WO2018097103A1 - Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass - Google Patents

Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass Download PDF

Info

Publication number
WO2018097103A1
WO2018097103A1 PCT/JP2017/041687 JP2017041687W WO2018097103A1 WO 2018097103 A1 WO2018097103 A1 WO 2018097103A1 JP 2017041687 W JP2017041687 W JP 2017041687W WO 2018097103 A1 WO2018097103 A1 WO 2018097103A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysiloxane
group
membered ring
skeleton
gel
Prior art date
Application number
PCT/JP2017/041687
Other languages
French (fr)
Japanese (ja)
Inventor
室伏 英伸
千恵子 室伏
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2018097103A1 publication Critical patent/WO2018097103A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels

Definitions

  • the present invention relates to a polysiloxane gel, a method for producing the same, a heat insulating material, and a laminated glass.
  • Transparent insulation is expected as insulation for automotive window glass and building window glass for the purpose of improving the cooling and heating efficiency of automobiles and buildings.
  • an alkylsiloxane airgel having a three-dimensional network structure formed from through-holes continuous in a three-dimensional network and a skeleton continuous in a three-dimensional network made of alkylsiloxane has been proposed.
  • Patent Document 1 an alkylsiloxane airgel having a three-dimensional network structure formed from through-holes continuous in a three-dimensional network and a skeleton continuous in a three-dimensional network made of alkylsiloxane has been proposed.
  • the alkylsiloxane airgel of Patent Document 1 is brittle and cannot be bent. For this reason, the alkylsiloxane airgel of Patent Document 1 is easily broken when a force in the bending direction is applied, and is not convenient.
  • the present invention relates to a polysiloxane gel having a high bending fracture stress; a method capable of producing a polysiloxane gel having a high bending fracture stress; a heat insulating material having a high heat insulating property and being less prone to cracking; and a high heat insulating property and a transparent heat insulating layer. To provide a laminated glass which is not easily broken.
  • the polysiloxane gel of the present invention is at least selected from the group consisting of a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c).
  • a three-dimensional network structure having a six-membered ring-containing skeleton having one kind of six-membered ring and a polysiloxane skeleton is included.
  • * in the formulas (a) to (c) is a bond.
  • the method for producing a polysiloxane gel of the present invention comprises a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c).
  • a method for producing a polysiloxane gel comprising a three-dimensional network structure having a six-membered ring-containing skeleton having at least one selected six-membered ring and a polysiloxane skeleton; a ring represented by the following formula (a) A 6-membered ring-containing skeleton having at least one 6-membered ring selected from the group consisting of a structure, a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c); A 6-membered ring-containing silane compound having a group and a solvent are gelled to obtain a wet gel. However, * in the formulas (a) to (c) is a bond.
  • the heat insulating material of the present invention includes the polysiloxane gel of the present invention.
  • the laminated glass of the present invention comprises a first glass plate, a second glass plate, and a transparent heat insulation layer existing between the first glass plate and the second glass plate, and the transparent heat insulation.
  • the layer is the polysiloxane gel of the present invention.
  • the polysiloxane gel of the present invention has a high bending fracture stress. According to the method for producing a polysiloxane gel of the present invention, a polysiloxane gel having a high bending fracture stress can be produced.
  • the heat insulating material of the present invention has high heat insulating properties and is not easily cracked.
  • the laminated glass of the present invention has high heat insulating properties and is less likely to crack in the transparent heat insulating layer.
  • FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
  • polysiloxane gel means a gel including a three-dimensional network structure having a polysiloxane skeleton in which siloxane bonds (Si—O—Si) are continuous.
  • Polysiloxane gels include wet gels with swelling agents (solvents) and xerogels without swelling agents.
  • Wet gel means a gel in which a three-dimensional network structure is swollen by a swelling agent. It includes hydrogels in which the swelling agent is water, alcogels in which the swelling agent is alcohol, and organogels in which the swelling agent is an organic solvent.
  • Xerogel is the definition of terminology related to the structure and process of sols, gels, meshes, and inorganic-organic composite materials by the International Union of Applied Chemistry (IUPAC) Inorganic Chemistry and Polymer Subcommittee "IUPAC recommendation 2007)" means "a gel composed of an open network formed by removing a swelling agent from a gel.”
  • IUPAC International Union of Applied Chemistry
  • IUPAC recommendation 2007 means "a gel composed of an open network formed by removing a swelling agent from a gel.”
  • the air-gel is the one from which the swelling agent has been removed by supercritical drying
  • the airgel is the one from which the swelling agent has been removed by normal evaporation drying
  • the cryogel is the one from which the swelling agent has been removed by freeze-drying. In the claims, these are collectively referred to as xerogel.
  • Transparent means that light can be transmitted.
  • Bending fracture stress is a value measured in accordance with JIS K 7171: 2008 “Plastics—How to obtain bending characteristics” (ISO 178: 2001).
  • Transmittance is a value measured in accordance with JIS R 3106: 1998 “Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass” (ISO 9050: 1990).
  • Thermal conductivity conforms to JIS A 1412-2: 1999 “Measurement method of thermal resistance and thermal conductivity of thermal insulation materials—Part 2: Heat flow meter method (HFM method)” (ISO 8301: 1991). Is a measured value.
  • the “average pore diameter” is a median diameter that is generally 50% higher than the integrated pore volume plot of the BJH (Barrett-Joyner-Halenda) adsorption by the measurement of the nitrogen adsorption method using a pore distribution measuring device. It is the value of the pore diameter called.
  • the “average porosity” is a value obtained from the following equation from the volume of xerogel before pressing and the volume of xerogel after pressing under conditions of temperature: 100 ° C., pressure: 50 MPa, time: 10 minutes.
  • Average porosity ⁇ 1 ⁇ (volume of xerogel after pressing / volume of xerogel before pressing) ⁇ ⁇ 100
  • the “compressive modulus” is a value measured in accordance with JIS K 7181: 2011 “Plastics—How to obtain compression properties” (ISO 604: 2002).
  • the polysiloxane gel of the present invention includes a three-dimensional network structure having a specific six-membered ring-containing skeleton and a polysiloxane skeleton.
  • the polysiloxane gel of the present invention may be a wet gel containing a solvent or a xerogel containing no solvent.
  • the 6-membered ring-containing skeleton has a specific 6-membered ring.
  • the 6-membered ring-containing skeleton preferably further has a linking group interposed between the 6-membered ring and the polysiloxane skeleton.
  • the 6-membered ring-containing skeleton has a plurality of bonds, and at least two of the plurality of bonds are preferably bonded directly or indirectly to the polysiloxane skeleton. It is more preferable that at least three of the bonds are directly or indirectly bonded to the polysiloxane skeleton.
  • the two bond hands of the 6-membered ring-containing skeleton are directly or indirectly bonded to the polysiloxane skeleton, so that the 6-membered ring-containing skeleton is incorporated in the course of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel Is even higher.
  • the 6-membered ring-containing skeleton Since the three bonds of the 6-membered ring-containing skeleton are directly or indirectly bonded to the polysiloxane skeleton, the 6-membered ring-containing skeleton becomes a branch point of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel is further increased. Become.
  • the 6-membered ring in the 6-membered ring-containing skeleton includes a ring structure represented by the following formula (a) (hereinafter also referred to as ring structure (a)) and a ring structure represented by the following formula (b) (hereinafter referred to as ring). And at least one selected from the group consisting of a ring structure represented by the following formula (c) (hereinafter also referred to as ring structure (c)).
  • * in the formulas (a) to (c) is a bond.
  • two or three of three bonds are directly or indirectly bonded to the polysiloxane skeleton, and three are directly or indirectly bonded to the polysiloxane skeleton. More preferably, it binds to.
  • 2 to 4 of the 6 bonds are directly or indirectly bonded to the polysiloxane skeleton, and 3 or 4 are directly or indirectly bonded to the polysiloxane skeleton. Is more preferable.
  • bonds in each ring structure bonds not directly or indirectly bonded to the polysiloxane skeleton are bonded to, for example, other groups described later.
  • the 6-membered ring-containing skeleton may have multiple types of 6-membered rings.
  • the ring structure (a) is preferable from the viewpoint of easy availability of the 6-membered ring-containing silane compound as a raw material.
  • the linking group in the 6-membered ring-containing skeleton is, for example, a group formed when a hydrolyzable silyl group is introduced into the 6-membered ring in the production of the 6-membered ring-containing silane compound described later.
  • the 6-membered ring-containing skeleton has a linking group, the proportion of the 6-membered ring-containing skeleton that is an organic skeleton in the three-dimensional network structure is increased, and the bending fracture stress of the polysiloxane gel is further increased.
  • the linking group is a divalent or higher valent group having at least one group selected from the group consisting of an alkylene group, an oxyalkylene group, a polyether chain, and an arylene group.
  • a divalent group having an alkylene group, a polyether chain or an oxyalkylene group is preferable from the viewpoint of easy availability of the 6-membered ring-containing silane compound as a raw material, and a divalent group having an alkylene group. Groups are more preferred.
  • the alkylene group preferably has 1 to 18 carbon atoms, more preferably 2 to 8 carbon atoms, and still more preferably 3 to 6 carbon atoms.
  • the number of carbon atoms of the alkylene group is not less than the lower limit of the above range, the bending fracture stress of the polysiloxane gel is further increased.
  • the number of carbon atoms of the alkylene group is not more than the upper limit of the above range, shrinkage during gel drying can be reduced and the porosity can be prevented from being reduced.
  • the linking group may further have a bond such as —O—, —NH—, —C (O) O—, —NHC (O) — or the like at the terminal or in the middle.
  • the 6-membered ring-containing skeleton may further have a hydrogen atom, a fluorine atom, a chlorine atom, or a monovalent organic group having a free end at the end, bonded to the 6-membered ring and not bonded to the polysiloxane skeleton.
  • the polysiloxane skeleton is a skeleton in which siloxane bonds (Si—O—Si) are continuous.
  • the polysiloxane skeleton may have a pendant group bonded to Si. Examples of the pendant group include monovalent organic groups such as an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and those in which a hydrogen atom thereof is substituted with a halogen atom.
  • the polysiloxane wet gel includes a three-dimensional network structure and a solvent.
  • Solvents include water, alcohol (methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, etc.), aprotic polar organic solvents (N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, etc.), hydrocarbons (N-hexane, heptane, etc.), fluorine-containing solvents (2H, 3H-decafluoropentane, 1,1,2,2,3,3,4-heptafluorocyclopentane, etc.), and mixtures thereof .
  • the polysiloxane xerogel is obtained by replacing the solvent contained in the wet gel with gas, and has a three-dimensional network structure.
  • the polysiloxane xerogel has a three-dimensional fine porous structure in which continuous pores exist between skeletons of a three-dimensional network structure.
  • the bending fracture stress of the polysiloxane gel is preferably 0.3 MPa or more, more preferably 0.5 MPa or more, further preferably 1 MPa or more, particularly preferably 3 MPa or more, and most preferably 6 MPa or more.
  • the bending fracture stress of the polysiloxane gel is preferably 50 MPa or less, more preferably 30 MPa or less, further preferably 20 MPa or less, particularly preferably 15 MPa or less, and most preferably 10 MPa or less. If the bending fracture stress of the polysiloxane gel is 50 MPa or less, continuous pores in the polysiloxane xerogel are sufficiently formed, and the heat insulation of the polysiloxane xerogel is excellent.
  • the 1 mm-thickness converted value of the light transmittance at a wavelength of 500 nm of the polysiloxane gel is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. If the transmittance of the polysiloxane gel is not less than the lower limit of the above range, the transparency of the polysiloxane gel is excellent. The higher the 1 mm-thickness converted value of the transmittance of light having a wavelength of 500 nm of the polysiloxane gel, the better, and the upper limit is 100%.
  • the thermal conductivity of the polysiloxane gel is preferably 5 mW / (m ⁇ K) or more, more preferably 10 mW / (m ⁇ K) or more, and further preferably 12 mW / (m ⁇ K) or more.
  • the thermal conductivity of the polysiloxane gel is 5 mW / (m ⁇ K) or more, the three-dimensional network structure is densely formed and the bending fracture stress of the polysiloxane gel is increased.
  • the thermal conductivity of the polysiloxane gel is preferably 40 mW / (m ⁇ K) or less, more preferably 25 mW / (m ⁇ K) or less, and further preferably 20 mW / (m ⁇ K) or less.
  • the thermal conductivity of the polysiloxane gel is 40 mW / (m ⁇ K) or less, the heat insulation of the polysiloxane gel is more excellent.
  • the average pore diameter of continuous pores in the polysiloxane xerogel is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, and particularly preferably 50 nm or more. If the average pore diameter of the continuous pores is 10 nm or more, the heat insulating property of the polysiloxane xerogel is excellent.
  • the average pore diameter of continuous pores in the polysiloxane xerogel is preferably 150 nm or less, more preferably 100 nm or less, still more preferably 70 nm or less, and particularly preferably 60 nm or less.
  • the average pore diameter of the continuous pores is 150 nm or less, the heat insulation and transparency of the polysiloxane xerogel are excellent.
  • the average porosity of the polysiloxane xerogel is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more. When the average porosity of the polysiloxane xerogel is 50% or more, the heat insulating property of the polysiloxane xerogel is excellent.
  • the average porosity of the polysiloxane xerogel is preferably 97% or less, more preferably 95% or less, and further preferably 93% or less. When the average porosity of the polysiloxane xerogel is 97% or less, the bending fracture stress of the polysiloxane xerogel increases.
  • the bending fracture stress is high due to the composite of the specific six-membered ring-containing skeleton that is an organic skeleton and the polysiloxane skeleton that is an inorganic skeleton.
  • the method for producing a polysiloxane gel of the present invention is a method having the following steps (i) to (iii).
  • the 6-membered ring-containing silane compound has a specific 6-membered ring-containing skeleton and a hydrolyzable silyl group.
  • the six-membered ring-containing skeleton is the same as the six-membered ring-containing skeleton in the above-described three-dimensional network structure, and the preferred form is also the same.
  • the hydrolyzable silyl group becomes a silanol group (Si—OH) by a hydrolysis reaction during gelation, and further reacts between molecules to form a Si—O—Si bond to become a polysiloxane skeleton.
  • hydrolyzable silyl group examples include groups represented by the following formula (x). -SiR n L 3-n (x) Where R is a hydrogen atom or a monovalent hydrocarbon group, L is a hydrolyzable group, and n is an integer of 0-2.
  • R examples include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group, and an alkyl group is preferable.
  • L examples include an alkoxy group, a halogen atom, an acyl group, an isocyanate group, and the like. From the viewpoint of easy production of a 6-membered ring-containing silane compound, a methoxy group or an ethoxy group is preferable, and the reactivity is excellent. Therefore, a methoxy group is more preferable.
  • n is preferably 0 or 1 and more preferably 0 from the viewpoint of easily forming a three-dimensional network structure.
  • the 6-membered ring-containing silane compound preferably has at least two hydrolyzable silyl groups, and more preferably has at least three hydrolyzable silyl groups.
  • the 6-membered ring-containing silane compound has at least two hydrolyzable silyl groups
  • the 6-membered ring-containing skeleton is incorporated in the course of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel is further increased.
  • the 6-membered ring-containing silane compound has at least three hydrolyzable silyl groups
  • the 6-membered ring-containing skeleton becomes a branch point of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel is further increased.
  • 6-membered ring-containing silane compound examples include a compound having a ring structure (a) and a hydrolyzable silyl group (hereinafter also referred to as compound ( ⁇ )), a ring structure (b) and a hydrolyzable silyl group. And a compound having a ring structure (c) and a hydrolyzable silyl group (hereinafter also referred to as compound ( ⁇ )), and the like.
  • Preferred examples of the compound ( ⁇ ) include, for example, a compound represented by the following formula ( ⁇ 1).
  • Preferable examples of the compound ( ⁇ ) include a compound represented by the following formula ( ⁇ 1).
  • Preferable examples of the compound ( ⁇ ) include a compound represented by the following formula ( ⁇ 1).
  • Q 1 , Q 2 and Q 3 are each a linking group.
  • p is an integer of 1 to 3, and 2 or 3 is preferable.
  • other groups hydrogen atom, fluorine atom, chlorine atom, monovalent organic group
  • the plurality of Q 1 may be the same group or may be partially or entirely different groups.
  • Q 2 , Q 3 and SiR n L 3-n R is a hydrogen atom or a monovalent hydrocarbon group, L is a hydrolyzable group, and n is an integer of 0-2.
  • Q 1 , Q 2, and Q 3 include a divalent or higher valent group having at least one group selected from the group consisting of an alkylene group, an oxyalkylene group, a polyether chain, and an arylene group.
  • Q 1 , Q 2 and Q 3 are each preferably — (CH 2 ) m — or —O (CH 2 ) m — (where m is an integer of 1 to 18).
  • the compound ( ⁇ ) is preferably a compound ( ⁇ 1-1) represented by the following formula from the viewpoint of availability.
  • the compound ( ⁇ 1-1) can be obtained from Tokyo Chemical Industry Co., Ltd.
  • the 6-membered ring-containing silane compound includes, for example, a compound having a specific 6-membered ring and a carbon-carbon unsaturated bond (vinyl group, allyl group, etc.) (triallyl isocyanurate, divinylbenzene, trivinylbenzene, etc.), hydrosilyl A compound having a group (HSiR n L 3-n ) can be produced by a hydrosilylation reaction by a method described in Japanese Patent Application Laid-Open No. 2012-121852, Japanese Patent Application Laid-Open No. 2012-121853, or the like.
  • Examples of the solvent used in the step (i) include the solvents in the polysiloxane wet gel described above.
  • the compound ( ⁇ ) has good solubility and affinity with the gel, and forms a fine three-dimensional network structure to be transparent.
  • An aprotic polar organic solvent or an alcohol is preferable from the viewpoint that a gel having excellent properties can be easily obtained.
  • it is preferable that the water for hydrolysis of a hydrolysable silyl group is included.
  • the mixture may further contain another silane compound having a hydrolyzable silyl group.
  • a skeleton derived from the other silane compound is introduced into the three-dimensional network structure, and the characteristics of the skeleton can be imparted to the polysiloxane gel.
  • examples of other silane compounds include alkoxysilanes; silyl group-containing polymers having an organic polymer skeleton having at least one chain selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains, and hydrolyzable silyl groups. Can be mentioned.
  • Alkoxysilanes include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, etc.), dialkyl dialkoxysilane (dimethyldimethoxysilane, dimethyldiethoxysilane).
  • trimethoxyphenylsilane compounds having an alkoxysilyl group at both ends of the alkylene group (1,6-bis (trimethoxysilyl) hexane, 1,2-bis (trimethoxysilyl) ethane, etc.), perfluoropolyether Group-containing alkoxysilane (perfluoropolyether triethoxysilane, etc.), perfluoroalkyl group-containing alkoxysilane (perfluoroethyltriethoxysilane, etc.), pentafluorophenyl ether Sidimethylsilane, trimethoxy (3,3,3-trifluoropropyl) silane, alkoxysilane having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4) -Epoxycyclohexyl) ethyltrimethoxy
  • silyl group-containing polymer examples include Japanese Unexamined Patent Publication No. 6-340798, International Publication No. 2010/013653, International Publication No. 2010/041667, Japanese Unexamined Patent Publication No. 2010-111182, and Japanese Unexamined Patent Publication No. 2010-242070. And silyl group-containing polymers described in Japanese Patent No. 5447284.
  • Exastar manufactured by Asahi Glass Co., Ltd. modified polyether polymer having a hydrolyzable silyl group introduced at the end of a polyether polyol
  • the ratio of the 6-membered ring-containing silane compound to the total (100 mass%) of the 6-membered ring-containing silane compound and other silane compounds in the mixture is preferably 5 to 100 mass%, more preferably 20 to 100 mass%. 50 to 100% by mass is more preferable. If the ratio of the 6-membered ring-containing silane compound is not less than the lower limit of the above range, the bending fracture stress of the polysiloxane gel will be further increased.
  • hydrolyzable silyl groups of 6-membered ring-containing silane compounds and other silane compounds are hydrolyzed to form silanol groups (Si—OH). Is caused to react between molecules to form a Si—O—Si bond.
  • the 6-membered ring-containing silane compound is a compound represented by the formula ( ⁇ 1-1)
  • three Si—O—Si bonds are formed in each of three trimethoxysilyl groups as shown in the following formula.
  • a three-dimensional network structure having a 6-membered ring-containing skeleton and a polysiloxane skeleton is formed.
  • Examples of the base catalyst include amines (tetramethylammonium hydroxide, etc.), urea, ammonia, sodium hydroxide, potassium hydroxide and the like.
  • Examples of the acid catalyst include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
  • the mixture may further contain a surfactant such as hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride.
  • Step (ii) Solvent replacement is performed by immersing the wet gel in a solvent.
  • the solvent used in the step (ii) include the solvents in the above-described polysiloxane wet gel, and in the case of supercritical drying in the step (iii), it is preferable to substitute with alcohol such as methanol, ethanol, isopropyl alcohol, When evaporating and drying in the step (iii), it is preferable to substitute a hydrocarbon solvent such as hexane or heptane having a low surface tension or a fluorine-containing solvent (2H, 3H-decafluoropentane), etc., and freezing in the step (iii). In the case of drying, substitution with t-butanol or a fluorine-containing solvent (1,1,2,2,3,3,4-heptafluorocyclopentane) or the like is preferable.
  • Evaporative drying is performed, for example, by evaporating the solvent from the wet gel under conditions of a temperature of 30 to 100 ° C. and normal pressure.
  • Freeze-drying is performed, for example, by freezing the wet gel under the temperature of ⁇ 30 to 0 ° C. and then vacuum drying under the temperature of ⁇ 30 to 100 ° C.
  • Supercritical drying is performed, for example, by bringing supercritical carbon dioxide into contact with the wet gel under conditions of a temperature of 35 to 100 ° C. and a pressure of 7.4 to 30 MPa.
  • the heat insulating material of the present invention includes the polysiloxane gel of the present invention.
  • the polysiloxane gel polysiloxane xerogel is preferable from the viewpoint of excellent heat insulation.
  • the heat insulating material of the present invention may be a sheet shape, a plate shape, or a molded body having an arbitrary shape.
  • the heat insulating material of the present invention may be composed of only a polysiloxane gel; may be a laminate composed of a layer composed of a polysiloxane gel and another layer; a sheet-like or plate-like polysiloxane A frame-like frame that supports the gel may be provided on the periphery.
  • other layers include an adhesive layer, a glass plate, a plastic plate, a plastic film, and a penetration-resistant film.
  • the heat insulating material of the present invention described above is provided with a polysiloxane gel having heat insulating properties, the heat insulating properties are high. Moreover, since the polysiloxane gel of the present invention having a high bending fracture stress is provided, cracks are unlikely to occur in the polysiloxane gel portion.
  • the laminated glass of the present invention is a transparent heat insulating layer made of the polysiloxane gel of the present invention, which exists between the first glass plate, the second glass plate, and the first glass plate and the second glass plate. With.
  • the laminated glass of the present invention may further have a transparent adhesive layer between the first glass plate or the second glass plate and the transparent heat insulating layer.
  • FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
  • the laminated glass 1 includes: a first glass plate 10; a second glass plate 12; a transparent heat insulating layer 14 disposed between the first glass plate 10 and the second glass plate 12; A first transparent adhesive layer 16 for bonding the glass plate 10 and the transparent heat insulating layer 14; and a second transparent adhesive layer 18 for bonding the second glass plate 12 and the transparent heat insulating layer 14.
  • the material of the first glass plate and the second glass plate may be an inorganic glass or an organic glass, and has weather resistance, rigidity, and solvent resistance.
  • inorganic glass is preferable.
  • the materials of the first glass plate and the second glass plate may be the same or different.
  • the inorganic glass include soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Soda lime glass is preferable.
  • the organic glass include polycarbonate and acrylic resin.
  • the glass plate may be a colorless transparent glass plate or a colored transparent glass plate, and is preferably a heat ray absorbing glass plate (blue glass plate or green glass plate) rich in iron.
  • a tempered glass plate may be used to enhance safety.
  • a tempered glass plate obtained by an air cooling tempering method or a chemical tempering method can be used.
  • the shape of the glass plate may be curved or flat. Since the window glass for automobiles is often curved, when the laminated glass of the present invention is used as the window glass for automobiles, the shape of the glass plate is often curved.
  • the thickness of the glass plate is preferably 0.1 to 6 mm, more preferably 1 to 3 mm.
  • the thicknesses of the first glass plate and the second glass plate may be the same or different.
  • the thickness of the glass plate in this invention is geometric thickness. Hereinafter, the same applies to the thickness of each layer of the laminated glass of the present invention other than the glass plate.
  • the material of the first transparent adhesive layer and the second transparent adhesive layer may be any transparent resin that can adhere the glass plate and the transparent heat insulating layer.
  • the transparent resin include polyvinyl butyral, ethylene-vinyl acetate copolymer, and commercially available optically clear adhesive (OCA), and polyvinyl butyral and ethylene-vinyl acetate copolymer are preferable. Polyvinyl butyral is more preferable for applications requiring penetration resistance such as window glass.
  • the materials of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different. Each transparent adhesive layer may be a laminate of two or more layers of the same or different types.
  • the transparent adhesive layer may contain an infrared absorber, an ultraviolet absorber, an antioxidant, a light stabilizer, a colorant and the like within a range not impairing the effects of the present invention.
  • the thickness of the transparent adhesive layer is preferably from 0.1 to 3 mm, and more preferably from 0.3 to 0.8 mm.
  • the thickness of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different.
  • a transparent heat insulation layer consists of a sheet-like polysiloxane gel of the present invention.
  • polysiloxane gel polysiloxane xerogel is preferable from the viewpoint of excellent heat insulation.
  • the compression elastic modulus of the transparent heat insulating layer is preferably 1.3 MPa or more, more preferably 4.3 MPa or more, further preferably 5.0 MPa or more, and particularly preferably 12 MPa or more.
  • the transparent heat insulating layer is excellent in mechanical strength and can withstand compression when laminated with a glass plate during the production of laminated glass.
  • the thickness of the transparent heat insulating layer is preferably 0.2 to 10 mm, more preferably 0.5 to 6 mm, and further preferably 1 to 3 mm. If the thickness of a transparent heat insulation layer is more than the lower limit of the said range, it will be further excellent in the heat insulation of a laminated glass. If the thickness of a transparent heat insulation layer is below the upper limit of the said range, the transparency of a laminated glass will become still higher.
  • the transmittance of light having a wavelength of 500 nm of the laminated glass is preferably 50% or more, more preferably 70 to 99%, and further preferably 80 to 96%. If the transmittance
  • the thermal penetration rate (U value) of laminated glass is 5.8 W / m 2 K in the current laminated glass for automobiles, and is preferably 5.0 W / m 2 K or less from the viewpoint of improving fuel efficiency. More preferable is 0.0 W / m 2 K or less.
  • the thickness of the laminated glass is preferably 2 to 20 mm, more preferably 3 to 10 mm, and even more preferably 4 to 6 mm. If the thickness of the laminated glass is not less than the lower limit of the above range, the heat insulating property of the laminated glass is further improved, and the mechanical strength is also excellent. If the thickness of a laminated glass is below the upper limit of the said range, a laminated glass will not become too heavy and it is excellent also in transparency.
  • Laminated glass can be produced by a known method.
  • the second glass plate, the transparent resin sheet serving as the second transparent adhesive layer, the sheet-like polysiloxane gel of the present invention serving as the transparent heat insulating layer, the transparent resin sheet serving as the first transparent adhesive layer, the first It can manufacture by carrying out this adhesion
  • the transparent resin sheet serving as the first transparent adhesive layer and the transparent resin sheet serving as the second transparent adhesive layer may each be the same type or may be composed of two or more different types of sheets. Good.
  • the laminated glass of the present invention is a transparent heat insulating layer made of the polysiloxane gel of the present invention, which exists between the first glass plate, the second glass plate, and the first glass plate and the second glass plate. And is not limited to the illustrated example.
  • the laminated glass of this invention may have a 3rd glass plate or more glass plates as needed.
  • the laminated glass of this invention may have functional layers other than a transparent heat insulation layer, such as an infrared absorption layer and an ultraviolet absorption layer.
  • the laminated glass of the present invention described above has a high heat insulating property because it includes a transparent heat insulating layer made of polysiloxane gel. Moreover, since a transparent heat insulation layer is the polysiloxane gel of this invention with a high bending fracture stress, it is hard to produce a crack in a transparent heat insulation layer.
  • the average pore diameter of the continuous pores in xerogel is 50% higher than the integrated pore volume plot of the BJH method adsorption by measuring the nitrogen adsorption method using a pore distribution measuring device (manufactured by Shimadzu Corporation, 3Flex-2MP). This is a value of a pore diameter generally called a median diameter.
  • the bending fracture stress of polysiloxane xerogel is based on JIS K 7171: 2008 (ISO 178: 2001), and is a single gel using a desktop precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-5kNX). Three samples of each were measured, and the arithmetic average value was obtained.
  • the transmittance of light having a wavelength of 500 nm of the polysiloxane xerogel was measured using a spectrophotometer (manufactured by Shimadzu Corporation, SolidSpec-3700DUV) in accordance with JIS R 3106: 1998 (ISO 9050: 1990).
  • Thermal conductivity of the polysiloxane xerogel was measured according to JIS A 1412-2: 1999 (ISO 8301: 1991) by using a thermal conductivity measuring device (HC-074 / 630, manufactured by Eiko Seiki Co., Ltd.).
  • the compression modulus of polysiloxane xerogel is based on JIS K 7181: 2011 (ISO 604: 2002), and using a tabletop precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-5kNX) Three samples of each were measured and the arithmetic average value was obtained.
  • Example 1 5 g of compound ( ⁇ 1-1) (manufactured by Tokyo Chemical Industry Co., Ltd., isocyanuric acid tris [3- (trimethoxysilyl) propyl]) and 30 g of N, N-dimethylformamide (hereinafter also referred to as DMF), a magnetic stirring bar was placed in a plastic container containing, and stirred at room temperature for 1 minute. To this was added 2 g of a 0.75 mol / L tetramethylammonium hydroxide aqueous solution as a base catalyst and surfactant, and the mixture was stirred at 1500 rpm for 10 seconds to obtain a mixture. The obtained mixture was placed in two polypropylene trays with different liquid thicknesses.
  • DMF N, N-dimethylformamide
  • the tray was placed in a stainless steel sealed container, the lid was closed, and the sealed container was placed in an oven at 60 ° C. for gelation.
  • the container was taken out from the oven, and the wet gel in the tray was immersed in methanol in another sealed stainless steel container. Every 24 hours, the methanol in the container was replaced with new methanol. Methanol exchange was repeated 4 times to obtain a methanol gel.
  • the solvent was replaced with hexane, and the same solvent replacement was repeated four times to replace the methanol gel solvent with hexane, thereby obtaining a hexane gel.
  • the obtained hexane gel was put into an oven at 60 ° C.
  • Example 2 Carbon dioxide supercritical drying was performed using methanol gel obtained by the same method as in Example 1 to obtain polysiloxane xerogel. Specifically, methanol was filled in a high-pressure vessel, and methanol gel was put therein. After making a closed system with a lid, liquefied carbon dioxide gas was introduced at 20 ° C. at a rate of 10 mL / min, and adjusted and maintained with a back pressure valve so that the pressure was constant at 26 MPa. After this operation was continued for 24 hours, the temperature of the high-pressure vessel was raised to 50 ° C. while maintaining the pressure at 26 MPa, thereby obtaining a supercritical state. Thereafter, carbon dioxide was kept flowing at 5 mL / min to maintain 26 MPa.
  • Example 3 Polysiloxane xerogels having a thickness of 1 mm and 10 mm were obtained in the same manner as in Example 1 except that dimethyl sulfoxide (hereinafter also referred to as DMSO) was used instead of DMF. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 1.
  • DMSO dimethyl sulfoxide
  • Example 4 A thickness of 1 mm was obtained in the same manner as in Example 1 except that 3 g of compound ( ⁇ 1-1) and 2 g of methyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 5 g of compound ( ⁇ 1-1) And 10 mm polysiloxane xerogel was obtained. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 2.
  • Example 5 a polysiloxane xerogel having a thickness of 1 mm and 10 mm was prepared in the same manner as in Example 1 except that 1 g of the compound ( ⁇ 1-1) and 4 g of methyltrimethoxysilane were used. Obtained. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 2.
  • Example 6 0.5 g of compound ( ⁇ 1-1), 4.5 g of methyltrimethoxysilane, 30 g of 5 mmol / L acetic acid aqueous solution as a solvent, 2 g of urea as a base catalyst, and hexadecyltrimethylammonium bromide as a surfactant ( 0.75 g (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a plastic container containing a magnetic stirrer and stirred at room temperature for 60 minutes at a rotation speed of 1500 rpm to obtain a mixture.
  • a polysiloxane xerogel having a thickness of 1 mm and 10 mm was obtained in the same manner as in Example 1 except that this mixture was used. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 2.
  • Example 7 Instead of using 5 g of the compound ( ⁇ 1-1), a thickness of 1 mm was obtained in the same manner as in Example 1 except that 1 g of the compound ( ⁇ 1-1) and 4 g of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used. A 10 mm polysiloxane xerogel was obtained. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 3.
  • Example 8 Instead of using 5 g of compound ( ⁇ 1-1), 2.5 g of compound ( ⁇ 1-1) and 2.5 g of 1,6-bis (trimethoxysilyl) hexane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used. Polysiloxane xerogels having a thickness of 1 mm and 10 mm were obtained by the same method as in Example 1. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 3.
  • Example 9 The same method as in Example 1 except that 2.5 g of the compound ( ⁇ 1-1) and 2.5 g of dimethyldimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 5 g of the compound ( ⁇ 1-1). To obtain polysiloxane xerogel having a thickness of 1 mm and 10 mm. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 3.
  • Example 1 Polysiloxane xerogels having a thickness of 1 mm and 10 mm were obtained in the same manner as in Example 1 except that 5 g of methyltrimethoxysilane was used instead of 5 g of compound ( ⁇ 1-1). The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 4.
  • the polysiloxane gel of the present invention is useful as a heat insulating material, a transparent heat insulating layer of laminated glass, and the like.
  • the laminated glass of the present invention includes automotive window glass (windshield, roof window, elevating window, side fixing window, backlight, roof window, etc.), vehicle window glass such as railcar window glass, and building window glass. Useful as such.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The purpose of this invention is to provide a polysiloxane gel having a high bend fracture stress. This invention pertains to a polysiloxane gel including a three-dimensional network structure including a polysiloxane core and a six-membered ring-containing core having at least one type of six-membered ring selected from the group consisting of a ring structure represented by formula (a), a ring structure represented by formula (b) and a ring structure represented by formula (c). In formulae (a) to (c), * represents a bond.

Description

ポリシロキサンゲル、その製造方法、断熱材および合わせガラスPolysiloxane gel, production method thereof, heat insulating material and laminated glass
 本発明は、ポリシロキサンゲル、その製造方法、断熱材および合わせガラスに関する。 The present invention relates to a polysiloxane gel, a method for producing the same, a heat insulating material, and a laminated glass.
 透明断熱材は、自動車や建物の室内の冷暖房効率を向上させる等を目的とした、自動車用窓ガラスや建物用窓ガラスにおける断熱材として期待されている。 Transparent insulation is expected as insulation for automotive window glass and building window glass for the purpose of improving the cooling and heating efficiency of automobiles and buildings.
 透明断熱材としては、たとえば、3次元網目状に連続した貫通孔と、アルキルシロキサンからなる3次元網目状に連続した骨格と、から形成される3次元網目構造を有するアルキルシロキサンエアロゲルが提案されている(特許文献1)。 As the transparent heat insulating material, for example, an alkylsiloxane airgel having a three-dimensional network structure formed from through-holes continuous in a three-dimensional network and a skeleton continuous in a three-dimensional network made of alkylsiloxane has been proposed. (Patent Document 1).
国際公開第2007/010949号International Publication No. 2007/010949
 しかし、特許文献1のアルキルシロキサンエアロゲルは、脆く、曲げることができない。そのため、特許文献1のアルキルシロキサンエアロゲルは、曲げ方向の力が加わると、簡単に割れてしまい、使い勝手が悪い。 However, the alkylsiloxane airgel of Patent Document 1 is brittle and cannot be bent. For this reason, the alkylsiloxane airgel of Patent Document 1 is easily broken when a force in the bending direction is applied, and is not convenient.
 本発明は、曲げ破壊応力が高いポリシロキサンゲル;曲げ破壊応力が高いポリシロキサンゲルを製造できる方法;断熱性が高く、かつ割れが生じにくい断熱材;および断熱性が高く、かつ透明断熱層に割れが生じにくい合わせガラスを提供する。 The present invention relates to a polysiloxane gel having a high bending fracture stress; a method capable of producing a polysiloxane gel having a high bending fracture stress; a heat insulating material having a high heat insulating property and being less prone to cracking; and a high heat insulating property and a transparent heat insulating layer. To provide a laminated glass which is not easily broken.
 本発明のポリシロキサンゲルは、下式(a)で表される環構造、下式(b)で表される環構造および下式(c)で表される環構造からなる群から選ばれる少なくとも1種の6員環を有する6員環含有骨格と、ポリシロキサン骨格とを有する三次元網目構造を含む。
Figure JPOXMLDOC01-appb-C000003
 ただし、式(a)~(c)中の*は結合手である。
 本発明のポリシロキサンゲルの製造方法は、下式(a)で表される環構造、下式(b)で表される環構造および下式(c)で表される環構造からなる群から選ばれる少なくとも1種の6員環を有する6員環含有骨格と、ポリシロキサン骨格とを有する三次元網目構造を含むポリシロキサンゲルを製造する方法であり;下式(a)で表される環構造、下式(b)で表される環構造および下式(c)で表される環構造からなる群から選ばれる少なくとも1種の6員環を有する6員環含有骨格と加水分解性シリル基とを有する6員環含有シラン化合物と、溶媒とを含む混合物をゲル化させて湿潤ゲルを得る。
Figure JPOXMLDOC01-appb-C000004
 ただし、式(a)~(c)中の*は結合手である。
 本発明の断熱材は、本発明のポリシロキサンゲルを備える。
 本発明の合わせガラスは、第1のガラス板と、第2のガラス板と、前記第1のガラス板と前記第2のガラス板との間に存在する透明断熱層とを備え、前記透明断熱層が、本発明のポリシロキサンゲルである。
The polysiloxane gel of the present invention is at least selected from the group consisting of a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c). A three-dimensional network structure having a six-membered ring-containing skeleton having one kind of six-membered ring and a polysiloxane skeleton is included.
Figure JPOXMLDOC01-appb-C000003
However, * in the formulas (a) to (c) is a bond.
The method for producing a polysiloxane gel of the present invention comprises a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c). A method for producing a polysiloxane gel comprising a three-dimensional network structure having a six-membered ring-containing skeleton having at least one selected six-membered ring and a polysiloxane skeleton; a ring represented by the following formula (a) A 6-membered ring-containing skeleton having at least one 6-membered ring selected from the group consisting of a structure, a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c); A 6-membered ring-containing silane compound having a group and a solvent are gelled to obtain a wet gel.
Figure JPOXMLDOC01-appb-C000004
However, * in the formulas (a) to (c) is a bond.
The heat insulating material of the present invention includes the polysiloxane gel of the present invention.
The laminated glass of the present invention comprises a first glass plate, a second glass plate, and a transparent heat insulation layer existing between the first glass plate and the second glass plate, and the transparent heat insulation. The layer is the polysiloxane gel of the present invention.
 本発明のポリシロキサンゲルは、曲げ破壊応力が高い。
 本発明のポリシロキサンゲルの製造方法によれば、曲げ破壊応力が高いポリシロキサンゲルを製造できる。
 本発明の断熱材は、断熱性が高く、かつ割れが生じにくい。
 本発明の合わせガラスは、断熱性が高く、かつ透明断熱層に割れが生じにくい。
The polysiloxane gel of the present invention has a high bending fracture stress.
According to the method for producing a polysiloxane gel of the present invention, a polysiloxane gel having a high bending fracture stress can be produced.
The heat insulating material of the present invention has high heat insulating properties and is not easily cracked.
The laminated glass of the present invention has high heat insulating properties and is less likely to crack in the transparent heat insulating layer.
図1は、本発明の合わせガラスの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
 以下の用語の定義は、本明細書および請求の範囲にわたって適用される。
 「ポリシロキサンゲル」とは、シロキサン結合(Si-O-Si)が連続したポリシロキサン骨格を有する三次元網目構造を含むゲルを意味する。ポリシロキサンゲルは、膨潤剤(溶媒)を含む湿潤ゲルおよび膨潤剤を含まないキセロゲルを包含する。
 「湿潤ゲル」とは、三次元網目構造が膨潤剤によって膨潤したゲルを意味する。膨潤剤が水であるヒドロゲル、膨潤剤がアルコールであるアルコゲル、膨潤剤が有機溶媒であるオルガノゲルを包含する。
 「キセロゲル」とは、国際純正応用化学連合(IUPAC)無機化学部会および高分子部会高分子用語法小委員会の「ゾル,ゲル,網目,および無機有機複合材料の構造とプロセスに関する術語の定義(IUPAC勧告2007)」によれば「ゲルから膨潤剤を除去して形成された開放網目からなるゲル。」を意味する。超臨界乾燥によって膨潤剤を除去したものをエアロゲル、通常の蒸発乾燥によって膨潤剤を除去したものをキセロゲル、凍結乾燥によって膨潤剤を除去したものをクライオゲルとする分類法もあるが、本明細書および請求の範囲においては、これらをまとめてキセロゲルと称する。
 「透明」とは、光を透過できることを意味する。
 「曲げ破壊応力」は、JIS K 7171:2008「プラスチック-曲げ特性の求め方」(ISO 178:2001)に準拠して測定される値である。
 「透過率」は、JIS R 3106:1998「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」(ISO 9050:1990)に準拠して測定される値である。
 「熱伝導率」は、JIS A 1412-2:1999「熱絶縁材の熱抵抗及び熱伝導率の測定方法-第2部:熱流計法(HFM法)」(ISO 8301:1991)に準拠して測定される値である。
 「平均気孔径」は、細孔分布測定装置を用いた窒素吸着法の測定によって、BJH(Barrett-Joyner-Halenda)法吸着の積算細孔容積プロットが50%高さになる、一般にメジアン径と呼ばれる細孔径の値である。
 「平均気孔率」は、プレス前のキセロゲルの体積と、温度:100℃、圧力:50MPa、時間:10分間の条件でプレスした後のキセロゲルの体積とから下式によって求めた値である。
 平均気孔率={1-(プレス後のキセロゲルの体積/プレス前のキセロゲルの体積)}×100
 「圧縮弾性率」は、JIS K 7181:2011「プラスチック-圧縮特性の求め方」(ISO 604:2002)に準拠して測定される値である。
The following term definitions apply throughout this specification and the claims.
The “polysiloxane gel” means a gel including a three-dimensional network structure having a polysiloxane skeleton in which siloxane bonds (Si—O—Si) are continuous. Polysiloxane gels include wet gels with swelling agents (solvents) and xerogels without swelling agents.
“Wet gel” means a gel in which a three-dimensional network structure is swollen by a swelling agent. It includes hydrogels in which the swelling agent is water, alcogels in which the swelling agent is alcohol, and organogels in which the swelling agent is an organic solvent.
“Xerogel” is the definition of terminology related to the structure and process of sols, gels, meshes, and inorganic-organic composite materials by the International Union of Applied Chemistry (IUPAC) Inorganic Chemistry and Polymer Subcommittee "IUPAC recommendation 2007)" means "a gel composed of an open network formed by removing a swelling agent from a gel." There is also a classification method in which the air-gel is the one from which the swelling agent has been removed by supercritical drying, the airgel is the one from which the swelling agent has been removed by normal evaporation drying, and the cryogel is the one from which the swelling agent has been removed by freeze-drying. In the claims, these are collectively referred to as xerogel.
“Transparent” means that light can be transmitted.
“Bending fracture stress” is a value measured in accordance with JIS K 7171: 2008 “Plastics—How to obtain bending characteristics” (ISO 178: 2001).
“Transmittance” is a value measured in accordance with JIS R 3106: 1998 “Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass” (ISO 9050: 1990).
“Thermal conductivity” conforms to JIS A 1412-2: 1999 “Measurement method of thermal resistance and thermal conductivity of thermal insulation materials—Part 2: Heat flow meter method (HFM method)” (ISO 8301: 1991). Is a measured value.
The “average pore diameter” is a median diameter that is generally 50% higher than the integrated pore volume plot of the BJH (Barrett-Joyner-Halenda) adsorption by the measurement of the nitrogen adsorption method using a pore distribution measuring device. It is the value of the pore diameter called.
The “average porosity” is a value obtained from the following equation from the volume of xerogel before pressing and the volume of xerogel after pressing under conditions of temperature: 100 ° C., pressure: 50 MPa, time: 10 minutes.
Average porosity = {1− (volume of xerogel after pressing / volume of xerogel before pressing)} × 100
The “compressive modulus” is a value measured in accordance with JIS K 7181: 2011 “Plastics—How to obtain compression properties” (ISO 604: 2002).
<ポリシロキサンゲル>
 本発明のポリシロキサンゲルは、特定の6員環含有骨格と、ポリシロキサン骨格とを有する三次元網目構造を含む。
 本発明のポリシロキサンゲルは、溶媒を含む湿潤ゲルであってもよく、溶媒を含まないキセロゲルであってもよい。
<Polysiloxane gel>
The polysiloxane gel of the present invention includes a three-dimensional network structure having a specific six-membered ring-containing skeleton and a polysiloxane skeleton.
The polysiloxane gel of the present invention may be a wet gel containing a solvent or a xerogel containing no solvent.
 (6員環含有骨格)
 6員環含有骨格は、特定の6員環を有する。
 6員環含有骨格は、6員環とポリシロキサン骨格との間に介在する連結基をさらに有することが好ましい。
(Six-membered ring-containing skeleton)
The 6-membered ring-containing skeleton has a specific 6-membered ring.
The 6-membered ring-containing skeleton preferably further has a linking group interposed between the 6-membered ring and the polysiloxane skeleton.
 6員環含有骨格は、複数の結合手を有し、複数の結合手のうちの少なくとも2つの結合手が、ポリシロキサン骨格に直接または間接的に結合することが好ましく、複数の結合手のうちの少なくとも3つの結合手が、ポリシロキサン骨格に直接または間接的に結合することがより好ましい。6員環含有骨格の2つの結合手がポリシロキサン骨格に直接または間接的に結合することによって、6員環含有骨格が三次元網目構造の経路の途中に組み込まれ、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。6員環含有骨格の3つの結合手がポリシロキサン骨格に直接または間接的に結合することによって、6員環含有骨格が三次元網目構造の分岐点となり、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。 The 6-membered ring-containing skeleton has a plurality of bonds, and at least two of the plurality of bonds are preferably bonded directly or indirectly to the polysiloxane skeleton. It is more preferable that at least three of the bonds are directly or indirectly bonded to the polysiloxane skeleton. The two bond hands of the 6-membered ring-containing skeleton are directly or indirectly bonded to the polysiloxane skeleton, so that the 6-membered ring-containing skeleton is incorporated in the course of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel Is even higher. Since the three bonds of the 6-membered ring-containing skeleton are directly or indirectly bonded to the polysiloxane skeleton, the 6-membered ring-containing skeleton becomes a branch point of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel is further increased. Become.
 (6員環)
 6員環含有骨格における6員環は、下式(a)で表される環構造(以下、環構造(a)とも記す。)、下式(b)で表される環構造(以下、環構造(b)とも記す。)および下式(c)で表される環構造(以下、環構造(c)とも記す。)からなる群から選ばれる少なくとも1種である。
(6-member ring)
The 6-membered ring in the 6-membered ring-containing skeleton includes a ring structure represented by the following formula (a) (hereinafter also referred to as ring structure (a)) and a ring structure represented by the following formula (b) (hereinafter referred to as ring). And at least one selected from the group consisting of a ring structure represented by the following formula (c) (hereinafter also referred to as ring structure (c)).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ただし、式(a)~(c)中の*は結合手である。環構造(a)および環構造(b)においては、3つの結合手のうち、2または3つがポリシロキサン骨格に直接または間接的に結合することが好ましく、3つがポリシロキサン骨格に直接または間接的に結合することがより好ましい。環構造(c)においては、6つの結合手のうち、2~4つがポリシロキサン骨格に直接または間接的に結合することが好ましく、3または4つがポリシロキサン骨格に直接または間接的に結合することがより好ましい。各環構造における結合手のうち、ポリシロキサン骨格に直接または間接的に結合しない結合手には、たとえば、後述する他の基が結合する。
 6員環含有骨格は、複数種の6員環を有していてもよい。
 6員環としては、原料である6員環含有シラン化合物の入手のしやすさの点から、環構造(a)が好ましい。
However, * in the formulas (a) to (c) is a bond. In the ring structure (a) and the ring structure (b), it is preferable that two or three of three bonds are directly or indirectly bonded to the polysiloxane skeleton, and three are directly or indirectly bonded to the polysiloxane skeleton. More preferably, it binds to. In the ring structure (c), it is preferable that 2 to 4 of the 6 bonds are directly or indirectly bonded to the polysiloxane skeleton, and 3 or 4 are directly or indirectly bonded to the polysiloxane skeleton. Is more preferable. Of the bonds in each ring structure, bonds not directly or indirectly bonded to the polysiloxane skeleton are bonded to, for example, other groups described later.
The 6-membered ring-containing skeleton may have multiple types of 6-membered rings.
As the 6-membered ring, the ring structure (a) is preferable from the viewpoint of easy availability of the 6-membered ring-containing silane compound as a raw material.
 (連結基)
 6員環含有骨格における連結基は、たとえば、後述する6員環含有シラン化合物の製造において6員環に加水分解性シリル基を導入する際に形成される基である。
 6員環含有骨格が連結基を有することによって、三次元網目構造における有機骨格である6員環含有骨格の割合が増え、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。
(Linking group)
The linking group in the 6-membered ring-containing skeleton is, for example, a group formed when a hydrolyzable silyl group is introduced into the 6-membered ring in the production of the 6-membered ring-containing silane compound described later.
When the 6-membered ring-containing skeleton has a linking group, the proportion of the 6-membered ring-containing skeleton that is an organic skeleton in the three-dimensional network structure is increased, and the bending fracture stress of the polysiloxane gel is further increased.
 連結基は、アルキレン基、オキシアルキレン基、ポリエーテル鎖およびアリーレン基からなる群から選ばれる少なくとも1種の基を有する2価以上の基である。連結基としては、原料である6員環含有シラン化合物の入手のしやすさの点から、アルキレン基またはポリエーテル鎖またはオキシアルキレン基を有する2価の基が好ましく、アルキレン基を有する2価の基がより好ましい。
 アルキレン基の炭素数は、1~18が好ましく、2~8がより好ましく、3~6がさらに好ましい。アルキレン基の炭素数が前記範囲の下限値以上であれば、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。アルキレン基の炭素数が前記範囲の上限値以下であれば、ゲル乾燥時の収縮が低減でき、気孔率の低減が防げる。
The linking group is a divalent or higher valent group having at least one group selected from the group consisting of an alkylene group, an oxyalkylene group, a polyether chain, and an arylene group. As the linking group, a divalent group having an alkylene group, a polyether chain or an oxyalkylene group is preferable from the viewpoint of easy availability of the 6-membered ring-containing silane compound as a raw material, and a divalent group having an alkylene group. Groups are more preferred.
The alkylene group preferably has 1 to 18 carbon atoms, more preferably 2 to 8 carbon atoms, and still more preferably 3 to 6 carbon atoms. When the number of carbon atoms of the alkylene group is not less than the lower limit of the above range, the bending fracture stress of the polysiloxane gel is further increased. When the number of carbon atoms of the alkylene group is not more than the upper limit of the above range, shrinkage during gel drying can be reduced and the porosity can be prevented from being reduced.
 連結基は、末端または途中に、-O-、-NH-、-C(O)O-、-NHC(O)-等の結合をさらに有していてもよい。 The linking group may further have a bond such as —O—, —NH—, —C (O) O—, —NHC (O) — or the like at the terminal or in the middle.
 (他の基)
 6員環含有骨格は、6員環に結合し、ポリシロキサン骨格に結合しない、水素原子、フッ素原子、塩素原子、末端が自由端である1価の有機基をさらに有していてもよい。
(Other groups)
The 6-membered ring-containing skeleton may further have a hydrogen atom, a fluorine atom, a chlorine atom, or a monovalent organic group having a free end at the end, bonded to the 6-membered ring and not bonded to the polysiloxane skeleton.
 (ポリシロキサン骨格)
 ポリシロキサン骨格は、シロキサン結合(Si-O-Si)が連続した骨格である。
 ポリシロキサン骨格は、Siに結合したペンダント基を有していてもよい。ペンダント基としては、1価の有機基、たとえば、アルキル基、シクロアルキル基、アルケニル基、アリール基、およびそれらの水素原子がハロゲン原子に置換されたもの等が挙げられる。
(Polysiloxane skeleton)
The polysiloxane skeleton is a skeleton in which siloxane bonds (Si—O—Si) are continuous.
The polysiloxane skeleton may have a pendant group bonded to Si. Examples of the pendant group include monovalent organic groups such as an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and those in which a hydrogen atom thereof is substituted with a halogen atom.
 (ポリシロキサン湿潤ゲル)
 ポリシロキサン湿潤ゲルは、三次元網目構造と、溶媒とを含む。
 溶媒としては、水、アルコール(メタノール、エタノール、イソプロピルアルコール、tert-ブチルアルコール等)、非プロトン性極性有機溶媒(N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド等)、炭化水素(n-ヘキサン、ヘプタン等)、含フッ素溶媒(2H,3H-デカフルオロペンタン、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン等)、およびそれらの混合物等が挙げられる。
(Polysiloxane wet gel)
The polysiloxane wet gel includes a three-dimensional network structure and a solvent.
Solvents include water, alcohol (methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, etc.), aprotic polar organic solvents (N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, etc.), hydrocarbons (N-hexane, heptane, etc.), fluorine-containing solvents (2H, 3H-decafluoropentane, 1,1,2,2,3,3,4-heptafluorocyclopentane, etc.), and mixtures thereof .
 (ポリシロキサンキセロゲル)
 ポリシロキサンキセロゲルは、湿潤ゲル中に含まれる溶媒を気体に置換したものであり、三次元網目構造からなる。ポリシロキサンキセロゲルは、三次元網目構造の骨格の間に連続気孔が存在する三次元的な微細な多孔性の構造を有する。
(Polysiloxane xerogel)
The polysiloxane xerogel is obtained by replacing the solvent contained in the wet gel with gas, and has a three-dimensional network structure. The polysiloxane xerogel has a three-dimensional fine porous structure in which continuous pores exist between skeletons of a three-dimensional network structure.
 (曲げ破壊応力)
 ポリシロキサンゲルの曲げ破壊応力は、0.3MPa以上が好ましく、0.5MPa以上がより好ましく、1MPa以上がさらに好ましく、3MPa以上が特に好ましく、6MPa以上が最も好ましい。ポリシロキサンゲルの曲げ破壊応力が0.3MPa以上であれば、ポリシロキサンゲルが脆くならず、使い勝手がよりよい。ポリシロキサンゲルの曲げ破壊応力は、50MPa以下が好ましく、30MPa以下がより好ましく、20MPa以下がさらに好ましく、15MPa以下が特に好ましく、10MPa以下が最も好ましい。ポリシロキサンゲルの曲げ破壊応力50MPa以下であれば、ポリシロキサンキセロゲルにおける連続気孔が充分に形成され、ポリシロキサンキセロゲルの断熱性により優れる。
(Bending fracture stress)
The bending fracture stress of the polysiloxane gel is preferably 0.3 MPa or more, more preferably 0.5 MPa or more, further preferably 1 MPa or more, particularly preferably 3 MPa or more, and most preferably 6 MPa or more. When the bending fracture stress of the polysiloxane gel is 0.3 MPa or more, the polysiloxane gel does not become brittle and the usability is better. The bending fracture stress of the polysiloxane gel is preferably 50 MPa or less, more preferably 30 MPa or less, further preferably 20 MPa or less, particularly preferably 15 MPa or less, and most preferably 10 MPa or less. If the bending fracture stress of the polysiloxane gel is 50 MPa or less, continuous pores in the polysiloxane xerogel are sufficiently formed, and the heat insulation of the polysiloxane xerogel is excellent.
 (透過率)
 ポリシロキサンゲルの、波長500nmの光の透過率の1mm厚さ換算値は、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。ポリシロキサンゲルの透過率が前記範囲の下限値以上であれば、ポリシロキサンゲルの透明性により優れる。ポリシロキサンゲルの、波長500nmの光の透過率の1mm厚さ換算値は、高ければ高いほどよく、上限値は100%である。
(Transmittance)
The 1 mm-thickness converted value of the light transmittance at a wavelength of 500 nm of the polysiloxane gel is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. If the transmittance of the polysiloxane gel is not less than the lower limit of the above range, the transparency of the polysiloxane gel is excellent. The higher the 1 mm-thickness converted value of the transmittance of light having a wavelength of 500 nm of the polysiloxane gel, the better, and the upper limit is 100%.
 (熱伝導率)
 ポリシロキサンゲルの熱伝導率は、5mW/(m・K)以上が好ましく、10mW/(m・K)以上がより好ましく、12mW/(m・K)以上がさらに好ましい。ポリシロキサンゲルの熱伝導率が5mW/(m・K)以上であれば、三次元網目構造が密に形成され、ポリシロキサンゲルの曲げ破壊応力が高くなる。ポリシロキサンゲルの熱伝導率は、40mW/(m・K)以下が好ましく、25mW/(m・K)以下がより好ましく、20mW/(m・K)以下がさらに好ましい。ポリシロキサンゲルの熱伝導率が40mW/(m・K)以下であれば、ポリシロキサンゲルの断熱性により優れる。
(Thermal conductivity)
The thermal conductivity of the polysiloxane gel is preferably 5 mW / (m · K) or more, more preferably 10 mW / (m · K) or more, and further preferably 12 mW / (m · K) or more. When the thermal conductivity of the polysiloxane gel is 5 mW / (m · K) or more, the three-dimensional network structure is densely formed and the bending fracture stress of the polysiloxane gel is increased. The thermal conductivity of the polysiloxane gel is preferably 40 mW / (m · K) or less, more preferably 25 mW / (m · K) or less, and further preferably 20 mW / (m · K) or less. When the thermal conductivity of the polysiloxane gel is 40 mW / (m · K) or less, the heat insulation of the polysiloxane gel is more excellent.
 (気孔径および気孔率)
 ポリシロキサンゲルの透明性および断熱性を両立することは、ポリシロキサンキセロゲルにおける連続気孔の気孔径および気孔率を調整することによって達成できる。
 ポリシロキサンキセロゲルにおける連続気孔の平均気孔径は、10nm以上が好ましく、30nm以上がより好ましく、40nm以上がさらに好ましく、50nm以上が特に好ましい。連続気孔の平均気孔径が10nm以上であれば、ポリシロキサンキセロゲルの断熱性により優れる。ポリシロキサンキセロゲルにおける連続気孔の平均気孔径は、150nm以下が好ましく、100nm以下がより好ましく、70nm以下がさらに好ましく、60nm以下が特に好ましい。連続気孔の平均気孔径が150nm以下であれば、ポリシロキサンキセロゲルの断熱性と透明性により優れる。
(Pore size and porosity)
It is possible to achieve both transparency and heat insulation of the polysiloxane gel by adjusting the pore diameter and porosity of the continuous pores in the polysiloxane xerogel.
The average pore diameter of continuous pores in the polysiloxane xerogel is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, and particularly preferably 50 nm or more. If the average pore diameter of the continuous pores is 10 nm or more, the heat insulating property of the polysiloxane xerogel is excellent. The average pore diameter of continuous pores in the polysiloxane xerogel is preferably 150 nm or less, more preferably 100 nm or less, still more preferably 70 nm or less, and particularly preferably 60 nm or less. When the average pore diameter of the continuous pores is 150 nm or less, the heat insulation and transparency of the polysiloxane xerogel are excellent.
 ポリシロキサンキセロゲルの平均気孔率は、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。ポリシロキサンキセロゲルの平均気孔率が50%以上であれば、ポリシロキサンキセロゲルの断熱性により優れる。ポリシロキサンキセロゲルの平均気孔率は、97%以下が好ましく、95%以下がより好ましく、93%以下がさらに好ましい。ポリシロキサンキセロゲルの平均気孔率が97%以下であれば、ポリシロキサンキセロゲルの曲げ破壊応力が高くなる。 The average porosity of the polysiloxane xerogel is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more. When the average porosity of the polysiloxane xerogel is 50% or more, the heat insulating property of the polysiloxane xerogel is excellent. The average porosity of the polysiloxane xerogel is preferably 97% or less, more preferably 95% or less, and further preferably 93% or less. When the average porosity of the polysiloxane xerogel is 97% or less, the bending fracture stress of the polysiloxane xerogel increases.
 (作用機序)
 以上説明した本発明のポリシロキサンゲルにあっては、有機骨格である特定の6員環含有骨格と、無機骨格であるポリシロキサン骨格との複合によって、曲げ破壊応力が高くなっている。
(Mechanism of action)
In the polysiloxane gel of the present invention described above, the bending fracture stress is high due to the composite of the specific six-membered ring-containing skeleton that is an organic skeleton and the polysiloxane skeleton that is an inorganic skeleton.
<ポリシロキサンゲルの製造方法>
 本発明のポリシロキサンゲルの製造方法は、下記の工程(i)~(iii)を有する方法である。
 工程(i):特定の6員環含有シラン化合物と、溶媒とを含む混合物をゲル化させて湿潤ゲルを得る工程。
 工程(ii):必要に応じて、湿潤ゲルの溶媒を置換する工程。
 工程(iii):必要に応じて、湿潤ゲルから溶媒を除去してキセロゲルを得る工程。
<Method for producing polysiloxane gel>
The method for producing a polysiloxane gel of the present invention is a method having the following steps (i) to (iii).
Step (i): A step of gelling a mixture containing a specific 6-membered ring-containing silane compound and a solvent to obtain a wet gel.
Step (ii): A step of replacing the solvent of the wet gel as necessary.
Step (iii): A step of removing the solvent from the wet gel as necessary to obtain a xerogel.
 (6員環含有シラン化合物)
 6員環含有シラン化合物は、特定の6員環含有骨格と加水分解性シリル基とを有する。
 6員環含有骨格は、上述した三次元網目構造における6員環含有骨格と同様であり、好ましい形態も同様である。
(6-membered ring-containing silane compound)
The 6-membered ring-containing silane compound has a specific 6-membered ring-containing skeleton and a hydrolyzable silyl group.
The six-membered ring-containing skeleton is the same as the six-membered ring-containing skeleton in the above-described three-dimensional network structure, and the preferred form is also the same.
 加水分解性シリル基は、ゲル化の際に加水分解反応によってシラノール基(Si-OH)となり、さらに分子間で反応してSi-O-Si結合を形成してポリシロキサン骨格となる。 The hydrolyzable silyl group becomes a silanol group (Si—OH) by a hydrolysis reaction during gelation, and further reacts between molecules to form a Si—O—Si bond to become a polysiloxane skeleton.
 加水分解性シリル基としては、下式(x)で表される基が挙げられる。
 -SiR3-n (x)
 ただし、Rは、水素原子または1価の炭化水素基であり、Lは、加水分解性基であり、nは、0~2の整数である。
Examples of the hydrolyzable silyl group include groups represented by the following formula (x).
-SiR n L 3-n (x)
Where R is a hydrogen atom or a monovalent hydrocarbon group, L is a hydrolyzable group, and n is an integer of 0-2.
 Rとしては、アルキル基、シクロアルキル基、アルケニル基、アリール基等が挙げられ、アルキル基が好ましい。
 Lとしては、アルコキシ基、ハロゲン原子、アシル基、イソシアネート基等が挙げられ、6員環含有シラン化合物の製造のしやすさの点から、メトキシ基またはエトキシ基が好ましく、反応性のよさの点から、メトキシ基がより好ましい。
 nは、三次元網目構造を形成しやすい点から、0または1が好ましく、0がより好ましい。
Examples of R include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group, and an alkyl group is preferable.
Examples of L include an alkoxy group, a halogen atom, an acyl group, an isocyanate group, and the like. From the viewpoint of easy production of a 6-membered ring-containing silane compound, a methoxy group or an ethoxy group is preferable, and the reactivity is excellent. Therefore, a methoxy group is more preferable.
n is preferably 0 or 1 and more preferably 0 from the viewpoint of easily forming a three-dimensional network structure.
 6員環含有シラン化合物は、加水分解性シリル基を少なくとも2つ有することが好ましく、加水分解性シリル基を少なくとも3つ有することがより好ましい。6員環含有シラン化合物が加水分解性シリル基を少なくとも2つ有することによって、6員環含有骨格が三次元網目構造の経路の途中に組み込まれ、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。6員環含有シラン化合物が加水分解性シリル基を少なくとも3つ有することによって、6員環含有骨格が三次元網目構造の分岐点となり、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。 The 6-membered ring-containing silane compound preferably has at least two hydrolyzable silyl groups, and more preferably has at least three hydrolyzable silyl groups. When the 6-membered ring-containing silane compound has at least two hydrolyzable silyl groups, the 6-membered ring-containing skeleton is incorporated in the course of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel is further increased. When the 6-membered ring-containing silane compound has at least three hydrolyzable silyl groups, the 6-membered ring-containing skeleton becomes a branch point of the three-dimensional network structure, and the bending fracture stress of the polysiloxane gel is further increased.
 6員環含有シラン化合物としては、たとえば、環構造(a)と加水分解性シリル基とを有する化合物(以下、化合物(α)とも記す。)、環構造(b)と加水分解性シリル基とを有する化合物(以下、化合物(β)とも記す。)、環構造(c)と加水分解性シリル基とを有する化合物(以下、化合物(γ)とも記す。)等が挙げられる。 Examples of the 6-membered ring-containing silane compound include a compound having a ring structure (a) and a hydrolyzable silyl group (hereinafter also referred to as compound (α)), a ring structure (b) and a hydrolyzable silyl group. And a compound having a ring structure (c) and a hydrolyzable silyl group (hereinafter also referred to as compound (γ)), and the like.
 化合物(α)の好ましい例としては、たとえば、下式(α1)で表される化合物が挙げられる。化合物(β)の好ましい例としては、たとえば、下式(β1)で表される化合物が挙げられる。化合物(γ)の好ましい例としては、たとえば、下式(γ1)で表される化合物が挙げられる。 Preferred examples of the compound (α) include, for example, a compound represented by the following formula (α1). Preferable examples of the compound (β) include a compound represented by the following formula (β1). Preferable examples of the compound (γ) include a compound represented by the following formula (γ1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ただし、Q、QおよびQは、それぞれ連結基である。pは1~3の整数であり、2または3が好ましい。式(γ1)の環構造(c)においてQが結合する炭素原子以外の炭素原子には上述した他の基(水素原子、フッ素原子、塩素原子、1価の有機基)が結合する。複数のQは、同じ基であってもよく、一部または全部が異なる基であってもよい。Q、QおよびSiR3-nについても同様である。また、Rは、水素原子または1価の炭化水素基であり、Lは、加水分解性基であり、nは、0~2の整数である。 However, Q 1 , Q 2 and Q 3 are each a linking group. p is an integer of 1 to 3, and 2 or 3 is preferable. In the ring structure (c) of the formula (γ1), other groups (hydrogen atom, fluorine atom, chlorine atom, monovalent organic group) described above are bonded to carbon atoms other than the carbon atom to which Q 3 is bonded. The plurality of Q 1 may be the same group or may be partially or entirely different groups. The same applies to Q 2 , Q 3 and SiR n L 3-n . R is a hydrogen atom or a monovalent hydrocarbon group, L is a hydrolyzable group, and n is an integer of 0-2.
 Q、QおよびQとしては、それぞれ、アルキレン基、オキシアルキレン基、ポリエーテル鎖およびアリーレン基からなる群から選ばれる少なくとも1種の基を有する2価以上の基が挙げられる。Q、QおよびQとしては、それぞれ、-(CH-、-O(CH-(ただし、mは1~18の整数である。)が好ましい。 Examples of Q 1 , Q 2, and Q 3 include a divalent or higher valent group having at least one group selected from the group consisting of an alkylene group, an oxyalkylene group, a polyether chain, and an arylene group. Q 1 , Q 2 and Q 3 are each preferably — (CH 2 ) m — or —O (CH 2 ) m — (where m is an integer of 1 to 18).
 化合物(α)としては、入手のしやすさの点から、下式で表される化合物(α1-1)が好ましい。化合物(α1-1)は、東京化成工業社等から入手できる。 The compound (α) is preferably a compound (α1-1) represented by the following formula from the viewpoint of availability. The compound (α1-1) can be obtained from Tokyo Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 6員環含有シラン化合物は、たとえば、特定の6員環および炭素-炭素不飽和結合(ビニル基、アリル基等)を有する化合物(トリアリルイソシアヌレート、ジビニルベンゼン、トリビニルベンゼン等)と、ヒドロシリル基を有する化合物(HSiR3-n)とを、日本国特開2012-121852号公報、日本国特開2012-121853号公報等に記載の方法によってヒドロシリル化反応させることによって製造できる。 The 6-membered ring-containing silane compound includes, for example, a compound having a specific 6-membered ring and a carbon-carbon unsaturated bond (vinyl group, allyl group, etc.) (triallyl isocyanurate, divinylbenzene, trivinylbenzene, etc.), hydrosilyl A compound having a group (HSiR n L 3-n ) can be produced by a hydrosilylation reaction by a method described in Japanese Patent Application Laid-Open No. 2012-121852, Japanese Patent Application Laid-Open No. 2012-121853, or the like.
 (工程(i))
 工程(i)において用いる溶媒としては、上述したポリシロキサン湿潤ゲルにおける溶媒が挙げられ、化合物(α)の溶解性、および、ゲルと親和性がよく、微細な3次元網目構造を形成して透明性に優れるゲルが得られやすい点から、非プロトン性極性有機溶媒またはアルコールが好ましい。また、加水分解性シリル基の加水分解ための水を含むことが好ましい。
(Process (i))
Examples of the solvent used in the step (i) include the solvents in the polysiloxane wet gel described above. The compound (α) has good solubility and affinity with the gel, and forms a fine three-dimensional network structure to be transparent. An aprotic polar organic solvent or an alcohol is preferable from the viewpoint that a gel having excellent properties can be easily obtained. Moreover, it is preferable that the water for hydrolysis of a hydrolysable silyl group is included.
 混合物は、加水分解性シリル基を有する他のシラン化合物をさらに含んでいてもよい。混合物が他のシラン化合物をさらに含むことによって、他のシラン化合物に由来する骨格が三次元網目構造に導入され、該骨格による特性をポリシロキサンゲルに付与できる。
 他のシラン化合物としては、アルコキシシラン;ポリエーテル鎖、ポリエステル鎖およびポリカーボネート鎖からなる群から選ばれる少なくとも1種の鎖を有する有機ポリマー骨格と加水分解性シリル基とを有するシリル基含有ポリマー等が挙げられる。
The mixture may further contain another silane compound having a hydrolyzable silyl group. When the mixture further contains another silane compound, a skeleton derived from the other silane compound is introduced into the three-dimensional network structure, and the characteristics of the skeleton can be imparted to the polysiloxane gel.
Examples of other silane compounds include alkoxysilanes; silyl group-containing polymers having an organic polymer skeleton having at least one chain selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains, and hydrolyzable silyl groups. Can be mentioned.
 アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、モノアルキルトリアルコキシシラン(メチルトリメトキシシラン、メチルトリエトキシシラン等)、ジアルキルジアルコキシシラン(ジメチルジメトキシシラン、ジメチルジエトキシシラン等)、トリメトキシフェニルシラン、アルキレン基の両末端にアルコキシシリル基を有する化合物(1,6-ビス(トリメトキシシリル)ヘキサン、1,2-ビス(トリメトキシシリル)エタン等)、ペルフルオロポリエーテル基を有するアルコキシシラン(ペルフルオロポリエーテルトリエトキシシラン等)、ペルフルオロアルキル基を有するアルコキシシラン(ペルフルオロエチルトリエトキシシラン等)、ペンタフルオロフェニルエトキシジメチルシラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。 Alkoxysilanes include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, etc.), dialkyl dialkoxysilane (dimethyldimethoxysilane, dimethyldiethoxysilane). Etc.), trimethoxyphenylsilane, compounds having an alkoxysilyl group at both ends of the alkylene group (1,6-bis (trimethoxysilyl) hexane, 1,2-bis (trimethoxysilyl) ethane, etc.), perfluoropolyether Group-containing alkoxysilane (perfluoropolyether triethoxysilane, etc.), perfluoroalkyl group-containing alkoxysilane (perfluoroethyltriethoxysilane, etc.), pentafluorophenyl ether Sidimethylsilane, trimethoxy (3,3,3-trifluoropropyl) silane, alkoxysilane having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4) -Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.), alkoxysilane having an acryloyloxy group ( 3-acryloyloxypropyltrimethoxysilane and the like.
 シリル基含有ポリマーとしては、日本国特開平6-340798号公報、国際公開第2010/013653号、国際公開第2010/041667号、日本国特開2010-111862号公報、日本国特開2010-242070号公報、日本国特許第5447284号公報等に記載のシリル基含有ポリマー等が挙げられる。
 シリル基含有ポリマーの市販品としては、旭硝子社製のエクセスター(ポリエーテルポリオールの末端に加水分解性シリル基を導入した変性ポリエーテルポリマー)等が挙げられる。
Examples of the silyl group-containing polymer include Japanese Unexamined Patent Publication No. 6-340798, International Publication No. 2010/013653, International Publication No. 2010/041667, Japanese Unexamined Patent Publication No. 2010-111182, and Japanese Unexamined Patent Publication No. 2010-242070. And silyl group-containing polymers described in Japanese Patent No. 5447284.
As a commercial product of a silyl group-containing polymer, Exastar manufactured by Asahi Glass Co., Ltd. (modified polyether polymer having a hydrolyzable silyl group introduced at the end of a polyether polyol) and the like can be mentioned.
 混合物中の6員環含有シラン化合物と他のシラン化合物との合計(100質量%)のうちの6員環含有シラン化合物の割合は、5~100質量%が好ましく、20~100質量%がより好ましく、50~100質量%がさらに好ましい。6員環含有シラン化合物の割合が前記範囲の下限値以上であれば、ポリシロキサンゲルの曲げ破壊応力がさらに高くなる。 The ratio of the 6-membered ring-containing silane compound to the total (100 mass%) of the 6-membered ring-containing silane compound and other silane compounds in the mixture is preferably 5 to 100 mass%, more preferably 20 to 100 mass%. 50 to 100% by mass is more preferable. If the ratio of the 6-membered ring-containing silane compound is not less than the lower limit of the above range, the bending fracture stress of the polysiloxane gel will be further increased.
 混合物のゲル化は、塩基触媒または酸触媒の存在下に、6員環含有シラン化合物や他のシラン化合物の加水分解性シリル基を加水分解してシラノール基(Si-OH)を生成させ、これらを分子間で反応させてSi-O-Si結合を形成することによって行われる。たとえば、6員環含有シラン化合物が式(α1-1)で表される化合物である場合、下式のように、3つのトリメトキシシリル基のそれぞれに3つのSi-O-Si結合が形成され、6員環含有骨格とポリシロキサン骨格とを有する三次元網目構造が形成される。 In the gelation of the mixture, in the presence of a base catalyst or an acid catalyst, hydrolyzable silyl groups of 6-membered ring-containing silane compounds and other silane compounds are hydrolyzed to form silanol groups (Si—OH). Is caused to react between molecules to form a Si—O—Si bond. For example, when the 6-membered ring-containing silane compound is a compound represented by the formula (α1-1), three Si—O—Si bonds are formed in each of three trimethoxysilyl groups as shown in the following formula. A three-dimensional network structure having a 6-membered ring-containing skeleton and a polysiloxane skeleton is formed.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 塩基触媒としては、アミン(テトラメチルアンモニウムヒドロキシド等)、尿素、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。酸触媒としては、無機酸(硝酸、硫酸、塩酸等)、有機酸(ギ酸、シュウ酸、酢酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等)が挙げられる。
 混合物は、ヘキサデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムクロリド等の界面活性剤をさらに含んでいてもよい。
Examples of the base catalyst include amines (tetramethylammonium hydroxide, etc.), urea, ammonia, sodium hydroxide, potassium hydroxide and the like. Examples of the acid catalyst include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
The mixture may further contain a surfactant such as hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride.
 (工程(ii))
 溶媒置換は、湿潤ゲルを溶媒に浸漬することによって行われる。
 工程(ii)において用いる溶媒としては、上述したポリシロキサン湿潤ゲルにおける溶媒が挙げられ、工程(iii)において超臨界乾燥する場合は、メタノール、エタノール、イソプロピルアルコール等のアルコールに置換することが好ましく、工程(iii)において蒸発乾燥する場合は、表面張力の低いヘキサン、ヘプタン等の炭化水素溶媒や含フッ素溶媒(2H,3H-デカフルオロペンタン)等に置換することが好ましく、工程(iii)において凍結乾燥する場合は、t-ブタノールや含フッ素溶媒(1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン)等に置換することが好ましい。
(Step (ii))
Solvent replacement is performed by immersing the wet gel in a solvent.
Examples of the solvent used in the step (ii) include the solvents in the above-described polysiloxane wet gel, and in the case of supercritical drying in the step (iii), it is preferable to substitute with alcohol such as methanol, ethanol, isopropyl alcohol, When evaporating and drying in the step (iii), it is preferable to substitute a hydrocarbon solvent such as hexane or heptane having a low surface tension or a fluorine-containing solvent (2H, 3H-decafluoropentane), etc., and freezing in the step (iii). In the case of drying, substitution with t-butanol or a fluorine-containing solvent (1,1,2,2,3,3,4-heptafluorocyclopentane) or the like is preferable.
 (工程(iii))
 湿潤ゲルの乾燥方法としては、常圧乾燥法、凍結乾燥法(フリーズドライ)、亜臨界乾燥法、超臨界乾燥法等が知られている。
(Process (iii))
Known methods for drying wet gels include atmospheric drying, freeze drying (freeze drying), subcritical drying, and supercritical drying.
 蒸発乾燥は、たとえば、温度30~100℃、常圧の条件下で湿潤ゲルから溶媒を蒸発させることによって行う。
 凍結乾燥は、たとえば、温度-30~0℃の条件下で湿潤ゲルを凍結させた後、温度-30~100℃の条件下で真空乾燥することによって行う。
 超臨界乾燥は、たとえば、温度35~100℃、圧力7.4~30MPaの条件下で超臨界二酸化炭素を湿潤ゲルに接触させることによって行う。
Evaporative drying is performed, for example, by evaporating the solvent from the wet gel under conditions of a temperature of 30 to 100 ° C. and normal pressure.
Freeze-drying is performed, for example, by freezing the wet gel under the temperature of −30 to 0 ° C. and then vacuum drying under the temperature of −30 to 100 ° C.
Supercritical drying is performed, for example, by bringing supercritical carbon dioxide into contact with the wet gel under conditions of a temperature of 35 to 100 ° C. and a pressure of 7.4 to 30 MPa.
 (作用機序)
 以上説明した本発明のポリシロキサンゲルの製造方法にあっては、特定の6員環含有骨格と加水分解性シリル基とを有する6員環含有シラン化合物と溶媒とを含む混合物をゲル化させる方法であるため、有機骨格である特定の6員環含有骨格と、無機骨格であるポリシロキサン骨格とを有する、曲げ破壊応力が高いポリシロキサンゲルを製造できる。
(Mechanism of action)
In the method for producing the polysiloxane gel of the present invention described above, a method of gelling a mixture containing a 6-membered ring-containing silane compound having a specific 6-membered ring-containing skeleton and a hydrolyzable silyl group and a solvent. Therefore, a polysiloxane gel having a specific 6-membered ring-containing skeleton that is an organic skeleton and a polysiloxane skeleton that is an inorganic skeleton can be produced.
<断熱材>
 本発明の断熱材は、本発明のポリシロキサンゲルを備える。ポリシロキサンゲルとしては、断熱性に優れる点から、ポリシロキサンキセロゲルが好ましい。
 本発明の断熱材は、シート状であってもよく、板状であってもよく、任意の形状を有する成形体であってもよい。
<Insulation material>
The heat insulating material of the present invention includes the polysiloxane gel of the present invention. As the polysiloxane gel, polysiloxane xerogel is preferable from the viewpoint of excellent heat insulation.
The heat insulating material of the present invention may be a sheet shape, a plate shape, or a molded body having an arbitrary shape.
 本発明の断熱材は、ポリシロキサンゲルのみからなるものであってもよく;ポリシロキサンゲルからなる層と、他の層とからなる積層体であってもよく;シート状または板状のポリシロキサンゲルを支持する枠状のフレームが周縁に設けられたものであってもよい。
 他の層としては、接着層、ガラス板、プラスチック板、プラスチックフィルム、耐貫通性膜等が挙げられる。
The heat insulating material of the present invention may be composed of only a polysiloxane gel; may be a laminate composed of a layer composed of a polysiloxane gel and another layer; a sheet-like or plate-like polysiloxane A frame-like frame that supports the gel may be provided on the periphery.
Examples of other layers include an adhesive layer, a glass plate, a plastic plate, a plastic film, and a penetration-resistant film.
 以上説明した本発明の断熱材にあっては、断熱性を有するポリシロキサンゲルを備えたものであるため、断熱性が高い。また、曲げ破壊応力が高い本発明のポリシロキサンゲルを備えたものであるため、ポリシロキサンゲルの部分に割れが生じにくい。 Since the heat insulating material of the present invention described above is provided with a polysiloxane gel having heat insulating properties, the heat insulating properties are high. Moreover, since the polysiloxane gel of the present invention having a high bending fracture stress is provided, cracks are unlikely to occur in the polysiloxane gel portion.
<合わせガラス>
 本発明の合わせガラスは、第1のガラス板と、第2のガラス板と、第1のガラス板と第2のガラス板との間に存在する、本発明のポリシロキサンゲルからなる透明断熱層とを備える。
 本発明の合わせガラスは、第1のガラス板または第2のガラス板と、透明断熱層との間に透明接着層をさらに有していてもよい。
<Laminated glass>
The laminated glass of the present invention is a transparent heat insulating layer made of the polysiloxane gel of the present invention, which exists between the first glass plate, the second glass plate, and the first glass plate and the second glass plate. With.
The laminated glass of the present invention may further have a transparent adhesive layer between the first glass plate or the second glass plate and the transparent heat insulating layer.
 図1は、本発明の合わせガラスの一例を示す断面図である。
 合わせガラス1は、第1のガラス板10と;第2のガラス板12と;第1のガラス板10と第2のガラス板12との間に配置された透明断熱層14と;第1のガラス板10と透明断熱層14とを貼り合わせる第1の透明接着層16と;第2のガラス板12と透明断熱層14とを貼り合わせる第2の透明接着層18とを有する。
FIG. 1 is a cross-sectional view showing an example of the laminated glass of the present invention.
The laminated glass 1 includes: a first glass plate 10; a second glass plate 12; a transparent heat insulating layer 14 disposed between the first glass plate 10 and the second glass plate 12; A first transparent adhesive layer 16 for bonding the glass plate 10 and the transparent heat insulating layer 14; and a second transparent adhesive layer 18 for bonding the second glass plate 12 and the transparent heat insulating layer 14.
 (ガラス板)
 第1のガラス板および第2のガラス板(以下、まとめてガラス板とも記す。)の材料は、無機ガラスであってもよく、有機ガラスであってもよく、耐候性、剛性、耐溶剤性等の点から、無機ガラスが好ましい。第1のガラス板および第2のガラス板の材料は、同じであってもよく、異なっていてもよい。
 無機ガラスとしては、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が挙げられ、ソーダライムガラスが好適である。
 有機ガラスとしては、ポリカーボネート、アクリル樹脂等が挙げられる。
(Glass plate)
The material of the first glass plate and the second glass plate (hereinafter collectively referred to as a glass plate) may be an inorganic glass or an organic glass, and has weather resistance, rigidity, and solvent resistance. In view of the above, inorganic glass is preferable. The materials of the first glass plate and the second glass plate may be the same or different.
Examples of the inorganic glass include soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Soda lime glass is preferable.
Examples of the organic glass include polycarbonate and acrylic resin.
 ガラス板は、無色透明ガラス板であってもよく、有色透明ガラス板であってもよく、鉄分が多い熱線吸収ガラス板(ブルーガラス板またはグリーンガラス板)が好ましい。
 ガラス板としては、安全性を高めるために強化ガラス板を用いてもよい。強化ガラス板としては、風冷強化法や化学強化法により得られる強化ガラス板を用いることができる。
The glass plate may be a colorless transparent glass plate or a colored transparent glass plate, and is preferably a heat ray absorbing glass plate (blue glass plate or green glass plate) rich in iron.
As the glass plate, a tempered glass plate may be used to enhance safety. As the tempered glass plate, a tempered glass plate obtained by an air cooling tempering method or a chemical tempering method can be used.
 ガラス板の形状は、湾曲状であってもよく、平板状であってもよい。自動車用窓ガラスは湾曲していることが多いため、本発明の合わせガラスを自動車用窓ガラスとして用いる場合は、ガラス板の形状は、湾曲状であることが多い。 The shape of the glass plate may be curved or flat. Since the window glass for automobiles is often curved, when the laminated glass of the present invention is used as the window glass for automobiles, the shape of the glass plate is often curved.
 ガラス板の厚さは、0.1~6mmが好ましく、1~3mmがより好ましい。第1のガラス板および第2のガラス板の厚さは、同じであってもよく、異なっていてもよい。なお、本発明におけるガラス板の厚さは、幾何学的厚さである。以下、ガラス板以外の本発明の合わせガラスが有する各層の厚さについても同様である。 The thickness of the glass plate is preferably 0.1 to 6 mm, more preferably 1 to 3 mm. The thicknesses of the first glass plate and the second glass plate may be the same or different. In addition, the thickness of the glass plate in this invention is geometric thickness. Hereinafter, the same applies to the thickness of each layer of the laminated glass of the present invention other than the glass plate.
 (透明接着層)
 第1の透明接着層および第2の透明接着層(以下、まとめて透明接着層とも記す。)の材料は、ガラス板と透明断熱層とを接着できる透明樹脂であればよい。該透明樹脂としては、ポリビニルブチラール、エチレン-酢酸ビニル共重合体、市販の光学透明粘着剤(OCA:Optically Clear Adhesive)等が挙げられ、ポリビニルブチラール、エチレン-酢酸ビニル共重合体が好ましく、自動車用窓ガラス等のような耐貫通性を要求される用途においては、ポリビニルブチラールがより好ましい。第1の透明接着層および第2の透明接着層の材料は、同じであってもよく、異なっていてもよい。また各々の透明接着層は、同種または異種の2層以上の材料が積層されたものであってもよい。
(Transparent adhesive layer)
The material of the first transparent adhesive layer and the second transparent adhesive layer (hereinafter collectively referred to as a transparent adhesive layer) may be any transparent resin that can adhere the glass plate and the transparent heat insulating layer. Examples of the transparent resin include polyvinyl butyral, ethylene-vinyl acetate copolymer, and commercially available optically clear adhesive (OCA), and polyvinyl butyral and ethylene-vinyl acetate copolymer are preferable. Polyvinyl butyral is more preferable for applications requiring penetration resistance such as window glass. The materials of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different. Each transparent adhesive layer may be a laminate of two or more layers of the same or different types.
 透明接着層は、本発明の効果を損なわない範囲内において、赤外線吸収剤、紫外線吸収剤、酸化防止剤、光安定剤、着色剤等を含んでいてもよい。
 透明接着層の厚さは、0.1~3mmが好ましく、0.3~0.8mmがより好ましい。第1の透明接着層および第2の透明接着層の厚さは、同じであってもよく、異なっていてもよい。
The transparent adhesive layer may contain an infrared absorber, an ultraviolet absorber, an antioxidant, a light stabilizer, a colorant and the like within a range not impairing the effects of the present invention.
The thickness of the transparent adhesive layer is preferably from 0.1 to 3 mm, and more preferably from 0.3 to 0.8 mm. The thickness of the first transparent adhesive layer and the second transparent adhesive layer may be the same or different.
 (透明断熱層)
 透明断熱層は、シート状の本発明のポリシロキサンゲルからなる。ポリシロキサンゲルとしては、断熱性に優れる点から、ポリシロキサンキセロゲルが好ましい。
 透明断熱層の圧縮弾性率は、1.3MPa以上が好ましく、4.3MPa以上がより好ましく、5.0MPa以上がさらに好ましく、12MPa以上が特に好ましい。圧縮弾性率が1.0MPa以上であれば、透明断熱層の機械的強度に優れ、合わせガラスの製造の際にガラス板と貼合する際の圧縮に耐え得る。
(Transparent insulation layer)
A transparent heat insulation layer consists of a sheet-like polysiloxane gel of the present invention. As the polysiloxane gel, polysiloxane xerogel is preferable from the viewpoint of excellent heat insulation.
The compression elastic modulus of the transparent heat insulating layer is preferably 1.3 MPa or more, more preferably 4.3 MPa or more, further preferably 5.0 MPa or more, and particularly preferably 12 MPa or more. When the compression elastic modulus is 1.0 MPa or more, the transparent heat insulating layer is excellent in mechanical strength and can withstand compression when laminated with a glass plate during the production of laminated glass.
 透明断熱層の厚さは、0.2~10mmが好ましく、0.5~6mmがより好ましく、1~3mmがさらに好ましい。透明断熱層の厚さが前記範囲の下限値以上であれば、合わせガラスの断熱性にさらに優れる。透明断熱層の厚さが前記範囲の上限値以下であれば、合わせガラスの透明性がさらに高くなる。 The thickness of the transparent heat insulating layer is preferably 0.2 to 10 mm, more preferably 0.5 to 6 mm, and further preferably 1 to 3 mm. If the thickness of a transparent heat insulation layer is more than the lower limit of the said range, it will be further excellent in the heat insulation of a laminated glass. If the thickness of a transparent heat insulation layer is below the upper limit of the said range, the transparency of a laminated glass will become still higher.
 (合わせガラスの特性)
 合わせガラスの波長500nmの光の透過率は、50%以上が好ましく、70~99%がより好ましく、80~96%がさらに好ましい。波長500nmの光の透過率が前記範囲の下限値以上であれば、合わせガラスの透明性が高くなる。波長500nmの光の透過率が前記範囲の上限値を超える合わせガラスは、製造が困難である。
(Characteristics of laminated glass)
The transmittance of light having a wavelength of 500 nm of the laminated glass is preferably 50% or more, more preferably 70 to 99%, and further preferably 80 to 96%. If the transmittance | permeability of the light of wavelength 500nm is more than the lower limit of the said range, the transparency of a laminated glass will become high. It is difficult to produce a laminated glass having a light transmittance of a wavelength of 500 nm exceeding the upper limit of the above range.
 合わせガラスの熱貫通率(U値)は、現状の自動車用の合わせガラスでは5.8W/mKであることから、燃費向上の点から、5.0W/mK以下が好ましく、4.0W/mK以下がさらに好ましい。 The thermal penetration rate (U value) of laminated glass is 5.8 W / m 2 K in the current laminated glass for automobiles, and is preferably 5.0 W / m 2 K or less from the viewpoint of improving fuel efficiency. More preferable is 0.0 W / m 2 K or less.
 合わせガラスの厚さは、2~20mmが好ましく、3~10mmがより好ましく、4~6mmがさらに好ましい。合わせガラスの厚さが前記範囲の下限値以上であれば、合わせガラスの断熱性にさらに優れ、また、機械的強度にも優れる。合わせガラスの厚さが前記範囲の上限値以下であれば、合わせガラスが重くなりすぎず、また透明性にも優れる。 The thickness of the laminated glass is preferably 2 to 20 mm, more preferably 3 to 10 mm, and even more preferably 4 to 6 mm. If the thickness of the laminated glass is not less than the lower limit of the above range, the heat insulating property of the laminated glass is further improved, and the mechanical strength is also excellent. If the thickness of a laminated glass is below the upper limit of the said range, a laminated glass will not become too heavy and it is excellent also in transparency.
 (合わせガラスの製造方法)
 合わせガラスは、公知の方法によって製造できる。たとえば、第2のガラス板、第2の透明接着層となる透明樹脂シート、透明断熱層となるシート状の本発明のポリシロキサンゲル、第1の透明接着層となる透明樹脂シート、第1のガラス板を順に重ね、これらを仮接着した後、加熱および加圧することによって本接着することによって製造できる。この際、第1の透明接着層となる透明樹脂シートと第2の透明接着層となる透明樹脂シートは、各々、同種であってもよく、異種の2枚以上のシートから構成されていてもよい。
(Laminated glass manufacturing method)
Laminated glass can be produced by a known method. For example, the second glass plate, the transparent resin sheet serving as the second transparent adhesive layer, the sheet-like polysiloxane gel of the present invention serving as the transparent heat insulating layer, the transparent resin sheet serving as the first transparent adhesive layer, the first It can manufacture by carrying out this adhesion | attachment by superposing | stacking a glass plate in order and carrying out temporary adhesion | attachment of these, and heating and pressurizing. At this time, the transparent resin sheet serving as the first transparent adhesive layer and the transparent resin sheet serving as the second transparent adhesive layer may each be the same type or may be composed of two or more different types of sheets. Good.
 (他の形態)
 本発明の合わせガラスは、第1のガラス板と、第2のガラス板と、第1のガラス板と第2のガラス板との間に存在する、本発明のポリシロキサンゲルからなる透明断熱層とを備えるものであればよく、図示例のものに限定はされない。
(Other forms)
The laminated glass of the present invention is a transparent heat insulating layer made of the polysiloxane gel of the present invention, which exists between the first glass plate, the second glass plate, and the first glass plate and the second glass plate. And is not limited to the illustrated example.
 たとえば、本発明の合わせガラスは、必要に応じて第3のガラス板、またはそれ以上のガラス板を有するものであってもよい。
 本発明の合わせガラスは、赤外線吸収層、紫外線吸収層等の、透明断熱層以外の機能層を有していてもよい。
For example, the laminated glass of this invention may have a 3rd glass plate or more glass plates as needed.
The laminated glass of this invention may have functional layers other than a transparent heat insulation layer, such as an infrared absorption layer and an ultraviolet absorption layer.
 (作用機序)
 以上説明した本発明の合わせガラスにあっては、ポリシロキサンゲルからなる透明断熱層を備えるため、断熱性が高い。また、透明断熱層が、曲げ破壊応力が高い本発明のポリシロキサンゲルであるため、透明断熱層に割れが生じにくい。
(Mechanism of action)
The laminated glass of the present invention described above has a high heat insulating property because it includes a transparent heat insulating layer made of polysiloxane gel. Moreover, since a transparent heat insulation layer is the polysiloxane gel of this invention with a high bending fracture stress, it is hard to produce a crack in a transparent heat insulation layer.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 (平均気孔径)
 キセロゲルにおける連続気孔の平均気孔径は、細孔分布測定装置(島津製作所社製、3Flex-2MP)を用いた窒素吸着法の測定によって、BJH法吸着の積算細孔容積プロットが50%高さになる、一般にメジアン径と呼ばれる細孔径の値である。
(Average pore size)
The average pore diameter of the continuous pores in xerogel is 50% higher than the integrated pore volume plot of the BJH method adsorption by measuring the nitrogen adsorption method using a pore distribution measuring device (manufactured by Shimadzu Corporation, 3Flex-2MP). This is a value of a pore diameter generally called a median diameter.
 (平均気孔率)
 キセロゲルの平均気孔率は、プレス前のキセロゲルの体積と、温度:100℃、圧力:50MPa、時間:10分間の条件でプレスした後のキセロゲルの体積とから下式によって求めた。
 平均気孔率={1-(プレス後のキセロゲルの体積/プレス前のキセロゲルの体積)}×100
(Average porosity)
The average porosity of the xerogel was determined by the following equation from the volume of the xerogel before pressing and the volume of the xerogel after pressing under the conditions of temperature: 100 ° C., pressure: 50 MPa, time: 10 minutes.
Average porosity = {1− (volume of xerogel after pressing / volume of xerogel before pressing)} × 100
 (曲げ破壊応力)
 ポリシロキサンキセロゲルの曲げ破壊応力は、JIS K 7171:2008(ISO 178:2001)に準拠し、卓上形精密万能試験機(島津製作所社製、オートグラフAGS-5kNX)を用いて、1種類のゲルについて各々3サンプルの測定を行い、その算術平均値を得た。
(Bending fracture stress)
The bending fracture stress of polysiloxane xerogel is based on JIS K 7171: 2008 (ISO 178: 2001), and is a single gel using a desktop precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-5kNX). Three samples of each were measured, and the arithmetic average value was obtained.
 (透過率)
 ポリシロキサンキセロゲルの、波長500nmの光の透過率は、JIS R 3106:1998(ISO 9050:1990)に準拠し、分光光度計(島津製作所社製、SolidSpec-3700DUV)を用いて測定した。
(Transmittance)
The transmittance of light having a wavelength of 500 nm of the polysiloxane xerogel was measured using a spectrophotometer (manufactured by Shimadzu Corporation, SolidSpec-3700DUV) in accordance with JIS R 3106: 1998 (ISO 9050: 1990).
 (熱伝導率)
 ポリシロキサンキセロゲルの熱伝導率は、JIS A 1412-2:1999(ISO 8301:1991)に準拠し、熱伝導率測定装置(英弘精機社製、HC-074/630)を用いて測定した。
(Thermal conductivity)
The thermal conductivity of the polysiloxane xerogel was measured according to JIS A 1412-2: 1999 (ISO 8301: 1991) by using a thermal conductivity measuring device (HC-074 / 630, manufactured by Eiko Seiki Co., Ltd.).
 (圧縮弾性率)
 ポリシロキサンキセロゲルの圧縮弾性率は、JIS K 7181:2011(ISO604:2002)に準拠し、卓上形精密万能試験機(島津製作所社製、オートグラフAGS-5kNX)を用いて、1種類のゲルについて各々3サンプルの測定を行い、その算術平均値を得た。
(Compressive modulus)
The compression modulus of polysiloxane xerogel is based on JIS K 7181: 2011 (ISO 604: 2002), and using a tabletop precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-5kNX) Three samples of each were measured and the arithmetic average value was obtained.
 (実施例1)
 化合物(α1-1)(東京化成工業社製、イソシアヌル酸トリス[3-(トリメトキシシリル)プロピル])を5gおよびN,N-ジメチルホルムアミド(以下、DMFとも記す。)を30g、マグネット撹拌子を入れたポリ容器に入れ、室温にて1分間撹拌した。これに塩基触媒兼界面活性剤として0.75モル/Lのテトラメチルアンモニウムヒドロキシド水溶液を2g加え、1500rpmの回転数で10秒間撹拌し、混合物を得た。得られた混合物を2つのポリプロピレン製トレイにそれぞれ液の厚さを変えて入れた。その後トレイごとステンレス製の密閉容器に入れて蓋を閉めて密閉状態で60℃のオーブンに入れ、ゲル化を進めた。3日後にオーブンから容器を取り出し、トレイ内の湿潤ゲルを別のステンレス製の密閉容器内のメタノールに浸漬した。24時間ごとに容器内のメタノールを新品のメタノールに交換した。メタノールの交換を4回繰り返し、メタノールゲルを得た。溶媒をヘキサンに代えて同様の溶媒置換を4回繰り返して、メタノールゲルの溶媒をヘキサンに置換し、ヘキサンゲルを得た。得られたヘキサンゲルを60℃のオーブンに入れ、24時間常圧乾燥を行い、厚さ1mmと10mmのポリシロキサンキセロゲルを得た。
 得られた厚さ1mmのポリシロキサンキセロゲルについて透過率を測定し、得られた厚さ10mmのポリシロキサンキセロゲルについて平均気孔径、平均気孔率、曲げ破壊応力、熱伝導率、圧縮弾性率を測定した。結果を表1に示す。
Example 1
5 g of compound (α1-1) (manufactured by Tokyo Chemical Industry Co., Ltd., isocyanuric acid tris [3- (trimethoxysilyl) propyl]) and 30 g of N, N-dimethylformamide (hereinafter also referred to as DMF), a magnetic stirring bar Was placed in a plastic container containing, and stirred at room temperature for 1 minute. To this was added 2 g of a 0.75 mol / L tetramethylammonium hydroxide aqueous solution as a base catalyst and surfactant, and the mixture was stirred at 1500 rpm for 10 seconds to obtain a mixture. The obtained mixture was placed in two polypropylene trays with different liquid thicknesses. Thereafter, the tray was placed in a stainless steel sealed container, the lid was closed, and the sealed container was placed in an oven at 60 ° C. for gelation. Three days later, the container was taken out from the oven, and the wet gel in the tray was immersed in methanol in another sealed stainless steel container. Every 24 hours, the methanol in the container was replaced with new methanol. Methanol exchange was repeated 4 times to obtain a methanol gel. The solvent was replaced with hexane, and the same solvent replacement was repeated four times to replace the methanol gel solvent with hexane, thereby obtaining a hexane gel. The obtained hexane gel was put into an oven at 60 ° C. and dried at atmospheric pressure for 24 hours to obtain polysiloxane xerogels having a thickness of 1 mm and 10 mm.
The transmittance was measured for the obtained polysiloxane xerogel having a thickness of 1 mm, and the average pore diameter, average porosity, bending fracture stress, thermal conductivity, and compression modulus were measured for the obtained polysiloxane xerogel having a thickness of 10 mm. . The results are shown in Table 1.
 (実施例2)
 実施例1と同様の方法で得たメタノールゲルを用いて二酸化炭素超臨界乾燥を行い、ポリシロキサンキセロゲルを得た。具体的には、高圧容器内にメタノールを満たし、その中にメタノールゲルを入れた。蓋をして密閉系にした後、20℃で液化炭酸ガスを10mL/分の速度で導入していき、圧力が26MPaで一定になるよう背圧弁で調整し維持した。この操作を24時間続けた後、圧力を26MPaに維持したまま、高圧容器の温度を50℃に上昇させて超臨界状態とした。その後、二酸化炭素を5mL/分で26MPaを維持するように流し続けた。3時間後に、超臨界二酸化炭素をパージさせ、1時間かけて常圧に戻した。その後、高圧容器を開けてキセロゲルを取り出し、50℃の真空オーブンで16時間真空乾燥し、厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表1に示す。
(Example 2)
Carbon dioxide supercritical drying was performed using methanol gel obtained by the same method as in Example 1 to obtain polysiloxane xerogel. Specifically, methanol was filled in a high-pressure vessel, and methanol gel was put therein. After making a closed system with a lid, liquefied carbon dioxide gas was introduced at 20 ° C. at a rate of 10 mL / min, and adjusted and maintained with a back pressure valve so that the pressure was constant at 26 MPa. After this operation was continued for 24 hours, the temperature of the high-pressure vessel was raised to 50 ° C. while maintaining the pressure at 26 MPa, thereby obtaining a supercritical state. Thereafter, carbon dioxide was kept flowing at 5 mL / min to maintain 26 MPa. After 3 hours, supercritical carbon dioxide was purged and returned to normal pressure over 1 hour. Thereafter, the high-pressure vessel was opened, the xerogel was taken out, and dried in a vacuum oven at 50 ° C. for 16 hours to obtain polysiloxane xerogel having a thickness of 1 mm and 10 mm. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 1.
 (実施例3)
 DMFの代わりにジメチルスルホキシド(以下、DMSOとも記す。)を用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表1に示す。
(Example 3)
Polysiloxane xerogels having a thickness of 1 mm and 10 mm were obtained in the same manner as in Example 1 except that dimethyl sulfoxide (hereinafter also referred to as DMSO) was used instead of DMF. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 1.
 (実施例4)
 化合物(α1-1)を5g用いる代わりに、化合物(α1-1)を3gとメチルトリメトキシシラン(東京化成工業社製)を2g用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表2に示す。
Example 4
A thickness of 1 mm was obtained in the same manner as in Example 1 except that 3 g of compound (α1-1) and 2 g of methyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 5 g of compound (α1-1) And 10 mm polysiloxane xerogel was obtained. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 2.
 (実施例5)
 化合物(α1-1)を5g用いる代わりに、化合物(α1-1)を1gとメチルトリメトキシシランを4g用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表2に示す。
(Example 5)
Instead of using 5 g of the compound (α1-1), a polysiloxane xerogel having a thickness of 1 mm and 10 mm was prepared in the same manner as in Example 1 except that 1 g of the compound (α1-1) and 4 g of methyltrimethoxysilane were used. Obtained. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 2.
 (実施例6)
 化合物(α1-1)を0.5g、メチルトリメトキシシランを4.5g、溶媒として5ミリモル/Lの酢酸水溶液を30g、塩基触媒として尿素を2g、および界面活性剤としてヘキサデシルトリメチルアンモニウムブロミド(東京化成工業社製)を0.75g、マグネット撹拌子を入れたポリ容器に入れ、室温にて1500rpmの回転数で60分間撹拌し、混合物を得た。この混合物を用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表2に示す。
(Example 6)
0.5 g of compound (α1-1), 4.5 g of methyltrimethoxysilane, 30 g of 5 mmol / L acetic acid aqueous solution as a solvent, 2 g of urea as a base catalyst, and hexadecyltrimethylammonium bromide as a surfactant ( 0.75 g (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a plastic container containing a magnetic stirrer and stirred at room temperature for 60 minutes at a rotation speed of 1500 rpm to obtain a mixture. A polysiloxane xerogel having a thickness of 1 mm and 10 mm was obtained in the same manner as in Example 1 except that this mixture was used. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 2.
 (実施例7)
 化合物(α1-1)を5g用いる代わりに、化合物(α1-1)を1gとテトラメトキシシラン(東京化成工業社製)を4g用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表3に示す。
(Example 7)
Instead of using 5 g of the compound (α1-1), a thickness of 1 mm was obtained in the same manner as in Example 1 except that 1 g of the compound (α1-1) and 4 g of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used. A 10 mm polysiloxane xerogel was obtained. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 3.
 (実施例8)
 化合物(α1-1)を5g用いる代わりに、化合物(α1-1)を2.5gと1,6-ビス(トリメトキシシリル)ヘキサン(東京化成工業社製)を2.5g用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表3に示す。
(Example 8)
Instead of using 5 g of compound (α1-1), 2.5 g of compound (α1-1) and 2.5 g of 1,6-bis (trimethoxysilyl) hexane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used. Polysiloxane xerogels having a thickness of 1 mm and 10 mm were obtained by the same method as in Example 1. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 3.
 (実施例9)
 化合物(α1-1)の5gの代わりに、化合物(α1-1)の2.5gとジメチルジメトキシシラン(東京化成工業社製)の2.5gを用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表3に示す。
Example 9
The same method as in Example 1 except that 2.5 g of the compound (α1-1) and 2.5 g of dimethyldimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of 5 g of the compound (α1-1). To obtain polysiloxane xerogel having a thickness of 1 mm and 10 mm. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 3.
 (比較例1)
 化合物(α1-1)を5g用いる代わりに、メチルトリメトキシシランを5g用いた以外は、実施例1と同様の方法によって厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表4に示す。
(Comparative Example 1)
Polysiloxane xerogels having a thickness of 1 mm and 10 mm were obtained in the same manner as in Example 1 except that 5 g of methyltrimethoxysilane was used instead of 5 g of compound (α1-1). The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 4.
 (比較例2)
 テトラメトキシシランを1g、エタノールを4g、水を4g、尿素を0.5g、および塩化セチルトリメチルアンモニウムを0.5g室温で混合し、60分間撹拌し、混合物を得た。この混合物を用いた以外は、実施例1と同様の方法によってメタノールゲルを得た。メタノールゲルを、実施例2と同様の方法によって超臨界乾燥し、厚さ1mmと10mmのポリシロキサンキセロゲルを得た。得られたポリシロキサンキセロゲルに対し、実施例1と同様の測定を行った。結果を表4に示す。
(Comparative Example 2)
1 g of tetramethoxysilane, 4 g of ethanol, 4 g of water, 0.5 g of urea, and 0.5 g of cetyltrimethylammonium chloride were mixed at room temperature and stirred for 60 minutes to obtain a mixture. A methanol gel was obtained in the same manner as in Example 1 except that this mixture was used. The methanol gel was supercritically dried by the same method as in Example 2 to obtain polysiloxane xerogels having a thickness of 1 mm and 10 mm. The same measurement as in Example 1 was performed on the obtained polysiloxane xerogel. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年11月24日付けで出願された日本特許出願(特願2016-228140)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2016-228140) filed on November 24, 2016, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明のポリシロキサンゲルは、断熱材、合わせガラスの透明断熱層等として有用である。本発明の合わせガラスは、自動車用窓ガラス(ウインドシールド、ルーフ窓、昇降窓、側部固定窓、バックライト、ルーフ窓等)、鉄道車両用窓ガラス等の車両用窓ガラス、建物用窓ガラス等として有用である。 The polysiloxane gel of the present invention is useful as a heat insulating material, a transparent heat insulating layer of laminated glass, and the like. The laminated glass of the present invention includes automotive window glass (windshield, roof window, elevating window, side fixing window, backlight, roof window, etc.), vehicle window glass such as railcar window glass, and building window glass. Useful as such.
 1 合わせガラス
 10 第1のガラス板
 12 第2のガラス板
 14 透明断熱層
 16 第1の透明接着層
 18 第2の透明接着層
DESCRIPTION OF SYMBOLS 1 Laminated glass 10 1st glass plate 12 2nd glass plate 14 Transparent heat insulation layer 16 1st transparent contact bonding layer 18 2nd transparent contact bonding layer

Claims (14)

  1.  下式(a)で表される環構造、下式(b)で表される環構造および下式(c)で表される環構造からなる群から選ばれる少なくとも1種の6員環を有する6員環含有骨格と、ポリシロキサン骨格とを有する三次元網目構造を含む、ポリシロキサンゲル。
    Figure JPOXMLDOC01-appb-C000001

     ただし、式(a)~(c)中の*は結合手である。
    It has at least one 6-membered ring selected from the group consisting of a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c). A polysiloxane gel comprising a three-dimensional network structure having a six-membered ring-containing skeleton and a polysiloxane skeleton.
    Figure JPOXMLDOC01-appb-C000001

    However, * in the formulas (a) to (c) is a bond.
  2.  前記6員環含有骨格が、前記6員環と前記ポリシロキサン骨格との間に介在する連結基をさらに有し、
     前記連結基が、アルキレン基、オキシアルキレン基、ポリエーテル鎖およびアリーレン基からなる群から選ばれる少なくとも1種の基を有する、請求項1に記載のポリシロキサンゲル。
    The 6-membered ring-containing skeleton further has a linking group interposed between the 6-membered ring and the polysiloxane skeleton;
    The polysiloxane gel according to claim 1, wherein the linking group has at least one group selected from the group consisting of an alkylene group, an oxyalkylene group, a polyether chain, and an arylene group.
  3.  前記6員環含有骨格が、複数の結合手を有し、前記複数の結合手のうちの少なくとも2つの結合手が、前記ポリシロキサン骨格に結合する、請求項1または2に記載のポリシロキサンゲル。 The polysiloxane gel according to claim 1, wherein the six-membered ring-containing skeleton has a plurality of bonds, and at least two of the plurality of bonds are bonded to the polysiloxane skeleton. .
  4.  さらに溶媒を含む湿潤ゲルである、請求項1~3のいずれか一項に記載のポリシロキサンゲル。 The polysiloxane gel according to any one of claims 1 to 3, which is a wet gel further containing a solvent.
  5.  キセロゲルである、請求項1~3のいずれか一項に記載のポリシロキサンゲル。 The polysiloxane gel according to any one of claims 1 to 3, which is a xerogel.
  6.  曲げ破壊応力が、0.3MPa以上である、請求項1~5のいずれか一項に記載のポリシロキサンゲル。 The polysiloxane gel according to any one of claims 1 to 5, wherein a bending fracture stress is 0.3 MPa or more.
  7.  波長500nmの光の透過率の1mm厚さ換算値が、50%以上である、請求項1~6のいずれか一項に記載のポリシロキサンゲル。 The polysiloxane gel according to any one of claims 1 to 6, wherein a 1 mm-thickness converted value of light transmittance at a wavelength of 500 nm is 50% or more.
  8.  下式(a)で表される環構造、下式(b)で表される環構造および下式(c)で表される環構造からなる群から選ばれる少なくとも1種の6員環を有する6員環含有骨格と、ポリシロキサン骨格とを有する三次元網目構造を含むポリシロキサンゲルを製造する方法であり、
     下式(a)で表される環構造、下式(b)で表される環構造および下式(c)で表される環構造からなる群から選ばれる少なくとも1種の6員環を有する6員環含有骨格と加水分解性シリル基とを有する6員環含有シラン化合物と、溶媒とを含む混合物をゲル化させて湿潤ゲルを得る、ポリシロキサンゲルの製造方法。
    Figure JPOXMLDOC01-appb-C000002

     ただし、式(a)~(c)中の*は結合手である。
    It has at least one 6-membered ring selected from the group consisting of a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c). A method for producing a polysiloxane gel containing a three-dimensional network structure having a six-membered ring-containing skeleton and a polysiloxane skeleton,
    It has at least one 6-membered ring selected from the group consisting of a ring structure represented by the following formula (a), a ring structure represented by the following formula (b), and a ring structure represented by the following formula (c). A method for producing a polysiloxane gel, wherein a wet gel is obtained by gelling a mixture containing a 6-membered ring-containing silane compound having a 6-membered ring-containing skeleton and a hydrolyzable silyl group, and a solvent.
    Figure JPOXMLDOC01-appb-C000002

    However, * in the formulas (a) to (c) is a bond.
  9.  前記6員環含有シラン化合物の6員環含有骨格が、前記6員環と前記加水分解性シリル基との間に介在する連結基をさらに有し、
     前記連結基が、アルキレン基、オキシアルキレン基、ポリエーテル鎖およびアリーレン基からなる群から選ばれる少なくとも1種の基を有する、請求項8に記載のポリシロキサンゲルの製造方法。
    The 6-membered ring-containing skeleton of the 6-membered ring-containing silane compound further has a linking group interposed between the 6-membered ring and the hydrolyzable silyl group;
    The method for producing a polysiloxane gel according to claim 8, wherein the linking group has at least one group selected from the group consisting of an alkylene group, an oxyalkylene group, a polyether chain, and an arylene group.
  10.  前記6員環含有シラン化合物が、前記加水分解性シリル基を少なくとも2つ有する、請求項8または9に記載のポリシロキサンゲルの製造方法。 The method for producing a polysiloxane gel according to claim 8 or 9, wherein the 6-membered ring-containing silane compound has at least two hydrolyzable silyl groups.
  11.  前記混合物が、加水分解性シリル基を有する他のシラン化合物をさらに含む、請求項8~10のいずれか一項に記載のポリシロキサンゲルの製造方法。 The method for producing a polysiloxane gel according to any one of claims 8 to 10, wherein the mixture further contains another silane compound having a hydrolyzable silyl group.
  12.  前記湿潤ゲルから溶媒を除去してキセロゲルを得る、請求項8~11のいずれか一項に記載のポリシロキサンゲルの製造方法。 The method for producing a polysiloxane gel according to any one of claims 8 to 11, wherein a xerogel is obtained by removing a solvent from the wet gel.
  13.  請求項1~7のいずれか一項に記載のポリシロキサンゲルを備えた、断熱材。 A heat insulating material comprising the polysiloxane gel according to any one of claims 1 to 7.
  14.  第1のガラス板と、第2のガラス板と、前記第1のガラス板と前記第2のガラス板との間に存在する透明断熱層とを備え、
     前記透明断熱層が、請求項1~7のいずれか一項に記載のポリシロキサンゲルである、合わせガラス。
    Comprising a first glass plate, a second glass plate, and a transparent heat insulation layer present between the first glass plate and the second glass plate,
    A laminated glass in which the transparent heat insulating layer is the polysiloxane gel according to any one of claims 1 to 7.
PCT/JP2017/041687 2016-11-24 2017-11-20 Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass WO2018097103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016228140A JP2020015773A (en) 2016-11-24 2016-11-24 Polysiloxane gel, method for producing the same, heat insulation material and laminated glass
JP2016-228140 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097103A1 true WO2018097103A1 (en) 2018-05-31

Family

ID=62195100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041687 WO2018097103A1 (en) 2016-11-24 2017-11-20 Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass

Country Status (2)

Country Link
JP (1) JP2020015773A (en)
WO (1) WO2018097103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134105A (en) * 2020-02-26 2021-09-13 Agc株式会社 Method for producing porous body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010949A1 (en) * 2005-07-19 2007-01-25 Dynax Corporation Method for producing alkylsiloxane aerogel, alkylsiloxane aerogel, apparatus for producing same, and method for manufacturing panel containing same
US20070112242A1 (en) * 2005-09-30 2007-05-17 The College Of Wooster Swellable sol-gels, methods of making, and use thereof
WO2009034998A1 (en) * 2007-09-11 2009-03-19 Nissan Chemical Industries, Ltd. Composition containing polymer having nitrogenous silyl group for forming resist underlayer film
WO2016094778A1 (en) * 2014-12-12 2016-06-16 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010949A1 (en) * 2005-07-19 2007-01-25 Dynax Corporation Method for producing alkylsiloxane aerogel, alkylsiloxane aerogel, apparatus for producing same, and method for manufacturing panel containing same
US20070112242A1 (en) * 2005-09-30 2007-05-17 The College Of Wooster Swellable sol-gels, methods of making, and use thereof
WO2009034998A1 (en) * 2007-09-11 2009-03-19 Nissan Chemical Industries, Ltd. Composition containing polymer having nitrogenous silyl group for forming resist underlayer film
WO2016094778A1 (en) * 2014-12-12 2016-06-16 Exxonmobil Research And Engineering Company Organosilica materials and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134105A (en) * 2020-02-26 2021-09-13 Agc株式会社 Method for producing porous body
JP7426852B2 (en) 2020-02-26 2024-02-02 Agc株式会社 Manufacturing method of porous body

Also Published As

Publication number Publication date
JP2020015773A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2017090686A1 (en) Laminated glass, window glass for automobiles, and window glass for buildings
JP5671549B2 (en) Surface protective coating and method of using the same
TWI698467B (en) Method for manufacturing insulated body and insulated body
US20180273791A1 (en) Anti-fogging coated transparent article
US20210207428A1 (en) Optically-transparent, thermally-insulating nanoporous coatings and monoliths
US11498043B2 (en) Methods for producing wet gel and xerogel
WO2018097106A1 (en) Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass
US11999836B2 (en) Cellulosic gels, films and composites including the gels, and methods of forming same
CN112778571A (en) Food-grade silica gel foam and manufacturing method thereof
TWI805569B (en) Water-repellent structure and manufacturing method thereof
WO2018097103A1 (en) Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass
JP2022105584A (en) Aerogel block
US20200361191A1 (en) Treated substrate having hydrophobic and durability properties
JP2005154195A (en) Aerogel material and article formed of the aerogel material
US20170298204A1 (en) Porous silicone body and method for producing porous silicone body
CN104231638B (en) A kind of tackifier of fluorosioloxane rubber and silicon rubber and preparation method and application
WO2013031738A1 (en) Antifogging film and antifogging film-coated article
WO2019070035A1 (en) Aerogel composite powder and water repellent material
JP2019011440A (en) Silica aerogel and method for producing the same
JP6411008B2 (en) Fluorinated group-modified polysilsesquioxane liquid, fluorinated group-modified polysilsesquioxane glass, and methods for producing them
JPH11100241A (en) Double layered sandwich glass plate
JP2023000852A (en) Transparent sheet, laminated glass, and glass laminate
JP2023000851A (en) Transparent sheet, laminated glass, method for producing laminated glass, and glass laminate
JP3929328B2 (en) High water-sliding coating and coating method thereof
KR100869384B1 (en) Translucent aerogel monolith insulating materials having improved durability and overlap glasses prepared thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP