WO2018098763A1 - 射频拉远单元的控制方法及装置 - Google Patents

射频拉远单元的控制方法及装置 Download PDF

Info

Publication number
WO2018098763A1
WO2018098763A1 PCT/CN2016/108164 CN2016108164W WO2018098763A1 WO 2018098763 A1 WO2018098763 A1 WO 2018098763A1 CN 2016108164 W CN2016108164 W CN 2016108164W WO 2018098763 A1 WO2018098763 A1 WO 2018098763A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
preset
terminal
power
rrus
Prior art date
Application number
PCT/CN2016/108164
Other languages
English (en)
French (fr)
Inventor
肖伟
文长春
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680087738.3A priority Critical patent/CN109479240A/zh
Priority to PCT/CN2016/108164 priority patent/WO2018098763A1/zh
Publication of WO2018098763A1 publication Critical patent/WO2018098763A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to mobile communication technologies, and in particular, to a method and an apparatus for controlling a radio remote unit.
  • MBB mobile broadband services
  • the active head end may be a Radio Radio Unit (RRU), that is, multiple RRUs are deployed indoors, and the RRUs transmit and receive RF signals to better serve the indoor terminals.
  • RRU Radio Radio Unit
  • the present application provides a method and a device for controlling a radio remote unit, which are used to reduce energy consumption in a multi-RRU scenario.
  • the first aspect of the present application provides a method for controlling a radio remote unit, including:
  • the RRUs other than the preset normally-on RRUs are powered off in the power-on state RRUs of the non-access terminals in the preset duration.
  • whether the terminal is connected to the RRU in each of the power-on state remote radio units in the preset monitoring range includes:
  • the preset monitoring period it is monitored whether a terminal is connected to each power-on state RRU in the preset monitoring range.
  • the preset monitoring time period may be a low traffic time period.
  • whether the terminal is connected to each power-on state RRU in the preset monitoring range during the preset monitoring period includes:
  • Monitoring in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of the following: whether there is a new terminal access, whether to interact with the terminal ;
  • the data flow information it is determined whether a terminal is connected to the RRU in each power-on state.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal;
  • the preset RRU topology is established according to at least one RRU adjacent to each RRU in the preset monitoring range.
  • the second aspect of the present application provides a control device for a radio remote unit, including:
  • a monitoring module configured to monitor whether a terminal is connected to each power-on state RRU in a preset monitoring range
  • a determining module configured to determine, in the preset monitoring range, the power-on state RRU of the access terminal in the preset duration
  • the control module is configured to power off the RRUs other than the preset normally open RRUs in the power-on state RRUs that have no access terminals in the preset duration.
  • the monitoring module is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the monitoring module is specifically configured to monitor data flow information of each power-on state RRU in the preset monitoring range within a preset monitoring period, where the data flow information includes at least one of the following: whether there is a new terminal Accessing, whether to interact with the terminal, and determining whether the terminal is connected to the RRU in each power-on state according to the data flow information.
  • the device further includes: a power-on module, configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • a power-on module configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • the monitoring module is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • the device further includes: a recovery module
  • the recovery module is configured to acquire, according to a preset RRU topology, at least one neighboring RRU of the preset normally open RRU, when the monitoring module detects that the new terminal accesses the preset normally open RRU; The RRU that is powered off in at least one of the adjacent RRUs is powered on.
  • the device further includes: an establishing module, configured to acquire terminal signal measurement information forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal quality measured by the terminal Determining, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; establishing at least one RRU adjacent to each RRU in the preset monitoring range Preset the default RRU topology.
  • an establishing module configured to acquire terminal signal measurement information forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal quality measured by the terminal Determining, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; establishing at least one RRU adjacent to each RRU in the preset monitoring range Preset the default RRU topology.
  • a third aspect of the present application provides a control device for a radio remote unit, including: a processor and a memory, the memory is configured to store program instructions, and the processor is configured to invoke a program instruction in the memory to perform the following method:
  • the RRUs other than the preset normally-on RRUs are powered off in the power-on state RRUs of the non-access terminals in the preset duration.
  • the processor is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the processor is configured to monitor, in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of the following: whether A new terminal access, whether to interact with the terminal, and whether the terminal is connected to the RRU in each power-on state according to the data flow information.
  • the processor is further configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • the processor is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • the processor is further configured to: when the new terminal accesses the preset normally open RRU, acquire at least one neighboring RRU of the preset normally open RRU according to a preset RRU topology; The RRU that is powered off in the at least one adjacent RRU is powered on.
  • the processor is further configured to acquire terminal signal measurement information that is forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal; And determining, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; and establishing the pre-preparation according to at least one RRU adjacent to each RRU in the preset monitoring range. Set the RRU topology.
  • a third aspect of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a fourth aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the third aspect.
  • the RRU of the power-on state RRU is powered off by the RRU except the preset RRU in the power-on state RRU of the non-access terminal, so that the RRU that is temporarily idle can be directly powered off according to the monitoring situation to save energy while retaining Some RRUs are not powered off, so that the RRUs that are required by the user can be powered on according to the access of the terminal, and the user service can be guaranteed while saving energy.
  • the fifth aspect of the present application provides a method for controlling a radio remote unit, including:
  • the RRUs in the power-down state of the at least one adjacent RRU are powered on.
  • the method further includes:
  • the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal;
  • the preset RRU topology is established according to at least one RRU adjacent to each RRU in the preset monitoring range.
  • the at least one neighboring RRU of the RRU is obtained according to the preset topology, including:
  • At least one adjacent RRU of the RRU is obtained according to a preset topology when a terminal accessing the radio remote unit RRU is detected in the preset monitoring period.
  • the method further includes:
  • the RRUs other than the preset normally-on RRUs are powered off in the power-on state RRUs of the non-access terminals in the preset duration.
  • the monitoring whether the terminal is connected to the RRU in each power-on state in the preset monitoring range, includes:
  • whether the terminal is connected to each power-on state RRU in the preset monitoring range during the preset monitoring period includes:
  • Monitoring in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of the following: whether there is a new terminal access, whether to interact with the terminal ;
  • the method further includes:
  • the method further includes:
  • the sixth aspect of the present application provides a control device for a radio remote unit, including:
  • a monitoring module configured to acquire, when a terminal accesses the radio remote unit RRU, acquire at least one adjacent RRU of the RRU according to a preset topology
  • a power-on module configured to power on the RRU in the power-off state of the at least one adjacent RRU.
  • the device further includes: an establishing module, configured to acquire terminal signal measurement information forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal measured by the terminal And determining, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; and establishing, according to the at least one RRU adjacent to each RRU in the preset monitoring range, The preset RRU topology.
  • an establishing module configured to acquire terminal signal measurement information forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal measured by the terminal And determining, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; and establishing, according to the at least one RRU adjacent to each RRU in the preset monitoring range, The preset RRU topology.
  • the monitoring module is configured to acquire at least one RRU according to a preset topology when the terminal accesses the radio remote unit RRU in the preset monitoring range during the preset monitoring period. Adjacent RRU.
  • the device further includes: a determining module and a control module;
  • the monitoring module is further configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range;
  • the determining module is configured to determine that there is no access terminal in the preset duration within the preset monitoring range The power-on state RRU;
  • the control module is configured to power off the RRUs other than the preset normally open RRUs in the power-on state RRUs that have no access terminals in the preset duration.
  • the monitoring module is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the monitoring module is configured to monitor, in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of: A new terminal access, whether to interact with the terminal, and whether the terminal is connected to the RRU in each power-on state according to the data flow information.
  • the power-on module is further configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • the monitoring module is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • the seventh aspect of the present application provides a control device for a radio remote unit, including: a processor and a memory, the memory is configured to store program instructions, and the processor is configured to invoke a program instruction in the memory to perform the following method:
  • the RRUs in the power-down state of the at least one adjacent RRU are powered on.
  • the processor is further configured to acquire terminal signal measurement information that is forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal; And determining, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; and establishing the pre-preparation according to at least one RRU adjacent to each RRU in the preset monitoring range. Set the RRU topology.
  • the processor is configured to acquire at least one RRU according to a preset topology when the terminal accesses the radio remote unit RRU after monitoring the preset monitoring range within a preset monitoring period. Adjacent RRU.
  • the processor is further configured to: monitor whether a terminal is connected to each power-on state RRU in a preset monitoring range; and determine, in the preset monitoring range, that the access terminal has no access terminal in a preset duration a power-on state RRU; excluding the power-on state RRU of the preset terminal without the access terminal Set the RRU other than the normally open RRU to power off.
  • the processor is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the processor is configured to monitor, in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of the following: whether A new terminal access, whether to interact with the terminal, and whether the terminal is connected to the RRU in each power-on state according to the data flow information.
  • the processor is further configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • the processor is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • An eighth aspect of the present application provides a program for performing the method of the above fifth aspect when executed by a processor.
  • a ninth aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the eighth aspect.
  • the neighboring RRUs are located under the neighboring RRUs.
  • the RRU of the electrical state is powered on, which enables the RRU to be powered on according to the flexible monitoring when the user needs it, and provides services for the user, while ensuring that the user's service is not affected.
  • FIG. 1 is a structural diagram of a communication system
  • FIG. 2 is a schematic flowchart of a method for controlling a radio remote unit according to the present application
  • FIG. 3 is a schematic flow chart of another method for controlling a remote radio unit according to the present application.
  • FIG. 4 is a schematic structural diagram of a control device for a radio remote unit according to the present application.
  • FIG. 5 is a schematic structural diagram of another control device for a radio remote unit according to the present application.
  • FIG. 6 is a schematic structural diagram of another control device for a radio remote unit according to the present application.
  • FIG. 7 is a schematic structural diagram of another control device for a radio remote unit according to the present application.
  • FIG. 8 is a schematic structural diagram of another control device for a remote radio unit according to the present application.
  • FIG. 9 is a schematic structural diagram of another control device for a radio remote unit according to the present application.
  • FIG. 10 is a schematic structural diagram of another control device for a radio remote unit according to the present application.
  • FIG. 11 is a schematic structural diagram of another control device for a radio remote unit according to the present application.
  • FIG. 1 is a structural diagram of a communication system.
  • the present application can be applied to the RRU-BBU scenario shown in FIG. 1 , but is not limited thereto.
  • the scenario architecture may include: a Baseband Processing Unit (BBU), an RRU Hub (RHUB), and multiple RRUs.
  • BBU Baseband Processing Unit
  • RHUB RRU Hub
  • the RRU can be a component of a distributed base station.
  • the RRU in the above architecture may be a micro RRU (pico-RRU, pRRU for short).
  • RRUs can be deployed at various locations according to specific scenarios to facilitate serving terminals in different locations.
  • the indoor area of medium and large buildings is generally 20,000 square meters to 50,000 square meters, and even up to 100,000 square meters.
  • the number of pRRUs required for deployment will reach tens to hundreds.
  • the BBU can control the switching status of each RRU, that is, control the power-on and power-off of each RRU.
  • the BBU controls the powering on and off of each RRU through the RHUB.
  • a method for powering off an idle RRU is proposed for how to reduce the energy consumption when the number of RRUs is large. Different from the current method of only turning off the RRU function, the energy can be better reduced. Consumption.
  • FIG. 2 is a schematic flowchart of a method for controlling a remote radio unit according to the present application.
  • the execution body of the method may be a BBU. As shown in Figure 2, the method includes:
  • All RRUs in an indoor scenario can be managed by a single BBU.
  • the BBU After the BBU starts monitoring, it detects all RRUs in the power-managed state of the management zone.
  • the logical cell is used as the monitoring object to monitor all logical cells in the management scope. Whether the terminal is connected to the RRU in each power-on state. Generally, when RMS is started, all RRUs in the management scope are powered on.
  • each RRU it is monitored whether there is a terminal connected to each RRU. If there is no terminal, it indicates that the RRU does not need to provide services for the terminal at present, and is idle.
  • S203 Power off the RRU except the preset normally open RRU in the power-on state RRU of the access terminal without the access terminal.
  • the power-on state RRU keeps no terminal service for a preset period of time, that is, it is always idle, and can be directly powered off. That is, the RRUs other than the preset normally open RRUs can be powered off in all the power-on state RRUs that are not connected to the terminal.
  • normally open RRUs In order to flexibly control the switch status of the RRUs in the monitoring range, you need to set some normally open RRUs. These normally open RRUs remain powered even if there is no terminal access, so that if other RRUs are powered off, if there is a terminal access normally open.
  • the RRU and the BBU control other RRUs to power on.
  • one or more normally open RRUs may be set in advance according to the deployment location of the RRU, and the identifier of the preset normally open RRU is stored in the BBU, and the preset normally open RRU is generally set at the entrance of the monitoring range, such as the doorway.
  • Critical locations such as corridors, which are generally the locations that users may pass after entering the monitoring range to ensure that the BBU knows that there is terminal access in time, and then powers other necessary RRUs to serve the users while providing services to the terminals. Energy saving does not affect user services.
  • the power-on state RRU of the access terminal is not preset in the preset monitoring range, and the non-access terminal is
  • the power-on state RRU is powered off by the RRU except the preset normally-open RRU.
  • the RRU that can be temporarily idle can be directly powered off according to the monitoring situation to save energy.
  • some RRUs are not powered off, so as to facilitate flexible
  • the access of the terminal powers up the RRU required by the user to ensure user service while saving energy.
  • each power-on state RRU in the preset monitoring range it is monitored whether a terminal is connected to each power-on state RRU in the preset monitoring range, and may be configured to monitor whether each power-on state RRU is connected to the preset monitoring range within a preset monitoring period. terminal.
  • the preset monitoring time period is a predetermined low traffic time period, and the low traffic time period may indicate that the number of terminals requiring service is small or not. Specifically, for most indoor scenarios, there may be more users who need to provide services in some time periods. These time periods are not low traffic periods, and no monitoring is required, and all RRUs can be powered on; in other time periods. The number of users in the possible scenario is extremely low, that is, in the low traffic period, the monitoring can be turned on, so that some idle RRUs can be powered off to save energy.
  • Transportation hubs such as airports, train stations, and bus stations, these scenes are generally white The number of users is huge. All RRUs can be powered on. You can set the nighttime closing time to the morning site opening time as the preset monitoring time period. During this time, the user volume will decrease or even not. After the monitoring is started, most RRUs can be opened. Electricity to save energy.
  • monitoring whether each terminal is connected to the RRU in each power-on state may determine whether the terminal is accessed by determining whether there is a new terminal access in each power-on state RRU, and/or, by determining each Whether the power-on state RRU has an interactive data flow with the terminal to determine whether there is a terminal.
  • the BBU can first know whether the terminal is connected to the RRU. If an RRU has access to the terminal, you can see whether the terminal interacts with the terminal. If not, the terminal may quit the access; if not, the RRU There is no terminal access, then monitor whether there is a new terminal access. If not, the description is always idle.
  • Determining the power-on state RRU of the access terminal in the preset monitoring range within the preset duration which may be:
  • each RRU may not be a cell, but a physical cell includes multiple RRUs, and one logical cell includes multiple physical cells.
  • the logical cell may refer to a cell resource, having a global unified cell identifier, and cell related attributes, such as frequency, bandwidth, physical cell identifier, and transmit power.
  • the coverage of a logical cell may be a single-sided antenna coverage or a multi-faceted antenna coverage.
  • a physical cell can refer to an actual coverage area, and each antenna point within the coverage area is a radio frequency combination.
  • a terminal if a terminal is connected to the RRU in each power-on state in the preset monitoring range, the terminal that is accessed in each physical cell in each logical cell and the service flow may be monitored in real time, if the preset duration is If there is no access terminal and no service flow under a certain physical cell, then this will be directly All RRUs except the preset normally open RRU are powered off. If there is no preset RRU in the physical cell, the physical cell can no longer be monitored after all RRUs in the physical cell are powered off. Similarly, if all the RRUs in a certain logical cell are powered off, the logical cell may not be monitored again. After the terminal is re-accessed, the next or multiple RRUs in the logical cell are triggered to be powered on. monitor.
  • the powered RRUs can be powered on according to user needs. For example, after an office building is turned on at night, most of the RRUs are powered off, but suddenly a user returns to the office to work overtime, and then some RRUs can be powered on according to the needs of the user.
  • the new terminal is configured to access the preset normally open RRU, and the at least one neighboring RRU of the preset normally open RRU is obtained according to the preset RRU topology; and the at least one adjacent RRU is powered off.
  • the RRU is powered on.
  • the at least one neighboring RRU of the preset RRO is powered on, and the terminal may move. After the power is turned on, it will continue to be monitored. In addition, after monitoring the other RRUs after power-on, there are new terminal accesses, and the neighboring RRUs of the RRUs that are connected to the terminal according to the preset RRU topology, and so on, and so on.
  • the RRU is powered on.
  • the idle RRU is powered off in a timely manner, so that the RRU can be flexibly powered on and off according to the access of the terminal in order to save energy and not delay the service for the user.
  • the preset RRU topology is used to identify an adjacency relationship between RRUs within a preset monitoring range.
  • powering up the RRU required by the user according to the monitoring situation may also be an independent embodiment.
  • the terminal accesses the RRU, and obtains at least one neighboring RRU of the RRU according to the preset topology.
  • the RRUs in the at least one neighboring RRU are powered on. That is, if a new terminal is connected to the RRU in a certain power-on state, then all the RRUs adjacent to the RRU are powered on, so that when the terminal moves, the terminal is provided with services in time, and the
  • the flexible monitoring powers up the required RRUs when the user needs them, and provides services for the users, while saving energy and ensuring that the services of the users are not affected.
  • the preset RRU topology may be manually determined according to the actual location coordinates of the RRU. Establish and save the established preset RRU topology to the BBU.
  • the preset RRU topology can also be established by the BBU itself based on the signal quality parameters.
  • FIG. 3 is a schematic flowchart of a method for controlling a radio remote unit according to another embodiment of the present invention.
  • the BBU may include the following processes:
  • the signal quality information may include: an identification of the terminal, and a signal quality parameter measured by the terminal.
  • the BBU may indicate the measured signal quality parameter to the accessed terminal by using the RRU in the preset statistical period, and the terminal accessed by each RRU may obtain the signal quality parameter according to the signal sent by the received RRU.
  • the signal quality parameter is sent to the RRU, and the RRU forwards the signal quality parameter to the BBU.
  • the terminal may send the data packet to the RRU, where the data packet carries the signal quality parameter, and the RRU does not parse the data packet. Determine the data packet sent by that RRU, and then decode and obtain the channel quality parameters inside.
  • S302. Determine, according to the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range.
  • the neighbor relationship between each two RRUs may be sequentially determined according to the terminal signal measurement information forwarded by each RRU.
  • the signal quality parameter difference reported by the same terminal acquired by two adjacent RRUs is within a certain range.
  • the signal quality parameter may be Reference Signal Receiving Power (RSRP), that is, the RSRP obtained by the terminal according to the reference signal sent by the RRU.
  • RSRP Reference Signal Receiving Power
  • the terminal periodically sends the signal quality parameter to the RRU.
  • the RRU can also periodically forward the RSRP reported by the terminal to the BBU.
  • the BBU counts the RSRP reported by the RRU in the preset statistical period (for example, one day) to determine the phase of the RRU. Neighbor relationship.
  • the two RRUs can be polled in turn, and any two RRUx and RRUy are taken as an example to obtain signal quality parameters for RRUx and RRUy reported by at least one same terminal, and the number of statistics is, for example, three.
  • the terminal reports the signal quality parameters of RRUx and RRUy, and reports a total of 50 times. Then, the average value of the difference between the 50 signal quality parameters is obtained.
  • n is the total number of signal quality parameters reported by the same terminal for RRUx and RRUy, n is an integer greater than 0, and RSRPx i is the RRUx of the ith report RSRP, RSRPy i is the RSRP of the RRUy reported by the ith, and RSRPx i and RSRPy i are reported by the same terminal.
  • the RRUx and the RRUy are considered to be adjacent, otherwise they are not adjacent.
  • the N RRUs are included in the BBU as an example.
  • N is an integer greater than 0.
  • “1” indicates that two RRUs are adjacent, and “0” indicates that the two RRUs are not adjacent. This is not a limitation.
  • all the RRUs in the power-down state within the preset monitoring range may be powered on.
  • the BBU restores all RRUs in the preset monitoring range when the monitoring ends. For example, in the office building, you can preset the monitoring time period from 10:00 to 6:00 in the morning. Then, when the monitoring is finished at 6:00 in the morning, all the RRUs in the office building will be powered on, so as to provide better users during the working hours. service.
  • the device may be a BBU. As shown in FIG. 4, the device includes: a processor 401, a transmitter 402, a receiver 403, and a memory 404. Antenna 405.
  • the memory 404, the transmitter 402 and the receiver 403 and the processor 401 can be accessed through the bus. Line connection.
  • the memory 404, the transmitter 402, and the receiver 403 and the processor 401 may not be a bus structure, but may be other structures, such as a star structure, which is not specifically limited in this application.
  • the processor 401 may be a general-purpose central processing unit or an ASIC, and may be one or more integrated circuits for controlling program execution, may be hardware circuits developed using an FPGA, and may be a baseband processor.
  • processor 401 can include at least one processing core.
  • memory 404 can include one or more of ROM, RAM, and disk storage. Memory 404 is used to store data and/or program instructions needed by processor 401 to operate. The number of memories 404 can be one or more.
  • the processor 401 is specifically configured to perform the following methods:
  • the RRUs other than the preset normally-on RRUs are powered off in the power-on state RRUs of the non-access terminals in the preset duration.
  • the power-on state RRU of the access terminal is not preset in the preset monitoring range, and the non-access terminal is
  • the power-on state RRU is powered off by the RRU except the preset normally-open RRU.
  • the RRU that can be temporarily idle can be directly powered off according to the monitoring situation to save energy.
  • some RRUs are not powered off, so as to facilitate flexible
  • the access of the terminal powers up the RRU required by the user to ensure user service while saving energy.
  • the processor 401 is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the processor 401 is specifically configured to monitor, during a preset monitoring period, whether there is a new terminal access in each power-on state RRU in the preset monitoring range, and/or whether each power-on state RRU interacts with the terminal.
  • the data stream is determined according to whether there is a new terminal access in the RRU state and/or whether the RRU interacts with the terminal in each power-on state, and whether the terminal is connected to the RRU in each power-on state.
  • the processor 401 is further configured to: when the preset monitoring period ends, the pre- Set the RRUs that are in the power-off state within the monitoring range to be powered on.
  • the processor 401 is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • the processor 401 is further configured to: when the new terminal accesses the preset normally open RRU, obtain at least one neighboring RRU of the preset normally open RRU according to a preset RRU topology; The RRU that is powered off in at least one of the adjacent RRUs is powered on.
  • the processor 401 is configured to acquire terminal signal measurement information forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal; The measurement information is used to determine at least one RRU adjacent to each RRU in the preset monitoring range; and the preset RRU topology is established according to at least one RRU adjacent to each RRU in the preset monitoring range.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and the technical effects are similar.
  • the present application further provides a control device for the radio remote unit, which is the same as the structure shown in FIG. 4, wherein the processor 401 is specifically configured to perform the following method:
  • the RRUs in the power-down state of the at least one adjacent RRU are powered on.
  • the processor 401 is further configured to acquire terminal signal measurement information that is forwarded by each RRU in the preset monitoring range, where the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal; Determining, by the terminal signal measurement information, at least one RRU adjacent to each RRU in the preset monitoring range; establishing the preset according to at least one RRU adjacent to each RRU in the preset monitoring range RRU topology.
  • the processor 401 is configured to acquire at least one phase of the RRU according to a preset topology when the terminal accesses the radio remote unit RRU after monitoring the preset monitoring range within a preset monitoring period. Neighbor RRU.
  • the processor 401 is further configured to: monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range; and determine that the preset monitoring range is not in the preset duration.
  • the RRU is powered off by the RRU other than the preset normally open RRU in the power-on state RRU without the access terminal in the preset duration.
  • the processor 401 is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the processor 401 is configured to monitor, in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of the following: whether there is a new one. Terminal access, whether to interact with the terminal, and whether the terminal is connected to the RRU in each power-on state according to the data flow information.
  • the processor 401 is further configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • the processor 401 is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • FIG. 5 is a schematic structural diagram of another apparatus for controlling a radio remote unit according to the present application.
  • the apparatus may be a BBU.
  • the apparatus includes: a monitoring module 501, a determining module 502, and a control module 503, where:
  • the monitoring module 501 is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range.
  • the determining module 502 is configured to determine, in the preset monitoring range, the power-on state RRU of the access terminal in the preset duration.
  • the control module 503 is configured to power off the RRUs other than the preset normally open RRUs in the power-on state RRUs of the non-access terminals in the preset duration.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and the technical effects are similar.
  • the monitoring module 501 is configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the monitoring module 501 monitors, in a preset monitoring period, whether there is a new terminal access in each power-on state RRU in the preset monitoring range, and/or whether each power-on state RRU interacts with the terminal.
  • the flow is determined according to whether there is a new terminal access in the RRU in each power-on state, and/or whether the RRU interacts with the terminal in each power-on state, and whether the terminal is accessed in each power-on state RRU.
  • FIG. 6 is a schematic structural diagram of another control device for a remote radio unit provided by the present application, in which the device may further include: a power-on module 601, configured to power on all the RRUs in the power-down state in the preset monitoring range at the end of the preset monitoring period.
  • a power-on module 601 configured to power on all the RRUs in the power-down state in the preset monitoring range at the end of the preset monitoring period.
  • the monitoring module 501 stops monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • FIG. 7 is a schematic structural diagram of another apparatus for controlling a radio remote unit according to the present application.
  • the apparatus may further include: a recovery module 701, where the monitoring module 501 detects that a new terminal accesses the pre- When the RRU is normally opened, the at least one neighboring RRU of the preset normally open RRU is obtained according to the preset RRU topology; and the RRU that is powered off in the at least one neighboring RRU is powered on.
  • FIG. 8 is a schematic structural diagram of another apparatus for controlling a remote radio unit according to the present application.
  • the apparatus may further include: an establishing module 801, configured to acquire, by using each RRU in the preset monitoring range.
  • the terminal signal measurement information includes: an identifier of the terminal, and a signal quality parameter measured by the terminal; and determining, according to the terminal signal measurement information, at least 1 adjacent to each RRU in the preset monitoring range
  • the RRU topology is established according to at least one RRU adjacent to each RRU in the preset monitoring range.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and the technical effects are similar.
  • FIG. 9 is a schematic structural diagram of another apparatus for controlling a remote radio unit according to the present application.
  • the apparatus includes: a monitoring module 901 and a power-on module 902, where:
  • the monitoring module 901 is configured to acquire, when a terminal accesses the radio remote unit RRU, acquire at least one adjacent RRU of the RRU according to a preset topology.
  • the power-on module 902 is configured to power on the RRU in the power-off state of the at least one adjacent RRU.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and the technical effects are similar.
  • FIG. 10 is a schematic structural diagram of another apparatus for controlling a radio remote unit according to the present application.
  • the apparatus may further include: an establishing module 903, configured to acquire the preset.
  • the preset RRU topology is established by using at least one RRU adjacent to each RRU in the preset monitoring range.
  • the monitoring module 901 is configured to: when monitoring, in a preset monitoring period, that the terminal accesses the radio remote unit RRU, and acquires at least one phase of the RRU according to the preset topology. Neighbor RRU.
  • FIG. 11 is a schematic structural diagram of another apparatus for controlling a remote radio unit according to the present application. As shown in FIG. 11, the apparatus may further include: a determining module 111 and a control module 112, where
  • the monitoring module 901 is further configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range.
  • the determining module 111 is configured to determine, in the preset monitoring range, the power-on state RRU of the access terminal in the preset duration.
  • the control module 112 is configured to power off the RRUs other than the preset normally open RRUs in the power-on state RRUs of the non-access terminals in the preset duration.
  • the monitoring module 901 is specifically configured to monitor whether a terminal is connected to each power-on state RRU in the preset monitoring range within a preset monitoring period.
  • the monitoring module 901 is specifically configured to monitor, in a preset monitoring period, data flow information of each power-on state RRU in the preset monitoring range, where the data flow information includes at least one of the following: whether there is a new one.
  • the terminal accesses, and interacts with the terminal, and determines whether the terminal is connected to the RRU in each power-on state according to the data flow information.
  • the power-on module 902 is further configured to power on all the RRUs in the power-off state in the preset monitoring range at the end of the preset monitoring period.
  • the monitoring module 901 is further configured to stop monitoring whether the terminal is connected to the RRU in the logical cell when all the RRUs of the logical cell are powered off in the preset monitoring range.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and the technical effects are similar.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to perform the embodiments of the present invention. Part of the steps of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read-Only Memory, abbreviated as: ROM), a random access memory (English: Random Access Memory, abbreviated as: RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种射频拉远单元的控制方法及装置,该方法包括:监测预设监测范围内每个上电状态RRU下是否接入有终端,确定预设监测范围内在预设时长中无接入终端的上电状态RRU,将上述无接入终端的上电状态RRU中除预设常开RRU之外的RRU下电,实现了可以根据监测情况将暂时空闲的RRU直接下电以节能,同时又保留一些常开RRU不下电,以便于灵活根据终端的接入再将用户所需的RRU上电,在节能的同时保证用户服务。

Description

射频拉远单元的控制方法及装置 技术领域
本申请涉及移动通信技术,尤其涉及一种射频拉远单元的控制方法及装置。
背景技术
在全球范围内,随着移动通信技术的飞速发展和普及,无线网络已经覆盖了绝大部分的区域,满足人们的需求和丰富人们的生活。传统部署中,绝大多数无线基站都被部署在室外,由于无线信号受传播路径环境的影响,无线信号在室内的覆盖效果会差于在室外的覆盖效果。目前,移动宽带业务(Mobile Broadband,简称MBB)的发展带动了数据业务需求的急剧上升,由于数据业务更多来自室内环境,这种来自室内环境的数据业务需求更加剧了无线网络在室内覆盖效果比较差的问题,因此,改善室内环境下无线网络质量和和提升室内环境下无线网络容量函需解决。
为了满足室内环境下无线网络的需求,业界有一些室内数字化覆盖的解决方案,例如将数字中频或基带信号通过光纤或以太网(Ethernet)网线数字化拉远,在有源头端做数字化处理后收发无线射频(Radio Frequency,简称RF)信号。该有源头端可以是射频拉远单元(Remote Radio Unit,简称RRU),即在室内部署多个RRU,由RRU收发RF信号,更好地为室内的终端提供服务。
但是,对于大型室内环境,例如体育场、运输中心等,在室内会部署大量的RRU,这些RRU上电后会带来巨大的能耗。
发明内容
本申请提供一种射频拉远单元的控制方法及装置,用于降低多RRU场景下的能耗。
本申请第一方面提供一种射频拉远单元的控制方法,包括:
监测预设监测范围内每个上电状态射频拉远单元RRU下是否接入有终 端;
确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
可选地,所述监测预设监测范围内每个上电状态射频拉远单元RRU下是否接入有终端,包括:
在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
其中预设监测时间段可以是低话务时段。
可选地,所述在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端,包括:
在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;
根据数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,所述方法还包括:
在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,所述将预设时长中所述无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电之后,还包括:
若所述预设监测范围内存在逻辑小区的所有RRU全部下电,停止监测所述逻辑小区中RRU下是否接入有终端。
可选地,所述方法还包括:
监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;
将所述至少1个相邻RRU中处于下电的RRU上电。
可选地,所述方法还包括:
获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;
根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;
根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
本申请第二方面提供一种射频拉远单元的控制装置,包括:
监测模块,用于监测预设监测范围内每个上电状态RRU下是否接入有终端;
确定模块,用于确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
控制模块,用于将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
可选地,监测模块,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
进一步地,监测模块,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,该装置还包括:上电模块,用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,所述监测模块,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
可选地,该装置还包括:恢复模块;
所述恢复模块,用于在监测模块监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;将所述至少1个相邻RRU中处于下电的RRU上电。
可选地,该装置还包括:建立模块,用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
本申请第三方面提供一种射频拉远单元的控制装置,包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
监测预设监测范围内每个上电状态RRU下是否接入有终端;
确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
可选地,所述处理器,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
可选地,所述处理器,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,所述处理器,还用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,所述处理器,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
可选地,所述处理器,还用于监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;将所述至少1个相邻RRU中处于下电的RRU上电。
可选地,所述处理器,还用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
本申请第三方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请第四方面提供一种程序产品,例如计算机可读存储介质,包括第三方面的程序。
本申请提供的射频拉远单元的控制方法及装置中,通过监测预设监测范围内每个上电状态RRU下是否接入有终端,确定预设监测范围内在预设时长中无接入终端的上电状态RRU,将上述无接入终端的上电状态RRU中除预设常开RRU之外的RRU下电,实现了可以根据监测情况将暂时空闲的RRU直接下电以节能,同时又保留一些常开RRU不下电,以便于灵活根据终端的接入再将用户所需的RRU上电,在节能的同时保证用户服务。
本申请第五方面提供一种射频拉远单元的控制方法,包括:
监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU;
将所述至少1个相邻RRU中处于下电状态的RRU上电。
可选地,所述方法还包括:
获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;
根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;
根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
可选地,所述监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU,包括:
在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
可选地,所述方法还包括:
监测预设监测范围内每个上电状态RRU下是否接入有终端;
确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
可选地,所述监测预设监测范围内每个上电状态RRU下是否接入有终端,包括:
在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接 入有终端。
可选地,所述在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端,包括:
在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;
根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,所述方法还包括:
在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,所述将预设时长中所述无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电之后,还包括:
若所述预设监测范围内存在逻辑小区的所有RRU全部下电,停止监测所述逻辑小区中RRU下是否接入有终端。
本申请第六方面提供一种射频拉远单元的控制装置,包括:
监测模块,用于监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU;
上电模块,用于将所述至少1个相邻RRU中处于下电状态的RRU上电。
可选地,所述装置还包括:建立模块,用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
可选地,所述监测模块,具体用于在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
可选地,所述装置还包括:确定模块和控制模块;
所述监测模块,还用于监测预设监测范围内每个上电状态RRU下是否接入有终端;
所述确定模块,用于确定所述预设监测范围内在预设时长中无接入终端 的所述上电状态RRU;
控制模块,用于将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
可选地,所述监测模块,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
可选地,所述监测模块,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,所述上电模块,还用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,所述监测模块,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
本申请第七方面提供一种射频拉远单元的控制装置,包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU;
将所述至少1个相邻RRU中处于下电状态的RRU上电。
可选地,所述处理器,还用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
可选地,所述处理器,具体用于在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
可选地,所述处理器,还用于监测预设监测范围内每个上电状态RRU下是否接入有终端;确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;将所述预设时长中无接入终端的所述上电状态RRU中除预 设常开RRU之外的RRU下电。
可选地,所述处理器,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
可选地,所述处理器,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,所述处理器,还用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,所述处理器,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
本申请第八方面提供一种程序,该程序在被处理器执行时用于执行以上第五方面的方法。
本申请第九方面提供一种程序产品,例如计算机可读存储介质,包括第八方面的程序。
本申请提供的射频拉远单元的控制方法及装置中,通过在监测到有终端接入RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU,将这些相邻RRU中处于下电状态的RRU上电,实现了可以根据灵活的监测在用户需要时将所需的RRU上电,为用户提供服务,在节能的同时也保证了用户的服务不受影响。
附图说明
图1为一种通信系统架构图;
图2为本申请提供的一种射频拉远单元的控制方法流程示意图;
图3为本申请提供的另一种射频拉远单元的控制方法流程示意图;
图4为本申请提供的一种射频拉远单元的控制装置结构示意图;
图5为本申请提供的另一种射频拉远单元的控制装置结构示意图;
图6为本申请提供的另一种射频拉远单元的控制装置结构示意图;
图7为本申请提供的另一种射频拉远单元的控制装置结构示意图;
图8为本申请提供的另一种射频拉远单元的控制装置结构示意图;
图9为本申请提供的另一种射频拉远单元的控制装置结构示意图;
图10为本申请提供的另一种射频拉远单元的控制装置结构示意图;
图11为本申请提供的另一种射频拉远单元的控制装置结构示意图。
具体实施方式
图1为一种通信系统架构图,该本申请可以应用于如图1所示的RRU-BBU场景,但并不以此为限。
如图1所示,该场景架构可以包括:基带处理单元(Building Baseband Unit,简称BBU)、RRU集线器(RHUB)以及多个RRU。
其中,RRU可以是分布式基站的组成部分。上述架构中RRU可以是微RRU(pico-RRU,简称pRRU)。
多个RRU可以根据具体的场景部署在各个位置,以便于给不同位置的终端提供服务。例如一般中大型建筑物室内面积达到2万平方米~5万平方米,甚至有达到10万平方米,要完成这样一套室内覆盖方案,部署所需要的pRRU将达到几十至数百个。
多个RRU通过RHUB与BBU连接,BBU可以控制各个RRU的开关状态,也就是控制各个RRU的上下电。可选地,BBU通过RHUB控制各个RRU的上下电。
本申请中,针对在RRU数量较多的情况下如何减小耗能的问题,提出来一种将空闲RRU下电的方法,不同于目前只关闭RRU部分功能的方法,可以更好地减少能耗。
图2为本申请提供的一种射频拉远单元的控制方法流程示意图,该方法的执行主体可以是BBU。如图2所示,该方法包括:
S201、监测预设监测范围内每个上电状态RRU下是否接入有终端。
某个室内场景下的所有RRU可以由一个BBU管理,BBU启动监测后,会检测自己管理范围内所有上电状态的RRU,可选地,以逻辑小区为监测对象进行监测管理范围内所有逻辑小区下各个上电状态RRU下是否接入有终端。一般刚启动监测时,管理范围内所有RRU都处于上电状态。
具体监测每个RRU下是否接入的有终端,如果没有任何终端,说明这个RRU目前不需要为终端提供服务,处于空闲。
S202、确定预设监测范围内在预设时长中无接入终端的上电状态RRU。
S203、将上述预设时长中无接入终端的上电状态RRU中除预设常开RRU之外的RRU下电。
其中,某些上电状态RRU在预设时长内一直保持没有终端需要服务,即一直处于空闲,则可以直接下电。即可以将没有终端接入的所有上电状态RRU中除预设常开RRU之外的RRU下电。
为了灵活控制监测范围内RRU的开关状态,需要设定一些常开RRU,这些常开RRU即使没有任何终端接入也保持上电状态,以便于其他RRU下电后,如果有终端接入常开RRU,BBU再控制其他RRU上电。一般地,可以预先根据RRU的部署位置设定一个或多个常开RRU,将预设常开RRU的标识存储在BBU中,预设常开RRU一般设定在监测范围的入口处,例如门口、走廊等关键位置,这些位置一般是用户进入监测范围后先可能经过的位置,以保证BBU及时获知有终端接入,进而在为终端提供服务的同时将其他必要RRU上电为用户服务,在节能的同时不影响用户业务。
本实施例中,监测预设监测范围内每个上电状态RRU下是否接入有终端,确定预设监测范围内在预设时长中无接入终端的上电状态RRU,将上述无接入终端的上电状态RRU中除预设常开RRU之外的RRU下电,实现了可以根据监测情况将暂时空闲的RRU直接下电以节能,同时又保留一些常开RRU不下电,以便于灵活根据终端的接入再将用户所需的RRU上电,在节能的同时保证用户服务。
可选地,监测预设监测范围内每个上电状态RRU下是否接入有终端,可以是,在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
预设监测时间段是预先确定的低话务时段,低话务时段可以表示需要服务的终端数量很少或没有。具体地,对于大部分室内场景,在一些时间段内可能需要提供服务的用户较多,这些时间段不是低话务时段,无需进行监测,将所有RRU上电即可;在另一些时间段内可能场景内的用户量极低,即处于低话务时段,就可以开启监测,以便可以将一些空闲的RRU下电实现节能。
在此以一些常见场景举例说明:
(1)交通枢纽地带,例如:飞机场、火车站、汽车站,这些场景一般白 天用户量巨大,所有RRU上电,可以设定晚上场地关闭时间至早上场地开启时间为预设监测时间段,这段时间内用户量会减少、甚至没有,开启监测后可以将大部分RRU下电以节能。
(2)大型商场、超市等公共场所,以及写字楼、学校等工作学习场所,这些场所一般有固定的用户流动规律,像商场有固定的开门时间、歇业时间,写字楼有上班时间和下班时间,但是歇业时间/下班时间也可能有员工或其他必要人员进入活动,那么就可以根据用户流动规律设定好预设监测时间段,在歇业时间/下班时间内开启监测功能,即执行上述方法将大部分空闲RRU下电以节能。
进一步地,监测每个上电状态RRU下是否接入有终端,可以通过判断每个上电状态RRU下是否有新的终端接入来确定是否接入有终端,和/或,通过判断每个上电状态RRU是否与终端有交互数据流来确定是否有终端。
开启监测时BBU可以先获知RRU下是否接入有终端,如果某个RRU下本来接入有终端,那么可以看是否与终端交互数据,如果没有,可能这个终端退出接入;如果某个RRU下本来就没有终端接入,那么监测是否有新的终端接入,如果没有,说明一直空闲。
确定预设监测范围内在预设时长中无接入终端的上电状态RRU,可以是:
确定预设时长中没有与终端交互数据、并且没有新的终端接入的上电状态RRU。
需要说明的是,本申请所适用的场景下,可以不以每个RRU为一个小区,而是一个物理小区下包括多个RRU,一个逻辑小区下包括多个物理小区。具体地,逻辑小区可以指一个小区资源,拥有全球统一的小区标识,以及小区相关属性,如:频点、带宽、物理小区标识、发射功率等参数。逻辑小区的覆盖范围可以是单面天线覆盖范围,也可以是多面天线覆盖范围。物理小区可以指一个实际覆盖范围,这个覆盖范围内的各个天线点之间是射频合路。
若预设监测范围内存在逻辑小区的所有RRU全部下电,停止监测该逻辑小区中RRU下是否接入有终端。
具体实现时,监测预设监测范围内每个上电状态RRU下是否接入有终端,可以是实时监测每个逻辑小区内每个物理小区下接入的终端、以及业务流,如果预设时长内,某个物理小区下无接入终端也无业务流,则直接将这 个物理小区下除预设常开RRU之外的所有RRU下电。如果这个物理小区内没有预设常开RRU,在这个物理小区下所有RRU都下电后可以不再监测该物理小区。同理,如果某个逻辑小区下所有RRU都下电,也可以不再监测该逻辑小区,直到后续有终端再接入后,触发该逻辑小区下一个或多个RRU上电后,再重新进行监测。
另外,预设监测时间段内,将部分RRU下电节能后,还可以根据用户需要再将这些被下电的RRU上电。例如某个写字楼晚上开启监测后,大部分RRU被下电,但是突然有用户回到写字楼加班,那么可以根据该用户的需求再将部分RRU上电。
可选地,监测到新的终端接入预设常开RRU,根据预设RRU拓扑获取该预设常开RRU的至少1个相邻RRU;将该至少1个相邻RRU中处于下电的RRU上电。
某个终端接入某个预设常开RRU后,为了更好地为该用户服务,将该预设常开RRU的至少1个相邻RRU上电,该终端可能会发生移动,这些RRU上电后都会继续被监测,进而,监测上电后的其他RRU有新的终端接入后,也根据预设RRU拓扑上电有终端接入的RRU的相邻RRU,依次类推,将用户需要的RRU上电。由于处于预设监测时间段,空闲的RRU也会及时被下电,实现在用户较少的情况下根据终端的接入灵活调整RRU的上下电,以便于节能的同时也不耽误为用户服务。
上述预设RRU拓扑用于标识预设监测范围内RRU之间的相邻关系。
需要说明的是,根据监测情况将用户需要的RRU上电也可以是独立的实施例。
具体地,监测过程中,有终端接入了RRU,根据预设拓扑获取该RRU的至少1个相邻RRU;将这至少1个相邻RRU中处于下电状态的RRU全部上电。即监测到某个上电状态下的RRU有新的终端接入了,那么就将该RRU相邻的所有RRU都上电,以便于终端发生移动时,及时为终端提供服务,实现了可以根据灵活的监测在用户需要时将所需的RRU上电,为用户提供服务,在节能的同时也保证了用户的服务不受影响。
其他实施方式都于前述实施例类似,在此不再赘述。
可选地,预设RRU拓扑可以预先由人工根据RRU实际部署的位置坐标 进行建立,并将建立好的预设RRU拓扑存入BBU。
也可以由BBU自己根据信号质量参数建立预设RRU拓扑。
图3为本申请提供的另一种射频拉远单元的控制方法流程示意图,如图3所示,BBU建立预设RRU拓扑可以包括如下过程:
S301、获取预设监测范围内各RRU转发的终端信号测量信息。
该信号质量信息可以包括:终端的标识、以及由终端测量的信号质量参数。
可选地,BBU可以在预设统计时间段内,通过RRU向接入的终端指示测量信号质量参数,各RRU下接入的终端就会根据接收到的RRU发送的信号测量获取信号质量参数,并将信号质量参数发送给RRU,RRU再将信号质量参数转发给BBU,具体地,终端可以以向RRU发送数据包,数据包中携带信号质量参数,RRU不解析该数据包,BBU收到后确定那个RRU发来的数据包,然后解码获取里面的信道质量参数。
S302、根据终端信号测量信息,确定预设监测范围内每个RRU相邻的至少1个RRU。
具体地,可以根据各RRU转发的终端信号测量信息,依次确定每两个RRU之间的相邻关系。一般相邻两个RRU获取到的同一终端上报的信号质量参数差值在一定范围内。
信号质量参数可以是参考信号接收功率(Reference Signal Receiving Power,简称RSRP),即终端根据RRU发送的参考信号进行测量,获取的RSRP。
终端会周期性地向RRU发送信号质量参数,RRU也可以周期性地将终端上报的RSRP转发给BBU,BBU统计预设统计时间段(例如一天时间)内RRU上报的RSRP,以确定RRU的相邻关系。
具体地,可以依次轮询每两个RRU是否相邻,以任意两个RRUx和RRUy为例,获取至少1个相同终端上报的针对RRUx和RRUy的信号质量参数,并统计次数,例如有3个终端都上报过RRUx和RRUy的信号质量参数,总共报了50次,那么就求这50次信号质量参数之间差值的平均值。
可选地,以信号质量参数为RSRP为例,采用公式:
Figure PCTCN2016108164-appb-000001
计算RRUx和RRUy的信号质量参数差值Avg-xy,其中,n为相同终端上报的针对RRUx和RRUy的信号质量参数总次数,n为大于0的整数,RSRPxi为第i次上报的RRUx的RSRP,RSRPyi为第i次上报的RRUy的RSRP,RSRPxi和RSRPyi是同一终端上报的。
若Avg-xy满足预设条件,则认为RRUx和RRUy相邻,否则不相邻。
S303、根据预设监测范围内每个RRU相邻的至少1个RRU,建立预设RRU拓扑。
可选地,以BBU下包括N个RRU为例,N为大于0的整数,可以如表1所示,“1”表示两个RRU相邻,“0”表示两个RRU不相邻,在此不作限制。
表1
  RRU1 RRU2 RRU3 RRUN
RRU1 - 1 0 1
RRU2 1 - 0 1
…. …. …. ….
RRUN 0 1 1 ….
进一步地,可以在预设监测时间段结束时,将预设监测范围内处于下电状态的RRU全部上电。
即根据预设监测时间段,在监测结束时BBU恢复预设监测范围内所有RRU上电。以写字楼为例,可以预设晚上10点到早上6点为预设监测时间段,那么在早上6点结束监测时将写字楼内所有RRU上电,以便于在上班时间段为用户提供更好地服务。
图4为本申请提供的一种射频拉远单元的控制装置结构示意图,该装置可以是BBU,如图4所示,该装置包括:处理器401、发送器402、接收器403、存储器404、天线405。
存储器404、发送器402和接收器403和处理器401可以通过总线进 行连接。当然,在实际运用中,存储器404、发送器402和接收器403和处理器401之间可以不是总线结构,而可以是其它结构,例如星型结构,本申请不作具体限定。
可选地,处理器401具体可以是通用的中央处理器或ASIC,可以是一个或多个用于控制程序执行的集成电路,可以是使用FPGA开发的硬件电路,可以是基带处理器。
可选地,处理器401可以包括至少一个处理核心。
可选地,存储器404可以包括ROM、RAM和磁盘存储器中的一种或多种。存储器404用于存储处理器401运行时所需的数据和/或程序指令。存储器404的数量可以为一个或多个。
处理器401具体用于执行下述方法:
监测预设监测范围内每个上电状态RRU下是否接入有终端。
确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU。
将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
本实施例中,监测预设监测范围内每个上电状态RRU下是否接入有终端,确定预设监测范围内在预设时长中无接入终端的上电状态RRU,将上述无接入终端的上电状态RRU中除预设常开RRU之外的RRU下电,实现了可以根据监测情况将暂时空闲的RRU直接下电以节能,同时又保留一些常开RRU不下电,以便于灵活根据终端的接入再将用户所需的RRU上电,在节能的同时保证用户服务。
可选地,处理器401具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
进一步地,处理器401具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否有新的终端接入、和/或每个上电状态RRU是否与终端交互数据流;根据每个上电状态RRU下是否有新的终端接入、和/或每个上电状态RRU是否与终端交互数据流,确定每个上电状态RRU下是否接入有终端。
可选地,处理器401,还用于在所述预设监测时间段结束时,将所述预 设监测范围内处于下电状态的RRU全部上电。
可选地,处理器401,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
可选地,处理器401,还用于监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;将所述至少1个相邻RRU中处于下电的RRU上电。
进一步地,处理器401,获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,相关内容可以参考方法实施例,在此不再赘述。
本申请还提供一种射频拉远单元的控制装置,与图4所示结构相同,其中,处理器401具体用于执行下述方法:
监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU;
将所述至少1个相邻RRU中处于下电状态的RRU上电。
可选地,处理器401,还用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
可选地,处理器401,具体用于在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
可选地,处理器401,还用于监测预设监测范围内每个上电状态RRU下是否接入有终端;确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
可选地,处理器401,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
可选地,处理器401,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,处理器401,还用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
可选地,处理器401,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
图5为本申请提供的另一种射频拉远单元的控制装置结构示意图,该装置可以是BBU,如图5所示,该装置包括:监测模块501、确定模块502、控制模块503,其中:
监测模块501,用于监测预设监测范围内每个上电状态RRU下是否接入有终端。
确定模块502,用于确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU。
控制模块503,用于将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,相关内容可以参考方法实施例,在此不再赘述。
可选地,监测模块501,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
可选地,监测模块501,在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否有新的终端接入、和/或每个上电状态RRU是否与终端交互数据流;根据每个上电状态RRU下是否有新的终端接入、和/或每个上电状态RRU是否与终端交互数据流,确定每个上电状态RRU下是否接入有终端。
图6为本申请提供的另一种射频拉远单元的控制装置结构示意图,在图 5基础上,该装置还可以包括:上电模块601,用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
进一步地,监测模块501,在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
图7为本申请提供的另一种射频拉远单元的控制装置结构示意图,在图5基础上,该装置还可以包括:恢复模块701,在监测模块501监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;将所述至少1个相邻RRU中处于下电的RRU上电。
图8为本申请提供的另一种射频拉远单元的控制装置结构示意图,在图7基础上,该装置还可以包括:建立模块801,用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,相关内容可以参考方法实施例,在此不再赘述。
图9为本申请提供的另一种射频拉远单元的控制装置结构示意图,该装置包括:监测模块901和上电模块902,其中:
监测模块901,用于监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
上电模块902,用于将所述至少1个相邻RRU中处于下电状态的RRU上电。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,相关内容可以参考方法实施例,在此不再赘述。
图10为本申请提供的另一种射频拉远单元的控制装置结构示意图,如图10所示,在图9的基础上,该装置还可以包括:建立模块903,用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所 述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
可选地,监测模块901,具体用于在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
图11为本申请提供的另一种射频拉远单元的控制装置结构示意图,如图11所示,在图9的基础上,该装置还可以包括:确定模块111和控制模块112,其中,
监测模块901,还用于监测预设监测范围内每个上电状态RRU下是否接入有终端。
确定模块111,用于确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU。
控制模块112,用于将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
进一步地,监测模块901,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
进一步地,监测模块901,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
可选地,上电模块902,还用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
监测模块901,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,相关内容可以参考方法实施例,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之 间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (22)

  1. 一种射频拉远单元的控制方法,其特征在于,包括:
    监测预设监测范围内每个上电状态射频拉远单元RRU下是否接入有终端;
    确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
    将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
  2. 根据权利要求1所述的方法,其特征在于,所述监测预设监测范围内每个上电状态射频拉远单元RRU下是否接入有终端,包括:
    在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
  3. 根据权利要求2所述的方法,其特征在于,所述在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端,包括:
    在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;
    根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
  5. 根据权利要求1所述的方法,其特征在于,所述将预设时长中所述无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电之后,还包括:
    若所述预设监测范围内存在逻辑小区的所有RRU全部下电,停止监测所述逻辑小区中RRU下是否接入有终端。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;
    将所述至少1个相邻RRU中处于下电状态的RRU上电。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;
    根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;
    根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
  8. 一种射频拉远单元的控制方法,其特征在于,包括:
    监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU;
    将所述至少1个相邻RRU中处于下电状态的RRU上电。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;
    根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;
    根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
  10. 根据权利要求8所述的方法,其特征在于,所述监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU,包括:
    在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    监测预设监测范围内每个上电状态RRU下是否接入有终端;
    确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
    将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
  12. 一种射频拉远单元的控制装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    监测预设监测范围内每个上电状态射频拉远单元RRU下是否接入有终端;
    确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;
    将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
  13. 根据权力要求12所述的装置,其特征在于,所述处理器,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU下是否接入有终端。
  14. 根据权力要求13所述的装置,其特征在于,所述处理器,具体用于在预设监测时间段内监测预设监测范围内每个上电状态RRU的数据流信息,所述数据流信息包括下述至少一项:是否有新的终端接入、是否与终端交互数据流;根据所述数据流信息,确定每个上电状态RRU下是否接入有终端。
  15. 根据权力要求13所述的装置,其特征在于,所述处理器,还用于在所述预设监测时间段结束时,将所述预设监测范围内处于下电状态的RRU全部上电。
  16. 根据权力要求12所述的装置,其特征在于,所述处理器,还用于在所述预设监测范围内存在逻辑小区的所有RRU全部下电时,停止监测所述逻辑小区中RRU下是否接入有终端。
  17. 根据权力要求12所述的装置,其特征在于,所述处理器,还用于监测到新的终端接入所述预设常开RRU时,根据预设RRU拓扑获取所述预设常开RRU的至少1个相邻RRU;将所述至少1个相邻RRU中处于下电的RRU上电。
  18. 根据权力要求12所述的装置,其特征在于,所述处理器,还用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根 据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
  19. 一种射频拉远单元的控制装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU;
    将所述至少1个相邻RRU中处于下电状态的RRU上电。
  20. 根据权力要求19所述的装置,其特征在于,所述处理器,还用于获取所述预设监测范围内各RRU转发的终端信号测量信息,所述终端信号测量信息包括:终端的标识、以及由终端测量的信号质量参数;根据所述终端信号测量信息,确定所述预设监测范围内每个RRU相邻的至少1个RRU;根据所述预设监测范围内每个RRU相邻的至少1个RRU,建立所述预设RRU拓扑。
  21. 根据权力要求19所述的装置,其特征在于,所述处理器,具体用于在预设监测时间段内监测预设监测范围内监测到有终端接入射频拉远单元RRU时,根据预设拓扑获取所述RRU的至少1个相邻RRU。
  22. 根据权力要求19所述的装置,其特征在于,所述处理器,还用于监测预设监测范围内每个上电状态RRU下是否接入有终端;确定所述预设监测范围内在预设时长中无接入终端的所述上电状态RRU;将所述预设时长中无接入终端的所述上电状态RRU中除预设常开RRU之外的RRU下电。
PCT/CN2016/108164 2016-11-30 2016-11-30 射频拉远单元的控制方法及装置 WO2018098763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680087738.3A CN109479240A (zh) 2016-11-30 2016-11-30 射频拉远单元的控制方法及装置
PCT/CN2016/108164 WO2018098763A1 (zh) 2016-11-30 2016-11-30 射频拉远单元的控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108164 WO2018098763A1 (zh) 2016-11-30 2016-11-30 射频拉远单元的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018098763A1 true WO2018098763A1 (zh) 2018-06-07

Family

ID=62241042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108164 WO2018098763A1 (zh) 2016-11-30 2016-11-30 射频拉远单元的控制方法及装置

Country Status (2)

Country Link
CN (1) CN109479240A (zh)
WO (1) WO2018098763A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798880A (zh) * 2018-08-02 2020-02-14 中兴通讯股份有限公司 室内分布系统上下电的方法、设备和存储介质
CN112911609A (zh) * 2019-12-03 2021-06-04 中兴通讯股份有限公司 一种有源室分系统的控制方法、电子设备及存储介质
CN113068246A (zh) * 2021-03-26 2021-07-02 中国联合网络通信集团有限公司 一种节能方法、基带设备及室分系统
WO2021139323A1 (zh) * 2020-01-09 2021-07-15 华为技术有限公司 基站控制方法、运营支撑系统0ss、分布式基站系统dbs
WO2021249287A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 信息传输方法、装置及存储介质
CN114071483A (zh) * 2020-07-29 2022-02-18 中国联合网络通信集团有限公司 室内分布系统的控制方法、装置及室内分布系统
US20220248323A1 (en) * 2019-10-24 2022-08-04 Huawei Technologies Co., Ltd. Communication processing method, bbu, rhub, and second prru
CN114916047A (zh) * 2021-02-09 2022-08-16 大唐移动通信设备有限公司 一种状态控制方法、装置、Pico RRU及存储介质
WO2024021571A1 (zh) * 2022-07-28 2024-02-01 中兴通讯股份有限公司 节能方法、电子设备及存储介质
WO2024093705A1 (zh) * 2022-10-31 2024-05-10 中兴通讯股份有限公司 室内分布系统的控制方法及控制设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055913B (zh) * 2021-03-26 2023-02-17 联想(北京)有限公司 一种信息处理方法及装置
CN113747556B (zh) * 2021-09-03 2023-05-16 中国联合网络通信集团有限公司 室内分布系统节能方法、设备及计算机可读存储介质
CN113795047B (zh) * 2021-09-15 2023-11-17 深圳市佳贤通信设备有限公司 一种下行节能方法、系统、计算机设备和存储介质
CN115767589A (zh) * 2021-11-05 2023-03-07 国网山东省电力公司冠县供电公司 基于QoS差异化的通讯能效优化方法
CN114867086A (zh) * 2022-03-24 2022-08-05 中国联合网络通信集团有限公司 设备节能方法、通信装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200655A (zh) * 2012-01-06 2013-07-10 中兴通讯股份有限公司 一种射频拉远系统的节能方法及装置
WO2015103772A1 (zh) * 2014-01-10 2015-07-16 华为技术有限公司 分布式基站的节能系统、设备和方法
CN105519180A (zh) * 2013-09-10 2016-04-20 Lg电子株式会社 Bbu和通过bbu获得rru信息的方法
CN105519205A (zh) * 2013-05-27 2016-04-20 华为技术有限公司 一种基站节能的方法、设备和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702822B (zh) * 2009-10-23 2014-12-10 中兴通讯股份有限公司 一种实现载波控制的方法及系统
CN102387593B (zh) * 2010-09-06 2014-05-07 电信科学技术研究院 一种采用空分复用接入sdma的通信方法及基站
CN102131211B (zh) * 2010-12-27 2014-04-02 大唐移动通信设备有限公司 Td-scdma系统中下行业务时隙关断方法及装置
CN102843753B (zh) * 2011-06-24 2015-10-14 鼎桥通信技术有限公司 使用智能天线的基站的节电方法及基站
CN104322112B (zh) * 2012-12-31 2019-03-26 华为技术有限公司 一种信道控制的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200655A (zh) * 2012-01-06 2013-07-10 中兴通讯股份有限公司 一种射频拉远系统的节能方法及装置
CN105519205A (zh) * 2013-05-27 2016-04-20 华为技术有限公司 一种基站节能的方法、设备和系统
CN105519180A (zh) * 2013-09-10 2016-04-20 Lg电子株式会社 Bbu和通过bbu获得rru信息的方法
WO2015103772A1 (zh) * 2014-01-10 2015-07-16 华为技术有限公司 分布式基站的节能系统、设备和方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798880A (zh) * 2018-08-02 2020-02-14 中兴通讯股份有限公司 室内分布系统上下电的方法、设备和存储介质
CN110798880B (zh) * 2018-08-02 2022-08-09 中兴通讯股份有限公司 室内分布系统上下电的方法、设备和存储介质
US20220248323A1 (en) * 2019-10-24 2022-08-04 Huawei Technologies Co., Ltd. Communication processing method, bbu, rhub, and second prru
EP4057667A4 (en) * 2019-12-03 2023-01-25 ZTE Corporation METHOD OF CONTROLLING AN ACTIVE SPACIAL DISTRIBUTION SYSTEM, ELECTRONIC DEVICE AND STORAGE MEDIA
CN112911609A (zh) * 2019-12-03 2021-06-04 中兴通讯股份有限公司 一种有源室分系统的控制方法、电子设备及存储介质
WO2021139323A1 (zh) * 2020-01-09 2021-07-15 华为技术有限公司 基站控制方法、运营支撑系统0ss、分布式基站系统dbs
WO2021249287A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 信息传输方法、装置及存储介质
CN114071483A (zh) * 2020-07-29 2022-02-18 中国联合网络通信集团有限公司 室内分布系统的控制方法、装置及室内分布系统
CN114071483B (zh) * 2020-07-29 2023-07-18 中国联合网络通信集团有限公司 室内分布系统的控制方法、装置及室内分布系统
CN114916047A (zh) * 2021-02-09 2022-08-16 大唐移动通信设备有限公司 一种状态控制方法、装置、Pico RRU及存储介质
CN114916047B (zh) * 2021-02-09 2024-02-13 大唐移动通信设备有限公司 一种状态控制方法、装置、Pico RRU及存储介质
CN113068246A (zh) * 2021-03-26 2021-07-02 中国联合网络通信集团有限公司 一种节能方法、基带设备及室分系统
WO2024021571A1 (zh) * 2022-07-28 2024-02-01 中兴通讯股份有限公司 节能方法、电子设备及存储介质
WO2024093705A1 (zh) * 2022-10-31 2024-05-10 中兴通讯股份有限公司 室内分布系统的控制方法及控制设备

Also Published As

Publication number Publication date
CN109479240A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2018098763A1 (zh) 射频拉远单元的控制方法及装置
CN108322937B (zh) 无线接入网中用于网络切片的资源分配方法和编排器
Vattapparamban et al. Indoor occupancy tracking in smart buildings using passive sniffing of probe requests
CN101399676B (zh) 无线局域网中通过可变监听间隔的节电
CN101971675B (zh) 包括后组播时间的无线网络
US9113406B2 (en) Method and system to configure network devices
US9713086B2 (en) Method for controlling power of RRH in cloud RAN environment
CN101595687A (zh) 提供具有多基本服务集标识符(bssid)支持的灵活的广播/多播服务(fbms)提供
CN102111816A (zh) 节能的毫微微网络系统及节能方法
CN112534857B (zh) 节能方法、装置及计算机可读存储介质
CN103947135A (zh) 无线网络中的单独和组寻呼
CN204679765U (zh) 一种基于云技术的智能家居控制装置
CN107466092A (zh) 一种接入点的选择方法、相关装置以及系统
CN204795628U (zh) 集成蓝牙功能的无线接入点以及控制系统
CN102740426A (zh) 一种基站节能方法及基站节能装置及基站节能系统
WO2024120230A1 (zh) 网络设备管理方法、装置及存储介质
CN112911609A (zh) 一种有源室分系统的控制方法、电子设备及存储介质
JP2024504034A (ja) 組み込みIoTゲートウェイを備えた固定ブロードバンド無線アクセスCPE
CN203813965U (zh) 一种用于定位的无线环境数据嗅探器
CN104038360A (zh) 基于新无线接入控制器架构的网管实现系统及实现方法
WO2017167141A1 (zh) 无线局域网信标发送方法及装置
Lin et al. On selective activation in dense femtocell networks
CN105474706B (zh) Wtp接入方法、管理方法、装置及系统
CN202586988U (zh) 小型无线电监测站
WO2021104446A1 (zh) 一种统计终端设备分布情况的方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922835

Country of ref document: EP

Kind code of ref document: A1