WO2018097287A1 - Imaging optical system, lens unit, and imaging device - Google Patents

Imaging optical system, lens unit, and imaging device Download PDF

Info

Publication number
WO2018097287A1
WO2018097287A1 PCT/JP2017/042406 JP2017042406W WO2018097287A1 WO 2018097287 A1 WO2018097287 A1 WO 2018097287A1 JP 2017042406 W JP2017042406 W JP 2017042406W WO 2018097287 A1 WO2018097287 A1 WO 2018097287A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
imaging optical
auxiliary
air
Prior art date
Application number
PCT/JP2017/042406
Other languages
French (fr)
Japanese (ja)
Inventor
山下敦司
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201780072554.4A priority Critical patent/CN110023809B/en
Publication of WO2018097287A1 publication Critical patent/WO2018097287A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/04Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part
    • G02B15/06Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part by changing the front part
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably

Definitions

  • the imaging optical system of Patent Document 1 there is almost no change in imaging performance in the air and in water, but there is a problem that the angle of view fluctuates by 15 ° or more in air and in water.
  • the imaging optical system of Patent Document 2 has a problem that the resolution in the air is lower than the resolution in water, and the angle of view also changes by about 10 °. Further, in the imaging optical system of Patent Document 3, an angle of view of 180 ° at maximum is shown in water, but optical performance in air is not considered because of an underwater design.
  • an imaging apparatus reflecting one aspect of the present invention includes the above-described imaging optical system and an imaging element that detects an image obtained from the imaging optical system. Prepare.
  • the imaging optical system (wide-angle optical system) 10 shown in the figure is substantially composed of a main lens ML and an auxiliary lens SL.
  • the auxiliary lens SL can be attached to and detached from the main lens ML, and can be exchanged according to a medium such as water (or an aqueous medium) or air.
  • a medium such as water (or an aqueous medium) or air.
  • the main lens ML is composed of a plurality of lenses
  • the auxiliary lens SL is composed of one negative lens for air and in an aqueous medium, and the main lens ML and the auxiliary lens SL are combined. In this state, desired imaging performance can be obtained.
  • the imaging optical system 10 and the imaging apparatus 100 of the present embodiment have a sufficiently wide angle of view of 180 ° or more, such as a fisheye lens, even in an aqueous medium, and the imaging performance changes between the air and the aqueous medium. Is small, and the change in the angle of view is as small as about 5 °, resulting in a small size and high performance.

Abstract

The present invention provides an imaging optical system having an angle of view of 180° or more and having sufficiently small changes in image formation performance and angle of view between different medium environments although being compact. An imaging optical system 10 substantially comprises a main lens ML, and a supplementary lens SL for use in an aqueous medium or for use in air, wherein an image formation position is located closer to the object side than an imaging surface I in the state of the main lens ML alone, the main lens ML comprises a plurality of lenses, the supplementary lens SL comprises one negative lens, and in a state where the main lens ML and the supplementary lens SL are combined, desired image formation performance is obtained, and the following conditional expression (1) is satisfied: -42≤fA/fM≤-17 where fA is the focal length of the supplementary lens SL, and fM is the focal length of the main lens ML.

Description

撮像光学系、レンズユニット、及び撮像装置Imaging optical system, lens unit, and imaging apparatus
 本発明は、例えば水陸両用カメラのような異なる媒質環境に対応するカメラ用の撮像光学系、レンズユニット、及び撮像装置に関する。 The present invention relates to an imaging optical system, a lens unit, and an imaging apparatus for a camera that can handle different medium environments such as an amphibious camera.
 近年、水陸両用光学系においては、水中でも十分に広角で、水陸のどちらでも同程度の画角を有し、かつ同程度の高い結像性能を得られるようなものの要望が高まっている。ここで、主要な構成要素であるレンズ系に対して収差を補正するレンズを組み合わせた水陸両用の撮像光学系が公知となっている。(例えば、特許文献1及び2参照)。また、水と接するレンズが物体側に凸面を向けた負のメニスカス形状を有し、水中で約180°の光束を集光する水中専用の撮像光学系が公知となっている(例えば、特許文献3参照)。 In recent years, there has been a growing demand for amphibious optical systems that have a sufficiently wide angle even in water, have the same angle of view on both land and land, and can obtain the same high imaging performance. Here, an amphibious imaging optical system in which a lens that corrects aberration is combined with a lens system that is a main component is well known. (For example, refer to Patent Documents 1 and 2). In addition, an imaging optical system dedicated to underwater in which a lens in contact with water has a negative meniscus shape with a convex surface facing the object side and collects a light beam of about 180 ° in water is known (for example, Patent Documents). 3).
 特許文献1の撮像光学系では、空気中及び水中において、結像性能変化はほとんどないが、空気中時と水中時とで画角が15°以上変動するという問題がある。特許文献2の撮像光学系では、水中の解像度よりも空気中の解像度が低下し、画角も10°程度変化するという問題がある。また、特許文献3の撮像光学系では、水中で最大180°の画角が示されているが、水中専用設計のため空気中での光学性能については考慮されていない。 In the imaging optical system of Patent Document 1, there is almost no change in imaging performance in the air and in water, but there is a problem that the angle of view fluctuates by 15 ° or more in air and in water. The imaging optical system of Patent Document 2 has a problem that the resolution in the air is lower than the resolution in water, and the angle of view also changes by about 10 °. Further, in the imaging optical system of Patent Document 3, an angle of view of 180 ° at maximum is shown in water, but optical performance in air is not considered because of an underwater design.
特開昭57-4017号公報JP-A-57-4017 特開平6-242369号公報JP-A-6-242369 特開平7-84180号公報JP-A-7-84180
 本発明は上記事情に鑑み、小型でありながら、180°以上の画角を有し、異なる媒質環境において結像性能変化及び画角変化が十分小さい撮像光学系を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an imaging optical system that is small in size and has an angle of view of 180 ° or more and sufficiently small in imaging performance change and angle of view change in different medium environments.
 また、本発明は、上記撮像光学系を備えたレンズユニット及び撮像装置を提供することを目的とする。 Another object of the present invention is to provide a lens unit and an image pickup apparatus that include the image pickup optical system.
 上記した目的をのうち少なくとも一つを実現するために、本発明の一側面を反映した撮像光学系は、主レンズと、水性媒質中用又は空気中用の補助レンズとから実質的になり、主レンズ単体の状態では結像位置が撮像面よりも物体側にあり、主レンズは複数枚のレンズからなり、補助レンズは1枚の負レンズからなり、主レンズと補助レンズとを組み合わせた状態で所望の結像性能が得られ、以下の条件式を満たす。
 -42≦fA/fM≦-17  …  (1)
ここで、値fAは補助レンズの焦点距離であり、値fMは主レンズの焦点距離である。また、所望の結像性能とは、補助レンズで十分な補正を行うことにより、非点隔差を小さくすることや、結像位置が撮像面に合うことを意味する。また、水性媒質とは、海水、淡水等の他に液体状の物質も含む。
In order to achieve at least one of the above objects, an imaging optical system reflecting one aspect of the present invention is substantially composed of a main lens and an auxiliary lens for an aqueous medium or for an air. In the state of the main lens alone, the imaging position is on the object side of the imaging surface, the main lens consists of multiple lenses, the auxiliary lens consists of one negative lens, and the main lens and auxiliary lens are combined Desired imaging performance is obtained, and the following conditional expression is satisfied.
−42 ≦ fA / fM ≦ −17 (1)
Here, the value fA is the focal length of the auxiliary lens, and the value fM is the focal length of the main lens. The desired imaging performance means that the astigmatic difference is reduced by performing sufficient correction with the auxiliary lens, and the imaging position matches the imaging surface. The aqueous medium includes liquid substances in addition to seawater and fresh water.
 また、上記した目的をのうち少なくとも一つを実現するために、本発明の一側面を反映したレンズユニットは、上述の撮像光学系と、撮像光学系を保持する鏡筒とを備える。 In order to achieve at least one of the above objects, a lens unit reflecting one aspect of the present invention includes the above-described imaging optical system and a lens barrel that holds the imaging optical system.
 また、上記した目的をのうち少なくとも一つを実現するために、本発明の一側面を反映した撮像装置は、上述の撮像光学系と、撮像光学系から得られる像を検出する撮像素子とを備える。 In order to achieve at least one of the above objects, an imaging apparatus reflecting one aspect of the present invention includes the above-described imaging optical system and an imaging element that detects an image obtained from the imaging optical system. Prepare.
本発明の一実施形態の撮像光学系を備えるレンズユニット及び撮像装置を説明する図である。It is a figure explaining a lens unit and an imaging device provided with an imaging optical system of one embodiment of the present invention. 図2Aは、実施例1の空気中用補助レンズを組み込んだ撮像光学系等を示す断面図であり、図2Bは、実施例1の水性媒質中用補助レンズを組み込んだ撮像光学系等を示す断面図である。2A is a cross-sectional view showing an imaging optical system or the like incorporating the in-air auxiliary lens of Example 1, and FIG. 2B shows the imaging optical system or the like incorporating the auxiliary lens for aqueous medium of Example 1. It is sectional drawing. 図3A及び3Bは、実施例1の空気中用補助レンズを組み込んだ撮像光学系の収差図を示し、図3C及び3Dは、実施例1の水性媒質中用補助レンズを組み込んだ撮像光学系の収差図であり、図3E及び3Fは、比較例1の撮像光学系の収差図である。3A and 3B show aberration diagrams of the imaging optical system incorporating the in-air auxiliary lens of Example 1, and FIGS. 3C and 3D show the imaging optical system of the aqueous medium in-vehicle auxiliary lens incorporated in Example 1. FIG. FIGS. 3E and 3F are aberration diagrams of the imaging optical system of Comparative Example 1. FIG. 図4Aは、実施例2の空気中用補助レンズを組み込んだ撮像光学系等を示す断面図であり、図4Bは、実施例2の水性媒質中用補助レンズを組み込んだ撮像光学系等を示す断面図である。4A is a cross-sectional view illustrating an imaging optical system or the like incorporating the in-air auxiliary lens of Example 2, and FIG. 4B illustrates an imaging optical system or the like incorporating the auxiliary lens for aqueous medium of Example 2. It is sectional drawing. 図5A及び5Bは、実施例2の空気中用補助レンズを組み込んだ撮像光学系の収差図を示し、図5C及び5Dは、実施例2の水性媒質中用補助レンズを組み込んだ撮像光学系の収差図であり、図5E及び5Fは、比較例2の撮像光学系の収差図である。FIGS. 5A and 5B show aberration diagrams of the imaging optical system incorporating the in-air auxiliary lens of Example 2. FIGS. 5C and 5D show the imaging optical system of the aqueous medium in Example 2 incorporating the auxiliary lens. FIGS. 5E and 5F are aberration diagrams of the imaging optical system of Comparative Example 2. FIG. 図6Aは、実施例3の空気中用補助レンズを組み込んだ撮像光学系等を示す断面図であり、図6Bは、実施例3の水性媒質中用補助レンズを組み込んだ撮像光学系等を示す断面図である。6A is a cross-sectional view showing an imaging optical system and the like incorporating the in-air auxiliary lens of Example 3, and FIG. 6B shows an imaging optical system and the like incorporating the auxiliary lens for aqueous medium of Example 3. It is sectional drawing. 図7A及び7Bは、実施例3の空気中用補助レンズを組み込んだ撮像光学系の収差図を示し、図7C及び7Dは、実施例3の水性媒質中用補助レンズを組み込んだ撮像光学系の収差図であり、図7E及び7Fは、比較例3の撮像光学系の収差図である。FIGS. 7A and 7B show aberration diagrams of the imaging optical system incorporating the in-air auxiliary lens of Example 3. FIGS. 7C and 7D show the imaging optical system of the aqueous medium in Example 3 incorporating the auxiliary lens. FIGS. 7E and 7F are aberration diagrams of the imaging optical system of Comparative Example 3. FIG. 図8Aは、実施例4の空気中用補助レンズを組み込んだ撮像光学系等を示す断面図であり、図8Bは、実施例4の水性媒質中用補助レンズを組み込んだ撮像光学系等を示す断面図である。FIG. 8A is a cross-sectional view showing an imaging optical system or the like incorporating the in-air auxiliary lens of Example 4, and FIG. 8B shows an imaging optical system or the like incorporating the auxiliary lens for aqueous medium of Example 4. It is sectional drawing. 図9A及び9Bは、実施例4の空気中用補助レンズを組み込んだ撮像光学系の収差図を示し、図9C及び9Dは、実施例4の水性媒質中用補助レンズを組み込んだ撮像光学系の収差図であり、図9E及び9Fは、比較例4の撮像光学系の収差図である。9A and 9B show aberration diagrams of the imaging optical system incorporating the in-air auxiliary lens of Example 4, and FIGS. 9C and 9D show the imaging optical system of the aqueous medium auxiliary lens of Example 4 incorporated therein. FIGS. 9E and 9F are aberration diagrams of the imaging optical system of Comparative Example 4. FIG. 図10Aは、実施例5の空気中用補助レンズを組み込んだ撮像光学系等を示す断面図であり、図10Bは、実施例5の水性媒質中用補助レンズを組み込んだ撮像光学系等を示す断面図である。FIG. 10A is a cross-sectional view showing an imaging optical system and the like incorporating the in-air auxiliary lens of Example 5, and FIG. 10B shows the imaging optical system and the like incorporating the auxiliary lens for aqueous medium of Example 5. It is sectional drawing. 図11A及び11Bは、実施例5の空気中用補助レンズを組み込んだ撮像光学系の収差図を示し、図11C及び11Dは、実施例5の水性媒質中用補助レンズを組み込んだ撮像光学系の収差図であり、図11E及び11Fは、比較例5の撮像光学系の収差図である。11A and 11B show aberration diagrams of the imaging optical system incorporating the in-air auxiliary lens of Example 5, and FIGS. 11C and 11D show the imaging optical system of the aqueous medium in-vehicle auxiliary lens incorporated in Example 5. FIG. FIGS. 11E and 11F are aberration diagrams of the imaging optical system of Comparative Example 5. FIG. 図12Aは、実施例6の空気中用補助レンズを組み込んだ撮像光学系等を示す断面図であり、図12Bは、実施例6の水性媒質中用補助レンズを組み込んだ撮像光学系等を示す断面図である。12A is a cross-sectional view showing an imaging optical system and the like incorporating the in-air auxiliary lens of Example 6, and FIG. 12B shows an imaging optical system and the like incorporating the auxiliary lens for aqueous medium of Example 6. It is sectional drawing. 図13A及び13Bは、実施例6の空気中用補助レンズを組み込んだ撮像光学系の収差図を示し、図13C及び13Dは、実施例6の水性媒質中用補助レンズを組み込んだ撮像光学系の収差図であり、図13E及び13Fは、比較例6の撮像光学系の収差図である。13A and 13B show aberration diagrams of the imaging optical system incorporating the in-air auxiliary lens of Example 6. FIGS. 13C and 13D show the imaging optical system of the aqueous medium in Example 6 incorporating the auxiliary lens. FIGS. 13E and 13F are aberration diagrams of the imaging optical system of Comparative Example 6. FIG.
 図1は、本発明の一実施形態である撮像装置100を示す断面図である。撮像装置100は、画像信号を形成するためのカメラモジュール30と、カメラモジュール30を動作させることにより撮像装置100としての機能を発揮させる処理部60とを備える。 FIG. 1 is a cross-sectional view showing an imaging apparatus 100 according to an embodiment of the present invention. The imaging apparatus 100 includes a camera module 30 for forming an image signal, and a processing unit 60 that exhibits the function of the imaging apparatus 100 by operating the camera module 30.
 カメラモジュール30は、撮像光学系10を内蔵するレンズユニット40と、撮像光学系10によって形成された被写体像を画像信号に変換するセンサー部50とを備える。 The camera module 30 includes a lens unit 40 that incorporates the imaging optical system 10 and a sensor unit 50 that converts a subject image formed by the imaging optical system 10 into an image signal.
 レンズユニット40は、広角光学系である撮像光学系10と、撮像光学系10を組み込んだ鏡筒41とを備える。撮像光学系10の全画角は、180°以上である。撮像光学系10は、主レンズMLと補助レンズSLとで構成されている。鏡筒41は、樹脂、金属、樹脂にグラスファイバーを混合したもの等で形成され、レンズ等を内部に収納し保持している。鏡筒41を金属や、樹脂にグラスファイバーを混合したもので形成する場合、樹脂よりも熱膨張しにくく、撮像光学系10を安定して固定することができる。鏡筒41は、物体側からの光を入射させる開口OPを有する。 The lens unit 40 includes an imaging optical system 10 that is a wide-angle optical system and a lens barrel 41 in which the imaging optical system 10 is incorporated. The total angle of view of the imaging optical system 10 is 180 ° or more. The imaging optical system 10 includes a main lens ML and an auxiliary lens SL. The lens barrel 41 is formed of a resin, a metal, a resin mixed with glass fiber, or the like, and stores and holds a lens or the like therein. When the lens barrel 41 is formed of a metal or a resin in which glass fiber is mixed, the imaging optical system 10 can be stably fixed with less thermal expansion than the resin. The lens barrel 41 has an opening OP through which light from the object side is incident.
 撮像光学系10を構成する主レンズML及び補助レンズSLは、それらを構成するレンズのフランジ部若しくは外周部において鏡筒41の内面側に直接的又は間接的に保持されており、光軸AX方向及び光軸AXに垂直な方向に関しての位置決めがなされている。鏡筒41は、主レンズMLを保持する第1ホルダー部41aと、補助レンズSLを保持する第2ホルダー部41bとを有している。第2ホルダー部41bは、着脱機構42を有して第1ホルダー部41aに対して着脱可能となっており、媒質に応じて補助レンズSLを適宜交換できるようになっている。第1及び第2ホルダー部41a,41b等の各部材の接続部分は、防水や耐水圧の処理が適宜なされている。 The main lens ML and the auxiliary lens SL constituting the imaging optical system 10 are held directly or indirectly on the inner surface side of the lens barrel 41 at the flange portion or the outer peripheral portion of the lenses constituting the imaging optical system 10, and are in the optical axis AX direction. In addition, positioning in a direction perpendicular to the optical axis AX is performed. The lens barrel 41 has a first holder part 41a that holds the main lens ML and a second holder part 41b that holds the auxiliary lens SL. The second holder part 41b has an attachment / detachment mechanism 42 and is attachable / detachable to / from the first holder part 41a, so that the auxiliary lens SL can be replaced as appropriate according to the medium. The connection portions of the respective members such as the first and second holder portions 41a and 41b are appropriately treated with waterproofing and water pressure resistance.
 センサー部50は、撮像光学系(広角光学系)10によって形成された被写体像を光電変換する撮像素子(固体撮像素子)51と、この撮像素子51を支持する基板52とを備える。撮像素子51は、例えばCMOS型のイメージセンサーである。基板52は、撮像素子51を動作させるための配線、周辺回路等を備える。撮像素子51は、不図示のホルダー部材によって光軸AXに対して位置決めして固定されている。このホルダー部材は、レンズユニット40の鏡筒41に嵌合するように位置決めされた状態で固定されている。 The sensor unit 50 includes an image pickup device (solid-state image pickup device) 51 that photoelectrically converts a subject image formed by the image pickup optical system (wide-angle optical system) 10 and a substrate 52 that supports the image pickup device 51. The image sensor 51 is, for example, a CMOS image sensor. The substrate 52 includes wiring for operating the image sensor 51, peripheral circuits, and the like. The image sensor 51 is positioned and fixed with respect to the optical axis AX by a holder member (not shown). This holder member is fixed in a state of being positioned so as to be fitted to the lens barrel 41 of the lens unit 40.
 撮像素子51は、撮像面Iとしての光電変換部51aを有し、その周辺には、不図示の信号処理回路が形成されている。光電変換部51aには、画素つまり光電変換素子が2次元的に配置されている。なお、撮像素子51は、上述のCMOS型のイメージセンサーに限るものでなく、CCD等の他の撮像素子を組み込んだものであってもよい。 The imaging element 51 has a photoelectric conversion unit 51a as the imaging surface I, and a signal processing circuit (not shown) is formed around it. Pixels, that is, photoelectric conversion elements are two-dimensionally arranged in the photoelectric conversion unit 51a. Note that the image pickup device 51 is not limited to the above-described CMOS type image sensor, and may include another image pickup device such as a CCD.
 なお、レンズユニット40とセンサー部50との間には、フィルターF等を配置することができる。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子のシールガラス等を想定した平行平板である。フィルターFは、別体のフィルター部材として配置することもできるが、別体として配置せず、撮像光学系10を構成するいずれかのレンズ面にその機能を付与することができる。例えば、赤外カットフィルターの場合、赤外カットコートを1枚又は複数枚のレンズの表面上に施してもよい。 In addition, a filter F or the like can be disposed between the lens unit 40 and the sensor unit 50. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of an image sensor, and the like. Although the filter F can be disposed as a separate filter member, the filter F can be imparted to any lens surface constituting the imaging optical system 10 without being disposed separately. For example, in the case of an infrared cut filter, an infrared cut coat may be applied on the surface of one or a plurality of lenses.
 処理部60は、素子駆動部61と、入力部62と、記憶部63と、表示部64と、制御部68とを備える。素子駆動部61は、制御部68から撮像素子51を駆動するための電圧やクロック信号の供給を受けて撮像素子51に付随する回路へ出力することによって、撮像素子51を動作させている。また、素子駆動部61は、制御部68の制御下で撮像素子51からのYUVその他のデジタル画素信号をそのまま或いは加工して外部回路へ出力する。入力部62は、ユーザーの操作又は外部装置からのコマンドを受け付ける部分であり、記憶部63は、撮像装置100の動作に必要な情報、カメラモジュール30によって取得した画像データ等を保管する部分であり、表示部64は、ユーザーに提示すべき情報、撮影した画像等を表示する部分である。制御部68は、素子駆動部61、入力部62、記憶部63等の動作を統括的に制御しており、例えばカメラモジュール30によって得た画像データに対して種々の画像処理を行うことができる。 The processing unit 60 includes an element driving unit 61, an input unit 62, a storage unit 63, a display unit 64, and a control unit 68. The element driving unit 61 operates the imaging element 51 by receiving supply of a voltage and a clock signal for driving the imaging element 51 from the control unit 68 and outputting them to a circuit associated with the imaging element 51. Further, the element driving unit 61 outputs the YUV and other digital pixel signals from the image sensor 51 as they are or after processing them to the external circuit under the control of the control unit 68. The input unit 62 is a part that receives a user operation or a command from an external device, and the storage unit 63 is a part that stores information necessary for the operation of the imaging device 100, image data acquired by the camera module 30, and the like. The display unit 64 displays information to be presented to the user, captured images, and the like. The control unit 68 comprehensively controls operations of the element driving unit 61, the input unit 62, the storage unit 63, and the like, and can perform various image processing on image data obtained by the camera module 30, for example. .
 なお、詳細な説明を省略するが、処理部60の具体的な機能は、本撮像装置100が組み込まれる機器の用途に応じて適宜調整される。撮像装置100は、例えば水性媒質中用及び空気中用の両方に用いられる水陸両用のカメラ等の装置に搭載可能である。 Although detailed description is omitted, the specific function of the processing unit 60 is appropriately adjusted according to the application of the device in which the imaging apparatus 100 is incorporated. The imaging apparatus 100 can be mounted on an apparatus such as an amphibious camera that is used both in an aqueous medium and in air.
 以下、図1を参照して、第1実施形態の撮像光学系(広角光学系)10等について説明する。なお、図1で例示した撮像光学系10は、後述する実施例1の空気中用の補助レンズSLを組み込んだ撮像光学系10Aと略同一の構成となっている。 Hereinafter, the imaging optical system (wide-angle optical system) 10 according to the first embodiment will be described with reference to FIG. The imaging optical system 10 illustrated in FIG. 1 has substantially the same configuration as the imaging optical system 10A in which an in-air auxiliary lens SL of Example 1 described later is incorporated.
 図示の撮像光学系(広角光学系)10は、主レンズMLと、補助レンズSLとから実質的になる。既に説明したように、補助レンズSLは、主レンズMLに対して着脱可能であり、例えば水(又は水性媒質)又は空気等の媒質に応じて交換可能となっている。主レンズML単体の状態では、その結像位置は撮像面Iよりも物体側(又は被写体側)にある。詳細は後述するが、主レンズMLは複数枚のレンズからなり、補助レンズSLは空気用及び水性媒質中用のいずれも1枚の負レンズからなり、主レンズMLと補助レンズSLとを組み合わせた状態で所望の結像性能が得られるようになっている。ここで、所望の結像性能とは、補助レンズSLで十分な補正を行うことにより、非点隔差を小さくすることや、結像位置が撮像面Iに合うことを意味する。また、水性媒質とは、海水、淡水等の他に液体状の物質も含む。空気や水性媒質のように、互いに異なる屈折率や分散を持つ媒質において、同じ光学系で撮影しようとすると、それぞれの媒質で発生する収差や得られる画角が異なってしまい、それぞれの媒質で十分な光学性能を得ることが困難となる。この際、媒質に応じて補助レンズSLを変えることで、光学系全系ではどちらの媒質でも所望の光学性能を得ることができる。水性媒質中では屈折率が空気中よりも大きく、画角が空気中よりも狭くなる。これを防ぐために、上述のように、補助レンズSLに負のパワーを持たせることによって光学系を広角化し、空気中と水中との間の画角変動を抑えるようにすればよい。 The imaging optical system (wide-angle optical system) 10 shown in the figure is substantially composed of a main lens ML and an auxiliary lens SL. As already described, the auxiliary lens SL can be attached to and detached from the main lens ML, and can be exchanged according to a medium such as water (or an aqueous medium) or air. In the state of the main lens ML alone, its imaging position is on the object side (or subject side) with respect to the imaging surface I. Although details will be described later, the main lens ML is composed of a plurality of lenses, and the auxiliary lens SL is composed of one negative lens for air and in an aqueous medium, and the main lens ML and the auxiliary lens SL are combined. In this state, desired imaging performance can be obtained. Here, the desired imaging performance means that the astigmatic difference is reduced by performing sufficient correction with the auxiliary lens SL, and the imaging position matches the imaging surface I. The aqueous medium includes liquid substances in addition to seawater and fresh water. When shooting with the same optical system in media with different refractive indexes and dispersions, such as air and aqueous media, the aberrations generated in each medium and the angle of view obtained will differ, and each medium will be sufficient. It becomes difficult to obtain a good optical performance. At this time, by changing the auxiliary lens SL according to the medium, the desired optical performance can be obtained with either medium in the entire optical system. In an aqueous medium, the refractive index is larger than in air, and the angle of view is narrower than in air. In order to prevent this, as described above, the auxiliary lens SL has a negative power to widen the angle of the optical system so as to suppress the angle of view variation between the air and the water.
 撮像光学系10のうち主レンズMLは、撮像光学系10の主要な構成要素であり、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。主レンズMLを負先行とすることで、入射瞳位置を物体側に配置することができ、広角ながら前玉径の小さい光学系を実現できる。また、第1及び第2レンズL1,L2を負とすることで、第1レンズL1のみを負とする場合よりもパワーが分割され、各レンズで発生する非点収差や誤差感度を低減することができる。また、第3レンズL3を正とすることで、負の第1及び第2レンズL1,L2で発生する歪曲収差、色収差、球面収差等を補正することができる。また、第4及び第5レンズL4,L5を正とすることで、光束径を比較的早い段階で収斂させ、光学全長を短くでき、球面収差の増大も抑制できる。また、第6レンズL6を負とすることで、開口絞りSTより後ろの群内の正レンズ(具体的には、第4、第5、及び第7レンズL4,L5,L7)で発生する歪曲収差、色収差、球面収差等を補正することができる。また、第7レンズL7を正レンズとすることで、イメージセンサーへの光線入射角を比較的小さく抑えることができる。以上のような構成により、撮像光学系10は、広角化、小型化、及び高性能化を両立できる。 The main lens ML of the imaging optical system 10 is a main component of the imaging optical system 10, and in order from the object side is a negative first lens L1, a negative second lens L2, a positive third lens L3, and an aperture. It consists essentially of a diaphragm (or diaphragm) ST, a positive fourth lens L4, a positive fifth lens L5, a negative sixth lens L6, and a positive seventh lens L7. By setting the main lens ML as a negative lead, the entrance pupil position can be arranged on the object side, and an optical system with a small front lens diameter can be realized while having a wide angle. Further, by making the first and second lenses L1 and L2 negative, power is divided as compared with the case where only the first lens L1 is negative, and astigmatism and error sensitivity generated in each lens are reduced. Can do. In addition, by setting the third lens L3 to be positive, it is possible to correct distortion aberration, chromatic aberration, spherical aberration, and the like that occur in the negative first and second lenses L1 and L2. In addition, by setting the fourth and fifth lenses L4 and L5 to be positive, the light beam diameter can be converged at a relatively early stage, the optical total length can be shortened, and an increase in spherical aberration can be suppressed. Further, by setting the sixth lens L6 to be negative, distortion generated in the positive lenses in the group behind the aperture stop ST (specifically, the fourth, fifth, and seventh lenses L4, L5, and L7). Aberration, chromatic aberration, spherical aberration, etc. can be corrected. Further, by making the seventh lens L7 a positive lens, the light incident angle on the image sensor can be kept relatively small. With the configuration as described above, the imaging optical system 10 can achieve both wide angle, small size, and high performance.
 第1レンズL1の物体側面S11は、物体側に凸面を向けたメニスカス形状となっている。これにより、第1レンズL1の物体側面S11への光線入射角を小さくして非点収差等の発生を抑えることができる。また、第2レンズL2の像側面S22は、物体側面S21よりも像側に強い凹面を向けている。第2レンズL2は、全体で負のパワーを持っているが、光線の面への入射角が小さい、像側面S22の凹面を物体側面S21より強くすることで、第2レンズL2で十分な負のパワーを確保しながら、第2レンズL2で発生する非点収差等を小さく抑えることができる。また、第5及び第6レンズL5,L6は接合レンズCSとなっている。これにより、第5及び第6レンズL5,L6がそれぞれ単レンズの場合よりも球面収差及び色収差を良好に補正することができる。 The object side surface S11 of the first lens L1 has a meniscus shape with the convex surface facing the object side. Thereby, it is possible to reduce the incident angle of the first lens L1 on the object side surface S11 and suppress the generation of astigmatism and the like. Further, the image side S22 of the second lens L2 has a stronger concave surface on the image side than the object side S21. Although the second lens L2 has a negative power as a whole, the second lens L2 has a sufficient negative power by making the concave surface of the image side surface S22 having a small incident angle to the surface of the light ray stronger than the object side surface S21. Astigmatism and the like generated in the second lens L2 can be suppressed to a small level while securing the power. The fifth and sixth lenses L5 and L6 are cemented lenses CS. Thereby, spherical aberration and chromatic aberration can be corrected better than when the fifth and sixth lenses L5 and L6 are single lenses, respectively.
 補助レンズSLは、主レンズMLより物体側に装着される。これにより、主レンズMLの光路の途中に補助レンズSLを配置する光学系よりも、補助レンズSLの偏芯感度を低くすることができ、良好な光学性能を維持できる。また、ユーザーの操作性が良くなり、装着機構も簡素化できる。補助レンズSLの物体側面S01は、物体側に凸面を向けている。これにより、補助レンズSLの物体側面S01は、半画角90°以上の光線を取り込むことができる。なお、補助レンズSLは、撮像光学系10において、収差補正の他に、防水、耐水圧、耐落下衝撃等の機能も持たせている。 The auxiliary lens SL is attached to the object side from the main lens ML. Thereby, the decentering sensitivity of the auxiliary lens SL can be made lower than the optical system in which the auxiliary lens SL is arranged in the middle of the optical path of the main lens ML, and good optical performance can be maintained. In addition, user operability is improved and the mounting mechanism can be simplified. The object side surface S01 of the auxiliary lens SL has a convex surface facing the object side. As a result, the object side surface S01 of the auxiliary lens SL can capture light rays having a half angle of view of 90 ° or more. Note that the auxiliary lens SL has functions such as waterproof, water pressure resistance, and drop impact resistance in addition to aberration correction in the imaging optical system 10.
 撮像光学系10は、以下の条件式(1)を満たす。
 -42≦fA/fM≦-17  …  (1)
ここで、値fAは補助レンズSLの焦点距離であり、値fMは主レンズMLの焦点距離である。
The imaging optical system 10 satisfies the following conditional expression (1).
−42 ≦ fA / fM ≦ −17 (1)
Here, the value fA is the focal length of the auxiliary lens SL, and the value fM is the focal length of the main lens ML.
 条件式(1)の値fA/fMの下限を上回ることで、補助レンズSLのパワーが弱すぎないため、補助レンズSLの加工性を確保しつつ光学系が大型化することを防ぐことができる。一方、条件式(1)の値fA/fMの上限を下回ることで、補助レンズSLのパワーが強すぎないため、補助レンズSLで発生する収差を小さくしたり、誤差感度を小さくしたりすることができ、光学系全体で良好な光学性能を得ることができる。 By exceeding the lower limit of the value fA / fM of the conditional expression (1), the power of the auxiliary lens SL is not too weak, so that it is possible to prevent the optical system from being enlarged while ensuring the workability of the auxiliary lens SL. . On the other hand, since the power of the auxiliary lens SL is not too strong by lowering the upper limit of the value fA / fM of the conditional expression (1), the aberration generated in the auxiliary lens SL is reduced or the error sensitivity is reduced. And good optical performance can be obtained in the entire optical system.
 また、撮像光学系10は、条件式(1)に追加して、以下の条件式(2)をさらに満たす。
 -42≦fAA/fM≦-28  …  (2)
ここで、値fAAは空気中用の補助レンズSLの焦点距離であり、値fMは主レンズMLの焦点距離である。
In addition to the conditional expression (1), the imaging optical system 10 further satisfies the following conditional expression (2).
−42 ≦ fAA / fM ≦ −28 (2)
Here, the value fAA is the focal length of the in-air auxiliary lens SL, and the value fM is the focal length of the main lens ML.
 条件式(2)の値fAA/fMの下限を上回ることで、空気中において、補助レンズSLのパワーが弱すぎないため、補助レンズSLの加工性を確保しつつ光学系が大型化することを防ぐことができる。一方、条件式(2)の値fAA/fMの上限を下回ることで、補助レンズSLのパワーが強すぎないため、補助レンズSLで発生する収差を小さくしたり、誤差感度を小さくしたりすることができ、光学系全体で良好な光学性能を得ることができる。 By exceeding the lower limit of the value fAA / fM of the conditional expression (2), the power of the auxiliary lens SL is not too weak in the air, so that the optical system is enlarged while ensuring the workability of the auxiliary lens SL. Can be prevented. On the other hand, since the power of the auxiliary lens SL is not too strong by falling below the upper limit of the value fAA / fM of the conditional expression (2), the aberration generated in the auxiliary lens SL is reduced or the error sensitivity is reduced. And good optical performance can be obtained in the entire optical system.
 また、撮像光学系10は、条件式(1)に追加して、以下の条件式(3)をさらに満たす。
 -31≦fAW/fM≦-17  …  (3)
ここで、値fAWは水性媒質中用の補助レンズSLの焦点距離であり、値fMは主レンズMLの焦点距離である。
In addition to the conditional expression (1), the imaging optical system 10 further satisfies the following conditional expression (3).
−31 ≦ fAW / fM ≦ −17 (3)
Here, the value fAW is the focal length of the auxiliary lens SL for use in an aqueous medium, and the value fM is the focal length of the main lens ML.
 条件式(3)の値fAW/fMの下限を上回ることで、水性媒質中において、補助レンズSLのパワーが弱すぎないため、補助レンズSLの加工性を確保しつつ光学系が大型化することを防ぐことができる。一方、条件式(3)の値fAW/fMの上限を下回ることで、補助レンズSLのパワーが強すぎないため、補助レンズSLで発生する収差を小さくしたり、誤差感度を小さくしたりすることができ、光学系全体で良好な光学性能を得ることができる。 By exceeding the lower limit of the value fAW / fM of the conditional expression (3), the power of the auxiliary lens SL is not too weak in the aqueous medium, so that the optical system is enlarged while ensuring the workability of the auxiliary lens SL. Can be prevented. On the other hand, since the power of the auxiliary lens SL is not too strong by lowering the upper limit of the value fAW / fM of the conditional expression (3), the aberration generated in the auxiliary lens SL is reduced or the error sensitivity is reduced. And good optical performance can be obtained in the entire optical system.
 また、撮像光学系10は、条件式(1)に追加して、以下の条件式(4)をさらに満たす。
 -6≦(R2AA+R1AA)/(R2AA-R1AA)≦-3  …  (4)
ここで、値R1AAは空気中用の補助レンズSLの物体側面S01の曲率半径であり、値R2AAは空気中用の補助レンズSLの像側面S02の曲率半径である。
In addition to the conditional expression (1), the imaging optical system 10 further satisfies the following conditional expression (4).
−6 ≦ (R2AA + R1AA) / (R2AA−R1AA) ≦ −3 (4)
Here, the value R1AA is the radius of curvature of the object side surface S01 of the in-air auxiliary lens SL, and the value R2AA is the radius of curvature of the image side surface S02 of the in-air auxiliary lens SL.
 条件式(4)の値(R2AA+R1AA)/(R2AA-R1AA)の下限を上回ることで、物体側面の曲率半径と像側面の曲率半径との間に、ある程度の差がつくため、補助レンズSLのパワーが得られ、補助レンズSLの大型化を防げたり、レンズの加工性が向上したりする。一方、条件式(4)の値(R2AA+R1AA)/(R2AA-R1AA)の上限を下回ることで、補助レンズSLの物体側面の曲率半径と像側面の曲率半径との間に差がつきすぎないため、補助レンズSLで発生する非点収差等を小さく抑えることができる。 By exceeding the lower limit of the value (R2AA + R1AA) / (R2AA−R1AA) in the conditional expression (4), there is a certain difference between the curvature radius of the object side surface and the curvature radius of the image side surface. Power is obtained, and the increase in size of the auxiliary lens SL can be prevented, or the processability of the lens can be improved. On the other hand, since the lower limit of the value (R2AA + R1AA) / (R2AA−R1AA) in conditional expression (4) is not reached, there is not too much difference between the curvature radius of the object side surface of the auxiliary lens SL and the curvature radius of the image side surface. Astigmatism generated in the auxiliary lens SL can be reduced.
 また、撮像光学系10は、条件式(1)に追加して、以下の条件式(5)をさらに満たす。
 -9≦(R2AW+R1AW)/(R2AW-R1AW)≦-3  …  (5)
ここで、値R1AWは水性媒質中用の補助レンズSLの物体側面S01の曲率半径であり、値R2AWは水性媒質中用の補助レンズSLの像側面S02の曲率半径である。
In addition to the conditional expression (1), the imaging optical system 10 further satisfies the following conditional expression (5).
−9 ≦ (R2AW + R1AW) / (R2AW−R1AW) ≦ −3 (5)
Here, the value R1AW is the radius of curvature of the object side surface S01 of the auxiliary lens SL for aqueous medium, and the value R2AW is the radius of curvature of the image side surface S02 of the auxiliary lens SL for aqueous medium.
 条件式(5)の値(R2AW+R1AW)/(R2AW-R1AW)の下限を上回ることで、物体側面の曲率半径と像側面の曲率半径との間に、ある程度の差がつくため、補助レンズSLのパワーが得られ、補助レンズSLの大型化を防げたり、レンズの加工性が向上したりする。一方、条件式(5)の値(R2AW+R1AW)/(R2AW-R1AW)の上限を下回ることで、補助レンズSLの物体側面の曲率半径と像側面の曲率半径との間に差がつきすぎないため、補助レンズSLで発生する非点収差等を小さく抑えることができる。 Exceeding the lower limit of the value (R2AW + R1AW) / (R2AW−R1AW) in conditional expression (5) creates a certain difference between the curvature radius of the object side surface and the curvature radius of the image side surface. Power is obtained, and the increase in size of the auxiliary lens SL can be prevented, or the processability of the lens can be improved. On the other hand, since the lower limit of the value (R2AW + R1AW) / (R2AW−R1AW) in conditional expression (5) is not reached, there is not too much difference between the curvature radius of the object side surface of the auxiliary lens SL and the curvature radius of the image side surface. Astigmatism generated in the auxiliary lens SL can be reduced.
 また、撮像光学系10は、条件式(1)に追加して、以下の条件式(6)をさらに満たす。
 0.5≦fAW/fAA≦0.9  …  (6)
ここで、値fAWは水性媒質中用の補助レンズSLの焦点距離であり、値fAAは空気中用の補助レンズSLの焦点距離である。
In addition to the conditional expression (1), the imaging optical system 10 further satisfies the following conditional expression (6).
0.5 ≦ fAW / fAA ≦ 0.9 (6)
Here, the value fAW is the focal length of the auxiliary lens SL for the aqueous medium, and the value fAA is the focal length of the auxiliary lens SL for the air.
 条件式(6)の値fAW/fAAの下限を上回ることで、水性媒質中用の補助レンズSLのパワーが空気中用の補助レンズSLのパワーに比べて強くなりすぎないため、水性媒質中時の画角が空気中時の画角より大きくなりすぎずにすむ。一方、条件式(6)の値fAW/fAAの上限を下回ることで、水性媒質中用の補助レンズSLのパワーが空気中用の補助レンズSLのパワーに比べて弱くなりすぎないため、水性媒質中時の画角が空気中時の画角より小さくなりすぎずにすむ。 By exceeding the lower limit of the value fAW / fAA of the conditional expression (6), the power of the auxiliary lens SL for the aqueous medium does not become too strong compared with the power of the auxiliary lens SL for the air. It is not necessary for the angle of view to be too large compared to the angle of view in air. On the other hand, since the power of the auxiliary lens SL for the aqueous medium does not become too weak compared with the power of the auxiliary lens SL for the air by being below the upper limit of the value fAW / fAA of the conditional expression (6), the aqueous medium It is not necessary for the angle of view in the middle to be too small than the angle of view in the air.
 なお、撮像光学系10は、実質的にパワーを持たないその他の光学素子(例えばレンズ、フィルター部材等)をさらに有するものであってもよい。 Note that the imaging optical system 10 may further include other optical elements that have substantially no power (for example, a lens, a filter member, and the like).
 以上説明した撮像光学系等では、補助レンズSLは媒質に応じて交換可能であり、このように媒質に応じて補助レンズSLを変えることで、光学系全系では空気や水性媒質のように屈折率や分散が互いに異なる媒質においても所望の光学性能を得ることができる。また、補助レンズSLに負のパワーを持たせることにより、光学系が広角化し、空気中用の補助レンズSLから水性媒質中用の補助レンズSLに切り替えた際の画角変動を抑えることができる。このように、補助レンズSLが負のパワーを有するため、主レンズMLと組み合わせて撮像面Iにピントが合うように、主レンズML単体では、ピント位置が撮像面Iよりも物体側にある。また、補助レンズSLを1枚とすることで、主レンズMLとの組み合わせ時の作業性が良好となる。以上のことにより、本実施形態の撮像光学系10及び撮像装置100は、水性媒質中でも例えば魚眼レンズのように画角180°以上と十分に広角で、空気中と水性媒質中とで結像性能変化が小さく、画角変化も5°程度と十分小さく、小型で高性能なものとなる。 In the imaging optical system and the like described above, the auxiliary lens SL can be exchanged according to the medium. By thus changing the auxiliary lens SL according to the medium, the entire optical system is refracted like air or an aqueous medium. Desired optical performance can be obtained even in media having different rates and dispersions. Further, by giving negative power to the auxiliary lens SL, the optical system has a wide angle, and it is possible to suppress a change in the angle of view when the auxiliary lens SL for air is switched to the auxiliary lens SL for aqueous medium. . As described above, since the auxiliary lens SL has negative power, the main lens ML alone has a focus position closer to the object side than the imaging surface I so that the imaging surface I is focused in combination with the main lens ML. Further, by using one auxiliary lens SL, the workability when combined with the main lens ML is improved. As described above, the imaging optical system 10 and the imaging apparatus 100 of the present embodiment have a sufficiently wide angle of view of 180 ° or more, such as a fisheye lens, even in an aqueous medium, and the imaging performance changes between the air and the aqueous medium. Is small, and the change in the angle of view is as small as about 5 °, resulting in a small size and high performance.
〔実施例〕
 以下、本発明の撮像光学系等の実施例を示す。各実施例に使用する記号は下記の通りである。
f:撮像光学系全系の焦点距離
Fno:Fナンバー
w:半画角
ymax:最大像高
TL:レンズ全長(光学全長)(最も物体側のレンズ面から撮像面までの光軸上距離)
BF:バックフォーカス
R:曲率半径
D:軸上面間隔
nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R:基準曲率半径
K:円錐定数
〔Example〕
Examples of the imaging optical system of the present invention will be described below. Symbols used in each example are as follows.
f: focal length of the entire imaging optical system Fno: F number w: half angle of view ymax: maximum image height TL: total lens length (optical total length) (distance on the optical axis from the lens surface closest to the object side to the imaging surface)
BF: Back focus R: Radius of curvature D: Axial upper surface spacing nd: Refractive index νd of lens material with respect to d-line νd: Abbe number of lens material In each example, a surface with “*” written after each surface number The surface having an aspherical shape, and the aspherical shape is expressed by the following “Equation 1” with the vertex of the surface as the origin, the X axis in the optical axis direction, and the height in the direction perpendicular to the optical axis as h. .
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-order aspheric coefficient R: reference radius of curvature K: conic constant
(実施例1)
 実施例1の撮像光学系の全体諸元を以下の表1に示す。
〔表1〕
           空気中    水中
f(mm)       1.33      1.03
Fno         2.42      2.42
w(°)     100.0      97.5
ymax(mm)    2.33      2.33
TL(mm)     21.11     27.00
BF(mm)      1.46      1.46
Example 1
The overall specifications of the imaging optical system of Example 1 are shown in Table 1 below.
[Table 1]
In the air underwater
f (mm) 1.33 1.03
Fno 2.42 2.42
w (°) 100.0 97.5
ymax (mm) 2.33 2.33
TL (mm) 21.11 27.00
BF (mm) 1.46 1.46
 実施例1の撮像光学系のレンズ面のデータを以下の表2に示す。なお、以下の表1等において、面番号を「Surf. N」で表し、開口絞りを「ST」で表し、無限大を「INF」で表している。また、「image」は撮像素子の撮像面I(又は撮像光学系の結像面)を表している。また、「r1」及び「r2」は補助レンズにおける空気中又は水中の曲率半径を表している。「d1」及び「d2」は補助レンズにおける空気中又は水中の軸上面間隔を表している。「n1」及び「ν1」は補助レンズにおける空気中又は水中のd線に対する屈折率及びアッベ数をそれぞれ表している。
〔表2〕
Surf.N     R(mm)    D(mm)    nd       νd
 1         r1       d1       n1       ν1
 2         r2       d2
 3        10.413    1.00    1.91082   35.3
 4         3.326    2.20
 5*      -14.343    0.64    1.53048   55.7
 6*        1.899    1.54
 7        12.702    1.00    2.00270   19.3
 8       -12.538    0.86
 9(ST)     INF      0.36
10        13.916    0.85    1.72916   54.7
11         9.485    0.10
12        10.413    1.76    1.72916   54.7
13         3.326    0.01    1.51400   42.8
14       -14.343    0.50    1.92286   20.9
15         1.899    0.58
16*       12.702    1.93    1.53048   55.7
17*      -12.538    0.43
18         INF      0.61    1.51680   64.2
19         INF      0.63
image
The lens surface data of the imaging optical system of Example 1 is shown in Table 2 below. In Table 1 below, the surface number is represented by “Surf. N”, the aperture stop is represented by “ST”, and the infinity is represented by “INF”. “Image” represents the imaging surface I of the image sensor (or the imaging surface of the imaging optical system). “R1” and “r2” represent the radius of curvature of the auxiliary lens in air or water. “D1” and “d2” represent the axial top surface spacing of the auxiliary lens in air or water. “N1” and “ν1” represent the refractive index and Abbe number for d-line in air or water in the auxiliary lens, respectively.
[Table 2]
Surf.N R (mm) D (mm) nd νd
1 r1 d1 n1 ν1
2 r2 d2
3 10.413 1.00 1.91082 35.3
4 3.326 2.20
5 * -14.343 0.64 1.53048 55.7
6 * 1.899 1.54
7 12.702 1.00 2.00270 19.3
8 -12.538 0.86
9 (ST) INF 0.36
10 13.916 0.85 1.72916 54.7
11 9.485 0.10
12 10.413 1.76 1.72916 54.7
13 3.326 0.01 1.51400 42.8
14 -14.343 0.50 1.92286 20.9
15 1.899 0.58
16 * 12.702 1.93 1.53048 55.7
17 * -12.538 0.43
18 INF 0.61 1.51680 64.2
19 INF 0.63
image
 実施例1の撮像光学系のレンズ面の非球面係数を以下の表3に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)をE(たとえば2.5E-02)を用いて表すものとする。
〔表3〕
第5面
K=0.000, A4=2.6107E-02, A6=-7.2545E-03, A8=1.0482E-03, 
A10=-8.1561E-05, A12=2.6580E-06
第6面
K=0.000, A4=3.0016E-02, A6=1.3133E-02, A8=-1.5587E-02, 
A10=5.4692E-03, A12=-7.2262E-04
第16面
K=-6.187, A4=1.5425E-02, A6=-1.6216E-03, A8=1.7490E-04, 
A10=-8.2247E-06, A12=1.9982E-07
第17面
K=0.611, A4=1.0690E-02, A6=3.1096E-03, A8=-6.0656E-04, 
A10=3.4317E-05, A12=7.0148E-08
Table 3 below shows the aspheric coefficients of the lens surfaces of the imaging optical system of Example 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed by using E (for example, 2.5E-02).
[Table 3]
5th page
K = 0.000, A4 = 2.6107E-02, A6 = -7.2545E-03, A8 = 1.0482E-03,
A10 = -8.1561E-05, A12 = 2.6580E-06
6th page
K = 0.000, A4 = 3.0016E-02, A6 = 1.3133E-02, A8 = -1.5587E-02,
A10 = 5.4692E-03, A12 = -7.2262E-04
16th page
K = -6.187, A4 = 1.5425E-02, A6 = -1.6216E-03, A8 = 1.7490E-04,
A10 = -8.2247E-06, A12 = 1.9982E-07
17th page
K = 0.611, A4 = 1.0690E-02, A6 = 3.1096E-03, A8 = -6.0656E-04,
A10 = 3.4317E-05, A12 = 7.0148E-08
 表2に示す実施例1の補助レンズにおける空気中又は水中の曲率半径、軸上面間隔、d線に対する屈折率、及びアッベ数を以下の表4に示す。
〔表4〕
     空気中     水中
r1   13.916     20.614
r2    9.485     15.957
d1    3.00       2.00
d2    3.11      10.00
n1    2.00060    2.00060
ν1  25.5       25.5
Table 4 below shows the radius of curvature in air or water in the auxiliary lens of Example 1 shown in Table 2, the distance between the top surfaces of the axes, the refractive index with respect to the d-line, and the Abbe number.
[Table 4]
In the air underwater
r1 13.916 20.614
r2 9.485 15.957
d1 3.00 2.00
d2 3.11 10.00
n1 2.00060 2.00060
ν1 25.5 25.5
 実施例1の撮像光学系において、主レンズ単体の場合の画面中心結像位置を以下の表5に示す。なお、表5において、撮像光学系に補助レンズを組み込んだ場合の結像位置を原点としている(以降の実施例も同様)。
〔表5〕
主レンズ単体の画面中心結像位置(mm):-0.04
In the imaging optical system of Example 1, the screen center imaging position in the case of the main lens alone is shown in Table 5 below. In Table 5, the imaging position when an auxiliary lens is incorporated in the imaging optical system is used as the origin (the same applies to the following examples).
[Table 5]
Image center position of the main lens alone (mm): -0.04
 実施例1及び比較例1の撮像光学系の最大画角における非点隔差を以下の表6に示す。なお、比較例1は、主レンズMLのみで構成される撮像光学系である(以降の比較例も同様)。
〔表6〕
空気中・補助レンズ付き(実施例1):0.009
水中・補助レンズ付き(実施例1):0.003
空気中・主レンズのみ(比較例1):0.104
 表6に示すように、撮像光学系10に補助レンズSLを組み込むことにより、収差補正を行うことで、良好な光学性能を得ることができることがわかる。一方、主レンズMLのみの場合には、収差補正が不足していることがわかる。
Table 6 below shows the astigmatic difference at the maximum angle of view of the imaging optical systems of Example 1 and Comparative Example 1. Note that Comparative Example 1 is an imaging optical system including only the main lens ML (the same applies to the following comparative examples).
[Table 6]
In the air with an auxiliary lens (Example 1): 0.009
Underwater with auxiliary lens (Example 1): 0.003
Only in air and main lens (Comparative Example 1): 0.104
As shown in Table 6, it can be seen that good optical performance can be obtained by performing aberration correction by incorporating the auxiliary lens SL in the imaging optical system 10. On the other hand, in the case of only the main lens ML, it can be seen that the aberration correction is insufficient.
 図2A及び2Bは、実施例1の撮像光学系10A等の断面図である。具体的には、図2Aは、空気中用の補助レンズSLを組み込んだ撮像光学系10Aの断面図であり、図2Bは、水中用の補助レンズSLを組み込んだ撮像光学系10Aの断面図である。撮像光学系10Aは、主レンズMLと、空気中用又は水中用の補助レンズSLとから実質的になる。主レンズMLは、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。補助レンズSLは、1枚の負レンズから実質的になる。主レンズMLの第7レンズL7と撮像素子51との間には、適当な厚さのフィルターFが配置されている。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。符号Iは、撮像素子51の被投影面である撮像面を示す。なお、符号F,Iについては、以降の実施例でも同様である。 2A and 2B are cross-sectional views of the imaging optical system 10A and the like of the first embodiment. Specifically, FIG. 2A is a cross-sectional view of the imaging optical system 10A incorporating the in-air auxiliary lens SL, and FIG. 2B is a cross-sectional view of the imaging optical system 10A incorporating the underwater auxiliary lens SL. is there. The imaging optical system 10A substantially includes a main lens ML and an in-air or underwater auxiliary lens SL. The main lens ML includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, an aperture stop (or stop) ST, a positive fourth lens L4, and a positive fifth lens. The lens substantially includes a lens L5, a negative sixth lens L6, and a positive seventh lens L7. The auxiliary lens SL substantially consists of one negative lens. A filter F having an appropriate thickness is disposed between the seventh lens L7 of the main lens ML and the image sensor 51. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, and the like. Reference numeral I denotes an imaging surface that is a projection surface of the imaging element 51. The symbols F and I are the same in the following embodiments.
 図3A及び3Bは、実施例1の空気中用の補助レンズSLを組み込んだ撮像光学系10Aの収差図(球面収差及び非点収差)を示している。また、図3C及び3Dは、実施例1の水中用の補助レンズSLを組み込んだ撮像光学系10Aの収差図(球面収差及び非点収差)を示している。また、図3E及び3Fは、比較例1の主レンズMLのみで構成される撮像光学系の収差図(球面収差及び非点収差)を示している。上記球面収差図において、「F2.4」はFナンバーを表す。上記非点収差図では、実線がサジタル像面を表し、点線がメリジオナル像面を表す。 FIGS. 3A and 3B show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10A in which the in-air auxiliary lens SL of Example 1 is incorporated. 3C and 3D show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10A in which the underwater auxiliary lens SL of Example 1 is incorporated. 3E and 3F show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system including only the main lens ML of Comparative Example 1. FIG. In the spherical aberration diagram, “F2.4” represents an F number. In the above astigmatism diagram, the solid line represents the sagittal image plane, and the dotted line represents the meridional image plane.
(実施例2)
 実施例2の撮像光学系の全体諸元を以下の表7に示す。
〔表7〕
           空気中    水中
f(mm)       1.34      1.03
Fno         2.42      2.42
w(°)     100.0      97.5
ymax(mm)    2.33      2.33
TL(mm)     20.81     25.23
BF(mm)      1.41      1.41
(Example 2)
Table 7 below shows the overall specifications of the imaging optical system of Example 2.
[Table 7]
In the air underwater
f (mm) 1.34 1.03
Fno 2.42 2.42
w (°) 100.0 97.5
ymax (mm) 2.33 2.33
TL (mm) 20.81 25.23
BF (mm) 1.41 1.41
 実施例2の撮像光学系のレンズ面のデータを以下の表8に示す。
〔表8〕
Surf.N     R(mm)    D(mm)    nd       νd
 1         r1       d1       n1       ν1
 2         r2       d2
 3        11.224    1.00    1.91082   35.3
 4         3.273    2.11
 5*      -29.167    0.65    1.53048   55.7
 6*        1.887    1.46
 7        24.765    1.39    2.00270   19.3
 8        -9.025    0.86
 9(ST)     INF      0.30
10        22.240    0.83    1.72916    54.7
11        -3.756    0.10
12         6.083    1.69    1.72916    54.7
13        -2.457    0.01    1.51400    42.8
14        -2.457    0.50    1.92286    20.9
15         5.719    0.66
16*        3.077    1.82    1.53048    55.7
17*       -4.955    0.40
18         INF      0.61    1.51680    64.2
19         INF      0.61
image
The data of the lens surface of the imaging optical system of Example 2 is shown in Table 8 below.
[Table 8]
Surf.N R (mm) D (mm) nd νd
1 r1 d1 n1 ν1
2 r2 d2
3 11.224 1.00 1.91082 35.3
4 3.273 2.11
5 * -29.167 0.65 1.53048 55.7
6 * 1.887 1.46
7 24.765 1.39 2.00270 19.3
8 -9.025 0.86
9 (ST) INF 0.30
10 22.240 0.83 1.72916 54.7
11 -3.756 0.10
12 6.083 1.69 1.72916 54.7
13 -2.457 0.01 1.51400 42.8
14 -2.457 0.50 1.92286 20.9
15 5.719 0.66
16 * 3.077 1.82 1.53048 55.7
17 * -4.955 0.40
18 INF 0.61 1.51680 64.2
19 INF 0.61
image
 実施例2の撮像光学系のレンズ面の非球面係数を以下の表9に示す。
〔表9〕
第5面
K=0.000, A4=2.4520E-02, A6=-7.2725E-03, A8=1.0574E-03, 
A10=1.0574E-03, A12=1.0574E-03
第6面
K=0.000, A4=3.2707E-02, A6=7.0369E-03, A8=-1.1818E-02, 
A10=4.2892E-03, A12=-6.1056E-04
第16面
K=-5.928, A4=1.5528E-02, A6=-1.5478E-03, A8=1.8921E-04, 
A10=-8.9726E-06, A12=3.4445E-07
第17面
K=0.183, A4=1.2103E-02, A6=2.8716E-03, A8=-5.7878E-04, 
A10=4.7290E-05, A12=-1.1043E-06
Table 9 below shows the aspheric coefficients of the lens surfaces of the imaging optical system of Example 2.
[Table 9]
5th page
K = 0.000, A4 = 2.4520E-02, A6 = -7.2725E-03, A8 = 1.0574E-03,
A10 = 1.0574E-03, A12 = 1.0574E-03
6th page
K = 0.000, A4 = 3.2707E-02, A6 = 7.0369E-03, A8 = -1.1818E-02,
A10 = 4.2892E-03, A12 = -6.1056E-04
16th page
K = -5.928, A4 = 1.5528E-02, A6 = -1.5478E-03, A8 = 1.8921E-04,
A10 = -8.9726E-06, A12 = 3.4445E-07
17th page
K = 0.183, A4 = 1.2103E-02, A6 = 2.8716E-03, A8 = -5.7878E-04,
A10 = 4.7290E-05, A12 = -1.1043E-06
 表8に示す実施例2の補助レンズにおける空気中又は水中の曲率半径、軸上面間隔、d線に対する屈折率、及びアッベ数を以下の表10に示す。
〔表10〕
     空気中     水中
r1   14.073     17.376
r2    9.748     13.565
d1    3.00       2.00
d2    2.81       8.23
n1    1.84666    1.84666
ν1  23.8       23.8
Table 10 below shows the radius of curvature in air or water in the auxiliary lens of Example 2 shown in Table 8, the axial top surface spacing, the refractive index with respect to the d-line, and the Abbe number.
[Table 10]
In the air underwater
r1 14.073 17.376
r2 9.748 13.565
d1 3.00 2.00
d2 2.81 8.23
n1 1.84666 1.84666
ν1 23.8 23.8
 実施例2の撮像光学系において、主レンズ単体の場合の画面中心結像位置を以下の表11に示す。
〔表11〕
主レンズ単体の画面中心結像位置(mm):-0.03
In the imaging optical system of Example 2, the screen center imaging position in the case of the main lens alone is shown in Table 11 below.
[Table 11]
Image center position of the main lens alone (mm): -0.03
 実施例2及び比較例2の撮像光学系の最大画角における非点隔差を以下の表12に示す。
〔表12〕
空気中・補助レンズ付(実施例2):0.008
水中・補助レンズ付き(実施例2):-0.004
空気中・主レンズのみ(比較例2):0.086
 表12に示すように、撮像光学系10に補助レンズSLを組み込むことにより、収差補正を行うことで、良好な光学性能を得ることができることがわかる。一方、主レンズMLのみの場合には、収差補正が不足していることがわかる。
Table 12 below shows the astigmatic difference at the maximum angle of view of the imaging optical systems of Example 2 and Comparative Example 2.
[Table 12]
In air with auxiliary lens (Example 2): 0.008
Underwater with auxiliary lens (Example 2): -0.004
Only in air and main lens (Comparative Example 2): 0.086
As shown in Table 12, it can be seen that good optical performance can be obtained by correcting the aberration by incorporating the auxiliary lens SL in the imaging optical system 10. On the other hand, in the case of only the main lens ML, it can be seen that the aberration correction is insufficient.
 図4A及び4Bは、実施例2の撮像光学系10B等の断面図である。具体的には、図4Aは、空気中用の補助レンズSLを組み込んだ撮像光学系10Bの断面図であり、図4Bは、水中用の補助レンズSLを組み込んだ撮像光学系10Bの断面図である。撮像光学系10Bは、主レンズMLと、空気中用又は水中用の補助レンズSLとから実質的になる。主レンズMLは、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。補助レンズSLは、1枚の負レンズから実質的になる。主レンズMLの第7レンズL7と撮像素子51との間には、適当な厚さのフィルターFが配置されている。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。 4A and 4B are cross-sectional views of the imaging optical system 10B and the like of the second embodiment. Specifically, FIG. 4A is a cross-sectional view of the imaging optical system 10B incorporating the in-air auxiliary lens SL, and FIG. 4B is a cross-sectional view of the imaging optical system 10B incorporating the underwater auxiliary lens SL. is there. The imaging optical system 10B substantially includes a main lens ML and an in-air or underwater auxiliary lens SL. The main lens ML includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, an aperture stop (or stop) ST, a positive fourth lens L4, and a positive fifth lens. The lens substantially includes a lens L5, a negative sixth lens L6, and a positive seventh lens L7. The auxiliary lens SL substantially consists of one negative lens. A filter F having an appropriate thickness is disposed between the seventh lens L7 of the main lens ML and the image sensor 51. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, and the like.
 図5A及び5Bは、実施例2の空気中用の補助レンズSLを組み込んだ撮像光学系10Bの収差図(球面収差及び非点収差)を示している。また、図5C及び5Dは、実施例2の水中用の補助レンズSLを組み込んだ撮像光学系10Bの収差図(球面収差及び非点収差)を示している。また、図5E及び5Fは、比較例2の主レンズMLのみで構成される撮像光学系の収差図(球面収差及び非点収差)を示している。 FIGS. 5A and 5B are aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10B incorporating the in-air auxiliary lens SL of Example 2. FIG. FIGS. 5C and 5D show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10B in which the underwater auxiliary lens SL of Example 2 is incorporated. 5E and 5F show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system including only the main lens ML of Comparative Example 2. FIG.
(実施例3)
 実施例3の撮像光学系の全体諸元を以下の表13に示す。
〔表13〕
           空気中    水中
f(mm)       1.33      1.07
Fno         2.43      2.43
w(°)     100.0      97.5
ymax(mm)    2.33      2.33
TL(mm)     21.11     27.00
BF(mm)      1.41      1.41
(Example 3)
Table 13 below shows overall specifications of the imaging optical system of Example 3.
[Table 13]
In the air underwater
f (mm) 1.33 1.07
Fno 2.43 2.43
w (°) 100.0 97.5
ymax (mm) 2.33 2.33
TL (mm) 21.11 27.00
BF (mm) 1.41 1.41
 実施例3の撮像光学系のレンズ面のデータを以下の表14に示す。
〔表14〕
Surf.N     R(mm)    D(mm)    nd       νd
 1         r1       d1       n1       ν1
 2         r2       d2
 3        10.700    1.00    1.91082   35.3 
 4         3.388    2.21
 5*      -23.656    0.61    1.53048   55.7 
 6*        1.979    1.71
 7        17.191    1.37    2.00270   19.3 
 8       -12.377    1.07
 9(ST)      INF     0.30
10        14.419    0.84    1.72916   54.7 
11        -4.315    0.12
12         6.400    1.80    1.72916   54.7 
13        -2.529    0.01    1.51400   42.8 
14        -2.529    0.50    1.92286   20.9 
15         6.379    0.66
16*        3.030    1.87    1.53048   55.7 
17*       -6.493    0.40
18          INF     0.61    1.51680   64.2 
19          INF     0.61
image               
Data of the lens surface of the imaging optical system of Example 3 is shown in Table 14 below.
[Table 14]
Surf.N R (mm) D (mm) nd νd
1 r1 d1 n1 ν1
2 r2 d2
3 10.700 1.00 1.91082 35.3
4 3.388 2.21
5 * -23.656 0.61 1.53048 55.7
6 * 1.979 1.71
7 17.191 1.37 2.00270 19.3
8 -12.377 1.07
9 (ST) INF 0.30
10 14.419 0.84 1.72916 54.7
11 -4.315 0.12
12 6.400 1.80 1.72916 54.7
13 -2.529 0.01 1.51400 42.8
14 -2.529 0.50 1.92286 20.9
15 6.379 0.66
16 * 3.030 1.87 1.53048 55.7
17 * -6.493 0.40
18 INF 0.61 1.51680 64.2
19 INF 0.61
image
 実施例3の撮像光学系レンズ面の非球面係数を以下の表15に示す。
〔表15〕
第5面
K=0.000, A4=2.4548E-02, A6=-7.2698E-03, A8=1.0701E-03, 
A10=-8.3082E-05, A12=2.6679E-06
第6面
K=0.000, A4=2.7299E-02, A6=8.3567E-03, A8=-1.2622E-02, 
A10=4.3432E-03, A12=-5.5821E-04
第16面
K=-5.517, A4=1.5456E-02, A6=-1.5504E-03, A8=1.8761E-04, 
A10=-9.3742E-06, A12=2.2435E-07
第17面
K=1.415, A4=1.0229E-02, A6=2.6996E-03, A8=-5.6199E-04, 
A10=5.1167E-05, A12=-2.2542E-06
Table 15 below shows the aspheric coefficients of the imaging optical system lens surfaces of Example 3.
[Table 15]
5th page
K = 0.000, A4 = 2.4548E-02, A6 = -7.2698E-03, A8 = 1.0701E-03,
A10 = -8.3082E-05, A12 = 2.6679E-06
6th page
K = 0.000, A4 = 2.7299E-02, A6 = 8.3567E-03, A8 = -1.2622E-02,
A10 = 4.3432E-03, A12 = -5.5821E-04
16th page
K = -5.517, A4 = 1.5456E-02, A6 = -1.5504E-03, A8 = 1.8761E-04,
A10 = -9.3742E-06, A12 = 2.2435E-07
17th page
K = 1.415, A4 = 1.0229E-02, A6 = 2.6996E-03, A8 = -5.6199E-04,
A10 = 5.1167E-05, A12 = -2.2542E-06
 表14に示す実施例3の補助レンズにおける空気中又は水中の曲率半径、軸上面間隔、d線に対する屈折率、及びアッベ数を以下の表16に示す。
〔表16〕
     空気中     水中
r1   14.297     29.424
r2    9.630     17.772
d1    3.00       2.00
d2    3.15       7.55
n1    1.90366    1.83400
ν1  31.3       37.4
Table 16 below shows the radius of curvature in air or water, the distance between the upper surfaces of the axes, the refractive index with respect to the d-line, and the Abbe number in the auxiliary lens of Example 3 shown in Table 14.
[Table 16]
In the air underwater
r1 14.297 29.424
r2 9.630 17.772
d1 3.00 2.00
d2 3.15 7.55
n1 1.90366 1.83400
ν1 31.3 37.4
 実施例3の撮像光学系において、主レンズ単体の場合の画面中心結像位置を以下の表17に示す。
〔表17〕
主レンズ単体の画面中心結像位置(mm):-0.04
In the imaging optical system of Example 3, the screen center imaging position in the case of the main lens alone is shown in Table 17 below.
[Table 17]
Image center position of the main lens alone (mm): -0.04
 実施例3及び比較例3の撮像光学系の最大画角における非点隔差を以下の表18に示す。
〔表18〕
空気中・補助レンズ付(実施例3):0.007
水中・補助レンズ付き(実施例3):-0.003
空気中・主レンズのみ(比較例3):0.100
 表18に示すように、撮像光学系10に補助レンズSLを組み込むことにより、収差補正を行うことで、良好な光学性能を得ることができることがわかる。一方、主レンズMLのみの場合には、収差補正が不足していることがわかる。
Table 18 below shows the astigmatic difference at the maximum angle of view of the imaging optical systems of Example 3 and Comparative Example 3.
[Table 18]
In air / with auxiliary lens (Example 3): 0.007
Underwater with auxiliary lens (Example 3): -0.003
Only in air and main lens (Comparative Example 3): 0.100
As shown in Table 18, it can be seen that good optical performance can be obtained by performing aberration correction by incorporating the auxiliary lens SL in the imaging optical system 10. On the other hand, in the case of only the main lens ML, it can be seen that the aberration correction is insufficient.
 図6A及び6Bは、実施例3の撮像光学系10C等の断面図である。具体的には、図6Aは、空気中用の補助レンズSLを組み込んだ撮像光学系10Cの断面図であり、図6Bは、水中用の補助レンズSLを組み込んだ撮像光学系10Cの断面図である。撮像光学系10Cは、主レンズMLと、空気中用又は水中用の補助レンズSLとから実質的になる。主レンズMLは、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。補助レンズSLは、1枚の負レンズから実質的になる。主レンズMLの第7レンズL7と撮像素子51との間には、適当な厚さのフィルターFが配置されている。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。 6A and 6B are cross-sectional views of the imaging optical system 10C and the like of the third embodiment. Specifically, FIG. 6A is a cross-sectional view of the imaging optical system 10C incorporating the in-air auxiliary lens SL, and FIG. 6B is a cross-sectional view of the imaging optical system 10C incorporating the underwater auxiliary lens SL. is there. The imaging optical system 10C substantially includes a main lens ML and an in-air or underwater auxiliary lens SL. The main lens ML includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, an aperture stop (or stop) ST, a positive fourth lens L4, and a positive fifth lens. The lens substantially includes a lens L5, a negative sixth lens L6, and a positive seventh lens L7. The auxiliary lens SL substantially consists of one negative lens. A filter F having an appropriate thickness is disposed between the seventh lens L7 of the main lens ML and the image sensor 51. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, and the like.
 図7A及び7Bは、実施例3の空気中用の補助レンズSLを組み込んだ撮像光学系10Cの収差図(球面収差及び非点収差)を示している。また、図7C及び7Dは、実施例3の水中用の補助レンズSLを組み込んだ撮像光学系10Cの収差図(球面収差及び非点収差)を示している。また、図7E及び7Fは、比較例3の主レンズMLのみで構成される撮像光学系の収差図(球面収差及び非点収差)を示している。 7A and 7B show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10C incorporating the in-air auxiliary lens SL of Example 3. FIG. 7C and 7D show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10C in which the underwater auxiliary lens SL of Example 3 is incorporated. 7E and 7F show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system including only the main lens ML of Comparative Example 3.
(実施例4)
 実施例4の撮像光学系の全体諸元を以下の表19に示す。
〔表19〕
           空気中    水中
f(mm)       1.33      1.07
Fno         2.43      2.43
w(°)     100.0      97.5
ymax(mm)    2.33      2.33
TL(mm)     21.79     26.14
BF(mm)      1.41      1.41
Example 4
The overall specifications of the imaging optical system of Example 4 are shown in Table 19 below.
[Table 19]
In the air underwater
f (mm) 1.33 1.07
Fno 2.43 2.43
w (°) 100.0 97.5
ymax (mm) 2.33 2.33
TL (mm) 21.79 26.14
BF (mm) 1.41 1.41
 実施例4の撮像光学系のレンズ面のデータを以下の表20に示す。
〔表20〕
Surf.N     R(mm)    D(mm)    nd       νd
 1         r1       d1       n1       ν1
 2         r2       d2
 3        10.980    1.12    1.91082   35.3
 4         3.398    2.22
 5*      -23.041    0.61    1.53048   55.7
 6*        1.919    1.61
 7        24.575    1.32    2.00270   19.3
 8       -10.687    0.95
 9(ST)      INF     0.35
10        19.768    0.87    1.72916   54.7
11        -4.004    0.14
12         5.908    1.83    1.72916   54.7
13        -2.616    0.01    1.51400   42.8
14        -2.616    0.50    1.92286   20.9
15         5.762    0.59
16*        3.034    1.90    1.53048   55.7
17*       -5.281    0.40
18          INF     0.61    1.51680   64.2
19          INF     0.61
image
Data of the lens surface of the imaging optical system of Example 4 is shown in Table 20 below.
[Table 20]
Surf.N R (mm) D (mm) nd νd
1 r1 d1 n1 ν1
2 r2 d2
3 10.980 1.12 1.91082 35.3
4 3.398 2.22
5 * -23.041 0.61 1.53048 55.7
6 * 1.919 1.61
7 24.575 1.32 2.00270 19.3
8 -10.687 0.95
9 (ST) INF 0.35
10 19.768 0.87 1.72916 54.7
11 -4.004 0.14
12 5.908 1.83 1.72916 54.7
13 -2.616 0.01 1.51400 42.8
14 -2.616 0.50 1.92286 20.9
15 5.762 0.59
16 * 3.034 1.90 1.53048 55.7
17 * -5.281 0.40
18 INF 0.61 1.51680 64.2
19 INF 0.61
image
 実施例4の撮像光学系のレンズ面の非球面係数を以下の表21に示す。
〔表21〕
第5面
K=0.000, A4=2.4763E-02, A6=-7.2354E-03, A8=1.0571E-03, 
A10=-8.2628E-05, A12=2.7074E-06
第6面
K=0.000, A4=2.9158E-02, A6=9.8126E-03, A8=-1.3791E-02, 
A10=4.8809E-03, A12=-6.6456E-04
第16面
K=-5.841, A4=1.5554E-02, A6=-1.5390E-03, A8=1.8332E-04, 
A10=-9.3128E-06, A12=3.5838E-07
第17面
K=0.665, A4=1.0476E-02, A6=3.1216E-03, A8=-5.7633E-04, 
A10=4.0517E-05, A12=-7.8815E-07
Table 21 below shows the aspheric coefficients of the lens surfaces of the imaging optical system of Example 4.
[Table 21]
5th page
K = 0.000, A4 = 2.4763E-02, A6 = -7.2354E-03, A8 = 1.0571E-03,
A10 = -8.2628E-05, A12 = 2.7074E-06
6th page
K = 0.000, A4 = 2.9158E-02, A6 = 9.8126E-03, A8 = -1.3791E-02,
A10 = 4.8809E-03, A12 = -6.6456E-04
16th page
K = -5.841, A4 = 1.5554E-02, A6 = -1.5390E-03, A8 = 1.8332E-04,
A10 = -9.3128E-06, A12 = 3.5838E-07
17th page
K = 0.665, A4 = 1.0476E-02, A6 = 3.1216E-03, A8 = -5.7633E-04,
A10 = 4.0517E-05, A12 = -7.8815E-07
 表20に示す実施例4の補助レンズにおける空気中又は水中の曲率半径、軸上面間隔、d線に対する屈折率、及びアッベ数を以下の表22に示す。
〔表22〕
     空気中     水中
r1   14.213     32.344
r2    9.801     20.620
d1    3.00       2.00
d2    3.16       8.51
n1    1.80610    1.83481
ν1  33.3       42.7
Table 22 below shows the curvature radii in air or water in the auxiliary lens of Example 4 shown in Table 20, the axial top surface spacing, the refractive index with respect to the d-line, and the Abbe number.
[Table 22]
In the air underwater
r1 14.213 32.344
r2 9.801 20.620
d1 3.00 2.00
d2 3.16 8.51
n1 1.80610 1.83481
ν1 33.3 42.7
 実施例4の撮像光学系において、主レンズ単体の場合の画面中心結像位置を以下の表23に示す。
〔表23〕
主レンズ単体の画面中心結像位置(mm):-0.03
In the imaging optical system of Example 4, the screen center imaging position in the case of the main lens alone is shown in Table 23 below.
[Table 23]
Image center position of the main lens alone (mm): -0.03
 実施例4及び比較例4の撮像光学系の最大画角における非点隔差を以下の表24に示す。
〔表24〕
空気中・補助レンズ付き(実施例4):0.001
水中・補助レンズ付き(実施例4):-0.002
空気中・主レンズのみ(比較例4):0.079
 表24に示すように、撮像光学系10に補助レンズSLを組み込むことにより、収差補正を行うことで、良好な光学性能を得ることができることがわかる。一方、主レンズMLのみの場合には、収差補正が不足していることがわかる。
Table 24 below shows the astigmatic difference at the maximum angle of view of the imaging optical systems of Example 4 and Comparative Example 4.
[Table 24]
In air / with auxiliary lens (Example 4): 0.001
Underwater with auxiliary lens (Example 4): -0.002
In air only, main lens (Comparative Example 4): 0.079
As shown in Table 24, it can be seen that good optical performance can be obtained by performing aberration correction by incorporating the auxiliary lens SL in the imaging optical system 10. On the other hand, in the case of only the main lens ML, it can be seen that the aberration correction is insufficient.
 図8A及び8Bは、実施例4の撮像光学系10D等の断面図である。具体的には、図8Aは、空気中用の補助レンズSLを組み込んだ撮像光学系10Dの断面図であり、図8Bは、水中用の補助レンズSLを組み込んだ撮像光学系10Dの断面図である。撮像光学系10Dは、主レンズMLと、空気中用又は水中用の補助レンズSLとから実質的になる。主レンズMLは、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。補助レンズSLは、1枚の負レンズから実質的になる。主レンズMLの第7レンズL7と撮像素子51との間には、適当な厚さのフィルターFが配置されている。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。 8A and 8B are sectional views of the imaging optical system 10D and the like of the fourth embodiment. Specifically, FIG. 8A is a cross-sectional view of the imaging optical system 10D incorporating the in-air auxiliary lens SL, and FIG. 8B is a cross-sectional view of the imaging optical system 10D incorporating the underwater auxiliary lens SL. is there. The imaging optical system 10D substantially includes a main lens ML and an in-air or underwater auxiliary lens SL. The main lens ML includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, an aperture stop (or stop) ST, a positive fourth lens L4, and a positive fifth lens. The lens substantially includes a lens L5, a negative sixth lens L6, and a positive seventh lens L7. The auxiliary lens SL substantially consists of one negative lens. A filter F having an appropriate thickness is disposed between the seventh lens L7 of the main lens ML and the image sensor 51. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, and the like.
 図9A及び9Bは、実施例4の空気中用の補助レンズSLを組み込んだ撮像光学系10Dの収差図(球面収差及び非点収差)を示している。また、図9C及び9Dは、実施例4の水中用の補助レンズSLを組み込んだ撮像光学系10Dの収差図(球面収差及び非点収差)を示している。また、図9E及び9Fは、比較例4の主レンズMLのみで構成される撮像光学系の収差図(球面収差及び非点収差)を示している。 FIGS. 9A and 9B show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10D in which the in-air auxiliary lens SL of Example 4 is incorporated. 9C and 9D show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10D in which the underwater auxiliary lens SL of Example 4 is incorporated. 9E and 9F show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system including only the main lens ML of Comparative Example 4.
