WO2018099552A1 - Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux - Google Patents

Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux Download PDF

Info

Publication number
WO2018099552A1
WO2018099552A1 PCT/EP2016/079283 EP2016079283W WO2018099552A1 WO 2018099552 A1 WO2018099552 A1 WO 2018099552A1 EP 2016079283 W EP2016079283 W EP 2016079283W WO 2018099552 A1 WO2018099552 A1 WO 2018099552A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
polynomial
voltage
hmax
auxiliary
Prior art date
Application number
PCT/EP2016/079283
Other languages
German (de)
English (en)
Inventor
Rodrigo Alonso Alvarez Valenzuela
Sascha KUBERA
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2016/079283 priority Critical patent/WO2018099552A1/fr
Priority to EP16805083.9A priority patent/EP3526893A1/fr
Publication of WO2018099552A1 publication Critical patent/WO2018099552A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a method for operating a modular Multilevelumrichters, a control device for a modular Multilevelumrichter and a modular Multilevelumrichter as such.
  • Multilevel converter which has at least one converter module with electrically connected in series submodules known.
  • the voltage is measured on the at least one converter module to form voltage actual values.
  • the voltage actual values are compared with voltage setpoints and the switches of the submodules are switched on or off when a voltage deviation value formed as a function of the difference values between the voltage actual values and the voltage setpoints deviates over a measure defined by a predetermined hysteresis band .
  • the hysteresis is modi ⁇ fied with a control number.
  • the control quantity is calculated using a measured value, namely the respective switching frequency of the
  • the invention is based on the object, a still further improved method for operating a modular
  • the invention provides that the current through the converter module to form a current measurement value is gemes ⁇ sen and the control variable is formed at least under Heranzie- hung the measured current value.
  • a significant advantage of the method according to the invention is the fact that the maximum voltage difference or the maximum voltage swing between the capacitor voltages of the submodules can be reduced by the inclusion of the current through the respective converter module. This circumstance makes it possible in an advantageous manner to reduce the switching frequency for switching the submodules, which in turn reduces the switching losses of the multilevel converter and a particularly efficient operation of the multilevel converter is possible.
  • the polynomial formation is preferably a polynomial of at least second degree, in which the current measurement value with a predetermined first constant to form a first
  • Polynomial auxiliary value is multiplied, the current measured value after squaring with a predetermined second constant is multiplied to form a second polynomial auxiliary value and the first and second polynomial auxiliary value are added.
  • Auxiliary control is formed using the current measurement, a second auxiliary control variable is formed, in response to a frequency deviation value indicating the deviation between the actual switching frequency of the submodules and a predetermined target switching frequency, and formed the control variable using the first and second auxiliary control variable becomes.
  • the frequency deviation value is preferably formed by means of an integrator which integrates a difference value indicating the difference between the actual switching frequency of the submodules and the predetermined setpoint switching frequency over a predetermined time constant.
  • the polynomial result value is preferably multiplied by the second auxiliary control variable directly or, after multiplication by a predetermined auxiliary parameter, to form the first auxiliary control variable.
  • the control variable is preferably formed by forming a difference between the first and second auxiliary control variables.
  • the above-mentioned voltage deviation value is preferred by integrating the difference value between the voltage ⁇ actual values and the voltage setpoints formed over time.
  • the voltage across the at least one converter module can be measured directly or calculated by adding the submode voltages of the switched submodules.
  • the invention also relates to a control device for controlling a Multilevelumrichters, the Minim ⁇ least comprises a converter module with electrically series-connected submodules, wherein each submodule includes at least two switches and an energy storage device and wherein the control device is designed such that the voltage at the at least one converter module determines the formation ofistsist massage, the actual voltage compares with clamping ⁇ voltage setpoints, and at least one of the switches of the submodules switches when the voltage values of the voltage command values over a predetermined through a
  • Hysteresis which is defined by an upper Hysteresebandschwelle and a lower Hysteresebandschwelle differ defined level, wherein the upper Hysteresebandschwelle, the un ⁇ tere Hysteresebandschwelle or both Hysteresebandschwellen to achieve a predetermined inverter behavior regularly or irregularly modified with a control number and wherein the control variable is formed using at least one measured value.
  • control device measures the current through the
  • Converter module to form a current reading measures and the control size at least by using the
  • the invention also relates to a
  • Multilevel converter equipped with such a control device.
  • Figure 1 shows an embodiment of an inventive
  • Figure 2 shows an embodiment of a submodule
  • Multilevel inverter according to Figure 1 can be used
  • FIG. 3 shows a further exemplary embodiment of a submodule that can be used to form converter modules in the multilevel converter according to FIG. 1,
  • FIG. 4 shows an exemplary embodiment of a method for operating the multilevel converter according to FIG. 1 and in this context an exemplary embodiment of an advantageous mode of operation of a control device of the multilevel converter according to FIG. 1, FIG.
  • FIG. 5 shows measured value profiles during operation of the multi ⁇ level converter according to FIG. 1 in the case of control of the converter modules without consideration of the current through the respective converter module,
  • FIG. 6 shows measured value profiles during operation of the multi ⁇ level converter according to FIG. 1 in the case of control of the converter modules taking into account the current through the respective converter module, that is to say in an operation according to FIG. 7 shows a further exemplary embodiment of a method for operating the multilevel converter according to FIG. 1 and, in this context, a further exemplary embodiment for an advantageous mode of operation of a control device of the multilevel converter according to FIG. 7
  • FIG. 1 A first figure.
  • FIG. 1 shows a multilevel converter 10 which has three AC voltage connections LI, L2 and L3, at each of which an alternating current can be fed into or removed from the multilevel converter 10.
  • Two DC voltage connections, at which a direct current Idc can be fed into or removed from the multilevel converter 10, are identified in FIG. 1 by the reference symbols L + and L-.
  • the DC voltage at the DC voltage terminals L + and L- carries the reference numeral Udc.
  • the Multilevelumrichter 10 has three series circuits Rl, R2 and R3, whose external connections are the connections Gleichwoodsan ⁇ L + and L- Multilevelumrichters of the tenth
  • the series circuits R1, R2 and R3 each comprise two series-connected converter modules (see reference numbers KM1-KM6).
  • Each of the converter modules KM1-KM6 has at least two submodules SM connected in series, each comprising at least two switches and one capacitor.
  • Embodiments of suitable sub-modules SM are exemplified below erläu ⁇ tert in connection with Figures 2 and 3.
  • FIG. The multilevel converter 10 has a control device 20, which is suitable for driving the submodules SM and thus for controlling the converter modules KM1-KM6.
  • the STEU ⁇ er worn 20 has for this purpose a computing device 21 and a memory 22. In the memory 22, a control program module SPM is stored, which determines the operation of the computing device 21.
  • FIG. 2 shows an embodiment for a submodule SM, which comprises two switches S, two diodes D and a gate Kondensa ⁇ C.
  • the components mentioned form a half-bridge circuit which, by activating the switches S-on the part of the control device 20 according to FIG. 1-permits unipolar operation of the capacitor C.
  • FIG. 3 shows an exemplary embodiment of a submodule SM which comprises four switches S, four diodes D and one capacitor C.
  • the components mentioned form a full-bridge circuit which, by activating the switches S-on the part of the control device 20 according to FIG. 1-permits bipolar operation of the capacitor C.
  • FIG. 4 shows an exemplary embodiment for an advantageous mode of operation of the control device 20 in the context of the operation of the multilevel converter 10 according to FIG. 1.
  • Converter module KMl forming a current measurement Ik.
  • the measured current value Ik is ⁇ fed into a Polynomsentner 100 performs Polynomtician third degree to form a Polynom threadwerts fourteenth
  • the polynomial former 100 has a first multiplier 110, which has the current measurement value Ik with a first constant kl multiplied, which makes a first
  • Polynomial value II is generated according to:
  • Multipliers 130 of the polynomial generator 100 subject the current measurement Ik to squaring and a multiplication by a second constant k2, whereby a second
  • Polynomial value 12 is formed according to:
  • the polynomial generator 100 has a magnitude and potential generator 140 and a third multiplier 150, which subject the current measurement Ik to a power of three powers and a magnitude, and subsequently perform a multiplication by a third constant k3.
  • a third polynomial auxiliary value 13 is formed according to:
  • a summation 160 of the Polynomsentners 100 adds the three Polynomangespaw II, 12 and 13 to form the already mentioned be ⁇ Polynomensewerts 14 according to:
  • auxiliary parameter kl, k2, k3, a range between -10 and +10 is suitable.
  • the auxiliary parameter k4 used to scale to a normalized value and corresponding preference ⁇ as the branch current maximum occurring in the stationary case. For example, if the power converter is dimensioned that at maximum active and reactive power in stationary operation, a branch current of 2 kA flows, then k4 would be k4 preferably k 1/2.
  • the modified polynomial result value 15 is subsequently multiplied by a frequency deviation value F in a multiplier 215 to form a first auxiliary control quantity K1.
  • the frequency deviation value F is preferably as follows averages ⁇ :
  • the control means 20 detects in addition to the measured current value Ik, the respective switching frequency f with which the sub-modules SM of the converter module of Figure 1 KM1 are currently actually operated.
  • the switching frequency f and one for the operation of the controller 20 predetermined nominal switching frequency fs in a subtractor 190 a difference formation to form a frequency difference value df underzo ⁇ gene, which is subsequently integrated by an integrator 200 under Bil ⁇ extension of the frequency offset value F.
  • the ⁇ integrator 200 operates with a time constant Ti, the German lent is smaller than the line period of the electrical network to which the Multilevelumrichter 10 is connected as shown in FIG. 1
  • the frequency deviation value F is ⁇ fed together with the first auxiliary control variable Kl in a subtractor 220, the output side generates a control variable K.
  • a control variable K With the control quantity K, an upper hysteresis threshold + Hmax and a lower hysteresis threshold -Hmax are formed.
  • the control quantity K can directly define the upper hysteresis band threshold; in this case, the un ⁇ tere Hysteresebandschwelle -Hmax is preferably formed by an inverter 230 which inverts the sign of the control variable K.
  • Hysteresebandschwelle -Hmax are fed to a switching module 300, the output side control signals ST to Umschal ⁇ th of the submodules SM of the converter module KM1 generated according to FIG. 1
  • the switching module 300 compares egg NEN voltage deviation value H having a defined in the switching module 300 hysteresis curve HK and generates the Steuersig ⁇ dimensional ST for switching the submodules when thepossab weichungswert ⁇ H a defined by the Hystersekurve HK hysteresis represented by the upper hysteresis band threshold + Hmax and the lower hysteresis band threshold -Hmax is limited leaves.
  • the switch module 300 the control signals ST that one of the switches of the submodules SM To ⁇ turn produce, produce, as, for example, from the above Veröffentli ⁇ chung "Control of Switching Frequency for a modular multilevel converter by a variable hysteresis band modulation" already known is.
  • ⁇ deviation value H is formed by integrating by an integrator 400, which subjects a voltage difference dU value of an integration with a time constant At.
  • the voltage difference value dU is formed by forming the difference between the respective actual voltage Uk of the voltage on the converter module KML according to Figure 1 as well as a respectively specified differently surrounded voltage setpoint Uks; the difference formation for forming the voltage difference value dU can be effected by a difference generator 410.
  • the capacitor difference value dUc indicates the difference between the capacitor voltage of the submodule SM of the converter module KM1 with the highest capacitor voltage and the capacitor voltage of the submodule SM with the lowest capacitor voltage of the converter module KM1.
  • FIG. 5 shows the course of the measured values F, Ik and dUc for the case in which the hysteresis thresholds + Hmax and -Hmax are set exclusively taking into account the frequency difference value df or the frequency deviation value F, as described in the abovementioned publication "Control of Switching Frequency for Modular Multilevel Converters by a Variable Hysteresis Band Modulation "is the case.
  • FIG. 6 shows the positive influence of the polymer former 100 of the control device 20 according to FIG. 4 on the course of the measured values, in particular on the course of the capacitor difference value dUc. It can be seen that HK to show more often at those points over time by dynamically changed depending on the current measuring values ⁇ Ik hysteresis curve where the Capacitor difference value dUc is large.
  • the polymer formers 100 performs in the embodiment variant ge ⁇ Gurss Figure 4 to an optimized profile of the
  • Capacitor difference dUc because the deviation between the largest and smallest capacitor voltage in the submodules SM of the converter module KM1 is smaller overall.
  • FIG. 7 shows a further exemplary embodiment of an advantageous construction or an advantageous mode of operation of the control device 20 in the context of the operation of the
  • Multilevel converter 10 according to FIG. 1.
  • FIG. 7 reference is again made to the converter module KM1 according to FIG.
  • control device 20 exclusively evaluates the current I through the device
  • the Converter module KM1 or the current measured value Ik is a polynomial formation by the
  • Polynomializer 100 subjected, as already explained in connection with the embodiment of FIG 4 de ⁇ .
  • Hysteresebandschwelle -Hmax formed directly by means of modifi ⁇ ed polynomial result value 15. Including the respective switching frequency f or the deviation df of the respective switching frequency f from a predetermined desired switching frequency fs does not serve in the embodiment according to FIG. 7 to influence the hysteresis thresholds + Hmax or -Hmax. Incidentally, the above statements apply in hang with the figure 4 in the embodiment according to FIG 7 accordingly.
  • the controller 20, as shown in Figure 1, comprise a computer 21 and a memory 22, in which the function modules shown in Figures 4 and 7 are stored as soft ⁇ ware module, for example, within the control program module SPM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention porte entre autres sur un procédé de commande d'un convertisseur multiniveau (10) modulaire qui comporte au moins un module convertisseur (KM1-KM6) avec sous-modules (SM) connectés électriquement en série, chaque sous-module (SM) comprenant au moins deux commutateurs (S) et un accumulateur d'énergie, la tension dans le ou les modules convertisseurs (KM1-KM6) étant déterminée pendant le procédé lors de la formation de valeurs réelles (Uk) de tension, les valeurs réelles de tension (Uk) étant comparées à des valeurs nominales (Uks) de tension et au moins l'un des commutateurs (S) de sous-modules (SM) étant désactivé, si une valeur d'écart (H) de tension formée en fonction des valeurs de différences entre les valeurs réelles (Uk) de tension et les valeurs nominales (Uks) de tension s'écarte au-dessus d'une mesure définie par une bande d'hystérésis donnée qui est établie par un seuil supérieur (+Hmax) de bande d'hystérésis et un seuil inférieur (−Hmax) de bande d'hystérésis, le seuil supérieur de bande d'hystérésis, le seuil inférieur de bande d'hystérésis ou les deux seuils de bande d'hystérésis étant modifiés avec une grandeur de contrôle (K) de manière régulière ou irrégulière afin d'obtenir un comportement donné d'un convertisseur et la grandeur de contrôle (K) étant réalisée au moyen d'au moins une valeur de mesure. Selon l'invention, le courant à travers le module convertisseur (KM1-KM6) est mesuré lors de la formation d'une valeur de mesure (Ik) de courant et la grandeur de contrôle (K) est réalisée au moins également au moyen de la valeur de mesure (Ik) de courant.
PCT/EP2016/079283 2016-11-30 2016-11-30 Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux WO2018099552A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2016/079283 WO2018099552A1 (fr) 2016-11-30 2016-11-30 Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux
EP16805083.9A EP3526893A1 (fr) 2016-11-30 2016-11-30 Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/079283 WO2018099552A1 (fr) 2016-11-30 2016-11-30 Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux

Publications (1)

Publication Number Publication Date
WO2018099552A1 true WO2018099552A1 (fr) 2018-06-07

Family

ID=57460504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/079283 WO2018099552A1 (fr) 2016-11-30 2016-11-30 Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux

Country Status (2)

Country Link
EP (1) EP3526893A1 (fr)
WO (1) WO2018099552A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3713073A1 (fr) * 2019-03-19 2020-09-23 Siemens Aktiengesellschaft Convertisseur de courant et son procédé de réglage
EP3829047A1 (fr) * 2019-11-28 2021-06-02 General Electric Technology GmbH Convertisseur
CN113938040A (zh) * 2021-10-11 2022-01-14 特变电工西安电气科技有限公司 一种多电平变流器控制方法及装置
EP4220918A1 (fr) * 2022-01-31 2023-08-02 Siemens Energy Global GmbH & Co. KG Convertisseur et procédé de fonctionnement du convertisseur

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017036712A1 (fr) * 2015-09-03 2017-03-09 Siemens Aktiengesellschaft Procédé de commande d'un onduleur multiniveaux modulaire, dispositif de commande pour un onduleur multiniveaux modulaire et onduleur multiniveaux modulaire doté du dispositif de commande

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017036712A1 (fr) * 2015-09-03 2017-03-09 Siemens Aktiengesellschaft Procédé de commande d'un onduleur multiniveaux modulaire, dispositif de commande pour un onduleur multiniveaux modulaire et onduleur multiniveaux modulaire doté du dispositif de commande

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CAPACITOR VOLTAGE CONTROL TECHNIQUE FOR A MODULAR CONVERTER", IP.COM JOURNAL, IP.COM INC., WEST HENRIETTA, NY, US, 10 June 2015 (2015-06-10), XP013167653, ISSN: 1533-0001 *
HASSANPOOR ARMAN ET AL: "Tolerance-band modulation methods for modular multilevel converters", 2013 15TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE), IEEE, 2 September 2013 (2013-09-02), pages 1 - 10, XP032505087, DOI: 10.1109/EPE.2013.6632010 *
KUBERA SASCHA ET AL: "Control of switching frequency for modular multilevel converters by a variable hysteresis band modulation", 2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), JOINTLY OWNED BY IEEE-PELS AND EPE ASSOCIATION, 5 September 2016 (2016-09-05), pages 1 - 7, XP032985414, DOI: 10.1109/EPE.2016.7695697 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3713073A1 (fr) * 2019-03-19 2020-09-23 Siemens Aktiengesellschaft Convertisseur de courant et son procédé de réglage
US11277076B2 (en) 2019-03-19 2022-03-15 Siemens Energy Global GmbH & Co. KG Converter and method for the control thereof
EP3829047A1 (fr) * 2019-11-28 2021-06-02 General Electric Technology GmbH Convertisseur
WO2021105455A1 (fr) * 2019-11-28 2021-06-03 General Electric Technology Gmbh Convertisseur modulaire multi-niveau
CN113938040A (zh) * 2021-10-11 2022-01-14 特变电工西安电气科技有限公司 一种多电平变流器控制方法及装置
CN113938040B (zh) * 2021-10-11 2023-09-12 特变电工西安电气科技有限公司 一种多电平变流器控制方法及装置
EP4220918A1 (fr) * 2022-01-31 2023-08-02 Siemens Energy Global GmbH & Co. KG Convertisseur et procédé de fonctionnement du convertisseur

Also Published As

Publication number Publication date
EP3526893A1 (fr) 2019-08-21

Similar Documents

Publication Publication Date Title
EP2375552B1 (fr) Procédé pour commander un onduleur
DE102010007184B4 (de) PWM-Gleichrichter
EP2730019B1 (fr) Procédé pour faire fonctionner un onduleur et onduleur tolérant aux pannes de secteur
WO2010003941A2 (fr) Connexion au réseau de cellules solaires
DE102011054002B4 (de) Dezentrale Energieerzeugungsanlage mit Einrichtung und Verfahren zur Inselnetzerkennung
EP3526893A1 (fr) Convertisseur multiniveau modulaire à réglage de fréquence de commutation par hystérésis de défaut de flux
EP1598924B1 (fr) Ondueur sans harmoniques
DE112009004627T5 (de) Leistungsumwandlungsvorrichtung
DE102019219876A1 (de) Variable nullspannungsschaltung (zvs)-hybridsteuerung für leistungsfaktorkorrekturfilter (pfc)
EP3136581A1 (fr) Convertisseur de frequence multipoints modulaire et son procede de fonctionnement
DE102011118545A1 (de) Verfahren und Vorrichtung zum Erzeugen eines Stromsteuerwerts zum Verfolgen eines maximalen Leistungspunkts in einem Solarenergieerzeugungssystem
DE102014218001A1 (de) Invertervorrichtung, Wechselrichter, Stromerzeugungssystem, sowie Verfahren zur Steuerung der Invertervorrichtung
EP2992595A1 (fr) Ensemble mutateur à mutateurs multi-étages câblés en parallèle et son procédé de commande
DE102017212462A1 (de) Galvanisch gekoppelter elektrischer Wandler
DE10153738A1 (de) Gleichrichterschaltung und Verfahren zu deren Steuerung
EP3317959B1 (fr) Procédé de commande d'un onduleur multiniveaux modulaire, dispositif de commande pour un onduleur multiniveaux modulaire et onduleur multiniveaux modulaire doté du dispositif de commande
WO2016012061A1 (fr) Système d'électrolyse
EP2641322A1 (fr) Système de distribution d'énergie avec convertisseur matriciel multiphase et procédé permettant de le faire fonctionner
WO2013023914A1 (fr) Dispositif onduleur
EP3556003B1 (fr) Convertisseur multi-niveaux et procédé de fonctionnement
EP3138176B1 (fr) Convertisseur servant à la compensation symétrique d'énergie réactive et procédé permettant le réglage dudit convertisseur
WO2016139010A1 (fr) Procédé et dispositif de détection d'une procédure de commande d'un onduleur
DE102015113632A1 (de) Inverter
DE112015000929T5 (de) Einrichtung und Verfahren zum Reduzieren von Oberschwingungen
CH714715B1 (de) Verfahren zum Regeln eines Dreiphasen-Pulsgleichrichtersystems.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16805083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016805083

Country of ref document: EP

Effective date: 20190517

NENP Non-entry into the national phase

Ref country code: DE