WO2013031738A1 - Antifogging film and antifogging film-coated article - Google Patents

Antifogging film and antifogging film-coated article Download PDF

Info

Publication number
WO2013031738A1
WO2013031738A1 PCT/JP2012/071615 JP2012071615W WO2013031738A1 WO 2013031738 A1 WO2013031738 A1 WO 2013031738A1 JP 2012071615 W JP2012071615 W JP 2012071615W WO 2013031738 A1 WO2013031738 A1 WO 2013031738A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
antifogging
water
absorbing composite
composite film
Prior art date
Application number
PCT/JP2012/071615
Other languages
French (fr)
Japanese (ja)
Inventor
大家 和晃
神谷 和孝
寺西 豊幸
周平 村田
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2013031738A1 publication Critical patent/WO2013031738A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/02Polysilicates

Definitions

  • the present invention relates to an antifogging film and an antifogging film-coated article, and more particularly to an antifogging film formed on a hard substrate and an antifogging film-coated article having the antifogging film.
  • the antifogging film coated article in which an antifogging film is provided on a hard substrate is, for example, an antifogging mirror for bathrooms, toilets, etc., an antifogging window glass or antifogging mirror for automobiles, etc. It is used for various applications such as window glass.
  • Patent Document 1 As an antifogging film composed of a single layer film using a water-absorbing polymer compound, a coating type antifogging agent is disclosed in Patent Document 1 after applying only a polyvinyl acetal resin and then drying at room temperature to form an antifogging film. It is disclosed.
  • Patent Document 2 an antifogging layer made of a polyvinyl acetal resin having an acetalization degree of 2 to 40 mol% is provided on the surface of an article such as glass, a mirror, or a plastic film, or a water-soluble resin layer is provided on the article surface.
  • an antifogging article is disclosed in which an antifogging layer comprising a polyvinyl acetal resin having an acetalization degree of 2 to 40 mol% is provided thereon.
  • a water-absorbing composite film in which a polyvinyl acetal resin and an inorganic component are mixed for example, in Patent Document 3 and Patent Document 4, a hydrolyzate of a polyvinyl acetal resin having a degree of acetalization of 10 mol% or less and an alkylsilyl isocyanate or
  • An anti-fogging base material is disclosed in which a water-absorbing composite film in which a partial hydrolyzate is mixed, and a water-permeable protective film and water-repellent layer having a water permeability of 3 to 10 nm are laminated thereon.
  • an anti-fogging film in which a surfactant is dispersed in a film made of a water-absorbing resin for example, in Patent Document 5 and Patent Document 6, a urethane resin in which a surfactant and trialkanolamine are fixed is formed. Agents and antifogging membranes are disclosed.
  • JP-A-6-157794 Japanese Patent Laid-Open No. 6-158031 JP 2001-146585 A JP 2001-152137 A JP 60-85939 A JP 2004-269851 A
  • the water-absorbing composite film single layer cannot obtain high film hardness and wear resistance while maintaining sufficient anti-fogging properties.
  • a protective layer is required on the upper layer of the film. This is because in water-absorbing composite film monolayers, increasing the amount of alkylsilyl isocyanate added increases the proportion of the inorganic component (SiO 2 ) in the skeleton of the coating, thus improving scratch resistance and wear resistance.
  • the swelling and flexibility are lowered, the water absorption is lowered, the sufficient antifogging property cannot be maintained, the alkylsilyl isocyanate can be added only in a small amount, and the sufficient film hardness This is because no longer can be obtained.
  • a protective film having a water permeability and a water repellent layer are laminated as a protective layer, but it is necessary to increase the film thickness. As a result, the anti-fogging property is lost and the anti-fogging property, film hardness, and abrasion resistance cannot be combined in total.
  • Patent Document 5 it does not have film hardness or wear resistance that can be used for architectural or vehicle window glass or mirrors, and the surfactant is supported in the film.
  • the surface active agent flows out by wiping the poultice or repeatedly forming a water film on the surface, and the hydrophilicity is lowered in a short time.
  • the wear resistance is improved as compared with the prior art, it cannot be said that it is sufficient for architectural use or vehicle use.
  • the surfactant flows out, it is difficult to maintain excellent antifogging performance.
  • the present invention has been made under such circumstances, and has film hardness and abrasion resistance that can be used for construction, vehicles, or antifogging mirrors while maintaining sufficient antifogging properties.
  • the object of the present invention is to provide an antifogging film capable of maintaining excellent antifogging properties over a long period of time and an antifogging film-coated article having the antifogging film.
  • a water-absorbing composite film containing polyvinyl acetal resin, hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica can have sufficient film hardness and wear resistance that can be used for construction and vehicles. I found out that I can do it. However, when the film has sufficient film hardness and wear resistance, the water absorption amount of the film decreases, and after the water absorption is saturated, the surface of the film becomes cloudy. On the other hand, it has been found that by imparting hydrophilicity to the surface of the coating, after water absorption is saturated, a water film is formed on the surface of the coating, so that no clouding occurs.
  • the surfactant flows out by wiping the coating surface with a compress or by repeatedly forming a water film on the coating surface.
  • the hydrophilicity of the coating surface is reduced in a short period of time.
  • the present inventors have found that wet cloth wear resistance and repeated anti-fogging properties can be greatly improved by high-density crosslinking on a porous composite film. The present invention has been completed based on such findings.
  • the present invention is as follows.
  • [1] A water-absorbing composite film containing a polyvinyl acetal resin, a hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica, and a hydrophilic polymer brush fixed on the water-absorbing composite film.
  • Anti-fogging film [2] The antifogging film according to [1], including a primer layer between the water-absorbing composite film and the hydrophilic polymer brush.
  • the antifogging film according to [2] wherein the primer layer contains a hydrolyzate or partial hydrolyzate of ethyl silicate.
  • the water-absorbing composite film has 30 to 80 parts by mass of colloidal silica and 5 to 55 parts by mass of silica equivalent particles derived from a hydrolyzate or partial hydrolyzate of silicon alkoxide with respect to 100 parts by mass of the polyvinyl acetal resin.
  • the present invention while maintaining sufficient antifogging properties, it has film hardness and abrasion resistance that can be used for construction, vehicles, or antifogging mirrors, and has excellent antifoaming properties over a long period of time. It is possible to provide an antifogging film capable of maintaining the fogging property and an antifogging film-coated article having the antifogging film.
  • the antifogging film of the present invention comprises a water-absorbing composite film and a hydrophilic polymer brush fixed on the water-absorbing composite film.
  • a hydrophilic polymer brush fixed on the water-absorbing composite film.
  • the water-absorbing composite film contains a polyvinyl acetal resin, a hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica.
  • the polyvinyl acetal resin used in the present invention can be obtained by subjecting polyvinyl alcohol to an acetalization reaction by condensing aldehyde with polyvinyl alcohol.
  • the degree of acetalization is usually set to 2 to 40 mol%, preferably 3 to 30%. It is set to mol%, more preferably 5 to 20 mol%.
  • the degree of acetalization can be measured based on, for example, 13 C nuclear magnetic resonance spectroscopy. If the degree of acetalization is in the range of 2 to 40 mol%, a water-absorbing composite film having good water absorption and water resistance and sufficiently exhibiting antifogging properties can be formed.
  • acetalization of polyvinyl alcohol a known method such as a precipitation method using an aqueous medium in the presence of an acid catalyst or a dissolution method using a solvent such as alcohol can be employed.
  • a polyvinyl acetal resin can also be obtained by using a polyvinyl acetate resin as a raw material and performing saponification and acetalization in parallel.
  • polyvinyl alcohol those having an average degree of polymerization of 200 to 4500, preferably 500 to 4500 are generally used.
  • the average degree of polymerization is 200 or more, it is possible to synthesize polyvinyl alcohol, and when the average degree of polymerization is 4500 or less, the solution viscosity does not become excessively high, and it is practically used as an antifogging film-coated article. From the viewpoint of sex. The higher the average degree of polymerization, the better the water resistance and water absorption.
  • the saponification degree of polyvinyl alcohol is generally 75 to 99.8 mol%.
  • the degree of saponification is 75 mol% or more, the solubility during the reaction is sufficient, and if it is 99.8 mol% or less, synthesis of polyvinyl alcohol becomes possible.
  • aldehyde to be subjected to condensation reaction with polyvinyl alcohol examples include aliphatic aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, hexyl carbaldehyde, octyl carbaldehyde, decyl carbaldehyde; benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde , Other aromatic aldehydes such as alkyl-substituted benzaldehyde, chlorbenzaldehyde, and other halogen-substituted benzaldehydes; aromatic aldehydes having a substituent such as hydroxy group, alkoxy group, amino group, cyano group on the aromatic ring; naphthaldehyde And aldehydes having a condensed aromatic ring such as anthraldehyde.
  • aromatic aldehyde is preferable in that a resin having good water absorption, water resistance, and transparency can be obtained.
  • Aromatic aldehydes have strong hydrophobicity and are excellent in water resistance even at a low degree of acetalization. Therefore, many hydroxyl groups remain and water absorption is excellent.
  • the content of the polyvinyl acetal resin in the water-absorbing composite film is usually 40 to 70% by mass, preferably 40 to 60% by mass, and more preferably 40 to 50% by mass from the viewpoints of film hardness, water absorption and antifogging properties. %.
  • Silicon alkoxide The water-absorbing composite film contains a hydrolyzate or partial hydrolyzate of silicon alkoxide as an essential component.
  • Silicon alkoxides include tetra acids that can be easily hydrolyzed with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and organic acids such as p-toluenesulfonic acid, methanesulfonic acid, trichloroacetic acid, and trifluoroacetic acid to form silica.
  • Alkoxysilane is preferably used.
  • the four alkoxy groups of this tetraalkoxysilane may be the same or different, but from the viewpoint of availability, the same one is usually used.
  • the alkoxy group is preferably a lower alkoxy group having 1 to 4 carbon atoms from the viewpoint of hydrolyzability.
  • tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, tetra- Examples thereof include tert-butoxysilane.
  • One of these tetraalkoxysilanes may be used alone, or two or more thereof may be used in combination.
  • the water-absorbing composite film preferably contains the silica-converted particles in an amount of 5 to 55 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin.
  • the content of the silica-converted particles is 5 parts by mass or more, the water-absorbing composite film has good antifogging properties and high pencil hardness.
  • the preferable content is in the range of 20 to 55 parts by mass, more preferably 30 to 55 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin.
  • Colloidal silica contained in the water-absorbing composite film is SiO 2 fine particles having an average particle diameter of about 5 to 50 nm.
  • the water-absorbing composite film has a certain degree of strength and flexibility.
  • the proportion of the inorganic component in the composite film can be increased, and the addition of this colloidal silica forms fine voids in the film, which makes it easier to incorporate moisture into the film. Therefore, the hardness of the coating can be improved while maintaining sufficient antifogging properties.
  • the proportion of the inorganic component in the film can be increased by adding colloidal silica, an antifogging film having sufficient film hardness and sufficient antifogging properties that does not cause scratches on the film even when the pencil hardness is 4H or higher.
  • the average particle size of the colloidal silica is too large, the haze value of the film becomes high and the film may become cloudy. If it is too small, aggregation tends to occur and the film cannot be uniformly dispersed. Therefore, the average particle size of colloidal silica is preferably in the range of 5 to 50 nm, more preferably in the range of 8 to 20 nm.
  • the average particle size of the colloidal silica can be measured by a laser diffraction light scattering method or the like.
  • the content of colloidal silica in the water-absorbing composite film is 30 to 80 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin described above.
  • the pencil hardness of the composite film can be 4H or more, and when it is 80 parts by mass or less, the hardness of the water-absorbing composite film is improved.
  • the preferred content of colloidal silica in the water-absorbing composite film is 50 to 80 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin from the viewpoint of pencil hardness.
  • a water-absorbing composite film-forming coating solution is prepared.
  • the water-absorbing composite film-forming coating solution can be prepared by the following method. Polyvinyl acetal resin, colloidal silica, and silicon alkoxide are added to the solvent at a predetermined ratio so that the content of these components in the resulting water-absorbing composite film satisfies the above-mentioned requirements. An appropriate amount of an inorganic acid or an organic acid as a decomposition catalyst is added, and various additives are added as necessary to prepare a coating solution for forming a composite film having a solid content concentration of 3 to 20% by mass.
  • an aqueous solvent that is a mixture of an organic solvent and water is preferable.
  • a polar solvent having miscibility with water such as alcohol, cellosolve, ketone, and ether can be used.
  • alcohol solvents examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, etc .; cellosolve solvents such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and derivatives thereof; ketone solvents Are, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc .; examples of ether solvents include dioxane, tetrahydrofuran, and the like. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the water content is preferably 140 to 720 parts by mass, more preferably 400 to 600 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin.
  • a hydrolysis catalyst for the silicon alkoxide is added.
  • the hydrolysis catalyst it is preferable to use an acid catalyst, particularly an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid, or an organic acid such as trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid or paratoluenesulfonic acid.
  • the concentration of the acid catalyst is preferably in the range of 0.001 to 2 mol / kg, expressed by the molar concentration of protons when it is assumed that the protons are completely dissociated from the acid.
  • the amount of water used for the hydrolysis is preferably 4 times or more, expressed by molar ratio with respect to the total amount of silicon alkoxide.
  • additives can be blended as necessary within a range that does not impair the object of the present invention.
  • additives include glycerin, ethylene glycol, polyethylene glycol, various other surfactants, leveling agents, ultraviolet absorbers, colorants, antifoaming agents, preservatives, silica for improving water absorption performance , Inorganic fillers such as talc, clay and alumina.
  • the water-absorbing composite film-forming coating solution prepared as described above is preferably stirred at room temperature for a predetermined time to allow the silicon alkoxide to hydrolyze to some extent, and then, on the hard substrate described above at room temperature. Apply.
  • the coating method is not particularly limited, but from the aspect of productivity, for example, flow coating method, spin coating method or dip coating method, reverse coating method, flexographic printing method, other roll coating method, curtain coating method, Further, a nozzle coating method, a spray coating method, a screen printing method, or the like can be used as appropriate.
  • the coating solution After applying the coating solution on the hard substrate, it is usually dried at room temperature for 5 to 20 minutes, and then subjected to heat treatment (prebaking) at a temperature of 50 to 130 ° C. for 5 to 60 minutes.
  • the thickness of the water-absorbing composite film thus formed is usually about 2 to 10 ⁇ m, preferably 2 to 6 ⁇ m.
  • the coating skeleton has a certain degree of strength and flexibility by adjusting the heating temperature and time, such as 10 minutes if the heating temperature is 120 ° C and 30 minutes to 60 minutes if the heating temperature is 60 ° C.
  • the coating film can be cured as it is, and the performance of the coating film such as hardness, abrasion resistance, and wet cloth abrasion resistance can be improved while maintaining sufficient antifogging properties. Further, since the proportion of colloidal silica and silicon alkoxide hydrolyzed or partially hydrolyzed in the film can be increased, the film hardness and sufficient anti-fogging property that the film is not scratched even when the pencil hardness is 4H or higher are provided. It can be set as an anti-fogging film.
  • the hydrophilic polymer brush immobilized on the water-absorbing composite membrane can be synthesized by, for example, the method described in JP 2010-57745 A. That is, a monomer composition having a hydrophilic group on the surface of a base material (for example, a hard substrate) is polymerized by an atom transfer radical polymerization method (ATRP) in the presence of a polymerization initiator to form a polymer brush on the surface of the base material. It can be manufactured through a step of forming. Since the hydrophilic polymer brush has a structure in which a large number of hydrophilic groups are bonded to the main chain in a brush shape, a surface having a large number of hydrophilic groups per unit area can be obtained.
  • a base material for example, a hard substrate
  • ATRP atom transfer radical polymerization method
  • the hydrophilic group is a hydrophilic group obtained by polymerizing N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine (hereinafter referred to as CMB) as a monomer. Highly suitable.
  • the polymerization initiator is preferably an organosilane compound.
  • organosilane compounds include (11- (2-bromo-2-methyl) propionyloxy) undecyltrichlorosilane, (4- (2-bromo-2-methyl) propionyloxy) butyltrichlorosilane, (6- ( And reactive silane-containing initiators such as 2-bromo-2-methyl) propionyloxy) hexyltrichlorosilane and (8- (2-bromo-2-methyl) propionyloxy) octyltrichlorosilane.
  • the amount of the polymerization initiator is preferably 0.001 to 10 mol, more preferably 0.01 to 5 mol, per 100 mol of the monomer.
  • the polymerization of the monomer composition can be performed, for example, by immersing the base material in a mixed solution of the monomer composition, the polymerization initiator, and the organic solvent.
  • a substrate having a hydroxyl group such as a glass plate as a substrate and using an organic silane compound as a polymerization initiator
  • the hydroxyl group on the substrate surface is not sufficient, it is preferable to provide a primer layer on the substrate surface in advance before attaching the organosilane compound so that the organosilane compound can be bonded at high density.
  • organic solvent for example, alcohol, such as water, methanol, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol, ketones, such as acetone and methyl ethyl ketone, alkyl ethers, such as diethyl ether and tetrahydrofuran, benzene
  • solvents used in usual solution polymerization such as aromatics such as toluene and xylene, hydrocarbons such as n-hexane and c-hexane, and acetates such as methyl acetate and ethyl acetate. It is preferable to use an organic solvent that has been deaerated beforehand using an inert gas or the like.
  • the amount of the organic solvent used is preferably adjusted so that the concentration of the monomer composition in the solution containing the monomer composition is 10 to 80% by mass.
  • a monovalent copper salt such as copper bromide or copper chloride
  • a polyvalent base such as bipyridyl or trisaminodiethylamine
  • a free initiator such as ethyl-2-bromoisobutyrate, or the like. You may coexist.
  • the polymerization conditions such as temperature and time for polymerizing the monomer composition are appropriately selected depending on the type of the polymerizable monomer and the polymerization initiator, and are not particularly limited.
  • the polymerization of the monomer composition is inactive. Although it proceeds even at room temperature in a gas atmosphere, the smaller the amount of unreacted monomer in the resulting polymer, the better.
  • the polymerization of the monomer composition is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas.
  • the weight average molecular weight of the polymer after polymerization of the monomer composition is preferably 1,000 to 1,000,000, more preferably 5000 to 100,000, from the viewpoint of the rheological properties of the polymer, hydrophilicity, and hydrophobic balance.
  • the weight average molecular weight of the polymer is measured by gel permeation chromatography.
  • the primer layer contains, for example, a hydrolyzate or partial hydrolyzate of silicon alkoxide, or colloidal silica together with them.
  • a hydrolyzate or partial hydrolyzate of silicon alkoxide, or colloidal silica together with them.
  • those having many silanol groups on the surface and water permeability to the underlying water-absorbing composite film are preferable, and hydrolyzate or partial hydrolyzate of silicon alkoxide or colloidal silica is added thereto. Those are preferred.
  • the amount of silicon alkoxide added to the primer layer forming coating solution is preferably 0.05 to 2.0% by mass, more preferably 0.1 to 1.5% by mass in terms of silica solid content. If the amount of silicon alkoxide added is too small, a sufficient primer layer that can immobilize the polymer brush will not be formed, and if it is too large, the film thickness will be too thick and the water permeability to the water-absorbing composite film will be lost. There is a risk of cracks. By adding an acid catalyst to the coating solution, the hydrolysis of the silicon alkoxide can be promoted, and cracks in the primer layer can be suppressed. However, if the acid concentration becomes too high, handling becomes difficult and workability is reduced. .
  • a preferable addition amount is 0.1 to 4% by mass, and more preferably 0.5 to 2.0% by mass. Further, water may be added as appropriate in accordance with the hydrolysis of the silicon alkoxide, but when the primer layer is formed by drying at room temperature, it may be added without addition or in a small amount.
  • the coating solution is applied on a glass substrate or a water-absorbing composite film at room temperature.
  • the coating method is not particularly limited, but from the aspect of productivity, for example, flow coating method, spin coating method or dip coating method, reverse coating method, flexographic printing method, other roll coating method, curtain coating method, Further, a nozzle coating method, a spray coating method, a screen printing method, or the like can be used as appropriate.
  • the primer layer can be formed by drying at room temperature or drying by heating. When the coating liquid is absorbed by the water-absorbing composite film on the substrate, the primer layer is applied once and dried, and then the primer layer is applied again to the surface and dried to obtain the necessary primer layer. Can be formed on the water-absorbing composite membrane.
  • a hydrolyzed solution of ethyl silicate may be used, for example, Colcoat HAS series and Colcoat N-103X.
  • ethyl silicate hydrolyzate has a high binder property, so that a good primer layer can be formed only by adding a small amount.
  • the amount of ethyl silicate hydrolyzed solution added is preferably 0.005 to 0.5% by mass, more preferably 0.01 to 0.2% by mass, based on the primer layer forming coating solution. is there.
  • colloidal silica it is very effective to add colloidal silica to the primer layer to prevent the primer layer forming coating solution from being absorbed into the water-absorbing composite film and to improve water permeability and abrasion resistance.
  • colloidal silica By adding colloidal silica to the primer layer forming coating solution composed of the above silicon alkoxide, acid catalyst, and alcohol, the coating solution can be prevented from being absorbed into the water-absorbing composite film.
  • a primer layer capable of immobilizing the polymer brush can be formed with the coating.
  • the colloidal silica forms voids in the primer layer, which not only increases water permeability, but also forms irregularities on the surface, so that the polymer brush enters the dents to improve wear resistance and improve hydrophilicity for a long time. Will be maintained over time.
  • the average particle size of the colloidal silica is preferably in the range of 5 to 50 nm, more preferably in the range of 8 to 20 nm.
  • the amount of colloidal silica added is preferably 0.05 to 2.0% by mass, more preferably 0.1 to 1.0% by mass with respect to the primer layer forming coating solution. . If the amount of colloidal silica added is too small, the above-mentioned effects of water permeability and abrasion resistance cannot be obtained, and if too much, not only the primer layer becomes too thick and water permeability is lost, There is a risk of cracks.
  • the anti-fogging film of the present invention has a water absorption function (function to prevent water fog by adsorbing water droplets adhering to the film inside) and a hydrophilic function (function to prevent water fog from forming water drops adhering to the film).
  • a water absorption function function to prevent water fog by adsorbing water droplets adhering to the film inside
  • a hydrophilic function function to prevent water fog from forming water drops adhering to the film.
  • the antifogging film-coated article of the present invention has a hard substrate and the antifogging film of the present invention formed on the hard substrate.
  • the hard substrate used as the base material include various mirrors and a translucent hard substrate.
  • the translucent hard substrate for example, a polycarbonate substrate, a plastic substrate such as an acrylic resin substrate such as a polymethyl methacrylate substrate, or a glass substrate can be used depending on the situation, but in these, From the viewpoint of forming a water-absorbing composite film having high pencil hardness, a glass substrate is preferable.
  • the glass substrate is a plate glass commonly used for automobiles, buildings, industrial glasses, etc., so-called float glass, etc., various colored glasses such as clear, green, bronze, various functional glasses, tempered glass and the like.
  • various types of flat glass products such as multi-layer glass, flat plates and bent plates can be used.
  • the plate thickness is, for example, about 1 mm to 12 mm. Particularly, 3 mm to 10 mm is preferable for construction, and 2 mm to 5 mm is preferable for automobiles.
  • the plate thickness is usually about 2 to 8 mm, preferably 3 to 6 mm.
  • an oxidation method, a concavo-convex method, or the like may be applied to the surface on which the water-absorbing composite film is formed, if desired
  • the surface treatment can be performed.
  • the oxidation method include corona discharge treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like.
  • a processing method etc. are mentioned. These surface treatment methods are appropriately selected depending on the type of plastic substrate to be used. In general, corona discharge treatment is preferably used from the viewpoints of effects and operability.
  • the anti-fogging film-coated article of the present invention is an article in which a water-absorbing composite film having excellent anti-fogging property and high pencil hardness is provided on a hard substrate, in particular, a light-transmitting hard substrate. And antifogging mirrors for use in bathrooms, toilets, etc., antifogging window glass and antifogging mirrors for automobiles, etc., and antifogging window glass for buildings.
  • Appearance Appearance (presence of whitening and cracks) of the coating film of the obtained glass substrate with an antifogging film was visually observed and evaluated according to the following criteria.
  • Pencil hardness According to JIS K 5400 paint general test method, the surface of the film was scratched 5 times with a pencil to which a load of 1 kg (9.8 N) was applied, and the film was broken less than 2 times. The hardness was defined as pencil hardness.
  • Solmix AP-7 alcohol solvent (manufactured by Nippon Alcohol Industry)
  • -SREC KX-5 Polyvinyl acetal resin: (manufactured by Sekisui Chemical Co., Ltd., solid content 8%)
  • Snowtex OS colloidal silica (Nissan Chemical Industries, Amorphous silica 20%, particle size 8-11 nm)
  • TsOH p-toluenesulfonic acid (manufactured by Kanto Chemical Co., Inc.)
  • TEOS Tetraethoxysilane (Shin-Etsu Silicone, KBE-04),
  • ⁇ KP-341 Leveling agent (Shin-Etsu Silicone)
  • HAS-6 ethyl silicate hydrolyzate (manufactured by Colcoat)
  • N-103X ethyl silicate hydrolyzate (manufactured by Colcoat)
  • HCl hydroochloric acid
  • Example 1 The coating solution for forming a water-absorbing composite film shown in Table 1 was applied by flow coating on a washed soda-lime silicate glass substrate (100 ⁇ 100 mm) in an environment of humidity 30% and room temperature 20 ° C. After drying for about 10 minutes under the same environment, the glass substrate with a water-absorbing composite film was obtained by heating and drying for 10 minutes in a clean oven set at 120 ° C. Next, the primer layer forming coating solution 1 shown in Table 2 was applied on the formed water-absorbing composite film by the flow coating method, dried for about 5 minutes, and then again the primer forming solution was applied by the flow coating method. After applying for about 5 minutes and drying for about 5 minutes, it was heated and dried in a clean oven set at 120 ° C. for 30 minutes to form a primer layer on the water-absorbing composite film.
  • Step 1 Silane coupling treatment to substrate surface
  • 18.1 g (40 mmol) of (11- (2-bromo-2-methyl) propionyloxy) undecyltrichlorosilane (Br-PUCS) was dissolved in 150 mL of toluene to prepare a coupling solution.
  • a glass substrate with a primer layer formed on a water-absorbing composite film is placed in a sample bottle, a coupling solution is added so that the glass substrate is completely immersed, the lid is covered, and the mixture is reacted at room temperature for 18 hours. Take out, wash with toluene, and dry with nitrogen gas, and bond Br-PUCS which is a polymerization initiator on the primer layer.
  • Step 2 Polymerization of CMB on primer layer
  • CuBr copper bromide
  • CMB N-methacryloyloxyethyl-N
  • CMB N-dimethylammonium- ⁇ -N-methylcarboxybetaine
  • a glass substrate was inserted, air was expelled with argon gas, the lid was closed, and atom transfer radical polymerization (ATRP) was started. Ethyl-2-bromoisobutyrate was used as a free initiator to obtain free CMB polymer. After 6 hours, the lid is opened and the reaction is terminated by contacting (deactivating) the air and the solution. The glass substrate is taken out, washed with ethanol and water, dried with nitrogen gas, and the CMB polymer chain on the outermost surface.
  • a CMB polymer was synthesized alone without using glass with Br-PUCS attached. Specifically, 30.9 mg (0.2143 mmol) of copper bromide (CuBr), 67.0 mg (0.4286 mmol) of 2,2′-bipyridyl and 1.007 g (4.317 mmol) of CMB were placed in a sample bottle, and ethyl-2 -32 ⁇ L (0.2143 mmol) of bromoisobutyrate and 10 mL of methanol degassed by argon gas bubbling were added, air was purged with argon gas, the lid was closed, and atom transfer radical polymerization (ATRP) was started.
  • CuBr copper bromide
  • 67.0 mg (0.4286 mmol) of 2,2′-bipyridyl and 1.007 g (4.317 mmol) of CMB were placed in a sample bottle, and ethyl-2 -32 ⁇ L (0.2143 mmol) of bromois
  • the obtained CMB polymer had a weight average molecular weight Mw of 15600 and an n number (degree of polymerization) of 43.52 on average. Therefore, it is presumed that polymer chains having an n number of CMB of 43.52 are also arranged on the glass substrate surface with the antifogging film.
  • Example 2 Antifogging in the same manner as in Example 1 except that the primer layer forming coating solutions 2 to 5 (corresponding to Examples 2 to 5 respectively) shown in Table 2 were applied on the water-absorbing composite film by the flow coating method. A glass substrate with a film was obtained.
  • Example 1 In the antifogging film obtained in Example 1, no irregularities, unevenness, whitening, cracks, etc. were observed in the appearance, and a good coating film free from fogging by breath was obtained.
  • a film hardness of 6H was obtained, and when a Taber abrasion test was performed, no film peeling occurred, and the difference in haze value before and after the test was 4% or less.
  • a coating film having excellent properties could be obtained.
  • Evaluation of anti-fogging properties after the compressive wear test showed that the surface hydrophilicity was maintained even though slight exhalation caused distortion due to cloudiness and water film non-uniformity, and formed on the water-absorbing composite film. It was confirmed that the polymer brush was crosslinked by the primer layer. Moreover, peeling, a crack, and a crack were not seen in the coating-film external appearance after a test.
  • Example 2 In the antifogging film obtained in Example 2, no irregularities, unevenness, whitening, cracks, etc. were observed in the appearance, and a good coating film free from fogging by exhalation was obtained.
  • a film hardness of 6H was obtained, and when a Taber abrasion test was performed, no film peeling occurred, and the difference in haze value before and after the test was 4% or less.
  • a coating film having excellent properties could be obtained.
  • the antifogging property after the compressive wear test was evaluated, the antifogging property was maintained even though slight exhalation caused distortion due to the non-uniformity of the water film.
  • colloidal silica the antifogging wear resistance was maintained. Improved. Moreover, peeling, a crack, and a crack were not seen in the coating-film external appearance after a test.
  • the coating film had no irregularities, unevenness, whitening or cracks in its appearance, and was a good coating film that was not fogged by exhalation. was gotten. Further, when the pencil hardness of the obtained coating film was measured, a film hardness of 9H was obtained, and in the Taber abrasion test, no film peeling occurred and the difference in haze value before and after the test was 4% or less. An excellent coating film could be obtained. Furthermore, when the antifogging property after the compressive wear test was evaluated, no fogging or distortion occurred, the excellent antifogging property was maintained, and no peeling, scratches or cracks were observed in the coating film appearance.
  • Comparative Example 1 has a film hardness of about 6H pencil hardness and abrasion resistance that can withstand the Taber abrasion test, but the hydrophilicity of the coating surface is due to the surfactant dispersed in the coating, The anti-fogging performance could not be maintained because the surfactant flowed out by the abrasion test.

