WO2023127527A1 - Optical system, optical apparatus, and method for manufacturing optical system - Google Patents

Optical system, optical apparatus, and method for manufacturing optical system Download PDF

Info

Publication number
WO2023127527A1
WO2023127527A1 PCT/JP2022/046226 JP2022046226W WO2023127527A1 WO 2023127527 A1 WO2023127527 A1 WO 2023127527A1 JP 2022046226 W JP2022046226 W JP 2022046226W WO 2023127527 A1 WO2023127527 A1 WO 2023127527A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
object side
front group
focal length
Prior art date
Application number
PCT/JP2022/046226
Other languages
French (fr)
Japanese (ja)
Inventor
孝道 倉茂
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2023127527A1 publication Critical patent/WO2023127527A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present disclosure relates to an optical system, an optical device, and a method of manufacturing an optical system.
  • the optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • f14 Focal length of the fourth lens from the object side in the front group
  • f112 Combined focal length of the lens closest to the object side and the second lens from the object side in the front group
  • T14 Front Thickness on the optical axis of the fourth lens from the object side in the group
  • f focal length of the optical system 2 ⁇ : total angle of view of the optical system
  • the optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • f14 Focal length of the fourth lens from the object side in the front group
  • f112 Combined focal length of the lens closest to the object side and the second lens from the object side in the front group
  • ⁇ T1 Front Thickness on the optical axis of the group
  • T14 Thickness on the optical axis of the fourth lens from the object side in the front group 2 ⁇ : Total angle of view of the optical system
  • the optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • f14 Focal length of the fourth lens from the object side in the front group
  • f112 Combined focal length of the lens closest to the object side and the second lens from the object side in the front group
  • f Optical System focal length DS : Air distance on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group 2 ⁇ : Total angle of view of the optical system
  • the optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions. 1.80 ⁇ f14/T14 ⁇ 5.00 0.60 ⁇ (-f1)/f2 ⁇ 1.85 160.00° ⁇ 2 ⁇ f14: Focal length of the fourth lens in the front group from the object side T14: Thickness on the optical axis of the fourth lens in the front group from the object side f1: Focal length of the front group f2: Rear group focal length 2 ⁇ : total angle of view of the optical system
  • the optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions. 2.00 ⁇ T1/T14 ⁇ 7.90 3.50 ⁇ ⁇ T1/f ⁇ 6.60 160.00° ⁇ 2 ⁇ however, ⁇ T1: Optical axis thickness of the front group T14: Optical axis thickness of the fourth lens from the object side in the front group f: Focal length of the optical system 2 ⁇ : Total angle of view of the optical system
  • the manufacturing method of the optical system of the present disclosure comprises, in order from the object side, a front group, an aperture stop, and a rear group, and the front group includes, in order from the object side, at least three negative lenses and at least one positive lens.
  • f14 Focal length of the fourth lens from the object side in the front group
  • f112 Combined focal length of the lens closest to the object side and the second lens from the object side in the front group
  • T14 Front Thickness on the optical axis of the fourth lens from the object side in the group
  • f focal length of the optical system 2 ⁇ : total angle of view of the optical system
  • FIG. 1 is a cross-sectional view of an optical system of a first embodiment
  • FIG. FIG. 2 is a diagram of various aberrations of the optical system of the first example
  • It is a cross-sectional view of the optical system of the second embodiment.
  • FIG. 10 is a diagram of various aberrations of the optical system of the second embodiment; It is a cross-sectional view of the optical system of the third embodiment.
  • FIG. 10 is a diagram of various aberrations of the optical system of the third embodiment; It is a cross-sectional view of the optical system of the fourth embodiment.
  • FIG. 11 is a diagram of various aberrations of the optical system of the fourth embodiment;
  • FIG. 11 is a cross-sectional view of the optical system of the fifth embodiment; FIG.
  • FIG. 10 is a diagram of various aberrations of the optical system of the fifth embodiment
  • FIG. 12 is a cross-sectional view of the optical system of the sixth embodiment
  • FIG. 11 is a diagram of various aberrations of the optical system of the sixth embodiment
  • FIG. 12 is a cross-sectional view of the optical system of the seventh embodiment
  • FIG. 11 is a diagram of various aberrations of the optical system of the seventh embodiment
  • FIG. 11 is a cross-sectional view of an optical system of an eighth embodiment
  • FIG. 11 is a diagram of various aberrations of the optical system of the eighth embodiment
  • 1 is a schematic diagram of a camera provided with the optical system of this embodiment
  • FIG. 4 is a flow chart showing an outline of a method for manufacturing an optical system according to the present embodiment
  • optical system The optical system, the optical device, and the method of manufacturing the optical system according to the embodiments of the present application will be described below.
  • the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group.
  • the front group comprises, in order from the object side, at least three negative lenses and at least one positive lens.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • f14 Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2 ⁇ : total angle of view of the optical system
  • the optical system of this embodiment has a front group having at least three negative lenses and at least one positive lens in order from the object side, and a rear group having at least four lenses. It is possible to realize an optical system with excellent correction of aberration, distortion, coma, and spherical aberration.
  • Conditional expression (1) is the combination of the focal length of the fourth lens from the object side in the front group, the lens closest to the object side in the front group, and the second lens from the object side. Defines the ratio to the focal length.
  • the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, chromatic aberration, curvature of field, astigmatism, and distortion.
  • conditional expression (1) in the optical system of this embodiment exceeds the upper limit, the power of the fourth lens from the object side in the front group becomes weak, and spherical aberration, coma, and chromatic aberration are corrected appropriately. Correction becomes difficult.
  • the upper limit of conditional expression (1) is set to 5.15, 5.10, 5.00, 4.95, 4.90, 4.50, 4.50 Preferably set to 25, 4.00, 3.75 and even 3.50.
  • conditional expression (1) in the optical system of this embodiment is below the lower limit, the power of the lens arranged closest to the object side and the lens arranged second from the object side in the front group becomes weak. , it becomes difficult to appropriately correct curvature of field, astigmatism, and distortion.
  • the lower limit of conditional expression (1) is set to 1.50, 1.60, 1.68, 1.76, 1.84, 1.92, and further to 2 It is preferably set to .00.
  • Conditional expression (2) defines the ratio between the thickness on the optical axis of the fourth lens from the object side in the front group and the focal length of the entire optical system.
  • conditional expression (2) If the value of conditional expression (2) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • conditional expression (2) is below the lower limit in the optical system of this embodiment, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.05, 1.40, 1.70, 2.00, and further to 2.40. .
  • Conditional expression (3) defines the total angle of view of the optical system.
  • the optical system of this embodiment can be a super-wide-angle lens by satisfying conditional expression (3).
  • An optical system that satisfies conditional expressions (1), (2), and (3) is an ultra-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
  • the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group.
  • the front group comprises, in order from the object side, at least three negative lenses and at least one positive lens.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • Conditional expression (4) defines the ratio between the optical axis thickness of the front group and the optical axis thickness of the fourth lens from the object side in the front group.
  • conditional expression (4) in the optical system of this embodiment exceeds the upper limit, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effect of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (4) to 7.00, 6.15, 5.25, 4.40, and further to 3.50. .
  • conditional expression (4) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.70, 1.90, 2.10, 2.30, and more preferably 2.50. .
  • An optical system that satisfies conditional expressions (1), (4), and (3) is an ultra-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
  • the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group.
  • the front group comprises, in order from the object side, at least three negative lenses and at least one positive lens.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • f14 Focal length of the fourth lens from the object side in the front group
  • f112 Combined focal length of the lens closest to the object side and the second lens from the object side in the front group
  • f Optical System focal length DS : Air distance on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group 2 ⁇ : Total angle of view of the optical system
  • Conditional expression (5) is the combination of the focal length of the fourth lens from the object side in the front group, the lens closest to the object side in the front group, and the second lens from the object side. Defines the ratio to the focal length.
  • the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, chromatic aberration, field curvature, astigmatism, and distortion.
  • conditional expression (5) in the optical system of this embodiment exceeds the upper limit, the power of the fourth lens from the object side in the front group becomes weak, and spherical aberration, coma aberration, and chromatic aberration are corrected appropriately. Correction becomes difficult.
  • the effects of this embodiment can be made more reliable.
  • the upper limit of conditional expression (5) is set to 4.80, 4.50, 4.25, 4.00, 3.75, and further to 3.50. preferably.
  • conditional expression (5) in the optical system of this embodiment is below the lower limit, the power of the lens arranged closest to the object side and the lens arranged second from the object side in the front group becomes weak. , it becomes difficult to appropriately correct curvature of field, astigmatism, and distortion.
  • the effects of this embodiment can be made more reliable.
  • Conditional expression (6) is the ratio of the focal length of the entire optical system to the air gap on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group. stipulate.
  • conditional expression (6) the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration and coma while suppressing an increase in the total length of the optical system.
  • conditional expression (6) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • conditional expression (6) is below the lower limit in the optical system of this embodiment, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 0.66, 0.67, 0.68, 0.69, and more preferably 0.70. .
  • An optical system that satisfies conditional expressions (5), (6), and (3) is an ultra-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
  • the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group.
  • the front group comprises, in order from the object side, at least three negative lenses and at least one positive lens.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions.
  • Conditional expression (7) defines the ratio between the focal length of the fourth lens in the front group from the object side and the thickness on the optical axis of the fourth lens in the front group from the object side.
  • conditional expression (7) If the value of conditional expression (7) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (7) to 4.60, 4.25, 3.85, 3.50, and more preferably 3.10. .
  • conditional expression (7) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (7) to 1.84, 1.88, 1.92, 1.96, and more preferably 2.00. .
  • Conditional expression (8) defines the ratio between the focal length of the front group and the focal length of the rear group.
  • conditional expression (8) when the value of conditional expression (8) exceeds the upper limit, the power of the front group weakens, the diameter of the lens located closest to the object side in the front group increases, and the power of the rear group increases. becomes stronger and the spherical aberration worsens.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (8) to 1.80, 1.75, 1.70, 1.65, and more preferably 1.60. .
  • conditional expression (8) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • An optical system that satisfies conditional expression (7), conditional expression (8), and conditional expression (3) is a super-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
  • the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group.
  • the front group comprises, in order from the object side, at least three negative lenses and at least one positive lens.
  • the rear group has at least four lenses and satisfies both of the following conditional expressions. (9) 2.00 ⁇ ⁇ T1/T14 ⁇ 7.90 (10) 3.50 ⁇ ⁇ T1/f ⁇ 6.60 (3) 160.00° ⁇ 2 ⁇ however, ⁇ T1: Optical axis thickness of the front group T14: Optical axis thickness of the fourth lens from the object side in the front group f: Focal length of the optical system 2 ⁇ : Total angle of view of the optical system
  • Conditional expression (9) defines the ratio between the optical axis thickness of the front group and the optical axis thickness of the fourth lens from the object side in the front group.
  • conditional expression (9) in the optical system of this embodiment exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • conditional expression (9) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (9) to 2.10, 2.20, 2.30, 2.40, and more preferably 2.50. .
  • Conditional expression (10) defines the ratio between the thickness of the front group on the optical axis and the focal length of the entire optical system.
  • conditional expression (10) the optical system of the present embodiment appropriately corrects various aberrations such as distortion, curvature of field, spherical aberration, and coma while suppressing an increase in the total length of the optical system. be able to.
  • conditional expression (10) exceeds the upper limit in the optical system of this embodiment, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as distortion and curvature of field.
  • conditional expression (10) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and curvature of field.
  • An optical system that satisfies conditional expressions (9), (10), and (3) is a super-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
  • optical system of this embodiment preferably satisfies the following conditional expression. (11) 1.00 ⁇ f14/T14 ⁇ 5.00
  • Conditional expression (11) defines the ratio between the focal length of the fourth lens in the front group from the object side and the thickness on the optical axis of the fourth lens in the front group from the object side.
  • conditional expression (11) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (11) to 4.60, 4.25, 3.85, 3.50, and further to 3.10. .
  • conditional expression (11) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (11) to 1.05, 1.10, 1.20, 1.25, and more preferably 1.30. .
  • the optical system of this embodiment preferably satisfies the following equations. (12) 3.50 ⁇ ⁇ T1/f ⁇ 18.00 however, ⁇ T1: thickness of the front group on the optical axis
  • Conditional expression (12) defines the ratio between the thickness of the front group on the optical axis and the focal length of the entire optical system.
  • conditional expression (12) in the optical system of this embodiment exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as distortion and curvature of field.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (12) to 16.50, 15.20, 13.80, 12.40, and further to 11.00. .
  • conditional expression (12) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and curvature of field.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (13) 0.30 ⁇ (-f1)/f2 ⁇ 3.30 however, f1: focal length of the front group f2: focal length of the rear group
  • Conditional expression (13) defines the ratio between the focal length of the front group and the focal length of the rear group.
  • conditional expression (13) exceeds the upper limit, the power of the front group weakens, the diameter of the lens located closest to the object side in the front group increases, and the power of the rear group increases. becomes stronger and the spherical aberration worsens.
  • the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (13) to 3.00, 2.60, 2.30, 2.00, and further to 1.60. .
  • conditional expression (13) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • the lower limit of conditional expression (13) is set to 0.35, 0.40, 0.50, 0.55, 0.60, 0.65, and further to 0 It is preferably set to .70.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (14) 0.20 ⁇ f/DS ⁇ 9.00 however, DS: Air space on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group
  • Conditional expression (14) defines the ratio between the focal length of the entire optical system and the air gap between the lens located closest to the image side in the front group and the lens located closest to the object side in the rear group.
  • conditional expression (14) When the value of conditional expression (14) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (14) to 8.40, 7.80, 7.20, 6.60, and further to 6.00. .
  • conditional expression (14) is less than the lower limit in the optical system of this embodiment, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (14) to 0.30, 0.40, 0.50, 0.60, and more preferably 0.70. .
  • optical system of this embodiment preferably satisfies the following conditional expression. (15) 3.00 ⁇ f14/f ⁇ 13.00
  • Conditional expression (15) defines the ratio between the focal length of the fourth lens in the front group from the object side and the focal length of the entire optical system.
  • conditional expression (15) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (15) to 12.50, 12.00, 11.50, 11.00, and further to 10.50. .
  • conditional expression (15) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (15) to 3.30, 3.55, 3.85, 4.10, and further to 4.40. .
  • the optical system of this embodiment preferably satisfies the following conditional expression. (16) 3.00 ⁇ ⁇ T2/f ⁇ 7.00 however, ⁇ T2: Thickness of the rear group on the optical axis
  • Conditional expression (16) defines the ratio between the thickness of the rear group on the optical axis and the focal length of the entire optical system.
  • the optical system of the present embodiment appropriately corrects various aberrations such as spherical aberration, coma, curvature of field, and chromatic aberration of magnification while suppressing an increase in the total length of the optical system. be able to.
  • conditional expression (16) if the value of conditional expression (16) exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (16) to 6.80, 6.60, 6.40, 6.20, and further to 6.00. .
  • conditional expression (16) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as curvature of field, coma, and chromatic aberration of magnification.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (17) 0.80 ⁇ D112/f ⁇ 4.50 however, D112: Air gap on the optical axis between the lens closest to the object side and the lens second from the object side in the front group
  • Conditional expression (17) defines the ratio of the focal length of the optical system to the air space on the optical axis between the lens located closest to the object side and the lens located second from the object side in the front group.
  • conditional expression (17) in the optical system of this embodiment exceeds the upper limit, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as curvature of field, astigmatism, and coma. .
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (17) to 4.25, 4.00, 3.70, 3.45, and further to 3.20. .
  • conditional expression (17) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (17) to 1.10, 1.35, 1.65, 1.90, and further to 2.20. .
  • the optical system of this embodiment preferably satisfies the following conditional expression. (18) 10.00 ⁇ TL/f ⁇ 19.00 however, TL: Total length of the optical system in air conversion length
  • Conditional expression (18) defines the ratio between the total length of the optical system in terms of air conversion length and the focal length of the entire optical system.
  • conditional expression (18) in the optical system of this embodiment exceeds the upper limit, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as curvature of field, astigmatism, and coma. .
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (18) to 18.70, 18.45, 18.15, 17.90, and further to 17.60. .
  • conditional expression (18) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (19) 2.00 ⁇ f2l/f ⁇ 28.00 however, f2l: focal length of the lens located closest to the image side in the rear group
  • Conditional expression (19) defines the ratio between the focal length of the lens arranged closest to the image side in the rear group and the focal length of the optical system.
  • conditional expression (19) if the value of conditional expression (19) exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as curvature of field and astigmatism.
  • conditional expression (19) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as curvature of field and astigmatism.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (20) 0.30 ⁇ (-f11)/f2l ⁇ 4.00 however, f11: Focal length of the lens closest to the object side in the front group f2l: Focal length of the lens closest to the image side in the rear group
  • Conditional expression (20) defines the ratio between the focal length of the lens located closest to the object side in the front group and the focal length of the lens located closest to the image side in the rear group.
  • conditional expression (20) exceeds the upper limit, the power of the front group weakens, the diameter of the lens located closest to the object side in the front group increases, and the power of the rear group increases. becomes stronger and the spherical aberration worsens.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (20) to 3.80, 3.65, 3.45, 3.30, and further to 3.10. .
  • conditional expression (20) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (20) to 0.32, 0.34, 0.36, 0.38, and further to 0.40. .
  • the optical system of this embodiment preferably satisfies the following conditional expression. (21) 2.00 ⁇ (-f12)/f ⁇ 6.00 however, f12: focal length of the second lens from the object side in the front group
  • Conditional expression (21) defines the ratio between the focal length of the lens arranged second from the object side in the front group and the focal length of the entire optical system.
  • the optical system of this embodiment can appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
  • conditional expression (21) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
  • conditional expression (21) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (21) to 2.25, 2.50, 2.70, 3.00, and more preferably 3.20. .
  • the optical system of this embodiment preferably satisfies the following conditional expression. (22) 1.40 ⁇ f11/f12 ⁇ 3.50 however, f11: focal length of the lens closest to the object side in the front group f12: focal length of the lens second from the object side in the front group
  • Conditional expression (22) defines the ratio between the focal length of the lens located closest to the object side in the front group and the focal length of the lens located second from the object side in the front group.
  • conditional expression (22) in the optical system of this embodiment exceeds the upper limit, the diameter of the lens located closest to the object side in the front group increases, and various aberrations such as curvature of field and astigmatism are corrected appropriately. correction becomes difficult.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (22) to 3.40, 3.35, 3.25, 3.20, and further to 3.10. .
  • conditional expression (22) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as curvature of field and astigmatism.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (22) to 1.50, 1.60, 1.70, 1.83, and more preferably 1.95. .
  • the optical system of this embodiment preferably satisfies the following conditional expression. (23) 1.85 ⁇ nd1 ⁇ 2.20 however, nd1: Refractive index of the lens closest to the object in the front group with respect to the d-line
  • Conditional expression (23) defines the refractive index of the lens located closest to the object side in the front group with respect to the d-line.
  • the optical system of this embodiment satisfies the conditional expression (23), so that the curvature of field can be appropriately corrected.
  • conditional expression (23) exceeds the upper limit value in the optical system of this embodiment, the power of the lens located closest to the object side in the front group becomes strong, making it difficult to appropriately correct curvature of field.
  • conditional expression (23) in the optical system of this embodiment falls below the lower limit, the power of the lens located closest to the object side in the front group becomes weak, making it difficult to appropriately correct curvature of field. Become.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (24) 1.50 ⁇ nd2 ⁇ 1.95 however, nd2: Refractive index with respect to the d-line of the second lens from the object side in the front group
  • Conditional expression (24) defines the refractive index of the second lens from the object side in the front group with respect to the d-line.
  • the optical system of this embodiment satisfies the conditional expression (24), so that the curvature of field can be appropriately corrected.
  • conditional expression (24) exceeds the upper limit, the power of the second lens from the object side in the front group becomes strong, making it difficult to appropriately correct curvature of field. Become.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (24) to 1.90, 1.85, 1.80, 1.75, and more preferably 1.70. .
  • conditional expression (24) in the optical system of the present embodiment is below the lower limit, the power of the second lens from the object side in the front group becomes weak, and appropriate correction of field curvature is not possible. becomes difficult.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (24) to 1.51, 1.52, and more preferably 1.53.
  • the optical system of this embodiment preferably satisfies the following conditional expression. (25) 1.45 ⁇ nd3 ⁇ 1.90 however, nd3: Refractive index of the lens closest to the image side in the rear group with respect to the d-line
  • Conditional expression (25) defines the refractive index of the lens located closest to the image side in the rear group with respect to the d-line.
  • conditional expression (25) in the optical system of this embodiment exceeds the upper limit, the power of the lens located closest to the image side in the rear group becomes strong, and various aberrations such as curvature of field and astigmatism are corrected appropriately. correction becomes difficult.
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (25) to 1.85, 1.80, 1.75, and more preferably 1.70.
  • conditional expression (25) in the optical system of this embodiment is below the lower limit, the power of the lens located closest to the image side in the rear group becomes weak, and various aberrations such as curvature of field and astigmatism It becomes difficult to appropriately correct the
  • the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (25) to 1.46, 1.47, 1.48, and more preferably 1.49.
  • the optical apparatus of this embodiment has the optical system having the above configuration. As a result, it is possible to realize an optical device that is compact and has good optical performance.
  • the manufacturing method of the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group.
  • the front group comprises, in order from the object side, at least three negative lenses and at least one
  • f14 Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2 ⁇ : total angle of view of the optical system
  • FIG. 1 is a sectional view of the optical system of the first embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
  • the rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • Table 1 below lists the values of the specifications of the optical system of this embodiment.
  • TL indicates the total length of the optical system in air conversion length
  • f indicates the focal length of the optical system.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface spacing
  • nd is the refractive index for the d-line (wavelength 587.6 nm)
  • ⁇ d is for the d-line. Indicates the Abbe number.
  • the optical surfaces marked with "*" are aspheric surfaces.
  • m is the optical surface corresponding to the aspheric data
  • K is the conic constant
  • A4 to A12 are the aspheric coefficients.
  • the height of the aspherical surface in the direction perpendicular to the optical axis is y, and the distance (sag) along the optical axis from the tangent plane of the vertex of each aspherical surface to each aspherical surface at height y is S(y) where r is the radius of curvature (paraxial radius of curvature) of the reference spherical surface, K is the conic constant, and An is the n-th order aspheric coefficient. In each example, the second-order aspheric coefficient A2 is zero. Also, "En” indicates " ⁇ 10 -n ".
  • the unit of focal length f, radius of curvature r and other lengths listed in Table 1 is "mm".
  • the optical system is not limited to this because equivalent optical performance can be obtained even if the optical system is proportionally enlarged or proportionally reduced.
  • FIG. 2 is a diagram of various aberrations of the optical system of the first embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
  • FIG. 3 is a sectional view of the optical system of the second embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
  • the rear group G2 includes, in order from the object side, a positive lens cemented by a negative meniscus lens L5 having a convex surface facing the object side cemented with a biconvex positive lens L6, a biconvex positive lens L7 and a biconcave negative lens. It consists of a cemented negative lens L8 and a biconvex positive lens L9.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • Table 2 below lists the values of the specifications of the optical system of this example.
  • FIG. 4 is a diagram of various aberrations of the optical system of the second embodiment. From each aberration diagram, it can be seen that the optical system of this example properly corrects various aberration fluctuations and has high optical performance.
  • FIG. 5 is a cross-sectional view of the optical system of the third embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 includes, in order from the object, a negative meniscus lens L1 with a convex surface facing the object, a negative meniscus lens L2 with a convex surface facing the object, a biconcave negative lens L3, and a biconvex positive lens. and a lens L4.
  • the rear group G2 includes, in order from the object side, a positive lens cemented with a biconvex positive lens L5 cemented with a negative meniscus lens L6 having a concave surface facing the object side, a biconvex positive lens L7 and a biconcave negative lens. It consists of a cemented negative lens L8 and a biconvex positive lens L9.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • Table 3 below lists the values of the specifications of the optical system of this embodiment.
  • FIG. 6 is a diagram of various aberrations of the optical system of the third embodiment. From each aberration diagram, it can be seen that the optical system of this example appropriately corrects various aberration fluctuations and has high optical performance.
  • FIG. 7 is a sectional view of the optical system of the fourth embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
  • the rear group G2 includes, in order from the object side, a biconvex positive lens L5, a biconcave negative lens L6, a cemented negative lens composed of a biconvex positive lens L7 and a biconcave negative lens L8, and a biconvex positive lens L9.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • FIG. 8 is a diagram of various aberrations of the optical system of the fourth embodiment. From each aberration diagram, it can be seen that the optical system of this example properly corrects various aberrations and has high optical performance.
  • FIG. 9 is a sectional view of the optical system of the fifth embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
  • the rear group G2 includes, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a positive meniscus with a convex surface facing the object side. and a lens L8.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • Table 5 lists the values of the specifications of the optical system of this example.
  • FIG. 10 is a diagram of various aberrations of the optical system of the fifth embodiment. From each aberration diagram, it can be seen that the optical system of this example properly corrects various aberration fluctuations and has high optical performance.
  • FIG. 11 is a sectional view of the optical system of the sixth embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 comprises, in order from the object side, a negative meniscus lens L1 with a convex surface facing the object side, a biconcave negative lens L2, a negative meniscus lens L3 with a convex surface facing the object side, and a biconvex positive lens element L3. and a lens L4.
  • the rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • 12A and 12B are various aberration diagrams of the optical system of the sixth embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
  • FIG. 13 is a sectional view of the optical system of the seventh embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconcave negative lens L2, a negative meniscus lens L3 having a convex surface facing the object side, and a convex surface facing the object side. and a positive meniscus lens L4 directed toward
  • the rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • Table 7 lists the values of the specifications of the optical system of this example.
  • 14A and 14B are various aberration diagrams of the optical system of the seventh embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
  • FIG. 15 is a sectional view of the optical system of the eighth embodiment.
  • the optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
  • the front group G1 comprises, in order from the object side, a negative meniscus lens L1 with a convex surface facing the object side, a biconcave negative lens L2, a biconcave negative lens L3, and a biconvex positive lens L4. Become.
  • the rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
  • an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • a filter FL is arranged between the optical system and the image plane I of this embodiment.
  • Table 8 lists the values of the specifications of the optical system of this example.
  • FIG. 16 is a diagram of various aberrations of the optical system of the eighth embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
  • TL is the total length of the optical system in air conversion length
  • f is the focal length of the optical system
  • 2 ⁇ is the total angle of view of the optical system.
  • ⁇ T1 is the thickness of the front group on the optical axis
  • f1 is the focal length of the front group.
  • f11 is the focal length of the lens located closest to the object side in the front group.
  • f12 is the focal length of the second lens from the object side in the front group.
  • D112 is the air space on the optical axis between the lens closest to the object side in the front group and the second lens from the object side, and f112 is the distance between the lens closest to the object side in the front group and the object side. This is the combined focal length with the second lens from the side.
  • T14 is the thickness on the optical axis of the fourth lens in the front group from the object side
  • f14 is the focal length of the fourth lens in the front group from the object side.
  • DS is the air space between the lens located closest to the image side in the front group and the lens located closest to the object side in the rear group.
  • ⁇ T2 is the thickness of the rear group on the optical axis
  • f2 is the focal length of the rear group.
  • f2l is the focal length of the lens located closest to the image side in the rear group.
  • nd1 is the refractive index of the lens closest to the object in the front group with reference to the d-line
  • nd2 is the refractive index of the lens second from the object in the front group with respect to the d-line.
  • ndl is the refractive index of the lens located closest to the image side in the rear group with respect to the d-line.
  • the aperture stop may be configured so that a lens frame substitutes for its role without providing a member.
  • the lens surfaces of the lenses that constitute the optical system of each of the above embodiments may be spherical, planar, or aspherical.
  • a spherical or flat lens surface is preferable because it facilitates lens processing and assembly adjustment, and can prevent deterioration of optical performance due to errors in lens processing and assembly adjustment. In addition, even when the image plane is shifted, deterioration in rendering performance is small, which is preferable.
  • the lens surface is aspherical, it can be aspherical by grinding, glass-molded aspherical by molding glass into an aspherical shape, or composite aspherical by forming resin on the glass surface into an aspherical shape. good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • An anti-reflection film having high transmittance in a wide wavelength range may be applied to the lens surfaces of the lenses constituting the optical system of each of the above examples. As a result, flare and ghost can be reduced, and optical performance with high contrast can be achieved.
  • FIG. 17 is a schematic diagram of a camera provided with the optical system of this embodiment.
  • the camera 1 is a so-called omnidirectional camera having the optical system according to the first embodiment as taking lenses 2-1 and 2-2 on one surface and the opposite surface.
  • the taking lens 2-1 or 2-2 In the camera 1, light from an unillustrated object (subject) is condensed by the taking lens 2-1 or 2-2 and reaches the imaging element 3-1 or 3-2.
  • the imaging devices 3-1 and 3-2 convert the light from the subject into image data.
  • the image data is stored in a memory (not shown). In this way, the photographer can photograph the subject with the camera 1 .
  • the optical system of the first embodiment mounted as the photographing lenses 2-1 and 2-2 in the camera 1 is a compact optical system having good optical performance. Therefore, the camera 1 is small and can achieve good optical performance. It should be noted that the same effect as the camera 1 can be obtained even if a camera is constructed in which the optical systems of the above-described second to eighth embodiments are mounted as the photographing lenses 2-1 and 2-2. Also, the number of optical systems mounted on the camera 1 is not limited to two, and may be one or three or more.
  • FIG. 18 is a flow chart showing an outline of the method for manufacturing the optical system of this embodiment.
  • the manufacturing method of the optical system of this embodiment shown in FIG. 18 includes the following steps S1 and S2.
  • Step S1 A front group having at least three negative lenses and at least one positive lens, an aperture stop, and a rear group having at least four lenses are prepared in order from the object side.
  • Step S2 Make the optical system satisfy both of the following conditional expressions. (1) 1.40 ⁇ f14/(-f112) ⁇ 5.20 (2) 0.70 ⁇ T14/f ⁇ 4.50 (3) 160.00° ⁇ 2 ⁇ however, f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2 ⁇ : total angle of view of the optical system
  • the manufacturing method of the optical system of the present embodiment it is possible to manufacture a compact optical system having good imaging performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

