JP2021134105A - Method for producing porous body - Google Patents

Method for producing porous body Download PDF

Info

Publication number
JP2021134105A
JP2021134105A JP2020030066A JP2020030066A JP2021134105A JP 2021134105 A JP2021134105 A JP 2021134105A JP 2020030066 A JP2020030066 A JP 2020030066A JP 2020030066 A JP2020030066 A JP 2020030066A JP 2021134105 A JP2021134105 A JP 2021134105A
Authority
JP
Japan
Prior art keywords
liquid
water
porous body
producing
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030066A
Other languages
Japanese (ja)
Other versions
JP7426852B2 (en
Inventor
肇 片山
Hajime Katayama
肇 片山
雅史 近藤
Masafumi Kondo
雅史 近藤
真維 田坂
Mai TASAKA
真維 田坂
武司 有働
Takeshi Udo
武司 有働
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Si Tech Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
AGC Si Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, AGC Si Tech Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2020030066A priority Critical patent/JP7426852B2/en
Publication of JP2021134105A publication Critical patent/JP2021134105A/en
Application granted granted Critical
Publication of JP7426852B2 publication Critical patent/JP7426852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

To provide a porous body production method capable of suppressing drying shrinkage.SOLUTION: A method for producing a porous body includes: bringing a wet body comprising a first liquid containing water into contact with a second liquid containing a fluorine-based solvent and capable of being mixed uniformly with the first liquid; replacing the first liquid contained in the wet body with the second liquid, and removing the second liquid from the wet body. A compound X that reduces the surface tension of water is made present in at least one of the first liquid and the second liquid. The compound X is at least one selected from the group consisting of alcohols, ketones, aldehydes and nitriles. The fluorine-based solvent is at least one selected from the group consisting of fluoroalcohols, hydrofluoroolefins, and hydrofluoroethers. The first liquid is water, and the second liquid is a mixture of the fluorine-based solvent and the compound X.SELECTED DRAWING: None

Description

本発明は、多孔体の製造方法に関する。 The present invention relates to a method for producing a porous body.

高い空隙率を有するシリカ粒子は、断熱材、真空断熱材の芯材、食品添加剤、医療用診断剤、塗料用フィラー、化粧品用フィラー、樹脂フィルム用フィラー、液晶用スペーサー、クロマトグラフィー用充填剤、触媒、触媒担体、樹脂充填剤、吸着剤又は乾燥剤等の用途に好適である。シリカ粒子は、例えば、シリカヒドロゲルを作成し、水を除去し、乾燥することによって製造される。この製造方法では、シリカ粒子の空隙率は乾燥収縮によって低下する。 Silica particles with high void ratio are heat insulating materials, core materials for vacuum heat insulating materials, food additives, medical diagnostic agents, fillers for paints, fillers for cosmetics, fillers for resin films, spacers for liquid crystals, fillers for chromatography. , Suitable for applications such as catalysts, catalyst carriers, resin fillers, adsorbents or desiccants. Silica particles are produced, for example, by making silica hydrogels, removing water and drying. In this production method, the porosity of silica particles is reduced by drying shrinkage.

特許文献1には、空隙を有する材料を溶媒置換して乾燥収縮を抑制する方法が記載されている。
非特許文献1には、予め水分を含む粉体や固体をフッ素系溶媒に浸漬させ、フッ素系溶媒を沸騰などによって蒸発又は揮発させることで、粉体や固体の水分を除去することを特徴とする有機物粉体又は無機物粉体の乾燥方法が記載されている。
Patent Document 1 describes a method of suppressing drying shrinkage by substituting a material having voids with a solvent.
Non-Patent Document 1 is characterized in that the water content of the powder or solid is removed by immersing the powder or solid containing water in advance in a fluorine-based solvent and evaporating or volatilizing the fluorine-based solvent by boiling or the like. A method for drying an organic powder or an inorganic powder is described.

米国特許出願公開第2018/0112054号明細書U.S. Patent Application Publication No. 2018/0112054

発明協会公開技報公技番号2009―502138号Invention Association Public Technical Bulletin Public Technical No. 2009-502138

しかし、非特許文献1に記載された乾燥方法では、シリカ粒子等の多孔体の乾燥収縮を充分に抑制できなかった。また特許文献1に記載された方法では、多数の溶媒置換が必要とされていて工程が煩雑であった。 However, the drying method described in Non-Patent Document 1 could not sufficiently suppress the drying shrinkage of a porous body such as silica particles. Further, in the method described in Patent Document 1, a large number of solvent substitutions are required, and the process is complicated.

そこで、本発明は、乾燥収縮の抑制が可能な、多孔体の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for producing a porous body capable of suppressing drying shrinkage.

[1] 水を含む第一の液体を含む湿潤体と、フッ素系溶媒を含み前記第一の液体と均一に混合しうる第二の液体とを接触させ、前記湿潤体に含まれる前記第一の液体を前記第二の液体に置換し、前記湿潤体から前記第二の液体を除去する、多孔体の製造方法であって、
前記第一の液体及び前記第二の液体の少なくとも一方に水の表面張力を低下させる化合物Xを存在させる、多孔体の製造方法。
[2] 前記化合物Xが、アルコール類、ケトン類、アルデヒド類及びニトリル類からなる群から選択される少なくとも1種である、[1]に記載の多孔体の製造方法。
[3] 前記フッ素系溶媒が、フルオロアルコール類、ハイドロフルオロオレフィン類及びハイドロフルオロエーテル類からなる群から選択される少なくとも1種である[1]又は[2]に記載の多孔体の製造方法。
[4] 前記第一の液体が水であり、前記第二の液体が前記フッ素系溶媒と化合物Xとの混合物である[1]〜[3]のいずれか1項に記載の多孔体の製造方法。
[5] 前記第二の液体が、引火点を持たない、[1]〜[4]のいずれか1項に記載の多孔体の製造方法。
[6] 前記多孔体が無機酸化物粒子である、[1]〜[3]のいずれか1項に記載の多孔体の製造方法。
[7] 前記無機酸化物粒子がシリカ粒子である、[6]に記載の多孔体の製造方法。
[8] 前記多孔体が球状粒子である、[1]〜[7]のいずれか1項に記載の多孔体の製造方法。
[9] 前記球状粒子の平均粒子径が1〜1000μmである、[8]に記載の多孔体の製造方法。
[1] A wet body containing a first liquid containing water and a second liquid containing a fluorine-based solvent and capable of being uniformly mixed with the first liquid are brought into contact with each other, and the first liquid contained in the wet body is brought into contact with the wet body. A method for producing a porous body, wherein the liquid of the above is replaced with the second liquid, and the second liquid is removed from the wet body.
A method for producing a porous body, wherein the compound X that reduces the surface tension of water is present in at least one of the first liquid and the second liquid.
[2] The method for producing a porous body according to [1], wherein the compound X is at least one selected from the group consisting of alcohols, ketones, aldehydes and nitriles.
[3] The method for producing a porous body according to [1] or [2], wherein the fluorine-based solvent is at least one selected from the group consisting of fluoroalcohols, hydrofluoroolefins and hydrofluoroethers.
[4] The production of the porous body according to any one of [1] to [3], wherein the first liquid is water and the second liquid is a mixture of the fluorine-based solvent and compound X. Method.
[5] The method for producing a porous body according to any one of [1] to [4], wherein the second liquid does not have a flash point.
[6] The method for producing a porous body according to any one of [1] to [3], wherein the porous body is an inorganic oxide particle.
[7] The method for producing a porous body according to [6], wherein the inorganic oxide particles are silica particles.
[8] The method for producing a porous body according to any one of [1] to [7], wherein the porous body is spherical particles.
[9] The method for producing a porous body according to [8], wherein the spherical particles have an average particle size of 1 to 1000 μm.

本発明によれば、乾燥収縮の抑制が可能な、多孔体の製造方法を提供できる。 According to the present invention, it is possible to provide a method for producing a porous body capable of suppressing drying shrinkage.

図1は、乳化装置Aの断面模式図である。FIG. 1 is a schematic cross-sectional view of the emulsifying device A.

「〜」を用いて表される数値範囲は、「〜」の両側の数値をその数値範囲に含む。
「多孔体」とは、連続した細孔を有する材料である。
「空隙率」は、みかけの体積中に含まれている気体の量を体積百分率で表した値である。
「水混和性」とは、水と任意の比率で混合して均一な溶液を形成する性質を意味する。
「溶解度を有する」とは、2種以上の液体を混合した場合に、均一な溶液を形成し得る性質を意味する。
「共沸組成」とは、液体の混合物が沸騰する際に液相と気相の組成が同じになる組成である。
液体の表面張力は、表面張力計(DY−300、協和界面科学株式会社)を用いて測定した、20℃における表面張力(単位:mN/m)である。
多孔体の細孔容積(PV)は、窒素吸着法によって測定した細孔容積(単位:mL/g)である。
多孔体の比表面積(SA)は、窒素吸着法によって測定した比表面積(単位:m/g)である。
粒子の平均粒子径は、30000個の粒子の粒子径を測定して得られた値の算術平均値である。
多孔体の空隙率は、下記式により算出したものである。
空隙率(%)=細孔容積(mL/g)÷{(細孔容積(mL/g)+1/多孔質材料の真密度(g/cm)}×100(%)
The numerical range represented by "~" includes the numerical values on both sides of "~" in the numerical range.
A "porous" is a material having continuous pores.
The "porosity" is a value obtained by expressing the amount of gas contained in the apparent volume as a volume percentage.
"Miscibility with water" means the property of mixing with water at an arbitrary ratio to form a uniform solution.
By "having solubility" is meant the property of being able to form a uniform solution when two or more liquids are mixed.
The "azeotropic composition" is a composition in which the composition of the liquid phase and the composition of the gas phase become the same when the mixture of liquids is boiled.
The surface tension of the liquid is the surface tension (unit: mN / m) at 20 ° C. measured using a surface tension meter (DY-300, Kyowa Interface Science Co., Ltd.).
The pore volume (PV) of the porous body is the pore volume (unit: mL / g) measured by the nitrogen adsorption method.
The specific surface area (SA) of the porous body is the specific surface area (unit: m 2 / g) measured by the nitrogen adsorption method.
The average particle size of the particles is an arithmetic mean value obtained by measuring the particle size of 30,000 particles.
The porosity of the porous body is calculated by the following formula.
Void ratio (%) = pore volume (mL / g) ÷ {(pore volume (mL / g) + 1 / true density of porous material (g / cm 3 )} × 100 (%)

以下、本発明を実施するための形態を説明する。しかし、本発明は後述する実施の形態に限定されるものではなく、本発明の要旨を逸脱しない限り、種々の変形が可能である。 Hereinafter, modes for carrying out the present invention will be described. However, the present invention is not limited to the embodiments described later, and various modifications can be made as long as the gist of the present invention is not deviated.

[多孔体の製造方法]
本発明の多孔体の製造方法は、水を含む第一の液体を含む湿潤体と、フッ素系溶媒を含み上記第一の液体と均一に混合しうる第二の液体とを接触させ、上記湿潤体に含まれる上記第一の液体を上記第二の液体に置換し、上記湿潤体から上記第二の液体を除去する製造方法であって、上記第一の液体及び上記第二の液体の少なくとも一方に水の表面張力を低下させる化合物Xを存在させることを特徴とする、多孔体の製造方法である。
[Method for producing porous material]
In the method for producing a porous body of the present invention, a wet body containing a first liquid containing water and a second liquid containing a fluorine-based solvent and capable of being uniformly mixed with the first liquid are brought into contact with each other to be wetted. A production method in which the first liquid contained in the body is replaced with the second liquid and the second liquid is removed from the wet body, and at least of the first liquid and the second liquid. On the other hand, it is a method for producing a porous body, characterized in that a compound X that lowers the surface tension of water is present.

<第一の液体>
第一の液体は、水を含む液体である。
第一の液体は、水、又は水と後述する化合物Xとの混合物が好ましく、水、又は水と混和性アルコールとの混合物がより好ましく、水がさらに好ましい。
<First liquid>
The first liquid is a liquid containing water.
The first liquid is preferably water or a mixture of water and compound X described later, more preferably water or a mixture of water and a miscible alcohol, and even more preferably water.

水混和性アルコールは、水と任意の比率で混合して均一な溶液を形成するアルコールである。
水混和性アルコールの具体例は、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、プロピレングリコール及び1,3−プロパンジオール(別名:トリメチレングリコール)である。
水混和性アルコールとしては、メタノール、エタノール、1−プロパノール及び2−プロパノールからなる群から選択される少なくとも1種が好ましく、エタノール、プロパノール及び2−プロパノールからなる群から選択される少なくとも1種がより好ましく、エタノールが特に好ましい。
水混和性アルコールとしてエタノール、1−プロパノール又は2−プロパノールを用いると、人体に対する毒性が比較的低いため、作業者の健康に対する悪影響が少ない。また、エタノールは、1−プロパノール及び2−プロパノールに比べて臭気が弱いため、作業環境を悪化させにくい。
A water-miscible alcohol is an alcohol that is mixed with water in an arbitrary ratio to form a uniform solution.
Specific examples of water-miscible alcohols are methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol and 1,3-propanediol (also known as trimethylene glycol).
As the water-miscible alcohol, at least one selected from the group consisting of methanol, ethanol, 1-propanol and 2-propanol is preferable, and at least one selected from the group consisting of ethanol, propanol and 2-propanol is more preferable. Ethanol is preferred, and ethanol is particularly preferred.
When ethanol, 1-propanol or 2-propanol is used as the water-miscible alcohol, the toxicity to the human body is relatively low, so that the adverse effect on the health of the worker is small. Further, since ethanol has a weaker odor than 1-propanol and 2-propanol, it does not easily deteriorate the working environment.

第一の液体として水と水混和性アルコールとの混合物を用いる場合の水混和性アルコールの濃度は、5〜90質量%が好ましく、10〜70質量%がより好ましく、15〜50質量%がさらに好ましい。
第一の液体として水と水混和性アルコールとの混合物を用いると、水混和性アルコールを用いる場合に比べて、引火のリスクを低減できる。特に、水混和性アルコールの濃度が50体積%以下であると、引火のリスクをより低減できる。
水は、イオン交換水、蒸留水又は逆浸透(RO)水が好ましい。
When a mixture of water and a water-miscible alcohol is used as the first liquid, the concentration of the water-miscible alcohol is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, further preferably 15 to 50% by mass. preferable.
When a mixture of water and a water-miscible alcohol is used as the first liquid, the risk of ignition can be reduced as compared with the case where the water-miscible alcohol is used. In particular, when the concentration of the water-miscible alcohol is 50% by volume or less, the risk of ignition can be further reduced.
The water is preferably ion-exchanged water, distilled water or reverse osmosis (RO) water.

<第二の液体>
第二の液体は、フッ素系溶媒を含み第一の液体と均一に混合しうる液体である。均一に混合しうるとは、25℃において同体積の第一の液体と第二の液体とを混合した場合に均一に混合しうることをいう。
第二の液体としては、フッ素系溶媒、フッ素系溶媒と後述する化合物Xとの混合物、又はフッ素系溶媒と後述する化合物Xと水との混合物が好ましく、フッ素系溶媒、フッ素系溶媒と水混和性アルコールとの混合物、又はフッ素系溶媒と水混和性アルコールと水との混合物がより好ましく、フッ素系溶媒と水混和性アルコールとの混合物がさらに好ましい。
水混和性アルコール及び水は、上述したとおりである。
上述した第1の液体が水であるとき、第二の液体はフッ素系溶媒と後述する化合物Xとの混合物が好ましく、フッ素系溶媒と水混和性アルコールとの混合物がより好ましい。
第二の液体は、引火点を持たないことが好ましい。
<Second liquid>
The second liquid is a liquid that contains a fluorine-based solvent and can be uniformly mixed with the first liquid. "Can be mixed uniformly" means that when the first liquid and the second liquid of the same volume are mixed at 25 ° C., they can be mixed uniformly.
As the second liquid, a fluorine-based solvent, a mixture of the fluorine-based solvent and the compound X described later, or a mixture of the fluorine-based solvent and the compound X described later and water is preferable, and the fluorine-based solvent and the fluorine-based solvent are mixed with water. A mixture with a sex alcohol or a mixture of a fluorine-based solvent, a water-mixable alcohol and water is more preferable, and a mixture of a fluorine-based solvent and a water-mixable alcohol is even more preferable.
The water-miscible alcohol and water are as described above.
When the first liquid described above is water, the second liquid is preferably a mixture of a fluorine-based solvent and compound X described later, and more preferably a mixture of a fluorine-based solvent and a water-miscible alcohol.
The second liquid preferably has no flash point.

フッ素系溶媒は、フルオロアルコール類、ハイドロフルオロオレフィン類及びハイドロフルオロエーテル類からなる群から選択される少なくとも1種が好ましく、ハイドロフルオロエーテル類が特に好ましい。
フルオロアルコール類としては、炭素数1〜10のフルオロアルコール類が好ましい。その具体例としては、ペンタフルオロエチル−エタノールが挙げられる。
ハイドロフルオロオレフィン類としては、炭素数1〜10のハイドロフルオロオレフィン類が好ましい。その具体例としては、トリデカフルオロヘキシルエチレンが挙げられる。
ハイドロフルオロエーテル類としては、炭素数1〜15のハイドロフルオロエーテル類が好ましい。ハイドロフルオロエーテル類の具体例は、アサヒクリンAE−3000(AGC社製、分子式CFCHOCFCHF、別名:HFE−347pc−f)、ノベック7000(COCH、3M社製)、ノベック7100(COCH、3M社製)、ノベック7200(COC、3M社製)、ノベック7300(CCF(OCH)C、3M社製)、エルノバNF(トクヤマMETEL社製)及びエルノバNFR(旭化成ケミカルズ社製)である。
The fluorine-based solvent is preferably at least one selected from the group consisting of fluoroalcohols, hydrofluoroolefins and hydrofluoroethers, and hydrofluoroethers are particularly preferable.
As the fluoroalcohols, fluoroalcohols having 1 to 10 carbon atoms are preferable. Specific examples thereof include pentafluoroethyl-ethanol.
As the hydrofluoroolefins, hydrofluoroolefins having 1 to 10 carbon atoms are preferable. Specific examples thereof include tridecafluorohexyl ethylene.
As the hydrofluoroethers, hydrofluoroethers having 1 to 15 carbon atoms are preferable. Specific examples of hydrofluoroethers include Asahi Clean AE-3000 (manufactured by AGC, molecular formula CF 3 CH 2 OCF 2 CHF 2 , also known as HFE-347pc-f), Novec 7000 (C 3 F 7 OCH 3 , 3M). , Novec 7100 (C 4 F 9 OCH 3 , 3M), Novec 7200 (C 4 F 9 OC 2 H 5 , 3M), Novec 7300 (C 2 F 5 CF (OCH 3 ) C 3 F 7 and 3M), Elnova NF (manufactured by Tokuyama METEL) and Elnova NFR (manufactured by Asahi Kasei Chemicals).

第二の液体としてフッ素系溶媒と水混和性アルコールとの混合物を用いる場合の水混和性アルコールの含有量は、0.1〜15質量%が好ましく、0.5〜10質量%がより好ましく、1〜6質量%がさらに好ましい。
ハイドロフルオロエーテルと水混和性アルコールとの混合物は、上述したハイドロフルオロエーテルと上述した水混和性アルコールを混合して調製できる。また、ハイドロフルオロエーテルと水混和性アルコールとの混合物の市販品を使用してもよく、具体例として、アサヒクリンAE−3100E (AGC社製、アサヒクリンAE−3000とエタノールとの混合物、エタノール含有量5.5体積%)及びノベック71IPA(3M社製、ノベック7100と2−プロパノールとの混合物、2−プロパノール含有量5質量%)が挙げられる。
When a mixture of a fluorine-based solvent and a water-miscible alcohol is used as the second liquid, the content of the water-miscible alcohol is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass. 1 to 6% by mass is more preferable.
The mixture of the hydrofluoroether and the water-miscible alcohol can be prepared by mixing the above-mentioned hydrofluoroether and the above-mentioned water-miscible alcohol. Further, a commercially available mixture of hydrofluoroether and water-miscible alcohol may be used, and as a specific example, Asahiclean AE-3100E (manufactured by AGC, a mixture of Asahiclean AE-3000 and ethanol, containing ethanol). (Amount 5.5% by volume) and Novec 71IPA (manufactured by 3M, a mixture of Novec 7100 and 2-propanol, 2-propanol content 5% by mass).

第二の液体としてフッ素系溶媒と水混和性アルコールと水との混合物を用いる場合の水混和性アルコールの含有量は、0.1〜15質量%が好ましく、0.5〜10質量%がより好ましく、1〜6質量%がさらに好ましい。また、水の含有量は、0〜5質量%が好ましく、0〜1質量%がより好ましく、0〜0.5質量%がさらに好ましい。 When a mixture of a fluorine-based solvent, a water-miscible alcohol and water is used as the second liquid, the content of the water-miscible alcohol is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass. It is preferable, and 1 to 6% by mass is more preferable. The water content is preferably 0 to 5% by mass, more preferably 0 to 1% by mass, and even more preferably 0 to 0.5% by mass.

<化合物X>
化合物Xは、第一の液体及び第二の液体の少なくとも一方に含まれ、水の表面張力を低下させる化合物である。化合物Xとしては、アルコール類、ケトン類、アルデヒド類及びニトリル類からなる群から選択される少なくとも1種が好ましく、アルコール類が特に好ましい。化合物Xの炭素数は1〜10が好ましい。
アルコール類としては、上記水混和性アルコールが挙げられ、特にエタノールが好ましい。
ケトン類としては、アセトン、メチルエチルケトン、3−ペンタノンが挙げられ、特にアセトンが好ましい。
アルデヒド類としては、アセトアルデヒド、プロピルアルデヒドが挙げられる。
ニトリル類としては、アセトニトリルが挙げられる。
<Compound X>
Compound X is a compound contained in at least one of the first liquid and the second liquid and which lowers the surface tension of water. As the compound X, at least one selected from the group consisting of alcohols, ketones, aldehydes and nitriles is preferable, and alcohols are particularly preferable. Compound X preferably has 1 to 10 carbon atoms.
Examples of alcohols include the above-mentioned water-miscible alcohols, and ethanol is particularly preferable.
Examples of the ketones include acetone, methyl ethyl ketone and 3-pentanone, and acetone is particularly preferable.
Examples of aldehydes include acetaldehyde and propylaldehyde.
Examples of nitriles include acetonitrile.

<湿潤体>
湿潤体は、空隙が水で満たされた多孔体前駆体と、第一の液体とを接触させ、空隙内の水を上記第一の液体で置換して得られるものが好ましい。湿潤体は、空隙が水で満たされた多孔体前駆体をそのまま用いてもよい。
<Wet body>
The wet body is preferably obtained by bringing the first liquid into contact with the porous precursor whose voids are filled with water and replacing the water in the voids with the first liquid. As the wet body, a porous precursor whose voids are filled with water may be used as it is.

多孔体前駆体は、無機酸化物粒子が好ましく、シリカ粒子が特に好ましい。
シリカ粒子以外の無機酸化物粒子としては、例えば、アルミナ粒子、チタニア粒子及びジルコニア粒子が挙げられる。
本発明の多孔体の製造方法によって得られる高い空隙率を有する多孔質粒子は、断熱材、真空断熱材の芯材、食品添加剤、医療用診断剤、塗料用フィラー、化粧品用フィラー、樹脂フィルム用フィラー、液晶用スペーサー、クロマトグラフィー用充填剤、触媒、触媒担体、樹脂充填剤、吸着剤又は乾燥剤等の用途に用いることができる。
As the porous precursor, inorganic oxide particles are preferable, and silica particles are particularly preferable.
Examples of the inorganic oxide particles other than the silica particles include alumina particles, titania particles and zirconia particles.
The porous particles having a high porosity obtained by the method for producing a porous body of the present invention are heat insulating materials, core materials for vacuum heat insulating materials, food additives, medical diagnostic agents, paint fillers, cosmetic fillers, and resin films. It can be used as a filler for liquid crystal, a spacer for liquid crystal, a filler for chromatography, a catalyst, a catalyst carrier, a resin filler, an adsorbent, a desiccant, and the like.

多孔体前駆体の形状は、球状が好ましい。多孔体前駆体が球状である場合の平均粒子径は、1〜1000μmが好ましく、5〜500μmがより好ましく、10〜200μmがさらに好ましい。 The shape of the porous precursor is preferably spherical. When the porous precursor is spherical, the average particle size is preferably 1 to 1000 μm, more preferably 5 to 500 μm, and even more preferably 10 to 200 μm.

<湿潤体と第二の液体との接触方法>
湿潤体と第二の液体との接触は、従来公知の方法によって行うことができ、例えば、湿潤体を第二の液体中に浸漬することで行える。第二の液体に湿潤体を浸漬する時間及び温度は、第一の液体が第二の液体に完全に置換される時間及び温度に設定することが好ましい。
<Method of contact between wet body and second liquid>
The contact between the wet body and the second liquid can be performed by a conventionally known method, for example, by immersing the wet body in the second liquid. The time and temperature for immersing the wet body in the second liquid is preferably set to the time and temperature at which the first liquid is completely replaced by the second liquid.

<第二の液体の除去方法>
湿潤体と第二の液体とを接触させ、湿潤体に含まれる第一の液体を第二の液体に置換させた後の、第二の液体を含む多孔体前駆体からの第二の液体の除去は、従来公知の方法によって行うことができ、例えば、加熱して第二の液体を蒸発させることで行える。加熱以外の除去方法としては、例えば、風乾又は減圧乾燥が挙げられる。
<Second liquid removal method>
After contacting the wet body with the second liquid to replace the first liquid contained in the wet body with the second liquid, the second liquid from the porous precursor containing the second liquid The removal can be performed by a conventionally known method, for example, by heating to evaporate the second liquid. Examples of the removing method other than heating include air drying and vacuum drying.

<湿潤体の製造方法>
本発明の多孔体の製造方法において用いる湿潤体の製造方法について説明する。
以下では、湿潤体が第一の液体で空隙が満たされたシリカ粒子前駆体である場合について詳細に説明するが、シリカ粒子前駆体以外の多孔体前駆体である場合であっても、当業者であれば容易に理解できる。
<Manufacturing method of wet body>
The method for producing a wet body used in the method for producing a porous body of the present invention will be described.
In the following, the case where the wet body is a silica particle precursor whose voids are filled with the first liquid will be described in detail, but even if it is a porous precursor other than the silica particle precursor, those skilled in the art. If so, it is easy to understand.

本実施形態の湿潤体の製造方法では、シリカヒドロゲルを調製し、第一の液体(ここでは水)で空隙が満たされたシリカ粒子前駆体を製造する。 In the method for producing a wet body of the present embodiment, a silica hydrogel is prepared to produce a silica particle precursor whose voids are filled with a first liquid (here, water).

シリカヒドロゲルの調製方法としては、例えば、特許第6241252号公報に記載された球状シリカの製造方法の工程(1)〜工程(4)のうち、工程(1)から工程(3)までを有する方法が挙げられる。 As a method for preparing the silica hydrogel, for example, among the steps (1) to (4) of the method for producing spherical silica described in Japanese Patent No. 6241252, a method having steps (1) to (3). Can be mentioned.

工程(3)で熟成したシリカヒドロゲルを調製した後、上記シリカヒドロゲルに含まれる水を上記第二の液体(例えばハイドロフルオロエーテル類と水混和性アルコールとの混合物)で置換することにより、本発明の多孔体の製造方法において用いる湿潤体が得られる。
シリカヒドロゲルに含まれる水を第二の液体で置換するには、従来公知の方法によってシリカヒドロゲルに含まれる水を第二の液体で置換すればよいが、熟成したシリカヒドロゲルを第二の液体中に浸漬して、シリカヒドロゲルに含まれる水を第二の液体で置換することが好ましい。浸漬の時間及び温度は、シリカヒドロゲルに含まれる水を第二の液体で完全に置換できる条件とすることが好ましい。
After preparing the silica hydrogel aged in the step (3), the present invention is made by substituting the water contained in the silica hydrogel with the second liquid (for example, a mixture of hydrofluoroethers and a water-miscible alcohol). A wet body used in the method for producing a porous body is obtained.
In order to replace the water contained in the silica hydrogel with the second liquid, the water contained in the silica hydrogel may be replaced with the second liquid by a conventionally known method, but the aged silica hydrogel is contained in the second liquid. It is preferable to replace the water contained in the silica hydrogel with a second liquid by immersing it in. The immersion time and temperature are preferably conditions under which the water contained in the silica hydrogel can be completely replaced with the second liquid.

<多孔体>
本発明の多孔体の製造方法によって得られる多孔体の空隙率は、83.0%以上が好ましく、84.0%以上がより好ましく、85.0%以上がさらに好ましい。
多孔体の比表面積は、100m/g以上が好ましく、200m/g以上がより好ましく、400m/g以上がさらに好ましい。
多孔体の細孔容積は、2.0mL/g以上が好ましく、2.3mL/g以上がより好ましく、2.5mL/g以上がさらに好ましい。
空隙率が83.0%以上の多孔体は、断熱材、真空断熱材の芯材、食品添加剤、医療用診断剤、塗料用フィラー、化粧品用フィラー、樹脂フィルム用フィラー、液晶用スペーサー、クロマトグラフィー用充填剤、触媒、触媒担体、樹脂充填剤、吸着剤又は乾燥剤等の用途に好適である。
<Porous medium>
The porosity of the porous body obtained by the method for producing a porous body of the present invention is preferably 83.0% or more, more preferably 84.0% or more, still more preferably 85.0% or more.
The specific surface area of the porous body is preferably 100 m 2 / g or more, more preferably at least 200m 2 / g, 400m 2 / g or more is more preferable.
The pore volume of the porous body is preferably 2.0 mL / g or more, more preferably 2.3 mL / g or more, and even more preferably 2.5 mL / g or more.
Porous bodies with a porosity of 83.0% or more include heat insulating materials, core materials for vacuum heat insulating materials, food additives, medical diagnostic agents, paint fillers, cosmetic fillers, resin film fillers, liquid crystal spacers, and chromatographs. It is suitable for applications such as a filler for chromatography, a catalyst, a catalyst carrier, a resin filler, an adsorbent or a desiccant.

本発明の製造方法により得られる多孔体は、多孔体前駆体によるが、無機酸化物粒子が好ましい。
無機酸化物粒子としては、例えば、シリカ粒子、アルミナ粒子、チタニア粒子及びジルコニア粒子が挙げられるが、シリカ粒子が好ましい。
The porous material obtained by the production method of the present invention depends on the porous material precursor, but inorganic oxide particles are preferable.
Examples of the inorganic oxide particles include silica particles, alumina particles, titania particles and zirconia particles, and silica particles are preferable.

多孔体は球状粒子が好ましい。多孔体が球状粒子である場合の平均粒子径は、1〜1000μmが好ましく、5〜500μmが好ましく、10〜200μmがより好ましい。 Spherical particles are preferable as the porous body. When the porous body is spherical particles, the average particle size is preferably 1 to 1000 μm, preferably 5 to 500 μm, and more preferably 10 to 200 μm.

<作用効果>
空隙に液体を含む多孔体前駆体を乾燥して多孔体を得る際の収縮は、乾燥時に空隙内に残存する液体の気液界面の表面張力が原因である。表面張力を下げるためには、一般的には表面張力(対空気)が低い液体で、多孔体前駆体の空隙内部を置換する溶媒置換法が用いられる。
表面張力が低い液体は、有機溶媒が多く、親水表面になじまないため、多孔体前駆体表面を疎水化した後に溶媒置換、乾燥工程へ進む。
有機溶媒には可燃性の物質が多く安全性に懸念があるうえ、乾燥して得られる乾燥体は表面が疎水化されているため、表面が親水性の粒子を得るには焼成により疎水化に用いた有機物を除去する必要がある。また、低表面張力の有機溶媒であっても乾燥収縮が全くなくなるというわけではない。表面張力が低い液体として、フッ素系液体があるが、水、有機基ともになじみやすいわけではなく、溶媒置換が容易ではない。
したがって、湿潤体を乾燥収縮させずに乾燥させるためには、超臨界乾燥や凍結乾燥という手法が選択される場合がある。両者ともに非常に高額な装置を要するうえ、凍結乾燥法は、凍結時の液体の体積変化により微細構造内部が破壊されるおそれがある。
<Effect>
The shrinkage of the porous precursor obtained by drying the porous precursor containing the liquid in the voids is due to the surface tension of the gas-liquid interface of the liquid remaining in the voids during drying. In order to reduce the surface tension, a solvent substitution method is generally used in which a liquid having a low surface tension (anti-air) is used to replace the inside of the voids of the porous precursor.
A liquid having a low surface tension has a large amount of organic solvent and does not fit into the hydrophilic surface. Therefore, after hydrophobizing the surface of the porous precursor, the process proceeds to solvent replacement and drying steps.
Since many organic solvents are flammable substances and there are concerns about safety, and the surface of the dried product obtained by drying is hydrophobic, it is made hydrophobic by firing in order to obtain particles with hydrophilic surfaces. It is necessary to remove the used organic substances. Moreover, even an organic solvent having a low surface tension does not completely eliminate drying shrinkage. Fluorine-based liquids have low surface tension, but they are not easily compatible with water and organic groups, and solvent replacement is not easy.
Therefore, in order to dry the wet body without drying and shrinking, a method of supercritical drying or freeze-drying may be selected. Both require very expensive equipment, and the freeze-drying method may destroy the inside of the microstructure due to the volume change of the liquid during freezing.

これに対して、本発明の多孔体の製造方法では、第一の液体と第二の液体との表面張力差が小さいこと、及び第二の液体と空気との表面張力差が小さいことから、表面張力の変化率が緩和される。その結果、おだやかな条件で空隙内部の液体が空気に置換されることにより、多孔体前駆体の乾燥収縮が抑制され、得られる多孔体の空隙率の低下も抑制される。 On the other hand, in the method for producing a porous body of the present invention, the difference in surface tension between the first liquid and the second liquid is small, and the difference in surface tension between the second liquid and air is small. The rate of change in surface tension is relaxed. As a result, the liquid inside the voids is replaced with air under mild conditions, so that the drying shrinkage of the porous precursor is suppressed, and the decrease in the porosity of the obtained porous material is also suppressed.

<多孔体の用途>
本発明の多孔体の製造方法によって製造した多孔体の用途及び有利な点について、以下に説明する。
化粧品用途:軽量感が加わることによる感触向上、香料担持量増加に伴う保持時間上昇が期待できる。
触媒担持用途:触媒内部までの物質の拡散速度が上昇することによる活性向上が期待できる。特に、担体を崩壊させながら重合を行う場合には、易崩壊性にもつながり、反応速度が向上することが期待できる。
断熱材用途:空隙率が高く、断熱性能が高いだけではなく、特に、ナノ細孔構造が性能に影響を与えている断熱材において、乾燥収縮を起こさないことが期待できる。
コーティング用途:微粒子のコーティングで薄膜を形成する場合、乾燥収縮に伴う変形を抑制する効果が規定できる。
クロマト充填剤:乾燥収縮がないことで、均一な細孔構造が得られ、分離性能が向上することが期待できる。
<Use of porous material>
The uses and advantages of the porous body produced by the method for producing a porous body of the present invention will be described below.
Cosmetic use: It is expected that the feel will be improved by adding a feeling of lightness, and the holding time will be increased as the amount of fragrance carried increases.
Catalyst-supporting application: It is expected that the activity will be improved by increasing the diffusion rate of the substance to the inside of the catalyst. In particular, when the polymerization is carried out while disintegrating the carrier, it can be expected to lead to easy disintegration and improve the reaction rate.
Insulation material application: Not only is the porosity high and the insulation performance is high, but it can be expected that drying shrinkage does not occur especially in the insulation material whose performance is affected by the nanopore structure.
Coating application: When a thin film is formed by coating fine particles, the effect of suppressing deformation due to drying shrinkage can be defined.
Chromatographic filler: Since there is no drying shrinkage, a uniform pore structure can be obtained, and it can be expected that the separation performance will be improved.

以下では実施例によって本発明をより具体的に説明する。しかし、本発明は後述する実施例に限定されるものではなく、本発明の要旨を逸脱しない限り、種々の変形が可能である。
例1及び例5は実施例に相当し、例2〜4及び例6〜8は比較例に相当する。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the examples described later, and various modifications can be made as long as the gist of the present invention is not deviated.
Examples 1 and 5 correspond to Examples, and Examples 2 to 4 and Examples 6 to 8 correspond to Comparative Examples.

[調製例1]
<サンプルAの調製>
(1)分散相及び連続相の調製
分散相として、3号ケイ酸ソーダ(AGCエスアイテック株式会社製、ケイ酸ナトリウム水溶液、NaO/SiO(モル比)=3.09)を、硫酸ナトリウム(NaSO)水溶液で薄めて、SiO濃度を11質量%、硫酸ナトリウム濃度を4.0質量%としたものを用いた。このときの密度は1150kg/mであった。
連続相の有機溶媒としてn−デカン(C1022、密度730kg/m)を用いた。また、あらかじめ、このn−デカンに界面活性剤としてモノオレイン酸ソルビタン(三洋化成工業株式会社製「イオネットS80」)を0.3質量%溶解したものを連続相として用いた。
[Preparation Example 1]
<Preparation of sample A>
(1) Preparation of Dispersed Phase and Continuous Phase As the dispersed phase, sodium sulfate No. 3 (manufactured by AGC SI-Tech Co., Ltd., sodium silicate aqueous solution, Na 2 O / SiO 2 (molar ratio) = 3.09) was added over sulfate. Dilute with an aqueous solution of sodium (Na 2 SO 4 ) to make the SiO 2 concentration 11% by mass and the sodium sulfate concentration 4.0% by mass. The density at this time was 1150 kg / m 3 .
N-decane (C 10 H 22 , density 730 kg / m 3 ) was used as the continuous phase organic solvent. Further, a continuous phase in which 0.3% by mass of sorbitan monooleate (“Ionet S80” manufactured by Sanyo Chemical Industries, Ltd.) was dissolved in this n-decane as a surfactant was used in advance.

(2)乳化装置Aの作製
調製例1では、乳化装置Aを用いて乳化を行った。乳化装置Aの断面模式図は図1に示す通りである。
(2) Preparation of Emulsifying Device A In Preparation Example 1, emulsification was performed using the emulsifying device A. A schematic cross-sectional view of the emulsifying device A is as shown in FIG.

乳化装置Aにおいて、ステンレス鋼板3は、厚さ600μmのSUS304製のシートに対し、流路(マイクロチャネル)に相当する幅3.0mm×長さ74mmの1本の貫通加工部がエッチング加工されたものであり、すなわち幅3.0mm×高さ600μmの流路3aが形成されている。 In the emulsifying apparatus A, in the stainless steel plate 3, one through-processed portion having a width of 3.0 mm and a length of 74 mm corresponding to a flow path (microchannel) was etched on a sheet made of SUS304 having a thickness of 600 μm. That is, a flow path 3a having a width of 3.0 mm and a height of 600 μm is formed.

ステンレス鋼板4は、厚さ50μmのSUS304製のシートに対し、ステンレス鋼板3と重ね合わせた際に流路3aの中央部に微小孔部4aが重なるような位置に微小孔部4aが加工されたものである。微小孔部4aは流路の中央部の2.61mm×37.9mmの面積(9.89×10−5)に、出口側(下側、すなわちステンレス鋼板3側)の孔径が12.7μmである円形の貫通孔部4bが100μmピッチで10260個加工してある。 In the stainless steel plate 4, the micropores 4a were machined at positions where the micropores 4a overlapped the central portion of the flow path 3a when the stainless steel plate 4 was overlapped with the stainless steel plate 3 on a sheet made of SUS304 having a thickness of 50 μm. It is a thing. The micropores 4a have an area of 2.61 mm × 37.9 mm (9.89 × 10-5 m 2 ) in the center of the flow path, and a hole diameter on the outlet side (lower side, that is, the stainless steel plate 3 side) is 12. 10260 circular through-holes 4b, which are 7 μm, are machined at a pitch of 100 μm.

ステンレス鋼板3の流路3aが形成された面及びステンレス鋼板4の微小孔部4aが形成された面に撥水処理を施した。撥水処理は、溶媒可溶型フッ素樹脂(AGC株式会社製「サイトップ」)を溶媒(AGC株式会社製「CT−Solv100」)に溶解した溶液を、乾燥後の被覆厚が0.1μmになるようにディップコート法により被覆した。 Water repellent treatment was applied to the surface of the stainless steel sheet 3 on which the flow path 3a was formed and the surface of the stainless steel sheet 4 on which the micropores 4a were formed. The water-repellent treatment is a solution in which a solvent-soluble fluororesin (“Cytop” manufactured by AGC Inc.) is dissolved in a solvent (“CT-Solv100” manufactured by AGC Inc.), and the coating thickness after drying is 0.1 μm. It was coated by the dip coating method so as to become.

このステンレス鋼板3とステンレス鋼板4とを図1のように重ね、分散相供給部7を有する分散相流路形成用のアクリル樹脂製部材2と、連続相入口部5及びエマルション出口部6のそれぞれの流路を有するアクリル樹脂製部材1とで挟み込み、乳化装置Aを作製した。乳化装置Aの4辺をクランプにて均等な力で締め付けて固定し、事前に水を供給することで漏洩がないことを確認した。 The stainless steel plate 3 and the stainless steel plate 4 are stacked as shown in FIG. 1, and the acrylic resin member 2 for forming a dispersed phase flow path having the dispersed phase supply portion 7, and the continuous phase inlet portion 5 and the emulsion outlet portion 6, respectively. An emulsifying device A was produced by sandwiching it with an acrylic resin member 1 having a flow path of the above. It was confirmed that there was no leakage by tightening and fixing the four sides of the emulsifying device A with a clamp with an even force and supplying water in advance.

(3)エマルション作製
上記(2)で作製した乳化装置Aを流路が水平方向になるように置いて使用し、連続相入口部5より上記(1)で調製した界面活性剤を溶解したn−デカンを、分散相供給部7より微小孔部4aを通して上記(1)で調製した3号ケイ酸ソーダを供給することで、3号ケイ酸ソーダが界面活性剤を溶解したn−デカン中に分散したW/O型エマルションを連続的に製造した。
(3) Emulsion preparation The emulsifying device A prepared in the above (2) was used by placing it so that the flow path was in the horizontal direction, and the surfactant prepared in the above (1) was dissolved from the continuous phase inlet portion 5 n. -Decan is supplied from the dispersed phase supply unit 7 through the micropores 4a to the sodium silicate prepared in (1) above, so that the sodium silicate No. 3 is contained in the n-decane in which the surfactant is dissolved. The dispersed W / O type emulsion was continuously produced.

このとき、n−デカンの供給量は1流路あたり12.3L/hであり、流路における流れ方向の線速(流速)は1.9m/sであった。また、3号ケイ酸ソーダの供給量は微小孔部形成領域(乳化装置Aでは9.89×10−5)の単位面積あたり5.48L/hであり、微小孔部4aの1孔(4b)あたりの流れ方向の線速(流速)は1.17m/sであった。 At this time, the supply amount of n-decane was 12.3 L / h per flow path, and the linear velocity (flow velocity) in the flow direction in the flow path was 1.9 m / s. The supply amount of No. 3 sodium silicate is 5.48 L / h per unit area of the micropore forming region (9.89 × 10-5 m 2 in the emulsifying device A), and one pore of the micropore 4a. The linear velocity (flow velocity) in the flow direction per (4b) was 1.17 m / s.

(4)ゲル化及び熟成
上記(3)で15分間W/O型エマルションを作製し続けた後に、エマルションを350ml採取し、10℃に温度調整した後、撹拌しながら100質量%濃度の炭酸ガスを100mL/分の供給速度で25分間吹き込んでゲル化を行った。生成したシリカヒドロゲルに対し、水200mLを加えて10分間静置させた後、比重差により2相分離してシリカヒドロゲルの水スラリー(水相)を得た。得られたシリカヒドロゲルの水スラリーをろ過して、イオン交換水2Lで洗浄した後、1規定の水酸化ナトリウム水溶液を添加し、pH5とした。次いで、熟成工程として80℃に昇温後、1時間攪拌した。
(4) Gelation and aging After continuing to prepare a W / O type emulsion for 15 minutes in (3) above, 350 ml of the emulsion was collected, the temperature was adjusted to 10 ° C., and then carbon dioxide gas having a concentration of 100% by mass was stirred. Was blown at a supply rate of 100 mL / min for 25 minutes to perform gelation. To the produced silica hydrogel, 200 mL of water was added and allowed to stand for 10 minutes, and then two phases were separated due to the difference in specific densities to obtain an aqueous slurry (aqueous phase) of the silica hydrogel. The obtained water slurry of silica hydrogel was filtered and washed with 2 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added to adjust the pH to 5. Then, as a aging step, the temperature was raised to 80 ° C., and the mixture was stirred for 1 hour.

(5)洗浄、固液分離
上記(4)で熟成をかけた水スラリーに0.1既定の硫酸を添加し、pH2とした。次いで水スラリーをろ過して、イオン交換水2Lで洗浄した後、吸引ろ過してシリカケーキのサンプルAを得た。
(5) Washing and solid-liquid separation 0.1 Predetermined sulfuric acid was added to the water slurry aged in (4) above to adjust the pH to 2. Next, the water slurry was filtered, washed with 2 L of ion-exchanged water, and then suction-filtered to obtain a silica cake sample A.

[調製例2]
<サンプルBの調製>
調製例1の(1)から(3)までと同一手順、条件にてエマルションを作製した。
[Preparation Example 2]
<Preparation of sample B>
An emulsion was prepared under the same procedure and conditions as in Preparation Examples 1 (1) to (3).

(4)ゲル化及び熟成」
上記(3)で15分間W/O型エマルションを作製し続けた後に、エマルションを350ml採取し、10℃に温度調整した後、撹拌しながら100質量%濃度の炭酸ガスを100mL/分の供給速度で25分間吹き込んでゲル化を行った。生成したシリカヒドロゲルに対し、水200mLを加えて10分間静置させた後、比重差により2相分離してシリカヒドロゲルの水スラリー(水相)を得た。得られたシリカヒドロゲルの水スラリーをろ過して、イオン交換水2Lで洗浄した後、1規定の水酸化ナトリウム水溶液を添加し、pH8とした。次いで、熟成工程として80℃に昇温後、1時間攪拌した。
(4) Gelation and aging "
After continuing to prepare the W / O type emulsion in (3) above for 15 minutes, 350 ml of the emulsion was collected, the temperature was adjusted to 10 ° C., and then 100 mL / min of carbon dioxide gas having a concentration of 100% by mass was supplied while stirring. It was blown in for 25 minutes to gelate. To the produced silica hydrogel, 200 mL of water was added and allowed to stand for 10 minutes, and then two phases were separated due to the difference in specific densities to obtain an aqueous slurry (aqueous phase) of the silica hydrogel. The obtained water slurry of silica hydrogel was filtered and washed with 2 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added to adjust the pH to 8. Then, as a aging step, the temperature was raised to 80 ° C., and the mixture was stirred for 1 hour.

(5)洗浄、固液分離
上記(4)で熟成をかけた水スラリーに0.1既定の硫酸を添加し、pH2とした。次いで水スラリーをろ過して、イオン交換水2Lで洗浄した後、吸引ろ過してシリカケーキのサンプルBを得た。
(5) Washing and solid-liquid separation 0.1 Predetermined sulfuric acid was added to the water slurry aged in (4) above to adjust the pH to 2. Next, the water slurry was filtered, washed with 2 L of ion-exchanged water, and then suction-filtered to obtain a silica cake sample B.

[例1]
シリカケーキ(サンプルA)41.6g(乾燥質量9.5g)を水−エタノール混合液(水80体積%、エタノール20体積%、表面張力38.4mN/m)6720gに浸漬して、シリカ粒子中の水を水−エタノール混合液に置換して湿潤体を得た。
[Example 1]
41.6 g (dry mass 9.5 g) of silica cake (sample A) is immersed in 6720 g of a water-ethanol mixed solution (80% by volume of water, 20% by volume of ethanol, surface tension of 38.4 mN / m) in silica particles. Water was replaced with a water-ethanol mixed solution to obtain a wet body.

上記湿潤体を含むスラリーをそのまま撹拌を続け、湿潤体中の水−エタノール混合液を含フッ素溶媒混合物(AGC社製、AE−3100E)に置換した。容器を70℃の水浴に漬け、容器内の含フッ素溶媒混合物を煮沸、留去してシリカ粒子を得た。 The slurry containing the wet body was continuously stirred as it was, and the water-ethanol mixture in the wet body was replaced with a fluorine-containing solvent mixture (AE-3100E, manufactured by AGC Inc.). The container was immersed in a water bath at 70 ° C., and the fluorine-containing solvent mixture in the container was boiled and distilled off to obtain silica particles.

得られたシリカ粒子の比表面積(SA)及び細孔容積(PV)を測定し、空隙率を算出した。結果を表1に示す。 The specific surface area (SA) and pore volume (PV) of the obtained silica particles were measured, and the porosity was calculated. The results are shown in Table 1.

[例2]
シリカケーキ(サンプルA)8.4g(乾燥質量2.1g)を容器内のアサヒクリンAE−3000(AGC社製)7000gと混合し、撹拌した。撹拌を続け、シリカゲル中の水をAE−3000に置換した。
容器を70℃の水浴に漬け、容器内のAE−3000を煮沸、留去してシリカ粒子を得た。
[Example 2]
8.4 g (dry mass 2.1 g) of silica cake (sample A) was mixed with 7000 g of Asahiclean AE-3000 (manufactured by AGC) in a container and stirred. Stirring was continued and the water in the silica gel was replaced with AE-3000.
The container was immersed in a water bath at 70 ° C., and AE-3000 in the container was boiled and distilled off to obtain silica particles.

得られたシリカ粒子の比表面積(SA)及び細孔容積(PV)を測定し、空隙率を算出した。結果を表1に示す。 The specific surface area (SA) and pore volume (PV) of the obtained silica particles were measured, and the porosity was calculated. The results are shown in Table 1.

[例3]
シリカケーキ(サンプルA)40g(乾燥質量9.2g)を水145gと混合し、攪拌することで5wt.%のシリカスラリーを得た。このスラリーをスプレードライにより乾燥して、シリカ粒子を得た。
[Example 3]
40 g (dry mass 9.2 g) of silica cake (sample A) was mixed with 145 g of water and stirred to obtain 5 wt. % Silica slurry was obtained. This slurry was spray-dried to obtain silica particles.

得られたシリカ粒子の比表面積(SA)及び細孔容積(PV)を測定し、空隙率を算出した。結果を表1に示す。 The specific surface area (SA) and pore volume (PV) of the obtained silica particles were measured, and the porosity was calculated. The results are shown in Table 1.

[例4]
シリカケーキ(サンプルA)40gを120℃で減圧乾燥して、シリカ粒子を得た。
[Example 4]
40 g of silica cake (Sample A) was dried under reduced pressure at 120 ° C. to obtain silica particles.

得られたシリカ粒子の比表面積(SA)及び細孔容積(PV)を測定し、空隙率を算出した。結果を表1に示す。 The specific surface area (SA) and pore volume (PV) of the obtained silica particles were measured, and the porosity was calculated. The results are shown in Table 1.

[例5〜8]
シリカケーキ(サンプルA)をシリカゲル(サンプルB)に変更した点を除いて、それぞれ、例1〜4と同様にしてシリカ粒子を得た。
[Examples 5 to 8]
Silica particles were obtained in the same manner as in Examples 1 to 4, except that the silica cake (sample A) was changed to silica gel (sample B).

得られたシリカ粒子の比表面積(SA)及び細孔容積(PV)を測定し、空隙率を算出した。結果を表1に示す。 The specific surface area (SA) and pore volume (PV) of the obtained silica particles were measured, and the porosity was calculated. The results are shown in Table 1.

Figure 2021134105
Figure 2021134105

[結果の説明]
例1及び例5では、空隙率が83.0%以上のシリカ粒子が得られた。
例2〜4及び例6〜8では、乾燥収縮を抑制できず、空隙率が83.0%未満となった。
[Explanation of results]
In Example 1 and Example 5, silica particles having a porosity of 83.0% or more were obtained.
In Examples 2 to 4 and Examples 6 to 8, the drying shrinkage could not be suppressed, and the porosity was less than 83.0%.

本発明の多孔体の製造方法によって得られる多孔体は、断熱材、真空断熱材の芯材、食品添加剤、医療用診断剤、塗料用フィラー、化粧品用フィラー、樹脂フィルム用フィラー、液晶用スペーサー、クロマトグラフィー用充填剤、触媒、触媒担体、樹脂充填剤、吸着剤又は乾燥剤等の多様な用途に利用できる。 The porous body obtained by the method for producing a porous body of the present invention is a heat insulating material, a core material of a vacuum heat insulating material, a food additive, a medical diagnostic agent, a filler for paint, a filler for cosmetics, a filler for a resin film, and a spacer for liquid crystal. , Chromatographic fillers, catalysts, catalyst carriers, resin fillers, adsorbents or desiccants and the like.

1,2 アクリル樹脂製部材
3,4 ステンレス鋼板
3a 流路
4a 微小孔部
4b 貫通孔部
5 連続相入口部
6 エマルション出口部
7 分散相供給部
1, 2, Acrylic resin member 3, 4 Stainless steel plate 3a Flow path 4a Micropores 4b Through holes 5 Continuous phase inlet 6 Emulsion outlet 7 Dispersed phase supply

Claims (9)

水を含む第一の液体を含む湿潤体と、フッ素系溶媒を含み前記第一の液体と均一に混合しうる第二の液体とを接触させ、前記湿潤体に含まれる前記第一の液体を前記第二の液体に置換し、前記湿潤体から前記第二の液体を除去する、多孔体の製造方法であって、
前記第一の液体及び前記第二の液体の少なくとも一方に水の表面張力を低下させる化合物Xを存在させる、多孔体の製造方法。
A wet body containing a first liquid containing water and a second liquid containing a fluorosolvent and capable of being mixed uniformly with the first liquid are brought into contact with each other to bring the first liquid contained in the wet body into contact with each other. A method for producing a porous body, which comprises replacing with the second liquid and removing the second liquid from the wet body.
A method for producing a porous body, wherein the compound X that reduces the surface tension of water is present in at least one of the first liquid and the second liquid.
前記化合物Xが、アルコール類、ケトン類、アルデヒド類及びニトリル類からなる群から選択される少なくとも1種である、請求項1に記載の多孔体の製造方法。 The method for producing a porous body according to claim 1, wherein the compound X is at least one selected from the group consisting of alcohols, ketones, aldehydes and nitriles. 前記フッ素系溶媒が、フルオロアルコール類、ハイドロフルオロオレフィン類及びハイドロフルオロエーテル類からなる群から選択される少なくとも1種である請求項1又は2に記載の多孔体の製造方法。 The method for producing a porous body according to claim 1 or 2, wherein the fluorine-based solvent is at least one selected from the group consisting of fluoroalcohols, hydrofluoroolefins and hydrofluoroethers. 前記第一の液体が水であり、前記第二の液体が前記フッ素系溶媒と化合物Xとの混合物である請求項1〜3のいずれか1項に記載の多孔体の製造方法。 The method for producing a porous body according to any one of claims 1 to 3, wherein the first liquid is water and the second liquid is a mixture of the fluorine-based solvent and compound X. 前記第二の液体が、引火点を持たない、請求項1〜4のいずれか1項に記載の多孔体の製造方法。 The method for producing a porous body according to any one of claims 1 to 4, wherein the second liquid does not have a flash point. 前記多孔体が無機酸化物粒子である、請求項1〜3のいずれか1項に記載の多孔体の製造方法。 The method for producing a porous body according to any one of claims 1 to 3, wherein the porous body is an inorganic oxide particle. 前記無機酸化物粒子がシリカ粒子である、請求項6に記載の多孔体の製造方法。 The method for producing a porous body according to claim 6, wherein the inorganic oxide particles are silica particles. 前記多孔体が球状粒子である、請求項1〜7のいずれか1項に記載の多孔体の製造方法。 The method for producing a porous body according to any one of claims 1 to 7, wherein the porous body is spherical particles. 前記球状粒子の平均粒子径が1〜1000μmである、請求項8に記載の多孔体の製造方法。 The method for producing a porous body according to claim 8, wherein the spherical particles have an average particle size of 1 to 1000 μm.
JP2020030066A 2020-02-26 2020-02-26 Manufacturing method of porous body Active JP7426852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030066A JP7426852B2 (en) 2020-02-26 2020-02-26 Manufacturing method of porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030066A JP7426852B2 (en) 2020-02-26 2020-02-26 Manufacturing method of porous body

Publications (2)

Publication Number Publication Date
JP2021134105A true JP2021134105A (en) 2021-09-13
JP7426852B2 JP7426852B2 (en) 2024-02-02

Family

ID=77660226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030066A Active JP7426852B2 (en) 2020-02-26 2020-02-26 Manufacturing method of porous body

Country Status (1)

Country Link
JP (1) JP7426852B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120508A (en) * 1980-02-19 1981-09-21 Chiyoda Chem Eng & Constr Co Ltd Manufacture of porous inorganic oxide
JP2003020218A (en) * 2001-07-02 2003-01-24 Matsushita Electric Ind Co Ltd Method for manufacturing water-repellent dry gel, and heat insulating material using the gel
JP2015113277A (en) * 2013-12-16 2015-06-22 旭硝子株式会社 Method for manufacturing spherical silica
WO2018097106A1 (en) * 2016-11-24 2018-05-31 旭硝子株式会社 Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass
WO2018097103A1 (en) * 2016-11-24 2018-05-31 旭硝子株式会社 Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120508A (en) * 1980-02-19 1981-09-21 Chiyoda Chem Eng & Constr Co Ltd Manufacture of porous inorganic oxide
JP2003020218A (en) * 2001-07-02 2003-01-24 Matsushita Electric Ind Co Ltd Method for manufacturing water-repellent dry gel, and heat insulating material using the gel
JP2015113277A (en) * 2013-12-16 2015-06-22 旭硝子株式会社 Method for manufacturing spherical silica
WO2018097106A1 (en) * 2016-11-24 2018-05-31 旭硝子株式会社 Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass
WO2018097103A1 (en) * 2016-11-24 2018-05-31 旭硝子株式会社 Polysiloxane gel, method for producing same, thermal insulating material, and laminated glass

Also Published As

Publication number Publication date
JP7426852B2 (en) 2024-02-02

Similar Documents

Publication Publication Date Title
Li et al. Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300
US9776142B2 (en) Porous polymeric membrane with high void volume
JP5707596B2 (en) Asymmetric membrane
EP2913096B1 (en) Porous polymeric membrane with high void volume
US20150246320A1 (en) Porous polymeric membrane with high void volume
US9764292B2 (en) Porous polymeric membrane with high void volume
JP6241252B2 (en) Method for producing spherical silica
JP2012527340A (en) Thin film-containing pervaporation film
Çalhan et al. Silica filled polyphenylsulfone/polydimethylsiloxane composite membranes for pervaporation separation of biobutanol from ABE mixtures
TWI577565B (en) Vacuum membrane distillation device and method including hydrophobic porous silica aerogel composite membrane
Liu et al. Boron substituted MFI-type zeolite-coated mesh for oil-water separation
Li et al. Preparation and properties of hydrophobic poly (vinylidene fluoride)–SiO2 mixed matrix membranes for dissolved oxygen removal from water
Thongprachan et al. Preparation of macroporous carbon foam using emulsion templating method
Almansour et al. Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
Lyu et al. Hierarchical silica monolith prepared using cellulose monolith as template
JP7426852B2 (en) Manufacturing method of porous body
Wang et al. Hierarchical porous polymer beads prepared by polymerization-induced phase separation and emulsion-template in a microfluidic device
JP5035819B2 (en) Method for forming porous silica film and coating solution for forming porous silica used therefor
Canal et al. Topographical and Wettability Effects of Post‐Discharge Plasma Treatments on Macroporous Polystyrene‐Divinylbenzene Solid Foams
CN109078506A (en) Permeable membrane and preparation method thereof and water treatment facilities
JP2007063081A (en) Porous carbon membrane having regulated mesopores, and its production method
JP5062591B2 (en) Honeycomb structure
CN108211808A (en) A kind of food-grade polyvinylidene fluoride film and its manufacturing method
Chen et al. Amine-impregnated carbon aerogels with ultra-high pore volume synthesized by pH adjusting for efficient CO 2 Capture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240123

R150 Certificate of patent or registration of utility model

Ref document number: 7426852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150