WO2018099266A1 - 一种永磁同步电机启动方法、装置、动力系统及无人飞行器 - Google Patents

一种永磁同步电机启动方法、装置、动力系统及无人飞行器 Download PDF

Info

Publication number
WO2018099266A1
WO2018099266A1 PCT/CN2017/111017 CN2017111017W WO2018099266A1 WO 2018099266 A1 WO2018099266 A1 WO 2018099266A1 CN 2017111017 W CN2017111017 W CN 2017111017W WO 2018099266 A1 WO2018099266 A1 WO 2018099266A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
permanent magnet
magnet synchronous
preset minimum
Prior art date
Application number
PCT/CN2017/111017
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP17825092.4A priority Critical patent/EP3550717B1/en
Priority to US15/883,647 priority patent/US10447185B2/en
Publication of WO2018099266A1 publication Critical patent/WO2018099266A1/zh
Priority to US16/567,183 priority patent/US11005396B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/157Controlling commutation time wherein the commutation is function of electro-magnetic force [EMF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the embodiments of the present invention relate to the field of motor control technologies, and in particular, to a permanent magnet synchronous motor starting method, device, power system, and unmanned aerial vehicle.
  • the U/V/W three-phase electric current is usually used to form an electromagnetic field. Since the rotor of the permanent magnet synchronous motor is a permanent magnet, the rotor will form an electromagnetic field in the U/V/W three-phase electric field. Rotate under the effect. It is estimated that the rotation speed and angle of the rotor are fed back to the driver. The driver compares the feedback value with the target value and adjusts the rotor rotation to achieve closed-loop control of the permanent magnet synchronous motor.
  • the estimation of the rotational speed and angle of the rotor is very important.
  • the position sensorless control scheme of the non-high frequency injection method is generally adopted.
  • the implementation is simple, but the estimation inaccuracy occurs when the motor speed is low. Therefore, the existing solution needs to firstly perform the open loop control method to drag the motor.
  • the switch is started to be closed loop control, so that the motor speed and angle can be accurately estimated.
  • the start of the motor is generally achieved by the following three steps of control:
  • Step 1 Positioning, initial positioning of the motor rotor using a hypothetical angle (may require multiple positioning);
  • Step 2 Open loop control, using speed open loop to drag the motor
  • Step 3 Switch to closed-loop control. When the motor speed is raised to meet certain conditions, it is switched to closed loop.
  • the technical problem mainly solved by the embodiment of the present application is to provide a simple and reliable permanent magnet synchronous motor starting method, device, power system and unmanned aerial vehicle.
  • the embodiment of the present application provides the following technical solutions:
  • a permanent magnet synchronous motor starting method comprising:
  • the permanent magnet synchronous motor is closed-loop controlled according to the feedback rotational speed and the motor position information.
  • the embodiment of the present application further provides the following technical solutions:
  • a permanent magnet synchronous motor starting device comprising:
  • a speed and position information obtaining module configured to obtain current motor speed and motor position information of the permanent magnet synchronous motor
  • a feedback speed determining module configured to determine whether the current motor speed is less than a preset minimum speed, and if the current motor speed is less than the preset minimum speed, the preset minimum speed is used as a feedback speed; otherwise, the Current motor speed as feedback speed;
  • a closed loop control module configured to perform closed loop control on the permanent magnet synchronous motor according to the feedback rotational speed and the motor position information.
  • the embodiment of the present application further provides the following technical solutions:
  • a power system comprising:
  • the permanent magnet synchronous motor starting device is electrically connected to the permanent magnet synchronous motor for controlling the starting of the motor.
  • the embodiment of the present application further provides the following technical solutions:
  • unmanned aerial vehicles including:
  • a power system as described above is mounted to the fuselage for providing flight power to the unmanned aerial vehicle.
  • the embodiment of the present application further provides the following technical solutions:
  • An unmanned aerial vehicle comprising:
  • the motor controller being located within a cavity formed by the arm or the center housing, the output of which is coupled to an input of the motor;
  • a propeller coupled to the electric machine, the propeller generating a force that causes the unmanned aerial vehicle to move under the drive of the electric machine;
  • motor controller is used to:
  • the motor is closed-loop controlled according to the feedback rotational speed and the motor position information.
  • the preset minimum speed is preset, and when the calculated current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed, and when the calculated current motor speed is greater than the preset minimum speed With the current motor speed as the feedback speed, direct closed-loop control can be realized, and the positioning and open-loop processes in the prior art are eliminated.
  • the three steps of positioning, open-loop control and closed-loop control in the starting method of the technology are directly simplified to use only closed-loop control, and the motor starting method is simpler; at the same time, the failure of multiple steps in the prior art is avoided, and the starting is effectively improved. Process reliability.
  • FIG. 1 is a schematic structural diagram of an application scenario of a startup method according to an embodiment of the present application
  • FIG. 2 is a flowchart of a startup method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a startup method provided by another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a starting device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a starting device according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a starting device according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of hardware of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 9 is a diagram showing experimental results of starting a permanent magnet synchronous motor using the starting method and starting device provided by the embodiment of the present application.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • Embodiments of the present application can be applied to various motor-driven movable objects including, but not limited to, unmanned aerial vehicles (UAVs), ships, and robots.
  • UAVs unmanned aerial vehicles
  • the structure of the UAV includes a center housing, a boom, and a power system.
  • the arm is integrally or fixedly connected to the center housing, and the power system is mounted on the arm.
  • Typical power systems include motor controllers, motors, and propellers.
  • the motor controller is located in a cavity formed by the arm or the center housing. One end of the motor controller is electrically connected to the throttle controller, and the other end of the motor controller is electrically connected to the motor.
  • the motor is mounted on the arm, and the rotating shaft of the motor is connected to the propeller.
  • the propeller generates a force that causes the UAV to move under the drive of the motor, for example, a lift or thrust that causes the UAV to move.
  • the motor controller receives the throttle signal from the throttle controller, generates and sends a motor control signal to the motor for controlling the operation of the motor, the motor control signal including, for example, a signal that controls motor starting, a signal that controls the speed at which the motor operates, and the like.
  • the throttle controller may be a flight control module of an unmanned aerial vehicle.
  • the flight control module senses the environment around the UAV through various sensors and controls the flight of the UAV.
  • the flight control module may be a processing unit, an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the flight control module of the unmanned aerial vehicle sends a throttle signal to the motor controller, and the motor controller receives the throttle signal, generates and sends the power to the motor.
  • a motor control signal is sent to start the motor.
  • the starting method thereof includes three steps of positioning, open loop control and closed loop control.
  • the present application is directed to a permanent magnet synchronous motor, and a new method, device, power system and unmanned aerial vehicle for controlling the starting of a permanent magnet synchronous motor are proposed.
  • FIG. 1 is a schematic structural diagram of an application scenario of a permanent magnet synchronous motor starting method according to an embodiment of the present application.
  • the starting method provided by the embodiment of the present application is applied to a permanent magnet synchronous motor, and the motor controller controls the starting of the motor by using the permanent magnet synchronous motor starting method of the embodiment of the present application.
  • the motor controller receives the two-phase or three-phase current signal from the permanent magnet synchronous motor through a current sensor (not shown), and the motor controller outputs a three-phase voltage control signal to the permanent magnet synchronous motor to control the rotor of the motor Turn.
  • a flowchart of a method for starting a permanent magnet synchronous motor includes the following steps:
  • Step 101 Obtain current motor speed and motor position information of the permanent magnet synchronous motor
  • the current motor speed may be measured using a position sensor, or the position sensor may not be used, ie, the current motor speed is calculated by the position sensorless method.
  • the motor position information can be obtained from the current motor speed calculation.
  • the motor position information refers to the rotor angle.