(実施例5)
 実施例5の撮像光学系の全体諸元を以下の表25に示す。
〔表25〕
           空気中    水中
f(mm)       1.34      1.06
Fno         2.43      2.43
w(°)     100.0      97.5
ymax(mm)    2.33      2.34
TL(mm)     22.58     24.17
BF(mm)      1.60      1.60
(Example 5)
Table 25 below shows the overall specifications of the image pickup optical system of Example 5.
[Table 25]
In the air underwater
f (mm) 1.34 1.06
Fno 2.43 2.43
w (°) 100.0 97.5
ymax (mm) 2.33 2.34
TL (mm) 22.58 24.17
BF (mm) 1.60 1.60
 実施例5の撮像光学系のレンズ面のデータを以下の表26に示す。
〔表26〕
Surf.N     R(mm)    D(mm)    nd       νd
 1         r1       d1       n1       ν1
 2         r2       d2
 3        11.480    1.00    1.91082   35.3
 4         3.285    2.08
 5*     -153.424    0.50    1.53048   55.7
 6*        2.176    1.53
 7        20.890    2.36    2.00270   19.3
 8        -9.481    1.20
 9(ST)      INF     0.30
10        24.731    0.71    1.72916   54.7
11        -4.573    0.10
12         4.757    1.32    1.72916   54.7
13        -3.520    0.01    1.51400   42.8
14        -3.520    0.50    1.92286   20.9
15         4.500    0.83
16*        3.300    1.75    1.53048   55.7
17*       -6.310    0.49
18          INF     0.61    1.51680   64.2
19          INF     0.70
image
Data on the lens surface of the imaging optical system of Example 5 is shown in Table 26 below.
[Table 26]
Surf.N R (mm) D (mm) nd νd
1 r1 d1 n1 ν1
2 r2 d2
3 11.480 1.00 1.91082 35.3
4 3.285 2.08
5 * -153.424 0.50 1.53048 55.7
6 * 2.176 1.53
7 20.890 2.36 2.00270 19.3
8 -9.481 1.20
9 (ST) INF 0.30
10 24.731 0.71 1.72916 54.7
11 -4.573 0.10
12 4.757 1.32 1.72916 54.7
13 -3.520 0.01 1.51400 42.8
14 -3.520 0.50 1.92286 20.9
15 4.500 0.83
16 * 3.300 1.75 1.53048 55.7
17 * -6.310 0.49
18 INF 0.61 1.51680 64.2
19 INF 0.70
image
 実施例5の撮像光学系のレンズ面の非球面係数を以下の表27に示す。
〔表27〕
第5面
K=0.000, A4=2.2915E-02, A6=-7.2802E-03, A8=1.0618E-03, 
A10=-8.0622E-05, A12=2.5509E-06
第6面
K=0.000, A4=2.6707E-02, A6=-7.3507E-04, A8=-4.7759E-03, 
A10=1.5042E-03, A12=-1.6586E-04
第16面
K=-5.491, A4=1.3592E-02, A6=-1.5996E-03, A8=1.7021E-04, 
A10=2.3834E-06, A12=-1.7387E-06
第17面
K=2.506, A4=1.1759E-02, A6=1.2336E-03, A8=-5.8142E-04, 
A10=1.0844E-04, A12=-8.4810E-06
Table 27 below shows the aspheric coefficients of the lens surfaces of the imaging optical system of Example 5.
[Table 27]
5th page
K = 0.000, A4 = 2.2915E-02, A6 = -7.2802E-03, A8 = 1.0618E-03,
A10 = -8.0622E-05, A12 = 2.5509E-06
6th page
K = 0.000, A4 = 2.6707E-02, A6 = -7.3507E-04, A8 = -4.7759E-03,
A10 = 1.5042E-03, A12 = -1.6586E-04
16th page
K = -5.491, A4 = 1.3592E-02, A6 = -1.5996E-03, A8 = 1.7021E-04,
A10 = 2.3834E-06, A12 = -1.7387E-06
17th page
K = 2.506, A4 = 1.1759E-02, A6 = 1.2336E-03, A8 = -5.8142E-04,
A10 = 1.0844E-04, A12 = -8.4810E-06
 表26に示す実施例5の補助レンズにおける空気中又は水中の曲率半径、軸上面間隔、d線に対する屈折率、及びアッベ数を以下の表28に示す。
〔表28〕
     空気中     水中
r1   14.380     25.700
r2    9.272     13.755
d1    3.00       2.00
d2    3.58       6.17
n1    1.90366    1.83400
ν1  31.3       37.4
Table 28 below shows the radius of curvature in air or water in the auxiliary lens of Example 5 shown in Table 26, the axial top surface spacing, the refractive index with respect to the d-line, and the Abbe number.
[Table 28]
In the air underwater
r1 14.380 25.700
r2 9.272 13.755
d1 3.00 2.00
d2 3.58 6.17
n1 1.90366 1.83400
ν1 31.3 37.4
 実施例5の撮像光学系において、主レンズ単体の場合の画面中心結像位置を以下の表29に示す。
〔表29〕
主レンズ単体の画面中心結像位置(mm):-0.05
In the imaging optical system of Example 5, the center-of-screen imaging position in the case of the main lens alone is shown in Table 29 below.
[Table 29]
Image center position of the main lens alone (mm): -0.05
 実施例5及び比較例5の撮像光学系の最大画角における非点隔差を以下の表30に示す。
〔表30〕
空気中・補助レンズ付き(実施例5):0.016
水中・補助レンズ付き(実施例5):-0.018
空気中・主レンズのみ(比較例5):0.130
 表30に示すように、撮像光学系10に補助レンズSLを組み込むことにより、収差補正を行うことで、良好な光学性能を得ることができることがわかる。一方、主レンズMLのみの場合には、収差補正が不足していることがわかる。
Table 30 below shows the astigmatic difference at the maximum field angle of the imaging optical systems of Example 5 and Comparative Example 5.
[Table 30]
In air with auxiliary lens (Example 5): 0.016
Underwater with auxiliary lens (Example 5): -0.018
In air only main lens (Comparative Example 5): 0.130
As shown in Table 30, it can be seen that good optical performance can be obtained by performing aberration correction by incorporating the auxiliary lens SL in the imaging optical system 10. On the other hand, in the case of only the main lens ML, it can be seen that the aberration correction is insufficient.
 図10A及び10Bは、実施例5の撮像光学系10E等の断面図である。具体的には、図10Aは、空気中用の補助レンズSLを組み込んだ撮像光学系10Eの断面図であり、図10Bは、水中用の補助レンズSLを組み込んだ撮像光学系10Eの断面図である。撮像光学系10Eは、主レンズMLと、空気中用又は水中用の補助レンズSLとから実質的になる。主レンズMLは、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。補助レンズSLは、1枚の負レンズから実質的になる。主レンズMLの第7レンズL7と撮像素子51との間には、適当な厚さのフィルターFが配置されている。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。 10A and 10B are cross-sectional views of the imaging optical system 10E and the like of the fifth embodiment. Specifically, FIG. 10A is a cross-sectional view of the imaging optical system 10E incorporating the in-air auxiliary lens SL, and FIG. 10B is a cross-sectional view of the imaging optical system 10E incorporating the underwater auxiliary lens SL. is there. The imaging optical system 10E substantially includes a main lens ML and an in-air or underwater auxiliary lens SL. The main lens ML includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, an aperture stop (or stop) ST, a positive fourth lens L4, and a positive fifth lens. The lens substantially includes a lens L5, a negative sixth lens L6, and a positive seventh lens L7. The auxiliary lens SL substantially consists of one negative lens. A filter F having an appropriate thickness is disposed between the seventh lens L7 of the main lens ML and the image sensor 51. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, and the like.
 図11A及び11Bは、実施例5の空気中用の補助レンズSLを組み込んだ撮像光学系10Eの収差図(球面収差及び非点収差)を示している。また、図11C及び11Dは、実施例5の水中用の補助レンズSLを組み込んだ撮像光学系10Eの収差図(球面収差及び非点収差)を示している。また、図11E及び11Fは、比較例5の主レンズMLのみで構成される撮像光学系の収差図(球面収差及び非点収差)を示している。 11A and 11B show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10E incorporating the in-air auxiliary lens SL of Example 5. FIG. 11C and 11D show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10E in which the underwater auxiliary lens SL of Example 5 is incorporated. 11E and 11F show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system including only the main lens ML of Comparative Example 5.
(実施例6)
 実施例6の撮像光学系の全体諸元を以下の表31に示す。
〔表31〕
           空気中    水中
f(mm)       1.34      1.07
Fno         2.43      2.43
w(°)     100.0      97.5
ymax(mm)    2.34      2.33
TL(mm)     21.84     24.85
BF(mm)      1.45      1.45
(Example 6)
The overall specifications of the imaging optical system of Example 6 are shown in Table 31 below.
[Table 31]
In the air underwater
f (mm) 1.34 1.07
Fno 2.43 2.43
w (°) 100.0 97.5
ymax (mm) 2.34 2.33
TL (mm) 21.84 24.85
BF (mm) 1.45 1.45
 実施例6の撮像光学系のレンズ面のデータを以下の表32に示す。
〔表32〕
Surf.N     R(mm)    D(mm)    nd       νd
 1*        r1       d1       n1       ν1
 2*        r2       d2
 3        11.481    1.01    1.91082   35.3
 4         3.281    2.12
 5*      -59.464    0.51    1.53048   55.7
 6*        2.194    1.33
 7      -266.734    2.09    2.00270   19.3
 8        -7.332    1.49
 9(ST)      INF     0.30     
10        17.929    0.76    1.72916   54.7
11        -4.609    0.22
12         4.845    1.38    1.72916   54.7
13        -3.699    0.01    1.51400   42.8
14        -3.699    0.50    1.92286   20.9
15         4.480    0.77
16*        3.148    1.85    1.53048   55.7
17*       -5.744    0.42
18          INF     0.61    1.51680   64.2
19          INF     0.63
Image
Data of the lens surface of the imaging optical system of Example 6 is shown in Table 32 below.
[Table 32]
Surf.N R (mm) D (mm) nd νd
1 * r1 d1 n1 ν1
2 * r2 d2
3 11.481 1.01 1.91082 35.3
4 3.281 2.12
5 * -59.464 0.51 1.53048 55.7
6 * 2.194 1.33
7 -266.734 2.09 2.00270 19.3
8 -7.332 1.49
9 (ST) INF 0.30
10 17.929 0.76 1.72916 54.7
11 -4.609 0.22
12 4.845 1.38 1.72916 54.7
13 -3.699 0.01 1.51400 42.8
14 -3.699 0.50 1.92286 20.9
15 4.480 0.77
16 * 3.148 1.85 1.53048 55.7
17 * -5.744 0.42
18 INF 0.61 1.51680 64.2
19 INF 0.63
Image
 実施例6の撮像光学系のレンズ面の非球面係数を以下の表33に示す。
〔表33〕
第1面(空気中)
K=0, A4=1.81E-05, A6=-1.90E-07, A8=6.26E-10, 
A10=-8.37E-13, A12=0
第2面(空気中)
K=0, A4=1.16E-05, A6=3.54E-07, A8=-2.29E-08, 
A10=3.68E-11, A12=0
第1面(水中)
K=0, A4=-8.1055E-08, A6=-1.2121E-08, A8=-2.0167E-12, 
A10=0, A12=0
第2面(水中)
K=0, A4=-2.9932E-06, A6=-2.9891E-07, A8=6.3524E-09, 
A10=-1.9722E-11, A12=0
第5面
K=0.000, A4=2.4488E-02, A6=-7.6446E-03, A8=1.0547E-03, 
A10=-7.5158E-05, A12=2.2437E-06
第6面
K=0.000, A4=3.0291E-02, A6=-6.6315E-04, A8=-5.1987E-03, 
A10=1.5622E-03, A12=-1.6485E-04
第16面
K=-5.327, A4=1.5322E-02, A6=-1.7361E-03, A8=2.1605E-04, 
A10=-7.5695E-06, A12=-3.2531E-07
第17面
K=0.651, A4=1.4307E-02, A6=1.6541E-03, A8=-6.7327E-04, 
A10=1.1215E-04, A12=-7.6886E-06
Table 33 below shows the aspheric coefficients of the lens surfaces of the imaging optical system of Example 6.
[Table 33]
First side (in air)
K = 0, A4 = 1.81E-05, A6 = -1.90E-07, A8 = 6.26E-10,
A10 = -8.37E-13, A12 = 0
Second side (in air)
K = 0, A4 = 1.16E-05, A6 = 3.54E-07, A8 = -2.29E-08,
A10 = 3.68E-11, A12 = 0
First side (underwater)
K = 0, A4 = -8.1055E-08, A6 = -1.2121E-08, A8 = -2.0167E-12,
A10 = 0, A12 = 0
Second side (underwater)
K = 0, A4 = -2.9932E-06, A6 = -2.9891E-07, A8 = 6.3524E-09,
A10 = -1.9722E-11, A12 = 0
5th page
K = 0.000, A4 = 2.4488E-02, A6 = -7.6446E-03, A8 = 1.0547E-03,
A10 = -7.5158E-05, A12 = 2.2437E-06
6th page
K = 0.000, A4 = 3.0291E-02, A6 = -6.6315E-04, A8 = -5.1987E-03,
A10 = 1.5622E-03, A12 = -1.6485E-04
16th page
K = -5.327, A4 = 1.5322E-02, A6 = -1.7361E-03, A8 = 2.1605E-04,
A10 = -7.5695E-06, A12 = -3.2531E-07
17th page
K = 0.651, A4 = 1.4307E-02, A6 = 1.6541E-03, A8 = -6.7327E-04,
A10 = 1.1215E-04, A12 = -7.6886E-06
 表32に示す実施例6の補助レンズにおける空気中又は水中の曲率半径、軸上面間隔、d線に対する屈折率、及びアッベ数を以下の表34に示す。
〔表34〕
     空気中     水中
r1   20.048     25.799
r2   10.791     15.992
d1    4.34       1.40
d2    1.50       7.45
n1    1.63000    1.60000
ν1  23.9       31.1
Table 34 below shows the curvature radius in air or water in the auxiliary lens of Example 6 shown in Table 32, the distance between the top surfaces of the axes, the refractive index with respect to the d-line, and the Abbe number.
[Table 34]
In the air underwater
r1 20.048 25.799
r2 10.791 15.992
d1 4.34 1.40
d2 1.50 7.45
n1 1.63000 1.60000
ν1 23.9 31.1
 実施例6の撮像光学系において、主レンズ単体の場合の画面中心結像位置を以下の表35に示す。
〔表35〕
主レンズ単体の画面中心結像位置(mm):-0.04
In the imaging optical system of Example 6, the screen center imaging position in the case of a single main lens is shown in Table 35 below.
[Table 35]
Image center position of the main lens alone (mm): -0.04
 実施例6及び比較例6の撮像光学系の最大画角における非点隔差を以下の表36に示す。
〔表36〕
空気中・補助レンズ付き(実施例6):0.012
水中・補助レンズ付き(実施例6):0.027
空気中・主レンズのみ(比較例6):0.122
 表36に示すように、撮像光学系10に補助レンズSLを組み込むことにより、収差補正を行うことで、良好な光学性能を得ることができることがわかる。一方、主レンズMLのみの場合には、収差補正が不足していることがわかる。
Table 36 below shows the astigmatic difference at the maximum field angle of the imaging optical systems of Example 6 and Comparative Example 6.
[Table 36]
In air with auxiliary lens (Example 6): 0.012
Underwater with auxiliary lens (Example 6): 0.027
In air only main lens (Comparative Example 6): 0.122
As shown in Table 36, it can be seen that good optical performance can be obtained by performing aberration correction by incorporating the auxiliary lens SL in the imaging optical system 10. On the other hand, in the case of only the main lens ML, it can be seen that the aberration correction is insufficient.
 図12A及び12Bは、実施例6の撮像光学系10F等の断面図である。具体的には、図12Aは、空気中用の補助レンズSLを組み込んだ撮像光学系10Fの断面図であり、図12Bは、水中用の補助レンズSLを組み込んだ撮像光学系10Fの断面図である。撮像光学系10Fは、主レンズMLと、空気中用又は水中用の補助レンズSLとから実質的になる。主レンズMLは、物体側から順に、負の第1レンズL1、負の第2レンズL2、正の第3レンズL3、開口絞り(又は絞り)ST、正の第4レンズL4、正の第5レンズL5、負の第6レンズL6、及び正の第7レンズL7から実質的になる。補助レンズSLは、1枚の負レンズから実質的になる。主レンズMLの第7レンズL7と撮像素子51との間には、適当な厚さのフィルターFが配置されている。フィルターFは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。 12A and 12B are cross-sectional views of the imaging optical system 10F and the like of the sixth embodiment. Specifically, FIG. 12A is a cross-sectional view of the imaging optical system 10F incorporating the in-air auxiliary lens SL, and FIG. 12B is a cross-sectional view of the imaging optical system 10F incorporating the underwater auxiliary lens SL. is there. The imaging optical system 10F substantially includes a main lens ML and an in-air or underwater auxiliary lens SL. The main lens ML includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, an aperture stop (or stop) ST, a positive fourth lens L4, and a positive fifth lens. The lens substantially includes a lens L5, a negative sixth lens L6, and a positive seventh lens L7. The auxiliary lens SL substantially consists of one negative lens. A filter F having an appropriate thickness is disposed between the seventh lens L7 of the main lens ML and the image sensor 51. The filter F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, and the like.
 図13A及び13Bは、実施例6の空気中用の補助レンズSLを組み込んだ撮像光学系10Fの収差図(球面収差及び非点収差)を示している。また、図13C及び13Dは、実施例6の水中用の補助レンズSLを組み込んだ撮像光学系10Fの収差図(球面収差及び非点収差)を示している。また、図13E及び13Fは、比較例6の主レンズMLのみで構成される撮像光学系の収差図(球面収差及び非点収差)を示している。 FIGS. 13A and 13B are aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10F incorporating the in-air auxiliary lens SL of Example 6. FIG. 13C and 13D show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system 10F in which the underwater auxiliary lens SL of Example 6 is incorporated. 13E and 13F show aberration diagrams (spherical aberration and astigmatism) of the imaging optical system including only the main lens ML of Comparative Example 6.
 以下の表37は、参考のため、各条件式(1)~(6)に対応する各実施例1~6の値をまとめたものである。
〔表37〕
Figure JPOXMLDOC01-appb-I000002
Table 37 below summarizes the values of Examples 1 to 6 corresponding to the conditional expressions (1) to (6) for reference.
[Table 37]
Figure JPOXMLDOC01-appb-I000002
 以上において、実際のレンズ測定の場面においては、本願でいうレンズ面の曲率半径とは、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径のことを指す。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径も含める。 As described above, in the actual lens measurement scene, the radius of curvature of the lens surface referred to in the present application is a shape measurement value in the vicinity of the center of the lens (specifically, a central region within 10% of the lens outer diameter). This is the approximate radius of curvature when fitting with the least squares method. For example, when a secondary aspheric coefficient is used, the reference radius of curvature of the aspheric definition formula also includes a curvature radius that takes into account the secondary aspheric coefficient.
 以上、実施形態に即して撮像光学系10等について説明したが、本発明に係る撮像光学系10は、上記実施形態又は実施例に限るものではなく様々な変形が可能である。 As described above, the imaging optical system 10 and the like have been described according to the embodiment. However, the imaging optical system 10 according to the present invention is not limited to the above-described embodiment or example, and various modifications can be made.
 また、上記実施形態において、主レンズML及び補助レンズSLを鏡筒41に固定される構成としたが、合焦等のために適宜移動させることもできる。 In the above-described embodiment, the main lens ML and the auxiliary lens SL are fixed to the lens barrel 41. However, the main lens ML and the auxiliary lens SL can be appropriately moved for focusing or the like.
 また、上記実施形態において、1つの主レンズMLと1つの補助レンズSLとで構成される撮像光学系10について説明したが、1つの主レンズMLと1つの補助レンズSLとの組み合わせを1つのユニットとして、2つのユニットを撮像素子51側で向き合うように組み合わせた撮像光学系としてもよい。この場合、360°の全周を撮影することができる。 In the above-described embodiment, the imaging optical system 10 including one main lens ML and one auxiliary lens SL has been described. However, a combination of one main lens ML and one auxiliary lens SL is combined into one unit. As an example, an imaging optical system in which two units are combined to face each other on the imaging element 51 side may be used. In this case, the entire 360 ° circumference can be photographed.

Claims (16)

  1.  主レンズと、水性媒質中用又は空気中用の補助レンズとから実質的になり、
     前記主レンズ単体の状態では結像位置が撮像面よりも物体側にあり、
     前記主レンズは複数枚のレンズからなり、
     前記補助レンズは1枚の負レンズからなり、
     前記主レンズと前記補助レンズとを組み合わせた状態で所望の結像性能が得られ、
     以下の条件式を満たす、撮像光学系。
     -42≦fA/fM≦-17  …  (1)
    ここで、
    fA:前記補助レンズの焦点距離
    fM:前記主レンズの焦点距離
    Consisting essentially of a main lens and an auxiliary lens for aqueous media or air,
    In the state of the main lens alone, the imaging position is on the object side of the imaging surface,
    The main lens is composed of a plurality of lenses,
    The auxiliary lens consists of one negative lens,
    Desired imaging performance is obtained in a state where the main lens and the auxiliary lens are combined,
    An imaging optical system that satisfies the following conditional expression.
    −42 ≦ fA / fM ≦ −17 (1)
    here,
    fA: focal length of the auxiliary lens fM: focal length of the main lens
  2.  前記主レンズは、物体側から順に、負の第1レンズ、負の第2レンズ、正の第3レンズ、絞り、正の第4レンズ、正の第5レンズ、負の第6レンズ、及び正の第7レンズから実質的になる、請求項1に記載の撮像光学系。 The main lens includes a negative first lens, a negative second lens, a positive third lens, a diaphragm, a positive fourth lens, a positive fifth lens, a negative sixth lens, and a positive lens in order from the object side. The imaging optical system according to claim 1, substantially consisting of:
  3.  前記水性媒質用及び空気中用のいずれか一方の前記補助レンズは、前記主レンズに対して着脱可能である、請求項1及び2のいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 and 2, wherein the auxiliary lens for either the aqueous medium or in the air is detachable from the main lens.
  4.  前記補助レンズは、前記主レンズより前記物体側に装着される、請求項1から3までのいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 3, wherein the auxiliary lens is attached to the object side from the main lens.
  5.  以下の条件式を満たす、請求項1から4までのいずれか一項に記載の撮像光学系。
     -42≦fAA/fM≦-28  …  (2)
    ここで、
    fAA:空気中用の前記補助レンズの焦点距離
    fM:前記主レンズの焦点距離
    The imaging optical system according to any one of claims 1 to 4, which satisfies the following conditional expression.
    −42 ≦ fAA / fM ≦ −28 (2)
    here,
    fAA: focal length of the auxiliary lens for air fM: focal length of the main lens
  6.  以下の条件式を満たす、請求項1から5までのいずれか一項に記載の撮像光学系。
     -31≦fAW/fM≦-17  …  (3)
    ここで、
    fAW:水性媒質中用の前記補助レンズの焦点距離
    fM:前記主レンズの焦点距離
    The imaging optical system according to any one of claims 1 to 5, which satisfies the following conditional expression.
    −31 ≦ fAW / fM ≦ −17 (3)
    here,
    fAW: focal length of the auxiliary lens in an aqueous medium fM: focal length of the main lens
  7.  前記補助レンズの物体側面は、前記物体側に凸面を向けている、請求項1から6までのいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 6, wherein the object side surface of the auxiliary lens has a convex surface facing the object side.
  8.  以下の条件式を満たす、請求項1から7までのいずれか一項に記載の撮像光学系。
     -6≦(R2AA+R1AA)/(R2AA-R1AA)≦-3  …  (4)
    ここで、
    R1AA:空気中用の前記補助レンズの前記物体側面の曲率半径
    R2AA:空気中用の前記補助レンズの像側面の曲率半径
    The imaging optical system according to any one of claims 1 to 7, which satisfies the following conditional expression.
    −6 ≦ (R2AA + R1AA) / (R2AA−R1AA) ≦ −3 (4)
    here,
    R1AA: radius of curvature of the object side surface of the auxiliary lens for air R2AA: radius of curvature of the image side surface of the auxiliary lens for air
  9.  以下の条件式を満たす、請求項1から8までのいずれか一項に記載の撮像光学系。
     -9≦(R2AW+R1AW)/(R2AW-R1AW)≦-3  …  (5)
    ここで、
    R1AW:水性媒質中用の前記補助レンズの前記物体側面の曲率半径
    R2AW:水性媒質中用の前記補助レンズの前記像側面の曲率半径
    The imaging optical system according to any one of claims 1 to 8, which satisfies the following conditional expression.
    −9 ≦ (R2AW + R1AW) / (R2AW−R1AW) ≦ −3 (5)
    here,
    R1AW: radius of curvature of the object side surface of the auxiliary lens in the aqueous medium R2AW: radius of curvature of the image side surface of the auxiliary lens in the aqueous medium
  10.  以下の条件式を満たす、請求項1から9までのいずれか一項に記載の撮像光学系。
     0.5≦fAW/fAA≦0.9  …  (6)
    ここで、
    fAW:水性媒質中用の前記補助レンズの焦点距離
    fAA:空気中用の前記補助レンズの焦点距離
    The imaging optical system according to any one of claims 1 to 9, which satisfies the following conditional expression.
    0.5 ≦ fAW / fAA ≦ 0.9 (6)
    here,
    fAW: focal length of the auxiliary lens for aqueous medium fAA: focal length of the auxiliary lens for air
  11.  前記主レンズは、物体側から順に、第1レンズ、第2レンズ、第3レンズ、絞り、第4レンズ、第5レンズ、第6レンズ、及び第7レンズから実質的になり、
     前記第1レンズの物体側面は、物体側に凸面を向けたメニスカス形状である、請求項1から10までのいずれか一項に記載の撮像光学系。
    The main lens is substantially composed of a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a sixth lens, and a seventh lens in order from the object side.
    The imaging optical system according to any one of claims 1 to 10, wherein the object side surface of the first lens has a meniscus shape with a convex surface facing the object side.
  12.  前記主レンズは、物体側から順に、第1レンズ、第2レンズ、第3レンズ、絞り、第4レンズ、第5レンズ、第6レンズ、及び第7レンズから実質的になり、
     前記第2レンズの像側面は、前記第2レンズの物体側面よりも像側に強い凹面を向けている、請求項1から11までのいずれか一項に記載の撮像光学系。
    The main lens is substantially composed of a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a sixth lens, and a seventh lens in order from the object side.
    The imaging optical system according to any one of claims 1 to 11, wherein the image side surface of the second lens has a concave surface that is stronger on the image side than the object side surface of the second lens.
  13.  前記主レンズは、物体側から順に、第1レンズ、第2レンズ、第3レンズ、絞り、第4レンズ、第5レンズ、第6レンズ、及び第7レンズから実質的になり、
     第5及び第6レンズは接合レンズである、請求項1から12までのいずれか一項に記載の撮像光学系。
    The main lens is substantially composed of a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a sixth lens, and a seventh lens in order from the object side.
    The imaging optical system according to any one of claims 1 to 12, wherein the fifth and sixth lenses are cemented lenses.
  14.  空気中及び水性媒質中の両方に用いられる、請求項1から13までのいずれか一項に記載の撮像光学系。 The imaging optical system according to any one of claims 1 to 13, which is used both in air and in an aqueous medium.
  15.  請求項1から14までのいずれか一項に記載の撮像光学系と、
     前記撮像光学系を保持する鏡筒と、
    を備える、レンズユニット。
    The imaging optical system according to any one of claims 1 to 14,
    A lens barrel holding the imaging optical system;
    A lens unit.
  16.  請求項1から14までのいずれか一項に記載の撮像光学系と、
     前記撮像光学系から得られる像を検出する撮像素子と、
    を備える、撮像装置。
    The imaging optical system according to any one of claims 1 to 14,
    An image sensor for detecting an image obtained from the imaging optical system;
    An imaging apparatus comprising:
PCT/JP2017/042406 2016-11-28 2017-11-27 Imaging optical system, lens unit, and imaging device WO2018097287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780072554.4A CN110023809B (en) 2016-11-28 2017-11-27 Imaging optical system, lens unit, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230322 2016-11-28
JP2016-230322 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018097287A1 true WO2018097287A1 (en) 2018-05-31

Family

ID=62195938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042406 WO2018097287A1 (en) 2016-11-28 2017-11-27 Imaging optical system, lens unit, and imaging device

Country Status (2)

Country Link
CN (1) CN110023809B (en)
WO (1) WO2018097287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127527A1 (en) * 2021-12-28 2023-07-06 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
WO2023127560A1 (en) * 2021-12-28 2023-07-06 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724190B (en) 2017-06-23 2021-04-11 佳能企業股份有限公司 Optical lens and electronic device using the same
CN109143534B (en) * 2017-06-28 2022-02-08 佳能企业股份有限公司 Optical lens and electronic device using same
WO2021128139A1 (en) * 2019-12-26 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN114137781A (en) * 2021-12-06 2022-03-04 湖北久之洋红外系统股份有限公司 Cross-medium imaging multifunctional optical system and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485721A (en) * 1977-12-02 1979-07-07 Bolex Int Sa Lens system
JP2002116491A (en) * 2000-10-05 2002-04-19 Inon:Kk Amphibian wide conversion lens attached/dedicated to waterproof camera housing
WO2010110350A1 (en) * 2009-03-24 2010-09-30 富士フイルム株式会社 Capsule endoscope
JP2014102291A (en) * 2012-11-16 2014-06-05 Ricoh Co Ltd Wide angle lens, imaging lens unit, imaging apparatus, and information device
US9477064B1 (en) * 2015-07-01 2016-10-25 Largan Precision Co., Ltd. Image capturing apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3429540B2 (en) * 1993-12-09 2003-07-22 オリンパス光学工業株式会社 Optical system of amphibious camera
FI116245B (en) * 2003-06-17 2005-10-14 Nokia Corp Regulated optical system and method for use and manufacture thereof
JP4575114B2 (en) * 2003-12-24 2010-11-04 オリンパス株式会社 Zoom lens barrel
JP4670299B2 (en) * 2004-09-30 2011-04-13 カシオ計算機株式会社 Lens unit, camera, optical equipment, and program
JP4630645B2 (en) * 2004-11-19 2011-02-09 キヤノン株式会社 Optical system
JP4840719B2 (en) * 2005-09-29 2011-12-21 コニカミノルタオプト株式会社 Zoom lens and imaging device
JP4767838B2 (en) * 2006-12-28 2011-09-07 三星電子株式会社 Imaging apparatus and imaging method
TWM367338U (en) * 2008-12-10 2009-10-21 Fujinon Corp Photographing lens and camera apparatus using the same
KR101680300B1 (en) * 2009-08-31 2016-11-28 삼성전자주식회사 Liquid lens and method for manufacturing the same
JP2011133815A (en) * 2009-12-25 2011-07-07 Sony Corp Lens barrel and imaging apparatus
JP5427077B2 (en) * 2010-03-18 2014-02-26 オリンパス株式会社 Imaging optical system and imaging apparatus using the same
JP5613962B2 (en) * 2011-01-31 2014-10-29 株式会社オプトロジック Imaging lens
CN102253471B (en) * 2011-08-04 2013-06-19 公安部天津消防研究所 Auxiliary lens device for observing inner foam structure on endoscope
JP2015049273A (en) * 2013-08-30 2015-03-16 富士フイルム株式会社 Imaging lens and imaging device including the same
CN110456493A (en) * 2014-01-20 2019-11-15 株式会社尼康 Optical system, photographic device and variable-power optical system
KR101520961B1 (en) * 2014-10-16 2015-05-15 (주)그린텍 Under water camera
JP6618268B2 (en) * 2015-04-07 2019-12-11 キヤノン株式会社 Imaging device
CN204989607U (en) * 2015-07-01 2016-01-20 大立光电股份有限公司 Image finding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485721A (en) * 1977-12-02 1979-07-07 Bolex Int Sa Lens system
JP2002116491A (en) * 2000-10-05 2002-04-19 Inon:Kk Amphibian wide conversion lens attached/dedicated to waterproof camera housing
WO2010110350A1 (en) * 2009-03-24 2010-09-30 富士フイルム株式会社 Capsule endoscope
JP2014102291A (en) * 2012-11-16 2014-06-05 Ricoh Co Ltd Wide angle lens, imaging lens unit, imaging apparatus, and information device
US9477064B1 (en) * 2015-07-01 2016-10-25 Largan Precision Co., Ltd. Image capturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127527A1 (en) * 2021-12-28 2023-07-06 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
WO2023127560A1 (en) * 2021-12-28 2023-07-06 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system

Also Published As

Publication number Publication date
CN110023809B (en) 2021-10-22
CN110023809A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP5651861B2 (en) Imaging lens
WO2018097287A1 (en) Imaging optical system, lens unit, and imaging device
JP5282272B2 (en) Wide-angle optical system and imaging device
JP6836211B2 (en) Imaging optical system, lens unit, and imaging device
JP6845484B2 (en) Imaging optical system, lens unit and imaging device
JP5047605B2 (en) Imaging optical system and imaging apparatus using the same
CN108535834B (en) Optical lens and imaging apparatus
JP2008076716A (en) Wide angle imaging lens, imaging apparatus, and camera module
JP2009092798A (en) Imaging lens and imaging device
CN101852912B (en) Zoom lens system and image pickup apparatus including the same
JP2017068164A (en) Wide angle optical system and image capturing device having the same
CN111045191B (en) Optical system, lens unit, and imaging device
JP6711361B2 (en) Imaging lens
CN110297305B (en) Optical system, lens unit, and imaging device
CN103454755A (en) Zoom Lens And Image Pickup Apparatus Equipped With The Same
JP5607264B2 (en) Imaging lens and imaging apparatus
CN111033348B (en) Single-focus imaging optical system, lens unit, and imaging device
JP2019168491A (en) Wide-angle lens, lens unit, and image capturing device
JP2018097150A (en) Imaging lens, lens unit, and imaging apparatus
JP2011076021A (en) Wide-angle lens, optical apparatus, and method for manufacturing the wide-angle lens
JP2018055059A (en) Imaging device
CN113534406B (en) Reduction optical system and image pickup apparatus
JP2019124744A (en) Image capturing optical system and image capturing device
CN110709748B (en) Zoom lens and imaging device
JP5680794B2 (en) Magnification optical system and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17873203

Country of ref document: EP

Kind code of ref document: A1