WO2018097245A1 - 超音波治療システム - Google Patents

超音波治療システム Download PDF

Info

Publication number
WO2018097245A1
WO2018097245A1 PCT/JP2017/042207 JP2017042207W WO2018097245A1 WO 2018097245 A1 WO2018097245 A1 WO 2018097245A1 JP 2017042207 W JP2017042207 W JP 2017042207W WO 2018097245 A1 WO2018097245 A1 WO 2018097245A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
wave
unit
electromagnetic
ultrasonic
Prior art date
Application number
PCT/JP2017/042207
Other languages
English (en)
French (fr)
Inventor
佐々木 明
葭仲 潔
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US16/464,206 priority Critical patent/US11383106B2/en
Priority to JP2018552974A priority patent/JP6828908B2/ja
Publication of WO2018097245A1 publication Critical patent/WO2018097245A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0097Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying acoustic waves and detecting light, i.e. acoustooptic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/003Destruction of nerve tissue

Definitions

  • the present invention relates to an ultrasound treatment system for performing treatment by applying focused ultrasound to an affected area, and more particularly, an ultrasound equipped with a temperature monitoring function for controlling irradiation intensity of focused ultrasound on a bone surface as an affected area.
  • the present invention relates to a sonic therapy system.
  • a focused ultrasound therapy (FUS: Ultrasound Surgery) that can treat the affected area non-invasively using high intensity ultrasound (HIFU: High Intensity Focused Ultrasound) is known.
  • HIFU High Intensity Focused Ultrasound
  • Patent Document 1 discloses a focused ultrasonic treatment system in which the HIFU is irradiated over the entire treatment target region (target) by sequentially moving the focus position, which is the irradiation position of the HIFU.
  • an applicator in which an imaging probe including an imaging transducer for imaging an ultrasonic image is incorporated in a multi-element transducer in which a plurality of treatment transducers are distributed on a hemispherical concave surface Is used.
  • the incident angle of focused ultrasound on the body surface varies depending on the position of the applicator or the shape of the body surface to be pressed, but since this incident angle can be calculated from the ultrasound image at the imaging probe and feedback controlled, It is said that the energy transfer efficiency to the inside of the living body and to the focal point can be changed.
  • Patent Document 2 in a therapeutic apparatus for removing and treating a tumor by irradiating HIFU with focus on a tumor site to be treated to cause local destruction or necrosis of tumor tissue, A method for monitoring temperature using ultrasound is disclosed. Stated that methods such as backscattered energy change (CBE) and acoustic displacement (ES) are known as temperature detection methods for monitoring temperature using ultrasound. In addition, it is said that high-precision temperature monitoring will be given by combining these.
  • CBE backscattered energy change
  • ES acoustic displacement
  • Patent Document 3 it is possible to measure the change in the characteristic value of the charged particle of the part from the intensity change of the electromagnetic wave radiated from the part irradiated with the ultrasonic wave (method for measuring the characteristic of the object by the sound wave-induced electromagnetic wave),
  • a method for detecting a change caused by ultrasonic irradiation in an invisible part such as the inside of a human body.
  • the active site of brain neurons and the active site of muscle tissue can be detected.
  • bone pain relief can be alleviated by cauterizing the surface of cortical bone (compact bone) with HIFU and destroying nerve tissue between the periosteum and cortical bone. Further, by irradiating the cortical bone with ultrasonic waves through the skin, the bone surface can be thermally cauterized to be treated.
  • the present invention has been made in view of the situation as described above, and an object of the present invention is to provide a treatment system for reducing or treating pain in bones and joints by applying focused ultrasound to the bone surface as an affected part. Then, it is providing the ultrasonic treatment system provided with the monitoring function for performing the irradiation intensity control.
  • the inventor of the present application considered that it is sufficient to at least monitor the temperature change of the affected part in the treatment and pain relief (relief of bone pain) of the affected part by HIFU of arthropathy such as knee joint disease. While earnestly pursuing the research, it was possible to monitor the temperature by the change of the electromagnetic wave from the affected area, and to find out that this electromagnetic change was also caused by the degeneration caused by cauterization of the affected area.
  • an ultrasonic therapy system for applying a focused ultrasonic wave to an affected area according to the present invention to treat the affected area by applying a focused ultrasonic wave to the bone surface as an affected area from above the skin.
  • An ultrasound treatment system comprising: a focused ultrasound applying unit that is applied to the skin and irradiates the focused ultrasound toward the affected part; and a temperature measuring unit that provides temperature measurement of the affected part,
  • the temperature measurement unit includes an electromagnetic wave measurement unit that measures the intensity of the electromagnetic wave radiated from the irradiation unit of the focused ultrasound, and an analysis unit that analyzes the change of the electromagnetic wave of the electromagnetic wave measurement unit and gives the temperature of the affected part.
  • the analyzing unit corresponds to a pair of the focused ultrasonic wave applied from the focused ultrasonic wave applying unit and the reflected wave from the bone surface, and has a time delay in the electromagnetic wave measuring unit. Measured one Characterized in providing a temperature of said affected area from the electromagnetic change is between the reference wave electromagnetic change.
  • an electromagnetic change for example, the temperature of the affected part is detected from an electromagnetic wave intensity change without using a large-scale measuring means.
  • the focused ultrasonic wave applying unit may be characterized in that the launch wave is given as a burst wave.
  • the reference wave can be clarified, the electromagnetic changes in the meantime can be accurately separated, and temperature monitoring with higher accuracy can be performed.
  • the focused ultrasound applying unit may provide a continuous wave that gives cauterization of the affected part following the burst wave. According to this invention, it is possible to clarify the reference wave and accurately separate electromagnetic changes during this period, to perform temperature monitoring with higher accuracy and to widely control the degree of cauterization of the affected area.
  • the analysis unit may obtain the electromagnetic change in advance by associating it with a temperature, and give the temperature of the affected part from the electromagnetic change given from the electromagnetic wave measurement unit.
  • the analysis unit may associate the electromagnetic change with a degeneration temperature of a known bone tissue in advance and give the degeneration temperature as the temperature of the affected part.
  • the denaturation temperature may be due to denaturation of a part of the collagen tissue of the bone tissue.
  • temperature monitoring in a temperature range of about 50 to 60 ° C., which is a bone degeneration temperature can be performed.
  • the focused ultrasound applying unit may control and irradiate the focused ultrasound corresponding to the temperature of the affected part. According to this invention, it is possible to accurately control the irradiation intensity of the focused ultrasound reflecting the state of the affected part.
  • the electromagnetic wave measurement unit may include a coil
  • the focused ultrasound applying unit may include a transducer unit that passes through the coil and applies the focused ultrasound to the affected area. According to this invention, it is possible to monitor the temperature of the affected part for controlling the irradiation intensity of the focused ultrasound to the affected part without providing a large-scale measuring means in the ultrasonic treatment system.
  • the coil may be pressed against the skin surface in the vicinity of the affected part.
  • the coil may be arranged so that the beam axis of the focused ultrasonic wave passes through the coil.
  • FIG. 1 is a block diagram showing an ultrasonic therapy system according to the present invention.
  • FIG. It is a figure which shows the applicator used for this invention. It is a chart which shows the example of the voltage signal measured with an applicator by the present invention. It is a graph which shows the change of the measured voltage value with respect to the distance of an affected part and a sensor coil. It is a graph which shows the relationship between the inclination angle of the sensor coil with respect to the axis line of a focused ultrasonic wave, and the change of the measured electromagnetic waves. It is a graph which shows the relationship between the change of electromagnetic waves, and temperature.
  • bone tissues cortical bone, cartilage, etc.
  • the cortical bone of the bone tissue is composed of maleten which is a collagen tissue
  • the helical collagen tissue changes into gelatine (collage) with 42 ° C. as a degeneration start temperature, and around 60 ° C.
  • gelatine columnar collagen tissue
  • the generation intensity of the electromagnetic wave from the bone tissue also decreases continuously as the collagen tissue decreases, and the crystal structure dissolves near 60 ° C. and the generation of the electromagnetic wave disappears.
  • the electromagnetic wave intensity can be measured to measure the temperature at the focal point (irradiation part) of ultrasonic irradiation, and at least the completion of denaturation to gelatin can be clearly measured. It is. That is, in ultrasonic therapy, it is possible to raise the temperature of the affected area to a necessary constant temperature without raising the temperature of the affected area more than necessary.
  • the ultrasonic treatment system 1 includes a transducer 14 installed in an ultrasonic applicator 10 for irradiating a focused ultrasonic wave toward an affected part 20, and an output from the transducer 14.
  • An input control unit 40 for controlling the focused ultrasound, a focused ultrasound applying unit, a sensor coil 16 for detecting electromagnetic waves from the affected part 20, and a temperature detection unit for processing a signal from the sensor coil 16 And a temperature measuring unit consisting of 50.
  • the sensor coil 16 is provided inside or outside the applicator 10.
  • the applicator 10 is a water bag in which water is confined, and a hemispherical shape made of a piezo element inside the case 11.
  • the transducer 14 is accommodated, the convex portion 11a of the case 11 is brought into close contact with the skin 21, and the focused ultrasound E is applied to the affected part 20 near the bone surface 22.
  • the input control part 40 for controlling the focused ultrasonic wave E output from the transducer 14 in the applicator 10 can use various known control forms.
  • a drive circuit 41 of the transducer 14, an input unit 43 that inputs a desired output waveform, and a control circuit 42 that sends a signal to the drive circuit 41 in response to the input of the input unit 43 are included.
  • the diagnostic ultrasound probe 12 may be provided as appropriate so that the ultrasound diagnostic unit 45 can obtain an in-vivo image around the affected area 20.