Abstract

The present invention provides: an antifogging film capable of maintaining excellent antifogging properties over a long period of time, the antifogging film having film hardness and abrasion resistance sufficient for use in construction and vehicles or in an antifogging mirror while maintaining adequate antifogging properties; and an antifogging film-coated article having the antifogging film. The present invention is an antifogging film comprising: a moisture-absorbing composite film containing polyvinyl acetal resin, a hydrolysate or partial hydrolysate of silicon alkoxide, and colloidal silica; and a hydrophilic polymer brush secured on the moisture-absorbing composite film. The present invention is also an antifogging film-coated article having the antifogging film.

Description

防曇膜及び防曇膜被覆物品Antifogging film and antifogging film coated article
 本発明は防曇膜及び防曇膜被覆物品に関し、さらに詳しくは、硬質基板上に形成される防曇膜、及び該防曇膜を有する防曇膜被覆物品に関する。 The present invention relates to an antifogging film and an antifogging film-coated article, and more particularly to an antifogging film formed on a hard substrate and an antifogging film-coated article having the antifogging film.
 硬質基板上に防曇膜が設けられてなる防曇膜被覆物品は、例えば、浴室用、洗面所用等の防曇鏡、自動車用等の防曇窓ガラスや防曇鏡、建築用の防曇窓ガラス等の各種の用途に用いられている。 The antifogging film coated article in which an antifogging film is provided on a hard substrate is, for example, an antifogging mirror for bathrooms, toilets, etc., an antifogging window glass or antifogging mirror for automobiles, etc. It is used for various applications such as window glass.
 ところで、吸水性高分子化合物を用いた単層膜からなる防曇膜として、特許文献1に、ポリビニルアセタール樹脂のみを塗布した後、常温で乾燥させて防曇膜とする塗布型防曇剤が開示されている。特許文献2には、ガラス、鏡、プラスチックフィルム等の物品表面に、アセタール化度2~40モル%のポリビニルアセタール樹脂からなる防曇層を設けるか、あるいは物品表面に、水溶性樹脂層が設けられ、その上にアセタール化度2~40モル%のポリビニルアセタール樹脂からなる防曇層が設けられている防曇性物品が開示されている。 By the way, as an antifogging film composed of a single layer film using a water-absorbing polymer compound, a coating type antifogging agent is disclosed in Patent Document 1 after applying only a polyvinyl acetal resin and then drying at room temperature to form an antifogging film. It is disclosed. In Patent Document 2, an antifogging layer made of a polyvinyl acetal resin having an acetalization degree of 2 to 40 mol% is provided on the surface of an article such as glass, a mirror, or a plastic film, or a water-soluble resin layer is provided on the article surface. Further, an antifogging article is disclosed in which an antifogging layer comprising a polyvinyl acetal resin having an acetalization degree of 2 to 40 mol% is provided thereon.
 一方、ポリビニルアセタール樹脂と無機成分を混在させた吸水性複合膜として、例えば、特許文献3及び特許文献4に、アセタール化度が10モル%以下のポリビニルアセタール樹脂とアルキルシリルイソシアネートの加水分解物若しくは部分加水分解物が混在されてなる吸水性複合膜と、その上層に透水性を有する膜厚3~10nmの保護膜や撥水層を積層した防曇性基材が開示されている。 On the other hand, as a water-absorbing composite film in which a polyvinyl acetal resin and an inorganic component are mixed, for example, in Patent Document 3 and Patent Document 4, a hydrolyzate of a polyvinyl acetal resin having a degree of acetalization of 10 mol% or less and an alkylsilyl isocyanate or An anti-fogging base material is disclosed in which a water-absorbing composite film in which a partial hydrolyzate is mixed, and a water-permeable protective film and water-repellent layer having a water permeability of 3 to 10 nm are laminated thereon.
 さらに、吸水性樹脂からなる被膜中に界面活性剤を分散させた防曇膜として、例えば、特許文献5及び特許文献6に、界面活性剤とトリアルカノールアミン等を固定したウレタン樹脂を形成する塗布剤および防曇性膜が開示されている。 Further, as an anti-fogging film in which a surfactant is dispersed in a film made of a water-absorbing resin, for example, in Patent Document 5 and Patent Document 6, a urethane resin in which a surfactant and trialkanolamine are fixed is formed. Agents and antifogging membranes are disclosed.
特開平6-157794号公報JP-A-6-157794 特開平6-158031号公報Japanese Patent Laid-Open No. 6-158031 特開2001-146585号公報JP 2001-146585 A 特開2001-152137号公報JP 2001-152137 A 特開昭60-85939号公報JP 60-85939 A 特開2004-269851号公報JP 2004-269851 A
 しかしながら、特許文献1及び特許文献2に記載の技術においては、乾燥した状態であっても耐擦傷性、耐摩耗性、耐湿布摩耗性が低く、吸湿時ではさらに性能が低下してしまい、日常的に被膜表面が拭かれる環境等では使用することができないという問題がある。これは下記の理由による。
 すなわち、これらは吸水性高分子化合物を用いた単層膜であり、吸水性高分子樹脂が表面に曝された状態であるため、防曇性能には優れるが吸水性高分子樹脂自体の耐擦傷性、耐摩耗性が低く、硬化剤等を添加した場合、膜の強度は上がるが吸水性は低下してしまい十分な防曇性能を発揮することができなくなるからである。
However, in the techniques described in Patent Document 1 and Patent Document 2, the abrasion resistance, abrasion resistance, and wet cloth abrasion resistance are low even in a dry state, and the performance is further deteriorated at the time of moisture absorption. In particular, there is a problem that it cannot be used in an environment where the coating surface is wiped. This is due to the following reasons.
That is, these are monolayer films using a water-absorbing polymer compound, and are in a state where the water-absorbing polymer resin is exposed to the surface. This is because when the addition of a curing agent or the like is poor, the film strength increases, but the water absorption decreases and sufficient antifogging performance cannot be exhibited.
 また、特許文献3及び特許文献4に記載の技術においては、吸水性複合膜単層では、十分な防曇性を維持したまま高い膜硬度と耐摩耗性を得ることはできず、吸水性複合膜の上層に保護層が必要となってしまう。これは、吸水性複合膜単層では、アルキルシリルイソシアネートの添加量を上げていくと、被膜の骨格に占める無機性成分(SiO2)の割合が増えるため、耐擦傷性、耐摩耗性は改善されるが、膨潤性や柔軟性は低下してしまうため吸水性が低下してしまい、十分な防曇性が維持できなくなり、アルキルシリルイソシアネートを少量しか添加することができず、十分な膜硬度が得られなくなるためである。また、膜全体の硬度、耐摩耗性を上げるために、保護層として、透水性を有する保護膜や撥水層を積層してはいるが、膜厚を厚くする必要があるため、透水性が低下してしまい、防曇性が失われてしまうことになり、トータルで十分な防曇性と膜硬度、耐摩耗性を並立させることができていないという問題がある。 In the techniques described in Patent Document 3 and Patent Document 4, the water-absorbing composite film single layer cannot obtain high film hardness and wear resistance while maintaining sufficient anti-fogging properties. A protective layer is required on the upper layer of the film. This is because in water-absorbing composite film monolayers, increasing the amount of alkylsilyl isocyanate added increases the proportion of the inorganic component (SiO 2 ) in the skeleton of the coating, thus improving scratch resistance and wear resistance. However, since the swelling and flexibility are lowered, the water absorption is lowered, the sufficient antifogging property cannot be maintained, the alkylsilyl isocyanate can be added only in a small amount, and the sufficient film hardness This is because no longer can be obtained. In addition, in order to increase the hardness and abrasion resistance of the entire film, a protective film having a water permeability and a water repellent layer are laminated as a protective layer, but it is necessary to increase the film thickness. As a result, the anti-fogging property is lost and the anti-fogging property, film hardness, and abrasion resistance cannot be combined in total.
 さらに、特許文献5に記載の技術においては、建築用や車両用の窓ガラスや鏡などで使用できる膜硬度や耐摩耗性を有しておらず、また、界面活性剤は膜中に担持されているにすぎず、湿布拭きや表面に繰り返し水膜が形成されることにより界面活性剤が流出してしまい、親水性が短時間で低下してしまう。
 特許文献6に記載の技術においても、従来に比べて耐摩耗性は改善されてはいるが、建築用や車両用では十分であるとは言えず、また、繰り返し使用することにより特許文献5と同様に界面活性剤が流出してしまうため優れた防曇性能を維持することが難しい。
Furthermore, in the technique described in Patent Document 5, it does not have film hardness or wear resistance that can be used for architectural or vehicle window glass or mirrors, and the surfactant is supported in the film. However, the surface active agent flows out by wiping the poultice or repeatedly forming a water film on the surface, and the hydrophilicity is lowered in a short time.
Even in the technique described in Patent Document 6, although the wear resistance is improved as compared with the prior art, it cannot be said that it is sufficient for architectural use or vehicle use. Similarly, since the surfactant flows out, it is difficult to maintain excellent antifogging performance.
 本発明は、このような状況下になされたものであり、十分な防曇性を維持させたまま、建築用や車両用、又は防曇鏡で使用可能な膜硬度と耐摩耗性を有しており、長期に渡って優れた防曇性を維持することのできる防曇膜、及び当該防曇膜を有する防曇膜被覆物品を提供することを目的とするものである。 The present invention has been made under such circumstances, and has film hardness and abrasion resistance that can be used for construction, vehicles, or antifogging mirrors while maintaining sufficient antifogging properties. The object of the present invention is to provide an antifogging film capable of maintaining excellent antifogging properties over a long period of time and an antifogging film-coated article having the antifogging film.
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
 まず、ポリビニルアセタール樹脂、シリコンアルコキシドの加水分解物若しくは部分加水分解物、コロイダルシリカが混在した吸水性複合膜は、建築用や車両用で使用できる十分な膜硬度と耐摩耗性を持たせることができることを見出した。しかし、被膜に十分な膜硬度と耐摩耗性を持たせた場合、被膜の吸水量は低下してしまい、吸水が飽和した後は被膜表面に曇りが発生してしまうという問題が発生した。これに対し、被膜表面に親水性を持たせることにより、吸水が飽和した後は被膜表面に水膜が形成されるため曇りが発生しなくなることを見出した。
 ここで、親水性を持たせる方法として、被膜中に界面活性剤を分散させたものでは、被膜表面を湿布で拭きあげる、あるいは被膜表面に繰り返し水膜が形成されることにより界面活性剤が流出してしまい、被膜表面の親水性が短期間で低下してしまう。
 長期に渡って被膜表面の親水性を維持させるためには、親水材料を被膜表面や内部に化学的に結合させる必要があり、構造中に架橋基と、多くの親水基を有するポリマーブラシを吸水性複合膜上に高密度に架橋させることにより、耐湿布摩耗性、繰り返し防曇性を大きく改善させることができることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
First, a water-absorbing composite film containing polyvinyl acetal resin, hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica can have sufficient film hardness and wear resistance that can be used for construction and vehicles. I found out that I can do it. However, when the film has sufficient film hardness and wear resistance, the water absorption amount of the film decreases, and after the water absorption is saturated, the surface of the film becomes cloudy. On the other hand, it has been found that by imparting hydrophilicity to the surface of the coating, after water absorption is saturated, a water film is formed on the surface of the coating, so that no clouding occurs.
Here, as a method for imparting hydrophilicity, in the case where a surfactant is dispersed in the coating, the surfactant flows out by wiping the coating surface with a compress or by repeatedly forming a water film on the coating surface. As a result, the hydrophilicity of the coating surface is reduced in a short period of time.
In order to maintain the hydrophilicity of the coating surface over a long period of time, it is necessary to chemically bond a hydrophilic material to the coating surface and inside, and to absorb the polymer brush having a crosslinking group and many hydrophilic groups in the structure. The present inventors have found that wet cloth wear resistance and repeated anti-fogging properties can be greatly improved by high-density crosslinking on a porous composite film.
The present invention has been completed based on such findings.
 すなわち、本発明は下記の通りである。
[1] ポリビニルアセタール樹脂、シリコンアルコキシドの加水分解物若しくは部分加水分解物、及びコロイダルシリカを含む吸水性複合膜と、該吸水性複合膜上に固定化されてなる親水性ポリマーブラシと、を含む防曇膜。
[2] 前記吸水性複合膜と親水性ポリマーブラシとの間に、プライマー層を含む[1]に記載の防曇膜。
[3] 前記プライマー層が、エチルシリケートの加水分解物若しくは部分加水分解物を含む[2]に記載の防曇膜。
[4] 前記プライマー層が、シリコンアルコキシドの加水分解物若しくは部分加水分解物を含む[2]に記載の防曇膜。
[5] 前記プライマー層が、さらにコロイダルシリカを含む[3]又は[4]に記載の防曇膜。
[6] 前記吸水性複合膜が、ポリビニルアセタール樹脂100質量部に対して、コロイダルシリカ30~80質量部、及びシリコンアルコキシドの加水分解物若しくは部分加水分解物由来のシリカ換算粒子を5~55質量部の割合で含む[1]~[5]のいずれかに記載の防曇膜。
[7] 硬質基板と、該硬質基板上に形成されてなる[1]~[6]のいずれかに記載の防曇膜とを有する防曇膜被覆物品。
[8] 前記硬質基板が、鏡又は透光性硬質基板である[7]に記載の防曇膜被覆物品。
That is, the present invention is as follows.
[1] A water-absorbing composite film containing a polyvinyl acetal resin, a hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica, and a hydrophilic polymer brush fixed on the water-absorbing composite film. Anti-fogging film.
[2] The antifogging film according to [1], including a primer layer between the water-absorbing composite film and the hydrophilic polymer brush.
[3] The antifogging film according to [2], wherein the primer layer contains a hydrolyzate or partial hydrolyzate of ethyl silicate.
[4] The antifogging film according to [2], wherein the primer layer contains a hydrolyzate or partial hydrolyzate of silicon alkoxide.
[5] The antifogging film according to [3] or [4], wherein the primer layer further contains colloidal silica.
[6] The water-absorbing composite film has 30 to 80 parts by mass of colloidal silica and 5 to 55 parts by mass of silica equivalent particles derived from a hydrolyzate or partial hydrolyzate of silicon alkoxide with respect to 100 parts by mass of the polyvinyl acetal resin. The antifogging film according to any one of [1] to [5], which is contained in a proportion of parts.
[7] An antifogging film-coated article having a hard substrate and the antifogging film according to any one of [1] to [6] formed on the hard substrate.
[8] The antifogging film-coated article according to [7], wherein the hard substrate is a mirror or a translucent hard substrate.
 本発明によれば、十分な防曇性を維持させたまま、建築用や車両用、又は防曇鏡で使用可能な膜硬度と耐摩耗性を有しており、長期に渡って優れた防曇性を維持することのできる防曇膜、及び当該防曇膜を有する防曇膜被覆物品を提供することができる。 According to the present invention, while maintaining sufficient antifogging properties, it has film hardness and abrasion resistance that can be used for construction, vehicles, or antifogging mirrors, and has excellent antifoaming properties over a long period of time. It is possible to provide an antifogging film capable of maintaining the fogging property and an antifogging film-coated article having the antifogging film.
[1]防曇膜
 本発明の防曇膜は、吸水性複合膜と該吸水性複合膜上に固定化されてなる親水性ポリマーブラシとを含む。以下、各膜について詳説する。
[1] Antifogging film The antifogging film of the present invention comprises a water-absorbing composite film and a hydrophilic polymer brush fixed on the water-absorbing composite film. Hereinafter, each film will be described in detail.
(1)吸水性複合膜
 吸水性複合膜は、ポリビニルアセタール樹脂、シリコンアルコキシドの加水分解物若しくは部分加水分解物、及びコロイダルシリカを含むものである。
(1) Water-absorbing composite film The water-absorbing composite film contains a polyvinyl acetal resin, a hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica.
(ポリビニルアセタール樹脂)
 本発明で用いるポリビニルアセタール樹脂は、ポリビニルアルコールにアルデヒドを縮合反応させてアセタール化することにより得ることができるが、そのアセタール化度は、通常2~40モル%に設定され、好ましくは3~30モル%、さらに好ましくは5~20モル%に設定される。このアセタール化度は、例えば、13C核磁気共鳴スペクトル法等に基づいて測定することができる。
 該アセタール化度が2~40モル%の範囲にあれば吸水性及び耐水性が良好で、防曇性を充分に発揮できる吸水性複合膜を形成することができる。また、ポリビニルアルコールのアセタール化は、酸触媒の存在下で水媒体を用いる沈澱法やアルコール等の溶媒を用いる溶解法等公知の方法を採用することができる。なお、原料としてポリ酢酸ビニル樹脂を用い、ケン化とアセタール化とを並行的に行ってポリビニルアセタール樹脂を得ることもできる。
(Polyvinyl acetal resin)
The polyvinyl acetal resin used in the present invention can be obtained by subjecting polyvinyl alcohol to an acetalization reaction by condensing aldehyde with polyvinyl alcohol. The degree of acetalization is usually set to 2 to 40 mol%, preferably 3 to 30%. It is set to mol%, more preferably 5 to 20 mol%. The degree of acetalization can be measured based on, for example, 13 C nuclear magnetic resonance spectroscopy.
If the degree of acetalization is in the range of 2 to 40 mol%, a water-absorbing composite film having good water absorption and water resistance and sufficiently exhibiting antifogging properties can be formed. For acetalization of polyvinyl alcohol, a known method such as a precipitation method using an aqueous medium in the presence of an acid catalyst or a dissolution method using a solvent such as alcohol can be employed. A polyvinyl acetal resin can also be obtained by using a polyvinyl acetate resin as a raw material and performing saponification and acetalization in parallel.
 ポリビニルアルコールとしては、一般に平均重合度が200~4500、好ましくは500~4500のものが用いられる。平均重合度が200以上であると、ポリビニルアルコールの合成が可能であり、平均重合度が4500以下であると、溶液粘度が高くなり過ぎることがなく、防曇性被膜被覆物品としての用途における実用性の点から好適である。なお、この平均重合度は高い方が耐水性及び吸水性が良好となる。
 また、ポリビニルアルコールのケン化度は、一般に75~99.8モル%のものが用いられる。ケン化度が75モル%以上であると、反応の際の溶解性が充分となり、99.8モル%以下であれば、ポリビニルアルコールの合成が可能となる。なお、ケン化度は低い方が吸水性は良好となる。
As the polyvinyl alcohol, those having an average degree of polymerization of 200 to 4500, preferably 500 to 4500 are generally used. When the average degree of polymerization is 200 or more, it is possible to synthesize polyvinyl alcohol, and when the average degree of polymerization is 4500 or less, the solution viscosity does not become excessively high, and it is practically used as an antifogging film-coated article. From the viewpoint of sex. The higher the average degree of polymerization, the better the water resistance and water absorption.
The saponification degree of polyvinyl alcohol is generally 75 to 99.8 mol%. If the degree of saponification is 75 mol% or more, the solubility during the reaction is sufficient, and if it is 99.8 mol% or less, synthesis of polyvinyl alcohol becomes possible. The lower the saponification degree, the better the water absorption.
 ポリビニルアルコールに縮合反応させるアルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、ヘキシルカルバルデヒド、オクチルカルバルデヒド、デシルカルバルデヒド等の脂肪族アルデヒド;ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、その他のアルキル置換ベンズアルデヒド、クロルベンズアルデヒド、その他のハロゲン置換ベンズアルデヒド等の芳香族アルデヒド;芳香族環にヒドロキシ基、アルコキシ基、アミノ基、シアノ基等の置換基を持った芳香族系アルデヒド;ナフトアルデヒド、アントラアルデヒド等の縮合芳香環を持ったアルデヒド等が挙げられる。
 特に、吸水性、耐水性、透明性の良好な樹脂が得られる点で芳香族アルデヒドが好ましい。芳香族アルデヒドは、疎水性が強いため低アセタール化度でも耐水性に優れており、また、そのために水酸基が多く残存し、吸水性にも優れている。
Examples of the aldehyde to be subjected to condensation reaction with polyvinyl alcohol include aliphatic aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, hexyl carbaldehyde, octyl carbaldehyde, decyl carbaldehyde; benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde , Other aromatic aldehydes such as alkyl-substituted benzaldehyde, chlorbenzaldehyde, and other halogen-substituted benzaldehydes; aromatic aldehydes having a substituent such as hydroxy group, alkoxy group, amino group, cyano group on the aromatic ring; naphthaldehyde And aldehydes having a condensed aromatic ring such as anthraldehyde.
In particular, an aromatic aldehyde is preferable in that a resin having good water absorption, water resistance, and transparency can be obtained. Aromatic aldehydes have strong hydrophobicity and are excellent in water resistance even at a low degree of acetalization. Therefore, many hydroxyl groups remain and water absorption is excellent.
 当該吸水性複合膜における前記ポリビニルアセタール樹脂の含有量は、膜硬度、吸水性及び防曇性の観点から、通常40~70質量%、好ましくは40~60質量%、より好ましくは40~50質量%である。 The content of the polyvinyl acetal resin in the water-absorbing composite film is usually 40 to 70% by mass, preferably 40 to 60% by mass, and more preferably 40 to 50% by mass from the viewpoints of film hardness, water absorption and antifogging properties. %.
(シリコンアルコキシド)
 吸水性複合膜には、シリコンアルコキシドの加水分解物又は部分加水分解物を必須成分として含有する。
 シリコンアルコキシドとしては、塩酸、硫酸、硝酸等の無機酸や、p-トルエンスルホン酸、メタンスルホン酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸で容易に加水分解して、シリカを形成し得るテトラアルコキシシランが好ましく用いられる。このテトラアルコキシシランの4つのアルコキシ基は、たがいに同一であっても、異なっていてもよいが、入手性の観点から、通常同一のものが用いられる。また、該アルコキシ基としては、加水分解性の観点から、炭素数1~4の低級アルコキシ基であるものが好ましい。
 このようなテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン等を例示することができる。これらのテトラアルコキシシランは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
(Silicon alkoxide)
The water-absorbing composite film contains a hydrolyzate or partial hydrolyzate of silicon alkoxide as an essential component.
Silicon alkoxides include tetra acids that can be easily hydrolyzed with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and organic acids such as p-toluenesulfonic acid, methanesulfonic acid, trichloroacetic acid, and trifluoroacetic acid to form silica. Alkoxysilane is preferably used. The four alkoxy groups of this tetraalkoxysilane may be the same or different, but from the viewpoint of availability, the same one is usually used. In addition, the alkoxy group is preferably a lower alkoxy group having 1 to 4 carbon atoms from the viewpoint of hydrolyzability.
Such tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, tetra- Examples thereof include tert-butoxysilane. One of these tetraalkoxysilanes may be used alone, or two or more thereof may be used in combination.
 本発明においては、シリコンアルコキシド1モルから、SiO21モルが形成するものとし、シリコンアルコキシドの使用量から、シリコンアルコキシドの加水分解物又は部分加水分解物由来のシリカ換算粒子量を算出し、当該吸水性複合膜中に、前述したポリビニルアセタール樹脂100質量部に対し、上記シリカ換算粒子を5~55質量部の割合で含有することが好ましい。該シリカ換算粒子の含有量が5質量部以上であると、当該吸水性複合膜は、良好な防曇性を有すると共に、高い鉛筆硬度を有する。一方、該含有量が55質量部以下であると、当該複合膜表面にシルキングが発生することがなく、平滑な被膜面が得られる。以上の観点から、好ましい含有量は、ポリビニルアセタール樹脂100質量部に対して、20~55質量部、より好ましくは30~55質量部の範囲である。 In the present invention, 1 mol of SiO 2 is formed from 1 mol of silicon alkoxide, and the silica equivalent particle amount derived from the hydrolyzate or partial hydrolyzate of silicon alkoxide is calculated from the amount of silicon alkoxide used. The water-absorbing composite film preferably contains the silica-converted particles in an amount of 5 to 55 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin. When the content of the silica-converted particles is 5 parts by mass or more, the water-absorbing composite film has good antifogging properties and high pencil hardness. On the other hand, when the content is 55 parts by mass or less, silking does not occur on the surface of the composite film, and a smooth coating surface is obtained. From the above viewpoint, the preferable content is in the range of 20 to 55 parts by mass, more preferably 30 to 55 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin.
(コロイダルシリカ)
 吸水性複合膜に含まれるコロイダルシリカは、平均粒径が5~50nm程度のSiO2微粒子であって、このコロイダルシリカを含有することにより、当該吸水性複合膜は、ある程度の強度と柔軟性を有すると共に、該複合膜中に占める無機成分の割合を増やすことができ、また、このコロイダルシリカを添加することで膜中に微細な空隙が形成されるため、被膜中に水分を取り込みやすくなることから、十分な防曇性を維持したまま被膜の硬度を改善することができる。
 また、コロイダルシリカを添加することで膜中に占める無機成分の割合を増やすことができるため、鉛筆硬度4H以上でも被膜にキズが発生しない膜硬度と十分な防曇性をもった防曇膜を提供することができ、上層に保護層を積層する必要がなくなる。
 コロイダルシリカの平均粒径は、大きすぎると膜のヘーズ値が高くなって、該膜が白濁することがあり、また、小さすぎると凝集が起こりやすくなり、均一に分散させることができなくなる。したがって、コロイダルシリカの平均粒径は、5~50nmの範囲が好ましく、8~20nmの範囲がより好ましい。
 なお、上記コロイダルシリカの平均粒径は、レーザ回折光散乱法等により、測定することができる。
(Colloidal silica)
Colloidal silica contained in the water-absorbing composite film is SiO 2 fine particles having an average particle diameter of about 5 to 50 nm. By containing this colloidal silica, the water-absorbing composite film has a certain degree of strength and flexibility. In addition, the proportion of the inorganic component in the composite film can be increased, and the addition of this colloidal silica forms fine voids in the film, which makes it easier to incorporate moisture into the film. Therefore, the hardness of the coating can be improved while maintaining sufficient antifogging properties.
In addition, since the proportion of the inorganic component in the film can be increased by adding colloidal silica, an antifogging film having sufficient film hardness and sufficient antifogging properties that does not cause scratches on the film even when the pencil hardness is 4H or higher. This eliminates the need for a protective layer on the upper layer.
If the average particle size of the colloidal silica is too large, the haze value of the film becomes high and the film may become cloudy. If it is too small, aggregation tends to occur and the film cannot be uniformly dispersed. Therefore, the average particle size of colloidal silica is preferably in the range of 5 to 50 nm, more preferably in the range of 8 to 20 nm.
The average particle size of the colloidal silica can be measured by a laser diffraction light scattering method or the like.
 吸水性複合膜におけるコロイダルシリカの含有量は、前述したポリビニルアセタール樹脂100質量部に対して30~80質量部である。このコロイダルシリカの含有量が30質量部以上であると、該複合膜の鉛筆硬度を4H以上とすることができ、一方、80質量部以下であると、当該吸水性複合膜の硬度が改善されるとともに、後述のプリベーク処理において吸水性が低下したり、防曇性が低下することがない。
 さらに、当該吸水性複合膜におけるコロイダルシリカの好ましい含有量は、鉛筆硬度の観点から、ポリビニルアセタール樹脂100質量部に対して、50~80質量部である。
The content of colloidal silica in the water-absorbing composite film is 30 to 80 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin described above. When the colloidal silica content is 30 parts by mass or more, the pencil hardness of the composite film can be 4H or more, and when it is 80 parts by mass or less, the hardness of the water-absorbing composite film is improved. In addition, in the pre-baking process described later, the water absorption is not lowered and the antifogging property is not lowered.
Furthermore, the preferred content of colloidal silica in the water-absorbing composite film is 50 to 80 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin from the viewpoint of pencil hardness.
 例えば、硬質基板上に吸水性複合膜を形成するには、まず吸水性複合膜形成用塗工液を調製する。 For example, in order to form a water-absorbing composite film on a hard substrate, first, a water-absorbing composite film-forming coating solution is prepared.
 吸水性複合膜形成用塗工液は、以下に示す方法により、調製することができる。
 溶媒中に、ポリビニルアセタール樹脂、コロイダルシリカ及びシリコンアルコキシドを、得られる吸水性複合膜中のこれら成分の含有量が前述した要件を満たすように、それぞれ所定の割合で加えると共に、前記シリコンアルコキシドの加水分解触媒である無機酸や有機酸を適宜量加え、さらに必要に応じて各種添加剤を加えて、固形分濃度3~20質量%の複合膜形成用塗工液を調製する。
The water-absorbing composite film-forming coating solution can be prepared by the following method.
Polyvinyl acetal resin, colloidal silica, and silicon alkoxide are added to the solvent at a predetermined ratio so that the content of these components in the resulting water-absorbing composite film satisfies the above-mentioned requirements. An appropriate amount of an inorganic acid or an organic acid as a decomposition catalyst is added, and various additives are added as necessary to prepare a coating solution for forming a composite film having a solid content concentration of 3 to 20% by mass.
 当該塗工液における溶媒としては、有機溶媒と水との混合物である水系溶媒が好ましい。
 前記有機溶媒としては、アルコール系、セロソルブ系、ケトン系、エーテル系等の水との混和性を有する極性溶媒を用いることができる。
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール等;セロソルブ系溶媒としては、例えばメチルセロソルブ、エチルセロソルブ、ブチルセロソルブ及びそれらの誘導体等;ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等;エーテル系溶媒としては、例えばジオキサン、テトラヒドロフラン等を挙げることができる。
 これらの有機溶媒は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、水の含有量は、ポリビニルアセタール樹脂100質量部に対して、140~720質量部が好ましく、400~600質量部がより好ましい。
As the solvent in the coating solution, an aqueous solvent that is a mixture of an organic solvent and water is preferable.
As the organic solvent, a polar solvent having miscibility with water such as alcohol, cellosolve, ketone, and ether can be used.
Examples of alcohol solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, etc .; cellosolve solvents such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and derivatives thereof; ketone solvents Are, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc .; examples of ether solvents include dioxane, tetrahydrofuran, and the like.