  • Step 102 Determine whether the current motor speed is less than a preset minimum speed. If the current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed; otherwise, the current motor speed is used as the feedback speed;
  • the preset minimum speed is used as the feedback speed. If the current motor speed is greater than or equal to the preset minimum speed, the current motor speed is used as the feedback speed. Among them, the preset minimum speed is preset.
  • Step 103 Perform closed-loop control on the permanent magnet synchronous motor according to the feedback rotational speed and motor position information.
  • a position sensorless estimation algorithm is usually used to calculate the speed and angle of the motor.
  • the advantage of this method is that the implementation process is simple, but there are also low motor speeds. There may be problems with inaccurate estimates. Therefore, in the prior art, firstly, the motor is actuated by means of open-loop control, and when the rotational speed of the motor is higher than a certain value, the rotational speed and angle of the motor can be accurately calculated by the position sensorless estimation algorithm. Switch to closed loop control. In the embodiment of the present application, the closed-loop control method is directly used to start the motor, and the open-loop control step before the closed-loop control in the prior art is omitted.
  • the preset minimum speed is used as the feedback speed, and when the calculated current motor speed is greater than the preset minimum At the speed, the current motor speed is used as the feedback speed.
  • the purpose of this is to limit the current motor speed estimate obtained by the position sensorless estimation algorithm to prevent the speed estimate from being too low.
  • the speed estimation value When the speed estimation value is greater than or equal to the preset minimum speed, it indicates that the speed estimation value meets the requirement, and the estimated current motor speed can be directly used as the feedback speed for the subsequent closed loop control; and when the speed estimation value is less than the preset minimum speed At the time, it indicates that the speed estimation value is too low and does not meet the requirements. If this low speed estimation value is used, it may cause a large error. At this time, the preset minimum speed will be used to proxy the low speed estimation. The value, with the preset minimum speed as the feedback speed, is used for subsequent closed loop control.
  • the control method in step 103 may adopt a vector control method, or may adopt other control methods.
  • the vector control method is taken as an example to illustrate the starting process of the permanent magnet synchronous motor. It is assumed that the current motor speed is ⁇ 1 and the preset minimum speed is ⁇ . If the current motor speed ⁇ 1 is less than the preset minimum speed ⁇ , the preset minimum speed ⁇ is used as feedback. The rotational speed ⁇ s, otherwise, the current motor rotational speed ⁇ 1 is taken as the feedback rotational speed ⁇ s.
  • the speed deviation e is obtained by subtracting the feedback speed ⁇ s from the given target speed command ⁇ *, and the q-axis current command Iq* is obtained after the PI calculation based on the speed deviation e, based on the q-axis current command Iq* and the q-axis fed back
  • the current command Iq performs the PI calculation to obtain the q-axis voltage command Vq*, and performs the PI calculation based on the given d-axis current command Id* and the feedback d-axis current command Id to obtain the d-axis voltage command Vd*.
  • q axis Voltage command Vd*, Vq* and rotor angle ⁇ Park transformation and Clarke transformation for Vd*, Vq* to obtain three-phase voltage commands vu*, vv* and vw*, three-phase voltage commands vu*, vv* and vw * Perform PWM conversion to convert to three-phase PWM voltages vu, vv and vw and output them to a permanent magnet synchronous motor.
  • the feedback q-axis current command Iq and d-axis current command Id are obtained by the following method.
  • the two-phase or three-phase current of the permanent magnet synchronous motor is detected by a current sensor. If two-phase current is detected, the other phase current can be calculated according to the Kirchhoff principle to obtain three-phase currents iu, iw and iv.
  • the three-phase currents iu, iv and iw are subjected to Clarke transformation and Park transformation to obtain d, q-axis currents id and iq, and are fed back to the motor controller as feedback currents.
  • the obtaining current motor speed and motor position information includes:
  • the motor position information refers to a rotor angle
  • time integration is performed on the current motor speed to obtain a rotor angle
  • FIG. 3 is a flowchart of a method for starting a permanent magnet synchronous motor according to another embodiment of the present application.
  • the method includes:
  • Step 201 Calculate a current motor speed of the permanent magnet synchronous motor
  • the current motor speed may be measured by using a position sensor, or the current motor speed may be calculated by a position sensorless method.
  • Step 202 Perform time integration on the current motor speed to obtain motor position information.
  • Step 203 determining whether the current motor speed is less than the preset minimum speed. If the current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed; otherwise, the current motor speed is used as the feedback speed;
  • Step 204 Perform closed-loop control on the permanent magnet synchronous motor according to the feedback rotational speed and motor position information.
  • step 202 may occur before step 203 or may occur in steps. After 203.
  • the calculating the current motor speed comprises:
  • the current motor speed is calculated by means of no position sensor.
  • the use of the position sensorless method saves the use of position sensors, which saves costs and reduces the footprint.
  • the vector control method is still taken as an example to illustrate how to calculate the current motor speed using the position sensorless method.
  • the q-axis voltage command Vq* and the d-axis voltage command Vd* obtained in the previous control are subjected to Clarke transformation to obtain ⁇ , ⁇ -axis voltage commands V ⁇ * and V ⁇ *, and the three-phase currents iu, iv and iw obtained by the current sensor are obtained.
  • the Clarke transform is performed to obtain the ⁇ , ⁇ axis currents i ⁇ and i ⁇ .
  • the estimated velocity ⁇ 1 is calculated using the velocity phase observer algorithm based on the stationary coordinate system model and the stationary coordinate system model equation based on the synchronous motor to be subjected to the ⁇ , ⁇ axis currents i ⁇ and i ⁇ and the ⁇ and ⁇ axis voltage commands V ⁇ * and V ⁇ *.
  • a position sensorless method such as a method based on the basic electromagnetic relationship of a permanent magnet synchronous motor, three-phase terminal voltage and current calculation, based on back electromotive force or stator flux linkage estimation,
  • the present embodiment is not limited based on various observer estimation methods and the like.
  • the starting method further includes:
  • the adjustment may be made by increasing (or decreasing) the preset minimum speed.
  • the first preset time and the second preset time are preset.
  • the motor By adjusting the value of the preset minimum speed, the motor can be further started up normally.
  • FIG. 4 is a flowchart of a method for starting a permanent magnet synchronous motor according to another embodiment of the present application.
  • the method includes:
  • Step 301 Calculate the current motor speed by means of no position sensor
  • Step 302 Perform time integration on the current motor speed to obtain motor position information.
  • Step 303 determining whether the current motor speed is less than the preset minimum speed. If the current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed. Otherwise, it will be The front motor speed is used as the feedback speed;
  • Step 304 Perform closed-loop control on the permanent magnet synchronous motor according to the feedback rotational speed and the motor position information;
  • Step 305 Adjust the value of the preset minimum speed when an abnormal start of the motor occurs.
  • the abnormal start of the motor includes: the motor out-of-step time exceeds a first preset time or the motor fails to start after exceeding a second preset time.
  • step 302 may occur before step 303 or after step 303
  • step 305 may occur after step 304 or before step 304.
  • the steps of the starting method of the embodiment of the present application are cyclically performed until the motor is fixed and the rotor is synchronized, and the motor is normally started.
  • the preset minimum speed is preset, and when the calculated current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed, and when the calculated current motor speed is greater than the preset minimum speed. , the current motor speed is used as the feedback speed.
  • the purpose of this is to limit the current motor speed estimate obtained by the position sensorless estimation algorithm to prevent the speed estimate from being too low.
  • the speed estimation value is greater than or equal to the preset minimum speed, it indicates that the speed estimation value meets the requirement, and the estimated current motor speed can be directly used as the feedback speed for the subsequent closed loop control; and when the speed estimation value is less than the preset minimum speed At the time, it indicates that the speed estimation value is too low and does not meet the requirements.