  • the temperature detection unit 50 detects the electromagnetic wave from the affected part 20, the conversion circuit part 51 that obtains a signal waveform by A / D converting the output voltage, and performs a filtering process on the signal waveform, as will be described later.
  • the signal processing unit determination unit 52 converts the signal into temperature.
  • the sensor coil 16 is given inside or outside the case 11 of the applicator 10 so that the focused ultrasonic wave from the transducer 14 passes through the inside of the sensor coil 16.
  • the sensor coil 16 is applied to the convex portion 11 a of the case 11 of the applicator 10 and is pressed against the skin 21 in the vicinity of the affected part 20.
  • the sensor coil 16 can be positioned in the vicinity of the affected part of the focused ultrasound irradiation site, and the principal surface thereof can be set perpendicular to the traveling direction (axial direction) of the focused ultrasound. Can be reliably captured.
  • FIG. 3 shows an example of a graph of voltage change measured by the sensor coil 16 when the affected part 20 is irradiated with focused ultrasound from the transducer 14.
  • (b) expands a part of the waveform of (a).
  • a waveform 61 represents a voltage change applied from the input control unit 40 to the transducer 14, and a waveform 62 represents a voltage change based on an electromagnetic wave measured by the sensor coil 16.
  • the peaks 65 of the waveforms 61 and 62 are due to the launch wave of the focused ultrasonic wave, and the peak 66 is due to the reflected wave that is reflected back from the affected part (irradiation part).
  • the launch wave and the reflected wave have a time delay. Will be measured. Note that the peaks 65 and 66 of the waveform 62 can be captured by the time of the peaks 65 and 66 in the waveform 61 even if they are not clearly observed.
  • the waveform peak 65 and the time position corresponding to the waveform peak 66 are determined on the time axis of the waveform 62, and the reference wave is separated from the baseline at this intermediate portion.
  • a minute change (measurement electromagnetic wave change) 63 of the electromagnetic wave can be separated, and the temperature of the affected part (irradiation part) can be measured by amplifying this and observing the change.
  • a burst wave and a continuous wave may be repeatedly given discontinuously in an interleaved manner.
  • the continuous wave gives cauterization of the affected area, while the burst wave gives temperature measurement, so the control of the ablation can be separated and the controllability of the treatment of the affected area can be improved. is there.
  • the bone tissue degeneration temperature of the affected area 20 is, for example, 42 ° C. and 60 ° C.
  • at least the electromagnetic change with respect to this temperature is clearly measured.
  • the temperature between the degeneration temperatures that is, the temperature of the affected area 20 can be continuously monitored.
  • Temperature monitoring from the electromagnetic wave intensity change corresponding to the denaturation of such bone tissue from collagen tissue to gelatin is suitable for treatment based on such degeneration, particularly for bone and joint pain relief treatment.
  • Example 10 An example in which a burst wave intermittently oscillated at 1 MHz as focused ultrasound is irradiated to a bone piece of a porcine femur (cortical bone) by the above-described ultrasound treatment system 1 and temperature measurement is performed by electromagnetic wave measurement will be described.
  • the sensor coil 16 is obtained by winding a wire with a size that does not hinder the progress of focused ultrasonic waves passing through the sensor coil 16.
  • the voltage output from the sensor coil 16 decreases rapidly with an increase in the distance between the sensor coil 16 and the bone fragment, and the electromagnetic wave intensity greatly decreases. That is, the sensor coil 16 is preferably located near the affected area, and at least the distance from the affected area is preferably within a few millimeters.
  • FIG. 5 is a graph of voltage change output from the sensor coil 16 when the affected part 20 is irradiated with the ultrasonic beam from the transducer 14 and the angle of the sensor coil 16 with respect to the axis A of the ultrasonic beam is changed.
  • the ratio of electromagnetic wave detection sensitivity that is, the voltage value
  • the ratio of electromagnetic wave detection sensitivity becomes maximum when the main surface of the sensor coil 16 is disposed at right angles to the axis A of the ultrasonic beam (see SP3 in FIG. 5A).
  • the winding of the sensor coil 16 temporarily crosses the axis A of the ultrasonic beam, so that the voltage value temporarily decreases (FIG. 5B).
  • the voltage value decreases continuously. That is, in order to increase the electromagnetic wave detection sensitivity, it is preferable that the sensor coil 16 is arranged so that the beam axis direction A of the focused ultrasonic wave is the main surface.
  • FIG. 6 shows a test result of the relationship between the electromagnetic wave intensity and the affected part temperature.
  • the electromagnetic wave intensity sharply decreased from 55 ° C. to 60 ° C., but this was a change in the electromagnetic wave intensity due to the denaturation of the collagen tissue, and it became zero at 60 ° C. It can be detected from this change in electromagnetic wave intensity that the cauterization of the affected area has completely progressed, and conversely, it can be determined that this temperature is 60 ° C. based on the characteristics of the collagen tissue. If such a temperature calibration line with respect to the electromagnetic wave intensity is obtained, for example, when 500 ⁇ V / div is observed, the affected part temperature is about 55 ° C., and when 700 ⁇ V / div is observed, it is about 45 ° C. It is.

Abstract

患部としての骨表面へ集束超音波を与えて関節治療を行う治療システムであって、その照射強度制御を行うための温度モニタリング機能を備えた超音波治療システムを提供する。皮膚上に与えられて集束超音波を患部に向けて照射する集束超音波付与部と、患部の温度計測を与える温度検出部と、を含む。温度検出部は、骨表面から放射される電磁波の強度を計測する電磁波計測部と、この電磁波計測部の電磁波の変化を解析し患部の温度を与える解析部と、を含む。そして、解析部は、集束超音波付与部から与えられる集束超音波の打ち出し波とこの骨表面からの反射波との一対に対応し、時間遅れを有して電磁波計測部で計測される一対の電磁変化の参照波の間にある電磁変化から患部の温度を与えることを特徴とする。

Description

超音波治療システム
 本発明は、集束超音波を患部に与えて治療を行うための超音波治療システムに関し、特に、患部としての骨表面への集束超音波の照射強度制御を行うための温度モニタリング機能を備えた超音波治療システムに関する。
 強力集束超音波(HIFU:High Intensity Focused Ultrasound)を用いて非侵襲で患部の治療を行うことのできる集束超音波治療法(FUS:Focused Ultrasound Surgery)が知られている
 例えば、特許文献1では、HIFUの照射位置である焦点の位置を順次移動させることで、治療対象領域(ターゲット)の全域にHIFUを照射するようにした集束超音波治療システムを開示している。ここでは、複数の治療用振動子を半球状の凹面に分散して配置したマルチエレメント形のトランスデューサーに、超音波画像を撮像するための撮像振動子を備えた撮像プローブを組込んだアプリケータを用いている。一般的に、アプリケータの位置又は押し当てる体表面の形状によって体表面に対する集束超音波の入射角度が異なってしまうが、撮像プローブでの超音波画像からこの入射角度を計算しフィードバック制御できるので、生体内部及び焦点へのエネルギ伝達効率を変化させ得るとしている。
 上記したように、体内における超音波の照射制御のためには、被照射位置を直接、目視できないため、何らかのモニタリング手段が必要とされる。
 例えば、特許文献2では、治療しようとする腫瘍部位に焦点を合わせてHIFUを照射し腫瘍組織の局所的破壊又は壊死を引き起こさせて腫瘍を除去及び治療するための治療用装置において、治療用の超音波を利用して温度をモニタリングする方法を開示している。超音波を利用して温度をモニタリングするための温度検出方式として、後方散乱エネルギ変化法(CBE:change in backscattered energy)や音響変位法(ES:echo-shift)などが知られていることを述べた上で、これらを組み合わせることで精度の高い温度モニタリングを与えるとしている。
 ところで、特許文献1において、超音波画像の撮像を超音波照射と同時に行うと画像にノイズが現れてしまうため、超音波を照射するトランスデューサーと超音波画像を撮像する撮像プローブとを交互に動作させてノイズがない明瞭な診断画像を取得するとしている。そこで、超音波以外のモニタリング手段が考慮される。
 例えば、特許文献3では、超音波を照射した部分から放射される電磁波の強度変化から当該部分の荷電粒子の特性値の変化を測定できること(音波誘起電磁波による物体の特性測定方法)を利用し、人体内部のような目視できないような部分の超音波照射による変化を検知する方法が開示されている。ここでは、脳のニューロンの活動部位や、筋組織の活動部位の検知などを行い得るとしている。
特開2015-217247号公報 特開2013-43082号公報 特開2012-47751号公報
 高齢人口の増加などとともに、関節症の患者数が急激に増え、生活に支障をきたす有痛性の関節症、特に、膝関節症について、人体への負担の小さい方法としてHIFUによる患部の焼灼による治療や疼痛緩和(骨疼痛緩和)が期待されている。例えば、皮質骨(緻密骨)の表面にHIFUによって焼灼を行い、骨膜と皮質骨の間にある神経組織を破壊することで骨の疼痛緩和が可能となるのである。また、皮膚を介して皮質骨へ超音波を照射することで、骨表面を熱的に焼灼させて治療を施すこともでき得る。
 ここでもHIFUの照射制御のためのモニタリングが求められるが、磁気共鳴画像(MRI)装置と組み合わせるような大規模なモニタリングシステムを導入することは操作性の観点や、コスト等で多くの問題があり、より簡便な方法を求められている。
 本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、患部としての骨表面へ集束超音波を与えて骨や関節の疼痛緩和や治療を行う治療システムであって、その照射強度制御を行うためのモニタリング機能を備えた超音波治療システムを提供することにある。
 本願発明者は、膝関節症のような関節症のHIFUによる患部の焼灼による治療や疼痛緩和(骨疼痛緩和)では、該患部の温度変化のモニタリングを少なくともできれば良いことを考慮した。鋭意その研究を進める中で、患部からの電磁波の変化で温度をモニタリングできるとともに、この電磁変化が患部の焼灼による変性によっても生じることを見いだしてなされたものである。
 すなわち、本発明による集束超音波を患部に与えて治療を行うための超音波治療システムは、患部としての骨表面へその近傍の皮膚上から集束超音波を与えて該患部の治療を行うための超音波治療システムであって、前記皮膚上に与えられて前記集束超音波を前記患部に向けて照射する集束超音波付与部と、前記患部の温度計測を与える温度計測部と、を含み、前記温度計測部は、前記集束超音波の照射部から放射される電磁波の強度を計測する電磁波計測部と、前記電磁波計測部の前記電磁波の変化を解析し前記患部の温度を与える解析部と、を含み、前記解析部は、前記集束超音波付与部から与えられる前記集束超音波の打ち出し波とこの前記骨表面からの反射波との一対に対応し、時間遅れを有して前記電磁波計測部で計測される一対の電磁変化の参照波の間にある電磁変化から前記患部の温度を与えることを特徴とする。
 かかる発明によれば、患部としての骨表面へその近傍の皮膚上から集束超音波を与えての治療において、大規模な計測手段を用いずとも、電磁変化、例えば、電磁波強度変化から患部の温度をモニタリングでき、該患部への集束超音波の正確な照射強度の制御を可能とするのである。
 上記した発明において、前記集束超音波付与部は、前記打ち出し波をバースト波として与えられることを特徴としてもよい。かかる発明によれば、参照波を明瞭にできてこの間にある電磁変化を正確に分離できて、より確度の高い温度モニタリングをできるのである。
 上記した発明において、前記集束超音波付与部は、前記バースト波に続いて、前記患部の焼灼を与える連続波を与えることを特徴としてもよい。かかる発明によれば、参照波を明瞭にしこの間の電磁変化を正確に分離できて、より確度の高い温度モニタリングをできるとともに、患部の焼灼される程度を幅広く制御出来るのである。
 上記した発明において、前記解析部は、前記電磁変化を温度にあらかじめ対応付けて得ておき、前記電磁波計測部から与えられる前記電磁変化から前記患部の温度を与えることを特徴としてもよい。また、前記解析部は、前記電磁変化を既知の骨組織の変性温度にあらかじめ対応付けておき、前記患部の温度として前記変性温度を与えることを特徴としてもよい。かかる発明によれば、骨組織であるコラーゲン組織からゼラチン質への変性における電磁波強度変化から、特に、皮質骨、関節治療に適した患部の温度モニタリングをできるとともに、少なくとも変性の完了が電磁変化に現れるため、焼灼の完了を明確に得られ、該患部への集束超音波の正確な照射強度の制御を可能とするのである。
 上記した発明において、前記変性温度は、前記骨組織の一部のコラーゲン組織の変性によることを特徴としてもよい。かかる発明によれば、特に、骨の変性温度である約50~60℃の温度範囲の温度モニタリングをできるのである。
 上記した発明において、前記集束超音波付与部は、前記患部の温度に対応して前記集束超音波を制御して照射することを特徴としてもよい。かかる発明によれば、患部の状態を反映した集束超音波の正確な照射強度の制御を可能とするのである。
 上記した発明において、前記電磁波計測部はコイルを含み、前記集束超音波付与部は前記コイル内部を通過させて前記集束超音波を前記患部に与えるトランスデューサー部を含むことを特徴としてもよい。かかる発明によれば、超音波治療システムに大規模な計測手段を設けずとも、患部への集束超音波の照射強度制御を行うための該患部の温度モニタリングを可能とするのである。
 上記した発明において、前記コイルが前記患部の近傍の皮膚表面に押し付けられるようになっていることを特徴としてもよい。また、前記コイルはこの中を前記集束超音波のビーム軸線を通過させるように配置されていることを特徴としてもよい。かかる発明によれば、骨組織であるコラーゲン組織からゼラチン質への変性における電磁波強度が非常に小さくとも、発生する電磁波を効率良く受信することが可能であり、参照電磁波の変化及び計測電磁波の変化を正確に分離、計測できて、より確度の高い温度モニタリングをできるのである。
本発明による超音波治療システムを示すブロック図である。 本発明に用いられるアプリケータを示す図である。 本発明によりアプリケータで計測される電圧信号の例を示すチャートである。 患部とセンサコイルとの距離に対する計測される電圧値の変化を示すグラフである。 集束超音波の軸線に対するセンサコイルの傾き角度と計測される電磁波の変化についての関係を示すグラフである。 電磁波の変化と温度との関係を示すグラフである。
 本発明の1つの実施例としての温度モニタリング機能を備えた超音波治療システムについて、その詳細を説明するが、まず、原理について説明する。
 骨組織(皮質骨や軟骨など)は超音波照射によって電磁波を発生することが知られている。一方、骨組織のうちの皮質骨はコラーゲン組織であるオステンからなり、螺旋状のコラーゲン組織は、人間の場合、42℃を変性の開始温度としてゼラチン質(膠質)へと変化し、60℃付近で完全にゼラチン質に変性する。つまり、超音波照射の焦点における温度上昇とともに、骨組織からの電磁波の発生強度もコラーゲン組織の減少につれて連続的に低下し、60℃付近で結晶組織が溶解して電磁波の発生も消滅する。かかる温度上昇と電磁波の発生強度との関係を利用することで、電磁波強度を計測して超音波照射の焦点(照射部)における温度を計測でき、少なくともゼラチン質への変性完了を明確に計測できるのである。つまり、超音波治療において、必要以上に患部の温度を上昇させずに、必要な一定温度まで当該患部を温度上昇させることが可能となるのである。
 続いて、図1乃至図3を参照しつつ、本発明の1つの実施例としての温度モニタリング機能を備えた超音波治療システムについて説明する。
 図1に示すように、超音波治療システム1は、患部20へ向けて集束超音波を照射するための超音波アプリケータ10内に設置されたトランスデューサー14と、このトランスデューサー14から出力される集束超音波を制御するための入力制御部40と、からなる集束超音波付与部、及び、患部20からの電磁波の検出を行うセンサコイル16と、センサコイル16からの信号を処理する温度検出部50と、からなる温度計測部を含む。ここで、センサコイル16は、アプリケータ10の内部、あるいは外部に設けられる。
 図1のアプリケータ10の詳細図である図2を併せて参照すると、アプリケータ10は、水を内部に閉じ込めた水袋となっており、そのケース11の内部にピエゾ素子からなる半球状のトランスデューサー14を収容し、ケース11の凸部11aを皮膚21に密着させ、骨表面22の近傍の患部20に集束超音波Eを与えるようにして用いられる。
 なお、アプリケータ10内のトランスデューサー14から出力される集束超音波Eを制御するための入力制御部40は公知の各種制御形態のものを用い得る。例えば、トランスデューサー14の駆動回路41と、所望とする出力波形を入力する入力部43と、この入力部43の入力に対応して駆動回路41に信号を送出する制御回路42とを含むものである。
 また、適宜、診断用超音波プローブ12を与えて超音波診断部45によって患部20の周囲の生体内画像を得られるようにしてもよい。
 温度検出部50は、患部20からの電磁波の検出を行うセンサコイル16と、この出力電圧をA/D変換して信号波形を得る変換回路部51と、信号波形をフィルタリング処理し、後述するように、この信号を温度に変換する信号処理部判定部52とからなる。
 また、センサコイル16は、その内部をトランスデューサー14からの集束超音波を通過させるようにアプリケータ10のケース11内又はその外部に与えられる。典型的には、センサコイル16は、アプリケータ10のケース11の凸部11aに与えられ、患部20の近傍の皮膚21に押し付けられるようになっている。これにより、センサコイル16を集束超音波の照射部位の患部近傍に位置させ得るとともに、その主面を集束超音波の進行方向(軸線方向)に垂直に設置できて、後述するセンサコイル16による電磁波の捕捉を確実にできるのである。
 図3には、トランスデューサー14から集束超音波を患部20に照射したときにセンサコイル16で計測される電圧変化のグラフの一例を示した。なお、(b)は、(a)の波形の一部を拡大したものである。ここで、波形61は入力制御部40からトランスデューサー14に与えた電圧変化を、波形62はセンサコイル16で計測された電磁波に基づく電圧変化を示した。波形61及び62のピーク65は集束超音波の打ち出し波によるもの、ピーク66は患部(照射部)で反射して戻ってきた反射波によるものであり、この打ち出し波及び反射波は時間遅れを有して計測されることになる。なお、波形62のピーク65及び66は明確に観察されなくとも、波形61におけるピーク65及び66の時間によって捕捉することが可能である。
 特に、図3(b)に示すように、波形62において、電磁波の変化に対応して参照波とされる波形ピーク65と波形ピーク66との間であって、その時間軸における中間部近傍には、微弱な電磁波の変化(計測電磁波変化)63が観測される。つまり、打ち出し波と反射波が行路を往復するとき、時間軸上で、波形ピーク65と波形ピーク66に対応する時間のほぼ中間時間位置において、集束超音波が患部(照射部)に到達していることになる。このとき発生した電磁波は超音波よりも速度が速いため、直ちに、センサコイル16で捕捉でき、これが電磁波の変化63である。かかる電磁波の変化は患部(照射部)の状態に対応した電磁波強度を有するから、特に、コラーゲン組織の減少を反映するため、コラーゲンの変性による温度情報を得られるのである。
 このように、まず、波形62の時間軸上で波形ピーク65と波形ピーク66に対応する時間位置を定め、この中間部で参照波をベースラインから分離する。これにより、微少な電磁波の変化(計測電磁波変化)63を分離できて、これを増幅して変化を観察することで患部(照射部)の温度計測をできるようになるのである。
 ここで、トランスデューサー14に断続的に発振させるバースト波の如きを入力することで、参照電磁波変化としての波形ピーク65及び66とがより明瞭に得られる。また、バースト波と連続波をインターリーブに不連続に繰り返して与えてもよい。バースト波に続いて連続波を与えることで、連続波が患部の焼灼を与える一方、バースト波が温度計測を与えることとなり、焼灼の制御を分離できて、患部の治療の制御性を高め得るのである。
 上記したように、患部20の骨組織の変性温度、例えば、これが42℃と60℃であれば少なくともこの温度に対する電磁変化が明確に計測される。また、電磁変化に対する温度の検量線を得ておくことで、変性温度の間の温度についても、つまり、患部20の温度を連続的にモニタリングできるのである。かかる骨組織であるコラーゲン組織からゼラチン質への変性に対応する電磁波強度変化からの温度モニタリングは、このような変性に基づく治療、特に、骨や関節の痛み緩和治療に適しているのである。
 以上述べたシステム及び方法によれば、皮質骨だけでなく、軟骨や腱など、集束超音波照射によって電磁波を発生する物質であれば、温度モニタリングを与えながら集束超音波照射が可能となる。例えば、骨と骨膜の間にある神経を熱破壊するモニタリングが可能となるため、骨転移ガンの痛み緩和、局所的な骨治療において温度管理下の無侵襲痛み緩和治療を可能とするのである。
 なお、1つのトランスデューサー14に対応してセンサコイル16を設置した例を述べたが、複数のトランジューサで1箇所を焼灼するマルチエレメントトランスデューサー型のアプリケータに複数のセンサコイルを組み込んで同様の温度計測を行うこともでき得る。
[実施例]
 上記した超音波治療システム1により、集束超音波として1MHzで断続的に発振させたバースト波をブタ大腿骨(皮質骨)の骨片に照射して、電磁波測定による温度測定を行った例を述べる。なお、センサコイル16は、内部を通過する集束超音波の進行を妨げない程度の大きさで線材を巻回して得ている。
 まず、センサコイル16と患部(骨片)との間の距離の変化に対して測定される電磁波強度に関する予備試験を行った。
 図4に示すように、センサコイル16から出力される電圧は、センサコイル16と骨片との間の距離の増加によって急激に減少し、電磁波強度が大きく低下することがわかった。すなわち、センサコイル16が患部に近い位置にあることが好ましく、少なくとも、患部からの距離が数mm程度内にあることが好ましい。
 図5には、トランスデューサー14からの超音波ビームを患部20に照射するとともに、超音波ビームの軸線Aに対するセンサコイル16の角度を変化させたときにセンサコイル16から出力される電圧変化のグラフを表した。電磁波検出感度の比率、すなわち、電圧値は、超音波ビームの軸線Aに対してセンサコイル16の主面を直角に配置したとき(図5(a)のSP3参照)が最大となる。これを回転させていくと(図5(a)のSP2参照)、センサコイル16の巻き線が超音波ビームの軸線Aを一時的に横切るため、電圧値は一旦下がるが(図5(b)のD参照)、センサコイル16の主面を平行となるまで(図5(a)のSP1参照)連続的に電圧値は下がっていく。つまり、電磁波検出感度を高めるためには、センサコイル16は、集束超音波のビーム軸線方向Aをその主面とするように配置されていることが好ましいのである。
 次に、図6には、電磁波強度と患部温度との関係の試験結果を示した。
 ここでは、55℃から60℃にかけて電磁波強度は急激に低下するが、これがコラーゲン組織の変性による電磁波強度の変化であり、60℃でゼロとなった。患部の焼灼が完全に進行したことをこの電磁波強度の変化で検出できるとともに、逆に、この温度がコラーゲン組織の特性から逆に60℃であることを判定でき得るのである。このような電磁波強度に対する温度の検定線を得ておけば、例えば、500μV/divが観察されたとき、患部温度は約55℃、また、700μV/divが観察されたときは約45℃と判るのである。
 ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。
1   超音波治療システム
10  アプリケータ
11  ケース
14  トランスデューサー 
16  センサコイル
20  患部
40  入力制御部
41  駆動回路
43  入力部
45  超音波診断部
50  温度検出部
51  変換回路部
52  信号処理判定部

Claims (10)

  1.  患部としての骨表面へその近傍の皮膚上から集束超音波を与えて該患部の治療を行うための超音波治療システムであって、
      前記皮膚上に与えられて前記集束超音波を前記患部に向けて照射する集束超音波付与部と、前記患部の温度計測を与える温度計測部と、を含み、
     前記温度計測部は、前記集束超音波の照射部から放射される電磁波の強度を計測する電磁波計測部と、前記電磁波計測部の前記電磁波の変化を解析し前記患部の温度を与える解析部と、を含み、
     前記解析部は、前記集束超音波付与部から与えられる前記集束超音波の打ち出し波とこの前記骨表面からの反射波との一対に対応し、時間遅れを有して前記電磁波計測部で計測される一対の電磁変化の参照波の間にある電磁変化から前記患部の温度を与えることを特徴とする超音波治療システム。
  2.  前記集束超音波付与部は、前記打ち出し波をバースト波として与えることを特徴とする請求項1記載の超音波治療システム。
  3.  前記集束超音波付与部は、前記バースト波に続いて、前記患部の焼灼を与える連続波を与えることを特徴とする請求項2記載の超音波治療システム。
  4.  前記解析部は、前記電磁変化を温度にあらかじめ対応付けて得ておき、前記電磁波計測部から与えられる前記電磁変化から前記患部の温度を与えることを特徴とする請求項1記載の超音波治療システム。
  5.  前記解析部は、前記電磁変化を既知の骨組織の変性温度にあらかじめ対応付けておき、前記患部の温度として前記変性温度を与えることを特徴とする請求項4記載の超音波治療システム。
  6.  前記変性温度は、前記骨組織の一部のコラーゲン組織の変性によることを特徴とする請求項5記載の超音波治療システム。
  7.  前記集束超音波付与部は、前記患部の温度に対応して前記集束超音波を制御して照射することを特徴とする請求項6記載の超音波治療システム。
  8.  前記電磁波計測部はコイルを含み、前記集束超音波付与部は前記コイル内部を通過させて前記集束超音波を前記患部に与えるトランスデューサー部を含むことを特徴とする請求項1記載の超音波治療システム。
  9.  前記コイルが前記患部の近傍の皮膚表面に押し付けられるようになっていることを特徴とする請求項8記載の超音波治療システム。
  10.  前記コイルはこの中を前記集束超音波のビーム軸線を通過させるように配置されていることを特徴とする請求項9記載の超音波治療システム。

     
PCT/JP2017/042207 2016-11-24 2017-11-24 超音波治療システム WO2018097245A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/464,206 US11383106B2 (en) 2016-11-24 2017-11-24 Ultrasound therapy system
JP2018552974A JP6828908B2 (ja) 2016-11-24 2017-11-24 超音波治療システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-227678 2016-11-24
JP2016227678 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097245A1 true WO2018097245A1 (ja) 2018-05-31

Family

ID=62195075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042207 WO2018097245A1 (ja) 2016-11-24 2017-11-24 超音波治療システム

Country Status (3)

Country Link
US (1) US11383106B2 (ja)
JP (1) JP6828908B2 (ja)
WO (1) WO2018097245A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449132B2 (ja) 2020-03-17 2024-03-13 京セラ株式会社 超音波治療装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284648A (ja) * 1986-05-31 1987-12-10 株式会社島津製作所 ハイパーサーミア加温・測温用アプリケータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1952763B1 (en) * 2005-11-09 2016-11-23 Japan Science and Technology Agency Method and apparatus for measuring characteristic of object with acoustically induced electromagnetic wave
WO2012052925A1 (en) * 2010-10-18 2012-04-26 CardioSonic Ltd. An ultrasound transceiver and control of a thermal damage process
KR20130020421A (ko) 2011-08-19 2013-02-27 삼성전자주식회사 초음파를 이용하여 치료부위의 온도를 모니터링하는 방법 및 장치, 초음파를 이용한 치료 및 진단 시스템
JP6297411B2 (ja) 2014-05-21 2018-03-20 株式会社日立製作所 超音波治療装置及び超音波治療システム
US10080906B2 (en) * 2015-09-30 2018-09-25 Btl Holdings Limited Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284648A (ja) * 1986-05-31 1987-12-10 株式会社島津製作所 ハイパーサーミア加温・測温用アプリケータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IKUSHIMA, KENJI: "Medical applications of the acoustically stimulated electromagnetic method", TATEISHI SCIENCE AND TECHNOLOGY FOUNDATION CONTRIBUTORY RESEARCH RESULTS SET, vol. 22, pages 42 - 45, ISSN: 0918-9939 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449132B2 (ja) 2020-03-17 2024-03-13 京セラ株式会社 超音波治療装置

Also Published As

Publication number Publication date
US11383106B2 (en) 2022-07-12
US20190388713A1 (en) 2019-12-26
JP6828908B2 (ja) 2021-02-10
JPWO2018097245A1 (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
US10905900B2 (en) Systems and methods for ultrasound treatment
US11097133B2 (en) Method and system for combined energy therapy profile
KR102465947B1 (ko) 밴드 트랜스듀서 초음파 치료
JP5094402B2 (ja) 超音波組織処理ための方法およびシステム
KR20190138369A (ko) 고강도-저강도 집속초음파 치료장치
JP4401354B2 (ja) 超音波治療装置
US20100274161A1 (en) Implosion techniques for ultrasound
US20070239077A1 (en) Method and system for lipolysis and body contouring
US20090048514A1 (en) Device for ultrasound monitored tissue treatment
KR20190080967A (ko) 조직에 초음파원을 연결하는 시스템 및 방법
KR101583302B1 (ko) 진단 치료 겸용 광융합형 초음파기기
JPH07184907A (ja) 超音波治療装置
KR20160100946A (ko) 조직 처리 장치 동작 방법 및 조직 처리 장치
US20100317960A1 (en) Thermotherapy device and method to implement thermotherapy
JP2011502607A (ja) 神経などの構造の位置を特定するための非侵襲的装置および方法
CN115135381A (zh) 超声程序中的自适应基于单气泡的自动聚焦和功率调整
Landa et al. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound
DK2152367T3 (en) SYSTEM FOR COMBINED ENERGY THERAPY PROFILE
WO2018097245A1 (ja) 超音波治療システム
JP2004049558A (ja) 超音波治療システム
CN116473516A (zh) 基于光声弹性图像的肿瘤热消融效果评估系统和评估方法
JP2000254137A (ja) 超音波治療装置
KR102610342B1 (ko) 플렉서블 초음파 트랜스듀서 및 이의 제조방법
ードバック制御 3J3-3
Ebbini et al. Cancer treatment with high intensity focused ultrasound: A combined therapy/imaging system for precision noninvasive lesion formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874024

Country of ref document: EP

Kind code of ref document: A1