WO2018096695A1 - Cooling device, cooling method, and semiconductor inspection device, each of which using thermoelectric element - Google Patents

Cooling device, cooling method, and semiconductor inspection device, each of which using thermoelectric element Download PDF

Info

Publication number
WO2018096695A1
WO2018096695A1 PCT/JP2017/003713 JP2017003713W WO2018096695A1 WO 2018096695 A1 WO2018096695 A1 WO 2018096695A1 JP 2017003713 W JP2017003713 W JP 2017003713W WO 2018096695 A1 WO2018096695 A1 WO 2018096695A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
cooling
heat
insulating member
thermoelectric element
Prior art date
Application number
PCT/JP2017/003713
Other languages
French (fr)
Japanese (ja)
Inventor
真言 鴨志田
悟史 山口
中村 光治
Original Assignee
株式会社シバソク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シバソク filed Critical 株式会社シバソク
Publication of WO2018096695A1 publication Critical patent/WO2018096695A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to a cooling device using a thermoelectric element, a cooling method, and a semiconductor inspection device.
  • Patent Document 1 describes a heat transfer unit.
  • the heat transfer unit includes a first Peltier unit, a second Peltier unit, and a heat exchanger. Heat from the heat dissipation surface of the first Peltier unit is transferred to the primary refrigerant flowing through the flow path, and the heat is transferred to the heat absorption surface of the second Peltier unit via the primary refrigerant. The heat from the heat dissipation surface of the second Peltier unit is transferred to the secondary refrigerant flowing through the flow path, and the heat transferred through the secondary refrigerant is radiated by the heat exchanger.
  • the cooling device for the semiconductor inspection device is small and can reach the target low temperature in a short time and maintain the temperature. desired.
  • An object of the present invention is to provide a cooling device, a cooling method, and a semiconductor inspection device that are small and can reach a target low temperature in a short time and maintain the temperature.
  • a cooling device is attached to a heat insulating member having a heat insulating space therein and the heat insulating member, and a heat radiating side is arranged in the heat insulating space of the heat insulating member, and a heat absorbing side is arranged outside the heat insulating member.
  • a temperature sensor that measures the temperature of the endothermic surface, and the thermoelectric element and the one or more cooling elements so that the temperature of the endothermic surface becomes a target temperature. It is desirable to include a control unit that controls at least one of the current and / or voltage.
  • the heat insulating member includes an upper surface portion, a side surface portion, and a bottom surface portion, and the thermoelectric element is attached to the upper surface portion, and the one or more cooling devices are provided. It is desirable that the element is attached to the side surface portion and / or the bottom surface portion.
  • the thermoelectric element preferably includes a Peltier element, a heat radiating fin, and a heat radiating fan.
  • the cooling element is a thermoelectric element, and the thermoelectric element is a Peltier element, a heat radiating fin, a heat radiating fan, a heat absorbing fin, and a heat absorbing fan. It is desirable to provide (6) In the cooling device according to any one of (1) to (5) above, the shape of the heat insulating space may be different from the external shape of the heat insulating member.
  • the cooling method of the cooling device of the present invention includes a heat insulating member having a heat insulating space inside, A thermoelectric element attached to the heat insulating member, a heat dissipating side in the heat insulating space of the heat insulating member, and a heat absorbing side arranged outside the heat insulating member;
  • a cooling method for a cooling device comprising: one or a plurality of cooling elements attached to the heat insulating member, the cooling side in the heat insulating space of the heat insulating member, and the heat radiating side arranged outside the heat insulating member,
  • the temperature of the endothermic surface of the thermoelectric element is measured by a temperature sensor, and the current or / and voltage of the thermoelectric element is controlled so that the temperature of the endothermic surface becomes a target temperature.
  • a semiconductor inspection apparatus includes the cooling device according to any one of (1) to (6), and a cooling table connected to the heat absorption surface and on which a semiconductor chip is placed. And a semiconductor inspection apparatus for measuring electrical characteristics of the semiconductor chip in a state of being mounted on the cooling table.
  • a cooling device it is possible to obtain a cooling device, a cooling method, and a semiconductor inspection device that are small in size, reach a target low temperature in a short time, and can maintain the temperature.
  • FIG. 1 is a conceptual diagram showing a configuration of an embodiment of a cooling device of the present invention
  • FIG. 2 is a perspective view
  • FIG. 3 is a conceptual diagram for explaining the temperature control of the cooling device of the present embodiment.
  • the cooling device of the present embodiment includes a heat insulating member 1 having a heat insulating space 6 therein, a thermoelectric element 2 such as a Peltier element, cooling elements 4 and 5, and a cooling connected to the heat absorption side of the thermoelectric element 2 on the heat absorption side. It has stand 3.
  • the cooling table 3 may not be provided.
  • thermoelectric element 2 is attached to the heat insulating member 1, and the heat dissipation side of the thermoelectric element 2 is disposed in the heat insulating space 6 of the heat insulating member 1, and the heat absorption side of the thermoelectric element 2 is disposed outside the heat insulating member 1.
  • Heat is released into the heat insulating space 6 from the heat radiation surface of the thermoelectric element 2 on the heat radiation side.
  • the released heat is released outside the heat insulating member 1 through the cooling elements 4 and 5.
  • the cooling elements 4 and 5 are attached to the heat insulating member 1, the cooling side of the cooling elements 4 and 5 is disposed in the heat insulating space 6 of the heat insulating member 1, and the heat radiating side of the cooling elements 4 and 5 is disposed outside the heat insulating member 1.
  • the material of the heat insulating member 1 is not particularly limited as long as a heat insulating space can be formed therein, and examples thereof include expanded polystyrene, expanded urethane, silicon sponge, hemisal, and the like.
  • the heat insulation member 1 may be comprised only with a heat insulation material, you may attach heat insulation materials, such as a polystyrene foam, urethane foam, a silicon sponge, and hemisal, to the inner wall or outer wall of the housing which forms space inside.
  • a double-structured container or the like with vacuum or air can be used as the heat insulating member.
  • a heat insulating member 1 is also called a heat insulating body or a heat insulating box that forms a heat insulating space inside.
  • a Peltier element is an element that utilizes the Peltier effect in which heat is transferred from one metal to the other when an electric current is passed through a joint between two kinds of metals.
  • the cooling element is an element that lowers the temperature in the heat insulating space, and a thermoelectric element such as a Peltier element can be used, but other elements may be used.
  • a vortex schooler can be used as the cooling element.
  • the vortex cooler When supplying compressed air to a vortex tube, the vortex cooler starts rotating at a high speed by the action of a special part bushing generator inside the product, and the vortex inside the cooler generated by the high speed rotation, compression, expansion, It is an element that separates into cold air (side deprived of heat) and hot air (side deprived of heat) using a pressure difference.
  • the plurality of cooling elements may be configured using only Peltier elements, may be configured using only a vortex cooler, or may be configured using a combination of Peltier elements and a vortex cooler. Good.
  • elements other than the Peltier element and the vortex cooler may be configured as a cooling element in addition to the Peltier element, the vortex cooler, or the combination of the Peltier element and the vortex cooler.
  • thermoelectric element 2 and the cooling elements 4 and 5 are composed only of Peltier elements, and the heat dissipation surface of the Peltier element constituting the thermoelectric element 2 and the heat absorption surface of the Peltier element constituting the cooling elements 4 and 5 are insulated. Can be directly exposed.
  • the thermoelectric element 2 may be configured by attaching a heat dissipation fin and a heat dissipation fan to the heat dissipation surface of the Peltier element.
  • a heat absorption fan and a heat absorption fin are attached to the heat absorption surface of the Peltier element, and in order to increase the heat dissipation efficiency, a heat radiation fin and a heat dissipation fan are attached to the heat dissipation surface of the Peltier element. 5 may be configured. Moreover, you may cool the thermal radiation surface of a Peltier element using the refrigerant
  • the external shape of the heat insulating member 1 is a rectangular parallelepiped, but is not limited thereto, and may be any other shape as long as a thermoelectric element and a cooling element can be attached. It may be a shape.
  • the shape of the heat insulating space 6 is the same as the external shape of the heat insulating member 1 here, but the shape of the heat insulating space 6 may be different from the external shape of the heat insulating member 1.
  • the shape of the heat insulating space 6 is a truncated pyramid shape, an inverted truncated pyramid shape, a combination of a rectangular parallelepiped and a rectangular truncated pyramid, or an inverted rectangular truncated pyramid and a rectangular parallelepiped. It may be a different shape.
  • the set temperature of the cooling table 3 is determined in advance by measuring the relationship between the temperature of the endothermic surface of the thermoelectric element 2 and the voltage and current applied to the thermoelectric element 2 and the cooling elements 4 and 5. What is necessary is just to set the voltage and electric current given to 5.
  • the temperature sensor 201 such as a thermistor detects the temperature of the endothermic surface of the thermoelectric element, and the temperature is a target temperature (for example, ⁇ 50 ° C.
  • thermoelectric element 2 and the cooling elements 4 and 5 The voltage or current applied to at least one of the thermoelectric element 2 and the cooling elements 4 and 5 is adjusted by the control unit 202 so that
  • the thermoelectric element 2 and the cooling elements 4 and 5 include Peltier elements
  • the amount of heat absorbed by the Peltier elements depends on the current value. Therefore, the temperature of the endothermic surface of the thermoelectric element 2 is controlled by controlling the current value. can do.
  • the temperature of the cooling table 3 is measured instead of the temperature of the endothermic surface of the thermoelectric element 2, but the temperature of the cooling table 3 is almost the same as the temperature of the endothermic surface of the thermoelectric element 2. Therefore, the temperature measurement of the cooling table 3 can be substantially regarded as the temperature measurement of the endothermic surface of the thermoelectric element 2.
  • a heat dissipation fin and a heat dissipation fan are attached to the heat dissipation surface of the Peltier element to constitute a thermoelectric element
  • a heat absorption fan and a heat absorption fin are attached to the heat absorption surface of the Peltier element
  • a heat dissipation fin and a heat dissipation fan are attached to the heat dissipation surface of the Peltier element.
  • FIG. 4A is a longitudinal sectional view showing a first configuration example of the cooling device of the present invention
  • FIG. 4B is a transverse sectional view.
  • the thermoelectric element 2 uses the Peltier element 20, the radiation fin 41, and the radiation fan 42.
  • the cooling elements 4 and 5 the Peltier element 20, the heat radiating fin 41, the heat radiating fan 42, the heat absorbing fin 51, and the heat absorbing fan 52 are used, respectively.
  • the heat radiating fins 41 and the heat radiating fans 42 become the heat radiating portions 40, and the heat absorbing fins 51 and the heat radiating fans 52 become the heat absorbing portions 50.
  • the appearance shape of the heat insulating member 1 is a rectangular parallelepiped, and the shape of the heat insulating space 6 in the heat insulating member 1 is also a rectangular parallelepiped.
  • the heat radiation fin 41 is connected to the heat radiation surface of the Peltier element 20 of the thermoelectric element 2, and the heat radiation fan 42 is connected to the heat radiation fin 41.
  • the thermoelectric element 2 is attached to the upper surface portion of the heat insulating member 1, and the cooling elements 4 and 5 are attached to both side surface portions of the heat insulating member 1 so as to face each other through the heat insulating space 6 in the heat insulating member 1.
  • the heat absorption fins 51 are connected to the heat absorption surfaces of the Peltier elements 20 of the cooling elements 4 and 5, respectively, and the heat absorption fan 52 is connected to the heat absorption fins 51.
  • a heat radiation fin 41 is connected to each heat radiation surface of the Peltier elements 20 of the cooling elements 4 and 5, and a heat radiation fan 42 is connected to the heat radiation fin 41.
  • Heat released from the heat dissipation surface of the Peltier element 20 of the thermoelectric element 2 is released to the heat insulating space 6 through the heat dissipation fins 41 and the heat dissipation fan 42.
  • the released heat is transferred to the heat absorbing surfaces of the Peltier elements 20 of the cooling elements 4 and 5 through the heat absorbing fans 52 and the heat absorbing fins 51, respectively. 1 is released.
  • FIG. 5A is a longitudinal sectional view showing a second configuration example of the cooling device of the present invention
  • FIG. 5B is a transverse sectional view.
  • the cooling elements 4 and 5 are provided on the left and right side portions in the left-right direction shown in FIGS. 4A and 4B
  • the cooling element 7 is provided on the back surface portion of the heat insulating member 1.
  • a Peltier element 20 As the cooling element 7, a Peltier element 20, a heat radiating fin 41, a heat radiating fan 42, a heat absorbing fin 51, and a heat absorbing fan 52 are used.
  • three cooling elements are arranged.
  • FIG. 6 is a cross-sectional view showing a third configuration example of the cooling device of the present invention.
  • the third configuration example is provided on the left and right side surfaces of the heat insulating member 1 shown in FIGS. 5A and 5B, the cooling elements 4 and 5 provided on the right side, and the back surface (one of the side surfaces).
  • a cooling element 8 is provided on the front surface portion (one of the side surface portions) of the heat insulating member 1.
  • the cooling element 8 the Peltier element 20, the radiation fin 41, the radiation fan 42, the heat absorption fin 51, and the heat absorption fan 52 are used.
  • four cooling elements are arranged.
  • FIG. 7A is a longitudinal sectional view showing a fourth configuration example of the cooling device of the present invention
  • FIG. 7B is a transverse sectional view.
  • the cooling elements 4 and 5 are provided on the left and right side surfaces of the heat insulating member 1 shown in FIGS. 4A and 4B
  • the cooling element 9 is provided on the bottom surface of the heat insulating member 1.
  • the cooling element 9 the Peltier element 20, the radiation fin 41, the radiation fan 42, the heat absorption fin 51, and the heat absorption fan 52 are used.
  • three cooling elements are arranged.
  • FIG. 8 is a cross-sectional view showing a fifth configuration example of the cooling device of the present invention.
  • the cooling elements 4 and 5 are provided on the left side surface and the right side surface portion of the heat insulating member 1 shown in FIG. 6, the cooling element 7 is provided on the back surface portion, and the front surface portion is cooled.
  • An element 8 is provided, and a cooling element 9 is provided on the bottom surface.
  • five cooling elements are arranged.
  • the first to fifth configuration examples of the cooling device have been described above. However, the left and right side surfaces of the heat insulating member 1, the cooling elements 4 and 5 provided on the right side, and the back surface (one of the side surfaces).
  • the cooling element 7 provided, the cooling element 8 provided on the front surface portion (one of the side surface portions), and the cooling element 9 provided on the bottom surface portion can be appropriately combined and arranged.
  • any of the cooling elements 4, 5, 7, 8, and 9 may be arranged.
  • the cooling element 4 and the cooling element 7, the cooling element 5 and the cooling element 7, the cooling element 4 and the cooling element 8, the cooling element 5 and the cooling element 8, the cooling element 7 and the cooling element 9, the cooling element 8 and the cooling element 9 Any combination or the like may be arranged.
  • a cooling element 4, a cooling element 5, a cooling element 8, a cooling element 4, a cooling element 7, a cooling element 9, a combination of the cooling element 5, the cooling element 7, and the cooling element 9 may be arranged.
  • the shape of the heat insulating space 6 of the heat insulating member 1 is the same rectangular parallelepiped as the appearance shape of the heat insulating member 1, but may be a shape different from the appearance shape of the heat insulating member 1.
  • FIG. 9 is a longitudinal sectional view showing a sixth configuration example of the cooling device of the present invention.
  • the upper portion of the heat insulating space 6 of the heat insulating member 11 has a quadrangular pyramid shape, and four cooling elements 9-1 to 9-4 are arranged on the bottom surface of the heat insulating member 11.
  • the heat insulating space 6 has a shape combining a rectangular parallelepiped and a quadrangular pyramid.
  • Each of the cooling elements 9-1 to 9-4 has the same configuration as the cooling element 9. As shown by the arrows in FIG. 9, the cooling device of this configuration example can optimize the direction of heat flow in a straight line and improve the heat transfer efficiency. Further, since the depth direction is thin, it is advantageous when a measuring device or the like is installed near the stage. Furthermore, there is no protrusion of the cooling element on the side surface, and processing and handling become easy.
  • FIG. 10 is a longitudinal sectional view showing a seventh configuration example of the cooling device of the present invention.
  • the lower part of the heat insulating space 6 of the heat insulating member 12 has an inverted quadrangular pyramid shape
  • the cooling elements 4 and 5 are arranged on the left side surface and the right side surface of the heat insulating member 12 in the left-right direction
  • the heat insulating member 1 Two cooling elements 9-5 and 9-6 are arranged on the bottom surface of each.
  • the heat insulating space 6 has a shape in which an inverted square frustum and a rectangular parallelepiped are combined.
  • the cooling elements 9-5 and 9-6 have the same configuration as the cooling element 9. As indicated by the arrows in FIG. 10, since the two cooling elements 9-5 and 9-6 are provided on the bottom surface of the heat insulating member 1, the efficiency of transferring heat released toward the bottom surface is improved. Can do.
  • the cooling device of the embodiment described above and the first to seventh configuration examples is not particularly limited in application, but is suitable for a cooling device of a semiconductor inspection device that inspects electrical characteristics of a semiconductor chip with an IC probe card at a low temperature. Can be used.
  • FIG. 11 is a perspective view showing a configuration example of the semiconductor inspection apparatus
  • FIG. 12 is a longitudinal sectional view showing the configuration of the semiconductor inspection apparatus.
  • the cooling device of the third configuration example shown in FIG. 6 is used for the semiconductor inspection device of this configuration example.
  • the semiconductor chip 105 is placed on the cooling table, and the semiconductor chip 105 is cooled to a set temperature (for example, ⁇ 50 ° C.) for low temperature operation.
  • the mirror 102 is moved to the side opposite to the insertion / extraction direction of the semiconductor chip 105, and the LED illumination light is irradiated onto the mirror 102 from above.
  • the reflected light from the semiconductor chip 105 is received by the camera 103, the reflected light from the IC probe card is received by the camera 104, and it is confirmed by image synthesis whether the semiconductor chip 105 is arranged at a predetermined position on the cooling table. Perform alignment.
  • the semiconductor chip 105 When the semiconductor chip 105 is disposed at a predetermined position on the cooling stand, the semiconductor chip 105 is moved upward, the semiconductor chip 105 is brought into contact with the IC probe card, and an electrical inspection is performed. After the inspection, the semiconductor chip 105 after inspection is moved, and the next semiconductor chip is placed on the cooling table.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This cooling device is provided with: a heat insulating member that has a heat insulating space therein; a thermoelectric element that is attached to the heat insulating member such that the heat radiation side is arranged in the heat insulating space of the heat insulating member and the heat absorption side is arranged outside the heat insulating member; and one or more cooling elements that are attached to the heat insulating member such that the respective cooling sides are arranged in the heat insulating space of the heat insulating member and the respective heat radiation sides are arranged outside the heat insulating member, wherein the heat absorption surface on the heat absorption side of the thermoelectric element is cooled. The cooling device is preferably provided with: a temperature sensor that measures the temperature of the heat absorption surface; and a control unit that controls the current and/or the voltage of the thermoelectric element and/or the one or more cooling elements so that the temperature of the heat absorption surface becomes the target temperature.

Description

熱電素子を用いた冷却装置、冷却方法及び半導体検査装置Cooling device, cooling method and semiconductor inspection device using thermoelectric element
 本発明は、熱電素子を用いた冷却装置、冷却方法及び半導体検査装置に関する。 The present invention relates to a cooling device using a thermoelectric element, a cooling method, and a semiconductor inspection device.
 熱電素子としてペルチェ素子を用いた冷却装置としては、例えば、特許文献1に熱移動ユニットの記載がある。この熱移動ユニットは、第1のペルチェユニットと第2のペルチェユニットと熱交換器とを備えている。第1のペルチェユニットの放熱面からの熱は、流路を流れる一次冷媒に伝わり、その熱は一次冷媒を介して第2のペルチェユニットの吸熱面に伝わる。第2のペルチェユニットの放熱面からの熱は、流路を流れる二次冷媒に伝わり、二次冷媒を介して伝えられた熱は熱交換器で放熱される。 As a cooling device using a Peltier element as a thermoelectric element, for example, Patent Document 1 describes a heat transfer unit. The heat transfer unit includes a first Peltier unit, a second Peltier unit, and a heat exchanger. Heat from the heat dissipation surface of the first Peltier unit is transferred to the primary refrigerant flowing through the flow path, and the heat is transferred to the heat absorption surface of the second Peltier unit via the primary refrigerant. The heat from the heat dissipation surface of the second Peltier unit is transferred to the secondary refrigerant flowing through the flow path, and the heat transferred through the secondary refrigerant is radiated by the heat exchanger.
国際公開第2013/157417号International Publication No. 2013/157417
 半導体検査装置が半導体チップの検査において低温(例えば-50°C)で試験を行う場合、半導体検査装置の冷却装置は、小型で、短時間で目標とする低温に到達しその温度を維持できることが望まれる。 When a semiconductor inspection device performs a test at a low temperature (for example, −50 ° C.) in the inspection of a semiconductor chip, the cooling device for the semiconductor inspection device is small and can reach the target low temperature in a short time and maintain the temperature. desired.
 本発明は、小型で、短時間で目標とする低温に到達しその温度を維持できる冷却装置、冷却方法及び半導体検査装置を提供することを目的とする。 An object of the present invention is to provide a cooling device, a cooling method, and a semiconductor inspection device that are small and can reach a target low temperature in a short time and maintain the temperature.
 (1) 本発明に係る冷却装置は、内部に断熱空間を有する断熱部材と、前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に放熱側、前記断熱部材の外に吸熱側が配された熱電素子と、前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に冷却側、前記断熱部材の外に放熱側が配された一又は複数の冷却素子と、を備え、
 前記熱電素子の吸熱側の吸熱面が冷却される冷却装置である。
 (2) 上記(1)の冷却装置において、前記吸熱面の温度を測定する温度センサと、前記吸熱面の温度が目標の温度となるように前記熱電素子と前記一又は複数の冷却素子とのうちの少なくとも一つの電流又は/及び電圧を制御する制御部と、を備えることが望ましい。
 (3) 上記(1)又は(2)の冷却装置において、前記断熱部材は、上面部、側面部、及び底面部を備え、前記熱電素子は記上面部に取り付けられ、前記一又は複数の冷却素子が前記側面部又は/及び前記底面部に取り付けられることが望ましい。
 (4) 上記(1)から(3)のいずれかの冷却装置において、前記熱電素子はペルチェ素子と、放熱フィンと、放熱ファンと、を備えることが望ましい。
 (5) 上記(1)から(4)のいずれかの冷却装置において、前記冷却素子は熱電素子であり、該熱電素子はペルチェ素子と、放熱フィンと、放熱ファンと、吸熱フィンと、吸熱ファンと、を備えることが望ましい。
 (6) 上記(1)から(5)のいずれかの冷却装置において、前記断熱空間の形状は、前記断熱部材の外観形状と異なるようにすることができる。
 (7) 本発明の冷却装置の冷却方法は、内部に断熱空間を有する断熱部材と、
 前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に放熱側、前記断熱部材の外に吸熱側が配された熱電素子と、
 前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に冷却側、前記断熱部材の外に放熱側が配された一又は複数の冷却素子と、を備えた冷却装置の冷却方法であって、
 温度センサにより前記熱電素子の吸熱側の吸熱面の温度を測定し、前記吸熱面の温度が目標の温度となるように、前記熱電素子の電流又は/及び電圧を制御するとともに、前記断熱空間内の温度を下げるように前記一又は複数の冷却素子の少なくとも一つの電流又は/及び電圧を制御する冷却方法である。
 (8) 本発明に係る半導体検査装置は、上記(1)から(6)のいずれか1項に記載の冷却装置と、前記吸熱面と接続され、半導体チップが載置される冷却台とを備え、前記冷却台に載置された状態で前記半導体チップの電気的特性を測定する半導体検査装置である。
(1) A cooling device according to the present invention is attached to a heat insulating member having a heat insulating space therein and the heat insulating member, and a heat radiating side is arranged in the heat insulating space of the heat insulating member, and a heat absorbing side is arranged outside the heat insulating member. A thermoelectric element, and one or a plurality of cooling elements that are attached to the heat insulating member, the cooling side of the heat insulating member is disposed on the cooling side, and the heat radiating side is disposed outside the heat insulating member,
It is a cooling device in which the endothermic surface on the endothermic side of the thermoelectric element is cooled.
(2) In the cooling device of (1), a temperature sensor that measures the temperature of the endothermic surface, and the thermoelectric element and the one or more cooling elements so that the temperature of the endothermic surface becomes a target temperature. It is desirable to include a control unit that controls at least one of the current and / or voltage.
(3) In the cooling device according to (1) or (2), the heat insulating member includes an upper surface portion, a side surface portion, and a bottom surface portion, and the thermoelectric element is attached to the upper surface portion, and the one or more cooling devices are provided. It is desirable that the element is attached to the side surface portion and / or the bottom surface portion.
(4) In the cooling device according to any one of (1) to (3), the thermoelectric element preferably includes a Peltier element, a heat radiating fin, and a heat radiating fan.
(5) In the cooling device according to any one of (1) to (4), the cooling element is a thermoelectric element, and the thermoelectric element is a Peltier element, a heat radiating fin, a heat radiating fan, a heat absorbing fin, and a heat absorbing fan. It is desirable to provide
(6) In the cooling device according to any one of (1) to (5) above, the shape of the heat insulating space may be different from the external shape of the heat insulating member.
(7) The cooling method of the cooling device of the present invention includes a heat insulating member having a heat insulating space inside,
A thermoelectric element attached to the heat insulating member, a heat dissipating side in the heat insulating space of the heat insulating member, and a heat absorbing side arranged outside the heat insulating member;
A cooling method for a cooling device, comprising: one or a plurality of cooling elements attached to the heat insulating member, the cooling side in the heat insulating space of the heat insulating member, and the heat radiating side arranged outside the heat insulating member,
The temperature of the endothermic surface of the thermoelectric element is measured by a temperature sensor, and the current or / and voltage of the thermoelectric element is controlled so that the temperature of the endothermic surface becomes a target temperature. The cooling method controls at least one current or / and voltage of the one or more cooling elements so as to lower the temperature of the cooling element.
(8) A semiconductor inspection apparatus according to the present invention includes the cooling device according to any one of (1) to (6), and a cooling table connected to the heat absorption surface and on which a semiconductor chip is placed. And a semiconductor inspection apparatus for measuring electrical characteristics of the semiconductor chip in a state of being mounted on the cooling table.
 本発明によれば、小型で、短時間で目標とする低温に到達しその温度を維持できる冷却装置、冷却方法及び半導体検査装置を得ることができる。 According to the present invention, it is possible to obtain a cooling device, a cooling method, and a semiconductor inspection device that are small in size, reach a target low temperature in a short time, and can maintain the temperature.
本発明の冷却装置の一実施形態の構成を示す概念図である。It is a conceptual diagram which shows the structure of one Embodiment of the cooling device of this invention. 本発明の冷却装置の一実施形態の構成を示す斜視図である。It is a perspective view which shows the structure of one Embodiment of the cooling device of this invention. 本実施形態の冷却装置の温度制御を説明するための概念図である。It is a conceptual diagram for demonstrating the temperature control of the cooling device of this embodiment. 本発明の冷却装置の第1の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st structural example of the cooling device of this invention. 本発明の冷却装置の第1の構成例を示す横断面図である。It is a cross-sectional view which shows the 1st structural example of the cooling device of this invention. 本発明の冷却装置の第2の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd structural example of the cooling device of this invention. 本発明の冷却装置の第2の構成例を示す横断面図である。It is a cross-sectional view which shows the 2nd structural example of the cooling device of this invention. 本発明の冷却装置の第3の構成例を示す横断面図である。It is a cross-sectional view which shows the 3rd structural example of the cooling device of this invention. 本発明の冷却装置の第4の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 4th structural example of the cooling device of this invention. 本発明の冷却装置の第4の構成例を示す横断面図である。It is a cross-sectional view which shows the 4th structural example of the cooling device of this invention. 本発明の冷却装置の第5の構成例を示す横断面図である。It is a transverse cross section showing the 5th example of composition of the cooling device of the present invention. 本発明の冷却装置の第6の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 6th structural example of the cooling device of this invention. 本発明の冷却装置の第7の構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 7th structural example of the cooling device of this invention. 半導体検査装置の一構成例を示す斜視図である。It is a perspective view which shows one structural example of a semiconductor inspection apparatus. 半導体検査装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a semiconductor inspection apparatus.
 以下、本発明の実施形態について図面を用いて詳細に説明する。
 図1は本発明の冷却装置の一実施形態の構成を示す概念図、図2は斜視図である。図3は本実施形態の冷却装置の温度制御を説明するための概念図である。
 本実施形態の冷却装置は、内部に断熱空間6を有する断熱部材1と、ペルチェ素子等の熱電素子2と、冷却素子4及び5と、熱電素子2の吸熱側の吸熱面に接続される冷却台3とを有する。冷却台3はなくともよい。熱電素子2は断熱部材1に取り付けられ、断熱部材1の断熱空間6に熱電素子2の放熱側、断熱部材1の外に熱電素子2の吸熱側が配置される。熱電素子2の放熱側の放熱面から断熱空間6内に熱が放出される。放出された熱は冷却素子4、5を介して断熱部材1の外に放出される。冷却素子4、5は断熱部材1に取り付けられ、断熱部材1の断熱空間6に冷却素子4、5の冷却側、断熱部材1の外に冷却素子4、5の放熱側が配置される。このような構成によって、冷却台3の温度を低温(例えば-50°C)にすることが可能となる。断熱部材1の材料は内部に断熱空間を形成できればよく、特に限定されないが、発泡スチロール、発泡ウレタン、シリコンスポンジ、ヘミサル等を挙げることができる。断熱部材1は断熱材料のみで構成してもよいが、内部に空間を形成する筺体の内壁又は外壁に発泡スチロール、発泡ウレタン、シリコンスポンジ、ヘミサル等の断熱材料を取り付けてもよい。また、真空、空気は断熱作用を有するため、断熱部材として、真空や空気を介した二重構造の容器等を用いることもできる。このような断熱部材1は、内部に断熱空間を形成する、断熱体又は断熱箱とも呼ばれる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing a configuration of an embodiment of a cooling device of the present invention, and FIG. 2 is a perspective view. FIG. 3 is a conceptual diagram for explaining the temperature control of the cooling device of the present embodiment.
The cooling device of the present embodiment includes a heat insulating member 1 having a heat insulating space 6 therein, a thermoelectric element 2 such as a Peltier element, cooling elements 4 and 5, and a cooling connected to the heat absorption side of the thermoelectric element 2 on the heat absorption side. It has stand 3. The cooling table 3 may not be provided. The thermoelectric element 2 is attached to the heat insulating member 1, and the heat dissipation side of the thermoelectric element 2 is disposed in the heat insulating space 6 of the heat insulating member 1, and the heat absorption side of the thermoelectric element 2 is disposed outside the heat insulating member 1. Heat is released into the heat insulating space 6 from the heat radiation surface of the thermoelectric element 2 on the heat radiation side. The released heat is released outside the heat insulating member 1 through the cooling elements 4 and 5. The cooling elements 4 and 5 are attached to the heat insulating member 1, the cooling side of the cooling elements 4 and 5 is disposed in the heat insulating space 6 of the heat insulating member 1, and the heat radiating side of the cooling elements 4 and 5 is disposed outside the heat insulating member 1. With such a configuration, the temperature of the cooling table 3 can be lowered (for example, −50 ° C.). The material of the heat insulating member 1 is not particularly limited as long as a heat insulating space can be formed therein, and examples thereof include expanded polystyrene, expanded urethane, silicon sponge, hemisal, and the like. Although the heat insulation member 1 may be comprised only with a heat insulation material, you may attach heat insulation materials, such as a polystyrene foam, urethane foam, a silicon sponge, and hemisal, to the inner wall or outer wall of the housing which forms space inside. Further, since vacuum and air have a heat insulating action, a double-structured container or the like with vacuum or air can be used as the heat insulating member. Such a heat insulating member 1 is also called a heat insulating body or a heat insulating box that forms a heat insulating space inside.
 ペルチェ素子は、2種類の金属の接合部に電流を流すと、片方の金属から他方の金属へ熱が移動するペルチェ効果を利用した素子である。冷却素子は断熱空間内の温度を低下させる素子で、ペルチェ素子等の熱電素子を用いることができるが、他の素子を用いてもよい。例えば、ボルテックスクーラーと呼ばれる素子を冷却素子として用いることができる。ボルテックスクーラーは、ボルテックスチューブに圧縮空気を供給すると、製品内部にある特殊な部品ブッシング・ゼネレータの働きにより、空気が高速で回転を始め、高速回転により発生するクーラー内部での渦流、圧縮、膨張、圧力差を利用して冷風(熱を奪われた側)と熱風(熱を奪った側)に分離する素子である。冷却素子を複数設ける場合に、複数の冷却素子は、ペルチェ素子だけを用いて構成しても、ボルテックスクーラーだけを用いて構成しても、又はペルチェ素子とボルテックスクーラーとを組み合わせて構成してもよい。さらに、ペルチェ素子とボルテックスクーラー以外の素子を、ペルチェ素子、ボルテックスクーラー、又はペルチェ素子とボルテックスクーラーとの組み合わせに加えて冷却素子を構成してもよい。 A Peltier element is an element that utilizes the Peltier effect in which heat is transferred from one metal to the other when an electric current is passed through a joint between two kinds of metals. The cooling element is an element that lowers the temperature in the heat insulating space, and a thermoelectric element such as a Peltier element can be used, but other elements may be used. For example, an element called a vortex schooler can be used as the cooling element. When supplying compressed air to a vortex tube, the vortex cooler starts rotating at a high speed by the action of a special part bushing generator inside the product, and the vortex inside the cooler generated by the high speed rotation, compression, expansion, It is an element that separates into cold air (side deprived of heat) and hot air (side deprived of heat) using a pressure difference. When a plurality of cooling elements are provided, the plurality of cooling elements may be configured using only Peltier elements, may be configured using only a vortex cooler, or may be configured using a combination of Peltier elements and a vortex cooler. Good. Furthermore, elements other than the Peltier element and the vortex cooler may be configured as a cooling element in addition to the Peltier element, the vortex cooler, or the combination of the Peltier element and the vortex cooler.
 熱電素子2と、冷却素子4及び5とは、ペルチェ素子だけで構成し、熱電素子2を構成するペルチェ素子の放熱面と、冷却素子4及び5を構成するペルチェ素子の吸熱面とを断熱空間に直接露出させることができる。しかし、放熱効率を上げるために、ペルチェ素子の放熱面に放熱フィンと放熱ファンを取り付けて熱電素子2を構成してもよい。また、吸熱効率を上げるために、ペルチェ素子の吸熱面に吸熱ファンと吸熱フィンを取り付け、放熱効率を上げるために、このペルチェ素子の放熱面に放熱フィンと放熱ファンを取り付けて、冷却素子4及び5を構成してもよい。また、放熱フィンと放熱ファンの代わりに特許文献1に記載したように、流路を流れる冷媒を用いてペルチェ素子の放熱面を冷却してもよい。 The thermoelectric element 2 and the cooling elements 4 and 5 are composed only of Peltier elements, and the heat dissipation surface of the Peltier element constituting the thermoelectric element 2 and the heat absorption surface of the Peltier element constituting the cooling elements 4 and 5 are insulated. Can be directly exposed. However, in order to increase the heat dissipation efficiency, the thermoelectric element 2 may be configured by attaching a heat dissipation fin and a heat dissipation fan to the heat dissipation surface of the Peltier element. Further, in order to increase the heat absorption efficiency, a heat absorption fan and a heat absorption fin are attached to the heat absorption surface of the Peltier element, and in order to increase the heat dissipation efficiency, a heat radiation fin and a heat dissipation fan are attached to the heat dissipation surface of the Peltier element. 5 may be configured. Moreover, you may cool the thermal radiation surface of a Peltier element using the refrigerant | coolant which flows through a flow path, as described in patent document 1 instead of the thermal radiation fin and the thermal radiation fan.
 なお図1及び図2では、冷却素子を2つ設けた例を示しているが、冷却素子を1又は3以上設けてもよい。冷却素子の数は必要に応じて設定する。冷却素子の数が少ないと冷却温度の下限が高くなり、冷却温度に達する速度が低下することになる。
 図2では、断熱部材1の外観形状は直方体であるが、これに限定されず、熱電素子及び冷却素子を取り付け可能であればその他の形状であってもよく、例えば角錐台形状等の他の形状であってもよい。断熱空間6の形状はここでは断熱部材1の外観形状と同じ形状であるが、断熱空間6の形状は断熱部材1の外観形状と異なるようにしてもよい。例えば、断熱部材1の外観形状が直方体のときに、断熱空間6の形状を角錐台形状、逆角錐台形状、直方体と四角錐台とを組み合わせた形状、又は逆四角錐台と直方体とを組み合わせた形状としてもよい。
1 and 2 show an example in which two cooling elements are provided, one or more cooling elements may be provided. The number of cooling elements is set as needed. If the number of cooling elements is small, the lower limit of the cooling temperature increases, and the speed to reach the cooling temperature decreases.
In FIG. 2, the external shape of the heat insulating member 1 is a rectangular parallelepiped, but is not limited thereto, and may be any other shape as long as a thermoelectric element and a cooling element can be attached. It may be a shape. The shape of the heat insulating space 6 is the same as the external shape of the heat insulating member 1 here, but the shape of the heat insulating space 6 may be different from the external shape of the heat insulating member 1. For example, when the external shape of the heat insulating member 1 is a rectangular parallelepiped, the shape of the heat insulating space 6 is a truncated pyramid shape, an inverted truncated pyramid shape, a combination of a rectangular parallelepiped and a rectangular truncated pyramid, or an inverted rectangular truncated pyramid and a rectangular parallelepiped. It may be a different shape.
 冷却台3の設定温度は、熱電素子2の吸熱面の温度と、熱電素子2及び冷却素子4と5に与える電圧や電流との関係を予め測定しておき、熱電素子2及び冷却素子4と5に与える電圧や電流を設定すればよい。冷却台3の設定温度を可変とする場合は、図3に示すように、サーミスタ等の温度センサ201で熱電素子の吸熱面の温度を検出し、その温度が目標の温度(例えば-50°C)となるように制御部202で熱電素子2及び冷却素子4と5の少なくとも一つに与える電圧又は及び電流を調整する。熱電素子2と、冷却素子4及び5とが、ペルチェ素子を含む場合、ペルチェ素子の吸熱量は電流値に依存するので、電流値を制御することで、熱電素子2の吸熱面の温度を制御することができる。なお、温度を測定する場合に、ここでは熱電素子2の吸熱面の温度でなく冷却台3の温度を測定しているが、冷却台3の温度は熱電素子2の吸熱面の温度とほとんど変わらないので、実質的には冷却台3の温度測定は、熱電素子2の吸熱面の温度測定としてとらえることができる。 The set temperature of the cooling table 3 is determined in advance by measuring the relationship between the temperature of the endothermic surface of the thermoelectric element 2 and the voltage and current applied to the thermoelectric element 2 and the cooling elements 4 and 5. What is necessary is just to set the voltage and electric current given to 5. In the case where the set temperature of the cooling table 3 is variable, as shown in FIG. 3, the temperature sensor 201 such as a thermistor detects the temperature of the endothermic surface of the thermoelectric element, and the temperature is a target temperature (for example, −50 ° C. The voltage or current applied to at least one of the thermoelectric element 2 and the cooling elements 4 and 5 is adjusted by the control unit 202 so that When the thermoelectric element 2 and the cooling elements 4 and 5 include Peltier elements, the amount of heat absorbed by the Peltier elements depends on the current value. Therefore, the temperature of the endothermic surface of the thermoelectric element 2 is controlled by controlling the current value. can do. Here, when measuring the temperature, the temperature of the cooling table 3 is measured instead of the temperature of the endothermic surface of the thermoelectric element 2, but the temperature of the cooling table 3 is almost the same as the temperature of the endothermic surface of the thermoelectric element 2. Therefore, the temperature measurement of the cooling table 3 can be substantially regarded as the temperature measurement of the endothermic surface of the thermoelectric element 2.
 以下、ペルチェ素子の放熱面に放熱フィンと放熱ファンを取り付けて熱電素子を構成し、ペルチェ素子の吸熱面に吸熱ファンと吸熱フィンを取り付け、このペルチェ素子の放熱面に放熱フィンと放熱ファンを取り付けて、冷却素子を構成した冷却装置の構成例について説明する。 Hereafter, a heat dissipation fin and a heat dissipation fan are attached to the heat dissipation surface of the Peltier element to constitute a thermoelectric element, a heat absorption fan and a heat absorption fin are attached to the heat absorption surface of the Peltier element, and a heat dissipation fin and a heat dissipation fan are attached to the heat dissipation surface of the Peltier element. An example of the configuration of the cooling device that constitutes the cooling element will be described.
 (第1の構成例)
 図4Aは本発明の冷却装置の第1の構成例を示す縦断面図、図4Bは横断面図である。本第1の構成例において、熱電素子2は、ペルチェ素子20、放熱フィン41、及び放熱ファン42を用いる。冷却素子4、5としてそれぞれ、ペルチェ素子20、放熱フィン41、放熱ファン42、吸熱フィン51、及び吸熱ファン52を用いる。放熱フィン41、及び放熱ファン42は放熱部40となり、吸熱フィン51、及び吸熱ファン52は吸熱部50となる。断熱部材1の外観形状は直方体であり、断熱部材1内の断熱空間6の形状も直方体となっている。
 放熱フィン41が熱電素子2のペルチェ素子20の放熱面に接続され、放熱ファン42が放熱フィン41に接続されている。熱電素子2は断熱部材1の上面部に取り付けられ、冷却素子4、5は断熱部材1内の断熱空間6を介して対向するように断熱部材1の両側面部に取り付けられている。以下、この配置方向を左右方向とし、左右方向の側面部を左側面部、右側面部として説明する。冷却素子4、5のペルチェ素子20の吸熱面にはそれぞれ吸熱フィン51が接続され、吸熱フィン51に吸熱ファン52が接続されている。冷却素子4、5のペルチェ素子20の放熱面にはそれぞれ放熱フィン41が接続され、放熱フィン41に放熱ファン42が接続されている。
 熱電素子2のペルチェ素子20の放熱面から放出された熱は放熱フィン41、放熱ファン42を介して断熱空間6に放出される。放出された熱は吸熱ファン52、吸熱フィン51を介して、それぞれ冷却素子4、5のペルチェ素子20の吸熱面に伝えられ、熱は放熱面から放熱フィン41、放熱ファン42を介して断熱部材1の外に放出される。
(First configuration example)
FIG. 4A is a longitudinal sectional view showing a first configuration example of the cooling device of the present invention, and FIG. 4B is a transverse sectional view. In the first configuration example, the thermoelectric element 2 uses the Peltier element 20, the radiation fin 41, and the radiation fan 42. As the cooling elements 4 and 5, the Peltier element 20, the heat radiating fin 41, the heat radiating fan 42, the heat absorbing fin 51, and the heat absorbing fan 52 are used, respectively. The heat radiating fins 41 and the heat radiating fans 42 become the heat radiating portions 40, and the heat absorbing fins 51 and the heat radiating fans 52 become the heat absorbing portions 50. The appearance shape of the heat insulating member 1 is a rectangular parallelepiped, and the shape of the heat insulating space 6 in the heat insulating member 1 is also a rectangular parallelepiped.
The heat radiation fin 41 is connected to the heat radiation surface of the Peltier element 20 of the thermoelectric element 2, and the heat radiation fan 42 is connected to the heat radiation fin 41. The thermoelectric element 2 is attached to the upper surface portion of the heat insulating member 1, and the cooling elements 4 and 5 are attached to both side surface portions of the heat insulating member 1 so as to face each other through the heat insulating space 6 in the heat insulating member 1. Hereinafter, this arrangement direction will be referred to as the left-right direction, and side surfaces in the left-right direction will be described as a left side surface portion and a right side surface portion. The heat absorption fins 51 are connected to the heat absorption surfaces of the Peltier elements 20 of the cooling elements 4 and 5, respectively, and the heat absorption fan 52 is connected to the heat absorption fins 51. A heat radiation fin 41 is connected to each heat radiation surface of the Peltier elements 20 of the cooling elements 4 and 5, and a heat radiation fan 42 is connected to the heat radiation fin 41.
Heat released from the heat dissipation surface of the Peltier element 20 of the thermoelectric element 2 is released to the heat insulating space 6 through the heat dissipation fins 41 and the heat dissipation fan 42. The released heat is transferred to the heat absorbing surfaces of the Peltier elements 20 of the cooling elements 4 and 5 through the heat absorbing fans 52 and the heat absorbing fins 51, respectively. 1 is released.
 (第2の構成例)
 図5Aは本発明の冷却装置の第2の構成例を示す縦断面図、図5Bは横断面図である。本第2の構成例は、図4A及び図4Bに示した左右方向の左側面部、右側面部に冷却素子4、5が設けられ、断熱部材1の背面部に冷却素子7が設けられる。冷却素子7として、ペルチェ素子20、放熱フィン41、放熱ファン42、吸熱フィン51、及び吸熱ファン52を用いる。本第2の構成例では冷却素子は3個配置される。
(Second configuration example)
FIG. 5A is a longitudinal sectional view showing a second configuration example of the cooling device of the present invention, and FIG. 5B is a transverse sectional view. In the second configuration example, the cooling elements 4 and 5 are provided on the left and right side portions in the left-right direction shown in FIGS. 4A and 4B, and the cooling element 7 is provided on the back surface portion of the heat insulating member 1. As the cooling element 7, a Peltier element 20, a heat radiating fin 41, a heat radiating fan 42, a heat absorbing fin 51, and a heat absorbing fan 52 are used. In the second configuration example, three cooling elements are arranged.
 (第3の構成例)
 図6は本発明の冷却装置の第3の構成例を示す横断面図である。本第3の構成例は、図5A及び図5Bに示した、断熱部材1の左右方向の左側面部、右側面部に設けられた冷却素子4及び5、背面部(側面部の一つ)に設けられた冷却素子7の他に、断熱部材1の前面部(側面部の一つ)に冷却素子8を設けている。冷却素子8として、ペルチェ素子20、放熱フィン41、放熱ファン42、吸熱フィン51、及び吸熱ファン52を用いる。本第3の構成例では冷却素子は4個配置される。
(Third configuration example)
FIG. 6 is a cross-sectional view showing a third configuration example of the cooling device of the present invention. The third configuration example is provided on the left and right side surfaces of the heat insulating member 1 shown in FIGS. 5A and 5B, the cooling elements 4 and 5 provided on the right side, and the back surface (one of the side surfaces). In addition to the cooling element 7 provided, a cooling element 8 is provided on the front surface portion (one of the side surface portions) of the heat insulating member 1. As the cooling element 8, the Peltier element 20, the radiation fin 41, the radiation fan 42, the heat absorption fin 51, and the heat absorption fan 52 are used. In the third configuration example, four cooling elements are arranged.
 (第4の構成例)
 図7Aは本発明の冷却装置の第4の構成例を示す縦断面図、図7Bは横断面図である。本第4の構成例は、図4A及び図4Bに示した、断熱部材1の左右方向の左側面部、右側面部に冷却素子4及び5が設けられ、断熱部材1の底面部に冷却素子9が設けられる。冷却素子9として、ペルチェ素子20、放熱フィン41、放熱ファン42、吸熱フィン51、及び吸熱ファン52を用いる。本第4の構成例では冷却素子は3個配置される。
(Fourth configuration example)
FIG. 7A is a longitudinal sectional view showing a fourth configuration example of the cooling device of the present invention, and FIG. 7B is a transverse sectional view. In the fourth configuration example, the cooling elements 4 and 5 are provided on the left and right side surfaces of the heat insulating member 1 shown in FIGS. 4A and 4B, and the cooling element 9 is provided on the bottom surface of the heat insulating member 1. Provided. As the cooling element 9, the Peltier element 20, the radiation fin 41, the radiation fan 42, the heat absorption fin 51, and the heat absorption fan 52 are used. In the fourth configuration example, three cooling elements are arranged.
 (第5の構成例)
 図8は本発明の冷却装置の第5の構成例を示す横断面図である。本第5の構成例は、図6に示した、断熱部材1の左右方向の左側面部、右側面部に冷却素子4及び5が設けられ、背面部に冷却素子7が設けられ、前面部に冷却素子8が設けられ、底面部に冷却素子9が設けられている。本第5の構成例では冷却素子は5個配置される。
 以上、冷却装置の第1から第5の構成例について説明したが、断熱部材1の左右方向の左側面部、右側面部に設けられた冷却素子4及び5、背面部(側面部の一つ)に設けられた冷却素子7、前面部(側面部の一つ)に設けられた冷却素子8、底面部に設けられた冷却素子9は適宜組み合わせて配置することができる。例えば、冷却素子4、5、7、8及び9のいずれかを配置してもよい。また、冷却素子4と冷却素子7、冷却素子5と冷却素子7、冷却素子4と冷却素子8、冷却素子5と冷却素子8、冷却素子7と冷却素子9、冷却素子8と冷却素子9のいずれかの組み合わせ等を配置してもよい。さらに、冷却素子4と冷却素子5と冷却素子8、冷却素子4と冷却素子7と冷却素子9、冷却素子5と冷却素子7と冷却素子9の組み合わせ等を配置してもよい。
(Fifth configuration example)
FIG. 8 is a cross-sectional view showing a fifth configuration example of the cooling device of the present invention. In the fifth configuration example, the cooling elements 4 and 5 are provided on the left side surface and the right side surface portion of the heat insulating member 1 shown in FIG. 6, the cooling element 7 is provided on the back surface portion, and the front surface portion is cooled. An element 8 is provided, and a cooling element 9 is provided on the bottom surface. In the fifth configuration example, five cooling elements are arranged.
The first to fifth configuration examples of the cooling device have been described above. However, the left and right side surfaces of the heat insulating member 1, the cooling elements 4 and 5 provided on the right side, and the back surface (one of the side surfaces). The cooling element 7 provided, the cooling element 8 provided on the front surface portion (one of the side surface portions), and the cooling element 9 provided on the bottom surface portion can be appropriately combined and arranged. For example, any of the cooling elements 4, 5, 7, 8, and 9 may be arranged. Further, the cooling element 4 and the cooling element 7, the cooling element 5 and the cooling element 7, the cooling element 4 and the cooling element 8, the cooling element 5 and the cooling element 8, the cooling element 7 and the cooling element 9, the cooling element 8 and the cooling element 9 Any combination or the like may be arranged. Further, a cooling element 4, a cooling element 5, a cooling element 8, a cooling element 4, a cooling element 7, a cooling element 9, a combination of the cooling element 5, the cooling element 7, and the cooling element 9 may be arranged.
 (第6の構成例)
 第1から第5の構成例は、断熱部材1の断熱空間6の形状は、断熱部材1の外見形状と同じ直方体であったが、断熱部材1の外見形状と異なる形状としてもよい。図9は本発明の冷却装置の第6の構成例を示す縦断面図である。本第6の構成例では、断熱部材11の断熱空間6の上部を四角錐台形状とし、断熱部材11の底面部に4つの冷却素子9-1~9-4を配置している。断熱空間6は直方体と四角錐台とを組み合わせた形状となっている。冷却素子9-1~9-4のそれぞれは冷却素子9と同じ構成である。
 本構成例の冷却装置は、図9の矢印で示されるように、熱の流れの向きを直線状に最適化し、熱の移動効率を向上することができる。また、奥行き方向が薄くなる為、測定用装置などをステージ付近に設置する際に有利となる。さらに、側面部の冷却素子の突き出しが無くなり、加工や取り回しが容易となる。
(Sixth configuration example)
In the first to fifth configuration examples, the shape of the heat insulating space 6 of the heat insulating member 1 is the same rectangular parallelepiped as the appearance shape of the heat insulating member 1, but may be a shape different from the appearance shape of the heat insulating member 1. FIG. 9 is a longitudinal sectional view showing a sixth configuration example of the cooling device of the present invention. In the sixth configuration example, the upper portion of the heat insulating space 6 of the heat insulating member 11 has a quadrangular pyramid shape, and four cooling elements 9-1 to 9-4 are arranged on the bottom surface of the heat insulating member 11. The heat insulating space 6 has a shape combining a rectangular parallelepiped and a quadrangular pyramid. Each of the cooling elements 9-1 to 9-4 has the same configuration as the cooling element 9.
As shown by the arrows in FIG. 9, the cooling device of this configuration example can optimize the direction of heat flow in a straight line and improve the heat transfer efficiency. Further, since the depth direction is thin, it is advantageous when a measuring device or the like is installed near the stage. Furthermore, there is no protrusion of the cooling element on the side surface, and processing and handling become easy.
 (第7の構成例)
 本第7の構成例は、断熱空間6の形状が、断熱部材1の外見形状と異なる形状である他の例を示すものである。図10は本発明の冷却装置の第7の構成例を示す縦断面図である。本第7の構成例では、断熱部材12の断熱空間6の下部を逆四角錐台形状とし、断熱部材12の左右方向の左側面部、右側面部に冷却素子4及び5を配置し、断熱部材1の底面部に2つの冷却素子9-5、9-6を配置している。断熱空間6は逆四角錐台と直方体とを組み合わせた形状となっている。冷却素子9-5及び9-6は冷却素子9と同じ構成である。図10の矢印で示されるように、断熱部材1の底面部に2つの冷却素子9-5、9-6が設けられているために底面部方向に放出される熱の移動効率を向上することができる。
(Seventh configuration example)
The seventh configuration example shows another example in which the shape of the heat insulating space 6 is different from the appearance shape of the heat insulating member 1. FIG. 10 is a longitudinal sectional view showing a seventh configuration example of the cooling device of the present invention. In the seventh configuration example, the lower part of the heat insulating space 6 of the heat insulating member 12 has an inverted quadrangular pyramid shape, the cooling elements 4 and 5 are arranged on the left side surface and the right side surface of the heat insulating member 12 in the left-right direction, and the heat insulating member 1 Two cooling elements 9-5 and 9-6 are arranged on the bottom surface of each. The heat insulating space 6 has a shape in which an inverted square frustum and a rectangular parallelepiped are combined. The cooling elements 9-5 and 9-6 have the same configuration as the cooling element 9. As indicated by the arrows in FIG. 10, since the two cooling elements 9-5 and 9-6 are provided on the bottom surface of the heat insulating member 1, the efficiency of transferring heat released toward the bottom surface is improved. Can do.
 以上説明した実施形態及び第1~第7の構成例の冷却装置は、特に用途は限定されないが、半導体チップを低温でICプローブカードにより電気的特性の検査を行う半導体検査装置の冷却装置に好適に用いることができる。
 図11は半導体検査装置の一構成例を示す斜視図、図12は半導体検査装置の構成を示す縦断面図である。
The cooling device of the embodiment described above and the first to seventh configuration examples is not particularly limited in application, but is suitable for a cooling device of a semiconductor inspection device that inspects electrical characteristics of a semiconductor chip with an IC probe card at a low temperature. Can be used.
FIG. 11 is a perspective view showing a configuration example of the semiconductor inspection apparatus, and FIG. 12 is a longitudinal sectional view showing the configuration of the semiconductor inspection apparatus.
 本構成例の半導体検査装置は、図6に示す第3の構成例の冷却装置が用いられる。冷却台上には半導体チップ105が載置され、半導体チップ105は低温動作の設定温度(例えば、-50°C)に冷却される。半導体チップ105が冷却台上に載置された後に、ミラー102を半導体チップ105の挿入、挿出方向とは反対側に移動させ、上部からLED照明光をミラー102に照射する。そして、半導体チップ105からの反射光をカメラ103で受光し、ICプローブカードからの反射光をカメラ104で受光し、半導体チップ105が冷却台の所定の位置に配置されたかを画像合成により確認してアライメントを行う。 The cooling device of the third configuration example shown in FIG. 6 is used for the semiconductor inspection device of this configuration example. The semiconductor chip 105 is placed on the cooling table, and the semiconductor chip 105 is cooled to a set temperature (for example, −50 ° C.) for low temperature operation. After the semiconductor chip 105 is placed on the cooling table, the mirror 102 is moved to the side opposite to the insertion / extraction direction of the semiconductor chip 105, and the LED illumination light is irradiated onto the mirror 102 from above. Then, the reflected light from the semiconductor chip 105 is received by the camera 103, the reflected light from the IC probe card is received by the camera 104, and it is confirmed by image synthesis whether the semiconductor chip 105 is arranged at a predetermined position on the cooling table. Perform alignment.
 半導体チップ105が冷却台の所定の位置に配置されている場合は、半導体チップ105を上へ移動させ、ICプローブカードに半導体チップ105を接触させ、電気的検査を行う。検査後に検査後の半導体チップ105を移動させ、次の半導体チップが冷却台上に載置される。 When the semiconductor chip 105 is disposed at a predetermined position on the cooling stand, the semiconductor chip 105 is moved upward, the semiconductor chip 105 is brought into contact with the IC probe card, and an electrical inspection is performed. After the inspection, the semiconductor chip 105 after inspection is moved, and the next semiconductor chip is placed on the cooling table.
 以上、本発明の代表的な各実施形態について説明したが、本発明は、本願の請求の範囲によって規定される、その精神または主要な特徴から逸脱することなく、他の種々の形で実施することができる。そのため、前述した各実施形態は単なる例示にすぎず、限定的に解釈されるべきではない。本発明の範囲は特許請求の範囲によって示すものであって、明細書や要約書の記載には拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更はすべて本発明の範囲内のものである。 While typical embodiments of the present invention have been described above, the present invention can be implemented in various other forms without departing from the spirit or main features defined by the claims of the present application. be able to. Therefore, each embodiment mentioned above is only an illustration, and should not be interpreted limitedly. The scope of the present invention is indicated by the claims, and is not restricted by the description or the abstract. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 本願は、2016年11月28日に出願された特願2016-230043号に基づき、優先権の利益を主張するものである。そして、特願2016-230043号の内容は本願の明細書の内容に含まれる。 This application claims the benefit of priority based on Japanese Patent Application No. 2016-230043 filed on Nov. 28, 2016. The contents of Japanese Patent Application No. 2016-230043 are included in the contents of the specification of the present application.
 1,11、12 断熱部材
 2 熱電素子
 3 冷却台
 4、5、7、8、9 冷却素子
 6 断熱空間
 20 ペルチェ素子
 41 放熱フィン
 42 放熱ファン
 51 吸熱フィン
 52 吸熱ファン
DESCRIPTION OF SYMBOLS 1,11,12 Heat insulation member 2 Thermoelectric element 3 Cooling stand 4, 5, 7, 8, 9 Cooling element 6 Thermal insulation space 20 Peltier element 41 Radiation fin 42 Radiation fan 51 Endothermic fin 52 Endothermic fan

Claims (8)

  1.  内部に断熱空間を有する断熱部材と、
     前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に放熱側、前記断熱部材の外に吸熱側が配された熱電素子と、
     前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に冷却側、前記断熱部材の外に放熱側が配された一又は複数の冷却素子と、を備え、
     前記熱電素子の吸熱側の吸熱面が冷却される冷却装置。
    A heat insulating member having a heat insulating space inside;
    A thermoelectric element attached to the heat insulating member, a heat dissipating side in the heat insulating space of the heat insulating member, and a heat absorbing side arranged outside the heat insulating member;
    One or a plurality of cooling elements attached to the heat insulating member, provided with a cooling side in the heat insulating space of the heat insulating member, and a heat radiating side arranged outside the heat insulating member,
    A cooling device in which an endothermic surface on the endothermic side of the thermoelectric element is cooled.
  2.  前記吸熱面の温度を測定する温度センサと、前記吸熱面の温度が目標の温度となるように前記熱電素子と前記一又は複数の冷却素子とのうちの少なくとも一つの電流又は/及び電圧を制御する制御部とを備えた請求項1に記載の冷却装置。 A temperature sensor that measures the temperature of the endothermic surface, and controls at least one current or / and voltage of the thermoelectric element and the one or more cooling elements so that the temperature of the endothermic surface becomes a target temperature. The cooling device according to claim 1, further comprising a control unit.
  3.  前記断熱部材は、上面部、側面部、及び底面部を備え、前記熱電素子は記上面部に取り付けられ、前記一又は複数の冷却素子が前記側面部又は/及び前記底面部に取り付けられる請求項1又は2に記載の冷却装置。 The heat insulating member includes an upper surface portion, a side surface portion, and a bottom surface portion, the thermoelectric element is attached to the upper surface portion, and the one or more cooling elements are attached to the side surface portion and / or the bottom surface portion. The cooling device according to 1 or 2.
  4.  前記熱電素子はペルチェ素子と、放熱フィンと、放熱ファンと、を備えた請求項1から3のいずれかに記載の冷却装置。 The cooling device according to any one of claims 1 to 3, wherein the thermoelectric element includes a Peltier element, a radiation fin, and a radiation fan.
  5.  前記冷却素子は熱電素子であり、該熱電素子はペルチェ素子と、放熱フィンと、放熱ファンと、吸熱フィンと、吸熱ファンと、を備えた請求項1から4のいずれか1項に記載の冷却装置。 The cooling according to any one of claims 1 to 4, wherein the cooling element is a thermoelectric element, and the thermoelectric element includes a Peltier element, a heat radiating fin, a heat radiating fan, a heat absorbing fin, and a heat absorbing fan. apparatus.
  6.  前記断熱空間の形状は、前記断熱部材の外観形状と異なる請求項1から5のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 5, wherein a shape of the heat insulating space is different from an external shape of the heat insulating member.
  7.  内部に断熱空間を有する断熱部材と、
     前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に放熱側、前記断熱部材の外に吸熱側が配された熱電素子と、
     前記断熱部材に取り付けられ、前記断熱部材の前記断熱空間に冷却側、前記断熱部材の外に放熱側が配された一又は複数の冷却素子と、を備えた冷却装置の冷却方法であって、
     温度センサにより前記熱電素子の吸熱側の吸熱面の温度を測定し、前記吸熱面の温度が目標の温度となるように、前記熱電素子の電流又は/及び電圧を制御するとともに、前記断熱空間内の温度を下げるように前記一又は複数の冷却素子の少なくとも一つの電流又は/及び電圧を制御する冷却方法。
    A heat insulating member having a heat insulating space inside;
    A thermoelectric element attached to the heat insulating member, a heat dissipating side in the heat insulating space of the heat insulating member, and a heat absorbing side arranged outside the heat insulating member;
    A cooling method for a cooling device, comprising: one or a plurality of cooling elements attached to the heat insulating member, the cooling side in the heat insulating space of the heat insulating member, and the heat radiating side arranged outside the heat insulating member,
    The temperature of the endothermic surface of the thermoelectric element is measured by a temperature sensor, and the current or / and voltage of the thermoelectric element is controlled so that the temperature of the endothermic surface becomes a target temperature. A cooling method of controlling at least one current or / and voltage of the one or more cooling elements so as to lower the temperature of the cooling element.
  8.  請求項1から6のいずれか1項に記載の冷却装置と、前記吸熱面と接続され、半導体チップが載置される冷却台とを備え、前記冷却台に載置された状態で前記半導体チップの電気的特性を測定する半導体検査装置。 A cooling device according to any one of claims 1 to 6, and a cooling table connected to the endothermic surface and on which a semiconductor chip is mounted, wherein the semiconductor chip is mounted on the cooling table. Semiconductor inspection equipment that measures the electrical characteristics of
PCT/JP2017/003713 2016-11-28 2017-02-02 Cooling device, cooling method, and semiconductor inspection device, each of which using thermoelectric element WO2018096695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-230043 2016-11-28
JP2016230043A JP2018087647A (en) 2016-11-28 2016-11-28 Cooling device and cooling method using thermoelectric element, and semiconductor inspection device

Publications (1)

Publication Number Publication Date
WO2018096695A1 true WO2018096695A1 (en) 2018-05-31

Family

ID=62195933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003713 WO2018096695A1 (en) 2016-11-28 2017-02-02 Cooling device, cooling method, and semiconductor inspection device, each of which using thermoelectric element

Country Status (2)

Country Link
JP (1) JP2018087647A (en)
WO (1) WO2018096695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258225B2 (en) * 2019-02-12 2022-02-22 Fanuc Corporation Laser oscillator with enhanced dehumidification function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163425U (en) * 1988-04-22 1989-11-14
JP2000338603A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Cooling device
JP3160814U (en) * 2010-04-26 2010-07-08 株式会社Miyasa Cooling system
JP2015135932A (en) * 2014-01-20 2015-07-27 アイアールスペック株式会社 Peltier cooling type IC package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163425U (en) * 1988-04-22 1989-11-14
JP2000338603A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Cooling device
JP3160814U (en) * 2010-04-26 2010-07-08 株式会社Miyasa Cooling system
JP2015135932A (en) * 2014-01-20 2015-07-27 アイアールスペック株式会社 Peltier cooling type IC package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258225B2 (en) * 2019-02-12 2022-02-22 Fanuc Corporation Laser oscillator with enhanced dehumidification function

Also Published As

Publication number Publication date
JP2018087647A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9360514B2 (en) Thermal reliability testing systems with thermal cycling and multidimensional heat transfer
US10962297B2 (en) Multidimensional heat transfer system for cooling electronic components
JP5999665B2 (en) Heat transfer unit and temperature control device
WO2014145293A8 (en) Thermoelectric device
WO2012081056A1 (en) Cooling device and air conditioner provided therewith
KR101045009B1 (en) Temperature Evaluated Equipment of Semiconductor RAMRandom Access Memory with Enclosed Cycling Type
WO2018096695A1 (en) Cooling device, cooling method, and semiconductor inspection device, each of which using thermoelectric element
CN104703437A (en) Cooling device and cooling system
Totala et al. Study and fabrication of thermoelectric air cooling and heating system
JP3611174B2 (en) Semiconductor wafer temperature test equipment
KR101401868B1 (en) Cooling apparatus for electronic device
Aranguren et al. Study of complete thermoelectric generator behavior including water-to-ambient heat dissipation on the cold side
JP5828322B2 (en) Boiling cooler and electronic equipment using the same
Elarusi et al. Analysis and experimental investigation of optimum design of thermoelectric cooling/heating system for Car Seat Climate Control (CSCC)
WO2012081055A1 (en) Cooling device and air conditioner provided therewith
Ramaswamy et al. Thermal performance of a compact two-phase thermosyphon: response to evaporator confinement and transient loads
de Bock et al. Development and experimental validation of a micro/nano thermal ground plane
JP7064989B2 (en) Semiconductor cooling device
Ranjan et al. Thermoelectric package design for high ambient temperature electronics cooling
EP2363882A1 (en) Heat-dissipating device for supplying cold airflow
Anatychuk et al. Large-sized thermoelectric cooling module with heat pipes
JP2006207935A (en) Electronic cooling device
EP3262909B1 (en) Heat sinks including heat pipes and related methods
JP7366808B2 (en) Cooling system
KR101086892B1 (en) Heating and cooling system using electric energy of solar energy and wind power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873447

Country of ref document: EP

Kind code of ref document: A1