the correlation between the number of workpieces inserted in the cutting apparatus 1 and the measurement value of the workpiece dimensions, which is stored in the result storage unit 35. A new correction value to be set in the cutting control unit 102 of the processing apparatus 1 is calculated. As a result, the cutting performance of the cutting device 1 due to the cutting of the workpiece performed by the cutting device 1 between the time when the workpiece is input to the cutting device 1 and the time when the workpiece is input to the grinding device 2. In consideration of these fluctuations, a new correction value to be set in the cutting control unit 102 of the cutting apparatus 1 is determined. Therefore, since an appropriate correction value is set by the cutting control unit 102, there is an advantage that the machining accuracy of the cutting apparatus 1 is improved and the defect rate of the workpiece is reduced.
実施の形態2では、補正値生成部4が、切削加工装置1の切削制御部102から切削加工部101の制御に使用するプログラムに付与されたプログラム番号を取得する例について説明したが、加工中のワークWの仕様を特定する情報であればプログラム番号に限定されない。例えば、補正値生成部4が、切削制御部102に加工するワークWの仕様に応じて設定される各種パラメータを、切削制御部102から取得する構成であってもよい。
In Embodiment 2, although the correction value generation part 4 demonstrated the example which acquires the program number provided to the program used for control of the cutting part 101 from the cutting control part 102 of the cutting apparatus 1, it is in process. The program number is not limited as long as the information specifies the specifications of the workpiece W. For example, the correction value generation unit 4 may acquire various parameters set according to the specifications of the workpiece W to be processed by the cutting control unit 102 from the cutting control unit 102.
実施の形態2では、中間加工装置3を1台だけ備える構成について説明したが、中間加工装置3の台数は1台に限定されない。例えば中間加工装置3をn(nは2以上の整数)台備える構成であってもよいし、或いは中間加工装置3を備えない構成であってもよい。
In Embodiment 2, the configuration in which only one intermediate processing device 3 is provided has been described, but the number of intermediate processing devices 3 is not limited to one. For example, the structure which equips the intermediate processing apparatus 3 (n is an integer greater than or equal to 2) units may be sufficient, or the structure which does not include the intermediate processing apparatus 3 may be sufficient.
各実施の形態では、切削加工装置1と研削加工装置2とを備え、計測部200が、研削加工装置2に設けられる例について説明したが、これに限らず、例えば2台の切削加工装置1を備え、計測部200が、それらのいずれかの切削加工装置1に設けられている構成であってもよい。或いは、2台の研削加工装置2を備え、計測部200が、それらのいずれかの研削加工装置2に設けられている構成であってもよい。更に、ワークWが研削加工装置2、切削加工装置1の順番に投入され、計測部200が、切削加工装置1に設けられている構成であってもよい。
In each embodiment, the example in which the cutting device 1 and the grinding device 2 are provided and the measuring unit 200 is provided in the grinding device 2 has been described. However, the present invention is not limited thereto, and for example, two cutting devices 1 are provided. The measurement part 200 may be configured to be provided in any one of the cutting devices 1. Or the structure provided with the two grinding | polishing processing apparatuses 2 and the measurement part 200 provided in those grinding | polishing processing apparatuses 2 may be sufficient. Furthermore, the structure by which the workpiece | work W is thrown in order of the grinding apparatus 2 and the cutting apparatus 1, and the measurement part 200 is provided in the cutting apparatus 1 may be sufficient.
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
本出願は、2016年12月2日に出願された、日本国特許出願特願2016-235405号に基づく。本明細書中に日本国特許出願特願2016-235405号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
This application is based on Japanese Patent Application No. 2016-235405 filed on Dec. 2, 2016. The specification, claims, and entire drawings of Japanese Patent Application No. 2016-235405 are incorporated herein by reference.
本発明は、NC旋盤および機械研削盤を備える複合加工システム、マシニングセンタに好適に利用することができる。
The present invention can be suitably used for a complex machining system and a machining center including an NC lathe and a mechanical grinder.