This optical system, comprising a front group, an aperture diaphragm, and a rear group in the stated order from the object side, the front group having at least three negative lenses and at least one positive lens in the stated order from the object side, and the rear group having at least four lenses, is configured so as to satisfy all of the following conditional expressions: 1.40 < f14/(-f112) < 5.20, 0.70 < T14/f < 4.50, and 160.00° < 2ω, where f14 is the focal length of the lens arranged fourth from the object side in the front group, f112 is the composite focal length of the lens arranged furthest toward the object side and the lens arranged second from the object side in the front group, T14 is the thickness on the optical axis of the lens arranged fourth from the object side in the front group, f is the focal length of the optical system, and 2ω is the total angle of view of the optical system.

Description

光学系、光学機器および光学系の製造方法Optical system, optical instrument, and method for manufacturing optical system
 本開示は、光学系、光学機器および光学系の製造方法に関する。 The present disclosure relates to an optical system, an optical device, and a method of manufacturing an optical system.
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等の光学機器に使用される光学系が提案されている(例えば特許文献1参照)。 Conventionally, optical systems used in optical equipment such as photographic cameras, electronic still cameras, and video cameras have been proposed (see Patent Document 1, for example).
特開2018-081240号公報JP 2018-081240 A
 本開示の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
 1.40 < f14/(-f112) < 5.20
 0.70 < T14/f< 4.50
 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side. The rear group has at least four lenses and satisfies both of the following conditional expressions.
1.40<f14/(-f112)<5.20
0.70<T14/f<4.50
160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2ω: total angle of view of the optical system
 本開示の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
 1.40 < f14/(-f112) < 5.20
 1.50 < ΣT1/T14 < 7.90
 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 ΣT1  : 前群の光軸上の厚み
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 2ω   : 光学系の全画角
The optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side. The rear group has at least four lenses and satisfies both of the following conditional expressions.
1.40<f14/(-f112)<5.20
1.50<ΣT1/T14<7.90
160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group ΣT1: Front Thickness on the optical axis of the group T14: Thickness on the optical axis of the fourth lens from the object side in the front group 2ω: Total angle of view of the optical system
 本開示の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
 1.50 < f14/(-f112) < 4.90
 0.65 < f/DS < 8.00
 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 f    : 光学系の焦点距離
 DS   : 前群において最も像側に配置されるレンズと後群において最も物体側に配置されるレンズとの光軸上の空気間隔
 2ω   : 光学系の全画角
The optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side. The rear group has at least four lenses and satisfies both of the following conditional expressions.
1.50 < f14/(-f112) < 4.90
0.65 < f/DS < 8.00
160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group f: Optical System focal length DS : Air distance on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group 2ω : Total angle of view of the optical system
 本開示の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
 1.80 < f14/T14 < 5.00
 0.60 < (-f1)/f2 < 1.85
 160.00° < 2ω
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f1   : 前群の焦点距離
 f2   : 後群の焦点距離
 2ω   : 光学系の全画角
The optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side. The rear group has at least four lenses and satisfies both of the following conditional expressions.
1.80 < f14/T14 < 5.00
0.60<(-f1)/f2<1.85
160.00° < 2ω
f14: Focal length of the fourth lens in the front group from the object side T14: Thickness on the optical axis of the fourth lens in the front group from the object side f1: Focal length of the front group f2: Rear group focal length 2ω : total angle of view of the optical system
 本開示の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
 2.00 < ΣT1/T14 < 7.90
 3.50 < ΣT1/f < 6.60
 160.00° < 2ω
但し、
 ΣT1  : 前群の光軸上の厚み
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The optical system of the present disclosure consists of a front group, an aperture stop, and a rear group in order from the object side, and the front group has at least three negative lenses and at least one positive lens in order from the object side. The rear group has at least four lenses and satisfies both of the following conditional expressions.
2.00<ΣT1/T14<7.90
3.50 < ΣT1/f < 6.60
160.00° < 2ω
however,
ΣT1: Optical axis thickness of the front group T14: Optical axis thickness of the fourth lens from the object side in the front group f: Focal length of the optical system 2ω: Total angle of view of the optical system
 本開示の光学系の製造方法は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有する光学系の製造方法であって、以下の条件式をともに満足するように各レンズを配置する。
 1.40 < f14/(-f112) < 5.20
 0.70 < T14/f< 4.50
 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The manufacturing method of the optical system of the present disclosure comprises, in order from the object side, a front group, an aperture stop, and a rear group, and the front group includes, in order from the object side, at least three negative lenses and at least one positive lens. A method for manufacturing an optical system having a lens and a rear group having at least four lenses, wherein the lenses are arranged so as to satisfy both of the following conditional expressions.
1.40<f14/(-f112)<5.20
0.70<T14/f<4.50
160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2ω: total angle of view of the optical system
第1実施例の光学系の断面図である。1 is a cross-sectional view of an optical system of a first embodiment; FIG. 第1実施例の光学系の諸収差図である。FIG. 2 is a diagram of various aberrations of the optical system of the first example; 第2実施例の光学系の断面図である。It is a cross-sectional view of the optical system of the second embodiment. 第2実施例の光学系の諸収差図である。FIG. 10 is a diagram of various aberrations of the optical system of the second embodiment; 第3実施例の光学系の断面図である。It is a cross-sectional view of the optical system of the third embodiment. 第3実施例の光学系の諸収差図である。FIG. 10 is a diagram of various aberrations of the optical system of the third embodiment; 第4実施例の光学系の断面図である。It is a cross-sectional view of the optical system of the fourth embodiment. 第4実施例の光学系の諸収差図である。FIG. 11 is a diagram of various aberrations of the optical system of the fourth embodiment; 第5実施例の光学系の断面図である。FIG. 11 is a cross-sectional view of the optical system of the fifth embodiment; 第5実施例の光学系の諸収差図である。FIG. 10 is a diagram of various aberrations of the optical system of the fifth embodiment; 第6実施例の光学系の断面図である。FIG. 12 is a cross-sectional view of the optical system of the sixth embodiment; 第6実施例の光学系の諸収差図である。FIG. 11 is a diagram of various aberrations of the optical system of the sixth embodiment; 第7実施例の光学系の断面図である。FIG. 12 is a cross-sectional view of the optical system of the seventh embodiment; 第7実施例の光学系の諸収差図である。FIG. 11 is a diagram of various aberrations of the optical system of the seventh embodiment; 第8実施例の光学系の断面図である。FIG. 11 is a cross-sectional view of an optical system of an eighth embodiment; 第8実施例の光学系の諸収差図である。FIG. 11 is a diagram of various aberrations of the optical system of the eighth embodiment; 本実施形態の光学系を備えたカメラの模式図である。1 is a schematic diagram of a camera provided with the optical system of this embodiment; FIG. 本実施形態の光学系の製造方法の概略を示すフローチャートである。4 is a flow chart showing an outline of a method for manufacturing an optical system according to the present embodiment;
 以下、本願の実施形態の光学系、光学機器および光学系の製造方法について説明する。 The optical system, the optical device, and the method of manufacturing the optical system according to the embodiments of the present application will be described below.
 本実施形態の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
(1) 1.40 < f14/(-f112) < 5.20
(2) 0.70 < T14/f< 4.50
(3) 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group. The front group comprises, in order from the object side, at least three negative lenses and at least one positive lens. The rear group has at least four lenses and satisfies both of the following conditional expressions.
(1) 1.40 < f14/(-f112) < 5.20
(2) 0.70<T14/f<4.50
(3) 160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2ω: total angle of view of the optical system
 本実施形態の光学系は、物体側から順に少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有する前群と、少なくとも4枚のレンズを有する後群とを有することにより、色収差、非点収差、歪曲収差、コマ収差、球面収差の補正が良好な光学系を実現することができる。 The optical system of this embodiment has a front group having at least three negative lenses and at least one positive lens in order from the object side, and a rear group having at least four lenses. It is possible to realize an optical system with excellent correction of aberration, distortion, coma, and spherical aberration.
 条件式(1)は、前群において物体側から4番目に配置されるレンズの焦点距離と、前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離との比を規定する。本実施形態の光学系は、条件式(1)を満足することで、球面収差、コマ収差、色収差、像面湾曲、非点収差、歪曲収差といった諸収差を適切に補正することができる。 Conditional expression (1) is the combination of the focal length of the fourth lens from the object side in the front group, the lens closest to the object side in the front group, and the second lens from the object side. Defines the ratio to the focal length. By satisfying conditional expression (1), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, chromatic aberration, curvature of field, astigmatism, and distortion.
 本実施形態の光学系において条件式(1)の値が上限値を上回ると、前群において物体側から4番目に配置されるレンズのパワーが弱くなり、球面収差、コマ収差、色収差の適切な補正が困難となる。 When the value of conditional expression (1) in the optical system of this embodiment exceeds the upper limit, the power of the fourth lens from the object side in the front group becomes weak, and spherical aberration, coma, and chromatic aberration are corrected appropriately. Correction becomes difficult.
 本実施形態の光学系では、条件式(1)の上限値を5.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を5.15、5.10、5.00、4.95、4.90、4.50、4.25、4.00、3.75、さらに3.50に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (1) to 5.20, the effects of this embodiment can be made more reliable. Further, in order to ensure the effect of this embodiment, the upper limit of conditional expression (1) is set to 5.15, 5.10, 5.00, 4.95, 4.90, 4.50, 4.50 Preferably set to 25, 4.00, 3.75 and even 3.50.
 また、本実施形態の光学系において条件式(1)の値が下限値を下回ると、前群において最も物体側に配置されるレンズおよび物体側から2番目に配置されるレンズのパワーが弱くなり、像面湾曲、非点収差、歪曲収差の適切な補正が困難となる。 Further, when the value of conditional expression (1) in the optical system of this embodiment is below the lower limit, the power of the lens arranged closest to the object side and the lens arranged second from the object side in the front group becomes weak. , it becomes difficult to appropriately correct curvature of field, astigmatism, and distortion.
 本実施形態の光学系では、条件式(1)の下限値を1.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を1.50、1.60、1.68、1.76、1.84、1.92、さらに2.00に設定することが好ましい。 By setting the lower limit of conditional expression (1) to 1.40 in the optical system of this embodiment, the effects of this embodiment can be made more reliable. Further, in order to ensure the effect of this embodiment, the lower limit of conditional expression (1) is set to 1.50, 1.60, 1.68, 1.76, 1.84, 1.92, and further to 2 It is preferably set to .00.
 条件式(2)は、前群において物体側から4番目に配置されるレンズの光軸上の厚みと光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(2)を満足することで、光学系の全長の増大を抑制しつつ、球面収差、コマ収差、色収差といった諸収差を適切に補正することができる。 Conditional expression (2) defines the ratio between the thickness on the optical axis of the fourth lens from the object side in the front group and the focal length of the entire optical system. By satisfying conditional expression (2), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration while suppressing an increase in the total length of the optical system.
 本実施形態の光学系において条件式(2)の値が上限値を上回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (2) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(2)の上限値を4.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の上限値を4.35、4.20、4.00、3.85、さらに3.70に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (2) to 4.50, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 4.35, 4.20, 4.00, 3.85, and further to 3.70. .
 また、本実施形態の光学系において条件式(2)の値が下限値を下回ると、光学系の全長が増大し、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (2) is below the lower limit in the optical system of this embodiment, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(2)の下限値を0.70に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を1.05、1.40、1.70、2.00、さらに2.40に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (2) to 0.70, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.05, 1.40, 1.70, 2.00, and further to 2.40. .
 条件式(3)は、光学系の全画角を規定する。本実施形態の光学系は、条件式(3)を満足することで、超広角レンズとすることができる。 Conditional expression (3) defines the total angle of view of the optical system. The optical system of this embodiment can be a super-wide-angle lens by satisfying conditional expression (3).
 条件式(1)、条件式(2)、条件式(3)をともに満足する光学系は、超広角レンズであって、光学系の全長の増大を抑制しつつ、諸収差を適切に補正することができる。 An optical system that satisfies conditional expressions (1), (2), and (3) is an ultra-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
(1) 1.40 < f14/(-f112) < 5.20
(4) 1.50 < ΣT1/T14 < 7.90
(3) 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group. The front group comprises, in order from the object side, at least three negative lenses and at least one positive lens. The rear group has at least four lenses and satisfies both of the following conditional expressions.
(1) 1.40 < f14/(-f112) < 5.20
(4) 1.50 < ΣT1/T14 < 7.90
(3) 160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2ω: total angle of view of the optical system
 条件式(4)は、前群の光軸上の厚みと前群において物体側から4番目に配置されるレンズの光軸上の厚みとの比を規定する。本実施形態の光学系は、条件式(4)を満足することで、光学系の全長の増大を抑制しつつ、球面収差、コマ収差、色収差といった諸収差を適切に補正することができる。 Conditional expression (4) defines the ratio between the optical axis thickness of the front group and the optical axis thickness of the fourth lens from the object side in the front group. By satisfying conditional expression (4), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration while suppressing an increase in the total length of the optical system.
 本実施形態の光学系において条件式(4)の値が上限値を上回ると、光学系の全長が増大し、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (4) in the optical system of this embodiment exceeds the upper limit, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(4)の上限値を7.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の上限値を7.00、6.15、5.25、4.40、さらに3.50に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (4) to 7.90, the effect of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (4) to 7.00, 6.15, 5.25, 4.40, and further to 3.50. .
 また、本実施形態の光学系において条件式(4)の値が下限値を下回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (4) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(4)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の下限値を1.70、1.90、2.10、2.30、さらに2.50に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (4) to 1.50, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.70, 1.90, 2.10, 2.30, and more preferably 2.50. .
 条件式(1)、条件式(4)、条件式(3)をともに満足する光学系は、超広角レンズであって、光学系の全長の増大を抑制しつつ、諸収差を適切に補正することができる。 An optical system that satisfies conditional expressions (1), (4), and (3) is an ultra-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
(5) 1.50 < f14/(-f112) < 4.90
(6) 0.65 < f/DS < 8.00
(3) 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 f    : 光学系の焦点距離
 DS   : 前群において最も像側に配置されるレンズと後群において最も物体側に配置されるレンズとの光軸上の空気間隔
 2ω   : 光学系の全画角
The optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group. The front group comprises, in order from the object side, at least three negative lenses and at least one positive lens. The rear group has at least four lenses and satisfies both of the following conditional expressions.
(5) 1.50 < f14/(-f112) < 4.90
(6) 0.65 < f/DS < 8.00
(3) 160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group f: Optical System focal length DS : Air distance on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group 2ω : Total angle of view of the optical system
 条件式(5)は、前群において物体側から4番目に配置されるレンズの焦点距離と、前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離との比を規定する。本実施形態の光学系は、条件式(5)を満足することで、球面収差、コマ収差、色収差、像面湾曲、非点収差、歪曲収差といった諸収差を適切に補正することができる。 Conditional expression (5) is the combination of the focal length of the fourth lens from the object side in the front group, the lens closest to the object side in the front group, and the second lens from the object side. Defines the ratio to the focal length. By satisfying conditional expression (5), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, chromatic aberration, field curvature, astigmatism, and distortion.
 本実施形態の光学系において条件式(5)の値が上限値を上回ると、前群において物体側から4番目に配置されるレンズのパワーが弱くなり、球面収差、コマ収差、色収差の適切な補正が困難となる。 When the value of conditional expression (5) in the optical system of this embodiment exceeds the upper limit, the power of the fourth lens from the object side in the front group becomes weak, and spherical aberration, coma aberration, and chromatic aberration are corrected appropriately. Correction becomes difficult.
 本実施形態の光学系では、条件式(5)の上限値を4.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を4.80、4.50、4.25、4.00、3.75、さらに3.50に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (5) to 4.90, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, the upper limit of conditional expression (5) is set to 4.80, 4.50, 4.25, 4.00, 3.75, and further to 3.50. preferably.
 また、本実施形態の光学系において条件式(5)の値が下限値を下回ると、前群において最も物体側に配置されるレンズおよび物体側から2番目に配置されるレンズのパワーが弱くなり、像面湾曲、非点収差、歪曲収差の適切な補正が困難となる。 Further, when the value of conditional expression (5) in the optical system of this embodiment is below the lower limit, the power of the lens arranged closest to the object side and the lens arranged second from the object side in the front group becomes weak. , it becomes difficult to appropriately correct curvature of field, astigmatism, and distortion.
 本実施形態の光学系では、条件式(5)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を1.60、1.70、1.80、1.90、さらに2.00に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (5) to 1.50, the effects of this embodiment can be made more reliable. In order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (5) to 1.60, 1.70, 1.80, 1.90, and more preferably 2.00. .
 条件式(6)は、光学系全系の焦点距離と、前群において最も像側に配置されるレンズと後群において最も物体側に配置されるレンズとの光軸上の空気間隔との比を規定する。本実施形態の光学系は、条件式(6)を満足することで、光学系の全長の増大を抑制しつつ、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (6) is the ratio of the focal length of the entire optical system to the air gap on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group. stipulate. By satisfying conditional expression (6), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration and coma while suppressing an increase in the total length of the optical system.
 本実施形態の光学系において条件式(6)の値が上限値を上回ると、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (6) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(6)の上限値を8.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の上限値を7.60、7.20、6.80、6.40、さらに6.00に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (6) to 8.00, the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (6) to 7.60, 7.20, 6.80, 6.40, and further to 6.00. .
 また、本実施形態の光学系において条件式(6)の値が下限値を下回ると、光学系の全長が増大し、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (6) is below the lower limit in the optical system of this embodiment, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(6)の下限値を0.65に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の下限値を0.66、0.67、0.68、0.69、さらに0.70に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (6) to 0.65, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 0.66, 0.67, 0.68, 0.69, and more preferably 0.70. .
 条件式(5)、条件式(6)、条件式(3)をともに満足する光学系は、超広角レンズであって、光学系の全長の増大を抑制しつつ、諸収差を適切に補正することができる。 An optical system that satisfies conditional expressions (5), (6), and (3) is an ultra-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
(7) 1.80 < f14/T14 < 5.00
(8) 0.60 < (-f1)/f2 < 1.85
(3) 160.00° < 2ω
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f1   : 前群の焦点距離
 f2   : 後群の焦点距離
 2ω   : 光学系の全画角
The optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group. The front group comprises, in order from the object side, at least three negative lenses and at least one positive lens. The rear group has at least four lenses and satisfies both of the following conditional expressions.
(7) 1.80 < f14/T14 < 5.00
(8) 0.60 < (-f1)/f2 < 1.85
(3) 160.00° < 2ω
f14: Focal length of the fourth lens in the front group from the object side T14: Thickness on the optical axis of the fourth lens in the front group from the object side f1: Focal length of the front group f2: Rear group focal length 2ω : total angle of view of the optical system
 条件式(7)は、前群において物体側から4番目に配置されるレンズの焦点距離と前群において物体側から4番目に配置されるレンズの光軸上の厚みとの比を規定する。本実施形態の光学系は、条件式(7)を満足することで、球面収差、コマ収差、色収差といった諸収差を適切に補正することができる。 Conditional expression (7) defines the ratio between the focal length of the fourth lens in the front group from the object side and the thickness on the optical axis of the fourth lens in the front group from the object side. By satisfying conditional expression (7), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma aberration, and chromatic aberration.
 本実施形態の光学系において条件式(7)の値が上限値を上回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (7) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(7)の上限値を5.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の上限値を4.60、4.25、3.85、3.50、さらに3.10に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (7) to 5.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (7) to 4.60, 4.25, 3.85, 3.50, and more preferably 3.10. .
 また、本実施形態の光学系において条件式(7)の値が下限値を下回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (7) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(7)の下限値を1.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の下限値を1.84、1.88、1.92、1.96、さらに2.00に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (7) to 1.80, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (7) to 1.84, 1.88, 1.92, 1.96, and more preferably 2.00. .
 条件式(8)は、前群の焦点距離と後群の焦点距離との比を規定する。本実施形態の光学系は、条件式(8)を満足することで、前群の最も物体側に配置されるレンズの径の増大を抑制しつつ、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (8) defines the ratio between the focal length of the front group and the focal length of the rear group. By satisfying the conditional expression (8), the optical system of the present embodiment suppresses an increase in the diameter of the lens disposed closest to the object side in the front group, while suppressing various aberrations such as spherical aberration and coma. can be corrected.
 本実施形態の光学系において条件式(8)の値が上限値を上回ると、前群のパワーが弱くなって前群の最も物体側に配置されるレンズの径が増大し、後群のパワーが強くなって球面収差が悪化する。 In the optical system of this embodiment, when the value of conditional expression (8) exceeds the upper limit, the power of the front group weakens, the diameter of the lens located closest to the object side in the front group increases, and the power of the rear group increases. becomes stronger and the spherical aberration worsens.
 本実施形態の光学系では、条件式(8)の上限値を1.85に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の上限値を1.80、1.75、1.70、1.65、さらに1.60に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (8) to 1.85, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (8) to 1.80, 1.75, 1.70, 1.65, and more preferably 1.60. .
 また、本実施形態の光学系において条件式(8)の値が下限値を下回ると、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (8) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(8)の下限値を0.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の下限値を0.65、さらに0.70に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (8) to 0.60, the effects of this embodiment can be made more reliable. In order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (8) to 0.65, more preferably 0.70.
 条件式(7)、条件式(8)、条件式(3)をともに満足する光学系は、超広角レンズであって、光学系の全長の増大を抑制しつつ、諸収差を適切に補正することができる。 An optical system that satisfies conditional expression (7), conditional expression (8), and conditional expression (3) is a super-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有し、以下の条件式をともに満足する。
(9)  2.00 < ΣT1/T14 < 7.90
(10) 3.50 < ΣT1/f < 6.60
(3)  160.00° < 2ω
但し、
 ΣT1  : 前群の光軸上の厚み
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group. The front group comprises, in order from the object side, at least three negative lenses and at least one positive lens. The rear group has at least four lenses and satisfies both of the following conditional expressions.
(9) 2.00 < ΣT1/T14 < 7.90
(10) 3.50 < ΣT1/f < 6.60
(3) 160.00° < 2ω
however,
ΣT1: Optical axis thickness of the front group T14: Optical axis thickness of the fourth lens from the object side in the front group f: Focal length of the optical system 2ω: Total angle of view of the optical system
 条件式(9)は、前群の光軸上の厚みと前群において物体側から4番目に配置されるレンズの光軸上の厚みとの比を規定する。本実施形態の光学系は、条件式(9)を満足することで、光学系の全長の増大を抑制しつつ、球面収差、コマ収差、色収差といった諸収差を適切に補正することができる。 Conditional expression (9) defines the ratio between the optical axis thickness of the front group and the optical axis thickness of the fourth lens from the object side in the front group. By satisfying conditional expression (9), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration while suppressing an increase in the total length of the optical system.
 本実施形態の光学系において条件式(9)の値が上限値を上回ると、光学系の全長が増大し、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (9) in the optical system of this embodiment exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(9)の上限値を7.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の上限値を7.00、6.15、5.25、4.40、さらに3.50に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (9) to 7.90, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (9) to 7.00, 6.15, 5.25, 4.40, and further to 3.50. .
 また、本実施形態の光学系において条件式(9)の値が下限値を下回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (9) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(9)の下限値を2.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の下限値を2.10、2.20、2.30、2.40、さらに2.50に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (9) to 2.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (9) to 2.10, 2.20, 2.30, 2.40, and more preferably 2.50. .
 条件式(10)は、前群の光軸上の厚みと光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(10)を満足することで、光学系の全長の増大を抑制しつつ、歪曲収差、像面湾曲、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (10) defines the ratio between the thickness of the front group on the optical axis and the focal length of the entire optical system. By satisfying conditional expression (10), the optical system of the present embodiment appropriately corrects various aberrations such as distortion, curvature of field, spherical aberration, and coma while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系において条件式(10)の値が上限値を上回ると、光学系の全長が増大し、歪曲収差、像面湾曲といった諸収差の適切な補正が困難となる。 If the value of conditional expression (10) exceeds the upper limit in the optical system of this embodiment, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as distortion and curvature of field.
 本実施形態の光学系では、条件式(10)の上限値を6.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(10)の上限値を6.55に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (10) to 6.60, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (10) to 6.55.
 また、本実施形態の光学系において条件式(10)の値が下限値を下回ると、球面収差、コマ収差、像面湾曲といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (10) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and curvature of field.
 本実施形態の光学系では、条件式(10)の下限値を3.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(10)の下限値を3.58、3.66、3.74、3.82、さらに3.90に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (10) to 3.50, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (10) to 3.58, 3.66, 3.74, 3.82, and further to 3.90. .
 条件式(9)、条件式(10)、条件式(3)をともに満足する光学系は、超広角レンズであって、光学系の全長の増大を抑制しつつ、諸収差を適切に補正することができる。 An optical system that satisfies conditional expressions (9), (10), and (3) is a super-wide-angle lens that appropriately corrects various aberrations while suppressing an increase in the total length of the optical system. be able to.
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(11) 1.00 < f14/T14 < 5.00
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(11) 1.00 < f14/T14 < 5.00
 条件式(11)は、前群において物体側から4番目に配置されるレンズの焦点距離と前群において物体側から4番目に配置されるレンズの光軸上の厚みとの比を規定する。本実施形態の光学系は、条件式(11)を満足することで、球面収差、コマ収差、色収差といった諸収差を適切に補正することができる。 Conditional expression (11) defines the ratio between the focal length of the fourth lens in the front group from the object side and the thickness on the optical axis of the fourth lens in the front group from the object side. By satisfying conditional expression (11), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma aberration, and chromatic aberration.
 本実施形態の光学系において条件式(11)の値が上限値を上回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (11) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(11)の上限値を5.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(11)の上限値を4.60、4.25、3.85、3.50、さらに3.10に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (11) to 5.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (11) to 4.60, 4.25, 3.85, 3.50, and further to 3.10. .
 また、本実施形態の光学系において条件式(11)の値が下限値を下回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (11) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(11)の下限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(11)の下限値を1.05、1.10、1.20、1.25、さらに1.30に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (11) to 1.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (11) to 1.05, 1.10, 1.20, 1.25, and more preferably 1.30. .
 また、本実施形態の光学系は、以下の式を満足することが好ましい。
(12) 3.50 < ΣT1/f < 18.00
但し、
 ΣT1 : 前群の光軸上の厚み
Also, the optical system of this embodiment preferably satisfies the following equations.
(12) 3.50 < ΣT1/f < 18.00
however,
ΣT1: thickness of the front group on the optical axis
 条件式(12)は、前群の光軸上の厚みと光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(12)を満足することで、光学系の全長の増大を抑制しつつ、歪曲収差、像面湾曲、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (12) defines the ratio between the thickness of the front group on the optical axis and the focal length of the entire optical system. By satisfying conditional expression (12), the optical system of the present embodiment appropriately corrects various aberrations such as distortion, curvature of field, spherical aberration, and coma while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系において条件式(12)の値が上限値を上回ると、光学系の全長が増大し、歪曲収差、像面湾曲といった諸収差の適切な補正が困難となる。 If the value of conditional expression (12) in the optical system of this embodiment exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as distortion and curvature of field.
 本実施形態の光学系では、条件式(12)の上限値を18.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(12)の上限値を16.50、15.20、13.80、12.40、さらに11.00に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (12) to 18.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (12) to 16.50, 15.20, 13.80, 12.40, and further to 11.00. .
 また、本実施形態の光学系において条件式(12)の値が下限値を下回ると、球面収差、コマ収差、像面湾曲といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (12) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and curvature of field.
 本実施形態の光学系では、条件式(12)の下限値を3.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(12)の下限値を4.40、5.30、6.20、7.10、さらに8.00に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (12) to 3.50, the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (12) to 4.40, 5.30, 6.20, 7.10, and further to 8.00. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(13) 0.30 < (-f1)/f2 < 3.30
但し、
 f1  : 前群の焦点距離
 f2  : 後群の焦点距離
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(13) 0.30 < (-f1)/f2 < 3.30
however,
f1: focal length of the front group f2: focal length of the rear group
 条件式(13)は、前群の焦点距離と後群の焦点距離との比を規定する。本実施形態の光学系は、条件式(13)を満足することで、前群の最も物体側に配置されるレンズの径の増大を抑制しつつ、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (13) defines the ratio between the focal length of the front group and the focal length of the rear group. By satisfying the conditional expression (13), the optical system of the present embodiment suppresses an increase in the diameter of the lens disposed closest to the object side in the front group, and appropriately reduces various aberrations such as spherical aberration and coma. can be corrected.
 本実施形態の光学系において条件式(13)の値が上限値を上回ると、前群のパワーが弱くなって前群の最も物体側に配置されるレンズの径が増大し、後群のパワーが強くなって球面収差が悪化する。 In the optical system of this embodiment, when the value of conditional expression (13) exceeds the upper limit, the power of the front group weakens, the diameter of the lens located closest to the object side in the front group increases, and the power of the rear group increases. becomes stronger and the spherical aberration worsens.
 本実施形態の光学系では、条件式(13)の上限値を3.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(13)の上限値を3.00、2.60、2.30、2.00、さらに1.60に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (13) to 3.30, the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (13) to 3.00, 2.60, 2.30, 2.00, and further to 1.60. .
 また、本実施形態の光学系において条件式(13)の値が下限値を下回ると、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (13) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(13)の下限値を0.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(13)の下限値を0.35、0.40、0.50、0.55、0.60、0.65、さらに0.70に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (13) to 0.30, the effects of this embodiment can be made more reliable. Further, in order to ensure the effect of this embodiment, the lower limit of conditional expression (13) is set to 0.35, 0.40, 0.50, 0.55, 0.60, 0.65, and further to 0 It is preferably set to .70.
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(14) 0.20 < f/DS < 9.00
但し、
 DS  : 前群において最も像側に配置されるレンズと後群において最も物体側に配置されるレンズとの光軸上の空気間隔
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(14) 0.20 < f/DS < 9.00
however,
DS: Air space on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group
 条件式(14)は、光学系全系の焦点距離と、前群において最も像側に配置されるレンズと後群において最も物体側に配置されるレンズとの空気間隔との比を規定する。本実施形態の光学系は、条件式(14)を満足することで、光学系の全長の増大を抑制しつつ、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (14) defines the ratio between the focal length of the entire optical system and the air gap between the lens located closest to the image side in the front group and the lens located closest to the object side in the rear group. By satisfying conditional expression (14), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration and coma while suppressing an increase in the total length of the optical system.
 本実施形態の光学系において条件式(14)の値が上限値を上回ると、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 When the value of conditional expression (14) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(14)の上限値を9.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(14)の上限値を8.40、7.80、7.20、6.60、さらに6.00に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (14) to 9.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (14) to 8.40, 7.80, 7.20, 6.60, and further to 6.00. .
 また、本実施形態の光学系において条件式(14)の値が下限値を下回ると、光学系の全長が増大し、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (14) is less than the lower limit in the optical system of this embodiment, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(14)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(14)の下限値を0.30、0.40、0.50、0.60、さらに0.70に設定することが好ましい。 By setting the lower limit of conditional expression (14) to 0.20 in the optical system of this embodiment, the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (14) to 0.30, 0.40, 0.50, 0.60, and more preferably 0.70. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(15) 3.00 < f14/f < 13.00
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(15) 3.00 < f14/f < 13.00
 条件式(15)は、前群において物体側から4番目に配置されるレンズの焦点距離と光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(15)を満足することで、球面収差、コマ収差、色収差といった諸収差を適切に補正することができる。 Conditional expression (15) defines the ratio between the focal length of the fourth lens in the front group from the object side and the focal length of the entire optical system. By satisfying conditional expression (15), the optical system of this embodiment can appropriately correct various aberrations such as spherical aberration, coma aberration, and chromatic aberration.
 本実施形態の光学系において条件式(15)の値が上限値を上回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (15) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(15)の上限値を13.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(15)の上限値を12.50、12.00、11.50、11.00、さらに10.50に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (15) to 13.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (15) to 12.50, 12.00, 11.50, 11.00, and further to 10.50. .
 また、本実施形態の光学系において条件式(15)の値が下限値を下回ると、球面収差、コマ収差、色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (15) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration, coma, and chromatic aberration.
 本実施形態の光学系では、条件式(15)の下限値を3.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(15)の下限値を3.30、3.55、3.85、4.10、さらに4.40に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (15) to 3.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (15) to 3.30, 3.55, 3.85, 4.10, and further to 4.40. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(16) 3.00 < ΣT2/f < 7.00
但し、
 ΣT2 : 後群の光軸上の厚み
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(16) 3.00 < ΣT2/f < 7.00
however,
ΣT2: Thickness of the rear group on the optical axis
 条件式(16)は、後群の光軸上の厚みと光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(16)を満足することで、光学系の全長の増大を抑制しつつ、球面収差、コマ収差、像面湾曲、倍率色収差といった諸収差を適切に補正することができる。 Conditional expression (16) defines the ratio between the thickness of the rear group on the optical axis and the focal length of the entire optical system. By satisfying conditional expression (16), the optical system of the present embodiment appropriately corrects various aberrations such as spherical aberration, coma, curvature of field, and chromatic aberration of magnification while suppressing an increase in the total length of the optical system. be able to.
 本実施形態の光学系において条件式(16)の値が上限値を上回ると、光学系の全長が増大し、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 In the optical system of this embodiment, if the value of conditional expression (16) exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(16)の上限値を7.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(16)の上限値を6.80、6.60、6.40、6.20、さらに6.00に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (16) to 7.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (16) to 6.80, 6.60, 6.40, 6.20, and further to 6.00. .
 また、本実施形態の光学系において条件式(16)の値が下限値を下回ると、像面湾曲、コマ収差、倍率色収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (16) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as curvature of field, coma, and chromatic aberration of magnification.
 本実施形態の光学系では、条件式(16)の下限値を3.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(16)の下限値を3.20、3.40、3.60、3.80、さらに4.00に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (16) to 3.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (16) to 3.20, 3.40, 3.60, 3.80, and further to 4.00. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(17) 0.80 < D112/f < 4.50
但し、
 D112: 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの光軸上の空気間隔
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(17) 0.80 < D112/f < 4.50
however,
D112: Air gap on the optical axis between the lens closest to the object side and the lens second from the object side in the front group
 条件式(17)は、前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの光軸上の空気間隔と光学系の焦点距離との比を規定する。本実施形態の光学系は、条件式(17)を満足することで、光学系の全長の増大を抑制しつつ、像面湾曲、非点収差、コマ収差、歪曲収差といった諸収差を適切に補正することができる。 Conditional expression (17) defines the ratio of the focal length of the optical system to the air space on the optical axis between the lens located closest to the object side and the lens located second from the object side in the front group. By satisfying conditional expression (17), the optical system of the present embodiment appropriately corrects various aberrations such as curvature of field, astigmatism, coma, and distortion while suppressing an increase in the total length of the optical system. can do.
 本実施形態の光学系において条件式(17)の値が上限値を上回ると、光学系の全長が増大し、像面湾曲、非点収差、コマ収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (17) in the optical system of this embodiment exceeds the upper limit, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as curvature of field, astigmatism, and coma. .
 本実施形態の光学系では、条件式(17)の上限値を4.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(17)の上限値を4.25、4.00、3.70、3.45、さらに3.20に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (17) to 4.50, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (17) to 4.25, 4.00, 3.70, 3.45, and further to 3.20. .
 また、本実施形態の光学系において条件式(17)の値が下限値を下回ると、歪曲収差、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (17) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
 本実施形態の光学系では、条件式(17)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(17)の下限値を1.10、1.35、1.65、1.90、さらに2.20に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (17) to 0.80, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (17) to 1.10, 1.35, 1.65, 1.90, and further to 2.20. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(18) 10.00 < TL/f< 19.00
但し、
 TL  : 空気換算長での光学系の全長
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(18) 10.00<TL/f<19.00
however,
TL: Total length of the optical system in air conversion length
 条件式(18)は、空気換算長での光学系の全長と光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(18)を満足することで、光学系の全長の増大を抑制しつつ、像面湾曲、非点収差、コマ収差、歪曲収差といった諸収差を適切に補正することができる。 Conditional expression (18) defines the ratio between the total length of the optical system in terms of air conversion length and the focal length of the entire optical system. By satisfying conditional expression (18), the optical system of the present embodiment appropriately corrects various aberrations such as curvature of field, astigmatism, coma, and distortion while suppressing an increase in the total length of the optical system. can do.
 本実施形態の光学系において条件式(18)の値が上限値を上回ると、光学系の全長が増大し、像面湾曲、非点収差、コマ収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (18) in the optical system of this embodiment exceeds the upper limit, the overall length of the optical system increases, making it difficult to appropriately correct various aberrations such as curvature of field, astigmatism, and coma. .
 本実施形態の光学系では、条件式(18)の上限値を19.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(18)の上限値を18.70、18.45、18.15、17.90、さらに17.60に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (18) to 19.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (18) to 18.70, 18.45, 18.15, 17.90, and further to 17.60. .
 また、本実施形態の光学系において条件式(18)の値が下限値を下回ると、歪曲収差、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (18) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
 本実施形態の光学系では、条件式(18)の下限値を10.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(18)の下限値を10.80、11.60、12.40、13.20、さらに14.00に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (18) to 10.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (18) to 10.80, 11.60, 12.40, 13.20, and further to 14.00. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(19) 2.00 < f2l/f < 28.00
但し、
 f2l : 後群において最も像側に配置されるレンズの焦点距離
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(19) 2.00 < f2l/f < 28.00
however,
f2l: focal length of the lens located closest to the image side in the rear group
 条件式(19)は、後群において最も像側に配置されるレンズの焦点距離と光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(19)を満足することで、光学系の全長の増大を抑制しつつ、像面湾曲、非点収差といった諸収差を適切に補正することができる。 Conditional expression (19) defines the ratio between the focal length of the lens arranged closest to the image side in the rear group and the focal length of the optical system. By satisfying the conditional expression (19), the optical system of this embodiment can appropriately correct various aberrations such as curvature of field and astigmatism while suppressing an increase in the total length of the optical system.
 本実施形態の光学系において条件式(19)の値が上限値を上回ると、光学系の全長が増大し、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 In the optical system of this embodiment, if the value of conditional expression (19) exceeds the upper limit, the total length of the optical system increases, making it difficult to appropriately correct various aberrations such as curvature of field and astigmatism.
 本実施形態の光学系では、条件式(19)の上限値を28.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(19)の上限値を27.40、26.80、26.20、25.60、さらに25.00に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (19) to 28.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (19) to 27.40, 26.80, 26.20, 25.60, and further to 25.00. .
 また、本実施形態の光学系において条件式(19)の値が下限値を下回ると、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (19) is below the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as curvature of field and astigmatism.
 本実施形態の光学系では、条件式(19)の下限値を2.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(19)の下限値を2.20、2.40、2.60、2.80、さらに3.00に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (19) to 2.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (19) to 2.20, 2.40, 2.60, 2.80, and further to 3.00. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(20) 0.30 < (-f11)/f2l < 4.00
但し、
 f11 : 前群において最も物体側に配置されるレンズの焦点距離
 f2l : 後群において最も像側に配置されるレンズの焦点距離
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(20) 0.30 < (-f11)/f2l < 4.00
however,
f11: Focal length of the lens closest to the object side in the front group f2l: Focal length of the lens closest to the image side in the rear group
 条件式(20)は、前群において最も物体側に配置されるレンズの焦点距離と後群において最も像側に配置されるレンズの焦点距離との比を規定する。本実施形態の光学系は、条件式(20)を満足することで、前群において最も物体側に配置されるレンズの径の増大を抑制しつつ、球面収差、コマ収差といった諸収差を適切に補正することができる。 Conditional expression (20) defines the ratio between the focal length of the lens located closest to the object side in the front group and the focal length of the lens located closest to the image side in the rear group. By satisfying the conditional expression (20), the optical system of the present embodiment suppresses an increase in the diameter of the lens located closest to the object side in the front group, while suppressing various aberrations such as spherical aberration and coma. can be corrected.
 本実施形態の光学系において条件式(20)の値が上限値を上回ると、前群のパワーが弱くなって前群において最も物体側に配置されるレンズの径が増大し、後群のパワーが強くなって球面収差が悪化する。 In the optical system of this embodiment, when the value of conditional expression (20) exceeds the upper limit, the power of the front group weakens, the diameter of the lens located closest to the object side in the front group increases, and the power of the rear group increases. becomes stronger and the spherical aberration worsens.
 本実施形態の光学系では、条件式(20)の上限値を4.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(20)の上限値を3.80、3.65、3.45、3.30、さらに3.10に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (20) to 4.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (20) to 3.80, 3.65, 3.45, 3.30, and further to 3.10. .
 また、本実施形態の光学系において条件式(20)の値が下限値を下回ると、球面収差、コマ収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (20) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as spherical aberration and coma.
 本実施形態の光学系では、条件式(20)の下限値を0.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(20)の下限値を0.32、0.34、0.36、0.38、さらに0.40に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (20) to 0.30, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (20) to 0.32, 0.34, 0.36, 0.38, and further to 0.40. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(21) 2.00 < (-f12)/f < 6.00
但し、
 f12 : 前群において物体側から2番目に配置されるレンズの焦点距離
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(21) 2.00 < (-f12)/f < 6.00
however,
f12: focal length of the second lens from the object side in the front group
 条件式(21)は、前群において物体側から2番目に配置されるレンズの焦点距離と光学系全系の焦点距離との比を規定する。本実施形態の光学系は、条件式(21)を満足することで、歪曲収差、像面湾曲、非点収差といった諸収差を適切に補正することができる。 Conditional expression (21) defines the ratio between the focal length of the lens arranged second from the object side in the front group and the focal length of the entire optical system. By satisfying the conditional expression (21), the optical system of this embodiment can appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
 本実施形態の光学系において条件式(21)の値が上限値を上回ると、歪曲収差、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 If the value of conditional expression (21) exceeds the upper limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
 本実施形態の光学系では、条件式(21)の上限値を6.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(21)の上限値を5.80、5.55、5.35、5.10、さらに4.90に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (21) to 6.00, the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (21) to 5.80, 5.55, 5.35, 5.10, and further to 4.90. .
 また、本実施形態の光学系において条件式(21)の値が下限値を下回ると、歪曲収差、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (21) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as distortion, curvature of field, and astigmatism.
 本実施形態の光学系では、条件式(21)の下限値を2.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(21)の下限値を2.25、2.50、2.70、3.00、さらに3.20に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (21) to 2.00, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (21) to 2.25, 2.50, 2.70, 3.00, and more preferably 3.20. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(22) 1.40 < f11/f12 < 3.50
但し、
 f11 : 前群において最も物体側に配置されるレンズの焦点距離
 f12 : 前群において物体側から2番目に配置されるレンズの焦点距離
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(22) 1.40 < f11/f12 < 3.50
however,
f11: focal length of the lens closest to the object side in the front group f12: focal length of the lens second from the object side in the front group
 条件式(22)は、前群において最も物体側に配置されるレンズの焦点距離と前群において物体側から2番目に配置されるレンズの焦点距離との比を規定する。本実施形態の光学系は、条件式(22)を満足することで、前群において最も物体側に配置されるレンズの径の増大を抑制しつつ、像面湾曲、非点収差といった諸収差を適切に補正することができる。 Conditional expression (22) defines the ratio between the focal length of the lens located closest to the object side in the front group and the focal length of the lens located second from the object side in the front group. By satisfying the conditional expression (22), the optical system of the present embodiment suppresses an increase in the diameter of the lens located closest to the object side in the front group, while suppressing various aberrations such as curvature of field and astigmatism. can be corrected appropriately.
 本実施形態の光学系において条件式(22)の値が上限値を上回ると、前群において最も物体側に配置されるレンズの径が増大し、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 When the value of conditional expression (22) in the optical system of this embodiment exceeds the upper limit, the diameter of the lens located closest to the object side in the front group increases, and various aberrations such as curvature of field and astigmatism are corrected appropriately. correction becomes difficult.
 本実施形態の光学系では、条件式(22)の上限値を3.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(22)の上限値を3.40、3.35、3.25、3.20、さらに3.10に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (22) to 3.50, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (22) to 3.40, 3.35, 3.25, 3.20, and further to 3.10. .
 また、本実施形態の光学系において条件式(22)の値が下限値を下回ると、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 Also, if the value of conditional expression (22) is less than the lower limit in the optical system of this embodiment, it becomes difficult to appropriately correct various aberrations such as curvature of field and astigmatism.
 本実施形態の光学系では、条件式(22)の下限値を1.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(22)の下限値を1.50、1.60、1.70、1.83、さらに1.95に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (22) to 1.40, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (22) to 1.50, 1.60, 1.70, 1.83, and more preferably 1.95. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(23) 1.85 < nd1 < 2.20
但し、
 nd1 : 前群において最も物体側に配置されるレンズのd線を基準とする屈折率
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(23) 1.85 < nd1 < 2.20
however,
nd1: Refractive index of the lens closest to the object in the front group with respect to the d-line
 条件式(23)は、前群において最も物体側に配置されるレンズのd線を基準とする屈折率を規定する。本実施形態の光学系は、条件式(23)を満足することで、像面湾曲を適切に補正することができる。 Conditional expression (23) defines the refractive index of the lens located closest to the object side in the front group with respect to the d-line. The optical system of this embodiment satisfies the conditional expression (23), so that the curvature of field can be appropriately corrected.
 本実施形態の光学系において条件式(23)の値が上限値を上回ると、前群において最も物体側に配置されるレンズのパワーが強くなり、像面湾曲の適切な補正が困難となる。 When the value of conditional expression (23) exceeds the upper limit value in the optical system of this embodiment, the power of the lens located closest to the object side in the front group becomes strong, making it difficult to appropriately correct curvature of field.
 本実施形態の光学系では、条件式(23)の上限値を2.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(23)の上限値を2.15、2.10、2.05、さらに1.95に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (23) to 2.20, the effects of this embodiment can be made more reliable. Moreover, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (23) to 2.15, 2.10, 2.05, and further to 1.95.
 また、本実施形態の光学系において条件式(23)の値が下限値を下回ると、前群において最も物体側に配置されるレンズのパワーが弱くなり、像面湾曲の適切な補正が困難となる。 In addition, if the value of conditional expression (23) in the optical system of this embodiment falls below the lower limit, the power of the lens located closest to the object side in the front group becomes weak, making it difficult to appropriately correct curvature of field. Become.
 本実施形態の光学系では、条件式(23)の下限値を1.85に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(23)の下限値を1.87、1.89、1.91、1.93、さらに1.95に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (23) to 1.85, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (23) to 1.87, 1.89, 1.91, 1.93, and more preferably 1.95. .
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(24) 1.50 < nd2 < 1.95
但し、
 nd2 : 前群において物体側から2番目に配置されるレンズのd線を基準とする屈折率
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(24) 1.50 < nd2 < 1.95
however,
nd2: Refractive index with respect to the d-line of the second lens from the object side in the front group
 条件式(24)は、前群において物体側から2番目に配置されるレンズのd線を基準とする屈折率を規定する。本実施形態の光学系は、条件式(24)を満足することで、像面湾曲を適切に補正することができる。 Conditional expression (24) defines the refractive index of the second lens from the object side in the front group with respect to the d-line. The optical system of this embodiment satisfies the conditional expression (24), so that the curvature of field can be appropriately corrected.
 本実施形態の光学系において条件式(24)の値が上限値を上回ると、前群において物体側から2番目に配置されるレンズのパワーが強くなり、像面湾曲の適切な補正が困難となる。 In the optical system of this embodiment, when the value of conditional expression (24) exceeds the upper limit, the power of the second lens from the object side in the front group becomes strong, making it difficult to appropriately correct curvature of field. Become.
 本実施形態の光学系では、条件式(24)の上限値を1.95に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(24)の上限値を1.90、1.85、1.80、1.75、さらに1.70に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (24) to 1.95, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (24) to 1.90, 1.85, 1.80, 1.75, and more preferably 1.70. .
 また、本実施形態の光学系において条件式(24)の値が下限値を下回ると、前群において物体側から2番目に配置されるレンズのパワーが弱くなり、像面湾曲の適切な補正が困難となる。 Further, when the value of conditional expression (24) in the optical system of the present embodiment is below the lower limit, the power of the second lens from the object side in the front group becomes weak, and appropriate correction of field curvature is not possible. becomes difficult.
 本実施形態の光学系では、条件式(24)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(24)の下限値を1.51、1.52、さらに1.53に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (24) to 1.50, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (24) to 1.51, 1.52, and more preferably 1.53.
 また、本実施形態の光学系は、以下の条件式を満足することが好ましい。
(25) 1.45 < nd3 < 1.90
但し、
 nd3 : 後群において最も像側に配置されるレンズのd線を基準とする屈折率
Moreover, the optical system of this embodiment preferably satisfies the following conditional expression.
(25) 1.45 < nd3 < 1.90
however,
nd3: Refractive index of the lens closest to the image side in the rear group with respect to the d-line
 条件式(25)は、後群において最も像側に配置されるレンズのd線を基準とする屈折率を規定する。本実施形態の光学系は、条件式(25)を満足することで、像面湾曲、非点収差といった諸収差を適切に補正することができる。 Conditional expression (25) defines the refractive index of the lens located closest to the image side in the rear group with respect to the d-line. By satisfying the conditional expression (25), the optical system of this embodiment can appropriately correct various aberrations such as curvature of field and astigmatism.
 本実施形態の光学系において条件式(25)の値が上限値を上回ると、後群において最も像側に配置されるレンズのパワーが強くなり、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 When the value of conditional expression (25) in the optical system of this embodiment exceeds the upper limit, the power of the lens located closest to the image side in the rear group becomes strong, and various aberrations such as curvature of field and astigmatism are corrected appropriately. correction becomes difficult.
 本実施形態の光学系では、条件式(25)の上限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(25)の上限値を1.85、1.80、1.75、さらに1.70に設定することが好ましい。 In the optical system of this embodiment, by setting the upper limit of conditional expression (25) to 1.90, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (25) to 1.85, 1.80, 1.75, and more preferably 1.70.
 また、本実施形態の光学系において条件式(25)の値が下限値を下回ると、後群において最も像側に配置されるレンズのパワーが弱くなり、像面湾曲、非点収差といった諸収差の適切な補正が困難となる。 Further, when the value of conditional expression (25) in the optical system of this embodiment is below the lower limit, the power of the lens located closest to the image side in the rear group becomes weak, and various aberrations such as curvature of field and astigmatism It becomes difficult to appropriately correct the
 本実施形態の光学系では、条件式(25)の下限値を1.45に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(25)の下限値を1.46、1.47、1.48、さらに1.49に設定することが好ましい。 In the optical system of this embodiment, by setting the lower limit of conditional expression (25) to 1.45, the effects of this embodiment can be made more reliable. Also, in order to ensure the effect of this embodiment, it is preferable to set the lower limit of conditional expression (25) to 1.46, 1.47, 1.48, and more preferably 1.49.
 以上の構成により、小型で良好な結像性能を有する光学系を実現することができる。 With the above configuration, it is possible to realize an optical system that is compact and has good imaging performance.
 本実施形態の光学機器は、上述した構成の光学系を有している。これにより、小型で良好な光学性能を有する光学機器を実現することができる。 The optical apparatus of this embodiment has the optical system having the above configuration. As a result, it is possible to realize an optical device that is compact and has good optical performance.
 本実施形態の光学系の製造方法は、物体側から順に、前群と、開口絞りと、後群とからなり、前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、後群は、少なくとも4枚のレンズを有する光学系の製造方法であって、以下の条件式をともに満足するように各レンズを配置する。
(1) 1.60 < f14/(-f112) < 5.20
(2) 0.70 < T14/f< 4.50
(3) 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
The manufacturing method of the optical system of this embodiment comprises, in order from the object side, a front group, an aperture stop, and a rear group. The front group comprises, in order from the object side, at least three negative lenses and at least one A manufacturing method for an optical system having a positive lens and at least four lenses in a rear group, wherein the lenses are arranged so as to satisfy both of the following conditional expressions.
(1) 1.60 < f14/(-f112) < 5.20
(2) 0.70<T14/f<4.50
(3) 160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2ω: total angle of view of the optical system
 このような光学系の製造方法により、小型で良好な光学性能を有する光学系を製造することができる。 With such an optical system manufacturing method, it is possible to manufacture a compact optical system with good optical performance.
 (数値実施例)
 以下、本願の実施例を図面に基づいて説明する。
(Numerical example)
Embodiments of the present application will be described below with reference to the drawings.
 (第1実施例)
 図1は、第1実施例の光学系の断面図である。
(First embodiment)
FIG. 1 is a sectional view of the optical system of the first embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
 後群G2は、物体側から順に、両凸形状の正レンズL5と、両凸形状の正レンズL6と両凹形状の負レンズL7との接合負レンズと、両凸形状の正レンズL8とからなる。 The rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表1に、本実施例の光学系の諸元の値を掲げる。 Table 1 below lists the values of the specifications of the optical system of this embodiment.
 表1の[全体諸元]において、TLは空気換算長での光学系の全長、fは光学系の焦点距離を示す。 In [Overall specifications] in Table 1, TL indicates the total length of the optical system in air conversion length, and f indicates the focal length of the optical system.
 表1の[レンズ諸元]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔、ndはd線(波長587.6nm)に対する屈折率、νdはd線に対するアッベ数を示す。曲率半径r=∞は平面を示している。また、「*」の付された光学面は非球面であることを示している。 In [Lens specifications] in Table 1, m is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface spacing, nd is the refractive index for the d-line (wavelength 587.6 nm), and νd is for the d-line. Indicates the Abbe number. A radius of curvature r=∞ indicates a plane. Also, the optical surfaces marked with "*" are aspheric surfaces.
 表1の[非球面データ]において、mは非球面データに対応する光学面、Kは円錐定数、A4~A12は非球面係数を示す。 In [Aspheric data] in Table 1, m is the optical surface corresponding to the aspheric data, K is the conic constant, and A4 to A12 are the aspheric coefficients.
 非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、各実施例において、2次の非球面係数A2は0である。また、「E-n」は「×10-n」を示す。 The height of the aspherical surface in the direction perpendicular to the optical axis is y, and the distance (sag) along the optical axis from the tangent plane of the vertex of each aspherical surface to each aspherical surface at height y is S(y) where r is the radius of curvature (paraxial radius of curvature) of the reference spherical surface, K is the conic constant, and An is the n-th order aspheric coefficient. In each example, the second-order aspheric coefficient A2 is zero. Also, "En" indicates "×10 -n ".
(a) S(y) = (y2/r) / { 1 + (1-K×y2/r2)1/2 }
        + A4×y4 + A6×y6 + A8×y8 + A10×y10 + A12×y12
(a) S(y) = ( y2 /r)/{1+(1-K× y2 / r2 ) 1/2 }
+ A4× y4 + A6× y6 + A8× y8 + A10× y10 + A12× y12
 表1に記載される焦点距離f、曲率半径rおよびその他の長さの単位は「mm」である。しかし、光学系は比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。 The unit of focal length f, radius of curvature r and other lengths listed in Table 1 is "mm". However, the optical system is not limited to this because equivalent optical performance can be obtained even if the optical system is proportionally enlarged or proportionally reduced.
 以上に述べた表1の符号は、後述する他の実施例の表においても同様に使用する。 The symbols in Table 1 described above are also used in the tables of other examples described later.
 (表1)
[全体諸元]
TL  25.11
f   1.58

[レンズ諸元]
 m    r     d     nd    νd
 1)  16.242   1.550  2.001000  29.12
 2)   7.470   4.000
* 3)   7.800   1.000  1.693500  53.20
* 4)   2.526   2.640
 5)  150.000   0.350  1.603000  65.44
 6)   3.308   0.720
 7)  11.331   5.160  1.846660  23.80
 8)  -11.331   0.200
 9>   ∞    0.100   (開口絞り)
 10)   6.695   1.750  1.693500  53.20
 11)  -6.695   0.100
 12)   9.627   1.580  1.618000  63.34
 13)  -3.017   0.350  1.846660  23.80
 14)   8.500   1.860
*15)   4.300   1.620  1.553319  71.68
*16)  -21.831   1.000
 17)   ∞    1.000  1.516800  63.88
 18)   ∞    0.466

[非球面データ]
 m   K    A4     A6     A8    A10
 3) 1.0000 -2.37E-03  4.92E-05 -9.48E-07  9.14E-09
 4) 1.0000  1.88E-02 -2.00E-03  2.46E-04 -1.20E-05
 15) 1.0000 -4.42E-03 -1.33E-04 -9.98E-05  5.00E-06
 16) 1.0000  2.93E-04  3.04E-04 -2.09E-04  1.63E-05

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -5.61
G2  10    5.27
(Table 1)
[Overall specifications]
TL 25.11
f1.58

[Lens specifications]
m r d nd νd
1) 16.242 1.550 2.001000 29.12
2) 7.470 4.000
* 3) 7.800 1.000 1.693500 53.20
* 4) 2.526 2.640
5) 150.000 0.350 1.603000 65.44
6) 3.308 0.720
7) 11.331 5.160 1.846660 23.80
8) -11.331 0.200
9> ∞ 0.100 (aperture diaphragm)
10) 6.695 1.750 1.693500 53.20
11) -6.695 0.100
12) 9.627 1.580 1.618000 63.34
13) -3.017 0.350 1.846660 23.80
14) 8.500 1.860
*15) 4.300 1.620 1.553319 71.68
*16) -21.831 1.000
17) ∞ 1.000 1.516800 63.88
18) ∞ 0.466

[Aspheric data]
mK A4 A6 A8 A10
3) 1.0000 -2.37E-03 4.92E-05 -9.48E-07 9.14E-09
4) 1.0000 1.88E-02 -2.00E-03 2.46E-04 -1.20E-05
15) 1.0000 -4.42E-03 -1.33E-04 -9.98E-05 5.00E-06
16) 1.0000 2.93E-04 3.04E-04 -2.09E-04 1.63E-05

[Each group focal length data]
Group Starting surface Focal length
G1 1 -5.61
G2 10 5.27
 図2は第1実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差を適切に補正し、高い光学性能を有していることがわかる。 FIG. 2 is a diagram of various aberrations of the optical system of the first embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
 (第2実施例)
 図3は、第2実施例の光学系の断面図である。
(Second embodiment)
FIG. 3 is a sectional view of the optical system of the second embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
 後群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL5と両凸形状の正レンズL6との接合正レンズと、両凸形状の正レンズL7と両凹形状の負レンズL8との接合負レンズと、両凸形状の正レンズL9とからなる。 The rear group G2 includes, in order from the object side, a positive lens cemented by a negative meniscus lens L5 having a convex surface facing the object side cemented with a biconvex positive lens L6, a biconvex positive lens L7 and a biconcave negative lens. It consists of a cemented negative lens L8 and a biconvex positive lens L9.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表2に、本実施例の光学系の諸元の値を掲げる。 Table 2 below lists the values of the specifications of the optical system of this example.
 (表2)
[全体諸元]
TL  24.92
f   1.46

[レンズ諸元]
 m    r     d     nd    νd
 1)  17.000   1.350  2.001000  29.12
 2)   7.470   4.000
* 3)   7.148   1.000  1.693500  53.20
* 4)   2.404   2.726
 5)  150.000   0.350  1.603000  65.44
 6)   2.948   0.839
 7)   8.259   5.242  1.846660  23.80
 8)  -8.681   0.200
 9>   ∞    0.100   (開口絞り)
 10)   8.000   0.350  1.846660  23.80
 11)   3.836   1.180  1.772500  49.62
 12)  -7.944   0.729
 13)  22.427   1.332  1.618000  63.34
 14)  -3.378   0.350  1.846660  23.80
 15)   8.000   1.010
*16)   4.300   2.000  1.553319  71.68
*17)  -7.734   0.644
 18)   ∞    0.900  1.516800  63.88
 19)   ∞    0.930

[非球面データ]
 m   K    A4     A6     A8    A10
 3) 1.0000 -1.17E-04 -9.10E-05  2.28E-06 -2.20E-08
 4) 1.0000  2.39E-02 -2.26E-03  2.77E-04 -1.71E-05
 16) 1.0000 -3.29E-03 -2.05E-04  1.18E-05 -3.25E-06
 17) 1.0000 -1.26E-03 -1.59E-04 -2.61E-05  1.21E-06

[各群焦点距離データ]
群  始面   焦点距離
G1   1   -17.47
G2  10    11.66
(Table 2)
[Overall specifications]
TL 24.92
f1.46

[Lens specifications]
m r d nd νd
1) 17.000 1.350 2.001000 29.12
2) 7.470 4.000
* 3) 7.148 1.000 1.693500 53.20
* 4) 2.404 2.726
5) 150.000 0.350 1.603000 65.44
6) 2.948 0.839
7) 8.259 5.242 1.846660 23.80
8) -8.681 0.200
9> ∞ 0.100 (aperture diaphragm)
10) 8.000 0.350 1.846660 23.80
11) 3.836 1.180 1.772500 49.62
12) -7.944 0.729
13) 22.427 1.332 1.618000 63.34
14) -3.378 0.350 1.846660 23.80
15) 8.000 1.010
*16) 4.300 2.000 1.553319 71.68
*17) -7.734 0.644
18) ∞ 0.900 1.516800 63.88
19) ∞ 0.930

[Aspheric data]
mK A4 A6 A8 A10
3) 1.0000 -1.17E-04 -9.10E-05 2.28E-06 -2.20E-08
4) 1.0000 2.39E-02 -2.26E-03 2.77E-04 -1.71E-05
16) 1.0000 -3.29E-03 -2.05E-04 1.18E-05 -3.25E-06
17) 1.0000 -1.26E-03 -1.59E-04 -2.61E-05 1.21E-06

[Each group focal length data]
Group Starting surface Focal length
G1 1 -17.47
G2 10 11.66
 図4は第2実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差変動を適切の補正し、高い光学性能を有していることがわかる。 FIG. 4 is a diagram of various aberrations of the optical system of the second embodiment. From each aberration diagram, it can be seen that the optical system of this example properly corrects various aberration fluctuations and has high optical performance.
 (第3実施例)
 図5は、第3実施例の光学系の断面図である。
(Third embodiment)
FIG. 5 is a cross-sectional view of the optical system of the third embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凹形状の負レンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 includes, in order from the object, a negative meniscus lens L1 with a convex surface facing the object, a negative meniscus lens L2 with a convex surface facing the object, a biconcave negative lens L3, and a biconvex positive lens. and a lens L4.
 後群G2は、物体側から順に、両凸形状の正レンズL5と物体側に凹面を向けた負メニスカスレンズL6との接合正レンズと、両凸形状の正レンズL7と両凹形状の負レンズL8との接合負レンズと、両凸形状の正レンズL9とからなる。 The rear group G2 includes, in order from the object side, a positive lens cemented with a biconvex positive lens L5 cemented with a negative meniscus lens L6 having a concave surface facing the object side, a biconvex positive lens L7 and a biconcave negative lens. It consists of a cemented negative lens L8 and a biconvex positive lens L9.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表3に、本実施例の光学系の諸元の値を掲げる。 Table 3 below lists the values of the specifications of the optical system of this embodiment.
 (表3)
[全体諸元]
TL  25.10
f   1.55

[レンズ諸元]
 m    r     d     nd    νd
 1)  14.911   1.100  2.001000  29.12
 2)   8.018   3.870
* 3)   7.715   0.900  1.693500  53.20
* 4)   2.951   3.137
 5)  -34.050   0.350  1.618000  63.34
 6)   2.899   0.800
 7)   9.146   5.604  1.846660  23.80
 8)  -10.196   0.100
 9>   ∞    0.100   (開口絞り)
 10)   6.378   1.319  1.703891  48.40
 11)  -3.167   0.350  1.694100  30.84
 12)  -8.017   0.266
 13)  11.309   1.335  1.618000  63.34
 14)  -3.703   0.353  1.846660  23.80
 15)   6.257   0.997
*16)   4.477   2.392  1.637394  54.33
*17)  -15.887   0.600
 18)   ∞    0.900  1.516800  63.88
 19)   ∞    0.934

[非球面データ]
 m   K    A4     A6     A8    A10
 3) 1.0000 -6.00E-04 -4.00E-05  1.16E-06 -1.14E-08
 4) 1.0000  1.23E-02 -7.84E-04  5.93E-05 -2.47E-06
 16) 1.0000 -3.28E-03 -1.15E-04  8.12E-06 -4.39E-06
 17) 1.0000  5.89E-04  3.02E-04 -9.50E-05  5.82E-06

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -8.27
G2  10    11.84
(Table 3)
[Overall specifications]
TL 25.10
f1.55

[Lens specifications]
m r d nd νd
1) 14.911 1.100 2.001000 29.12
2) 8.018 3.870
* 3) 7.715 0.900 1.693500 53.20
* 4) 2.951 3.137
5) -34.050 0.350 1.618000 63.34
6) 2.899 0.800
7) 9.146 5.604 1.846660 23.80
8) -10.196 0.100
9> ∞ 0.100 (aperture diaphragm)
10) 6.378 1.319 1.703891 48.40
11) -3.167 0.350 1.694100 30.84
12) -8.017 0.266
13) 11.309 1.335 1.618000 63.34
14) -3.703 0.353 1.846660 23.80
15) 6.257 0.997
*16) 4.477 2.392 1.637394 54.33
*17) -15.887 0.600
18) ∞ 0.900 1.516800 63.88
19) ∞ 0.934

[Aspheric data]
mK A4 A6 A8 A10
3) 1.0000 -6.00E-04 -4.00E-05 1.16E-06 -1.14E-08
4) 1.0000 1.23E-02 -7.84E-04 5.93E-05 -2.47E-06
16) 1.0000 -3.28E-03 -1.15E-04 8.12E-06 -4.39E-06
17) 1.0000 5.89E-04 3.02E-04 -9.50E-05 5.82E-06

[Each group focal length data]
Group Starting surface Focal length
G1 1 -8.27
G2 10 11.84
 図6は第3実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差変動を適切に補正し、高い光学性能を有していることがわかる。 FIG. 6 is a diagram of various aberrations of the optical system of the third embodiment. From each aberration diagram, it can be seen that the optical system of this example appropriately corrects various aberration fluctuations and has high optical performance.
 (第4実施例)
 図7は、第4実施例の光学系の断面図である。
(Fourth embodiment)
FIG. 7 is a sectional view of the optical system of the fourth embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
 後群G2は、物体側から順に、両凸形状の正レンズL5と、両凹形状の負レンズL6と、両凸形状の正レンズL7と両凹形状の負レンズL8との接合負レンズと、両凸形状の正レンズL9とからなる。 The rear group G2 includes, in order from the object side, a biconvex positive lens L5, a biconcave negative lens L6, a cemented negative lens composed of a biconvex positive lens L7 and a biconcave negative lens L8, and a biconvex positive lens L9.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表4に、本実施例の光学系の諸元の値を掲げる。 Table 4 below lists the values of the specifications of the optical system of this example.
 (表4)
[全体諸元]
TL  23.85
f   1.37

[レンズ諸元]
 m    r     d     nd    νd
 1)  16.071   1.000  2.001000  29.12
 2)   7.253   4.000
* 3)   8.826   0.900  1.693500  53.20
* 4)   2.255   2.199
* 5)   8.819   0.800  1.583130  59.46
*6)   3.162   1.026
 7)  14.975   4.610  1.846660  23.80
* 8)  -11.571   0.200
 9>   ∞    0.100   (開口絞り)
*10)   6.802   1.595  1.693500  53.20
*11)  -6.090   0.119
*12)  -14.806   0.800  1.688930  31.16
*13)  18.559   0.100
 14)   4.391   1.800  1.618000  63.34
 15)  -3.503   0.350  1.846660  23.80
 16)   4.912   0.481
*17)   3.602   1.641  1.553319  71.68
*18)  -7.222   0.600
 19)   ∞    0.900  1.516800  63.88
 20)   ∞    0.934

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 3) 0.0000  4.80E-06 -1.03E-09  1.15E-12  5.58E-15
 3) 1.0000 -9.52E-04  5.89E-06  5.51E-07 -1.26E-08
 4) 1.0000  1.17E-02 -1.15E-03  1.21E-04 -4.47E-06
 5) 1.0000 -5.07E-03 -2.73E-04 -2.59E-05  7.72E-06
 6) 1.0000  3.70E-03 -6.14E-04 -1.97E-04  6.46E-05
 8) 1.0000 -4.96E-03  2.59E-03
 10) 1.0000 -7.47E-04  4.27E-03  2.06E-03 -6.13E-04
 11) 1.0000 -2.06E-02  1.73E-02  5.97E-03 -3.17E-04
 12) 1.0000 -4.77E-02  1.90E-02  8.47E-03 -2.11E-03  8.46224E-25
 13) 1.0000 -2.36E-02  4.42E-03  2.93E-04 -1.48E-04  8.46224E-25
 17) 1.0000 -1.85E-03 -2.10E-03  3.39E-04 -4.25E-05
 18) 1.0000  1.58E-02 -4.32E-03  3.55E-04 -2.33E-05

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -5.81
G2  10    6.56
(Table 4)
[Overall specifications]
TL23.85
f1.37

[Lens specifications]
m r d nd νd
1) 16.071 1.000 2.001000 29.12
2) 7.253 4.000
* 3) 8.826 0.900 1.693500 53.20
* 4) 2.255 2.199
* 5) 8.819 0.800 1.583130 59.46
*6) 3.162 1.026
7) 14.975 4.610 1.846660 23.80
*8) -11.571 0.200
9> ∞ 0.100 (aperture diaphragm)
*10) 6.802 1.595 1.693500 53.20
*11) -6.090 0.119
*12) -14.806 0.800 1.688930 31.16
*13) 18.559 0.100
14) 4.391 1.800 1.618000 63.34
15) -3.503 0.350 1.846660 23.80
16) 4.912 0.481
*17) 3.602 1.641 1.553319 71.68
*18) -7.222 0.600
19) ∞ 0.900 1.516800 63.88
20) ∞ 0.934

[Aspheric data]
mK A4 A6 A8 A10 A12
3) 0.0000 4.80E-06 -1.03E-09 1.15E-12 5.58E-15
3) 1.0000 -9.52E-04 5.89E-06 5.51E-07 -1.26E-08
4) 1.0000 1.17E-02 -1.15E-03 1.21E-04 -4.47E-06
5) 1.0000 -5.07E-03 -2.73E-04 -2.59E-05 7.72E-06
6) 1.0000 3.70E-03 -6.14E-04 -1.97E-04 6.46E-05
8) 1.0000 -4.96E-03 2.59E-03
10) 1.0000 -7.47E-04 4.27E-03 2.06E-03 -6.13E-04
11) 1.0000 -2.06E-02 1.73E-02 5.97E-03 -3.17E-04
12) 1.0000 -4.77E-02 1.90E-02 8.47E-03 -2.11E-03 8.46224E-25
13) 1.0000 -2.36E-02 4.42E-03 2.93E-04 -1.48E-04 8.46224E-25
17) 1.0000 -1.85E-03 -2.10E-03 3.39E-04 -4.25E-05
18) 1.0000 1.58E-02 -4.32E-03 3.55E-04 -2.33E-05

[Each group focal length data]
Group Starting surface Focal length
G1 1 -5.81
G2 10 6.56
 図8は第4実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差を適切の補正し、高い光学性能を有していることがわかる。 FIG. 8 is a diagram of various aberrations of the optical system of the fourth embodiment. From each aberration diagram, it can be seen that the optical system of this example properly corrects various aberrations and has high optical performance.
 (第5実施例)
 図9は、第5実施例の光学系の断面図である。
(Fifth embodiment)
FIG. 9 is a sectional view of the optical system of the fifth embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. and a convex positive lens L4.
 後群G2は、物体側から順に、両凸形状の正レンズL5と、両凸形状の正レンズL6と両凹形状の負レンズL7との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL8とからなる。 The rear group G2 includes, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a positive meniscus with a convex surface facing the object side. and a lens L8.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表5に、本実施例の光学系の諸元の値を掲げる。 Table 5 below lists the values of the specifications of the optical system of this example.
 (表5)
[全体諸元]
TL  25.11
f   1.67

[レンズ諸元]
 m    r     d     nd    νd
 1)  15.025   1.200  2.001000  29.12
 2)   7.434   4.100
* 3)   7.122   0.900  1.693500  53.20
* 4)   2.909   2.309
 5)  150.000   0.350  1.603000  65.44
 6)   3.355   0.831
 7)  16.124   4.804  1.846660  23.80
 8)  -17.479   0.200
 9>   ∞    0.100   (開口絞り)
 10)   6.246   2.485  1.755000  52.34
 11)  -7.595   0.153
 12)   5.970   1.564  1.603110  60.69
 13)  -3.361   0.350  1.846660  23.80
 14)   7.747   1.403
*15)   3.949   1.150  1.622625  58.16
*16)  21.622   0.600
 17)   ∞    0.900  1.516800  63.88
 18)   ∞    0.934

[非球面データ]
 m   K    A4     A6     A8    A10
 3)  1.0000 -2.51E-03  3.20E-05 -8.07E-08 -5.30E-09
 4)  1.0000  1.58E-02 -1.84E-03  2.20E-04 -1.00E-05
 15)  1.0000 -2.51E-03  4.30E-04 -2.56E-04  2.59E-06
 16)  1.0000 -5.18E-04  1.50E-03 -6.32E-04  4.30E-05

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -3.83
G2  10    4.45
(Table 5)
[Overall specifications]
TL 25.11
f1.67

[Lens specifications]
m r d nd νd
1) 15.025 1.200 2.001000 29.12
2) 7.434 4.100
* 3) 7.122 0.900 1.693500 53.20
* 4) 2.909 2.309
5) 150.000 0.350 1.603000 65.44
6) 3.355 0.831
7) 16.124 4.804 1.846660 23.80
8) -17.479 0.200
9> ∞ 0.100 (aperture diaphragm)
10) 6.246 2.485 1.755000 52.34
11) -7.595 0.153
12) 5.970 1.564 1.603110 60.69
13) -3.361 0.350 1.846660 23.80
14) 7.747 1.403
*15) 3.949 1.150 1.622625 58.16
*16) 21.622 0.600
17) ∞ 0.900 1.516800 63.88
18) ∞ 0.934

[Aspheric data]
mK A4 A6 A8 A10
3) 1.0000 -2.51E-03 3.20E-05 -8.07E-08 -5.30E-09
4) 1.0000 1.58E-02 -1.84E-03 2.20E-04 -1.00E-05
15) 1.0000 -2.51E-03 4.30E-04 -2.56E-04 2.59E-06
16) 1.0000 -5.18E-04 1.50E-03 -6.32E-04 4.30E-05

[Each group focal length data]
Group Starting surface Focal length
G1 1 -3.83
G2 10 4.45
 図10は第5実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差変動を適切の補正し、高い光学性能を有していることがわかる。 FIG. 10 is a diagram of various aberrations of the optical system of the fifth embodiment. From each aberration diagram, it can be seen that the optical system of this example properly corrects various aberration fluctuations and has high optical performance.
 (第6実施例)
 図11は、第6実施例の光学系の断面図である。
(Sixth embodiment)
FIG. 11 is a sectional view of the optical system of the sixth embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凹形状の負レンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 comprises, in order from the object side, a negative meniscus lens L1 with a convex surface facing the object side, a biconcave negative lens L2, a negative meniscus lens L3 with a convex surface facing the object side, and a biconvex positive lens element L3. and a lens L4.
 後群G2は、物体側から順に、両凸形状の正レンズL5と、両凸形状の正レンズL6と両凹形状の負レンズL7との接合負レンズと、両凸形状の正レンズL8とからなる。 The rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表6に、本実施例の光学系の諸元の値を掲げる。 Table 6 below lists the values of the specifications of the optical system of this example.
 (表6)
[全体諸元]
TL  15.63
f   1.40

[レンズ諸元]
 m    r     d     nd    νd
 1)  10.756   0.700  1.751854  31.11
 2)   3.274   2.152
 3)  -26.768   0.500  1.533408  65.98
 4)   2.304   0.948
 5)  16.058   0.500  1.487490  70.41
 6)   2.884   0.369
 7)   5.360   1.045  1.846660  23.80
 8)  -16.318   1.047
 9>   ∞    0.485   (開口絞り)
 10)  12.074   1.031  1.620410  60.32
 11)  -4.062   0.100
 12)   5.908   2.034  1.717510  54.36
 13)  -2.566   0.600  1.846660  23.80
 14)   3.942   0.215
*15)   3.666   2.113  1.772502  49.50
*16)  -6.641   0.197
 17)   ∞    0.700  1.516800  63.88
 18)   ∞    1.132

[非球面データ]
 m   K    A4     A6     A8    A10
 15) 1.0000 -5.53E-03  5.95E-04 -4.97E-05 -2.76E-06
 16) 1.0000  5.53E-03 -4.60E-04  1.92E-04 -2.47E-05

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -3.50
G2  10    3.47
(Table 6)
[Overall specifications]
TL 15.63
f1.40

[Lens specifications]
m r d nd νd
1) 10.756 0.700 1.751854 31.11
2) 3.274 2.152
3) -26.768 0.500 1.533408 65.98
4) 2.304 0.948
5) 16.058 0.500 1.487490 70.41
6) 2.884 0.369
7) 5.360 1.045 1.846660 23.80
8) -16.318 1.047
9> ∞ 0.485 (aperture diaphragm)
10) 12.074 1.031 1.620410 60.32
11) -4.062 0.100
12) 5.908 2.034 1.717510 54.36
13) -2.566 0.600 1.846660 23.80
14) 3.942 0.215
*15) 3.666 2.113 1.772502 49.50
*16) -6.641 0.197
17) ∞ 0.700 1.516800 63.88
18) ∞ 1.132

[Aspheric data]
mK A4 A6 A8 A10
15) 1.0000 -5.53E-03 5.95E-04 -4.97E-05 -2.76E-06
16) 1.0000 5.53E-03 -4.60E-04 1.92E-04 -2.47E-05

[Each group focal length data]
Group Starting surface Focal length
G1 1 -3.50
G2 10 3.47
 図12は第6実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差を適切に補正し、高い光学性能を有していることがわかる。 12A and 12B are various aberration diagrams of the optical system of the sixth embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
 (第7実施例)
 図13は、第7実施例の光学系の断面図である。
(Seventh embodiment)
FIG. 13 is a sectional view of the optical system of the seventh embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凹形状の負レンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、物体側に凸面を向けた正メニスカスレンズL4とからなる。 The front group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a biconcave negative lens L2, a negative meniscus lens L3 having a convex surface facing the object side, and a convex surface facing the object side. and a positive meniscus lens L4 directed toward
 後群G2は、物体側から順に、両凸形状の正レンズL5と、両凸形状の正レンズL6と両凹形状の負レンズL7との接合負レンズと、両凸形状の正レンズL8とからなる。 The rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表7に、本実施例の光学系の諸元の値を掲げる。 Table 7 below lists the values of the specifications of the optical system of this example.
 (表7)
[全体諸元]
TL  20.40
f   1.68

[レンズ諸元]
 m    r     d     nd    νd
 1)  31.650   0.600  1.603110  60.69
 2)   5.000   3.899
 3)  -29.751   0.850  1.487490  70.32
 4)   2.551   0.925
 5)   5.443   0.600  1.740770  27.74
 6)   3.030   0.427
 7)   6.327   3.650  1.846660  23.80
 8)  45.258   0.348
 9>   ∞    0.200   (開口絞り)
 10)  21.008   1.148  1.700000  48.10
 11)  -4.239   0.374
 12)   4.193   2.068  1.593190  67.90
 13)  -5.179   0.600  1.846660  23.80
 14)   4.698   0.651
*15)   5.118   1.375  1.772502  49.50
*16)  -11.838   0.197
 17)   ∞    0.500  1.516800  63.88
 18)   ∞    1.984

[非球面データ]
 m   K    A4     A6     A8    A10
 15) 1.0000 -4.72E-03  9.24E-05 -2.12E-04  1.10E-06
 16) 1.0000 -8.79E-04 -1.93E-05 -2.22E-04  1.23E-05

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -2.64
G2  10    3.74
(Table 7)
[Overall specifications]
TL 20.40
f1.68

[Lens specifications]
m r d nd νd
1) 31.650 0.600 1.603110 60.69
2) 5.000 3.899
3) -29.751 0.850 1.487490 70.32
4) 2.551 0.925
5) 5.443 0.600 1.740770 27.74
6) 3.030 0.427
7) 6.327 3.650 1.846660 23.80
8) 45.258 0.348
9> ∞ 0.200 (aperture diaphragm)
10) 21.008 1.148 1.700000 48.10
11) -4.239 0.374
12) 4.193 2.068 1.593190 67.90
13) -5.179 0.600 1.846660 23.80
14) 4.698 0.651
*15) 5.118 1.375 1.772502 49.50
*16) -11.838 0.197
17) ∞ 0.500 1.516800 63.88
18) ∞ 1.984

[Aspheric data]
mK A4 A6 A8 A10
15) 1.0000 -4.72E-03 9.24E-05 -2.12E-04 1.10E-06
16) 1.0000 -8.79E-04 -1.93E-05 -2.22E-04 1.23E-05

[Each group focal length data]
Group Starting surface Focal length
G1 1 -2.64
G2 10 3.74
 図14は第7実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差を適切に補正し、高い光学性能を有していることがわかる。 14A and 14B are various aberration diagrams of the optical system of the seventh embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
 (第8実施例)
 図15は、第8実施例の光学系の断面図である。
(Eighth embodiment)
FIG. 15 is a sectional view of the optical system of the eighth embodiment.
 本実施例の光学系は、物体側から順に、負の屈折力を有する前群G1と、開口絞りSと、正の屈折力を有する後群G2とを有している。 The optical system of this embodiment has, in order from the object side, a front group G1 having negative refractive power, an aperture diaphragm S, and a rear group G2 having positive refractive power.
 前群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凹形状の負レンズL2と、両凹形状の負レンズL3と、両凸形状の正レンズL4とからなる。 The front group G1 comprises, in order from the object side, a negative meniscus lens L1 with a convex surface facing the object side, a biconcave negative lens L2, a biconcave negative lens L3, and a biconvex positive lens L4. Become.
 後群G2は、物体側から順に、両凸形状の正レンズL5と、両凸形状の正レンズL6と両凹形状の負レンズL7との接合負レンズと、両凸形状の正レンズL8とからなる。 The rear group G2 comprises, in order from the object side, a biconvex positive lens L5, a cemented negative lens constructed by cementing a biconvex positive lens L6 and a biconcave negative lens L7, and a biconvex positive lens L8. Become.
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。 On the image plane I, an imaging device (not shown) composed of a CCD, CMOS, or the like is arranged.
 本実施例の光学系と像面Iとの間には、フィルタFLが配置されている。 A filter FL is arranged between the optical system and the image plane I of this embodiment.
 以下の表8に、本実施例の光学系の諸元の値を掲げる。 Table 8 below lists the values of the specifications of the optical system of this example.
 (表8)
[全体諸元]
TL  18.18
f   1.97

[レンズ諸元]
 m    r     d     nd    νd
 1)  15.647   0.600  1.567320  42.58
 2)   5.000   3.214
* 3)  -25.000   0.600  1.548140  45.51
* 4)   3.187   1.319
 5)  -24.365   0.684  1.487490  70.32
 6)   3.605   0.451
 7)  13.884   1.025  1.749500  35.25
 8)  -5.510   1.101
 9>   ∞    0.200   (開口絞り)
 10)   8.161   1.871  1.622990  58.12
 11)  -4.084   0.104
 12)   8.146   1.925  1.607380  56.74
 13)  -2.437   1.073  1.805180  25.45
 14)   4.005   0.169
*15)   3.615   1.965  1.693430  53.30
*16)  -13.172   0.641
 17)   ∞    0.500  1.516800  63.88
 18)   ∞    0.906

[非球面データ]
 m   K    A4     A6     A8    A10
 3) 28.0453 -2.39E-03  1.32E-04  1.03E-05 -8.17E-07
 4) 0.6581  8.82E-03  8.60E-04  2.70E-05  4.56E-05
 15) 1.0000 -4.72E-03  9.24E-05 -2.12E-04  1.10E-06
 16) 1.0000 -8.79E-04 -1.93E-05 -2.22E-04  1.23E-05

[各群焦点距離データ]
群  始面   焦点距離
G1   1    -6.17
G2  10    4.26
(Table 8)
[Overall specifications]
TL 18.18
f1.97

[Lens specifications]
m r d nd νd
1) 15.647 0.600 1.567320 42.58
2) 5,000 3,214
* 3) -25.000 0.600 1.548140 45.51
* 4) 3.187 1.319
5) -24.365 0.684 1.487490 70.32
6) 3.605 0.451
7) 13.884 1.025 1.749500 35.25
8) -5.510 1.101
9> ∞ 0.200 (aperture diaphragm)
10) 8.161 1.871 1.622990 58.12
11) -4.084 0.104
12) 8.146 1.925 1.607380 56.74
13) -2.437 1.073 1.805180 25.45
14) 4.005 0.169
*15) 3.615 1.965 1.693430 53.30
*16) -13.172 0.641
17) ∞ 0.500 1.516800 63.88
18) ∞ 0.906

[Aspheric data]
mK A4 A6 A8 A10
3) 28.0453 -2.39E-03 1.32E-04 1.03E-05 -8.17E-07
4) 0.6581 8.82E-03 8.60E-04 2.70E-05 4.56E-05
15) 1.0000 -4.72E-03 9.24E-05 -2.12E-04 1.10E-06
16) 1.0000 -8.79E-04 -1.93E-05 -2.22E-04 1.23E-05

[Each group focal length data]
Group Starting surface Focal length
G1 1 -6.17
G2 10 4.26
 図16は第8実施例の光学系の諸収差図である。各収差図より、本実施例の光学系は、諸収差を適切に補正し、高い光学性能を有していることがわかる。 FIG. 16 is a diagram of various aberrations of the optical system of the eighth embodiment. From each aberration chart, it can be seen that the optical system of this example appropriately corrects various aberrations and has high optical performance.
 上記各実施例によれば、小型で良好な光学性能を有する光学系を実現することができる。 According to each of the above embodiments, it is possible to realize an optical system that is compact and has good optical performance.
 以下に、各実施例の条件式対応値を示す。 The values corresponding to the conditional expressions for each example are shown below.
 TLは空気換算長での光学系の全長であり、fは光学系の焦点距離であり、2ωは光学系の全画角である。ΣT1は前群の光軸上の厚みであり、f1は前群の焦点距離である。f11は前群において最も物体側に配置されるレンズの焦点距離である。f12は前群において物体側から2番目に配置されるレンズの焦点距離である。D112は前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの光軸上の空気間隔であり、f112は前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離である。T14は前群において物体側から4番目に配置されるレンズの光軸上の厚みであり、f14は前群において物体側から4番目に配置されるレンズの焦点距離である。DSは前群において最も像側に配置されるレンズと後群において最も物体側に配置されるレンズとの空気間隔である。ΣT2は後群の光軸上の厚みであり、f2は後群の焦点距離である。f2lは後群において最も像側に配置されるレンズの焦点距離である。nd1は前群において最も物体側に配置されるレンズのd線を基準とする屈折率であり、nd2は前群において物体側から2番目に配置されるレンズのd線を基準とする屈折率であり、ndlは後群において最も像側に配置されるレンズのd線を基準とする屈折率である。  TL is the total length of the optical system in air conversion length, f is the focal length of the optical system, and 2ω is the total angle of view of the optical system. ΣT1 is the thickness of the front group on the optical axis, and f1 is the focal length of the front group. f11 is the focal length of the lens located closest to the object side in the front group. f12 is the focal length of the second lens from the object side in the front group. D112 is the air space on the optical axis between the lens closest to the object side in the front group and the second lens from the object side, and f112 is the distance between the lens closest to the object side in the front group and the object side. This is the combined focal length with the second lens from the side. T14 is the thickness on the optical axis of the fourth lens in the front group from the object side, and f14 is the focal length of the fourth lens in the front group from the object side. DS is the air space between the lens located closest to the image side in the front group and the lens located closest to the object side in the rear group. ΣT2 is the thickness of the rear group on the optical axis, and f2 is the focal length of the rear group. f2l is the focal length of the lens located closest to the image side in the rear group. nd1 is the refractive index of the lens closest to the object in the front group with reference to the d-line, and nd2 is the refractive index of the lens second from the object in the front group with respect to the d-line. and ndl is the refractive index of the lens located closest to the image side in the rear group with respect to the d-line.
[条件式対応値]
条件式       :  第1    第2    第3    第4
(1)(5)  f14/-f112 :  2.129   1.739    -    2.968
(2)   T14/f   :  3.265   3.582   3.624   3.371
(3)   2ω    : 210.0   212.0   212.0   195.0
(4)(9)  ΣT1/T14  :  2.988   2.958   2.812   3.153
(6)(14) f/DS    :  5.268   4.878   7.732   4.559
(7)(11) f14/T14  :  1.448   1.111   1.172   1.817
(8)(13) (-f1)/f2  :  1.066   3.133   1.601   1.215
(10)(12) ΣT1/f   :  9.757   10.596   10.192   10.628
(15)   f14/f   :  4.727   3.981   4.247   6.125
(16)   ΣT2/f   :  4.594   4.749   4.535   5.035
(17)   D112/f   :  2.531   2.733   2.503   2.925
(18)   TL/f    :  15.885   17.031   16.232   17.438
(19)   f2l/f   :  4.201   3.628   3.714   3.357
(20)   (-f11)/f2l :  2.283   2.699   3.279   3.049
(21)   (-f12)/f  :  3.695   3.906   4.829   3.382
(22)   f11/f12  :  2.596   2.507   2.522   3.027
(23)   nd1    :  2.001   2.001   2.001   2.001
(24)   nd2    :  1.694   1.694   1.694   1.694
(25)   nd3    :  1.553   1.553   1.637   1.553
[Value corresponding to conditional expression]
Conditional expression: 1st 2nd 3rd 4th
(1)(5) f14/-f112: 2.129 1.739 - 2.968
(2) T14/f: 3.265 3.582 3.624 3.371
(3) 2ω: 210.0 212.0 212.0 195.0
(4)(9) ΣT1/T14: 2.988 2.958 2.812 3.153
(6)(14) f/DS: 5.268 4.878 7.732 4.559
(7)(11) f14/T14: 1.448 1.111 1.172 1.817
(8)(13) (-f1)/f2 : 1.066 3.133 1.601 1.215
(10)(12) ΣT1/f: 9.757 10.596 10.192 10.628
(15) f14/f: 4.727 3.981 4.247 6.125
(16) ΣT2/f: 4.594 4.749 4.535 5.035
(17) D112/f: 2.531 2.733 2.503 2.925
(18) TL/f: 15.885 17.031 16.232 17.438
(19) f2l/f: 4.201 3.628 3.714 3.357
(20) (-f11)/f2l : 2.283 2.699 3.279 3.049
(21) (-f12)/f : 3.695 3.906 4.829 3.382
(22) f11/f12: 2.596 2.507 2.522 3.027
(23) nd1: 2.001 2.001 2.001 2.001
(24) nd2: 1.694 1.694 1.694 1.694
(25) nd3: 1.553 1.553 1.637 1.553
条件式       :  第5    第6    第7    第8
(1)(5)  f14/-f112 :  2.409   2.408   3.346   1.728
(2)   T14/f   :  2.868   0.745   2.167    - 
(3)   2ω    : 212.0   200.0   200.0   190.0
(4)(9)  ΣT1/T14  :  3.017   5.948   3.000   7.700
(6)(14) f/DS    :  5.583   0.915   3.074   1.516
(7)(11) f14/T14  :  2.207   4.665   2.282    - 
(8)(13) (-f1)/f2  :  0.862   1.009   0.707   1.448
(10)(12) ΣT1/f   :  8.654   4.433   6.500   4.000
(15)   f14/f   :  6.329   3.476   4.944    - 
(16)   ΣT2/f   :  4.242   4.347   3.690   3.601
(17)   D112/f   :  2.448   1.535   2.314   1.629
(18)   TL/f    :  14.989   11.150   12.106    - 
(19)   f2l/f   :  4.520   2.395   2.846   2.177
(20)   (-f11)/f2l :  2.108   1.942   2.071   3.077
(21)   (-f12)/f  :  4.639   2.821   2.836   2.593
(22)   f11/f12  :  2.054   1.649   2.078   2.583
(23)   nd1    :  2.001    -     -     - 
(24)   nd2    :  1.694   1.533    -    1.548
(25)   nd3    :  1.623   1.773   1.773   1.693
Conditional expression: 5th 6th 7th 8th
(1)(5) f14/-f112: 2.409 2.408 3.346 1.728
(2) T14/f: 2.868 0.745 2.167 -
(3) 2ω: 212.0 200.0 200.0 190.0
(4)(9) ΣT1/T14: 3.017 5.948 3.000 7.700
(6)(14) f/DS: 5.583 0.915 3.074 1.516
(7)(11) f14/T14: 2.207 4.665 2.282 -
(8)(13) (-f1)/f2 : 0.862 1.009 0.707 1.448
(10)(12) ΣT1/f : 8.654 4.433 6.500 4.000
(15) f14/f: 6.329 3.476 4.944 -
(16) ΣT2/f : 4.242 4.347 3.690 3.601
(17) D112/f: 2.448 1.535 2.314 1.629
(18) TL/f: 14.989 11.150 12.106 -
(19) f2l/f: 4.520 2.395 2.846 2.177
(20) (-f11)/f2l : 2.108 1.942 2.071 3.077
(21) (-f12)/f : 4.639 2.821 2.836 2.593
(22) f11/f12: 2.054 1.649 2.078 2.583
(23) nd1: 2.001 - - -
(24) nd2: 1.694 1.533 - 1.548
(25) nd3: 1.623 1.773 1.773 1.693
 上記各実施例は、本発明の一具体例を示しているものであり、本発明はこれらに限定されない。以下の内容は、本願の実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 Each of the above examples shows one specific example of the present invention, and the present invention is not limited to these. The following content can be appropriately adopted within a range that does not impair the optical performance of the optical system of the embodiment of the present application.
 上記各実施例の光学系において、開口絞りは、部材を設けずにレンズ枠でその役割を代用する構成としてもよい。 In the optical system of each of the above embodiments, the aperture stop may be configured so that a lens frame substitutes for its role without providing a member.
 上記各実施例の光学系を構成するレンズのレンズ面は、球面または平面としてよく、あるいは非球面としてもよい。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易となり、レンズ加工および組立調整の誤差による光学性能の劣化を防ぐことができるため、好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成形したガラスモールド非球面、またはガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。 The lens surfaces of the lenses that constitute the optical system of each of the above embodiments may be spherical, planar, or aspherical. A spherical or flat lens surface is preferable because it facilitates lens processing and assembly adjustment, and can prevent deterioration of optical performance due to errors in lens processing and assembly adjustment. In addition, even when the image plane is shifted, deterioration in rendering performance is small, which is preferable. If the lens surface is aspherical, it can be aspherical by grinding, glass-molded aspherical by molding glass into an aspherical shape, or composite aspherical by forming resin on the glass surface into an aspherical shape. good. Further, the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 上記各実施例の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、コントラストの高い光学性能を達成することができる。 An anti-reflection film having high transmittance in a wide wavelength range may be applied to the lens surfaces of the lenses constituting the optical system of each of the above examples. As a result, flare and ghost can be reduced, and optical performance with high contrast can be achieved.
 次に、本実施形態の光学系を備えたカメラを、図17に基づいて説明する。
 図17は、本実施形態の光学系を備えたカメラの模式図である。
Next, a camera provided with the optical system of this embodiment will be described with reference to FIG.
FIG. 17 is a schematic diagram of a camera provided with the optical system of this embodiment.
 カメラ1は、撮影レンズ2-1、2-2として上記第1実施例に係る光学系を、一方の面とその反対側の面とに1つずつ備えたいわゆる全方位カメラである。 The camera 1 is a so-called omnidirectional camera having the optical system according to the first embodiment as taking lenses 2-1 and 2-2 on one surface and the opposite surface.
 カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2-1または2-2で集光され、撮像素子3-1または3-2に到達する。撮像素子3-1および3-2は、被写体からの光をそれぞれ画像データに変換する。 In the camera 1, light from an unillustrated object (subject) is condensed by the taking lens 2-1 or 2-2 and reaches the imaging element 3-1 or 3-2. The imaging devices 3-1 and 3-2 convert the light from the subject into image data.
 また、撮影者によって不図示のレリーズボタンが押されると、画像データは不図示のメモリに記憶される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。 Also, when a release button (not shown) is pressed by the photographer, the image data is stored in a memory (not shown). In this way, the photographer can photograph the subject with the camera 1 .
 ここで、カメラ1に撮影レンズ2-1、2-2として搭載した上記第1実施例の光学系は、小型で良好な光学性能を有する光学系である。したがって、カメラ1は小型で良好な光学性能を実現することができる。なお、上記第2~第8実施例の光学系を撮影レンズ2-1、2-2として搭載したカメラを構成しても、カメラ1と同様の効果を奏することができる。また、カメラ1の搭載する光学系は2つに限られず、1つまたは3つ以上であってもよい。 Here, the optical system of the first embodiment mounted as the photographing lenses 2-1 and 2-2 in the camera 1 is a compact optical system having good optical performance. Therefore, the camera 1 is small and can achieve good optical performance. It should be noted that the same effect as the camera 1 can be obtained even if a camera is constructed in which the optical systems of the above-described second to eighth embodiments are mounted as the photographing lenses 2-1 and 2-2. Also, the number of optical systems mounted on the camera 1 is not limited to two, and may be one or three or more.
 最後に、本実施形態の光学系の製造方法の概略を、図18に基づいて説明する。図18は本実施形態の光学系の製造方法の概略を示すフローチャートである。 Finally, the outline of the method for manufacturing the optical system of this embodiment will be described with reference to FIG. FIG. 18 is a flow chart showing an outline of the method for manufacturing the optical system of this embodiment.
 図18に示す本実施形態の光学系の製造方法は、以下のステップS1~S2を含む。 The manufacturing method of the optical system of this embodiment shown in FIG. 18 includes the following steps S1 and S2.
 ステップS1:物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有する前群と、開口絞りと、少なくとも4枚のレンズを有する後群とを準備する。 Step S1: A front group having at least three negative lenses and at least one positive lens, an aperture stop, and a rear group having at least four lenses are prepared in order from the object side.
 ステップS2:光学系が以下の条件式をともに満足するようにする。
(1) 1.40 < f14/(-f112) < 5.20
(2) 0.70 < T14/f< 4.50
(3) 160.00° < 2ω
但し、
 f14  : 前群において物体側から4番目に配置されるレンズの焦点距離
 f112 : 前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
 T14  : 前群において物体側から4番目に配置されるレンズの光軸上の厚み
 f    : 光学系の焦点距離
 2ω   : 光学系の全画角
Step S2: Make the optical system satisfy both of the following conditional expressions.
(1) 1.40 < f14/(-f112) < 5.20
(2) 0.70<T14/f<4.50
(3) 160.00° < 2ω
however,
f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14: Front Thickness on the optical axis of the fourth lens from the object side in the group f: focal length of the optical system 2ω: total angle of view of the optical system
 本実施形態の光学系の製造方法によれば、小型で良好な結像性能を有する光学系を製造することができる。 According to the manufacturing method of the optical system of the present embodiment, it is possible to manufacture a compact optical system having good imaging performance.
 当業者は、本発明の精神および範囲から外れることなく、種々の変更、置換および修正をこれに加えることが可能であることを理解されたい。 It should be understood that those skilled in the art can make various changes, substitutions and modifications to this without departing from the spirit and scope of the present invention.
 S  開口絞り
 I  像面
 1  カメラ
 2-1、2-2  撮影レンズ
 3-1、3-2  撮像素子
S aperture diaphragm I image plane 1 camera 2-1, 2-2 taking lens 3-1, 3-2 image sensor

Claims (23)

  1.  物体側から順に、前群と、開口絞りと、後群とからなり、
     前記前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、
     前記後群は、少なくとも4枚のレンズを有し、
     以下の条件式をともに満足する光学系。
     1.40 < f14/(-f112) < 5.20
     0.70 < T14/f< 4.50
     160.00° < 2ω
    但し、
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
     f112 : 前記前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
     T14  : 前記前群において物体側から4番目に配置されるレンズの光軸上の厚み
     f    : 前記光学系の焦点距離
     2ω   : 前記光学系の全画角
    In order from the object side, it consists of a front group, an aperture stop, and a rear group,
    The front group has, in order from the object side, at least three negative lenses and at least one positive lens,
    The rear group has at least four lenses,
    An optical system that satisfies both of the following conditional expressions.
    1.40<f14/(-f112)<5.20
    0.70<T14/f<4.50
    160.00° < 2ω
    however,
    f14: focal length of the fourth lens from the object side in the front group f112: combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14 : Thickness on the optical axis of the fourth lens from the object side in the front group f : Focal length of the optical system 2ω : Total angle of view of the optical system
  2.  物体側から順に、前群と、開口絞りと、後群とからなり、
     前記前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、
     前記後群は、少なくとも4枚のレンズを有し、
     以下の条件式をともに満足する光学系。
     1.40 < f14/(-f112) < 5.20
     1.50 < ΣT1/T14 < 7.90
     160.00° < 2ω
    但し、
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
     f112 : 前記前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
     ΣT1  : 前記前群の光軸上の厚み
     T14  : 前記前群において物体側から4番目に配置されるレンズの光軸上の厚み
     2ω   : 前記光学系の全画角
    In order from the object side, it consists of a front group, an aperture stop, and a rear group,
    The front group has, in order from the object side, at least three negative lenses and at least one positive lens,
    The rear group has at least four lenses,
    An optical system that satisfies both of the following conditional expressions.
    1.40<f14/(-f112)<5.20
    1.50<ΣT1/T14<7.90
    160.00° < 2ω
    however,
    f14: Focal length of the fourth lens from the object side in the front group f112: Combined focal length of the lens closest to the object side and the second lens from the object side in the front group ΣT1 : Thickness on the optical axis of the front group T14 : Thickness on the optical axis of the fourth lens from the object side in the front group 2ω : Total angle of view of the optical system
  3.  物体側から順に、前群と、開口絞りと、後群とからなり、
     前記前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、
     前記後群は、少なくとも4枚のレンズを有し、
     以下の条件式をともに満足する光学系。
     1.50 < f14/(-f112) < 4.90
     0.65 < f/DS < 8.00
     160.00° < 2ω
    但し、
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
     f112 : 前記前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
     f    : 前記光学系の焦点距離
     DS   : 前記前群において最も像側に配置されるレンズと前記後群において最も物体側に配置されるレンズとの光軸上の空気間隔
     2ω   : 前記光学系の全画角
    In order from the object side, it consists of a front group, an aperture stop, and a rear group,
    The front group has, in order from the object side, at least three negative lenses and at least one positive lens,
    The rear group has at least four lenses,
    An optical system that satisfies both of the following conditional expressions.
    1.50 < f14/(-f112) < 4.90
    0.65 < f/DS < 8.00
    160.00° < 2ω
    however,
    f14: focal length of the fourth lens from the object side in the front group f112: combined focal length of the lens closest to the object side and the second lens from the object side in the front group f : Focal length of the optical system DS : Air gap on the optical axis between the lens in the front group that is closest to the image side and the lens in the rear group that is closest to the object side 2ω: Full image of the optical system corner
  4.  物体側から順に、前群と、開口絞りと、後群とからなり、
     前記前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、
     前記後群は、少なくとも4枚のレンズを有し、
     以下の条件式をともに満足する光学系。
     1.80 < f14/T14 < 5.00
     0.60 < (-f1)/f2 < 1.85
     160.00° < 2ω
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
     T14  : 前記前群において物体側から4番目に配置されるレンズの光軸上の厚み
     f1   : 前記前群の焦点距離
     f2   : 前記後群の焦点距離
     2ω   : 前記光学系の全画角
    In order from the object side, it consists of a front group, an aperture stop, and a rear group,
    The front group has, in order from the object side, at least three negative lenses and at least one positive lens,
    The rear group has at least four lenses,
    An optical system that satisfies both of the following conditional expressions.
    1.80 < f14/T14 < 5.00
    0.60<(-f1)/f2<1.85
    160.00° < 2ω
    f14: focal length of the fourth lens from the object side in the front group T14: thickness on the optical axis of the fourth lens from the object side in the front group f1: focal length of the front group f2 : focal length of the rear group 2ω: total angle of view of the optical system
  5.  物体側から順に、前群と、開口絞りと、後群とからなり、
     前記前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、
     前記後群は、少なくとも4枚のレンズを有し、
     以下の条件式をともに満足する光学系。
     2.00 < ΣT1/T14 < 7.90
     3.50 < ΣT1/f < 6.60
     160.00° < 2ω
    但し、
     ΣT1  : 前記前群の光軸上の厚み
     T14  : 前記前群において物体側から4番目に配置されるレンズの光軸上の厚み
     f    : 前記光学系の焦点距離
     2ω   : 前記光学系の全画角
    In order from the object side, it consists of a front group, an aperture stop, and a rear group,
    The front group has, in order from the object side, at least three negative lenses and at least one positive lens,
    The rear group has at least four lenses,
    An optical system that satisfies both of the following conditional expressions.
    2.00<ΣT1/T14<7.90
    3.50 < ΣT1/f < 6.60
    160.00° < 2ω
    however,
    ΣT1: thickness on the optical axis of the front group T14: thickness on the optical axis of the fourth lens from the object side in the front group f: focal length of the optical system 2ω: total angle of view of the optical system
  6.  以下の式を満足する請求項1-3、または5のいずれか一項に記載の光学系。
     1.00 < f14/T14 < 5.00
    但し、
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
    6. The optical system according to any one of claims 1 to 3 or 5, which satisfies the following formula.
    1.00 < f14/T14 < 5.00
    however,
    f14: focal length of the fourth lens from the object side in the front group
  7.  以下の条件式を満足する請求項1-4のいずれか一項に記載の光学系。
     3.50 < ΣT1/f < 18.00
    但し、
     ΣT1  : 前記前群の光軸上の厚み
     f    : 前記光学系の焦点距離
    5. The optical system according to any one of claims 1 to 4, which satisfies the following conditional expressions.
    3.50 < ΣT1/f < 18.00
    however,
    ΣT1: thickness of the front group on the optical axis f: focal length of the optical system
  8.  以下の式を満足する請求項1-3、または5のいずれか一項に記載の光学系。
     0.30 < (-f1)/f2 < 3.30
    但し、
     f1  : 前記前群の焦点距離
     f2  : 前記後群の焦点距離
    6. The optical system according to any one of claims 1 to 3 or 5, which satisfies the following formula.
    0.30<(-f1)/f2<3.30
    however,
    f1: focal length of the front group f2: focal length of the rear group
  9.  以下の条件式を満足する請求項1、2、4、または5のいずれか一項に記載の光学系。
     0.20 < f/DS < 9.00
    但し、
     f    : 前記光学系の焦点距離
     DS   : 前記前群において最も像側に配置されるレンズと前記後群において最も物体側に配置されるレンズとの光軸上の空気間隔
    6. The optical system according to any one of claims 1, 2, 4, and 5, which satisfies the following conditional expression.
    0.20 < f/DS < 9.00
    however,
    f: focal length of the optical system DS: air distance on the optical axis between the lens closest to the image side in the front group and the lens closest to the object side in the rear group
  10.  以下の式を満足する請求項1、3、または4のいずれか一項に記載の光学系。
     1.50 < ΣT1/T14 < 7.90
    但し、
     ΣT1  : 前記前群の光軸上の厚み
     T14  : 前記前群において物体側から4番目に配置されるレンズの光軸上の厚み
    5. The optical system of any one of claims 1, 3, or 4, satisfying the following equation:
    1.50<ΣT1/T14<7.90
    however,
    ΣT1: Optical axis thickness of the front group T14: Optical axis thickness of the fourth lens from the object side in the front group
  11.  以下の式を満足する請求項1-10のいずれか一項に記載の光学系。
     3.00 < f14/f < 13.00
    但し、
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
     f    : 前記光学系の焦点距離
    11. The optical system according to any one of claims 1-10, which satisfies the following formula:
    3.00 < f14/f < 13.00
    however,
    f14: focal length of the fourth lens from the object side in the front group f: focal length of the optical system
  12.  以下の式を満足する請求項1-11のいずれか一項に記載の光学系。
     3.00 < ΣT2/f < 7.00
    但し、
     ΣT2  : 前記後群の光軸上の厚み
     f    : 前記光学系の焦点距離
    12. The optical system according to any one of claims 1-11, satisfying the following formula:
    3.00 < ΣT2/f < 7.00
    however,
    ΣT2: thickness of the rear group on the optical axis f: focal length of the optical system
  13.  以下の式を満足する請求項1-12のいずれか一項に記載の光学系。
     0.80 < D112/f < 4.50
    但し、
     D112 : 前記前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの空気間隔
     f    : 前記光学系の焦点距離
    13. The optical system according to any one of claims 1 to 12, satisfying the following equations.
    0.80<D112/f<4.50
    however,
    D112: Air gap between the lens closest to the object side and the lens second from the object side in the front group f: Focal length of the optical system
  14.  以下の式を満足する請求項1-13のいずれか一項に記載の光学系。
     10.00 < TL/f< 19.00
    但し、
     TL   : 空気換算長での前記光学系の全長
     f    : 前記光学系の焦点距離
    14. The optical system according to any one of claims 1 to 13, satisfying the following equations.
    10.00 < TL/f < 19.00
    however,
    TL: total length of the optical system in air equivalent length f: focal length of the optical system
  15.  以下の式を満足する請求項1-14のいずれか一項に記載の光学系。
     2.00 < f2l/f < 28.00
    但し、
     f2l  : 前記後群の最も像側に配置されるレンズの焦点距離
     f    : 前記光学系の焦点距離
    15. The optical system according to any one of claims 1 to 14, satisfying the following equations.
    2.00 < f2l/f < 28.00
    however,
    f2l: focal length of the lens arranged closest to the image side in the rear group f: focal length of the optical system
  16.  以下の式を満足する請求項1-15のいずれか一項に記載の光学系。
     0.30 < (-f11)/f2l < 4.00 
    但し、
     f11  : 前記前群において最も物体側に配置されるレンズの焦点距離
     f2l  : 前記後群において最も像側に配置されるレンズの焦点距離
    16. The optical system according to any one of claims 1 to 15, satisfying the following formula:
    0.30 < (-f11)/f2l < 4.00
    however,
    f11: focal length of the lens closest to the object side in the front group f2l: focal length of the lens closest to the image side in the rear group
  17.  以下の式を満足する請求項1-16のいずれか一項に記載の光学系。
     2.00 < (-f12)/f < 6.00
    但し、
     f12  : 前記前群において物体側から2番目に配置されるレンズの焦点距離
     f    : 前記光学系の焦点距離
    17. An optical system according to any one of claims 1 to 16, satisfying the following formula:
    2.00<(-f12)/f<6.00
    however,
    f12: focal length of the second lens from the object side in the front group f: focal length of the optical system
  18.  以下の式を満足する請求項1-17のいずれか一項に記載の光学系。
     1.40 < f11/f12 < 3.50
    但し、
     f11  : 前記前群において最も物体側に配置されるレンズの焦点距離
     f12  : 前記前群において物体側から2番目に配置されるレンズの焦点距離
    18. An optical system according to any one of claims 1 to 17, satisfying the following formula:
    1.40 < f11/f12 < 3.50
    however,
    f11: focal length of the lens in the front group that is closest to the object side f12: focal length of the lens that is second from the object side in the front group
  19.  以下の式を満足する請求項1-18のいずれか一項に記載の光学系。
     1.85 < nd1 < 2.20
    但し、
     nd1  : 前記前群において最も物体側に配置されるレンズのd線を基準とする屈折率
    19. The optical system according to any one of claims 1-18, satisfying the following formula:
    1.85 < nd1 < 2.20
    however,
    nd1: Refractive index with respect to the d-line of the lens located closest to the object side in the front group
  20.  以下の式を満足する請求項1-19のいずれか一項に記載の光学系。
     1.50 < nd2 < 1.95
    但し、
     nd2  : 前記前群において物体側から2番目に配置されるレンズのd線を基準とする屈折率
    20. The optical system according to any one of claims 1-19, satisfying the following formula:
    1.50 < nd2 < 1.95
    however,
    nd2: Refractive index of the second lens from the object side in the front group with respect to the d-line
  21.  以下の式を満足する請求項1-20のいずれか一項に記載の光学系。
     1.45 < nd3 < 1.90
    但し、
     nd3  : 前記後群において最も像側に配置されるレンズのd線を基準とする屈折率
    21. An optical system according to any one of claims 1-20, satisfying the following formula:
    1.45 < nd3 < 1.90
    however,
    nd3: Refractive index with respect to the d-line of the lens located closest to the image side in the rear group
  22.  請求項1-21のいずれか一項に記載の光学系を有する光学機器。 An optical instrument comprising the optical system according to any one of claims 1-21.
  23.  物体側から順に、前群と、開口絞りと、後群とからなり、
     前記前群は、物体側から順に、少なくとも3枚の負レンズおよび少なくとも1枚の正レンズを有し、
     前記後群は、少なくとも4枚のレンズを有する光学系の製造方法であって、
     以下の条件式をともに満足するように各レンズを配置する光学系の製造方法。
     1.40 < f14/(-f112) < 5.20
     0.70 < T14/f< 4.50
     160.00° < 2ω
    但し、
     f14  : 前記前群において物体側から4番目に配置されるレンズの焦点距離
     f112 : 前記前群において最も物体側に配置されるレンズと物体側から2番目に配置されるレンズとの合成焦点距離
     T14  : 前記前群において物体側から4番目に配置されるレンズの光軸上の厚み
     f    : 前記光学系の焦点距離
     2ω   : 前記光学系の全画角
    In order from the object side, it consists of a front group, an aperture stop, and a rear group,
    The front group has, in order from the object side, at least three negative lenses and at least one positive lens,
    A method for manufacturing an optical system in which the rear group has at least four lenses,
    A method of manufacturing an optical system in which lenses are arranged so as to satisfy both of the following conditional expressions.
    1.40<f14/(-f112)<5.20
    0.70<T14/f<4.50
    160.00° < 2ω
    however,
    f14: focal length of the fourth lens from the object side in the front group f112: combined focal length of the lens closest to the object side and the second lens from the object side in the front group T14 : Thickness on the optical axis of the fourth lens from the object side in the front group f : Focal length of the optical system 2ω : Total angle of view of the optical system
PCT/JP2022/046226 2021-12-28 2022-12-15 Optical system, optical apparatus, and method for manufacturing optical system WO2023127527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021215280 2021-12-28
JP2021-215280 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127527A1 true WO2023127527A1 (en) 2023-07-06

Family

ID=86998724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046226 WO2023127527A1 (en) 2021-12-28 2022-12-15 Optical system, optical apparatus, and method for manufacturing optical system

Country Status (1)

Country Link
WO (1) WO2023127527A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102162A (en) * 2002-09-12 2004-04-02 Minolta Co Ltd Superwide-angle lens
JP2012108302A (en) * 2010-11-17 2012-06-07 Tamron Co Ltd Wide-angle lens
JP2017015967A (en) * 2015-07-02 2017-01-19 Hoya株式会社 Image capturing lens system
WO2018097287A1 (en) * 2016-11-28 2018-05-31 コニカミノルタ株式会社 Imaging optical system, lens unit, and imaging device
WO2018150522A1 (en) * 2017-02-16 2018-08-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, image pickup device, mobile body, and system
WO2021014248A1 (en) * 2019-07-19 2021-01-28 Hoya Corporation Wide field of view objective lens
WO2021065319A1 (en) * 2019-09-30 2021-04-08 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102162A (en) * 2002-09-12 2004-04-02 Minolta Co Ltd Superwide-angle lens
JP2012108302A (en) * 2010-11-17 2012-06-07 Tamron Co Ltd Wide-angle lens
JP2017015967A (en) * 2015-07-02 2017-01-19 Hoya株式会社 Image capturing lens system
WO2018097287A1 (en) * 2016-11-28 2018-05-31 コニカミノルタ株式会社 Imaging optical system, lens unit, and imaging device
WO2018150522A1 (en) * 2017-02-16 2018-08-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, image pickup device, mobile body, and system
WO2021014248A1 (en) * 2019-07-19 2021-01-28 Hoya Corporation Wide field of view objective lens
WO2021065319A1 (en) * 2019-09-30 2021-04-08 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Similar Documents

Publication Publication Date Title
US8107175B2 (en) Wide-angle lens, optical apparatus, and method for manufacturing wide-angle lens
CN113671674B (en) Zoom lens and image pickup apparatus
US8456750B2 (en) Zoom lens, optical apparatus and zoom lens manufacturing method
US20180252902A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
US11714292B2 (en) Optical system, optical apparatus, and method for manufacturing optical system
US20150085377A1 (en) Optical system, optical apparatus and method for manufacturing the optical system
WO2022244840A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
US10948700B2 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
US20210011256A1 (en) Optical system, optical equipment, and manufacturing method for optical system
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2023127527A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
US20180113285A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
US10126535B2 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2023127560A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP7143882B2 (en) Optical system, optical instrument, and method of manufacturing optical system
JP6554759B2 (en) Photographic lens, optical apparatus equipped with the photographic lens, and method of manufacturing photographic lens
JP5825109B2 (en) Zoom lens and optical equipment
JP2015212822A (en) Optical system, image capturing device having the same, and manufacturing method for such optical system
WO2023190222A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP6897733B2 (en) Variable magnification optical system, optical device
US20230367109A1 (en) Zoom optical system, optical apparatus, and method for manufacturing zoom optical system
JP5903937B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP7414107B2 (en) Optical system and optical equipment
JP7484149B2 (en) Teleconverter lenses, optical systems and optical instruments
JP7234859B2 (en) Optics and optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023570841

Country of ref document: JP

Kind code of ref document: A