  • this low speed estimation value may cause a large error.
  • the preset minimum speed will be used to proxy the low speed estimation.
  • the value, with the preset minimum speed as the feedback speed, is used for subsequent closed loop control. In this way, direct closed-loop control can be realized, and the complicated state switching and more parameter adjustment in the prior art are eliminated, and the three-step permanent magnet synchronous motor starting method in the prior art permanent magnet synchronous motor starting device is simplified. The startup method is simpler. At the same time, the hidden troubles in various states in the prior art are avoided, and the reliability of the startup process is effectively improved.
  • the permanent magnet synchronous motor starting device provided by one embodiment of the present application can be used to execute the permanent magnet synchronous motor starting method disclosed in the embodiment of the present application.
  • the starting device includes:
  • the speed and position information obtaining module 401 is configured to obtain current motor speed and motor position information
  • the feedback speed determining module 402 is configured to determine whether the current motor speed is less than the preset minimum speed. If the current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed, otherwise the current motor speed is used as the feedback speed;
  • the closed-loop control module 403 is configured to perform closed-loop control on the permanent magnet synchronous motor according to the feedback rotational speed and the motor position information.
  • the speed and position information obtaining module includes:
  • the motor position information calculation sub-module is used for time integration of the current motor speed to obtain motor position information.
  • the rotational speed and position information obtaining module 401, the feedback rotational speed determining module 402, and the closed loop control module 403 may be any one or more of an electrical tuning module, a microcontroller unit, and a microprocessor unit.
  • the permanent magnet synchronous motor starting device of this embodiment may be an electronic governor or a motor controller or the like.
  • FIG. 6 is a schematic structural diagram of a permanent magnet synchronous motor starting device according to another embodiment of the present application.
  • the device can be used to execute the permanent magnet synchronous motor starting method disclosed in the embodiment of the present application.
  • the starting device comprises:
  • a motor speed calculation sub-module 501 configured to calculate a current motor speed
  • the motor position information calculation sub-module 502 is configured to perform time integration on the current motor speed to obtain motor position information.
  • the feedback speed determining module 503 is configured to determine whether the current motor speed is less than the preset minimum speed. If the current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed, otherwise the current motor speed is used as the feedback speed;
  • the closed-loop control module 504 is configured to perform closed-loop control on the permanent magnet synchronous motor according to the feedback rotational speed and the motor position information.
  • the motor speed calculation sub-module 501 estimates the current motor speed
  • the motor position information calculation sub-module 502 calculates the current motor speed estimated by the sub-module 501 according to the motor speed, and performs time integration on the current motor speed to obtain the motor position information
  • the feedback speed determination module 503 compares The current motor speed calculated by the motor speed calculation sub-module 501 and the preset minimum speed determine the feedback speed
  • the closed-loop control module 504 performs closed-loop control according to the feedback speed and the motor position information.
  • the motor speed calculation sub-module is configured to calculate a current motor speed by means of a position sensorless.
  • the starting device further includes:
  • the preset minimum speed adjustment module is used to adjust the value of the preset minimum speed when an abnormal start of the motor occurs.
  • the abnormal startup of the motor comprises:
  • the motor out of synchronization time exceeds the first preset time; or,
  • the motor will not start until the second preset time.
  • the motor speed calculation sub-module 501, the motor position information calculation sub-module 502, the feedback rotation speed determination module 503, and the closed-loop control module 504 may be any one of an ESC module, a microcontroller unit, and a microprocessor unit. kind or several.
  • the permanent magnet synchronous motor starting device of this embodiment may be an electronic governor or a motor controller or the like.
  • a permanent magnet synchronous motor starting device As shown in FIG. 7 , a permanent magnet synchronous motor starting device according to another embodiment of the present application is provided, and the device can be used to execute the permanent magnet synchronous motor starting method disclosed in the embodiment of the present application.
  • the starting device comprises:
  • a motor speed calculation sub-module 601 configured to calculate a current motor speed
  • the motor position information calculation sub-module 602 is configured to perform time integration on the current motor speed to obtain motor position information.
  • the feedback speed determining module 603 is configured to determine whether the current motor speed is less than the preset minimum speed. If the current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed, otherwise the current motor speed is used as the feedback speed;
  • a closed-loop control module 604 configured to perform closed-loop control on the permanent magnet synchronous motor according to the feedback rotational speed and the motor position information;
  • the preset minimum speed adjustment module 605 is configured to adjust a value of the preset minimum speed when an abnormal start of the motor occurs.
  • the preset minimum speed adjustment module 605 is configured to determine the motor loss in each cycle control If the step time exceeds the first preset time or exceeds the second preset time, the motor cannot be started. If this happens, adjust the value of the preset minimum speed.
  • the motor speed calculation sub-module 601, the motor position information calculation sub-module 602, the feedback rotation speed determination module 603, the closed-loop control module 604, and the preset minimum speed adjustment module 605 may be an ESC module, a microcontroller unit, Any one or several of the microprocessor units.
  • the permanent magnet synchronous motor starting device of this embodiment may be an electronic governor or a motor controller or the like.
  • the technical content in the method embodiment is also applicable to the device embodiment, and therefore, the device embodiment is the same as the method embodiment. The technical content will not be described here.
  • the embodiment of the present application also provides a power system and an unmanned aerial vehicle.
  • the power system includes a permanent magnet synchronous motor and a permanent magnet synchronous motor starting device as described above, wherein the permanent magnet synchronous motor starting device is electrically connected to the permanent magnet synchronous motor for controlling the permanent magnet synchronous motor start up.
  • the unmanned aerial vehicle includes a fuselage and a power system as described above, the power system being mounted on the fuselage for providing flight power to the unmanned aerial vehicle.
  • the embodiment of the present application further provides an unmanned aerial vehicle, which performs all or part of the steps of the permanent magnet synchronous motor starting method shown in FIG. 2-4.
  • the unmanned aerial vehicle includes:
  • the body 200 a permanent magnet synchronous motor 300 mounted on the body 200, and a motor controller 100 for controlling the permanent magnet synchronous motor.
  • the motor controller 100 of the permanent magnet synchronous machine 300 includes at least one microcontroller or microprocessor, and a memory coupled to the at least one microcontroller or microprocessor.
  • the memory stores instructions executable by the at least one microcontroller or microprocessor, the instructions being executed by the at least one microcontroller or microprocessor to cause the at least one microcontroller Or the microprocessor can perform the permanent magnet synchronous motor starting method as shown in any of the above exemplary embodiments.
  • a storage medium is also provided, which is a computer readable storage medium, such as a temporary and non-transitory computer readable storage medium including instructions.
  • the storage medium includes, for example, a memory of instructions that are executable by a processor.
  • the program stored on the storage medium performs the following steps when executed by the processor:
  • the motor is closed-loop controlled according to the feedback rotational speed and the motor position information.
  • the processor further performs: adjusting a value of the preset minimum speed when a abnormal start of the motor occurs.
  • the abnormal startup of the motor includes:
  • the out-of-step time of the motor exceeds a first preset time; or the motor cannot be started beyond a second preset time.
  • the processor further performs: calculating a current motor speed; and performing time integration on the current motor speed to obtain motor position information.
  • the processor further performs: calculating a current motor speed of the motor by means of a position sensorless manner.
  • the motor is a permanent magnet synchronous motor.
  • the implementation of all or part of the processes in the above embodiments may be performed by computer program related hardware, and the program may be stored in a non-volatile computer readable storage medium.
  • the program when executed, may include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or the like.
  • the permanent magnet synchronous motor starting method and the starting device provided by the embodiments of the present application are applicable to a closed loop operation or an open loop operation, and are applicable to any control method (for example, a vector control method or other control method), and are suitable for the table.
  • Post or non-surface-mounted permanent magnet synchronous motor. 9 is an experimental result diagram of starting a permanent magnet synchronous motor by using the starting method and the starting device provided by the embodiment of the present application. It can be seen from the figure that only 56.83 ms of the system needs to be stabilized (rotor synchronization), and a short time is realized. The internal system can be started effectively.
  • the speed determining module compares the current motor speed with the preset minimum speed. When the calculated current motor speed is less than the preset minimum speed, the preset minimum speed is used as the feedback speed. When the calculated current motor speed is greater than the preset minimum speed, the current The motor speed is used as the feedback speed, which can realize direct closed-loop control, which simplifies the three-step starting method including positioning, open-loop control and closed-loop control in the prior art. The simpler starting method is used to realize the start of the unmanned aerial vehicle. . At the same time, the hidden troubles in various states in the prior art are avoided, and the reliability of the startup process is effectively improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Motor And Converter Starters (AREA)

Abstract

一种永磁同步电机启动方法、装置动力系统和无人飞行器,所述方法包括:获得所述永磁同步电机的当前电机转速和电机位置信息(S101);确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速(S102);根据所述反馈转速和所述电机位置信息对所述永磁同步电机进行闭环控制(S103)。通过预先设定预设最小转速,当计算的当前电机转速小于预设最小转速时,以预设最小转速作为反馈转速,当计算的当前电机转速大于预设最小转速时,以当前电机转速作为反馈转速,以此可实现直接闭环控制,摒弃了现有技术中繁琐的状态切换、较多参数调节等环节,简化了现有技术中包含定位、开环控制和闭环控制三个步骤的永磁同步电机启动方式,启动方法更为简单。同时避免了现有技术中各状态下的失败隐患,有效提高启动过程的可靠性。

Description

一种永磁同步电机启动方法、装置、动力系统及无人飞行器
本申请要求于2016年11月29日提交中国专利局、申请号为201611087698.0、申请名称为“一种永磁同步电机启动方法、装置和无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施方式涉及电机控制技术领域,特别涉及一种永磁同步电机启动方法、装置、动力系统及无人飞行器。
背景技术
在永磁同步电机控制中,通常采用驱动器控制U/V/W三相电形成电磁场,由于永磁同步电机的转子是永磁铁,因此转子会在U/V/W三相电形成的电磁场的作用下转动。估计转子转动的转速及角度反馈给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动,以此实现对永磁同步电机的闭环控制。
在永磁同步电机启动过程中,转子的转速和角度的估计至关重要,对于永磁同步电机的无位置传感器控制方式而言,一般采用非高频注入法的无位置传感器控制方案,该方案实现简单,但在电机转速较低时会出现估计不准确的问题。因此现有的方案需要首先进行开环控制的方式拖动电机,当电机转速高于某适当值之后,才开始切换成闭环控制,这样能够较准确地估算电机的转速及角度。一般采用以下三个步骤的控制方法实现电机的启动:
步骤一:定位,采用假设角度对电机转子进行初始定位(可能需要多次定位);
步骤二:开环控制,采用速度开环,对电机进行拖动;
步骤三:切换为闭环控制,当电机转速提升至满足一定条件时,切换为闭环。
该方法非常繁琐,对于新的电机需要调节的参数很多,且需要反复调节,如定位时给定的假设角度,开环过程设定的电机拖动时间,切入闭环时的稳定转速等。因此,采用上述方法对电机进行控制,状态切换繁琐且参数调节过多,使电机的启动过程复杂。
发明内容
本申请实施方式主要解决的技术问题是提供一种简单、可靠的永磁同步电机启动方法、装置、动力系统及无人飞行器。
为解决上述技术问题,本申请实施例提供以下技术方案:
一种永磁同步电机启动方法,所述启动方法包括:
获得所述永磁同步电机的当前电机转速和电机位置信息;
确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
根据所述反馈转速和所述电机位置信息对所述永磁同步电机进行闭环控制。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种永磁同步电机启动装置,所述启动装置包括:
转速及位置信息获得模块,用于获得所述永磁同步电机的当前电机转速和电机位置信息;
反馈转速确定模块,用于确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
闭环控制模块,用于根据所述反馈转速和所述电机位置信息对所述永磁同步电机进行闭环控制。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种动力系统,包括:
永磁同步电机;以及
如上所述的永磁同步电机启动装置,所述永磁同步电机启动装置与所述永磁同步电机电连接,用于控制所述电机的启动。
为解决上述技术问题,本申请实施例还提供以下技术方案:
其中无人飞行器,包括:
机身;以及
如上所述的动力系统,安装于所述机身上,用于为所述无人飞行器提供飞行动力。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种无人飞行器,包括:
中心壳体;
机臂,所述机臂与所述中心壳体连接;
电机,所述电机与所述机臂的另一端连接;
电机控制器,所述电机控制器位于所述机臂或所述中心壳体所形成的空腔内,其输出端与所述电机的输入端连接;以及
螺旋桨,与所述电机连接,所述螺旋桨在所述电机的驱动下产生使得所述无人飞行器移动的力;
其中,所述电机控制器用于:
获得所述电机的当前电机转速和电机位置信息;
确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
根据所述反馈转速和所述电机位置信息对所述电机进行闭环控制。
在本申请实施方式中,通过预先设定预设最小转速,当计算的当前电机转速小于预设最小转速时,以预设最小转速作为反馈转速,当计算的当前电机转速大于预设最小转速时,以当前电机转速作为反馈转速,以此可实现直接闭环控制,摒弃了现有技术中定位及开环过程,将现有 技术的启动手段中定位、开环控制和闭环控制三个步骤直接简化为仅使用闭环控制,电机启动方法更为简单;同时,避免了现有技术中多个步骤下的失败隐患,有效提高启动过程的可靠性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的启动方法的应用场景的结构原理图;
图2是本申请一个实施例提供的启动方法的流程图;
图3是本申请另一实施例提供的启动方法的流程图;
图4是申请又一实施例提供的启动方法的流程图;
图5是本申请一个实施例提供的启动装置的结构示意图;
图6是本申请又一实施例提供的启动装置的结构示意图;
图7是本申请又一实施例提供的启动装置的结构示意图;
图8是本申请实施例提供的无人飞行器的硬件结构示意图;
图9是使用本申请实施例提供的启动方法和启动装置来启动永磁同步电机的实验结果图。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位 构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请实施例可以应用到各种电机驱动的可移动物体上,包括但不限于无人飞行器(unmanned aerial vehicle,UAV),轮船,机器人。现以无人飞行器为例进行说明。无人飞行器的结构包括中心壳体、机臂、和动力系统。机臂与中心壳体一体连接或者固定连接,动力系统安装于机臂上。典型的动力系统包括电机控制器、电机和螺旋桨。电机控制器位于机臂或中心壳体所形成的空腔内。电机控制器的一端与油门控制器电连接,电机控制器的另一端与电机电连接,电机安装在机臂上,电机的转动轴连接螺旋桨。螺旋桨在所述电机的驱动下产生使得所述无人飞行器移动的力,例如,使得无人飞行器移动的升力或者推力。
电机控制器从油门控制器接收油门信号,生成并向电机发送用于控制电机运行的电机控制信号,所述电机控制信号例如包括控制电机启动的信号、控制电机运行的转速的信号等。
在一种实现方式中,油门控制器可以是无人飞行器的飞行控制模块。飞行控制模块通过各种传感器感知无人飞行器周围的环境,并控制无人飞行器的飞行。飞行控制模块可以是处理模块(processing unit),专用集成电路(Application Specific Integrated Circuit,ASIC)或者现场可编程门阵列(Field Programmable Gate Array,FPGA)。
当用户通过遥控器输入开机指令时,无人飞行器的飞控模块向电机控制器发送一油门信号,电机控制器接收该油门信号,生成并向电机发 送用于对电机进行启动的电机控制信号。
如背景技术中所描述的,对于永磁同步电机的启动,在现有技术中,其启动方法包括定位、开环控制和闭环控制三个步骤。本申请针对永磁同步电机,提出一种新的控制永磁同步电机启动的方法、装置、动力系统及无人飞行器。
如图1所示,为本申请实施例提供的永磁同步电机启动方法的应用场景的结构原理图。本申请实施例提供的启动方法应用于永磁同步电机,电机控制器通过采用本申请实施例的永磁同步电机启动方法,来控制电机的启动。其中,电机控制器通过电流传感器(图中未示出)接收来自永磁同步电机的两相或三相电流信号,电机控制器输出三相电压控制信号给永磁同步电机,以控制电机的转子转动。
如图2所示,为本申请一实施例提供的永磁同步电机启动方法的流程图,所述启动方法包括以下步骤:
步骤101:获得永磁同步电机的当前电机转速和电机位置信息;
可选地,可以采用位置传感器测得所述当前电机转速,也可以不采用位置传感器,即,通过无位置传感器方法计算当前电机转速。电机位置信息可以根据当前电机转速计算获得,具体地,所述电机位置信息指转子角度。
步骤102:确定所述当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,否则,将当前电机转速作为反馈转速;
确定当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,如果当前电机转速大于或者等于预设最小转速,将当前电机转速作为反馈转速。其中,预设最小转速预先设定。
步骤103:根据所述反馈转速和电机位置信息对所述永磁同步电机进行闭环控制。
在闭环控制中,通常采用的是无位置传感器估算算法来计算电机的转速及角度,该方法的优点是实现过程简单,但也存在当电机转速较低 时可能出现估算不准确的问题。因此,在现有技术中,首先通过开环控制的方式,对电机施动,当电机的转速高于某个适当值能够较准确地用无位置传感器估算算法计算电机的转速及角度之后,才切换为闭环控制。在本申请实施例中,直接采用闭环控制方法启动电机,而省去了现有技术中在闭环控制之前的开环控制步骤,因此,需考虑到直接采用闭环控制方法启动电机可能导致的误差问题。因此,在本申请实施例中,通过预先设定预设最小转速,当计算的当前电机转速小于预设最小转速时,以预设最小转速作为反馈转速,当计算的当前电机转速大于预设最小转速时,以当前电机转速作为反馈转速。这样做的目的是,对无位置传感器估算算法获得的当前电机转速的估计值进行限制,防止该转速估计值过低。当转速估计值大于等于预设最小转速时,表明该转速估计值符合要求,可将估算的该当前电机转速直接作为反馈转速,用于之后的闭环控制;而当转速估计值小于预设最小转速时,则表明该转速估计值过低,不符合要求,若采用此过低的转速估计值,有可能造成较大的误差,此时,将采用预设最小转速来代理该过低的转速估计值,以预设最低转速作为反馈转速,用于之后的闭环控制。以此可实现直接闭环控制,摒弃了现有技术中繁琐的状态切换、较多参数调节等环节,简化了现有技术中包含三个步骤的启动方式,启动方法更为简单。同时避免了现有技术中各状态下的失败隐患,有效提高启动过程的可靠性。
其中,步骤103中的控制方法可以采用矢量控制方法,也可以采用其他控制方法。
下面以矢量控制方法为例说明永磁同步电机的启动过程,假设当前电机转速为ω1、预设最小转速为ω,如果当前电机转速ω1小于预设最小转速ω,将预设最小转速ω作为反馈转速ωs,否则,将当前电机转速ω1作为反馈转速ωs。从给定的目标转速指令ω*中减去反馈速度ωs后得到速度偏差e,基于速度偏差e进行PI演算后得到q轴电流指令Iq*,基于q轴电流指令Iq*和反馈回来的q轴电流指令Iq进行PI演算后得到q轴电压指令Vq*,基于给定的d轴电流指令Id*和反馈的d轴电流指令Id进行PI演算后得到d轴电压指令Vd*。依据d、q轴 电压指令Vd*、Vq*和转子角度θ,对Vd*、Vq*进行Park变换和Clarke变换获得三相电压指令vu*,vv*和vw*,将三相电压指令vu*,vv*和vw*进行PWM变换转换为三相PWM电压vu,vv和vw,并将之输出到永磁同步电机。
其中,反馈回来的q轴电流指令Iq和d轴电流指令Id通过如下方法获得。通过电流传感器检测永磁同步电动机的两相或三相电流,如果检测到两相电流,另一相电流可以根据基尔霍夫原理计算得出,获得三相电流iu、iw和iv。将三相电流iu,iv和iw进行Clarke变换和Park变换获得d、q轴电流id和iq,并作为反馈电流反馈到电机控制器。
在一些实施例中,在所述方法的其他实施例中,所述获得当前电机转速和电机位置信息,包括:
计算当前电机转速;
对当前电机转速进行时间积分获得电机位置信息。
具体地,所述电机位置信息指转子角度,对当前电机转速进行时间积分获得转子转角。
如图3所示,为本申请另一个实施例提供的永磁同步电机启动方法的流程图,在该实施例中,所述方法包括:
步骤201:计算所述永磁同步电机的当前电机转速;
其中,可选地,可以采用位置传感器测得当前电机转速,也可以通过无位置传感器方法计算当前电机转速。
步骤202:对当前电机转速进行时间积分获得电机位置信息;
步骤203:确定当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,否则,将当前电机转速作为反馈转速;
步骤204:根据所述反馈转速和电机位置信息对所述永磁同步电机进行闭环控制。
需要说明的是,本申请虽然用序号对每个步骤进行标号,但并不依据序号限定步骤之间的先后顺序,例如该实施例中,步骤202可以发生在步骤203之前,也可以发生在步骤203之后。
可选地,在所述方法的某些实施例中,所述计算当前电机转速,包括:
通过无位置传感器的方式计算当前电机转速。
采用无位置传感器方法,节省了位置传感器的使用,从而节省了成本,也减小了占用体积。
仍以矢量控制方法为例说明如何采用无位置传感器方法计算当前电机转速。将上一次控制中获得的q轴电压指令Vq*和d轴电压指令Vd*进行Clarke变换获得α、β轴电压指令Vα*和Vβ*,将通过电流传感器获得的三相电流iu,iv和iw进行Clarke变换获得α、β轴电流iα和iβ。利用基于静止坐标系模型的速度相位观测器算法和基于同步电动机的静止坐标系模型方程式待入α、β轴电流iα和iβ及α、β轴电压指令Vα*和Vβ*计算出推定速度ω1。
此外,通过无位置传感器的方式来估算出电机转速还可以采用其他常见的方法,如基于永磁同步电机基本电磁关系的方法、三相端电压和电流计算、基于反电动势或定子磁链估算、基于各种观测器的估算方法等等,本实施例不作限定。
可选地,所述启动方法还包括:
当发生电机异常启动时,调整预设最小转速的值。
如果电机异常启动,例如电机失步时间超过第一预设时间;或者超过第二预设时间电机无法启动时,可以采取加大(或减小)预设最小转速的方式进行调节。其中,所述第一预设时间和第二预设时间预先设定。
通过调整预设最小转速的值,可以进一步保证电机正常启动。
如图4所示,为本申请另一个实施例提供的永磁同步电机启动方法的流程图,在该实施例中,所述方法包括:
步骤301:通过无位置传感器的方式计算当前电机转速;
步骤302:对当前电机转速进行时间积分获得电机位置信息;
步骤303:确定当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,否则,将当 前电机转速作为反馈转速;
步骤304:根据反馈转速和电机位置信息对永磁同步电机进行闭环控制;
步骤305:当发生电机异常启动时,调整预设最小转速的值。在其中一种实现方式中,所述电机异常启动包括:电机失步时间超过第一预设时间或者超过第二预设时间电机无法启动。
本申请实施方式并不限定上述步骤的顺序,其中,步骤302可以发生在步骤303之前也可以发生在步骤303之后,步骤305可以发生在步骤304之后也可以发生在步骤304之前。本申请实施方式启动方法的各个步骤是循环进行的,直到电机定、转子同步,电机正常启动。
在本申请实施例中,通过预先设定预设最小转速,当计算的当前电机转速小于预设最小转速时,以预设最小转速作为反馈转速,当计算的当前电机转速大于预设最小转速时,以当前电机转速作为反馈转速。这样做的目的是,对无位置传感器估算算法获得的当前电机转速的估计值进行限制,防止该转速估计值过低。当转速估计值大于等于预设最小转速时,表明该转速估计值符合要求,可将估算的该当前电机转速直接作为反馈转速,用于之后的闭环控制;而当转速估计值小于预设最小转速时,则表明该转速估计值过低,不符合要求,若采用此过低的转速估计值,有可能造成较大的误差,此时,将采用预设最小转速来代理该过低的转速估计值,以预设最低转速作为反馈转速,用于之后的闭环控制。以此可实现直接闭环控制,摒弃了现有技术中繁琐的状态切换、较多参数调节等环节,简化了现有技术的永磁同步电机启动装置中包含三个步骤的永磁同步电机启动方式,启动方法更为简单。同时避免了现有技术中各状态下的失败隐患,有效提高启动过程的可靠性。
如图5所示,为本申请其中一个实施例提供的永磁同步电机启动装置,可以用于执行本申请实施例公开的永磁同步电机启动方法。所述启动装置包括:
转速及位置信息获得模块401,用于获得当前电机转速和电机位置信息;
反馈转速确定模块402,用于确定当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,否则将当前电机转速作为反馈转速;
闭环控制模块403,用于根据反馈转速和电机位置信息对永磁同步电机进行闭环控制。
可选地,在所述装置的其他实施例中,所述转速及位置信息获得模块包括:
电机转速计算子模块,用于计算当前电机转速;
电机位置信息计算子模块,用于对当前电机转速进行时间积分获得电机位置信息。
在一个实施例中,转速及位置信息获得模块401、反馈转速确定模块402和闭环控制模块403可以为电调模块、微控制器单元、微处理器单元中的任意一种或几种。
在不同的实现方式中,本实施例的永磁同步电机启动装置可以是电子调速器或电机控制器等。
如图6所示,为本申请另一实施例提供的永磁同步电机启动装置的结构示意图,该装置可以用于执行本申请实施例公开的永磁同步电机启动方法。在该实施例中,所述启动装置包括:
电机转速计算子模块501,用于计算当前电机转速;
电机位置信息计算子模块502,用于对当前电机转速进行时间积分获得电机位置信息。
反馈转速确定模块503,用于确定当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,否则将当前电机转速作为反馈转速;
闭环控制模块504,用于根据反馈转速和电机位置信息对永磁同步电机进行闭环控制。
电机转速计算子模块501估计当前电机转速,电机位置信息计算子模块502根据电机转速计算子模块501估计的当前电机转速,对该当前电机转速进行时间积分获得电机位置信息,反馈转速确定模块503比较 电机转速计算子模块501计算的当前电机转速和预设最小转速,确定反馈转速,闭环控制模块504依据反馈转速和电机位置信息进行闭环控制。
可选地,在所述装置的其他实施例中,所述电机转速计算子模块,用于通过无位置传感器的方式计算当前电机转速。
可选地,在所述装置的其他实施例中,所述启动装置还包括:
预设最小转速调整模块,用于当发生电机异常启动时,调整预设最小转速的值。
可选的,在所述装置的某些实施例中,所述电机异常启动包括:
电机失步时间超过第一预设时间;或者,
超过第二预设时间电机无法启动。
在一个实施例中,电机转速计算子模块501、电机位置信息计算子模块502、反馈转速确定模块503和闭环控制模块504可以为电调模块、微控制器单元、微处理器单元中的任意一种或几种。
在不同的实现方式中,本实施例的永磁同步电机启动装置可以是电子调速器或电机控制器等。
如图7所示,为本申请又一实施例提供的永磁同步电机启动装置,该装置可以用于执行本申请实施例公开的永磁同步电机启动方法。在该实施例中,所述启动装置包括:
电机转速计算子模块601,用于计算当前电机转速;
电机位置信息计算子模块602,用于对当前电机转速进行时间积分获得电机位置信息。
反馈转速确定模块603,用于确定当前电机转速是否小于预设最小转速,如果当前电机转速小于预设最小转速,将预设最小转速作为反馈转速,否则将当前电机转速作为反馈转速;
闭环控制模块604,用于根据反馈转速和电机位置信息对永磁同步电机进行闭环控制;
预设最小转速调整模块605,用于当发生电机异常启动时,调整预设最小转速的值。
预设最小转速调整模块605用于在每一次循环控制中,判断电机失 步时间是否超过第一预设时间或者超过第二预设时间电机无法启动,如果发生此种情况,调整预设最小转速的值。
在一个实施例中,电机转速计算子模块601、电机位置信息计算子模块602、反馈转速确定模块603、闭环控制模块604以及预设最小转速调整模块605可以为电调模块、微控制器单元、微处理器单元中的任意一种或几种。
在不同的实现方式中,本实施例的永磁同步电机启动装置可以是电子调速器或电机控制器等。
需要说明的是,由于本申请实施例的装置实施例与方法实施例基于相同的申请构思,方法实施例中的技术内容同样适用于装置实施例,因此,装置实施例中与方法实施例相同的技术内容在此不再赘述。
本申请实施例还提供一种动力系统以及一种无人飞行器。该动力系统包括永磁同步电机以及如上所述的永磁同步电机启动装置,其中,所述永磁同步电机启动装置与所述永磁同步电机电连接,用于控制所述永磁同步电机的启动。该无人飞行器包括机身和上述的动力系统,该动力系统安装在机身上,用于为无人飞行器提供飞行动力。
如图8所示,本申请实施例还提供一种无人飞行器,执行图2-4所示的永磁同步电机启动方法的全部或部分步骤。该无人飞行器包括:
机身200、安装于所述机身200上的永磁同步电机300及用于控制所述永磁同步电机的电机控制器100。所述永磁同步电机300的电机控制器100包括至少一个微控制器或微处理器,以及与所述至少一个微控制器或微处理器连接的存储器。其中,所述存储器存储有可被所述至少一个微控制器或微处理器执行的指令,所述指令被所述至少一个微控制器或微处理器执行,以使所述至少一个微控制器或微处理器能够执行如上述任一个示例性实施例所示出的永磁同步电机启动方法。
在示例性实施例中,还提供了一种存储介质,该存储介质为计算机可读存储介质,例如可以为包括指令的临时性和非临时性计算机可读存储介质。该存储介质例如包括指令的存储器,上述指令可由处理器执行。存储介质上所存储的程序在被处理器执行时执行以下步骤:
获得所述电机的当前电机转速和电机位置信息;
确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
根据所述反馈转速和所述电机位置信息对所述电机进行闭环控制。
可选地,所述处理器进一步执行:当发生电机异常启动时,调整所述预设最小转速的值。
可选地,所述电机异常启动包括:
所述电机的失步时间超过第一预设时间;或者,超过第二预设时间所述电机无法启动。
可选地,所述处理器进一步执行:计算当前电机转速;以及对所述当前电机转速进行时间积分,获得电机位置信息。
可选地,所述处理器进一步执行:通过无位置传感器的方式计算所述电机的当前电机转速。
可选地,所述电机为永磁同步电机。
本领域普通技术人员应理解,上述实施例方法中的全部或部分流程的实现可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
需要说明的是,本申请实施例提供的永磁同步电机启动方法和启动装置适用于闭环运行或者开环运行等运行方式,适用于任何控制方法(例如矢量控制方法或其他控制方法),适合表贴或非表贴的永磁同步电机。图9为使用本申请实施例提供的启动方法和启动装置来启动永磁同步电机的实验结果图,从图中可以看出,仅需要56.83ms系统就达到稳定(转子同步),实现了短时间内系统能够有效启动。
在本申请实施例的永磁同步电机启动方法和启动装置中,利用反馈 转速确定模块比较当前电机转速和预设最小转速,当计算的当前电机转速小于预设最小转速时,以预设最小转速作为反馈转速,当计算的当前电机转速大于预设最小转速时,以当前电机转速作为反馈转速,以此可实现直接闭环控制,简化了现有技术中包括定位、开环控制和闭环控制三个步骤的启动方式,利用更为简单的启动方法实现了无人飞行器的启动。同时避免了现有技术中各状态下的失败隐患,有效提高启动过程的可靠性。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (24)

  1. 一种永磁同步电机启动方法,其特征在于,所述启动方法包括:
    获得所述永磁同步电机的当前电机转速和电机位置信息;
    确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
    根据所述反馈转速和所述电机位置信息对所述永磁同步电机进行闭环控制。
  2. 根据权利要求1所述的启动方法,其特征在于,所述启动方法还包括:
    当发生电机异常启动时,调整所述预设最小转速的值。
  3. 根据权利要求2所述的启动方法,其特征在于,所述电机异常启动包括:
    所述永磁同步电机的失步时间超过第一预设时间;或者,
    超过第二预设时间所述永磁同步电机无法启动。
  4. 根据权利要求1-3中任意一项所述的启动方法,其特征在于,所述获得所述永磁同步电机的当前电机转速和电机位置信息,包括:
    计算所述永磁同步电机的当前电机转速;
    对所述当前电机转速进行时间积分,获得电机位置信息。
  5. 根据权利要求4所述的启动方法,其特征在于,所述计算当前电机转速,包括:
    通过无位置传感器的方式计算所述永磁同步电机的当前电机转速。
  6. 一种永磁同步电机启动装置,其特征在于,所述启动装置包括:
    转速及位置信息获得模块,用于获得所述永磁同步电机的当前电机转速和电机位置信息;
    反馈转速确定模块,用于确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
    闭环控制模块,用于根据所述反馈转速和所述电机位置信息对所述永磁同步电机进行闭环控制。
  7. 根据权利要求6所述的启动装置,其特征在于,所述启动装置还包括:
    预设最小转速调整模块,用于当发生电机异常启动时,调整所述预设最小转速的值。
  8. 根据权利要求7所述的启动装置,其特征在于,所述电机异常启动包括:
    所述永磁同步电机的失步时间超过第一预设时间;或者,
    超过第二预设时间所述永磁同步电机无法启动。
  9. 根据权利要求6-8中任意一项所述的启动装置,其特征在于,所述转速及位置信息获得模块包括:
    电机转速计算子模块,用于计算所述永磁同步电机的当前电机转速;
    电机位置信息计算子模块,用于对所述当前电机转速进行时间积分,获得电机位置信息。
  10. 根据权利要求9所述的启动装置,其特征在于,所述电机转速计算子模块,具体用于通过无位置传感器的方式计算所述永磁同步电机的当前电机转速。
  11. 一种动力系统,其特征在于,包括:
    永磁同步电机;以及
    权利要求7-12中任一项所述的永磁同步电机启动装置,所述永磁同步电机启动装置与所述永磁同步电机电连接,用于控制所述永磁同步电机的启动。
  12. 一种无人飞行器,其特征在于,包括:
    机身;以及
    权利要求13所述的动力系统,安装于所述机身上,用于为所述无人飞行器提供飞行动力。
  13. 一种无人飞行器,其特征在于,包括:
    中心壳体;
    机臂,所述机臂与所述中心壳体连接;
    电机,所述电机与所述机臂的另一端连接;
    电机控制器,所述电机控制器位于所述机臂或所述中心壳体所形成的空腔内,其输出端与所述电机的输入端连接;以及
    螺旋桨,与所述电机连接,所述螺旋桨在所述电机的驱动下产生使得所述无人飞行器移动的力;
    其中,所述电机控制器用于:
    获得所述电机的当前电机转速和电机位置信息;
    确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
    根据所述反馈转速和所述电机位置信息对所述电机进行闭环控制。
  14. 根据权利要求13所述的无人飞行器,其特征在于,所述电机 控制器还用于:
    当发生电机异常启动时,调整所述预设最小转速的值。
  15. 根据权利要求14所述的无人飞行器,其特征在于,所述电机异常启动包括:
    电机失步时间超过第一预设时间;或者,
    超过第二预设时间所述电机无法启动。
  16. 根据权利要求13-15中任意一项所述的无人飞行器,其特征在于,所述电机控制器具体用于:
    计算所述电机的当前电机转速;以及
    对所述当前电机转速进行时间积分,获得电机位置信息。
  17. 根据权利要求16所述的无人飞行器,其特征在于,所述电机控制器具体用于:
    通过无位置传感器的方式计算所述电机的当前电机转速。
  18. 根据权利要求13-17中任一项所述的无人飞行器,其特征在于,所述电机为永磁同步电机。
  19. 一种存储介质,用于存储程序,其特征在于,所述程序被处理器执行,所述处理器与电机连接;所述程序被所述处理器执行时,所述处理器执行如下步骤:
    获得所述电机的当前电机转速和电机位置信息;
    确定所述当前电机转速是否小于预设最小转速,如果所述当前电机转速小于所述预设最小转速,将所述预设最小转速作为反馈转速,否则,将所述当前电机转速作为反馈转速;
    根据所述反馈转速和所述电机位置信息对所述电机进行闭环控制。
  20. 根据权利要求19所述的存储介质,其特征在于,所述处理器进一步执行:
    当发生电机异常启动时,调整所述预设最小转速的值。
  21. 根据权利要求20所述的存储介质,其特征在于,所述电机异常启动包括:
    所述电机的失步时间超过第一预设时间;或者,
    超过第二预设时间所述电机无法启动。
  22. 根据权利要求19-21中任意一项所述的存储介质,其特征在于,所述处理器进一步执行:
    计算当前电机转速;以及
    对所述当前电机转速进行时间积分,获得电机位置信息。
  23. 根据权利要求22所述的启动方法,其特征在于,所述处理器进一步执行:
    通过无位置传感器的方式计算所述电机的当前电机转速。
  24. 根据权利要求19-23中任一项所述的存储介质,其特征在于,所述电机为永磁同步电机。
PCT/CN2017/111017 2016-11-29 2017-11-15 一种永磁同步电机启动方法、装置、动力系统及无人飞行器 WO2018099266A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17825092.4A EP3550717B1 (en) 2016-11-29 2017-11-15 Permanent magnet synchronous motor starting method, device, power system and unmanned aerial vehicle
US15/883,647 US10447185B2 (en) 2016-11-29 2018-01-30 Starting method and apparatus for permanent magnet synchronous motor, power system, and unmanned aerial vehicle
US16/567,183 US11005396B2 (en) 2016-11-29 2019-09-11 Starting method and apparatus for permanent magnet synchronous motor, power system, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611087698.0 2016-11-29
CN201611087698.0A CN106385208A (zh) 2016-11-29 2016-11-29 一种永磁同步电机启动方法、装置和无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,647 Continuation US10447185B2 (en) 2016-11-29 2018-01-30 Starting method and apparatus for permanent magnet synchronous motor, power system, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2018099266A1 true WO2018099266A1 (zh) 2018-06-07

Family

ID=57959614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111017 WO2018099266A1 (zh) 2016-11-29 2017-11-15 一种永磁同步电机启动方法、装置、动力系统及无人飞行器

Country Status (4)

Country Link
US (2) US10447185B2 (zh)
EP (1) EP3550717B1 (zh)
CN (1) CN106385208A (zh)
WO (1) WO2018099266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394922A (zh) * 2020-03-13 2021-09-14 中车永济电机有限公司 永磁电机调整方法、装置、设备以及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385208A (zh) 2016-11-29 2017-02-08 深圳市道通智能航空技术有限公司 一种永磁同步电机启动方法、装置和无人飞行器
CN109286353B (zh) * 2017-07-21 2021-01-19 深圳市道通智能航空技术有限公司 一种电机控制模式故障检测方法及装置
CN108696221B (zh) * 2018-05-30 2019-06-25 深圳市道通智能航空技术有限公司 一种电机启动方法、装置、电子调速器和无人飞行器
CN112956126A (zh) * 2020-04-24 2021-06-11 深圳市大疆创新科技有限公司 电机的控制方法、装置、设备及存储介质
CN115268255B (zh) * 2021-04-29 2024-07-19 北京机械设备研究所 一种有限空间无人平台的机构运动控制装置和方法
CN113859554B (zh) * 2021-09-22 2022-12-09 北京三快在线科技有限公司 一种无人设备控制方法、装置、存储介质及电子设备