These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more types.
The water content is preferably 140 to 720 parts by mass, more preferably 400 to 600 parts by mass with respect to 100 parts by mass of the polyvinyl acetal resin.
 当該塗工液においては、シリコンアルコキシドの加水分解物又は部分加水分解物を含有させるために、該シリコンアルコキシドの加水分解触媒が加えられる。
 この加水分解触媒としては、酸触媒、特に塩酸、硝酸、硫酸等の無機酸、トリクロロ酢酸、トリフルオロ酢酸、メタンスルホン酸、パラトルエンスルホン酸等の有機酸を用いることが好ましい。
 酸触媒の濃度は、酸からプロトンが完全に解離したと仮定したときのプロトンのモル濃度により表示して、0.001~2mo1/kgの範囲とすることが好ましい。
 また、この加水分解に用いる水の量は、シリコンアルコキシドの総量に対し、モル比により表示して、4倍以上であることが望ましい。
In the coating solution, in order to contain a hydrolyzate or partial hydrolyzate of silicon alkoxide, a hydrolysis catalyst for the silicon alkoxide is added.
As the hydrolysis catalyst, it is preferable to use an acid catalyst, particularly an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid, or an organic acid such as trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid or paratoluenesulfonic acid.
The concentration of the acid catalyst is preferably in the range of 0.001 to 2 mol / kg, expressed by the molar concentration of protons when it is assumed that the protons are completely dissociated from the acid.
The amount of water used for the hydrolysis is preferably 4 times or more, expressed by molar ratio with respect to the total amount of silicon alkoxide.
 当該塗工液には、本発明の目的が損なわれない範囲で必要に応じ、公知の各種添加剤を配合することができる。このような添加剤としては、吸水性能を改善するためのグリセリン、エチレングリコール、ポリエチレングリコール、その他各種の界面活性剤、レベリング剤、紫外線吸収剤、着色剤、消泡剤、防腐剤、また、シリカ、タルク、クレー、アルミナ等の無機充填剤等が挙げられる。 In the coating solution, various known additives can be blended as necessary within a range that does not impair the object of the present invention. Such additives include glycerin, ethylene glycol, polyethylene glycol, various other surfactants, leveling agents, ultraviolet absorbers, colorants, antifoaming agents, preservatives, silica for improving water absorption performance , Inorganic fillers such as talc, clay and alumina.
 上記のようにして調製された吸水性複合膜形成用塗工液を、好ましくは室温で所定時間撹拌することにより、シリコンアルコキシドの加水分解をある程度進行させたのち、前述した硬質基板上に室温で塗布する。
 塗布法としては、特に限定されないが、生産性等の面からは、例えば、フローコート法、スピンコート法あるいはディップコート法、リバースコート法、フレキソ印刷法、その他のロールコート法、カーテンコート法、さらにはノズルコート法、スプレーコ-ト法、スクリーン印刷法等を適宜使用することができる。
The water-absorbing composite film-forming coating solution prepared as described above is preferably stirred at room temperature for a predetermined time to allow the silicon alkoxide to hydrolyze to some extent, and then, on the hard substrate described above at room temperature. Apply.
The coating method is not particularly limited, but from the aspect of productivity, for example, flow coating method, spin coating method or dip coating method, reverse coating method, flexographic printing method, other roll coating method, curtain coating method, Further, a nozzle coating method, a spray coating method, a screen printing method, or the like can be used as appropriate.
 このようにして、硬質基板上に当該塗工液を塗布したのち、通常室温にて5~20分間乾燥後、50~130℃の温度にて5~60分間、加熱処理(プリベーク)を行う。このようにして形成された吸水性複合膜の厚さは、通常2~10μm程度、好ましくは2~6μmである。 Thus, after applying the coating solution on the hard substrate, it is usually dried at room temperature for 5 to 20 minutes, and then subjected to heat treatment (prebaking) at a temperature of 50 to 130 ° C. for 5 to 60 minutes. The thickness of the water-absorbing composite film thus formed is usually about 2 to 10 μm, preferably 2 to 6 μm.
 なお、ポリビニルアセタール樹脂に対する無機成分の割合を増やした場合、120℃で30分等、高温で長時間加熱してしまうと被膜の硬化が進んでしまい、ある程度の膜硬度と耐摩耗性は得られるが、十分な防曇性能は得られなくなってしまうことがある。そこで、加熱温度が120℃であれば10分、加熱温度が60℃であれば30分以上60分以内等、加熱温度と時間を調整することで被膜の骨格にある程度の強度と柔軟性を持たせたまま被膜を硬化させることができ、十分な防曇性を維持したまま被膜の硬度および耐摩耗性、耐湿布摩耗性等の性能を改善することができる。
 さらに、コロイダルシリカ、シリコンアルコキシドの加水分解若しくは部分加水分解物の膜中に占める割合を増やすことができるため、鉛筆硬度4H以上でも被膜にキズが発生しない膜硬度と十分な防曇性をもった防曇膜とすることができる。
In addition, when the ratio of the inorganic component with respect to polyvinyl acetal resin is increased, if it heats for a long time at high temperature, such as 120 degreeC for 30 minutes, hardening of a film will progress and some film hardness and abrasion resistance will be obtained. However, sufficient antifogging performance may not be obtained. Therefore, the coating skeleton has a certain degree of strength and flexibility by adjusting the heating temperature and time, such as 10 minutes if the heating temperature is 120 ° C and 30 minutes to 60 minutes if the heating temperature is 60 ° C. The coating film can be cured as it is, and the performance of the coating film such as hardness, abrasion resistance, and wet cloth abrasion resistance can be improved while maintaining sufficient antifogging properties.
Further, since the proportion of colloidal silica and silicon alkoxide hydrolyzed or partially hydrolyzed in the film can be increased, the film hardness and sufficient anti-fogging property that the film is not scratched even when the pencil hardness is 4H or higher are provided. It can be set as an anti-fogging film.
(2)親水性ポリマーブラシ
 吸水性複合膜上に固定化される親水性ポリマーブラシは、例えば、特開2010-57745号公報に記載の方法で合成することができる。すなわち、基材(例えば、硬質基板)の表面で、親水基を有するモノマー組成物を、重合開始剤の存在下で、原子移動ラジカル重合法(ATRP)により重合させて、基材表面にポリマーブラシを形成させる工程を経て、作製することができる。親水性ポリマーブラシは、主鎖に親水性基がブラシ状に多数結合した構造を有しているため、単位面積当たりの親水基が非常に多い表面を得ることができる。そのような表面は、非常に親水性が高いため、吸着した水が液滴となることはなく、膜状に濡れ広がるため、曇りを防止することができる。
 なお、親水性基は、N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン(以下、CMBという)をモノマーとして重合させることによって得られた親水基が、親水性が高く好適である。
(2) Hydrophilic polymer brush The hydrophilic polymer brush immobilized on the water-absorbing composite membrane can be synthesized by, for example, the method described in JP 2010-57745 A. That is, a monomer composition having a hydrophilic group on the surface of a base material (for example, a hard substrate) is polymerized by an atom transfer radical polymerization method (ATRP) in the presence of a polymerization initiator to form a polymer brush on the surface of the base material. It can be manufactured through a step of forming. Since the hydrophilic polymer brush has a structure in which a large number of hydrophilic groups are bonded to the main chain in a brush shape, a surface having a large number of hydrophilic groups per unit area can be obtained. Since such a surface is very hydrophilic, the adsorbed water does not form droplets and spreads in the form of a film, thus preventing fogging.
The hydrophilic group is a hydrophilic group obtained by polymerizing N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (hereinafter referred to as CMB) as a monomer. Highly suitable.
 重合開始剤としては有機シラン系化合物であることが好ましい。有機シラン系化合物としては、(11-(2-ブロモ-2-メチル)プロピオニルオキシ)ウンデシルトリクロロシラン、(4-(2-ブロモ-2-メチル)プロピオニルオキシ)ブチルトリクロロシラン、(6-(2-ブロモ-2-メチル)プロピオニルオキシ)ヘキシルトリクロロシラン、(8-(2-ブロモ-2-メチル)プロピオニルオキシ)オクチルトリクロロシラン等の反応性シラン含有開始剤が挙げられる。 The polymerization initiator is preferably an organosilane compound. Examples of organosilane compounds include (11- (2-bromo-2-methyl) propionyloxy) undecyltrichlorosilane, (4- (2-bromo-2-methyl) propionyloxy) butyltrichlorosilane, (6- ( And reactive silane-containing initiators such as 2-bromo-2-methyl) propionyloxy) hexyltrichlorosilane and (8- (2-bromo-2-methyl) propionyloxy) octyltrichlorosilane.
 重合開始剤の量は、モノマー100モルに対して、0.001~10モルが好ましく、0.01~5モルがより好ましい。 The amount of the polymerization initiator is preferably 0.001 to 10 mol, more preferably 0.01 to 5 mol, per 100 mol of the monomer.
 モノマー組成物の重合は、例えば、基材を、モノマー組成物、重合開始剤、及び有機溶剤の混合液中に浸漬させて、行うことができる。基材としてガラス板等の水酸基を有する基材を、重合開始剤として有機シラン系化合物を用いる場合は、予め、基材表面にシランカップリング処理を施し、有機シラン系化合物を結合させることが好ましい。基材表面の水酸基が十分でない場合には、有機シラン系化合物を付着させる前に、あらかじめ基材表面にプライマー層を設けておくと、有機シラン系化合物を高密度に結合させることができ好ましい。 The polymerization of the monomer composition can be performed, for example, by immersing the base material in a mixed solution of the monomer composition, the polymerization initiator, and the organic solvent. When using a substrate having a hydroxyl group such as a glass plate as a substrate and using an organic silane compound as a polymerization initiator, it is preferable to apply a silane coupling treatment to the substrate surface in advance to bond the organic silane compound. . When the hydroxyl group on the substrate surface is not sufficient, it is preferable to provide a primer layer on the substrate surface in advance before attaching the organosilane compound so that the organosilane compound can be bonded at high density.
 有機溶剤としては、特に限定されないが、例えば、水やメタノール、エタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のアルキルエーテル類、ベンゼン、トルエン、キシレン等の芳香族類、n-ヘキサン、c-ヘキサン等の炭化水素類、酢酸メチル、酢酸エチル等の酢酸エステル類等通常の溶液重合に用いられる溶剤が挙げられる。有機溶剤は、予め不活性ガス等を用いて脱気したものを用いることが好ましい。 Although it does not specifically limit as an organic solvent, For example, alcohol, such as water, methanol, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol, ketones, such as acetone and methyl ethyl ketone, alkyl ethers, such as diethyl ether and tetrahydrofuran, benzene And solvents used in usual solution polymerization, such as aromatics such as toluene and xylene, hydrocarbons such as n-hexane and c-hexane, and acetates such as methyl acetate and ethyl acetate. It is preferable to use an organic solvent that has been deaerated beforehand using an inert gas or the like.
 有機溶剤の使用量は、モノマー組成物を含む溶液中のモノマー組成物の濃度が、10~80質量%となるように調整することが好ましい。 The amount of the organic solvent used is preferably adjusted so that the concentration of the monomer composition in the solution containing the monomer composition is 10 to 80% by mass.
 さらに、重合の際には、臭化銅、塩化銅等の1価の銅の塩、ビピリジル、トリスアミノジエチルアミン等の多価塩基、エチル-2-ブロモイソブチレート等の遊離の開始剤等を共存させてもよい。 Furthermore, during polymerization, a monovalent copper salt such as copper bromide or copper chloride, a polyvalent base such as bipyridyl or trisaminodiethylamine, a free initiator such as ethyl-2-bromoisobutyrate, or the like. You may coexist.
 モノマー組成物を重合させる際の、温度、時間等の重合条件は、重合性モノマーや重合開始剤の種類によって適宜選択されるものであり、特に限定されず、モノマー組成物の重合は、不活性ガス雰囲気下、常温でも進行するが、得られるポリマー中の未反応モノマーの残存量は少量であるほど好ましい。モノマー組成物の重合は、窒素ガス、アルゴンガス等の不活性ガスの雰囲気中で行うことが好ましい。 The polymerization conditions such as temperature and time for polymerizing the monomer composition are appropriately selected depending on the type of the polymerizable monomer and the polymerization initiator, and are not particularly limited. The polymerization of the monomer composition is inactive. Although it proceeds even at room temperature in a gas atmosphere, the smaller the amount of unreacted monomer in the resulting polymer, the better. The polymerization of the monomer composition is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas.
 重合反応の終了や反応系内における未反応モノマーの有無は、ガスクロマトグラフィー等の一般的な分析方法にて確認することができる。 The completion of the polymerization reaction and the presence or absence of unreacted monomers in the reaction system can be confirmed by a general analytical method such as gas chromatography.
 モノマー組成物の重合後の重合体の重量平均分子量は、ポリマーのレオロジー特性や、親水、疎水バランスの観点から、1,000~1,000,000が好ましく、5000~100,000がより好ましい。重合体の重量平均分子量は、ゲルパーミエイションクロマトグラフィーにより測定される。 The weight average molecular weight of the polymer after polymerization of the monomer composition is preferably 1,000 to 1,000,000, more preferably 5000 to 100,000, from the viewpoint of the rheological properties of the polymer, hydrophilicity, and hydrophobic balance. The weight average molecular weight of the polymer is measured by gel permeation chromatography.
(3)プライマー層
 プライマー層は、例えば、シリコンアルコキシドの加水分解物若しくは部分加水分解物、またはそれらとともにコロイダルシリカを含む。プライマー層としては、表面にシラノール基が多く形成され、かつ下地の吸水性複合膜への透水性のあるものがよく、シリコンアルコキシドの加水分解物又は部分加水分解物、あるいはそれにコロイダルシリカを添加したものが好ましい。
(3) Primer layer The primer layer contains, for example, a hydrolyzate or partial hydrolyzate of silicon alkoxide, or colloidal silica together with them. As the primer layer, those having many silanol groups on the surface and water permeability to the underlying water-absorbing composite film are preferable, and hydrolyzate or partial hydrolyzate of silicon alkoxide or colloidal silica is added thereto. Those are preferred.
 プライマー層形成用塗工液に占めるシリコンアルコキシドの添加量は、シリカ換算固形分量が0.05~2.0質量%が好ましく、より好ましくは0.1~1.5質量%である。シリコンアルコキシドの添加量が少なすぎるとポリマーブラシを固定化できる十分なプライマー層が形成されず、多すぎると膜厚が厚くなりすぎてしまい吸水性複合膜への透水性が失われてしまうだけでなく、クラックなどが生じる恐れが出てくる。当該塗工液に酸触媒を添加することにより、シリコンアルコキシドの加水分解を促し、プライマー層のクラックを抑制することができるが、酸濃度が高くなり過ぎると取扱が難しくなり作業性が落ちてしまう。好ましい添加量は0.1~4質量%、より好ましくは0.5~2.0質量%である。また、シリコンアルコキシドの加水分解にあわせて適宜水を添加してもよいが、常温乾燥によりプライマー層を形成させる場合は未添加あるいは少量の添加でも構わない。 The amount of silicon alkoxide added to the primer layer forming coating solution is preferably 0.05 to 2.0% by mass, more preferably 0.1 to 1.5% by mass in terms of silica solid content. If the amount of silicon alkoxide added is too small, a sufficient primer layer that can immobilize the polymer brush will not be formed, and if it is too large, the film thickness will be too thick and the water permeability to the water-absorbing composite film will be lost. There is a risk of cracks. By adding an acid catalyst to the coating solution, the hydrolysis of the silicon alkoxide can be promoted, and cracks in the primer layer can be suppressed. However, if the acid concentration becomes too high, handling becomes difficult and workability is reduced. . A preferable addition amount is 0.1 to 4% by mass, and more preferably 0.5 to 2.0% by mass. Further, water may be added as appropriate in accordance with the hydrolysis of the silicon alkoxide, but when the primer layer is formed by drying at room temperature, it may be added without addition or in a small amount.
 プライマー層を形成するには、まず当該塗工液をガラス基板あるいは吸水性複合膜上に室温で塗布する。塗布法としては、特に限定されないが、生産性等の面からは、例えば、フローコート法、スピンコート法あるいはディップコート法、リバースコート法、フレキソ印刷法、その他のロールコート法、カーテンコート法、さらにはノズルコート法、スプレーコ-ト法、スクリーン印刷法等を適宜使用することができる。塗布後、常温乾燥あるいは加熱乾燥を行うことでプライマー層を形成させることができる。基板上の吸水性複合膜に該塗工液が吸収されてしまう場合は、一度プライマー層を塗布し、乾燥させた後、再度その表面にプライマー層を塗布し、乾燥させることで必要なプライマー層を吸水性複合膜上に形成させることができる。 In order to form a primer layer, first, the coating solution is applied on a glass substrate or a water-absorbing composite film at room temperature. The coating method is not particularly limited, but from the aspect of productivity, for example, flow coating method, spin coating method or dip coating method, reverse coating method, flexographic printing method, other roll coating method, curtain coating method, Further, a nozzle coating method, a spray coating method, a screen printing method, or the like can be used as appropriate. After application, the primer layer can be formed by drying at room temperature or drying by heating. When the coating liquid is absorbed by the water-absorbing composite film on the substrate, the primer layer is applied once and dried, and then the primer layer is applied again to the surface and dried to obtain the necessary primer layer. Can be formed on the water-absorbing composite membrane.
 またシリコンアルコキシドの代わりにエチルシリケートの加水分解液を使用してもよく、例えばコルコート製HASシリーズ、コルコート製N-103Xなどがある。シリコンアルコキシドに比べてエチルシリケートの加水分解液はバインダー性が高いため、少量添加するだけで良好なプライマー層を形成することができる。また、すでに十分に加水分解が行われているため、あまり酸触媒を添加する必要がない。エチルシリケートの加水分解液の添加量は、プライマー層形成用塗工液に対して固形分濃度が0.005~0.5質量%が好ましく、より好ましくは0.01~0.2質量%である。 Further, instead of silicon alkoxide, a hydrolyzed solution of ethyl silicate may be used, for example, Colcoat HAS series and Colcoat N-103X. Compared to silicon alkoxide, ethyl silicate hydrolyzate has a high binder property, so that a good primer layer can be formed only by adding a small amount. Further, since the hydrolysis has already been sufficiently performed, it is not necessary to add an acid catalyst. The amount of ethyl silicate hydrolyzed solution added is preferably 0.005 to 0.5% by mass, more preferably 0.01 to 0.2% by mass, based on the primer layer forming coating solution. is there.
 プライマー層形成用塗工液が吸水性複合膜へ吸収されるのを防ぎ、かつ透水性や耐摩耗性を改善するのにプライマー層にコロイダルシリカを添加するのが非常に有効である。上記のシリコンアルコキシド、酸触媒、アルコールから構成されるプライマー層形成用塗工液にコロイダルシリカを添加することにより、塗工液が吸水性複合膜中へ吸収されるのを防ぐことができ、一度のコーティングでポリマーブラシを固定化できるプライマー層を形成することができる。また、コロイダルシリカによってプライマー層中に空隙が形成され、透水性が上がるだけでなく、表面に凹凸が形成されるため、窪みにポリマーブラシが入り込むことによって耐摩耗性が改善され、親水性が長期にわたって維持されるようになる。コロイダルシリカの平均粒径は、5~50nmの範囲が好ましく、8~20nmの範囲がより好ましい。また、コロイダルシリカの添加量としては、プライマー層形成用塗工液に対して固形分濃度が0.05~2.0質量%が好ましく、より好ましくは0.1~1.0質量%である。コロイダルシリカの添加量が少なすぎると上記の透水性や耐磨耗性の効果が得られず、多すぎるとプライマー層の膜厚が厚くなりすぎてしまい透水性が失われてしまうだけでなく、クラックなどが生じる恐れが出てくる。 It is very effective to add colloidal silica to the primer layer to prevent the primer layer forming coating solution from being absorbed into the water-absorbing composite film and to improve water permeability and abrasion resistance. By adding colloidal silica to the primer layer forming coating solution composed of the above silicon alkoxide, acid catalyst, and alcohol, the coating solution can be prevented from being absorbed into the water-absorbing composite film. A primer layer capable of immobilizing the polymer brush can be formed with the coating. In addition, the colloidal silica forms voids in the primer layer, which not only increases water permeability, but also forms irregularities on the surface, so that the polymer brush enters the dents to improve wear resistance and improve hydrophilicity for a long time. Will be maintained over time. The average particle size of the colloidal silica is preferably in the range of 5 to 50 nm, more preferably in the range of 8 to 20 nm. The amount of colloidal silica added is preferably 0.05 to 2.0% by mass, more preferably 0.1 to 1.0% by mass with respect to the primer layer forming coating solution. . If the amount of colloidal silica added is too small, the above-mentioned effects of water permeability and abrasion resistance cannot be obtained, and if too much, not only the primer layer becomes too thick and water permeability is lost, There is a risk of cracks.
 本発明の防曇膜は、吸水機能(膜に付着する水滴を膜内部へ吸水させて曇りを防止する機能)と親水機能(膜に付着する水滴を水膜にして曇りを防止する機能)とを有しており、例えば、自動車において、車内側ガラス表面温度が車内側の雰囲気の露点以下となった時点から、10秒~3分間程度は前記吸水機能により防曇性を発現し(膜表面には水膜なし)、それ以降は前記親水機能により防曇性を発現する(膜表面に水膜あり)、効果を奏する。 The anti-fogging film of the present invention has a water absorption function (function to prevent water fog by adsorbing water droplets adhering to the film inside) and a hydrophilic function (function to prevent water fog from forming water drops adhering to the film). For example, in an automobile, the anti-fogging property is exhibited by the water absorption function for about 10 seconds to 3 minutes from the time when the surface temperature of the glass inside the vehicle is below the dew point of the atmosphere inside the vehicle (film surface) Since there is no water film), antifogging properties are exhibited by the hydrophilic function thereafter (there is a water film on the film surface), and the effect is exhibited.
[2]防曇膜被覆物品
 本発明の防曇膜被覆物品は、硬質基板と、この硬質基板上に形成されてなる本発明の防曇膜とを有する。
 基材として用いられる硬質基板としては、各種の鏡類や透光性硬質基板を挙げることができる。透光性硬質基板として特に制限はなく、例えばポリカーボネート基板や、ポリメチルメタクリレート基板等のアクリル樹脂基板等のプラスチック基板、あるいはガラス基板等を状況に応じて用いることができるが、これらの中では、鉛筆硬度の高い吸水性複合膜を形成させる観点から、ガラス基板が好適である。
[2] Antifogging film-coated article The antifogging film-coated article of the present invention has a hard substrate and the antifogging film of the present invention formed on the hard substrate.
Examples of the hard substrate used as the base material include various mirrors and a translucent hard substrate. There is no particular limitation as the translucent hard substrate, for example, a polycarbonate substrate, a plastic substrate such as an acrylic resin substrate such as a polymethyl methacrylate substrate, or a glass substrate can be used depending on the situation, but in these, From the viewpoint of forming a water-absorbing composite film having high pencil hardness, a glass substrate is preferable.
 ガラス基板は自動車用ならびに建築用、産業用ガラス等に通常用いられている板ガラス、所謂フロート板ガラス等であり、クリアをはじめグリ-ン、ブロンズ等各種着色ガラスや各種機能性ガラス、強化ガラスやそれに類するガラス、合せガラスのほか複層ガラス等、さらに平板あるいは曲げ板等各種板ガラス製品を使用することができる。
 また板厚としては、例えば1mm~12mm程度であり、特に、建築用としては3mm~10mmが好ましく、自動車用としては2mm~5mmのガラスが好ましい。
The glass substrate is a plate glass commonly used for automobiles, buildings, industrial glasses, etc., so-called float glass, etc., various colored glasses such as clear, green, bronze, various functional glasses, tempered glass and the like. In addition to similar glass and laminated glass, various types of flat glass products such as multi-layer glass, flat plates and bent plates can be used.
The plate thickness is, for example, about 1 mm to 12 mm. Particularly, 3 mm to 10 mm is preferable for construction, and 2 mm to 5 mm is preferable for automobiles.
 前記ポリカーボネート基板やアクリル樹脂基板を用いる場合、その板厚は、通常2~8mm程度、好ましくは3~6mmである。
 また、プラスチック基板の場合、その表面に設けられる吸水性複合膜との密着性を向上させる目的で、所望により、該吸水性複合膜が形成される側の面に、酸化法や凹凸化法等の表面処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、プラズマ処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理等が挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶剤処理法等が挙げられる。これらの表面処理法は用いられるプラスチック基板の種類に応じて適宜選ばれるが、一般にはコロナ放電処理が効果及び操作性等の面から、好ましく用いられる。
When the polycarbonate substrate or the acrylic resin substrate is used, the plate thickness is usually about 2 to 8 mm, preferably 3 to 6 mm.
Further, in the case of a plastic substrate, for the purpose of improving the adhesion with the water-absorbing composite film provided on the surface, an oxidation method, a concavo-convex method, or the like may be applied to the surface on which the water-absorbing composite film is formed, if desired The surface treatment can be performed. Examples of the oxidation method include corona discharge treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like. A processing method etc. are mentioned. These surface treatment methods are appropriately selected depending on the type of plastic substrate to be used. In general, corona discharge treatment is preferably used from the viewpoints of effects and operability.
 本発明の防曇膜被覆物品は、硬質基板、特に透光性硬質基板上に、防曇性に優れ、かつ鉛筆硬度の高い吸水性複合膜が設けられてなる物品であって、例えば、浴室用、洗面所用等の防曇鏡、自動車用等の防曇窓ガラスや防曇鏡、建築用の防曇窓ガラス等の各種の用途に好適に用いられる。 The anti-fogging film-coated article of the present invention is an article in which a water-absorbing composite film having excellent anti-fogging property and high pencil hardness is provided on a hard substrate, in particular, a light-transmitting hard substrate. And antifogging mirrors for use in bathrooms, toilets, etc., antifogging window glass and antifogging mirrors for automobiles, etc., and antifogging window glass for buildings.
 次に、本発明を実施例により具体的に説明するが、本発明はこれらによってなんら限定されるものではない。なお、各例で得られた防曇膜付きガラス基板の諸特性は、以下に示す方法により求めた。 Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the various characteristics of the glass substrate with an anti-fogging film | membrane obtained in each case were calculated | required by the method shown below.
(1)外観
 得られた防曇膜付きガラス基板の被膜の外観(白化やクラックの有無)を目視で観察し、下記の基準で評価した。
A:問題なし。
B:膜表面に多少の凹凸があるが、実用上問題はない。
C:問題あり。
(1) Appearance Appearance (presence of whitening and cracks) of the coating film of the obtained glass substrate with an antifogging film was visually observed and evaluated according to the following criteria.
A: No problem.
B: Although there are some irregularities on the film surface, there is no practical problem.
C: There is a problem.
(2)防曇性
 防曇膜付きガラス基板に、室温(25℃)で呼気を吹きかける呼気法により、曇りの発生状態を下記の基準で評価した。
AA:全く曇りや歪みが生じない。
A:全く曇りはないがわずかに歪みが生じる。
B:わずかに曇りや大きな歪みが生じる。
C:通常のガラスと同等か、それ以上に曇る。
(2) Anti-fogging property The occurrence of fogging was evaluated according to the following criteria by an exhalation method in which an anti-fogging film-coated glass substrate was sprayed at room temperature (25 ° C.).
AA: No cloudiness or distortion occurs.
A: There is no clouding at all, but slight distortion occurs.
B: Slight cloudiness or large distortion occurs.
C: Cloudy equivalent to or more than normal glass.
(3)鉛筆硬度
 JIS K 5400塗料一般試験方法に準拠して、荷重1kg(9.8N)が加えられた鉛筆で膜表面を5回引っかき、膜の破れが2回未満であった該鉛筆の硬度を鉛筆硬度とした。
(3) Pencil hardness According to JIS K 5400 paint general test method, the surface of the film was scratched 5 times with a pencil to which a load of 1 kg (9.8 N) was applied, and the film was broken less than 2 times. The hardness was defined as pencil hardness.
(4)テーバー摩耗試験
 テーバー摩耗試験では、テーバー摩耗試験機(TABER INDUSTRIES社製「5150ABRASER」)を用い、250gの荷重で500回摩耗試験を行い、試験前後での塗膜のヘーズ値を測定した。ヘーズ値はスガ試験機社製「HGM-2DP」を用いて測定し、試験前後での差が4%以下のものを合格とした。
A;合格
C;不合格
(4) Taber abrasion test In the Taber abrasion test, a Taber abrasion tester ("5150 ABRASER" manufactured by TABER INDUSTRIES) was used, and the abrasion test was performed 500 times with a load of 250 g, and the haze value of the coating film before and after the test was measured. . The haze value was measured using “HGM-2DP” manufactured by Suga Test Instruments Co., Ltd., and the difference was 4% or less before and after the test.
A; Pass C; Fail
(5)湿布摩耗試験
 湿布摩耗試験は、摩耗試験機(新東科学社製「HEIDON-18」)を用い、25℃の水2cm3を含ませたネル布を取り付け、0.25kg/cm2の荷重で5000回摩耗試験を行い、被膜の外観及び防曇性を評価した。外観の評価基準は(1)と同じとし、防曇性の評価基準は(2)と同じとした。
 なお、この試験により、優れた防曇性をどれだけ維持できるかを評価することができる。
(5) Packing wear test The pad wearing test was carried out using a wear testing machine (“HEIDON-18” manufactured by Shinto Kagaku Co., Ltd.) and a nell cloth containing 2 cm 3 of water at 25 ° C. was attached, and 0.25 kg / cm 2 A wear test was performed 5000 times with a load of 5 to evaluate the appearance and antifogging properties of the coating. The appearance evaluation criteria were the same as (1), and the antifogging evaluation criteria were the same as (2).
In addition, it can be evaluated by this test how much excellent anti-fogging property can be maintained.
(吸水性複合膜形成用塗工液の作製)
 吸水性複合膜形成用塗工液を構成する各成分を、それぞれ下記表1に示す割合になるようにガラス製容器に入れて、室温で約3時間撹拌し吸水性複合膜形成用塗工液を得た。エスレックKX-5(ポリビニルアセタール樹脂)、スノーテックスOS(コロイダルシリカ)は、塗工液中での固形分濃度がそれぞれ3.5質量%、2.25質量%となるようにした(表1のカッコ内の数値、なお、後述する表2についてもカッコ内の数値は固形分濃度、また、TEOSについてはシリカ換算の固形分濃度を示す)。
(Preparation of water-absorbing composite film-forming coating solution)
Each component constituting the water-absorbing composite film-forming coating solution is placed in a glass container so as to have the ratio shown in Table 1 below, and stirred at room temperature for about 3 hours, and then the water-absorbing composite film-forming coating solution. Got. SREC KX-5 (polyvinyl acetal resin) and Snowtex OS (colloidal silica) were adjusted so that the solid content concentrations in the coating liquid were 3.5% by mass and 2.25% by mass, respectively (Table 1). Numerical values in parentheses, and in Table 2 described later, the numerical values in parentheses indicate the solid content concentration, and TEOS indicates the solid content concentration in terms of silica).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した各成分は、以下のとおりである。
・ソルミックスAP-7:アルコール溶媒(日本アルコール工業製)、
・エスレックKX-5:ポリビニルアセタール樹脂:(積水化学社製、固形分8%)、
・スノーテックスOS:コロイダルシリカ(日産化学工業社製、アモルファスシリカ20%、粒子径8~11nm)、
・TsOH:p-トルエンスルホン酸(関東化学社製)、
・TEOS:テトラエトキシシラン(信越シリコーン製、KBE-04)、
・KP-341:レベリング剤(信越シリコーン製)
Each component shown in Table 1 is as follows.
Solmix AP-7: alcohol solvent (manufactured by Nippon Alcohol Industry)
-SREC KX-5: Polyvinyl acetal resin: (manufactured by Sekisui Chemical Co., Ltd., solid content 8%),
Snowtex OS: colloidal silica (Nissan Chemical Industries, Amorphous silica 20%, particle size 8-11 nm),
TsOH: p-toluenesulfonic acid (manufactured by Kanto Chemical Co., Inc.)
TEOS: Tetraethoxysilane (Shin-Etsu Silicone, KBE-04),
・ KP-341: Leveling agent (Shin-Etsu Silicone)
(プライマー形成用塗工液の作製)
 プライマー形成用塗工液を構成する各成分を、それぞれ下記表2に示す割合になるようにガラス製容器に入れて、室温で約3時間撹拌しプライマー形成用塗工液1~5を得た。スノーテックスOS(コロイダルシリカ)、HAS-6(バインダ)、N-103X(バインダ)は、塗工液中での固形分濃度がそれぞれ0.5質量%、0.025質量%、0.10質量%となるようにした。
(Preparation of primer forming coating solution)
Each component constituting the primer forming coating solution was put in a glass container so as to have the ratio shown in Table 2 below, and stirred at room temperature for about 3 hours to obtain primer forming coating solutions 1 to 5. . Snowtex OS (colloidal silica), HAS-6 (binder), and N-103X (binder) have solid content concentrations in the coating liquid of 0.5% by mass, 0.025% by mass, and 0.10%, respectively. %.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した各成分は、以下のとおりである(表1で説明されているものは省略)。
・HAS-6:エチルシリケート加水分解物(コルコート社製)
・N-103X:エチルシリケート加水分解物(コルコート社製)
・HCl(塩酸)(キシダ化学社製)
Each component shown in Table 2 is as follows (those described in Table 1 are omitted).
HAS-6: ethyl silicate hydrolyzate (manufactured by Colcoat)
N-103X: ethyl silicate hydrolyzate (manufactured by Colcoat)
・ HCl (hydrochloric acid) (Kishida Chemical Co., Ltd.)
(実施例1)
 湿度30%、室温20℃の環境下で、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm)上に表1の吸水性複合膜形成用塗工液をフローコート法にて塗布した。同環境下で約10分間乾燥させた後、120℃に設定したクリーンオーブンで10分間加熱乾燥を行い、吸水性複合膜付きガラス基板を得た。
 次に、形成した吸水性複合膜上に表2のプライマー層形成用塗工液1をフローコート法にて塗布し、約5分間乾燥させた後、同様にして再度プライマー形成溶液をフローコート法にて塗布し、約5分間乾燥させた後、120℃に設定したクリーンオーブンで30分間加熱乾燥を行い、吸水性複合膜上に、プライマー層を形成した。
(Example 1)
The coating solution for forming a water-absorbing composite film shown in Table 1 was applied by flow coating on a washed soda-lime silicate glass substrate (100 × 100 mm) in an environment of humidity 30% and room temperature 20 ° C. After drying for about 10 minutes under the same environment, the glass substrate with a water-absorbing composite film was obtained by heating and drying for 10 minutes in a clean oven set at 120 ° C.
Next, the primer layer forming coating solution 1 shown in Table 2 was applied on the formed water-absorbing composite film by the flow coating method, dried for about 5 minutes, and then again the primer forming solution was applied by the flow coating method. After applying for about 5 minutes and drying for about 5 minutes, it was heated and dried in a clean oven set at 120 ° C. for 30 minutes to form a primer layer on the water-absorbing composite film.
 次に、形成したプライマー層上に下記のようにして、親水性ポリマーブラシの形成処理を行った
〔工程1:基材表面へのシランカップリング処理〕
 (11-(2-ブロモ-2-メチル)プロピオニルオキシ)ウンデシルトリクロロシラン(Br-PUCS)18.2グラム(40mmol)をトルエン150mLに溶解させ、カップリング溶液を調製した。吸水性複合膜上にプライマー層が形成されたガラス基板をサンプル瓶に入れ、ガラス基板が完全に浸るようにカップリング溶液を加えて蓋をし、18時間常温で反応させた後、ガラス基板を取り出しトルエンを用いて洗浄し、窒素ガスで乾燥させて、プライマー層上に重合開始剤であるBr-PUCSを結合させた。
Next, a hydrophilic polymer brush was formed on the formed primer layer as described below [Step 1: Silane coupling treatment to substrate surface]
18.1 g (40 mmol) of (11- (2-bromo-2-methyl) propionyloxy) undecyltrichlorosilane (Br-PUCS) was dissolved in 150 mL of toluene to prepare a coupling solution. A glass substrate with a primer layer formed on a water-absorbing composite film is placed in a sample bottle, a coupling solution is added so that the glass substrate is completely immersed, the lid is covered, and the mixture is reacted at room temperature for 18 hours. Take out, wash with toluene, and dry with nitrogen gas, and bond Br-PUCS which is a polymerization initiator on the primer layer.
〔工程2:プライマー層上へのCMBの重合〕
 サンプル瓶に、臭化銅(CuBr)309mg(2.143mmol)、2,2’-ビピリジル670mg(4.286mmol)及びN-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン(CMB)10.07g(43.17mmol)を入れ、エチル-2-ブロモイソブチレート320μL(2.143mmol)、アルゴンガスバブリングで脱気したメタノール100mL、及び工程1でシランカップリング処理を施したガラス基板を入れ、アルゴンガスで空気を追い出し、蓋を閉めて、原子移動ラジカル重合(ATRP)を開始した。エチル-2-ブロモイソブチレートは遊離のCMBポリマーを得るための遊離の開始剤として用いた。6時間後、蓋を開け、空気と溶液を接触(失活)させて反応終了とし、ガラス基板を取り出して、エタノール、水で洗浄した後、窒素ガスで乾燥させ、最表面にCMBのポリマー鎖からなる親水性ポリマーブラシを有する防曇膜付きガラス基板を得た。
[Step 2: Polymerization of CMB on primer layer]
In a sample bottle, 309 mg (2.143 mmol) of copper bromide (CuBr), 670 mg (4.286 mmol) of 2,2′-bipyridyl and N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (CMB) 10.07 g (43.17 mmol) was added, and ethyl-2-bromoisobutyrate 320 μL (2.143 mmol), 100 mL of methanol degassed by argon gas bubbling, and silane coupling treatment in Step 1 were performed. A glass substrate was inserted, air was expelled with argon gas, the lid was closed, and atom transfer radical polymerization (ATRP) was started. Ethyl-2-bromoisobutyrate was used as a free initiator to obtain free CMB polymer. After 6 hours, the lid is opened and the reaction is terminated by contacting (deactivating) the air and the solution. The glass substrate is taken out, washed with ethanol and water, dried with nitrogen gas, and the CMB polymer chain on the outermost surface. A glass substrate with an antifogging film having a hydrophilic polymer brush made of
 なお、上述の工程2で得られたCMBのポリマーブラシ部分の分子量を把握する目的で、Br-PUCSが付着したガラスを用いずに、単独でCMBポリマーを合成した。
 即ち、サンプル瓶に、臭化銅(CuBr)30.9mg(0.2143mmol)、2,2’-ビピリジル67.0mg(0.4286mmol)及びCMB1.007g(4.317mmol)を入れ、エチル-2-ブロモイソブチレート32μL(0.2143mmol)及びアルゴンガスバブリングで脱気したメタノール10mLを入れ、アルゴンガスで空気を追い出し、蓋を閉めて、原子移動ラジカル重合(ATRP)を開始した。6時間後、蓋を開け、空気と溶液を接触(失活)させて反応終了とし、遊離したCMBポリマーを得た。得られたCMBポリマーの重量平均分子量Mwは15600であり、n数(重合度)は平均で43.52であった。よって防曇膜付きガラス基板表面にもCMBのn数が43.52のポリマー鎖が並んでいるものと推測される。
For the purpose of grasping the molecular weight of the polymer brush portion of the CMB obtained in the above-mentioned step 2, a CMB polymer was synthesized alone without using glass with Br-PUCS attached.
Specifically, 30.9 mg (0.2143 mmol) of copper bromide (CuBr), 67.0 mg (0.4286 mmol) of 2,2′-bipyridyl and 1.007 g (4.317 mmol) of CMB were placed in a sample bottle, and ethyl-2 -32 μL (0.2143 mmol) of bromoisobutyrate and 10 mL of methanol degassed by argon gas bubbling were added, air was purged with argon gas, the lid was closed, and atom transfer radical polymerization (ATRP) was started. After 6 hours, the lid was opened, the air and the solution were contacted (deactivated) to terminate the reaction, and a free CMB polymer was obtained. The obtained CMB polymer had a weight average molecular weight Mw of 15600 and an n number (degree of polymerization) of 43.52 on average. Therefore, it is presumed that polymer chains having an n number of CMB of 43.52 are also arranged on the glass substrate surface with the antifogging film.
(実施例2~5)
 吸水性複合膜上に表2のプライマー層形成用塗工液2~5(それぞれ、実施例2~5に相当)をフローコート法にて塗布した以外は、実施例1と同様にして防曇膜付きガラス基板を得た。
(Examples 2 to 5)
Antifogging in the same manner as in Example 1 except that the primer layer forming coating solutions 2 to 5 (corresponding to Examples 2 to 5 respectively) shown in Table 2 were applied on the water-absorbing composite film by the flow coating method. A glass substrate with a film was obtained.
(比較例1)
 実施例1と同様にして、吸水性複合膜付きガラス基板を得た。
 次に、界面活性剤(日本油脂社製、商品名「ラピゾールA-30」)の濃度が5.0質量%になるように水で希釈した溶液を、作製した吸水性複合膜表面に塗布した後、120℃に設定したクリーンオーブンで30分間加熱乾燥を行い、防曇膜付きガラス基板を得た。
(Comparative Example 1)
In the same manner as in Example 1, a glass substrate with a water-absorbing composite film was obtained.
Next, a solution diluted with water so that the concentration of the surfactant (manufactured by NOF Corporation, trade name “RAPISOL A-30”) was 5.0% by mass was applied to the surface of the produced water-absorbing composite membrane. Then, it heat-dried for 30 minutes in the clean oven set to 120 degreeC, and obtained the glass substrate with an anti-fogging film | membrane.
 実施例1~5及び比較例1で得られた防曇膜付きガラス基板の諸特性の評価結果を下記表3に示す。 The evaluation results of various properties of the glass substrates with antifogging films obtained in Examples 1 to 5 and Comparative Example 1 are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1で得られた防曇膜では、外観に凹凸やムラ、白化やクラックなどは見られず、呼気によって曇りの生じない良好な塗膜が得られた。得られた塗膜の鉛筆硬度を測定したところ6Hの膜硬度が得られ、またテーバー摩耗試験を実施したところ膜の剥離などは起きず、試験前後のヘーズ値の差が4%以下の耐摩耗性に優れる塗膜を得ることができた。湿布摩耗試験後の防曇性を評価したところ、呼気によりわずかに曇りや水膜の不均一さによる歪みが発生したものの、表面の親水性は維持されており、吸水性複合膜上に形成したプライマー層によってポリマーブラシが架橋されていることを確認することができた。また、試験後の塗膜外観には剥離やキズ、クラックはみられなかった。 In the antifogging film obtained in Example 1, no irregularities, unevenness, whitening, cracks, etc. were observed in the appearance, and a good coating film free from fogging by breath was obtained. When the pencil hardness of the obtained coating film was measured, a film hardness of 6H was obtained, and when a Taber abrasion test was performed, no film peeling occurred, and the difference in haze value before and after the test was 4% or less. A coating film having excellent properties could be obtained. Evaluation of anti-fogging properties after the compressive wear test showed that the surface hydrophilicity was maintained even though slight exhalation caused distortion due to cloudiness and water film non-uniformity, and formed on the water-absorbing composite film. It was confirmed that the polymer brush was crosslinked by the primer layer. Moreover, peeling, a crack, and a crack were not seen in the coating-film external appearance after a test.
 実施例2で得られた防曇膜では、外観に凹凸やムラ、白化やクラックなどは見られず、呼気によって曇りの生じない良好な塗膜が得られた。得られた塗膜の鉛筆硬度を測定したところ6Hの膜硬度が得られ、またテーバー摩耗試験を実施したところ膜の剥離などは起きず、試験前後のヘーズ値の差が4%以下の耐摩耗性に優れる塗膜を得ることができた。湿布摩耗試験後の防曇性を評価したところ、呼気によりわずかに水膜の不均一さによる歪みが発生したものの、防曇性は維持されており、コロイダルシリカを添加することで耐湿布摩耗性が改善された。また、試験後の塗膜外観には剥離やキズ、クラックはみられなかった。 In the antifogging film obtained in Example 2, no irregularities, unevenness, whitening, cracks, etc. were observed in the appearance, and a good coating film free from fogging by exhalation was obtained. When the pencil hardness of the obtained coating film was measured, a film hardness of 6H was obtained, and when a Taber abrasion test was performed, no film peeling occurred, and the difference in haze value before and after the test was 4% or less. A coating film having excellent properties could be obtained. When the antifogging property after the compressive wear test was evaluated, the antifogging property was maintained even though slight exhalation caused distortion due to the non-uniformity of the water film. By adding colloidal silica, the antifogging wear resistance was maintained. Improved. Moreover, peeling, a crack, and a crack were not seen in the coating-film external appearance after a test.
 実施例3、4及び5で得られた防曇膜では、いずれも同様の結果が得られ、外観に凹凸やムラ、白化やクラックなどは見られず、呼気によって曇りの生じない良好な塗膜が得られた。また、得られた塗膜の鉛筆硬度を測定したところ9Hの膜硬度が得られるとともに、テーバー摩耗試験では膜の剥離などは起きず、試験前後のヘーズ値の差が4%以下の耐摩耗性に優れる塗膜を得ることができた。さらに、湿布摩耗試験後の防曇性を評価したところ、全く曇りや歪みは発生せず、優れた防曇性が維持され、塗膜外観には剥離やキズ、クラックはみられなかった。 In the anti-fogging films obtained in Examples 3, 4 and 5, the same results were obtained, and the coating film had no irregularities, unevenness, whitening or cracks in its appearance, and was a good coating film that was not fogged by exhalation. was gotten. Further, when the pencil hardness of the obtained coating film was measured, a film hardness of 9H was obtained, and in the Taber abrasion test, no film peeling occurred and the difference in haze value before and after the test was 4% or less. An excellent coating film could be obtained. Furthermore, when the antifogging property after the compressive wear test was evaluated, no fogging or distortion occurred, the excellent antifogging property was maintained, and no peeling, scratches or cracks were observed in the coating film appearance.
 比較例1では、鉛筆硬度6H程度の膜硬度とテーバー摩耗試験に耐えうる耐摩耗性を有しているが、被膜表面の親水性は被膜中に分散させた界面活性剤によるものであり、湿布摩耗試験により界面活性剤が流出してしまい防曇性能を維持することはできなかった。 Comparative Example 1 has a film hardness of about 6H pencil hardness and abrasion resistance that can withstand the Taber abrasion test, but the hydrophilicity of the coating surface is due to the surfactant dispersed in the coating, The anti-fogging performance could not be maintained because the surfactant flowed out by the abrasion test.

Claims (8)

  1.  ポリビニルアセタール樹脂、シリコンアルコキシドの加水分解物若しくは部分加水分解物、及びコロイダルシリカを含む吸水性複合膜と、該吸水性複合膜上に固定化されてなる親水性ポリマーブラシと、を含む防曇膜。 An anti-fogging film comprising a water-absorbing composite film comprising a polyvinyl acetal resin, a hydrolyzate or partial hydrolyzate of silicon alkoxide, and colloidal silica, and a hydrophilic polymer brush fixed on the water-absorbing composite film. .
  2.  前記吸水性複合膜と親水性ポリマーブラシとの間に、プライマー層を含む請求項1に記載の防曇膜。 The antifogging film according to claim 1, further comprising a primer layer between the water-absorbing composite film and the hydrophilic polymer brush.
  3.  前記プライマー層が、エチルシリケートの加水分解物若しくは部分加水分解物を含む請求項2に記載の防曇膜。 The anti-fogging film according to claim 2, wherein the primer layer contains a hydrolyzate or a partial hydrolyzate of ethyl silicate.
  4.  前記プライマー層が、シリコンアルコキシドの加水分解物若しくは部分加水分解物を含む請求項2に記載の防曇膜。 The anti-fogging film according to claim 2, wherein the primer layer contains a hydrolyzate or partial hydrolyzate of silicon alkoxide.
  5.  前記プライマー層が、さらにコロイダルシリカを含む請求項3又は4に記載の防曇膜。 The antifogging film according to claim 3 or 4, wherein the primer layer further contains colloidal silica.
  6.  前記吸水性複合膜が、ポリビニルアセタール樹脂100質量部に対して、コロイダルシリカ30~80質量部、及びシリコンアルコキシドの加水分解物若しくは部分加水分解物由来のシリカ換算粒子を5~55質量部の割合で含む請求項1~5のいずれか1項に記載の防曇膜。 The water-absorbing composite film is composed of 30 to 80 parts by mass of colloidal silica and 5 to 55 parts by mass of silica-converted particles derived from silicon alkoxide hydrolyzate or partial hydrolyzate with respect to 100 parts by mass of the polyvinyl acetal resin. The antifogging film according to any one of claims 1 to 5, comprising
  7.  硬質基板と、該硬質基板上に形成されてなる請求項1~6のいずれか1項に記載の防曇膜とを有する防曇膜被覆物品。 An antifogging film-coated article comprising: a hard substrate; and the antifogging film according to any one of claims 1 to 6 formed on the hard substrate.
  8.  前記硬質基板が、鏡又は透光性硬質基板である請求項7に記載の防曇膜被覆物品。 The anti-fogging film-coated article according to claim 7, wherein the hard substrate is a mirror or a translucent hard substrate.
PCT/JP2012/071615 2011-08-29 2012-08-27 Antifogging film and antifogging film-coated article WO2013031738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-185566 2011-08-29
JP2011185566 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031738A1 true WO2013031738A1 (en) 2013-03-07

Family

ID=47756226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071615 WO2013031738A1 (en) 2011-08-29 2012-08-27 Antifogging film and antifogging film-coated article

Country Status (1)

Country Link
WO (1) WO2013031738A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129699A1 (en) * 2015-02-13 2016-08-18 日本板硝子株式会社 Windshield
JPWO2018016452A1 (en) * 2016-07-20 2019-05-16 日本板硝子株式会社 Windshield and method of manufacturing windshield
CN111621240A (en) * 2020-06-05 2020-09-04 中国科学院兰州化学物理研究所 Polymer brush modified transparent anti-fog patch and preparation method thereof
EP3692006A4 (en) * 2017-10-04 2021-10-06 MCS Industries, Inc. Anti-fogging coating and application process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129210A (en) * 1998-10-28 2000-05-09 C I Kasei Co Ltd Anti-tack agent for agricultural soft vinyl chloride resin film and preparation thereof
JP2001152137A (en) * 1999-11-26 2001-06-05 Central Glass Co Ltd Non-fogging film-formed base and its preparation process
JP2001316626A (en) * 2000-05-02 2001-11-16 Seikoh Chem Co Ltd Coating material
JP2003321667A (en) * 2002-05-01 2003-11-14 Showa Highpolymer Co Ltd Antifogging composition
JP2005298237A (en) * 2004-04-07 2005-10-27 Nippon Sheet Glass Co Ltd Antifogging article and method for producing the same
JP2010057745A (en) * 2008-09-04 2010-03-18 Osaka Organic Chem Ind Ltd Medical material
JP2012117025A (en) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd Anti-fog coated article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129210A (en) * 1998-10-28 2000-05-09 C I Kasei Co Ltd Anti-tack agent for agricultural soft vinyl chloride resin film and preparation thereof
JP2001152137A (en) * 1999-11-26 2001-06-05 Central Glass Co Ltd Non-fogging film-formed base and its preparation process
JP2001316626A (en) * 2000-05-02 2001-11-16 Seikoh Chem Co Ltd Coating material
JP2003321667A (en) * 2002-05-01 2003-11-14 Showa Highpolymer Co Ltd Antifogging composition
JP2005298237A (en) * 2004-04-07 2005-10-27 Nippon Sheet Glass Co Ltd Antifogging article and method for producing the same
JP2010057745A (en) * 2008-09-04 2010-03-18 Osaka Organic Chem Ind Ltd Medical material
JP2012117025A (en) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd Anti-fog coated article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129699A1 (en) * 2015-02-13 2016-08-18 日本板硝子株式会社 Windshield
JPWO2016129699A1 (en) * 2015-02-13 2017-11-24 日本板硝子株式会社 Windshield
JPWO2018016452A1 (en) * 2016-07-20 2019-05-16 日本板硝子株式会社 Windshield and method of manufacturing windshield
JP6998872B2 (en) 2016-07-20 2022-01-18 日本板硝子株式会社 Windshield and windshield manufacturing method
EP3692006A4 (en) * 2017-10-04 2021-10-06 MCS Industries, Inc. Anti-fogging coating and application process
US11673827B2 (en) 2017-10-04 2023-06-13 Mcs Industries, Inc. Anti-fogging coating and application process
CN111621240A (en) * 2020-06-05 2020-09-04 中国科学院兰州化学物理研究所 Polymer brush modified transparent anti-fog patch and preparation method thereof
CN111621240B (en) * 2020-06-05 2021-03-16 中国科学院兰州化学物理研究所 Polymer brush modified transparent anti-fog patch and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6118012B2 (en) Antifogging film coated article
US10400130B2 (en) Anti-fogging coated transparent article
JP2018030129A (en) Nanosilica coating assembly with enhanced durability
JP5583214B2 (en) Polysiloxane coating using hybrid copolymer
JP5788014B2 (en) Composition and film comprising the same
US11292920B2 (en) Water repellant surface treatment for aircraft transparencies and methods of treating aircraft transparencies
JP2012017394A (en) Anti-fog article
WO2013031738A1 (en) Antifogging film and antifogging film-coated article
JP3883366B2 (en) Highly slidable substrate and manufacturing method thereof
EP1734086A1 (en) Inorganic coating composition and hydrophilic coating film
JP2006212987A (en) Transfer material
WO2010001813A1 (en) Hydrophilic member
WO2011090156A1 (en) Anti-fog article
JP4862534B2 (en) Antifogging article and antifogging agent composition
JP3756030B2 (en) Antifogging substrate and method for forming the same
JP2017101135A (en) Hydrophilic coated film, hydrophilic coated film forming article, coating liquid for forming hydrophilic coated film and manufacturing method of hydrophilic coated film forming article
JP2013124208A (en) Anti-fog article
Kaetsu et al. New coating materials and their preparation by radiation polymerization. III. Antifogging coating composition
JP2001233638A (en) Antifogging film-formed substrate and method for producing the same
JP2007177196A (en) Antifogging and stain-resistant item
JP6699789B2 (en) Composition and coating
JP2001152137A (en) Non-fogging film-formed base and its preparation process
JP3932083B2 (en) Method for forming film having photocatalytic function
JP2012017220A (en) Anti-fog article
JPH0597477A (en) Water repellent article and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP