JP2006224192A - Correction working method and correction working device used for it - Google Patents
Correction working method and correction working device used for it Download PDFInfo
- Publication number
- JP2006224192A JP2006224192A JP2005037226A JP2005037226A JP2006224192A JP 2006224192 A JP2006224192 A JP 2006224192A JP 2005037226 A JP2005037226 A JP 2005037226A JP 2005037226 A JP2005037226 A JP 2005037226A JP 2006224192 A JP2006224192 A JP 2006224192A
- Authority
- JP
- Japan
- Prior art keywords
- processing
- correction
- machining
- data
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
光学レンズや半導体部品などのように加工精度が厳しく要求される場合、一度行った加工に対して誤差要因に応じて補正加工を行うことが一般的に行われている。
本発明は、上記補正加工技術に関するものであり、さらには、加工システムのもつ周波数特性や各位置ごとの加工特性の違いによる補正残しを発生させないようにした補正加工方法およびその方法に使用する補正加工装置に関するものである。
When processing accuracy is strictly required, such as an optical lens or a semiconductor component, correction processing is generally performed for processing once performed according to an error factor.
The present invention relates to the above-described correction processing technique, and further, a correction processing method in which a correction residue is not generated due to a difference in frequency characteristics of the processing system and processing characteristics at each position, and correction used in the method. The present invention relates to a processing apparatus.
近年情報通信技術の発達により、より高精細な結像機能、より高密度の情報記録が要求されてきている。その結果、機器の入出力部に使用される光学部材の寸法精度に対する要求が厳しさを増している。
たとえば、レンズの曲率精度を向上させる自動曲率補正加工方法および装置として特許文献1に記載されたものがある。
In recent years, with the development of information communication technology, higher definition imaging functions and higher density information recording have been required. As a result, the demand for the dimensional accuracy of optical members used in the input / output unit of equipment has become stricter.
For example,
また、精度向上を図るために、上記従来例とは異なる他の手法として、工具位置や原点を精密調整し、工具形状と工作物の理想形状から工具の位置決め座標を計算し、制御して、加工機をベストの状態に調整して加工し、それでも残った形状誤差(工具と工作物の弾性変形量と熱的変形量)を計測して、それを単純に同じ変形量を、それと反対方向に補正を加え、先の誤差量を打ち消すように、工具軌跡情報に重畳して誤差を低減することを行なう方法も知られている。 In addition, in order to improve accuracy, as another method different from the above conventional example, the tool position and the origin are precisely adjusted, and the tool positioning coordinates and the tool positioning coordinates are calculated and controlled, The processing machine is adjusted to the best condition and processed, and the remaining shape error (elastic deformation and thermal deformation of the tool and workpiece) is measured, and the same deformation is simply measured in the opposite direction. A method is also known in which the error is reduced by superimposing it on the tool trajectory information so as to cancel the previous error amount.
しかし、後者の補正加工方法の場合、従来の単純な誤差の重畳のみでは補正しきれないことも多い。
その理由は、加工機を含む全加工システムの持つ時間および空間周波数特性により、補正の効率が誤差の形によって変わってくるため、一様な補正では誤差を取りきれないためである。さらに、加工機を含む全加工システムが、空間的に場所毎に加工特性が異なる場合、やはり一様な補正を行っても誤差を取りきれない。
However, in the case of the latter correction processing method, there are many cases in which correction cannot be performed only by conventional simple error superposition.
The reason is that the correction efficiency varies depending on the shape of the error depending on the time and spatial frequency characteristics of all the processing systems including the processing machine, and thus the error cannot be removed by uniform correction. Furthermore, when the machining characteristics including the machining machine are spatially different from place to place, errors cannot be removed even if uniform correction is performed.
そこで、本発明は、加工結果を計測して得られた誤差の位置毎の分布に対して周波数分析して別の手段で得られた加工装置の周波数特性を考慮したフィルタ処理(ローパスフィルタ処理、ハイパスフィルタ処理等)を行ったり、または別の手段で得られた加工装置の各位置での加工特性を勘案した窓関数を掛け算したりすることにより、加工装置のもつ周波数特性や各位置ごとの加工特性の違いによる補正残しを発生させないようにする。そのため、従来の補正加工では取りきれなかった加工装置の周波数特性や各位置ごとの加工特性の違いに起因する誤差も補正することが可能となる。 Therefore, the present invention is a filter process (low-pass filter process, taking into account the frequency characteristics of the processing apparatus obtained by another means by performing frequency analysis on the error-by-position distribution obtained by measuring the processing result. High pass filter processing, etc.) or by multiplying the window function that takes into account the machining characteristics at each position of the machining apparatus obtained by another means. Make sure that no residual correction occurs due to differences in processing characteristics. For this reason, it is possible to correct errors caused by differences in the frequency characteristics of the machining apparatus and the machining characteristics at each position, which could not be removed by conventional correction machining.
このため、本発明が採用した技術解決手段は、
加工後加工物の形状を測定し、誤差に応じて補正加工を行う補正加工方法において、加工機の周波数特性と誤差データの両方を用いて、誤差データの各周波数成分に対し加工機の持つ周波数毎の加工効率のばらつきを打ち消すように補正データを作成し、補正加工を行うようにした補正加工方法である。
また、加工後加工物の形状を測定し、誤差に応じて補正加工を行う補正加工方法において、加工機の加工各点での加工効率と誤差データの両方を用いて、誤差データの空問分布に対して加工機の持つ場所毎(例えば軸対象加工の場合、各半径値毎)の加工効率のばらつきを打ち消すように補正データを作成し、補正加工を行うようにした補正加工方法である。
また、前記記載の補正加工方法に使用する補正加工装置であって、同加工装置は、加工機と、ワークを加工した後その形状が設計値に対してどれだけ正確に作られているかを計測するための計測装置と、計測装置からのデータに基づいて補正量を演算し、そのデータを加工機にフィードバックするデータ処理装置とからなることを特徴とする補正加工装置である。
For this reason, the technical solution means adopted by the present invention is:
In the correction processing method that measures the shape of the workpiece after processing and performs correction processing according to the error, using both the frequency characteristics of the processing machine and the error data, the frequency of the processing machine for each frequency component of the error data This is a correction processing method in which correction data is created so as to cancel the variation in processing efficiency for each time, and correction processing is performed.
Also, in the correction processing method that measures the shape of the workpiece after processing and performs correction processing according to the error, the error distribution of error data using both processing efficiency and error data at each processing point of the processing machine On the other hand, the correction processing method is such that correction data is generated and correction processing is performed so as to cancel the variation in processing efficiency for each place (for example, for each radius value in the case of axis target processing) of the processing machine.
Further, the correction processing apparatus used in the correction processing method described above, the processing apparatus measures the processing machine and how accurately the shape of the workpiece is made after the workpiece is processed. And a data processing device that calculates a correction amount based on data from the measurement device and feeds back the data to the processing machine.
上記した本発明によれば、加工機の周波数特性や空間的場所毎に加工効率が異なっていても、効率よく補正加工を行うことができ、少ない補正加工回数によって仕様を満足することが可能となる。 According to the present invention described above, even if the processing efficiency differs for each frequency characteristic or spatial location of the processing machine, correction processing can be performed efficiently, and specifications can be satisfied with a small number of correction processing. Become.
本発明は、加工機の周波数特性と誤差データの両方を用いて、誤差データの各周波数成分に対し加工機の持つ周波数毎の加工効率のばらつきを打ち消すように補正データを作成し、補正加工を行うようにした。また、加工機の加工各点での加工効率と誤差データの両方を用いて、誤差データの空問分布に対して加工機の持つ場所毎(例えば軸対象加工の場合、各半径値毎)の加工効率のばらつきを打ち消すよう)に補正データを作成し、補正加工を行うようにした。 The present invention uses both the frequency characteristics of the processing machine and the error data to create correction data so as to cancel the variation in processing efficiency for each frequency of the processing machine with respect to each frequency component of the error data. I did it. Also, using both the processing efficiency and error data at each processing point of the processing machine, for each location of the processing machine (for example, for each radius value in the case of axis target processing), the error data is distributed to the question distribution. Correction data was created so as to cancel the variation in machining efficiency), and correction machining was performed.
以下本発明に係る実施例を図面を参照して説明すると、図1は、本発明の一実施例である加工システムのブロック図である。 Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a machining system according to an embodiment of the present invention.
図1において、1は加工対象物(以後ワークと称する)を加工するための加工機であり、例えば東芝機械株式会社製ULG100や、同等の機械を用いることができる。また、2は、ワークである。3は、ワークを加工した後、その形状が設計値に対してどれだけ正確に作られているかを計測するための計測装置であり、この計測装置としてはテーラーホブソン社製タリサーフや、同等の計測器を用いることができる。4は、データ処理装置であり、汎用のパーソナルコンピュータを用いて実現できる。
以上が本発明の一実施例としての補正加工装置のブロック図である。
In FIG. 1,
The above is a block diagram of a correction processing apparatus as an embodiment of the present invention.
以下に図2のフローチャートも用いながら、補正加工装置の動作について説明する。
加工開始(ステップ201)後、ステップ202において、加工機1にワーク2を取り付け、加工機1を用いてワーク2を設計値に従って加工する。加工完了後、ステップ203においてワーク2を加工機1から取り外し、計測装置3に取り付けて形状を計測する。 形状計測後、ステップ204において、データ処理装置4を用いて計測データに様々な処理を施して、形状精度が要求仕様に対して十分か判定するとともに、補正加工で使用するデータを算出する。形状精度が要求仕様に対して十分であれば、次にステップ206に行って加工を終了する。
もしもステツプ204において、形状精度が十分でないと判定された場合、ステップ205に行って、ワーク2を加工機1に再度取り付けて、算出した補正データを元に加工機1によりワーク2に対して補正加工を行う。補正加工が完了したら、ステップ203に戻って形状計測からやり直す。なお、前記計測装置3には形状の情報をいれると計測値に対して誤差を算出する機能を持つものが多いことから、計測装置に誤差算出機能(の一部)を持たせてもよい。
Hereinafter, the operation of the correction processing apparatus will be described with reference to the flowchart of FIG.
After the start of processing (step 201), in
If it is determined in
このようにして、補正加工を繰り返すことにより誤差が低減して行き、最終的に仕様を満足するものが作られる。しかし、従来のようにステップ204の補正加工データ算出において単純な加工誤差を流用して補正加工に用いたのでは、補正加工装置の持つ周波数特性や各位置ごとの加工特性の違いにより補正加工の効率が異なるため正確な補正加工が行われない場合があり、効率悪く何度も繰り返して補正加工をすることになったり、それでも仕様を満足できなかったりすることがある。
In this way, the error is reduced by repeating the correction process, and finally a product that satisfies the specifications is produced. However, if a simple machining error is used in the correction machining data calculation in
次に図3を参照しながら本発明に係る補正加工方法を説明する。
別の手段により、図1の補正加工装置において、加工機1の加工特性として空問周波数の高周波域での加工効率が低周波域に比べて良くないことが知られているものとする。このような補正加工装置において、図2のステップ204で図3(a)のような誤差データが得られたと仮定する。この場合、誤差形状を単純に補正加工データとして投入すると、加工機1の高周波域での加工効率が悪いため、高周波成分の補正が十分行われない。そこで本補正加工方法では、データ処理装置において、図3(a)の誤差情報を、図3(b)の高周波、図3(c)の低周波成分に分け、図3(d)のように高周波成分を強調したデータに変えて補正加工を行うようにする。こうすることにより、単純に誤差を重畳したのでは補正しきれない高周波成分の誤差を効率良く補正できるようになる。
なお、上述の例では説明を簡単にするために単純に加工機1の高域特性が悪く、誤差にも単純に1つの高周波と低周波が重畳したものを仮定したが、加工機1の周波数特性がもっと複雑で、誤差波形がもっと複雑な場合でも同様の考えが成り立つのは言うまでもない。その場合、周波数成分の抽出や強調・抑圧は音声や映像分野で用いられているデジタルフィルタの技術がそのまま転用可能であるため、説明の詳細は割愛する。
Next, the correction processing method according to the present invention will be described with reference to FIG.
By another means, in the correction processing apparatus of FIG. 1, it is known that the processing efficiency of the
In the above example, for the sake of simplicity, it is assumed that the high frequency characteristics of the
次に図4を参照しながら本発明に係る他の補正加工方法を説明する。
別の手段により、図1の補正加工装置において、加工機1の加工特性として周辺部での加工効率が中心部のそれに比べて良くないことが知られているものとする。このような加工装置において、図2のステップ204で図4(a)のような誤差データが得られたと仮定する。
この場合、誤差形状を単純に補正加工データとして投入すると、加工機1の周辺部での加工効率が悪いため、周辺部の補正が十分行われない。そこで本加工方法では、データ処理装置において、図4(a)の誤差情報に対して、図4(b)のように中心部の値に対して周辺部の値が大きい重みづけする関数(通常画像処理やデータ処理において窓関数、と呼ばれる)を乗算して、図4(c)のように周辺部を強調したデータに変えて補正加工を行うようにする。こうすることにより、単純に誤差を重畳したのでは補正しきれない周辺部の誤差を効率良く補正できるようになる。
なお、上述の例では説明を簡単にするために単純に加工機1の周辺特性が悪いと仮定したが、加工機1の加工場所毎(例えば軸対象加工の場合、対称軸中心に対して各半径値)の効率特性がもっと複雑な場合でも、窓関数をそれに応じて変えてやれば同様の考えが成り立つのは言うまでもない。
Next, another correction processing method according to the present invention will be described with reference to FIG.
By another means, in the correction processing apparatus of FIG. 1, it is known that the processing efficiency of the
In this case, if the error shape is simply input as correction processing data, the processing efficiency in the peripheral portion of the
In the above example, it is assumed that the peripheral characteristics of the
次に図5を用いてローパスフィルタによりフィルタ処理を行う具体的実現例を説明する。図5(a)は周期がL/4の正弦波であり図5(b)は周期がLの正弦波である。数式で表すと
図5(a)は
y=A×(1−cos(8πx/L) (1)
で表され、図5(b)は
y=A×(1−cos(2πx/L)) (2)
で表される。
実際に数値制御加工を行うときにはx方向を例えば360分割して
図5(a)は
Xi=L×i/360
yi=A×(1−cos(8πi/360)) i=0,1,2・・・360 (3)で表され、図5(b)は
Xi=L×i/360
yi=A×(1−cos(2πi/360)) i=0,1,2・・・360 (4)で表される。
非常に簡単に実現できるローパスフィルタとして、移動平均という方法がある。
これはyiを点列として、前後n個の点の平均をとるもの,すなわち
Next, a specific implementation example of performing filter processing using a low-pass filter will be described with reference to FIG. FIG. 5A shows a sine wave with a cycle of L / 4, and FIG. 5B shows a sine wave with a cycle of L. When expressed by a mathematical formula, FIG. 5A shows y = A × (1−cos (8πx / L) (1)
In FIG. 5 (b), y = A × (1-cos (2πx / L)) (2)
It is represented by
When actually performing numerical control processing, the x direction is divided into, for example, 360, and FIG. 5A shows Xi = L × i / 360.
yi = A × (1−cos (8πi / 360)) i = 0, 1, 2... 360 (3), and FIG. 5B shows Xi = L × i / 360.
yi = A × (1-cos (2πi / 360)) i = 0, 1, 2,... 360 (4)
As a low-pass filter that can be realized very easily, there is a method called moving average.
This is an average of n points before and after yi as a sequence of points, that is,
図5の(a),(b)2つのケースに対して具体的に図中の符号2,3,4では
2:前後7点の平均
3:前後20点の平均
4:前後45点の平均
をとったものである。(計算を簡単にするために,0〜Lの前後も問じ周期の形状が連続するものとして計算した。)
図からわかるように、前後45点(幅でL/4)の移動平均を取ると,図5(a)はほとんど形状が消失するが、図5(b)はほとんど形が変わらない。
従ってワークに空間周波数L/4と空間周波数Lの形状が混在していた場合,前後L/8(幅でL/4)の移動平均を取ることによりL/4の成分を除去できる。また、元の形状からL/4の法分を除去したものを引き算するとL/4の成分を求めることができる。
Specifically, for the two cases (a) and (b) in FIG. 5, in
As can be seen from the figure, when taking a moving average of 45 points at the front and rear (L / 4 in width), the shape almost disappears in FIG. 5A, but the shape hardly changes in FIG. 5B.
Therefore, when the shape of the spatial frequency L / 4 and the spatial frequency L is mixed in the work, the L / 4 component can be removed by taking a moving average of front and rear L / 8 (width L / 4). Further, by subtracting the original shape from which the L / 4 modulus is removed, the L / 4 component can be obtained.
上の説明では話を簡単にするために、周期がLとL/4の空間周波数のみ抜き出して説明したが、他の成分が入ってきても同様に考えることができる。またローパスフィルタとして、移動平均を例にしたが,もっと複雑で急峻な特性のローパスフィルタ,またハイパスフィルタ、バンドパスフイルタなどについても同様に考えられるのは言うまでもない。 In the above description, in order to simplify the description, only the spatial frequencies with periods of L and L / 4 have been extracted and described, but the same can be considered even if other components are included. Although the moving average is taken as an example of the low-pass filter, it is needless to say that a low-pass filter having a more complicated and steep characteristic, a high-pass filter, a band-pass filter, and the like can be similarly considered.
次に加工する機械の空問周波数特性について説明する。加工するワークと同じ材質の材料に対して、例えぱ図6のように、周期がLの形状Aと周期がL/4の形状Bを実際に加工させた結果がそれぞれ破線のごとくaとbのようになったとする。仮にaがほぼ100%設計値通りの加工となり、bが設計値の50%しか加工されなかった場合,周期Lの補正はそのまま行って良いが、周期L/4の補正は2倍に強調して実行しなければならない。
ここでも説明を簡単にするため空間周波数2種類のみの例を挙げたが,他の空間周波数数が混人してきても同様に考えることができる。
Next, the air frequency characteristics of the machine to be processed will be described. As shown in FIG. 6, for example, a shape A having a period L and a shape B having a period L / 4 are actually processed as indicated by broken lines, as shown in FIG. Suppose that If a is almost 100% of the design value and b is only 50% of the design value, the correction of the period L may be performed as it is, but the correction of the period L / 4 is doubled. Must be executed.
Here, in order to simplify the explanation, an example of only two types of spatial frequencies is given, but the same can be considered even if other spatial frequencies are mixed.
次に図7を参照しながら加工機の各場所毎の加工特性分布について説明する。加工するワークと同じ材質の材料に対して、例えば図7のように,周期がL/10の形状Aを実際に加工させた結果が破線のごとくaのようになったとする。仮に中心部がほぼ100%設計値通りの加工となり、最外部が設計値の33%しか加工されなかった場合,中心部の補正はそのまま行って良いが、最外部の補正は3倍に強調して,また中間部は各場所の効率を換算して実行しなけれぱならない。 Next, the processing characteristic distribution for each location of the processing machine will be described with reference to FIG. Suppose that the result of actually processing a shape A having a period of L / 10 as shown in FIG. 7, for example, as shown in FIG. If the center part is processed almost 100% of the design value and the outermost part is processed only 33% of the design value, the center part may be corrected as it is, but the outermost part of the correction is emphasized three times. In addition, the intermediate part must be carried out by converting the efficiency of each place.
次に図8を参照しながら加工形状と加工機の特性まで考慮した補正の考え方について説明する。仮にワークの実形状が図8の実線Aの形をしていたとして,それに対して破線形状Cになるような加工指令を出して加工機に加工させたときに出来上がった形状が一点鎖線のBのようになったとする。点Xでの加工指示がgl(x)であったのに対して実際の加工量がg2(x)であった場合、補正加工量にgl(x)/g2(x)の重み付けをすれぱ正しい量だけ加工がなされる。AからCへの加工は、直前の補正加工でも,テスト形状でも構わない。 Next, the concept of correction in consideration of the machining shape and the characteristics of the machine will be described with reference to FIG. If the actual shape of the workpiece is in the shape of a solid line A in FIG. 8, a machining command that gives a broken line shape C is issued to the workpiece, and the resulting shape is a one-dot chain line B. Suppose that When the processing instruction at the point X is gl (x) but the actual processing amount is g2 (x), the correction processing amount is weighted with gl (x) / g2 (x). The correct amount is processed. The processing from A to C may be the previous correction processing or the test shape.
以上、本発明に係る補正加工方法および装置について説明したが、本発明はその精神また主要な特徴から逸脱することなく、他の色々な形で実施することができる。そのため前述の実施例は単なる例示に過ぎず、限定的に解釈してはならない。更に特許請求の範囲の均等範囲に属する変形や変更は全て本発明の範囲内のものである。 The correction processing method and apparatus according to the present invention have been described above, but the present invention can be implemented in various other forms without departing from the spirit and main features thereof. For this reason, the above-described embodiments are merely examples, and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
本発明は、高精細な結像機能、より高密度の情報記録が要求されてきている光学機器の入出力部に使用される光学部材の加工方法に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in a method for processing an optical member used in an input / output unit of an optical apparatus that has been required to have a high-definition imaging function and higher-density information recording.
1 加工機
2 ワーク
3 計測装置
4 データ処理装置
1
Claims (3)
3. A correction machining apparatus used in the correction machining method according to claim 1 or 2, wherein the machining apparatus and the machining machine and how accurately the shape of the workpiece after machining the workpiece is compared with the design value. A correction processing device comprising: a measuring device for measuring whether or not the device is made; and a data processing device for calculating a correction amount based on data from the measuring device and feeding back the data to the processing machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005037226A JP2006224192A (en) | 2005-02-15 | 2005-02-15 | Correction working method and correction working device used for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005037226A JP2006224192A (en) | 2005-02-15 | 2005-02-15 | Correction working method and correction working device used for it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006224192A true JP2006224192A (en) | 2006-08-31 |
Family
ID=36985994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005037226A Pending JP2006224192A (en) | 2005-02-15 | 2005-02-15 | Correction working method and correction working device used for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006224192A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101109A1 (en) * | 2016-12-02 | 2018-06-07 | 三菱電機株式会社 | Composite processing system and composite processing method |
CN112828682A (en) * | 2019-11-25 | 2021-05-25 | 大隈株式会社 | Error measurement method for machine tool and machine tool |
-
2005
- 2005-02-15 JP JP2005037226A patent/JP2006224192A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018101109A1 (en) * | 2016-12-02 | 2018-06-07 | 三菱電機株式会社 | Composite processing system and composite processing method |
JPWO2018101109A1 (en) * | 2016-12-02 | 2019-04-04 | 三菱電機株式会社 | Combined machining system and combined machining method |
CN110023033A (en) * | 2016-12-02 | 2019-07-16 | 三菱电机株式会社 | Machining System and combined machining method |
CN112828682A (en) * | 2019-11-25 | 2021-05-25 | 大隈株式会社 | Error measurement method for machine tool and machine tool |
CN112828682B (en) * | 2019-11-25 | 2024-05-14 | 大隈株式会社 | Error measurement method for machine tool and machine tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6551184B2 (en) | Simulation apparatus, simulation method, and simulation program | |
JP5767464B2 (en) | Information processing apparatus, information processing apparatus control method, and program | |
EP2082850B1 (en) | Generating device of processing robot program | |
TWI513953B (en) | System and method for measuring gap width and gap height of point-cloud | |
US20120215334A1 (en) | Tool path generation method and device | |
JP2015176217A (en) | Image processing device, system, image processing method, and image processing program | |
JP6129058B2 (en) | Teaching point correction apparatus and teaching point correction method | |
CN109421047A (en) | Robot system | |
JP2010276447A (en) | Position measuring apparatus, position measuring method and robot system | |
CN104318586B (en) | Adaptive morphological filtering-based motion blur direction estimation method and device | |
JP2007294739A (en) | Method of evaluating pattern shape, program, and method of manufacturing semiconductor device | |
JP6634842B2 (en) | Information processing apparatus, information processing method and program | |
JP2006224192A (en) | Correction working method and correction working device used for it | |
CN112236798B (en) | Method for quality assurance in the case of production of a product, and computing device and computer program | |
JP4924380B2 (en) | Simulation method and simulation apparatus | |
CN111633337B (en) | Reflection eliminating method and device for laser welding seam measurement | |
JP5997560B2 (en) | Start time specifying device, control device, and start time specifying method | |
CN109916352B (en) | Method and device for acquiring TCP (Transmission control protocol) coordinates of robot | |
JP2011228554A (en) | Component image processing device and method thereof | |
KR101122279B1 (en) | Method generating offset curve according to bezier curve | |
JP5411657B2 (en) | Machining simulation apparatus, machining simulation method, program, recording medium | |
CN107817761B (en) | Part processing method and system based on error iterative learning | |
Xing et al. | Optimizing dynamic measurement accuracy for machine tools and industrial robots with unscented Kalman filter and particle swarm optimization methods | |
JP2008065724A (en) | Three-dimensional cad model preparation system | |
Schlesselman | Towards a low-cost machine vision solution for collision detection on 3-acis CNC machines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100126 |