1,5,21 切削加工装置、2,6,22 研削加工装置、3 中間加工装置、4,24,34 補正値生成部、25 補正値記憶部、35 実績記憶部、36 相関情報記憶部、101,501 切削加工部、102,502 切削制御部、200 計測部、201,601 計測器、202,602 計測制御部、203,603 研削加工部、204,604 研削制御部、213,225 識別情報読取部、W,W1,W2,W3,W4,W11,W12,W21 ワーク、WB バリ。
1, 5, 21 Cutting device, 2, 6, 22 Grinding device, 3 Intermediate processing device, 4, 24, 34 Correction value generation unit, 25 Correction value storage unit, 35 Performance storage unit, 36 Correlation information storage unit, 101, 501 cutting unit, 102, 502 cutting control unit, 200 measuring unit, 201, 601 measuring instrument, 202, 602 measuring control unit, 203, 603 grinding unit, 204, 604 grinding control unit, 213, 225 identification information Reading unit, W, W1, W2, W3, W4, W11, W12, W21 work, WB burrs.
Claims (13)
- ワークの寸法の設計値と前記設計値に対する補正値とにより定まる前記ワークの寸法の目標値に基づいて、前記ワークを加工する第1加工装置と、
前記第1加工装置により加工された前記ワークの寸法を計測する計測部を有し、前記計測部により加工した前記ワークの寸法を計測するとともに、加工後の前記ワークに対して、前記第1加工装置が行う加工と同一または類似の加工を行う第2加工装置と、
前記計測部により計測された、加工された前記ワークの寸法の計測値と、前記設計値と、前記補正値と、のうちの少なくとも1つを用いて、新たな補正値を生成する補正値生成部と、を備え、
前記第1加工装置は、前記設計値と前記補正値生成部が生成した新たな補正値とにより定まるワークの寸法の目標値に基づいて、前記ワークと同一の設計値を有する他のワークを加工する、
複合加工システム。 A first processing device that processes the workpiece based on a target value of the workpiece dimension determined by a design value of the workpiece dimension and a correction value for the design value;
A measuring unit that measures the dimension of the workpiece processed by the first processing apparatus; measures the dimension of the workpiece processed by the measuring unit; and the first processing for the workpiece after processing A second processing device that performs the same or similar processing as the processing performed by the device;
Correction value generation for generating a new correction value using at least one of the measured value of the dimension of the processed workpiece measured by the measurement unit, the design value, and the correction value And comprising
The first processing apparatus processes another workpiece having the same design value as the workpiece based on a target value of a workpiece dimension determined by the design value and a new correction value generated by the correction value generation unit. To
Combined machining system. - 前記第2加工装置は、前記ワークの寸法の計測値と前記ワークの寸法の公差の上限値である公差上限値と、前記公差の下限値である公差下限値と、を示す情報を記憶する第2加工装置記憶部を有し、前記計測値から前記設計値を差し引いて得られる寸法誤差が前記公差上限値を超えると判定すると、前記第1加工装置が加工した前記ワークに対して、前記第1加工装置が行う加工と同一または類似の加工を実行する、
請求項1に記載の複合加工システム。 The second processing apparatus stores information indicating a measured value of the workpiece dimension, a tolerance upper limit value that is an upper limit value of the tolerance of the workpiece dimension, and a tolerance lower limit value that is a lower limit value of the tolerance. Two machining device storage units, and determining that a dimensional error obtained by subtracting the design value from the measurement value exceeds the tolerance upper limit value, the first machining device performs the first The same or similar processing as the processing performed by one processing device is executed.
The composite processing system according to claim 1. - 前記第2加工装置は、前記寸法誤差が前記公差下限値未満であると判定すると、前記ワークを排出する、
請求項2に記載の複合加工システム。 When the second processing device determines that the dimensional error is less than the tolerance lower limit value, the second processing device discharges the workpiece.
The combined processing system according to claim 2. - 前記第2加工装置記憶部は、前記寸法誤差に対する前記公差に含まれ且つ前記補正値を変更しない不変範囲を示す情報を更に記憶し、
前記補正値生成部は、前記第2加工装置により、前記寸法誤差が前記公差に含まれると判定された場合、前記寸法誤差が前記不変範囲に含まれると判定すると、新たな補正値の生成をスキップし、前記寸法誤差が前記不変範囲の外であると判定すると、新たな補正値を生成する、
請求項2または3に記載の複合加工システム。 The second processing device storage unit further stores information indicating an invariable range that is included in the tolerance with respect to the dimensional error and does not change the correction value;
When the second processing apparatus determines that the dimensional error is included in the tolerance, the correction value generation unit generates a new correction value when the dimensional error is determined to be included in the invariable range. When skipping and determining that the dimensional error is outside the invariable range, a new correction value is generated.
The combined processing system according to claim 2 or 3. - 前記計測部は、前記ワークの回転軸に直交する複数方向における寸法を計測して得られる複数の計測値の最小値を出力する、
請求項1から4のいずれか1項に記載の複合加工システム。 The measurement unit outputs a minimum value of a plurality of measurement values obtained by measuring dimensions in a plurality of directions orthogonal to the rotation axis of the workpiece.
The combined machining system according to any one of claims 1 to 4. - 前記第1加工装置は、複数存在し、
前記第2加工装置は、少なくとも1つ存在し、
前記複数の第1加工装置は、それぞれ、加工したワークを前記少なくとも1つの第2加工装置へ投入する、
請求項1から5のいずれか1項に記載の複合加工システム。 There are a plurality of the first processing devices,
There is at least one second processing apparatus,
Each of the plurality of first processing devices throws the processed workpiece into the at least one second processing device.
The combined machining system according to any one of claims 1 to 5. - 前記第1加工装置は、少なくとも1つ存在し、
前記第2加工装置は、複数存在し、
前記少なくとも1つの第1加工装置は、加工したワークを、前記複数の第2加工装置のいずれかへ投入する、
請求項1から5のいずれか1項に記載の複合加工システム。 There is at least one first processing apparatus,
There are a plurality of the second processing devices,
The at least one first processing device throws the processed workpiece into one of the plurality of second processing devices;
The combined machining system according to any one of claims 1 to 5. - 前記第1加工装置は、複数存在し、
前記第2加工装置は、前記第1加工装置と同じ数だけ存在し、
前記複数の第1加工装置は、前記ワークに対して、順次加工を実行し、
前記複数の第2加工装置は、前記複数の第1加工装置が加工した前記ワークに対して、順次寸法の計測を実行し、
前記補正値生成部は、前記複数の第2加工装置それぞれが有する計測部により計測された、前記第1加工装置により加工された前記ワークの寸法の計測値と、前記ワークの寸法の設計値と、前記補正値と、から、前記複数の第2加工装置それぞれに対応する第1加工装置それぞれの新たな補正値を生成する、
請求項1から5のいずれか1項に記載の複合加工システム。 There are a plurality of the first processing devices,
There are as many second processing devices as there are first processing devices,
The plurality of first processing devices sequentially perform processing on the workpiece,
The plurality of second processing devices sequentially measure dimensions on the workpiece processed by the plurality of first processing devices,
The correction value generation unit is measured by a measurement unit included in each of the plurality of second processing apparatuses, and is a measurement value of the dimension of the workpiece processed by the first processing apparatus, and a design value of the dimension of the workpiece From the correction value, a new correction value for each of the first processing devices corresponding to each of the plurality of second processing devices is generated.
The combined machining system according to any one of claims 1 to 5. - 前記補正値と前記ワークを識別する識別情報とを対応づけて記憶する補正値記憶部を更に備え、
前記第1加工装置は、更に、前記ワークの一部に設けられた前記ワークを識別する識別情報を読み取る第1識別情報読取部を有し、
前記第2加工装置は、更に、前記ワークの一部に設けられた前記ワークを識別する識別情報を読み取る第2識別情報読取部を有し、
前記補正値生成部は、前記計測部により計測された前記計測値と、前記設計値と、前記補正値と、から、新たな補正値を生成し、生成した新たな補正値を、前記計測値に対応する識別情報に対応づけて前記補正値記憶部に記憶させる、
請求項1から5のいずれか1項に記載の複合加工システム。 A correction value storage unit that stores the correction value and identification information for identifying the workpiece in association with each other;
The first processing apparatus further includes a first identification information reading unit that reads identification information for identifying the workpiece provided in a part of the workpiece,
The second processing apparatus further includes a second identification information reading unit that reads identification information for identifying the workpiece provided in a part of the workpiece,
The correction value generation unit generates a new correction value from the measurement value measured by the measurement unit, the design value, and the correction value, and generates the generated new correction value as the measurement value. In association with the identification information corresponding to, stored in the correction value storage unit,
The combined machining system according to any one of claims 1 to 5. - 前記第1加工装置への前記ワークの投入数と、前記ワークの寸法の計測値と、の相関関係を示す相関情報を記憶する相関情報記憶部を更に備え、
前記補正値生成部は、前記計測部により計測された前記計測値と、前記設計値と、前記補正値と、前記相関情報と、に基づいて、新たな補正値を生成する、
請求項1から5のいずれか1項に記載の複合加工システム。 A correlation information storage unit that stores correlation information indicating a correlation between the number of workpieces inserted into the first machining apparatus and a measurement value of the workpiece dimensions;
The correction value generation unit generates a new correction value based on the measurement value measured by the measurement unit, the design value, the correction value, and the correlation information.
The combined machining system according to any one of claims 1 to 5. - 前記第1加工装置は、切削加工装置であり、
前記第2加工装置は、研削加工装置である、
請求項1から10のいずれか1項に記載の複合加工システム。 The first processing device is a cutting device,
The second processing device is a grinding device,
The combined machining system according to claim 1. - ワークの寸法の設計値と前記設計値に対する補正値とにより定まる前記ワークの寸法の目標値に基づいて、前記ワークを加工するステップと、
加工した前記ワークの寸法を計測した後、加工後の前記ワークに対して、第1加工装置が行う加工と同一または類似の加工を行うステップと、
加工された前記ワークの寸法の計測値と、前記設計値と、前記補正値と、から、新たな補正値を生成するステップと、
前記設計値と新たに生成された補正値とにより定まるワークの寸法の目標値に基づいて、前記ワークと同一の設計値を有する他のワークを加工するステップと、を含む、
複合加工方法。 Machining the workpiece based on a target value of the workpiece dimension determined by a design value of the workpiece dimension and a correction value for the design value;
After measuring the dimensions of the processed workpiece, performing the same or similar processing as the processing performed by the first processing apparatus on the processed workpiece;
A step of generating a new correction value from the measured value of the dimension of the processed workpiece, the design value, and the correction value;
Machining another workpiece having the same design value as that of the workpiece based on a target value of a workpiece dimension determined by the design value and a newly generated correction value.
Compound processing method. - 前記ワークを加工するステップの直前または直後において、前記ワークの一部に設けられた前記ワークを識別するワーク識別情報を読み取るステップと、
加工した前記ワークの寸法を計測する直前または直後において、前記ワークの一部に設けられた前記ワーク識別情報を読み取るステップと、
前記計測値と、前記設計値と、前記補正値と、から、新たな補正値を生成した後、生成した補正値を、前記計測値に対応するワーク識別情報に対応づけて補正値記憶部に記憶させるステップと、を更に含む、
請求項12に記載の複合加工方法。 Reading workpiece identification information for identifying the workpiece provided in a part of the workpiece immediately before or immediately after the step of machining the workpiece;
Reading the workpiece identification information provided in a part of the workpiece immediately before or immediately after measuring the dimension of the processed workpiece;
After generating a new correction value from the measurement value, the design value, and the correction value, the generated correction value is associated with the work identification information corresponding to the measurement value in the correction value storage unit. And further comprising the step of storing
The composite processing method according to claim 12.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018553788A JP6749414B2 (en) | 2016-12-02 | 2017-11-20 | Combined processing system and combined processing method |
CN201780073698.1A CN110023033B (en) | 2016-12-02 | 2017-11-20 | Composite processing system and composite processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-235405 | 2016-12-02 | ||
JP2016235405 | 2016-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101109A1 true WO2018101109A1 (en) | 2018-06-07 |
Family
ID=62241315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041721 WO2018101109A1 (en) | 2016-12-02 | 2017-11-20 | Composite processing system and composite processing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6749414B2 (en) |
CN (1) | CN110023033B (en) |
WO (1) | WO2018101109A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020179590A (en) * | 2019-04-25 | 2020-11-05 | 積水化学工業株式会社 | Pipe manufacturing method and equipment |
WO2024009588A1 (en) * | 2022-07-05 | 2024-01-11 | 株式会社日立製作所 | Machining tolerance evaluating system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111085902B (en) * | 2019-12-31 | 2022-02-01 | 芜湖哈特机器人产业技术研究院有限公司 | Workpiece polishing system for visual online detection and correction |
CN111604719B (en) * | 2020-06-02 | 2021-08-10 | 湖北大学 | Self-adaptive high-efficiency large-grinding-amount longitudinal grinding method for cylindrical grinding |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142150A (en) * | 1989-10-25 | 1991-06-17 | Hitachi Seiki Co Ltd | Automatic processing system |
JPH05104395A (en) * | 1991-10-17 | 1993-04-27 | Hokuriku Nippon Denki Software Kk | Product processing condition setting device with learning control function |
JPH06131020A (en) * | 1992-10-22 | 1994-05-13 | Makino Milling Mach Co Ltd | Operating method for electric discharge machining system |
JP2006224192A (en) * | 2005-02-15 | 2006-08-31 | Japan Science & Technology Agency | Correction working method and correction working device used for it |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5984630B2 (en) * | 2012-11-14 | 2016-09-06 | 三菱重工工作機械株式会社 | Interface system for machine tools |
JP6089774B2 (en) * | 2013-02-26 | 2017-03-08 | 株式会社ジェイテクト | Grinding machine and grinding method |
CN105336641B (en) * | 2014-06-20 | 2018-02-02 | 中芯国际集成电路制造(上海)有限公司 | The weighting calibration method of CMP terminal detecting systems |
-
2017
- 2017-11-20 WO PCT/JP2017/041721 patent/WO2018101109A1/en active Application Filing
- 2017-11-20 JP JP2018553788A patent/JP6749414B2/en active Active
- 2017-11-20 CN CN201780073698.1A patent/CN110023033B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03142150A (en) * | 1989-10-25 | 1991-06-17 | Hitachi Seiki Co Ltd | Automatic processing system |
JPH05104395A (en) * | 1991-10-17 | 1993-04-27 | Hokuriku Nippon Denki Software Kk | Product processing condition setting device with learning control function |
JPH06131020A (en) * | 1992-10-22 | 1994-05-13 | Makino Milling Mach Co Ltd | Operating method for electric discharge machining system |
JP2006224192A (en) * | 2005-02-15 | 2006-08-31 | Japan Science & Technology Agency | Correction working method and correction working device used for it |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020179590A (en) * | 2019-04-25 | 2020-11-05 | 積水化学工業株式会社 | Pipe manufacturing method and equipment |
JP7352376B2 (en) | 2019-04-25 | 2023-09-28 | 積水化学工業株式会社 | Pipe manufacturing method and device |
WO2024009588A1 (en) * | 2022-07-05 | 2024-01-11 | 株式会社日立製作所 | Machining tolerance evaluating system |
Also Published As
Publication number | Publication date |
---|---|
CN110023033A (en) | 2019-07-16 |
JPWO2018101109A1 (en) | 2019-04-04 |
JP6749414B2 (en) | 2020-09-02 |
CN110023033B (en) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018101109A1 (en) | Composite processing system and composite processing method | |
US11520307B2 (en) | Tool management system of machine tool | |
CN101546184B (en) | Machining simulation apparatus | |
US20100114359A1 (en) | Programming apparatus | |
JP4951165B2 (en) | Numerically controlled machine tool and workpiece machining method in this numerically controlled machine tool | |
US20160170404A1 (en) | Tool life managing apparatus for stepped tool | |
US20160291573A1 (en) | Servo control apparatus that performs learning control by changing reference axis | |
JP2021507411A (en) | Production and measurement of geographic features | |
CN112008502A (en) | Cutter grinding control method based on cutter optical detection technology | |
CN105538097A (en) | Furniture surface grinding process based on full-automatic robot grinding production line | |
CN110376962A (en) | Setting device and computer-readable medium | |
US11119468B2 (en) | Machine tool having function of automatically correcting machining program in tool replacement | |
CN111644814B (en) | Wind power rotor machining method | |
JPH1142534A (en) | Tool control device and control device for machine tool provided with tool control function | |
CN113751744A (en) | Machining method for machine tool | |
US20170182630A1 (en) | Fine Machining Method and Machine Tool Unit | |
WO2014156800A1 (en) | Lens-processing controller, lens-processing control program, method for evaluating lens shape, and method for manufacturing spectacle lens | |
KR100519046B1 (en) | Work inspect method and apparatus of the machine tools | |
JP6517433B1 (en) | Machining condition determination program, computer device, machining condition determination method, machining device, and machining system | |
CN109015113A (en) | Automatic processing method | |
JP2009238164A (en) | Machining device system | |
CN100505982C (en) | Method for controlling cutting tools of forming / drilling machine for printing circuit board | |
Fuglicek | Increase of production productivity using the combined machining in one clamping | |
KR20190002083U (en) | How to machining Multi-Abutment | |
JP2022183041A (en) | Grinder, continuous processing method and program generation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17875116 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018553788 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17875116 Country of ref document: EP Kind code of ref document: A1 |