CN113972868B (zh) * 2021-10-28 2023-09-22 珠海格力电器股份有限公司 永磁同步电机启动控制方法、装置和永磁同步电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020021106A1 (en) * 2000-08-18 2002-02-21 Matsushita Electric Works, Ltd Control system for small electric motor vehicle
CN102739148A (zh) * 2012-07-05 2012-10-17 株洲南车时代电气股份有限公司 一种变频驱动负载无位置编码器悬停控制装置及其方法
CN103746619A (zh) * 2013-12-03 2014-04-23 广东威灵电机制造有限公司 一种同步电机启动控制方法及系统
CN104980066A (zh) * 2014-04-11 2015-10-14 常州雷利电机科技有限公司 排水泵用直流无刷电动机系统、及其控制方法和控制装置
CN105610354A (zh) * 2014-11-14 2016-05-25 中国航空工业第六一八研究所 一种高压永磁同步电机闭环软启动方法
CN106385208A (zh) * 2016-11-29 2017-02-08 深圳市道通智能航空技术有限公司 一种永磁同步电机启动方法、装置和无人飞行器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505596A (ja) * 2004-07-01 2008-02-21 インターナショナル レクティファイアー コーポレイション 永久磁石同期電動機駆動の起動方法およびシステム
JP4895703B2 (ja) * 2006-06-28 2012-03-14 三洋電機株式会社 モータ制御装置
WO2013025552A1 (en) * 2011-08-12 2013-02-21 Aerovironment, Inc. Bi-stable, sub-commutated, direct-drive, sinusoidal motor controller for precision position control
US9621093B2 (en) * 2013-02-21 2017-04-11 Mitsubishi Electric Corporation Motor control device
US20150188461A1 (en) * 2013-12-30 2015-07-02 Samsung Electro-Mechanics Co., Ltd. Motor driving control apparatus and method, and motor driving system using the same
KR101535036B1 (ko) * 2014-08-25 2015-07-24 현대자동차주식회사 구동모터의 전류지령에 대한 토크 보상장치 및 방법
CN106063122B (zh) * 2014-09-30 2018-02-09 松下知识产权经营株式会社 电动机控制装置以及电动机控制方法
CN104467551B (zh) * 2014-11-10 2017-11-07 常州格力博有限公司 一种无霍尔电机平稳启动方法
CN104811095B (zh) * 2015-04-28 2018-03-27 广东美的暖通设备有限公司 电动机的启动控制方法、装置和空调器
KR101755831B1 (ko) * 2015-08-28 2017-07-10 현대자동차주식회사 모터 제어 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020021106A1 (en) * 2000-08-18 2002-02-21 Matsushita Electric Works, Ltd Control system for small electric motor vehicle
CN102739148A (zh) * 2012-07-05 2012-10-17 株洲南车时代电气股份有限公司 一种变频驱动负载无位置编码器悬停控制装置及其方法
CN103746619A (zh) * 2013-12-03 2014-04-23 广东威灵电机制造有限公司 一种同步电机启动控制方法及系统
CN104980066A (zh) * 2014-04-11 2015-10-14 常州雷利电机科技有限公司 排水泵用直流无刷电动机系统、及其控制方法和控制装置
CN105610354A (zh) * 2014-11-14 2016-05-25 中国航空工业第六一八研究所 一种高压永磁同步电机闭环软启动方法
CN106385208A (zh) * 2016-11-29 2017-02-08 深圳市道通智能航空技术有限公司 一种永磁同步电机启动方法、装置和无人飞行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550717A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394922A (zh) * 2020-03-13 2021-09-14 中车永济电机有限公司 永磁电机调整方法、装置、设备以及存储介质
CN113394922B (zh) * 2020-03-13 2022-06-14 中车永济电机有限公司 永磁电机调整方法、装置、设备以及存储介质
US11863109B2 (en) 2020-03-13 2024-01-02 Crrc Yongji Electric Co., Ltd. Method and device for adjusting permanent magnet motor, equipment, and storage medium

Also Published As

Publication number Publication date
US10447185B2 (en) 2019-10-15
EP3550717A1 (en) 2019-10-09
EP3550717A4 (en) 2019-10-09
CN106385208A (zh) 2017-02-08
US20180183367A1 (en) 2018-06-28
US11005396B2 (en) 2021-05-11
EP3550717B1 (en) 2021-10-27
US20200007055A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2018099266A1 (zh) 一种永磁同步电机启动方法、装置、动力系统及无人飞行器
US9590552B2 (en) Motor drive device and electric compressor
US7652441B2 (en) Method and system for starting a sensorless motor
US8269445B2 (en) Limp home operational mode for an electric vehicle
US10541632B2 (en) Sensorless commutation method
US11606050B2 (en) Method and system for controlling electric motor, and controller
JP4926492B2 (ja) モータ制御装置
JP2019527532A (ja) モータのベクトル制御方法、装置及び航空機
CN112913136B (zh) 电动机控制装置
JP6726390B2 (ja) 永久磁石形同期電動機の制御装置
WO2013131460A1 (zh) 电机启动的控制方法和装置
CN109995293A (zh) 永磁同步电机无速度传感器控制下i/f启动与闭环控制的切换方法
CN108445910B (zh) 控制无人飞行器的电机加速的方法、装置和电子调速器
JP2002272198A (ja) 永久磁石形同期電動機の制御装置
KR20210000152A (ko) 인버터형 센서리스 모터의 제어 장치 및 방법
JP2005039889A (ja) 電動機の制御方法
JP2013121280A (ja) モータ制御装置
WO2019196352A1 (zh) 一种电机加速方法、装置、电子调速器和无人飞行器
JP2014230430A (ja) 永久磁石型同期電動機の制御装置
JP2005110473A (ja) 永久磁石同期電動機の制御装置
JP6787006B2 (ja) モータ制御装置
WO2019227813A1 (zh) 一种电机启动方法、装置、电子调速器和无人飞行器
JP2017221001A (ja) 同期電動機の制御装置
JP3566595B2 (ja) 永久磁石形同期電動機の制御装置
US20210320604A1 (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17825092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE