WO2018099341A1 - 一种用于烟气二氧化碳捕集的方形填料塔 - Google Patents

一种用于烟气二氧化碳捕集的方形填料塔 Download PDF

Info

Publication number
WO2018099341A1
WO2018099341A1 PCT/CN2017/113045 CN2017113045W WO2018099341A1 WO 2018099341 A1 WO2018099341 A1 WO 2018099341A1 CN 2017113045 W CN2017113045 W CN 2017113045W WO 2018099341 A1 WO2018099341 A1 WO 2018099341A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
heat exchange
packed tower
packing
carbon dioxide
Prior art date
Application number
PCT/CN2017/113045
Other languages
English (en)
French (fr)
Inventor
王涛
董文峰
方梦祥
岑建孟
骆仲泱
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/089,154 priority Critical patent/US10821397B2/en
Publication of WO2018099341A1 publication Critical patent/WO2018099341A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the invention relates to the technical field of flue gas carbon dioxide capture equipment, in particular to a square packed tower for flue gas carbon dioxide capture.
  • the CO 2 emissions from thermal power plants account for more than 60% of industrial CO 2 emissions. Therefore, the research on CO 2 emission reduction of thermal power plants is of great significance for China's CO 2 emission reduction.
  • the flue gas CO 2 absorption tower of power plant generally adopts the conventional orifice corrugated packing.
  • the flue gas and the absorption solution flow in the opposite direction on the packing sheet for heat transfer and heat transfer process, and the absorbent flows downward along the corrugated surface under the action of gravity.
  • the liquid film of the absorbent flows in a laminar flow along the surface of the corrugated packing, and the liquid film easily accumulates in the trough, so that the liquid film cannot uniformly cover the surface of the packing, and the liquid film at the trough is thicker and the surface renewal speed is slow, resulting in a decrease in mass transfer performance. .
  • Chinese invention patent ZL201210234334.6 discloses a structured packing alternated between a walled and a wallless liquid film adapted to a viscous absorbent, comprising a liquid collecting-initial distribution piece, a liquid uniform piece, a structured solid wall surface and a hole composition, but the above filler There are still a series of new problems such as poor uniformity of liquid film and reduction of gas-liquid mass transfer area, so there has been no large-scale production application.
  • the Chinese invention patent (CN 104607111 A) discloses a combined feed distributor that adds a double row vane feed distributor to the double tangential feed distributor to carry out the imported gas.
  • the shunting weakens the disturbance of the gas to the bottom liquid and the vortex generated by the gas in the tower.
  • the structure does not solve the problem of low gas velocity on both sides of the tower wall, and has the disadvantages of complicated structure and high installation cost.
  • the mass transfer in the flue gas carbon dioxide absorption tower mainly occurs at the top of the packed tower.
  • the bottom is high in absorption load due to high absorbent temperature, and the mass transfer efficiency is low. It is necessary to install an interstage cooling device in the middle of the packed tower, but generally the tray will absorb.
  • the agent is taken out of the tower for cooling, including trays, plate heat exchangers and two circulating pumps, which have problems such as high investment cost and complicated process.
  • the object of the present invention is to provide a square packed tower for flue gas carbon dioxide capture in view of the deficiencies of the prior art, which solves the problems of low mass transfer efficiency of the packed tower, uneven gas phase distribution in the tower, and high investment cost.
  • a square packed tower for flue gas carbon dioxide capture comprising an absorbent initial distributor at the lower end of the flue gas outlet, a riser packing at the lower end of the absorbent initial distributor, and a radiant flow-through gas distributor for the introduction of flue gas carbon dioxide at the bottom of the square packed tower;
  • the radiation guiding gas distributor includes a gas inlet pipe, a butterfly bottom plate, a butterfly sealing plate and a plurality of radiant deflectors; the butterfly bottom plate is in communication with an outlet of the gas inlet pipe; the radiant deflector is along The outlet of the gas inlet pipe is disposed radially between the butterfly bottom plate and the butterfly seal plate.
  • the radiant-conducting gas distributor is generally installed at the bottom of the square packed tower, and the inlet of the gas inlet tube is installed on the tower wall of the square packed tower. After the gas enters the gas inlet pipe, the gas is divided into multiple airflows at a uniform speed through the radiation deflector. Due to the axial current limiting action of the butterfly seal plate, the gas flows uniformly to the tower wall and collides with it and then flows to the top of the tower to pass through.
  • the radial splitting and axial flow restriction of the inlet gas increase the gas flow velocity on both sides of the tower wall, and weaken the vortex phenomenon generated by the gas above the distributor, improve the gas phase uniformity and reduce the resistance loss.
  • the plurality of radiant deflector disposed between the butterfly base plate and the butterfly seal plate is symmetric about the center of the outlet of the gas inlet pipe.
  • the angle between the adjacent radiation deflectors is 5-20 degrees. Further preferably, the angle between the adjacent radiation deflectors located in the middle of the outer boundary of the butterfly substrate is 15-20 degrees. This arrangement divides the gas into multiple streams at equal speed, which reduces the vortex created by the gas above the distributor.
  • both the butterfly bottom plate and the butterfly sealing plate are parallel and the outer boundary shape is the same. This arrangement prevents the absorption liquid at the upper end of the square packed tower from entering the gas inlet pipe.
  • said radiant baffle is a contoured rectangular plate having a radial extent along the gas inlet pipe outlet equal to a distance from the outlet boundary of the gas inlet pipe to the outer boundary of the butterfly plate.
  • the arrangement of the radiant baffle increases the flow guiding effect of the baffle, and can divide the gas into multiple streams at a uniform speed as much as possible.
  • the axial height h of the radiant deflector along the gas inlet pipe outlet ranges from 0.65 d ⁇ h ⁇ 3 d, and d is the diameter of the gas inlet pipe.
  • the outer boundary of the butterfly-shaped bottom plate is equal to the distance ⁇ from the radial direction of the gas inlet pipe outlet to the square packed tower wall.
  • the arrangement ensures that the radial distance of the gas outlet to the wall of the tower is the same, so that the gas passing through the radiant deflector flows uniformly to the tower wall and collides with it and then flows to the top of the tower to prevent gas drift in the wall area and the corner area. Reduce the resistance.
  • the outer boundary of the butterfly base plate along the radial direction of the gas inlet pipe outlet to the square packed tower wall ⁇ ranges from 0.4 to 0.9 (ad), where a is the side of the square packed tower cross section Long, d is the diameter of the gas inlet pipe.
  • a waterproof ring is provided at a position where the butterfly bottom plate communicates with the gas inlet pipe outlet.
  • the waterproof ring is effective in preventing the absorption liquid from entering the gas inlet pipe.
  • the waterproof ring has a height of 50 to 100 mm.
  • a mist eliminator is provided at the flue gas outlet of the square packed tower.
  • the absorbent initial distributor comprises a distribution tube for introducing an absorbent, a first-stage tank at a lower end of the distribution tube, and a second-stage tank at a lower end of the first-stage tank; and the first-stage tank is provided for collecting the distribution tube downstream
  • the buffer tank of the absorbent, the bottom of the first tank is further provided with an overflow hole; the second tank is provided with an overflow tank for collecting the absorbent flowing down the overflow hole, and the overflow tank is respectively provided with a flow stop board.
  • the vertical plate type packing is composed of a plurality of packing sheets provided with a supporting diversion drum package at the upper end; the packing piece is provided with a guiding groove penetrating through the packing piece, and the guiding groove is located at a lower side of the supporting guiding drum package a flow guiding window is arranged outside the guiding groove.
  • the vertical plate type packing is composed of a plurality of packing sheets which are stacked on each other according to the tower diameter to form a structured packing; adjacent packing pieces are abutted by the supporting guiding bulging to form a top guiding structure of the absorbent, and the liquid phase unevenness from the upper packing is eliminated.
  • the effect is to increase the film formation rate of the absorbent on the surface of the filler sheet; the vertical plate type filler adopts a vertical plate structure with a small gas phase pressure loss, which improves the problem of poor fluidity of the high viscosity CO 2 absorbent, and provides a diversion flow at the lower portion.
  • the window structure is beneficial to the lateral diffusion of the gas phase and reduces the pressure loss;
  • the diamond-shaped diversion groove is formed in the lower part of the vertical plate type filler, which is favorable for forming the double-sided liquid film and enhancing the turbulence performance of the absorbent, and improving the mass transfer efficiency.
  • the filler sheet is made of a polypropylene flat plate.
  • the filler sheets are disposed in parallel with each other, and positions on the adjacent filler sheets where the flow guiding grooves are disposed are shifted from each other. Easy to install in the packed tower, which can increase the specific surface area.
  • the top of the flow guiding window is in contact with an adjacent packing sheet. Conducive to lateral diffusion of the gas phase, reducing pressure loss.
  • the shape of the support diversion drum is a prism; the area of all the support diversion drums on one side of the filler sheet occupies 1/6 to 1/4 of the area of one side of the filler sheet.
  • the supporting diversion drum is a quadrangular table, the height of the drum is 2-10 mm, and the bulge is 20-60° in the vertical direction. This arrangement can attenuate the amplification effect caused by the unevenness of the top absorbent flowing downward.
  • the support diversion drum kits are sequentially staggered on both sides of the upper end of the filler sheet.
  • the support diversion drum is a convex rib on one side of the packing sheet and a corresponding concave rib on the other side of the packing sheet.
  • the spacing between the flow guiding grooves provided on the packing sheet is the same, and the spacing is 5-15 mm.
  • the flow guiding groove is a diamond shaped flow guiding groove. Further preferably, the flow guiding groove is square and has a side length of 4 to 10 mm.
  • the flow guiding window is composed of two symmetrically disposed baffles, and the two baffles are respectively disposed on the lower side edges of the rhombic guiding grooves to form an upward opening.
  • the flow guiding window is arranged such that the absorbent is branched along the flow guiding window on both sides of the packing sheet, further increasing the specific surface area and reducing the pressure drop.
  • the flow guiding windows are sequentially arranged alternately on both sides of the packing sheet.
  • an interstage cooler and a structured packing are further disposed between the vertical plate type filler and the radiation guiding type gas distributor; the structured packing is disposed between the interstage cooler housing and the square packed tower wall .
  • the interstage cooler comprises a casing and a plurality of heat exchanger plates; the heat exchanger plates are stacked on each other in the casing, and the heat exchanger plates are composed of two symmetrical heat exchanger plates;
  • a heat exchange channel is disposed between the two symmetric heat exchange plates of the pair of heat exchange plates, and the casing is correspondingly provided with a coolant inlet and a coolant outlet connected to the heat exchange passage;
  • a flue gas absorption passage is disposed between the pair of heat exchange plates, and the casing is correspondingly provided with a flue gas inlet and an absorbent inlet connected to the flue gas absorption passage; the two sides of the heat exchange plate are respectively provided with protrusions and Groove.
  • the interstage cooler is generally installed in the middle and lower part of the flue gas absorption tower. Since the mass transfer in the flue gas absorption tower mainly occurs at the top of the absorption tower, the temperature of the absorption liquid reaching the bottom of the absorption tower is too high, which may result in low absorption load. Mass transfer efficiency is reduced. After the interstage cooler is installed, the absorption liquid is controlled by the interstage cooler to control the temperature at the most suitable absorption temperature to improve the mass transfer efficiency.
  • protrusions and grooves are respectively arranged on both sides of the heat exchange plate, which can increase the contact area of gas-liquid mass transfer; and also has a diversion function, since the absorbent will form a liquid film on the outer side of the heat exchanger plate.
  • the protrusions and the grooves make the liquid film evenly distributed on the outer side of the heat exchange plate, preventing the partial liquid film from being too thick and reducing the mass transfer efficiency.
  • the groove is formed by a projection on the other side, the height of the projection and the groove being 2 to 10 mm.
  • This arrangement can facilitate the preparation of the heat exchanger plates while further increasing the contact area of the gas-liquid mass transfer.
  • the projections are semi-circular projections.
  • the heat exchange plate is a stainless steel plate having a thickness of 0.4 to 2 mm.
  • the lower end of the heat exchange plate of the pair of heat exchange plates is respectively provided with an inner closed flange connecting the other heat exchange plate.
  • the two symmetrical heat exchange plates are closed to each other by the upper and lower ends of the inner closed flange, and communicate with the coolant inlet and the coolant outlet on the casing to form a heat exchange passage.
  • the inner closed flange has a zigzag cross section, and the arrangement is convenient for installation and fixing.
  • the housing is provided with a toothed card slot for fixing the inner closed flange at the flue gas inlet and the absorbent inlet.
  • the toothed card slot not only functions to fix the inner closed flange, so that the heat exchange plate forms a closed heat exchange passage in the inner side, and facilitates the installation and disassembly of the heat exchanger plate in the housing.
  • the left and right sides of the heat exchange plates of the pair of heat exchange plates are respectively provided with outer closed flanges for connecting pairs of adjacent heat exchange plates.
  • Two pairs of adjacent heat exchange plates are closed by the outer closed hem so that the left and right sides are closed to each other, and a flue gas absorption passage is formed with the flue gas inlet and the absorbent inlet on the casing, thereby realizing the flue gas absorption passage and exchange.
  • the hot channels are separated from each other.
  • the outer closed hemming has a zigzag cross section.
  • the arrangement is easy to install and fix, and secondly, the outer closed hemming also acts as a flow guiding agent for the absorbent.
  • the flue gas absorption passage has a channel pitch of 4 to 20 mm and a geometric specific surface area of 80 to 300 m 2 /m 3 .
  • the projections and the grooves are sequentially arranged alternately. Further increase the flow guiding effect on the absorbent.
  • the projections on the heat exchange plates are fixed to the projections on the adjacent heat exchange plates. This arrangement provides overall firmness while the mutually fixed projections also act to direct the flow of the absorbent to further evenly disperse the absorbent.
  • a corrugated packing layer is further disposed between the interstage cooler and the radiation guiding gas distributor.
  • a polypropylene orifice corrugated filler layer having a high liquid phase mass transfer coefficient.
  • an absorbent collection and redistributor is provided between the riser pack and the interstage cooler.
  • the absorbent collection and redistributor includes an absorbent collection plate, an absorbent collector at the lower end of the absorbent collection plate, a distribution tube in communication with the absorbent collector, a primary tank at the lower end of the distribution tube, and a lower end of the primary tank. a secondary tank; the first tank is provided with a buffer for collecting the downstream flow of the distribution tube The sump, the bottom of the first tank is further provided with an overflow hole; the second tank is provided with an overflow tank for collecting the absorbent flowing down the overflow hole, and the baffles are respectively provided with baffles on both sides thereof.
  • the square packed tower adopts a reinforced concrete main structure and a FRP anti-corrosion lining, and the pre-buried ox leg support in the tower body is connected with the above-mentioned tower inner piece.
  • the riser-type filler and corrugated packing layer are mounted in a square packed tower by a support grid and a truss beam.
  • the radiation-conducting gas distributor provided in the square packed tower provided by the invention reduces the vortex phenomenon generated by the flue gas carbon dioxide above the distributor, improves the uniformity of the gas phase, and reduces the resistance loss;
  • the square packing tower provided by the invention is provided with a vertical plate type packing, and the packing piece, the guiding groove and the diversion window form a mass transfer passage, and under the cooperation of the three, the guided diversion drum is used to guide the flow.
  • the absorbent will form staggered small corrugations on both sides of the filler sheet, which improves the specific surface area and reduces the pressure drop;
  • the square packed tower provided by the invention is provided with an interstage cooler, and the absorbent is controlled by the interstage cooler to control the temperature at the most suitable absorption temperature to improve the mass transfer efficiency;
  • the square packed tower provided by the invention adopts a reinforced concrete tower body to reduce the manufacturing cost of the flue gas carbon dioxide trapping device.
  • FIG. 1 is a schematic structural view of a square packed tower in an embodiment
  • FIG. 2 is a schematic structural view of an absorbent initial distributor in an embodiment
  • FIG. 3 is a schematic structural view of a filler sheet in a vertical plate type packing in the embodiment
  • Figure 4 is a right side view of the filler sheet in the riser type packing in the embodiment
  • Figure 5 is an enlarged view of the area A in Figure 3;
  • Figure 6 is an enlarged view of a region B in Figure 3;
  • Figure 7 is a schematic view showing the structure of an absorbent collecting and redistributing device in the embodiment.
  • Figure 8 is a schematic structural view of an interstage cooler in the embodiment.
  • Figure 9 is a schematic structural view of an interstage cooler housing in the embodiment.
  • Figure 10 is a schematic structural view of a heat exchange plate in the embodiment.
  • Figure 11 is a partial enlarged view of the area C in Figure 10;
  • Figure 12 is a right side view of a pair of partial heat exchange plates in the embodiment.
  • Figure 13 is a plan view of a pair of partial heat exchange plates in the embodiment.
  • Figure 14 is a schematic structural view of a radiation guiding gas distributor in an embodiment
  • Figure 15 is a right side view of the radiation guiding gas distributor of the embodiment.
  • Figure 16 is a plan view showing the radiation guiding gas distributor installed in the square packed tower in the embodiment.
  • Figure 17 is a schematic view showing the axial section speed monitoring point above the radiation guiding gas distributor in the square packed tower;
  • Figure 18 is a gas flow diagram of a square packed column
  • Figure 19 is a graph showing the trend of uneven distribution of axial distribution above the radiation guiding gas distributor in a square packed tower.
  • the square packed tower 1 adopts a reinforced concrete main structure and a FRP anticorrosive lining.
  • the square packed tower 1 is installed with a demister 102, an absorbent initial distributor 2, and a vertical plate packing 3 from the top of the tower to the bottom of the tower.
  • the top of the square packed tower 1 is provided with a flue gas outlet 101, and the bottom of the tower is provided with an enrichment liquid outlet 105.
  • the mist eliminator 102 is installed at the flue gas outlet 101 of the square packed tower 1.
  • the absorbent initial distributor 2 includes a distribution tube 201 through which an absorbent is introduced, a primary tank 202 at the lower end of the distribution tube 201, and a secondary tank 203 at the lower end of the primary tank 202.
  • the absorbent inlet of the distribution tube 201 extends outside the square packed column 1 to facilitate the passage of the absorbent.
  • the first stage groove 202 is disposed in an H shape and has a shape larger than the distribution pipe 201, and the first stage groove 202 is provided with a buffer groove 204 for collecting the absorbent flowing down the distribution pipe 201, and the first stage groove 202 is further provided with an overflow hole at the bottom.
  • the secondary tank 203 is provided with an overflow tank 206 for collecting the absorbent flowing down the overflow hole 205.
  • the overflow tanks 206 are arranged in a strip shape and arranged in parallel, and a baffle is respectively arranged on each side of each overflow tank 206. 207.
  • the riser-type packing 3 is composed of a plurality of packing sheets 301 arranged in parallel, and the vertical-plate packing 3 is attached to the upper end of the square packed tower, and only one of the packing sheets 301 is shown.
  • Filler sheet The 301 is rectangular and made of polypropylene, and the shape is determined according to the square packed tower 1.
  • the two sides of the upper end of the packing piece 301 are respectively provided with a supporting diversion drum package 302.
  • the shape of the supporting diversion drum package 302 is a quadrangular table, and the height of the drum bag is 4 mm, and the drum package is 45° to the vertical direction, and the geometric ratio is The surface area is 275 m 2 /m 3 .
  • the support diversion drum packages 302 are sequentially staggered on both sides of the upper end of the packing sheet 301, and are convex ribs on the side of the packing sheet 301, and corresponding concave ribs are formed on the other side of the packing sheet 301.
  • the area of all of the supporting guide drums 302 on one side of the side of the packing sheet 301 is 1/5 of the area of one side of the packing sheet 301.
  • the riser-type packing 3 is fixedly stacked on each other by the ribbed surface of the supporting guide blister 302 on the packing sheet 301, and a flow guiding structure is formed between the two fixed supporting guide drum packs 302, so that the absorbent distribution entering the vertical-plate packing 3 is formed. Uniform, increasing the film formation rate.
  • the filler sheet 301 is further provided with a diamond-shaped guide groove 304 penetrating through the filler sheet 301.
  • the rhombic guide groove 304 is a square having a side length of 6 mm, and the rhombic guide grooves 304 are alternately arranged in a row and a row on the filler sheet.
  • the spacing between adjacent diamond-shaped guide channels 304 is the same and the spacing is 10 mm, and the diamond-shaped guide grooves 304 are all located on the lower side of the supporting guide drum package 302.
  • the opening positions of the flow guiding grooves 304 between the adjacent packing sheets 301 are different, and therefore the riser type packing 3 is sequentially formed by the packing sheets 301 having two different shapes.
  • the positions of the diamond-shaped guide grooves 304 on the adjacent packing sheets 301 are shifted from each other, and the height of the supporting flow guiding drums 302 is half of the height of the guiding windows 303, so that the tops of the guiding windows 303 are in contact with the adjacent packing sheets 301. .
  • a flow guiding window 303 is disposed outside the diamond-shaped guide groove 304, and the flow guiding window 303 is sequentially disposed on both sides of the packing sheet 301.
  • the flow guiding window 303 is composed of two symmetrically disposed baffles 305.
  • the baffles 305 are triangular, and the two baffles 305 are respectively disposed on the lower side edges of the rhombic guiding grooves 304 to form an upward opening.
  • the packing sheet 301, the rhombic guiding groove 304 and the diversion window 303 form a mass transfer passage. Under the cooperation of the three, the absorbent which is guided by the supporting diversion drum package 302 forms staggered small ripples on both sides of the packing sheet 301. , increase the specific surface area, reduce the pressure drop, and reduce the manufacturing this.
  • the riser type packing 3 is fixedly mounted in the first mounting frame 1 by the first mounting frame 103, and the first mounting frame 103 is composed of a supporting grille and a truss beam.
  • the absorbent collection and redistributor 4 includes an absorbent collection plate 401, an absorbent collector 402 at the lower end of the absorbent collection plate 401, a distribution tube 405 in communication with the absorbent collector 402, and a distribution tube 405.
  • the lower stage primary tank 406 and the secondary tank 407 at the lower end of the primary tank 406, due to the distribution tube 405 in communication with the absorbent collector 402, the lower primary tank 406 and the secondary tank 407 structure and the absorbent initial distributor 2 The same in the same, no longer described here.
  • the absorber collector 402 is surrounded by the tower wall siege reservoir 403, and the absorbent collecting plate 401 is disposed in a zigzag shape, and the lower side flange is further provided with a guiding groove to guide the absorbent into the liquid storage tank 403. As the liquid level rises, the absorbent re-enters the distribution tube 405.
  • the interstage cooler 5 is installed at the lower middle portion of the square packed tower 1, and the interstage cooler 5 includes a casing 501 and a plurality of heat exchanger plate pairs, and the structured packing is disposed in the casing 501 of the interstage cooler. Between the wall of the square packed tower 1 and the wall of the column, it is used to fill the gap (not shown).
  • the pair of heat exchange plates are stacked on each other in the casing 501.
  • the pair of heat exchange plates are composed of two symmetrical heat exchange plates 502, and the heat exchange plate 502 is a stainless steel plate with a thickness of 1 mm.
  • the casing 501 is a rectangular parallelepiped, and the specific shape is determined according to the square packed tower 1.
  • the casing 501 is open at the upper and lower sides, the upper opening is an absorbent inlet 503 and a flue gas outlet, and the lower opening is a flue gas inlet 504 and an absorbent outlet.
  • the left and right sides of the casing 501 are respectively provided with circular openings, the circular opening on the right side serves as a coolant inlet 505, the left circular opening serves as a coolant outlet 506, and the left and right circular openings are respectively installed to the wall of the square packed tower 1 for communication. Circulate cooling water.
  • the heat exchange plates 502 in the interstage cooler 5 have the same shape and shape, and the two heat exchange plates 502 are installed in parallel to form a pair of heat exchange plates, and the heat exchange plates are stacked in turn.
  • the mounting direction of the pair of heat exchange plates is perpendicular to the upper and lower sides of the housing 501, respectively.
  • the left and right sides of the casing 501 are circularly opened.
  • the two sides of the heat exchange plate 502 are respectively provided with a protrusion 512 and a groove 513, and the groove 513 is formed by the protrusion 512 on the other side, and the height of the protrusion 512 and the groove 513 is 4 mm. .
  • a first row of grooves 513 are provided at intervals, and a second row is provided with protrusions 512, which are arranged alternately in this order.
  • the protrusion 512 on the heat exchange plate 502 is fixed to the protrusion 512 on the adjacent heat exchange plate 502.
  • the height of the protrusion 512 on the outer side of the heat exchange plate 502 is equal to the height of the outer closed flange 511, and the heat exchange plate
  • the height of the groove 513 on the inner side of the 502 is also equal to the height of the inner closed flange 510.
  • the mutually fixed projections 512 also act to direct the flow of the absorbent to further uniformly disperse the absorbent.
  • the upper and lower ends of the heat exchange plates 502 of the pair of heat exchange plates are respectively provided with inner closed flanges 510 connected to the other heat exchange plates 502.
  • the two symmetrical heat exchange plates 502 are closed to each other by the upper and lower ends of the inner closed flange 510, and communicate with the coolant inlet 505 and the coolant outlet 506 on the casing 501 to form a cooling passage 508.
  • the inner closed hemming 510 has a zigzag cross section, and the housing 501 is provided with a toothed card slot 507 for fixing the inner closed hemming 510 at the flue gas inlet 504 and the absorbent inlet 503.
  • the toothed card slot 507 not only serves to fix the inner closed flange 510, so that the heat exchange plate forms a closed cooling passage 508 inwardly, and facilitates the attachment and detachment of the heat exchanger plate in the housing 501.
  • the left and right sides of the heat exchange plate 502 of the heat exchange plate are respectively provided with outer closed flanges 511 for connecting pairs of adjacent heat exchange plates, and the outer closed flanges 511 have a zigzag cross section, and have a flow guiding effect on the absorbent.
  • Two pairs of adjacent heat exchange plate pairs are closed by the outer closed flange 511 so that the left and right sides are closed to each other, and the flue gas inlet passage 504 and the absorbent inlet 503 on the casing 501 form a flue gas absorption passage 509, and the flue gas is absorbed.
  • the channel 509 has a channel pitch of 12 mm and a geometric specific surface area of 190 m 2 /m 3 , so that the flue gas absorption passage 509 and the cooling passage 508 are separated from each other.
  • a corrugated packing layer 6 is installed at the lower end of the interstage cooler 5, and the corrugated packing layer 6 is a polypropylene orifice corrugated packing layer having a high liquid phase mass transfer coefficient.
  • the corrugated packing layer 6 is mounted and fixed to the square packed tower 1 by the second mounting frame 104, and the second mounting frame 104 includes a supporting grid and a truss beam.
  • the radiant-conducting gas distributor 7 includes a gas inlet tube 701, a butterfly floor 702, a butterfly seal 703, and a plurality of radiant baffles 704.
  • the tower wall, and the outlet 707 of the gas inlet pipe is welded to the butterfly floor 702 such that the gas inlet pipe 701 is in communication with the butterfly floor 702.
  • the four corners of the butterfly bottom plate 702 are respectively fixed to the two support beams 705 by screws, and the support beam 705 is fixedly fixed to the support structure of the cow leg (not shown) mounted on the tower wall of the square packed tower 1, and is fixed.
  • the role of the overall distributor The butterfly bottom plate 702 is provided with a waterproof ring 706 at a position communicating with the outlet 707 of the gas inlet pipe.
  • the height of the waterproof ring 706 is 75 mm.
  • the outlet 707 of the gas inlet pipe is located at the center of the square packed column 1, and the butterfly bottom plate 702 is also disposed at the center of the square packed column 1.
  • the radiant baffle 704 is disposed between the butterfly base plate 702 and the butterfly seal plate 703 along the radial direction of the gas inlet pipe outlet 707.
  • the radiant baffle 704 is located outside the boundary of the outlet 707 of the gas inlet pipe, perpendicular to the gas inlet pipe.
  • the tangential line of the exit 707 boundary, and the shape center of all of the radiant baffles 704 is symmetric with respect to the center of the outlet 707 of the gas inlet tube, wherein both the butterfly bottom plate 702 and the butterfly seal 703 are parallel and the outer boundary shape is the same.
  • the shape of the radiation deflector 704 is a contoured rectangular plate having a height of 1.5d and a number of 32 pieces, which are vertically fixed between the butterfly base plate 702 and the butterfly seal plate 703 by welding.
  • the angle between the two radiant baffles 704 located between the four outer boundaries of the butterfly bottom plate 702 is 20 degrees, and the angle between the remaining radiant baffles 704 is 10 degrees.
  • the radial width of the radiant baffle 704 along the gas inlet tube outlet 707 is equal to the distance from the outlet 707 boundary of the gas inlet tube to the outer boundary of the butterfly floor 702; at the same time, the outer boundary of the butterfly floor 702 is along the gas inlet tube outlet 707.
  • the flow field in the square packed column 1 in the specific embodiment was simulated by Fluent software, and the gas flow through the radiation guiding type gas distributor 7 and the gas velocity distribution unevenness above the radiation guiding type gas distributor 7 were analyzed.
  • the change in pressure during the flow of air within the radiation-conducting gas distributor 7 is negligible, thus treating air as an incompressible fluid.
  • the air flows turbulently in the tower, and is described by the continuity equation, the Reynolds average N-S equation, the turbulent energy k, and the transport equation of the turbulent energy loss rate ⁇ .
  • the distribution performance of the distributor is characterized by the uneven distribution of gas velocity.
  • n is the number of interface gas velocity monitoring points above the distributor.
  • the gas flows through the distributor and the current sharing action, and the flow lines are evenly distributed above the distributor, and the eddy current phenomenon is substantially eliminated.
  • the requirements for the gas distributor is

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种用于烟气二氧化碳捕集的方形填料塔,该方形填料塔(1)包括位于烟气出口(101)下端的吸收剂初始分布器(2)、吸收剂初始分布器(2)下端的竖板式填料(3)以及位于方形填料塔(1)塔底用于通入烟气二氧化碳的辐射导流式气体分布器(7);辐射导流式气体分布器(7)包括气体进口管(701)、蝶形底板(702)、蝶形封板(703)和若干辐射导流板(704);蝶形底板(702)与气体进口管(701)的出口连通;辐射导流板(704)沿着气体进口管(701)的出口径向设置于蝶形底板(702)和蝶形封板(703)之间。

Description

一种用于烟气二氧化碳捕集的方形填料塔 技术领域
本发明涉及烟气二氧化碳捕集装备技术领域,具体涉及一种用于烟气二氧化碳捕集的方形填料塔。
背景技术
火电厂烟气CO2排放量占工业CO2排放量的60%以上,因此火电厂烟气CO2减排研究的开展对于我国CO2减排具有重要意义。
大规模捕集燃煤电厂CO2吸收塔常采用碳钢塔身、不锈钢塔内件和不锈钢规整填料,其投资成本占电厂烟气CO2化学法捕集系统投资的30~40%;塔径大、填料层高径比小,采用不锈钢规整填料对桁架支撑梁要求高;烟气通过气体分布器分布容易引起气体偏流和压降增大,影响气液两相在填料层的传质效果;电厂烟气CO2捕集过程采用方形钢筋水泥填料塔,为减弱气相分布的端效应,必须设置性能优良的进气初始分布器。
电厂烟气CO2吸收塔一般采用常规孔板波纹填料,烟气与吸收溶液在填料板片上逆向流动进行传热、传热过程,吸收剂在重力作用下呈膜状沿波纹表面向下流动。吸收剂液膜沿波纹填料表面呈层流流动,液膜容易在波谷处积聚,使得液膜不能均匀地覆盖填料表面,同时波谷处液膜较厚、表面更新速度较慢,导致传质性能下降。因此,需要一种高比表面积、高成膜率、低压降和制造成本低廉的规整填料结构。中国发明专利ZL201210234334.6公开一种适应粘性吸收剂的有壁与无壁液膜交替的规整填料,包括液体收集-初分布件、液体均布件、结构化固体壁面以及孔洞组成,但上述填料尚存在着液 膜均布较差和气液传质面积减小等一系列新的问题,所以始终未见大规模生产应用。
大型塔器常采用双切向环流式和双列叶片式气体分布器。双切向环流式气体分布器气体经过弧形导流向下,再通过内筒折流向上,因此存在塔壁区域流速低的问题,由于方塔的特殊结构形式,会引起壁面及夹角区域气相分布严重不均匀的现象。双列叶片式气体分布器应用于方塔时,塔壁两侧的气速相对较高,而中央部分气流向下并产生漩涡,导致气相分布质量较差。经对现有文献检索发现,中国发明专利(CN 104607111 A)公布一种组合式进料分布器,在双切向进料分布器中加设双列叶片进料分布器,对进口的气体进行分流,减弱气体对塔底液体的扰动和气体在塔内产生的漩涡现象,但该结构没有解决塔壁两侧气速较低的问题,且存在结构复杂、安装成本高等缺点。
烟气二氧化碳吸收塔中传质主要发生在填料塔顶部,底部由于吸收剂温度高导致吸收负荷低,传质效率较低,需要在填料塔中部设置级间冷却装置,但一般设置塔板将吸收剂引出塔外进行冷却,包括塔板、板式换热器和2个循环泵等设备,存在投资费用高、流程复杂等问题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种用于烟气二氧化碳捕集的方形填料塔,解决了填料塔传质效率低、塔内气相分布不均和投资成本高等问题。
本发明解决上述技术问题所提供的技术方案为:
一种用于烟气二氧化碳捕集的方形填料塔,所述方形填料塔包括位于烟气出口下端的吸收剂初始分布器、吸收剂初始分布器下端的竖板式填料以及 位于方形填料塔塔底用于通入烟气二氧化碳的辐射导流式气体分布器;
所述辐射导流式气体分布器包括气体进口管、蝶形底板、蝶形封板和若干辐射导流板;所述蝶形底板与气体进口管的出口连通;所述辐射导流板沿着气体进口管的出口径向设置于蝶形底板和蝶形封板之间。
所述辐射导流式气体分布器一般安装在方形填料塔塔底,而气体进口管的入口则安装在方形填料塔的塔壁上。气体进入气体进口管后,经过辐射导流板,将气体分成均速的多股气流,由于蝶形封板轴向限流作用,气体均匀流向塔壁并与其碰撞后折向塔顶流动,通过对进口气体径向分流、轴向限流提高了塔壁两侧气体流速,并减弱了气体在分布器上方产生的漩涡现象,提高气相均匀度、降低阻力损失。
作为优选,所述设置于蝶形底板和蝶形封板之间的若干辐射导流板中心对称于气体进口管的出口中心。
作为优选,所述相邻辐射导流板之间的夹角为5~20度。进一步优选,所述位于蝶形底板外边界中间的相邻辐射导流板之间的夹角为15~20度。该设置使得气体分成均速的多股气流,减弱了气体在分布器上方产生的漩涡现象。
作为优选,所述蝶形底板和蝶形封板两者平行且外边界形状相同。该设置能够防止方形填料塔上端的吸收液进入气体进口管。
作为优选,所述辐射导流板为等高矩形板,所述辐射导流板沿着气体进口管出口的径向宽度等于气体进口管的出口边界到蝶形底板外边界的距离。该辐射导流板的设置,提高导流板的导流作用,能够尽可能使得气体分成均速的多股气流。
作为优选,所述辐射导流板沿气体进口管出口的轴向高度h的取值范围:0.65d≤h≤3d,d为气体进口管的直径。通过调整轴向高度h与气体进口管的直径d的关系,使得经过气体进口管的气体能够快速分流。
作为优选,所述蝶形底板的外边界沿着气体进口管出口的径向到方形填料塔塔壁的距离Δ均相等。该设置保证气体出口到塔器壁面的径向距离均相同,使得经过辐射导流板后的气体均匀流向塔壁并与其碰撞后折向塔顶流动,防止壁面区域及边角区域的气体偏流,减小阻力。
作为优选,所述蝶形底板的外边界沿着气体进口管出口的径向到方形填料塔塔壁的距离Δ取值范围:0.4~0.9(a-d),其中a为方形填料塔横截面的边长,d为气体进口管的直径。进一步减弱了气体在分布器上方产生的漩涡现象,提高气相均匀度、降低阻力损失。
作为优选,所述蝶形底板与气体进口管出口连通处设有防水环。防水环能够有效得防止吸收液进入气体进口管。
进一步优选,所述防水环的高度为50~100mm。
作为优选,所述方形填料塔的烟气出口处设有除雾器。
作为优选,所述吸收剂初始分布器包括通入吸收剂的分布管、位于分布管下端的一级槽以及一级槽下端的二级槽;所述一级槽内设有用于收集分布管下流的吸收剂的缓冲槽,一级槽底部还设有溢流孔;所述二级槽设有收集溢流孔下流的吸收剂的溢流槽,所述溢流槽两侧分别设有挡流板。
作为优选,所述竖板式填料通过上端设有支撑导流鼓包的若干填料片相互堆叠组成;所述填料片设有贯穿填料片的导流槽,所述导流槽位于支撑导流鼓包下侧;所述导流槽外侧设有导流窗。
竖板式填料是由若干填料片,按塔径要求相互堆叠组合成规整填料;相邻填料片通过支撑导流鼓包相抵,形成吸收剂的顶部导流结构,消除来自上层填料的液相不均匀的影响,提高吸收剂在填料片表面的成膜率;竖板式填料采用气相压力损失较小的竖直板结构,改善高粘度的CO2吸收剂流动性较差的问题,并在下部设置导流窗结构,有利于气相横向扩散,降低压力损失; 竖板式填料下部开设菱形导流槽,有利于形成双面液膜和增强吸收剂的湍动性能,提高传质效率。
作为改进,所述填料片由聚丙烯平板压制成。
作为改进,所述填料片之间相互平行设置,且相邻填料片上设置导流槽的位置相互错开。便于安装于填料塔内,能够提高比表面积。
作为改进,所述导流窗的顶部与相邻的填料片接触。有利于气相横向扩散,降低压力损失。
作为改进,所述支撑导流鼓包的形状为棱台;所述填料片一个侧面上端所有的支撑导流鼓包所占的面积为填料片一个侧面面积的1/6~1/4。进一步改进,所述支撑导流鼓包为四棱台,鼓包高度为2~10mm,鼓包与竖直方向呈20~60°。该设置能够减弱顶部吸收剂往下流动时由于不均匀所引起的放大效应。
作为改进,所述支撑导流鼓包依次交错设置于填料片上端两侧面。
作为改进,所述支撑导流鼓包在填料片一侧为凸棱台,而在填料片另一侧则形成对应的凹棱台。
作为改进,所述填料片上设置的导流槽之间的间距相同,且间距为5~15mm。
作为改进,所述导流槽为菱形导流槽。进一步优选,所述导流槽为正方形,边长为4~10mm。
作为改进,所述导流窗由两个对称设置的导流片组成,两个导流片分别设置于菱形导流槽的下侧边沿形成向上的开口。该导流窗的设置,使得吸收剂会沿着导流窗分流于填料片的两侧面,进一步提高了比表面积、降低了压降。
作为改进,所述导流窗依次交错设置于填料片两侧面。
作为改进,所述竖板式填料与辐射导流式气体分布器之间还设有级间冷却器和规整填料;所述规整填料设置于级间冷却器的壳体与方形填料塔塔壁之间。
作为优选,所述级间冷却器包括壳体和多个换热板对;所述换热板对相互堆叠设置于壳体内,换热板对由两块对称的换热板组成;
所述换热板对中的两块对称的换热板之间设有换热通道,所述壳体相应的设有与换热通道连通的冷却剂入口与冷却剂出口;相邻的所述换热板对之间设有烟气吸收通道,所述壳体相应的设有与烟气吸收通道连通的烟气入口与吸收剂入口;所述换热板的两侧面分别设有凸起与凹槽。
所述级间冷却器一般安装于烟气吸收塔的中下部,由于烟气吸收塔中传质主要发生在吸收塔顶部,吸收液到达吸收塔的底部时温度过高,会导致吸收负荷低,传质效率降低。设置级间冷却器之后,吸收液通过级间冷却器将温度控制在最合适的吸收温度,提高其传质效率。
其次,在换热板的两侧面分别设有凸起与凹槽,能够增加气液传质的接触面积;同时也具有导流的作用,由于吸收剂会在换热板对外侧面上形成液膜,凸起与凹槽使得液膜均匀的分布在换热板对外侧面,防止局部液膜过厚降低传质效率。
作为改进,所述凹槽由另一侧的凸起形成,所述凸起与凹槽的高度为2~10mm。该设置能够便于换热板的制备,同时能够进一步增加气液传质的接触面积。作为进一步改进,所述凸起为半圆形凸起。
作为改进,所述换热板为不锈钢板片,厚度为0.4~2mm。
作为改进,所述换热板对中的换热板上下端分别设有连接另一个换热板的内封闭折边。两块对称的换热板通过内封闭折边上下端相互封闭,与壳体上的冷却剂入口和冷却剂出口连通形成换热通道。
进一步改进,所述内封闭折边的截面为Z字型,该设置便于安装固定。
作为改进,所述壳体在烟气入口与吸收剂入口设有用于固定内封闭折边的齿形卡槽。齿形卡槽不仅起到固定内封闭折边,使得换热板对内形成封闭的换热通道,而且便于换热板对在壳体内的安装于拆卸。
作为改进,所述换热板对中的换热板左右侧分别设有用于连接相邻换热板对的外封闭折边。两对相邻的换热板对通过外封闭折边使得两者之间左右侧相互封闭,与壳体上的烟气入口和吸收剂入口形成烟气吸收通道,从而实现烟气吸收通道与换热通道相互分离。
作为改进,所述外封闭折边的截面为Z字型。该设置便于安装固定,其次,外封闭折边还起到吸收剂的导流作用。
作为改进,所述烟气吸收通道的通道间距为4~20mm,几何比表面积为80~300m2/m3
作为改进,所述凸起与凹槽依次交错设置。进一步增大对吸收剂的导流作用。
作为改进,所述换热板上的凸起与相邻的换热板上的凸起固定。该设置可以提供整体的牢固度,同时相互固定的凸起也起到对吸收剂的导流作用,进一步均匀分散吸收剂。
作为优选,所述级间冷却器与辐射导流式气体分布器之间还设有波纹填料层。进一步优选为高液相传质系数的聚丙烯孔板波纹填料层。
作为优选,所述竖板式填料与级间冷却器之间还设有吸收剂收集与再分布器。
所述吸收剂收集与再分布器包括吸收剂收集板、吸收剂收集板下端的吸收剂收集器、与吸收剂收集器连通的分布管、位于分布管下端的一级槽以及一级槽下端的二级槽;所述一级槽内设有用于收集分布管下流的吸收剂的缓 冲槽,一级槽底部还设有溢流孔;所述二级槽设有收集溢流孔下流的吸收剂的溢流槽,所述溢流槽两侧分别设有挡流板。
作为优选,所述方形填料塔采用钢筋混凝土主体结构以及玻璃钢防腐内衬,塔身内预埋牛腿支撑与上述的塔内件进行连接。
作为优选,所述竖板式填料和波纹填料层通过支撑格栅和桁架梁安装在方形填料塔内。
同现有技术相比,本发明的有益效果体现在:
(1)本发明所提供的方形填料塔内设有辐射导流式气体分布器,减弱了烟气二氧化碳在分布器上方产生的漩涡现象,提高气相均匀度、降低阻力损失;
(2)本发明所提供的方形填料塔内设有竖板式填料,填料片、导流槽和导流窗形成传质通道,在三者的配合作用下,经过支撑导流鼓包导流后的吸收剂会在填料片两侧面形成交错小波纹,提高了比表面积、降低了压降;
(3)本发明所提供的方形填料塔内设有级间冷却器,吸收剂通过级间冷却器将温度控制在最合适的吸收温度,提高其传质效率;
(4)本发明所提供的方形填料塔采用钢筋混凝土塔体,降低烟气二氧化碳捕集设备的制造成本。
附图说明
图1为实施例中方形填料塔的结构示意图;
图2为实施例中吸收剂初始分布器的结构示意图;
图3为实施例中竖板式填料中的填料片的结构示意图;
图4为实施例中竖板式填料中的填料片的右视图;
图5为图3中A区域的放大图;
图6为图3中B区域的放大图;
图7为实施例中吸收剂收集与再分布器的结构示意图;
图8为实施例中级间冷却器的结构示意图;
图9为实施例中级间冷却器壳体的结构示意图;
图10为实施例中换热板的结构示意图;
图11为图10中C区域的局部放大图;
图12为实施例中局部换热板对的右视图;
图13为实施例中局部换热板对的俯视图;
图14为实施例中辐射导流式气体分布器的结构示意图;
图15为实施例中辐射导流式气体分布器的右视图;
图16为实施例中辐射导流式气体分布器安装于方形填料塔内的俯视图;
图17为方形填料塔内辐射导流式气体分布器上方轴向截面速度监测点示意图;
图18为方形填料塔内的气体流线图;
图19为方形填料塔内辐射导流式气体分布器上方轴向的分布不均匀度变化趋势图。
其中,1、方形填料塔;101、烟气出口;102、除雾器;103、第一安装架;104、第二安装架;105、富集液出口;2、吸收剂初始分布器;201、分布管;202、一级槽;203、二级槽;204、缓冲槽;205、溢流孔;206、溢流槽;207、挡流板;3、竖板式填料;301、填料片;302、支撑导流鼓包;303、导流窗;304、菱形导流槽;305、导流片;4、吸收剂收集与再分布器;401、吸收剂收集板;402、吸收剂收集器;403、储液槽;404、吸收剂再分布入口;405、分布管;406、一级槽;407、二级槽;5、级间冷却器;501、壳体;502、换热板;503、吸收剂入口;504、烟气入口;505、冷却剂入口;506、冷却 剂出口;507、齿形卡槽;508、冷却通道;509、烟气吸收通道;510、内封闭折边;511、外封闭折边;512、凸起;513、凹槽;6、波纹填料层;7、辐射导流式气体分布器;701、气体进口管;702、蝶形底板;703、蝶形封板;704、辐射导流板;705、支撑梁;706、防水环;707、气体进口管的出口;708、气体进口管的入口。
具体实施方式
下面结合实施例和说明书附图对发明进一步说明。
实施例
如图1所示,方形填料塔1采用钢筋混凝土主体结构以及玻璃钢防腐内衬,方形填料塔1从塔顶到塔底依次安装有除雾器102、吸收剂初始分布器2、竖板式填料3、第一安装架103、吸收剂收集与再分布器4、级间冷却器5、波纹填料层6、第二安装架104、辐射导流式气体分布器7。
方形填料塔1塔顶设有烟气出口101,塔底设有富集液出口105。除雾器102则安装在方形填料塔1的烟气出口101处。
如图2所示,吸收剂初始分布器2包括通入吸收剂的分布管201、位于分布管201下端的一级槽202以及一级槽202下端的二级槽203。分布管201的吸收剂入口延伸至方形填料塔1外,便于通入吸收剂。一级槽202设置成H型,形状尺寸大于分布管201,而一级槽202内则设有用于收集分布管201下流的吸收剂的缓冲槽204,一级槽202底部还设有溢流孔205;二级槽203设有收集溢流孔205下流的吸收剂的溢流槽206,溢流槽206设置成长条形且平行设置,同时每个溢流槽206两侧分别设有挡流板207。
如图3和4所示,竖板式填料3由多个填料片301平行设置组成,竖板式填料3安装于方形填料塔上端,图中仅给出其中一个填料片301。填料片 301为长方形,采用聚丙烯材质,形状根据方形填料塔1决定。
如图5所示,填料片301上端两侧面分别设置有支撑导流鼓包302,支撑导流鼓包302的形状为四棱台,且鼓包高度为4mm,鼓包与竖直方向呈45°,几何比表面积为275m2/m3。支撑导流鼓包302依次交错设置于填料片301上端两侧面,在填料片301一侧为凸棱台,而在填料片301另一侧则形成对应的凹棱台。填料片301一个侧面上端所有的支撑导流鼓包302所占的面积为填料片301一个侧面面积的1/5。
竖板式填料3通过填料片301上的支撑导流鼓包302的棱台面相互固定堆叠而成,两两固定的支撑导流鼓包302之间形成导流结构,使得进入竖板式填料3的吸收剂分布均匀,提高成膜率。
如图6所示,填料片301还设有贯穿填料片301的菱形导流槽304,菱形导流槽304为边长6mm的正方形,菱形导流槽304一排一排依次交错设置在填料片301上,使得相邻菱形导流槽304之间的间距相同且间距为10mm,菱形导流槽304均位于支撑导流鼓包302下侧。
相邻填料片301之间的导流槽304的开设位置是不同的,因此竖板式填料3由具有两种不同形状的填料片301依次交错组成。将相邻填料片301上设置菱形导流槽304的位置相互错开,而支撑导流鼓包302的高度为导流窗303高度的一半,使得导流窗303的顶部与相邻的填料片301接触。
而菱形导流槽304外侧则设有导流窗303,且导流窗303依次交错设置于填料片301的两侧面。导流窗303由两个对称设置的导流片305组成,导流片305为三角形,两个导流片305分别设置于菱形导流槽304的下侧边沿形成向上的开口。填料片301、菱形导流槽304和导流窗303形成传质通道,在三者的配合作用下,经过支撑导流鼓包302导流后的吸收剂会在填料片301两侧面形成交错小波纹,提高了比表面积、降低了压降,同时降低了制造成 本。
竖板式填料3通过第一安装架103固定安装在第一安装架1内,第一安装架103由支撑格栅和桁架梁组成。
如图7所示,吸收剂收集与再分布器4包括吸收剂收集板401、吸收剂收集板401下端的吸收剂收集器402、与吸收剂收集器402连通的分布管405、位于分布管405下端的一级槽406以及一级槽406下端的二级槽407,由于与吸收剂收集器402连通的分布管405、下部的一级槽406和二级槽407结构与吸收剂初始分布器2中的相同,此处不再累述。吸收剂收集器402四周与塔壁围城储液槽403,由于吸收剂收集板401设置成Z字形,且下侧折边还设有导流槽,将吸收剂导流到储液槽403内,随着液面的上升,吸收剂再进入分布管405中。
如图8所述,级间冷却器5安装在方形填料塔1的中下部,级间冷却器5包括壳体501和多个换热板对,规整填料设置于级间冷却器的壳体501与方形填料塔1的塔壁之间,用于填充空隙(图中未给出)。换热板对相互堆叠设置于壳体501内,换热板对由两块对称的换热板502组成,换热板502为不锈钢板片,厚度为1mm。
如图9所示,壳体501为长方体,具体的形状根据方形填料塔1决定。壳体501上下侧面开口,上侧开口作为吸收剂入口503和烟气出口,下侧开口作为烟气入口504和吸收剂出口。壳体501左右侧分别设有圆形开口,右侧圆形开口作为冷却剂入口505,左侧圆形开口作为冷却剂出口506,左右圆形开口分别安装到方形填料塔1塔壁用于连通循环冷却水。
如图10~13所示,级间冷却器5中的换热板502形状大小都相同,通过两块对称的换热板502平行安装组成换热板对,而换热板对再依次堆叠设置在壳体501内,换热板对的安装方向分别垂直于壳体501上下侧面开口以及 壳体501左右侧圆形开口。
换热板502的两侧面分别设有凸起512与凹槽513,凹槽513由另一侧的凸起512形成,且凸起512与凹槽513的高度为4mm。。针对换热板502的外侧面,间隔设置第一排凹槽513,第二排设置凸起512,依此顺序交错进行设置。换热板502上的凸起512与相邻的换热板502上的凸起512固定,此时换热板502外侧面的凸起512高度等于外封闭折边511的高度,而换热板502内侧面的凹槽513高度也等于内封闭折边510的高度。相互固定的凸起512也起到对吸收剂的导流作用,进一步均匀分散吸收剂。
换热板对中的换热板502上下端分别设有连接另一个换热板502的内封闭折边510。两块对称的换热板502通过内封闭折边510上下端相互封闭,与壳体501上的冷却剂入口505和冷却剂出口506连通形成冷却通道508。内封闭折边510的截面为Z字型,而壳体501在烟气入口504与吸收剂入口503设有用于固定内封闭折边510的齿形卡槽507。齿形卡槽507不仅起到固定内封闭折边510,使得换热板对内形成封闭的冷却通道508,而且便于换热板对在壳体501内的安装于拆卸。
换热板对中的换热板502左右侧分别设有用于连接相邻换热板对的外封闭折边511,外封闭折边511的截面为Z字型,对吸收剂具有导流作用。两对相邻的换热板对通过外封闭折边511使得两者之间左右侧相互封闭,与壳体501上的烟气入口504和吸收剂入口503形成烟气吸收通道509,烟气吸收通道509的通道间距为12mm,几何比表面积为190m2/m3,从而实现烟气吸收通道509与冷却通道508相互分离。
级间冷却器5下端安装有波纹填料层6,波纹填料层6为高液相传质系数的聚丙烯孔板波纹填料层。同时,波纹填料层6通过第二安装架104安装固定在方形填料塔1,第二安装架104包括支撑格栅和桁架梁。
如图14~16所述,辐射导流式气体分布器7包括气体进口管701、蝶形底板702、蝶形封板703和若干辐射导流板704。
辐射导流式气体分布器7安装在方形填料塔1内部,气体进口管701为90度的两通管,直径为d=760mm,气体进口管的入口708固定安装于方形填料塔1一侧的塔壁,而气体进口管的出口707则焊接于蝶形底板702,使得气体进口管701与蝶形底板702连通。蝶形底板702四个角分别通过螺纹固定于两个支撑梁705,而支撑梁705则固定安装于方形填料塔1的塔壁上的牛腿支撑结构(图中未给出),起到固定整体分布器的作用。蝶形底板702与气体进口管的出口707连通处设有防水环706,防水环706的高度为75mm。
如图16可知,气体进口管的出口707位于方形填料塔1中心,而蝶形底板702也设置于方形填料塔1中心。
辐射导流板704沿着气体进口管出口707的径向设置于蝶形底板702和蝶形封板703之间,辐射导流板704位于气体进口管的出口707边界外侧,垂直于气体进口管的出口707边界的切线,且所有辐射导流板704组成的形状中心对称于气体进口管的出口707中心,其中蝶形底板702和蝶形封板703两者平行且外边界形状相同。辐射导流板704的形状为等高矩形板,高度为1.5d,数量为32块,通过焊接垂直固定于蝶形底板702和蝶形封板703之间。位于蝶形底板702四个外边界中间的两块辐射导流板704之间的夹角为20度,其余辐射导流板704之间的夹角为10度。
辐射导流板704沿着气体进口管出口707的径向宽度等于气体进口管的出口707边界到蝶形底板702外边界的距离;同时,蝶形底板702的外边界沿着气体进口管出口707的径向到方形填料塔1塔壁的距离Δ均相等,图16中Δ1=Δ2=Δ3,保证气体出口到方形填料塔1壁面的径向距离均相同,使得经过辐射导流板704后的气体均匀流向塔壁并与其碰撞后折向塔顶流动,防止 壁面区域及边角区域的气体偏流,减小阻力。
性能测试
利用Fluent软件对具体实施例中的方形填料塔1内流场进行模拟,分析气体流经辐射导流式气体分布器7压力损失与辐射导流式气体分布器7上方气速分布不均匀度。
在该模拟条件下,空气在辐射导流式气体分布器7内流动过程中压力变化可以忽略不计,因此将空气视为不可压缩流体。空气在塔器内空气呈湍流流动,采用连续性方程、雷诺平均N-S方程、湍动能k及湍动能耗损率ε的输运方程来描述。分布器进口管气体按照充分发展的湍流考虑,采用速度进口边界条件u=8m/s;出口采用压力边界出口;并采用标准壁面函数计算近壁网格上的各物理量。
1、阻力损失Δp数值分析
阻力损失Δp定义为:气体分布器进口与分布器上方某截面处的压力差。Δp=pin-pout,式中,pin为气体分布器进口压力,pout为分布器上方某截面压力。通过模拟发现,气体分布器进出口压力损失Δp=55Pa。
2、气速分布不均匀度Mf数值分析
分布器的分布性能采用气速分布不均匀度来表征,
Figure PCTCN2017113045-appb-000001
n为分布器上方界面气速监测点个数。
具体的步骤:在分布器上方(Z=0~1.5m处)取一轴向截面,在此截面上等间距取49个速度监测点(见附图17),ui表示气体分布器在该截面处第i个点的轴向速度值,
Figure PCTCN2017113045-appb-000002
表示气体分布器某特定截面处n个速度点的速度平均值。提取fluent软件中49个速度监测点的轴向速度值,并根据上述公式计算 气速分布不均匀度Mf
如附图18所示,气体经过分布器的导流和均流作用,在分布器上方流线分布均匀,基本消除涡流现象。在分布器上方Z=0.1/0.2/0.3/0.4m处截取轴向截面,在各截面上按照图5设置7×7个速度监测点,并计算各截面上的气速不均匀度Mf。从图19可以看出,气速分布不均匀度Mf随高度Z增大而降低,即气速分布越来越均匀;在Z=0.3m处,气速不均匀度为0.5,符合常规塔器对气体分布器的要求。

Claims (9)

  1. 一种用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述方形填料塔包括位于烟气出口下端的吸收剂初始分布器、吸收剂初始分布器下端的竖板式填料以及位于方形填料塔塔底用于通入烟气二氧化碳的辐射导流式气体分布器;
    所述辐射导流式气体分布器包括气体进口管、蝶形底板、蝶形封板和若干辐射导流板;所述蝶形底板与气体进口管的出口连通;所述辐射导流板沿着气体进口管的出口径向设置于蝶形底板和蝶形封板之间。
  2. 根据权利要求1所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述方形填料塔的烟气出口处设有除雾器。
  3. 根据权利要求1所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述竖板式填料通过上端设有支撑导流鼓包的若干填料片相互堆叠组成;所述填料片设有贯穿填料片的导流槽,所述导流槽位于支撑导流鼓包下侧;所述导流槽外侧设有导流窗。
  4. 根据权利要求1所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述竖板式填料与辐射导流式气体分布器之间还设有级间冷却器和规整填料;所述规整填料设置于级间冷却器的壳体与方形填料塔塔壁之间。
  5. 根据权利要求4所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述级间冷却器包括壳体和多个换热板对;所述换热板对相互堆叠设置于壳体内,换热板对由两块对称的换热板组成;
    所述换热板对中的两块对称的换热板之间设有换热通道,所述壳体相应的设有与换热通道连通的冷却剂入口与冷却剂出口;相邻的所述换热板对之间设有烟气吸收通道,所述壳体相应的设有与烟气吸收通道连通的烟气入口与吸收剂入口;所述换热板的两侧面分别设有凸起与凹槽。
  6. 根据权利要求5所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述换热板对中的换热板上下端分别设有连接另一个换热板的内封闭折边。
  7. 根据权利要求5所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述换热板对中的换热板左右侧分别设有用于连接相邻换热板对的外封闭折边。
  8. 根据权利要求4所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述级间冷却器与辐射导流式气体分布器之间还设有波纹填料层。
  9. 根据权利要求4所述的用于烟气二氧化碳捕集的方形填料塔,其特征在于,所述竖板式填料与级间冷却器之间还设有吸收剂收集与再分布器。
PCT/CN2017/113045 2016-12-01 2017-11-27 一种用于烟气二氧化碳捕集的方形填料塔 WO2018099341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/089,154 US10821397B2 (en) 2016-12-01 2017-11-27 Square packed tower for capturing flue gas carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611091203.1A CN106731493B (zh) 2016-12-01 2016-12-01 一种用于烟气二氧化碳捕集的方形填料塔
CN201611091203.1 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018099341A1 true WO2018099341A1 (zh) 2018-06-07

Family

ID=58915626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113045 WO2018099341A1 (zh) 2016-12-01 2017-11-27 一种用于烟气二氧化碳捕集的方形填料塔

Country Status (3)

Country Link
US (1) US10821397B2 (zh)
CN (1) CN106731493B (zh)
WO (1) WO2018099341A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743402A (zh) * 2019-11-20 2020-02-04 中煤科工集团重庆研究院有限公司 可调节气体均布装置
CN114345247A (zh) * 2021-12-10 2022-04-15 江苏碳和环境科技有限公司 一种填料塔

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731493B (zh) * 2016-12-01 2019-05-07 浙江大学 一种用于烟气二氧化碳捕集的方形填料塔
CN107213770B (zh) * 2017-07-03 2023-03-17 江苏新世纪江南环保股份有限公司 氨法脱硫吸收塔及其建立方法和运行方法
CN107715829B (zh) * 2017-11-20 2019-10-15 宣城市楷昂化工有限公司 一种自压紧组合式填料层
CN110425925A (zh) * 2019-08-27 2019-11-08 中国华能集团清洁能源技术研究院有限公司 一种多材质填料分段布置的填料塔、烟气处理方法
CN110652840A (zh) * 2019-10-10 2020-01-07 邢二江 一种带有填料反冲洗装置的碱液吸收塔
CN112619377B (zh) * 2020-12-18 2022-10-18 广东惠智通能源环保发展有限公司 废气净化系统
CN113713751A (zh) * 2021-08-24 2021-11-30 南通均元化学工程科技有限公司 分段布置的规整填料塔及其烟气处理方法
CN114322457B (zh) * 2022-01-07 2023-08-22 杭氧集团股份有限公司 一种处理低液量的溢流导液分布器
CN115430393B (zh) * 2022-08-12 2023-04-18 福建省龙德新能源有限公司 一种五氟化磷生产用的反应塔
CN116422124B (zh) * 2023-04-26 2024-07-05 浙江菲达环保科技股份有限公司 适用于高温烟气的碳捕集预处理塔
CN116688718B (zh) * 2023-06-20 2024-01-19 南通星球石墨股份有限公司 硫酸钾尾气处理系统
CN116757122B (zh) * 2023-08-11 2023-12-01 杭州百子尖科技股份有限公司 填料吸收塔的仿真模型构建方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88102562A (zh) * 1987-04-27 1988-11-23 格里特斯公司 用于填充塔的液体分配器
CN201410354Y (zh) * 2009-06-09 2010-02-24 吕文广 生产硝酸盐的废气吸收装置
CN104105537A (zh) * 2011-11-29 2014-10-15 苏舍化学技术有限公司 吸收二氧化碳的方法和设备
CN205145954U (zh) * 2015-11-14 2016-04-13 青岛科技大学 一种大规模烟气co2捕集反应器
CN205288016U (zh) * 2015-11-14 2016-06-08 青岛科技大学 一种组合式气体分布器
CN106731493A (zh) * 2016-12-01 2017-05-31 浙江大学 一种用于烟气二氧化碳捕集的方形填料塔

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115929A (en) * 1976-10-27 1978-09-26 Electric Power Research Institute, Inc. Gas distributor for fluidizing beds
AU617869B2 (en) * 1988-11-03 1991-12-05 Koch (Cyprus) Limited Liquid distributor assembly for packed tower
CN100553745C (zh) * 2006-07-12 2009-10-28 陈玉乐 逆流式海水脱硫吸收塔
CN102553396B (zh) * 2011-12-23 2014-06-04 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN104266532A (zh) * 2014-09-23 2015-01-07 平湖市三久塑料有限公司 一种等间距逆流填料片
CN204513444U (zh) * 2015-03-12 2015-07-29 山东旺泰机械科技有限公司 自支撑宽间隙换热元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88102562A (zh) * 1987-04-27 1988-11-23 格里特斯公司 用于填充塔的液体分配器
CN201410354Y (zh) * 2009-06-09 2010-02-24 吕文广 生产硝酸盐的废气吸收装置
CN104105537A (zh) * 2011-11-29 2014-10-15 苏舍化学技术有限公司 吸收二氧化碳的方法和设备
CN205145954U (zh) * 2015-11-14 2016-04-13 青岛科技大学 一种大规模烟气co2捕集反应器
CN205288016U (zh) * 2015-11-14 2016-06-08 青岛科技大学 一种组合式气体分布器
CN106731493A (zh) * 2016-12-01 2017-05-31 浙江大学 一种用于烟气二氧化碳捕集的方形填料塔

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743402A (zh) * 2019-11-20 2020-02-04 中煤科工集团重庆研究院有限公司 可调节气体均布装置
CN114345247A (zh) * 2021-12-10 2022-04-15 江苏碳和环境科技有限公司 一种填料塔
CN114345247B (zh) * 2021-12-10 2023-12-05 江苏碳和环境科技有限公司 一种填料塔

Also Published As

Publication number Publication date
US10821397B2 (en) 2020-11-03
CN106731493A (zh) 2017-05-31
CN106731493B (zh) 2019-05-07
US20190099712A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2018099341A1 (zh) 一种用于烟气二氧化碳捕集的方形填料塔
CN101380562B (zh) 开窗导流式规整填料片及填料
CN105457454A (zh) 分离回收烟气中夹带有机胺盐的整体式吸收塔及方法
CN108721926B (zh) 一种水平管降膜蒸发器
WO2016082664A1 (zh) 弧形帽罩塔板
CN206001436U (zh) 一种直通道结构低温省煤器
CN103673683B (zh) 一种多壳程循环气冷凝器
CN108413783B (zh) 一种兼塔器功能的换热器
CN203432382U (zh) 卧式管壳式冷凝器
CN201373673Y (zh) 带纵向隔板和斜支持板的冷凝器
CN203432434U (zh) 一种波段翅铸造板式空气预热器
CN208436843U (zh) 旋转排列塔盘
CN206787349U (zh) 一种用于大容量烟气余热利用的螺旋鳍片管换热装置
CN202277775U (zh) 多功能方形脱硫塔
CN107023817A (zh) 一种直通道结构低温省煤器
CN106556275B (zh) 一种级间冷却器及其级间冷却塔盘
CN215930675U (zh) 一种消雾节水冷却塔的淋水填料布置结构
CN206146250U (zh) 一种两流程d型管箱空冷换热装置
CN110332559B (zh) 烟气换热器
ZA200501198B (en) Spacer
CN103301645B (zh) 一种高通量板式塔
CN107478079B (zh) 一种冲渣水涡旋管板式换热器
CN102614757B (zh) 翅片式双相钢热管换热器及其应用的烟气脱硫设备
CN203687702U (zh) 一种多壳程循环气冷凝器
CN2314328Y (zh) 一种传质型塔间换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876291

Country of ref document: EP

Kind code of ref document: A1