WO2018096658A1 - Blower, outdoor unit,and refrigeration cycle device - Google Patents
Blower, outdoor unit,and refrigeration cycle device Download PDFInfo
- Publication number
- WO2018096658A1 WO2018096658A1 PCT/JP2016/085021 JP2016085021W WO2018096658A1 WO 2018096658 A1 WO2018096658 A1 WO 2018096658A1 JP 2016085021 W JP2016085021 W JP 2016085021W WO 2018096658 A1 WO2018096658 A1 WO 2018096658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- blower
- blades
- outdoor unit
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/325—Rotors specially for elastic fluids for axial flow pumps for axial flow fans
- F04D29/327—Rotors specially for elastic fluids for axial flow pumps for axial flow fans with non identical blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/022—Multi-stage pumps with concentric rows of vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
Definitions
- the present invention relates to an axial flow type blower, an outdoor unit, and a refrigeration cycle apparatus.
- Patent Document 1 a rotating shaft portion, an inner blade group provided coaxially with the rotating shaft portion outside the rotating shaft portion, and provided coaxially with the inner blade group outside the inner blade group via an intermediate ring. And an axial fan with an outer blade group.
- the axial fan of Patent Document 1 is provided with an intermediate ring and a large number of blades. For this reason, the weight of the impeller of the axial fan of Patent Document 1 is significantly increased as compared with a normal axial fan. Moreover, since it is necessary to raise the intensity
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a blower, an outdoor unit, and a refrigeration cycle apparatus that can reduce the weight of the impeller and reduce the loss.
- the blower according to the present invention includes a cylindrical shaft portion provided on a rotation shaft, a ring portion provided on the outer peripheral side of the shaft portion around the rotation shaft, and the radial direction of the ring portion.
- a plurality of first blades provided outside the ring portion; a plurality of second blades provided between the shaft portion and the ring portion in a radial direction of the ring portion; and adjacent to the shaft portion.
- a plate-like connecting portion that connects two second blades adjacent in the circumferential direction among the plurality of second blades, or on the blade surface downstream of the plurality of second blades or the connecting portion.
- a plurality of third blades that are provided on the downstream surface and connected to the shaft portion.
- the outdoor unit according to the present invention includes the blower according to the present invention and a heat exchanger to which air is supplied by the blower.
- the refrigeration cycle apparatus according to the present invention includes the outdoor unit according to the present invention.
- the shaft portion and the second blade can be reinforced by the third blade. Therefore, it is possible to reduce the weight of the impeller while maintaining the strength of the shaft portion and the second blade. Further, the third blade not only reinforces the shaft portion and the second blade, but also performs aerodynamic work. Therefore, since the peeling area which generate
- FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG. 6.
- FIG. 7 is a cross-sectional view showing a VIII-VIII cross section of FIG. 6.
- It is a front view which shows the modification of the structure of the air blower 20 which concerns on Embodiment 1 of this invention.
- It is a front view which shows the modification of the structure of the air blower 20 which concerns on Embodiment 1 of this invention.
- It is a front view which shows the modification of the structure of the air blower 20 which concerns on Embodiment 1 of this invention.
- FIG. 1 is a perspective view showing a configuration of an outdoor unit 100 according to the present embodiment.
- FIG. 2 is a top view for explaining the internal configuration of outdoor unit 100 according to the present embodiment.
- FIG. 3 is a perspective view showing a state where the fan grill 2 is removed from the outdoor unit 100 according to the present embodiment.
- FIG. 4 is a perspective view showing a state where a part of the housing 1 is removed from the outdoor unit 100 according to the present embodiment.
- the relative dimensional relationships and shapes of the constituent members may be different from the actual ones.
- an outdoor unit of an air conditioner is illustrated as the outdoor unit 100.
- the outdoor unit 100 of this Embodiment is applicable also to the outdoor unit of another refrigeration cycle apparatus.
- an outdoor unit for a water heater has the same configuration as the outdoor unit of the air conditioner exemplified in this embodiment.
- the outdoor unit 100 has a rectangular parallelepiped casing 1.
- the housing 1 includes a first side surface 1a, a front surface 1b, a second side surface 1c, a back surface 1d, a top surface 1e, and a bottom surface 1f.
- the first side surface 1a and the back surface 1d are formed with openings for sucking air into the housing 1 from the outside.
- the front surface 1b is formed with an opening serving as an air outlet 1g for blowing air from the inside of the housing 1 to the outside.
- the air outlet 1g is covered with a fan grill 2.
- the fan grill 2 is for safety by preventing contact between an external object and the blower 20.
- the interior of the housing 1 is partitioned into a blower chamber 6 and a machine chamber 7 by a partition plate 5.
- a blower 20 In the blower chamber 6, a blower 20, a bell mouth 9, and a heat exchanger 8 are installed.
- the blower 20 includes an impeller 3 and a fan motor 4 that rotationally drives the impeller 3.
- the impeller 3 is connected to a drive shaft 4 a of the fan motor 4.
- the rotational driving force of the fan motor 4 is transmitted to the impeller 3 through the drive shaft 4a.
- the fan motor 4 is disposed between the impeller 3 and the heat exchanger 8 in the front-rear direction of the housing 1. The detailed configuration of the impeller 3 will be described later.
- the bell mouth 9 is attached to the front surface 1 b of the housing 1.
- the bell mouth 9 may be provided integrally with the front surface 1b or may be provided separately from the front surface 1b.
- the bell mouth 9 divides the suction side and the outlet side to form an air passage in the vicinity of the outlet 1g.
- the bell mouth 9 is configured to surround the outer periphery of the air outlet 1g.
- the bell mouth 9 is disposed on the outer side of the outer peripheral end of the first blade 31 described later so as to follow the rotation trajectory of the first blade 31.
- the fan grill 2 is attached to the front surface 1 b so as to cover the bell mouth 9 from the outside of the housing 1.
- the heat exchanger 8 has a substantially L-shaped overall shape when viewed from above.
- the heat exchanger 8 is installed along the first side surface 1 a and the back surface 1 d of the housing 1.
- the heat exchanger 8 is disposed on the suction side of the blower 20.
- the heat exchanger 8 is disposed between each of the first side surface 1 a and the back surface 1 d and the blower 20.
- the heat exchanger 8 has a plurality of plate-like fins provided in parallel to each other and a plurality of heat transfer tubes penetrating the plurality of plate-like fins.
- Each heat transfer tube extends in an L shape along the first side surface 1a and the back surface 1d.
- a refrigerant circulating through the refrigerant circuit flows in the heat transfer tube.
- heat exchanger 8 heat exchange between the refrigerant circulating in the heat transfer tube and the outdoor air supplied by the blower 20 is performed.
- the machine room 7 is provided with a compressor 10 that constitutes a refrigerant circuit together with the heat exchanger 8, and refrigerant piping that connects the components of the refrigerant circuit.
- a substrate box 12 is installed in the machine room 7.
- a control board for controlling equipment mounted in the outdoor unit 100 is accommodated in the substrate box 12.
- FIG. 5 is a perspective view showing a configuration of the blower 20 according to the present embodiment as viewed from the front side (downstream side).
- FIG. 6 is a front view showing the configuration of the blower 20 according to the present embodiment. 5 and 6, only the impeller 3 of the blower 20 is shown. In FIG. 6, the rotation direction of the blower 20 is indicated by an arrow. As shown in FIGS. 5 and 6, the blower 20 is an axial flow type blower that generates an air flow in a direction along the rotation axis R as a whole.
- the blower 20 includes a cylindrical shaft portion 30 provided on the rotation shaft R, and a shroud ring 34 (an example of a ring portion) provided on the outer peripheral side with respect to the rotation shaft R around the rotation shaft R. is doing.
- the shaft portion 30 is a shaft member that rotates about the rotation axis R.
- the shroud ring 34 has an annular or cylindrical shape. The shroud ring 34 rotates with the shaft portion 30 about the rotation axis R.
- the air blower 20 has the 1st blade
- the first blade 31 is provided outside the shroud ring 34 in the radial direction of the shroud ring 34.
- the first blade 31 is integrally connected to the outer peripheral surface of the shroud ring 34.
- wing 31 is a blade
- the number of first blades 31 is nine in this example.
- the plurality of first blades 31 have the same shape, and are arranged at equal intervals in the circumferential direction around the rotation axis R.
- the plurality of first blades 31 may have different shapes from each other, and the circumferential arrangement intervals may be different.
- the first blade 31 is a propeller fan type blade that blows air in the direction of the rotation axis R by rotating about the rotation axis R.
- the second blade 32 is provided between the shaft portion 30 and the shroud ring 34 in the radial direction of the shroud ring 34.
- the inner peripheral side of the second blade 32 is integrally connected to the outer peripheral surface of the shaft portion 30.
- the outer peripheral side of the second blade 32 is integrally connected to the inner peripheral surface of the shroud ring 34. That is, the shaft portion 30 and the shroud ring 34 are connected via the second blade 32.
- the number of second blades 32 may be the same as or different from the number of first blades 31.
- the number of second blades 32 in this example is three, which is smaller than the number of first blades 31.
- the plurality of second blades 32 have the same shape, and are arranged at equal intervals in the circumferential direction around the rotation axis R.
- the plurality of second blades 32 may have different shapes from each other, and the circumferential arrangement intervals may be different.
- the second blade 32 is a propeller fan type blade that blows air in the direction of the rotation axis R by rotating about the rotation axis R.
- the two second blades 32 adjacent to each other in the circumferential direction are integrally connected by a plate-like connecting portion 36 provided adjacent to the shaft portion 30.
- the connecting portion 36 connects the inner peripheral sides of the two second blades 32 adjacent in the circumferential direction.
- the downstream surface of the connecting portion 36 smoothly connects the blade surfaces (pressure surfaces) on the downstream side of the two second blades 32.
- the upstream surface of the coupling portion 36 smoothly connects the blade surfaces (negative pressure surfaces) on the upstream side of the two second blades 32.
- the number of connecting portions 36 is four, which is the same as the number of second blades 32.
- Integral wings are formed by connecting the plurality of second blades 32 integrally through the connecting portion 36. That is, the plurality of second blades 32 and the plurality of connecting portions 36 constitute a so-called bossless type propeller fan.
- the shaft portion 30 is formed so as to protrude on the blade surface on the downstream side of the integral blade.
- FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG.
- FIG. 8 is a cross-sectional view showing a VIII-VIII cross section of FIG.
- FIG. 7 shows a schematic circumferential cross section of the first portion of the second blade 32 close to the connection portion with the shroud ring 34.
- FIG. 8 shows a schematic circumferential cross section of a second portion of the second blade 32 that is located on the inner peripheral side of the first portion.
- the thickness t1 is larger than the wall thickness t2 (t1> t2).
- the thickness of the second blade 32 is, for example, thicker toward the outer peripheral side (the shroud ring 34 side) and thinner toward the inner peripheral side (the shaft portion 30 side).
- the third blade 33 has a configuration protruding in a rib shape on the blade surface on the downstream side of the integral blade (that is, on the blade surface on the downstream side of the second blade 32 or on the downstream surface of the connecting portion 36). is doing.
- the third blade 33 is formed integrally with the second blade 32 and the connecting portion 36.
- the third blade 33 is integrally connected to the outer peripheral surface of the shaft portion 30.
- the number of third blades 33 may be the same as or different from the number of first blades 31 and the number of second blades 32.
- the number of third blades 33 in this example is six, which is smaller than the number of first blades 31 and larger than the number of second blades 32.
- the plurality of third blades 33 have the same shape, and are arranged at equal intervals in the circumferential direction around the rotation axis R.
- the plurality of third blades 33 may have different shapes from each other, and the circumferential arrangement intervals may be different.
- the third blade 33 has, for example, a centrifugal blade shape. That is, the blade surface (pressure surface and suction surface) of the third blade 33 is parallel to the rotation axis R.
- the third blade 33 of this example has a sirocco blade shape that is curved so as to protrude toward the counter-rotating direction of the blower 20.
- the third blade 33 extends from the shaft portion 30 to the outer peripheral side of the connecting portion 36 along the blade surface on the downstream side of the second blade 32.
- the height of the third blade 33 decreases as the distance from the shaft portion 30 increases.
- the shaft part 30, the third blade 33 and the connecting part 36 constitute a hub of the blower 20.
- the third blade 33 not only performs aerodynamic work as a centrifugal blade, but also has a function of reinforcing the shaft portion 30 and the second blade 32 together with the connecting portion 36.
- FIGS. 9 to 11 are front views showing modified examples of the configuration of the blower 20 according to the present embodiment.
- the blower 20 according to the present embodiment may have a configuration as shown in each of FIGS.
- the third blade 33 has a turbo blade shape curved so as to protrude toward the rotation direction of the blower 20.
- the point that the third blade 33 has a centrifugal blade shape is the same as the configuration shown in FIGS.
- a shroud ring 37 is provided on the outer peripheral side of the first blade 31 in addition to the configuration shown in FIG. 9.
- the shroud ring 37 is provided on the outer peripheral side of the shroud ring 34 around the rotation axis R.
- the first blade 31 is connected to the inner peripheral surface of the shroud ring 37. Similar to the relation between the thicknesses t1 and t2 of the second blade 32 already described, the thickness (maximum blade thickness) t1 of the first portion of the first blade 31 is larger than that of the first portion of the first blade 31. It is larger than the wall thickness (maximum blade thickness) t2 in the second portion located on the inner peripheral side.
- a plurality of fourth blades 38 are provided outside the shroud ring 37 in the radial direction.
- the fourth blade 38 is connected to the outer peripheral surface of the shroud ring 37.
- the fourth blade 38 is a propeller fan type blade.
- the number of the fourth blades 38 may be the same as or different from the number of the first blades 31.
- FIG. 12 is a perspective view showing a configuration of an outdoor unit provided with a blower of a comparative example as viewed from the downstream side.
- the blower of the comparative example shown in FIG. 12 is different from the blower 20 according to the present embodiment in the following points. That is, in the blower of the comparative example, at least the boss 39 having a diameter larger than that of the shaft portion 30 is provided on the rotating shaft instead of the shaft portion 30, the connecting portion 36, and the third blade 33 of the present embodiment. Moreover, in the air blower of a comparative example, the thickness of the 2nd blade
- the blower of the comparative example has a boss 39, a second blade 32, a shroud ring 34, and a first blade 31.
- the inner peripheral side of the second blade 32 is connected to the outer peripheral surface of the boss 39 at a right angle.
- the outer peripheral side of the second blade 32 is connected to the shroud ring 34.
- the first blade 31 is connected to the shroud ring 34.
- FIG. 13 is a diagram for explaining the airflow A generated in the outdoor unit equipped with the blower of the comparative example.
- the boss 39 has a large diameter cylindrical shape. For this reason, the airflow A generated by the rotation of the second blade 32 flows along the outer peripheral surface of the boss 39 and then peels off at the distal end portion on the downstream side of the boss 39. As a result, a relatively large peeling area 40 is generated on the downstream side of the boss 39.
- FIG. 14 is a diagram for explaining the airflow A generated in the outdoor unit 100 including the blower 20 according to the present embodiment.
- the plurality of second blades 32 form an integral blade
- the shaft portion 30 is connected to the blade surface on the downstream side of the integral blade.
- a third blade 33 is formed. For this reason, air current can be generated by the third blade 33 even in the vicinity of the shaft portion 30 on the inner peripheral side of the second blade 32.
- the shaft portion 30 is reinforced by the third blade 33, the shaft portion 30 can be reduced in diameter. Therefore, the peeling area 40 generated on the downstream side of the shaft portion 30 can be reduced.
- the blower 20 includes the cylindrical shaft portion 30 provided on the rotation shaft R, and the shroud provided on the outer peripheral side with respect to the rotation portion R around the rotation shaft R.
- a ring 34 (an example of a ring portion), a plurality of first blades 31 provided outside the shroud ring 34 in the radial direction of the shroud ring 34, a shaft portion 30 and a shroud ring 34 in the radial direction of the shroud ring 34,
- a plurality of second blades 32 provided between and a plate-like member provided adjacent to the shaft portion 30 and connecting two second blades 32 adjacent to each other in the circumferential direction among the plurality of second blades 32.
- a connecting portion 36 and a plurality of third blades 33 provided on the downstream blade surface of the plurality of second blades 32 or on the downstream surface of the connecting portion 36 and connected to the shaft portion 30. It is.
- the shaft portion 30 and the second blade 32 can be reinforced by the third blade 33.
- the shaft portion 30 can be reduced in diameter and thickness, and the second blade 32 can be thinned. Therefore, the impeller 3 of the blower 20 can be reduced in weight. Thereby, size reduction of the fan motor 4, long life of the fan motor 4, and manufacturing cost reduction of the blower 20 can be realized together.
- the third blade 33 not only reinforces the shaft portion 30 and the second blade 32 but also performs aerodynamic work. For this reason, the third blade 33 can also generate an air current around the shaft portion 30. Therefore, the peeling area 40 generated on the downstream side of the shaft portion 30 can be reduced, and the generation of vortices on the downstream side of the shaft portion 30 can be suppressed. Thereby, the loss of the pressure flow characteristic due to the generation of vortices can be reduced, and the noise due to the generation of vortices can be reduced.
- each of the plurality of second blades 32 has a first portion (for example, a portion close to a connection portion with the shroud ring 34 illustrated in FIG. 7) and the first portion. And a second portion (for example, a portion shown in FIG. 8) located on the inner peripheral side.
- the thickness at the first portion (for example, the maximum blade thickness in the circumferential section of the first portion) is t1
- the thickness at the second portion is t2.
- the thickness t1 and the thickness t2 satisfy the relationship of t1> t2.
- the thickness of the outer peripheral side portion of the second blade 32 can be increased without increasing the weight of the second blade 32 as a whole. Therefore, the strength of the connection portion between the second blade 32 and the shroud ring 34 can be increased.
- the inner peripheral side portion of the second blade 32 reinforced by the third blade 33 sufficient strength can be obtained even if the wall thickness is reduced. Therefore, according to said structure, the air blower 20 which can fully maintain intensity
- each of the plurality of third blades 33 has a centrifugal blade shape. According to this configuration, an air flow can be generated in the vicinity of the shaft portion 30. Moreover, according to this structure, since the blade surface of the 3rd blade
- wing 33 is parallel to the rotating shaft R, it can prevent that an undercut part arises. Therefore, the impeller 3 using the mold can be easily formed.
- the outdoor unit 100 according to the present embodiment includes the blower 20 according to the present embodiment and the heat exchanger 8 to which air is supplied by the blower 20. According to this configuration, the same effect as described above can be obtained in the outdoor unit 100.
- FIG. 15 is a front view showing the configuration of the blower 20 according to the present embodiment.
- the blower 20 according to the present embodiment is different from the blower 20 of the first embodiment in the configuration of the third blade 33.
- the third blade 33 is provided on the blade surface on the downstream side of the second blade 32 or on the downstream surface of the connecting portion 36.
- the third blade 33 has a centrifugal blade shape having a blade surface with an arcuate cross section.
- the end portions of the three third blades 33 are connected to each other, and are arranged in a substantially triangular shape surrounding the shaft portion 30 as a whole.
- Each blade surface of the third blade 33 is convex toward the rotation axis R side.
- Each of the third blades 33 is integrally connected to the outer peripheral surface of the shaft portion 30.
- FIG. 16 is a front view showing a modification of the configuration of the blower 20 according to the present embodiment.
- the blade surfaces of the three third blades 33 are convex on the outer peripheral side.
- wing 33 is integrally connected to the outer peripheral surface of the axial part 30 via the rib not shown.
- wing 33 is not only connected to the axial part 30, but the edge parts of the 3rd blade
- the three third blades 33 are disposed in a substantially triangular shape surrounding the shaft portion 30, but four or more third blades are disposed in a polygonal shape surrounding the shaft portion 30. May be.
- FIG. 17 is a circuit diagram showing a configuration of the air-conditioning apparatus according to the present embodiment.
- the air conditioner has a refrigerant circuit for circulating the refrigerant.
- the refrigerant circuit has a configuration in which a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an expansion device 105 (for example, an expansion valve), and an indoor heat exchanger 201 are connected by a refrigerant pipe.
- the air conditioner includes an outdoor unit 100 and an indoor unit 200.
- the outdoor unit 100 and the indoor unit 200 are connected via a gas pipe 300 and a liquid pipe 400.
- the gas pipe 300 constitutes a part of the refrigerant pipe and distributes the gas refrigerant.
- the liquid pipe 400 constitutes a part of the refrigerant pipe and circulates the liquid refrigerant or the gas-liquid two-phase refrigerant.
- the outdoor unit 100 in the present embodiment accommodates a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an expansion device 105, and an outdoor fan 104 that supplies air to the outdoor heat exchanger 103.
- a compressor 101 a four-way valve 102
- an outdoor heat exchanger 103 the heat exchanger 8 in Embodiment 1 is used.
- the outdoor blower 104 the blower 20 in the first or second embodiment is used.
- Compressor 101 compresses and discharges the sucked refrigerant.
- the compressor 101 includes an inverter device or the like, and can arbitrarily change the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operation frequency.
- the four-way valve 102 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from a control device (not shown).
- the outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (for example, outdoor air).
- air for example, outdoor air
- the outdoor heat exchanger 103 functions as an evaporator. That is, the outdoor heat exchanger 103 performs heat exchange between the low-pressure two-phase refrigerant flowing from the liquid pipe 400 and the air supplied by the outdoor blower 104, and evaporates the refrigerant.
- the outdoor heat exchanger 103 functions as a condenser. That is, the outdoor heat exchanger 103 performs heat exchange between the high-pressure gas refrigerant compressed by the compressor 101 and the air supplied by the outdoor blower 104 to condense the refrigerant.
- the outdoor blower 104 may include an inverter device, and may change the rotation speed finely by arbitrarily changing the operation frequency.
- the expansion device 105 adjusts the refrigerant pressure and the like by changing the opening.
- the indoor unit 200 contains an indoor heat exchanger 201 and an indoor blower 202 that supplies air to the indoor heat exchanger 201.
- the indoor heat exchanger 201 performs heat exchange between the refrigerant and air (for example, indoor air).
- air for example, indoor air
- the indoor heat exchanger 201 functions as a condenser. That is, the indoor heat exchanger 201 performs heat exchange between the high-pressure gas refrigerant flowing in from the gas pipe 300 and the air supplied from the indoor blower 202, and condenses the refrigerant as a liquid refrigerant or a gas-liquid two-phase refrigerant.
- the liquid pipe 400 is caused to flow out.
- the air that has passed through the indoor heat exchanger 201 is heated by heat exchange with the refrigerant.
- the indoor heat exchanger 201 functions as an evaporator.
- the indoor heat exchanger 201 exchanges heat between the low-pressure two-phase refrigerant that has been decompressed by the expansion device 105 and flows from the liquid pipe 400 and the air supplied by the indoor blower 202, and evaporates the refrigerant to provide gas.
- the refrigerant flows out to the gas pipe 300 side.
- the air that has passed through the indoor heat exchanger 201 is cooled by heat exchange with the refrigerant.
- the rotation speed of the indoor blower 202 is determined by, for example, user settings. Although it does not specifically limit, the air blower 20 in Embodiment 1 or 2 can be used also for the indoor air blower 202. FIG.
- the air-conditioning apparatus (an example of a refrigeration cycle apparatus) according to the present embodiment includes the outdoor unit 100 according to the first embodiment. According to this configuration, the same effect as in the first embodiment can be obtained in the air conditioner.
- Embodiments 1 to 3 can be implemented in combination with each other.
- Examples of utilization of the present invention include outdoor units constituting the refrigeration cycle apparatus, for example, outdoor units such as an air conditioner and a water heater, and various devices and facilities in which a blower is installed.
- the present invention can be widely used for various devices and equipment in which these fans are installed.
- 1 housing 1a first side, 1b front, 1c second side, 1d back, 1e top, 1f bottom, 1g outlet, 2 fan grill, 3 impeller, 4 fan motor, 4a drive shaft, 5 partition plate, 6 blower room, 7 machine room, 8 heat exchanger, 9 bellmouth, 10 compressor, 12 substrate box, 20 blower, 30 shaft, 31 first blade, 32 second blade, 33 third blade, 34 shroud ring , 36 connecting part, 37 shroud ring, 38 4th blade, 39 boss, 40 peeling zone, 100 outdoor unit, 101 compressor, 102 four-way valve, 103 outdoor heat exchanger, 104 outdoor blower, 105 throttle device, 200 indoor unit , 201 indoor heat exchanger, 202 indoor blower, 300 gas piping, 400 liquid piping, A airflow, R rotating shaft.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
This blower has: a hollow cylindrical shaft section provided on a rotation axis; a ring section provided on the outer peripheral side of the shaft section so as to be centered on the rotation axis; a plurality of first blades provided outside the ring section in the radial direction of the ring section; a plurality of second blades provided between the shaft section and the ring section in the radial direction of the ring section; a plate-shaped connection section provided adjacent to the shaft section and connecting two circumferentially adjacent second blades of the plurality of second blades; and a plurality of third blades provided either on the downstream blade surfaces of the plurality of second blades or on the downstream surface of the connection section and connected to the shaft section.
Description
本発明は、軸流型の送風機、室外機及び冷凍サイクル装置に関するものである。
The present invention relates to an axial flow type blower, an outdoor unit, and a refrigeration cycle apparatus.
特許文献1には、回転軸部と、回転軸部の外側に回転軸部と同軸に設けられた内側羽根群と、中間リングを介して内側羽根群の外側に内側羽根群と同軸に設けられた外側羽根群と、を備えた軸流ファンが記載されている。
In Patent Document 1, a rotating shaft portion, an inner blade group provided coaxially with the rotating shaft portion outside the rotating shaft portion, and provided coaxially with the inner blade group outside the inner blade group via an intermediate ring. And an axial fan with an outer blade group.
特許文献1の軸流ファンには、中間リング及び多数の羽根が設けられている。このため、特許文献1の軸流ファンの羽根車の重量は、通常の軸流ファンと比較して大幅に増加する。また、重量の増加に応じて羽根車の強度を高める必要があるため、特許文献1の軸流ファンの回転軸部には、径が大きく肉厚の厚い円筒ボスが設けられている。この円筒ボスは、多数の補強リブによって補強されている。このような円筒ボスが設けられることにより、特許文献1の軸流ファンには、羽根車の重量がさらに増加してしまうという課題があった。
The axial fan of Patent Document 1 is provided with an intermediate ring and a large number of blades. For this reason, the weight of the impeller of the axial fan of Patent Document 1 is significantly increased as compared with a normal axial fan. Moreover, since it is necessary to raise the intensity | strength of an impeller according to the increase in weight, the rotating shaft part of the axial fan of patent document 1 is provided with the diameter and thick cylindrical boss | hub. The cylindrical boss is reinforced by a number of reinforcing ribs. By providing such a cylindrical boss, the axial fan of Patent Document 1 has a problem that the weight of the impeller further increases.
また、特許文献1の軸流ファンでは、大径の円筒ボスが設けられるため、円筒ボスの下流側に大きい剥離域が発生してしまう。このため、軸流ファンの損失が大きくなってしまうという課題があった。
Further, in the axial fan of Patent Document 1, since a large-diameter cylindrical boss is provided, a large separation area is generated on the downstream side of the cylindrical boss. For this reason, the subject that the loss of an axial fan will become large occurred.
本発明は、上述のような課題を解決するためになされたものであり、羽根車を軽量化できるとともに損失を低減できる送風機、室外機及び冷凍サイクル装置を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a blower, an outdoor unit, and a refrigeration cycle apparatus that can reduce the weight of the impeller and reduce the loss.
本発明に係る送風機は、回転軸上に設けられた筒状の軸部と、前記回転軸を中心として前記軸部よりも外周側に設けられたリング部と、前記リング部の径方向において前記リング部よりも外側に設けられた複数の第1羽根と、前記リング部の径方向において前記軸部と前記リング部との間に設けられた複数の第2羽根と、前記軸部に隣接して設けられ、前記複数の第2羽根のうち周方向に隣り合う2つの第2羽根同士を連結する板状の連結部と、前記複数の第2羽根の下流側の翼面上又は前記連結部の下流側の表面上に設けられるとともに前記軸部に接続された複数の第3羽根と、を有するものである。
本発明に係る室外機は、上記本発明に係る送風機と、前記送風機により空気が供給される熱交換器と、を備えたものである。
本発明に係る冷凍サイクル装置は、上記本発明に係る室外機を備えたものである。 The blower according to the present invention includes a cylindrical shaft portion provided on a rotation shaft, a ring portion provided on the outer peripheral side of the shaft portion around the rotation shaft, and the radial direction of the ring portion. A plurality of first blades provided outside the ring portion; a plurality of second blades provided between the shaft portion and the ring portion in a radial direction of the ring portion; and adjacent to the shaft portion. A plate-like connecting portion that connects two second blades adjacent in the circumferential direction among the plurality of second blades, or on the blade surface downstream of the plurality of second blades or the connecting portion. And a plurality of third blades that are provided on the downstream surface and connected to the shaft portion.
The outdoor unit according to the present invention includes the blower according to the present invention and a heat exchanger to which air is supplied by the blower.
The refrigeration cycle apparatus according to the present invention includes the outdoor unit according to the present invention.
本発明に係る室外機は、上記本発明に係る送風機と、前記送風機により空気が供給される熱交換器と、を備えたものである。
本発明に係る冷凍サイクル装置は、上記本発明に係る室外機を備えたものである。 The blower according to the present invention includes a cylindrical shaft portion provided on a rotation shaft, a ring portion provided on the outer peripheral side of the shaft portion around the rotation shaft, and the radial direction of the ring portion. A plurality of first blades provided outside the ring portion; a plurality of second blades provided between the shaft portion and the ring portion in a radial direction of the ring portion; and adjacent to the shaft portion. A plate-like connecting portion that connects two second blades adjacent in the circumferential direction among the plurality of second blades, or on the blade surface downstream of the plurality of second blades or the connecting portion. And a plurality of third blades that are provided on the downstream surface and connected to the shaft portion.
The outdoor unit according to the present invention includes the blower according to the present invention and a heat exchanger to which air is supplied by the blower.
The refrigeration cycle apparatus according to the present invention includes the outdoor unit according to the present invention.
本発明によれば、軸部及び第2羽根を第3羽根によって補強することができる。したがって、軸部及び第2羽根の強度を維持しつつ、羽根車を軽量化することができる。また、第3羽根は、軸部及び第2羽根を補強するだけでなく空気力学的な仕事を行う。したがって、軸部の下流側で発生する剥離域を小さくすることができるため、送風機の損失を低減することができる。
According to the present invention, the shaft portion and the second blade can be reinforced by the third blade. Therefore, it is possible to reduce the weight of the impeller while maintaining the strength of the shaft portion and the second blade. Further, the third blade not only reinforces the shaft portion and the second blade, but also performs aerodynamic work. Therefore, since the peeling area which generate | occur | produces in the downstream of an axial part can be made small, the loss of a fan can be reduced.
実施の形態1.
本発明の実施の形態1に係る送風機及び室外機について説明する。図1は、本実施の形態に係る室外機100の構成を示す斜視図である。図2は、本実施の形態に係る室外機100の内部構成を説明するための上面図である。図3は、本実施の形態に係る室外機100からファングリル2を取り外した状態を示す斜視図である。図4は、本実施の形態に係る室外機100から筐体1の一部を取り外した状態を示す斜視図である。なお、図1~図4を含む以下の図面では、各構成部材の相対的な寸法の関係や形状等が実際のものとは異なる場合がある。Embodiment 1 FIG.
A blower and an outdoor unit according toEmbodiment 1 of the present invention will be described. FIG. 1 is a perspective view showing a configuration of an outdoor unit 100 according to the present embodiment. FIG. 2 is a top view for explaining the internal configuration of outdoor unit 100 according to the present embodiment. FIG. 3 is a perspective view showing a state where the fan grill 2 is removed from the outdoor unit 100 according to the present embodiment. FIG. 4 is a perspective view showing a state where a part of the housing 1 is removed from the outdoor unit 100 according to the present embodiment. In the following drawings including FIG. 1 to FIG. 4, the relative dimensional relationships and shapes of the constituent members may be different from the actual ones.
本発明の実施の形態1に係る送風機及び室外機について説明する。図1は、本実施の形態に係る室外機100の構成を示す斜視図である。図2は、本実施の形態に係る室外機100の内部構成を説明するための上面図である。図3は、本実施の形態に係る室外機100からファングリル2を取り外した状態を示す斜視図である。図4は、本実施の形態に係る室外機100から筐体1の一部を取り外した状態を示す斜視図である。なお、図1~図4を含む以下の図面では、各構成部材の相対的な寸法の関係や形状等が実際のものとは異なる場合がある。
A blower and an outdoor unit according to
本実施の形態では、室外機100として空気調和装置の室外機を例示している。本実施の形態の室外機100は、他の冷凍サイクル装置の室外機にも適用できる。例えば給湯器用の室外機は、本実施の形態で例示された空気調和装置の室外機と同様の構成を有している。
In this embodiment, an outdoor unit of an air conditioner is illustrated as the outdoor unit 100. The outdoor unit 100 of this Embodiment is applicable also to the outdoor unit of another refrigeration cycle apparatus. For example, an outdoor unit for a water heater has the same configuration as the outdoor unit of the air conditioner exemplified in this embodiment.
図1~図4に示すように、室外機100は、直方体形状の筐体1を有している。筐体1は、第1側面1a、前面1b、第2側面1c、背面1d、上面1e及び底面1fを備えている。第1側面1a及び背面1dには、外部から筐体1内に空気を吸い込むための開口部が形成されている。前面1bには、筐体1内から外部に空気を吹き出す吹出口1gとなる開口部が形成されている。吹出口1gは、ファングリル2によって覆われている。ファングリル2は、外部の物体と送風機20との接触を防止して安全を図るためのものである。
As shown in FIGS. 1 to 4, the outdoor unit 100 has a rectangular parallelepiped casing 1. The housing 1 includes a first side surface 1a, a front surface 1b, a second side surface 1c, a back surface 1d, a top surface 1e, and a bottom surface 1f. The first side surface 1a and the back surface 1d are formed with openings for sucking air into the housing 1 from the outside. The front surface 1b is formed with an opening serving as an air outlet 1g for blowing air from the inside of the housing 1 to the outside. The air outlet 1g is covered with a fan grill 2. The fan grill 2 is for safety by preventing contact between an external object and the blower 20.
筐体1の内部は、仕切板5によって送風機室6と機械室7とに仕切られている。送風機室6には、送風機20、ベルマウス9及び熱交換器8が設置されている。
The interior of the housing 1 is partitioned into a blower chamber 6 and a machine chamber 7 by a partition plate 5. In the blower chamber 6, a blower 20, a bell mouth 9, and a heat exchanger 8 are installed.
送風機20は、羽根車3と、羽根車3を回転駆動するファンモータ4と、を有している。羽根車3は、ファンモータ4の駆動軸4aに接続されている。ファンモータ4の回転駆動力は、駆動軸4aを介して羽根車3に伝達される。ファンモータ4は、筐体1の前後方向において、羽根車3と熱交換器8との間に配置されている。羽根車3の詳細な構成については後述する。
The blower 20 includes an impeller 3 and a fan motor 4 that rotationally drives the impeller 3. The impeller 3 is connected to a drive shaft 4 a of the fan motor 4. The rotational driving force of the fan motor 4 is transmitted to the impeller 3 through the drive shaft 4a. The fan motor 4 is disposed between the impeller 3 and the heat exchanger 8 in the front-rear direction of the housing 1. The detailed configuration of the impeller 3 will be described later.
ベルマウス9は、筐体1の前面1bに取り付けられている。ベルマウス9は、前面1bと一体的に設けられていてもよいし、前面1bとは別体として設けられていてもよい。ベルマウス9は、吸込側と吹出側とを区切って吹出口1g近傍の風路を形成するものである。ベルマウス9は、吹出口1gの外周を囲むように構成されている。ベルマウス9は、後述する第1羽根31の外周端よりも外側に、第1羽根31の回転軌跡に沿うように配置されている。ファングリル2は、筐体1の外側からベルマウス9を覆うように前面1bに取り付けられている。
The bell mouth 9 is attached to the front surface 1 b of the housing 1. The bell mouth 9 may be provided integrally with the front surface 1b or may be provided separately from the front surface 1b. The bell mouth 9 divides the suction side and the outlet side to form an air passage in the vicinity of the outlet 1g. The bell mouth 9 is configured to surround the outer periphery of the air outlet 1g. The bell mouth 9 is disposed on the outer side of the outer peripheral end of the first blade 31 described later so as to follow the rotation trajectory of the first blade 31. The fan grill 2 is attached to the front surface 1 b so as to cover the bell mouth 9 from the outside of the housing 1.
熱交換器8は、上面視で略L字状の全体形状を有している。熱交換器8は、筐体1の第1側面1a及び背面1dに沿って設置されている。熱交換器8は、送風機20の吸込側に配置されている。熱交換器8は、第1側面1a及び背面1dの各々と送風機20との間に配置されている。熱交換器8は、互いに並列に設けられた複数の板状フィンと、複数の板状フィンを貫通した複数の伝熱管と、を有している。各伝熱管は、第1側面1a及び背面1dに沿ってL字状に延伸している。伝熱管内には、冷媒回路を循環する冷媒が流通する。熱交換器8では、伝熱管内を流通する冷媒と、送風機20によって供給される室外空気との熱交換が行われる。
The heat exchanger 8 has a substantially L-shaped overall shape when viewed from above. The heat exchanger 8 is installed along the first side surface 1 a and the back surface 1 d of the housing 1. The heat exchanger 8 is disposed on the suction side of the blower 20. The heat exchanger 8 is disposed between each of the first side surface 1 a and the back surface 1 d and the blower 20. The heat exchanger 8 has a plurality of plate-like fins provided in parallel to each other and a plurality of heat transfer tubes penetrating the plurality of plate-like fins. Each heat transfer tube extends in an L shape along the first side surface 1a and the back surface 1d. A refrigerant circulating through the refrigerant circuit flows in the heat transfer tube. In the heat exchanger 8, heat exchange between the refrigerant circulating in the heat transfer tube and the outdoor air supplied by the blower 20 is performed.
機械室7には、熱交換器8と共に冷媒回路を構成する圧縮機10と、冷媒回路の構成要素同士を接続する冷媒配管と、が設置されている。また、機械室7には基板箱12が設置されている。基板箱12内には、室外機100内に搭載された機器を制御する制御基板が収容されている。
The machine room 7 is provided with a compressor 10 that constitutes a refrigerant circuit together with the heat exchanger 8, and refrigerant piping that connects the components of the refrigerant circuit. A substrate box 12 is installed in the machine room 7. A control board for controlling equipment mounted in the outdoor unit 100 is accommodated in the substrate box 12.
次に、送風機20の構成について説明する。図5は、本実施の形態に係る送風機20を正面側(下流側)から見た構成を示す斜視図である。図6は、本実施の形態に係る送風機20の構成を示す正面図である。図5及び図6では、送風機20のうち羽根車3のみを示している。図6では、送風機20の回転方向を矢印で表している。図5及び図6に示すように、送風機20は、全体として、回転軸Rに沿う方向に空気の流れを生じさせる軸流型の送風機である。送風機20は、回転軸R上に設けられた筒状の軸部30と、回転軸Rを中心として軸部30よりも外周側に設けられたシュラウドリング34(リング部の一例)と、を有している。軸部30は、回転軸Rを中心として回転する軸部材である。シュラウドリング34は、環状又は筒状の形状を有している。シュラウドリング34は、回転軸Rを中心として軸部30と共に回転する。また、送風機20は、翼として、第1羽根31、第2羽根32及び第3羽根33を有している。
Next, the configuration of the blower 20 will be described. FIG. 5 is a perspective view showing a configuration of the blower 20 according to the present embodiment as viewed from the front side (downstream side). FIG. 6 is a front view showing the configuration of the blower 20 according to the present embodiment. 5 and 6, only the impeller 3 of the blower 20 is shown. In FIG. 6, the rotation direction of the blower 20 is indicated by an arrow. As shown in FIGS. 5 and 6, the blower 20 is an axial flow type blower that generates an air flow in a direction along the rotation axis R as a whole. The blower 20 includes a cylindrical shaft portion 30 provided on the rotation shaft R, and a shroud ring 34 (an example of a ring portion) provided on the outer peripheral side with respect to the rotation shaft R around the rotation shaft R. is doing. The shaft portion 30 is a shaft member that rotates about the rotation axis R. The shroud ring 34 has an annular or cylindrical shape. The shroud ring 34 rotates with the shaft portion 30 about the rotation axis R. Moreover, the air blower 20 has the 1st blade | wing 31, the 2nd blade | wing 32, and the 3rd blade | wing 33 as a wing | blade.
第1羽根31は、シュラウドリング34の径方向においてシュラウドリング34よりも外側に設けられている。第1羽根31は、シュラウドリング34の外周面に例えば一体的に接続されている。第1羽根31は、本例の送風機20において最も外周側に位置する翼である。第1羽根31の枚数は、本例では9枚である。複数の第1羽根31は同一の形状を有しており、回転軸Rを中心として周方向に等間隔で配置されている。複数の第1羽根31は互いに異なる形状を有していてもよいし、周方向の配置間隔が異なっていてもよい。第1羽根31は、回転軸Rを中心として回転することにより回転軸R方向に空気を送風するプロペラファン型の翼である。
The first blade 31 is provided outside the shroud ring 34 in the radial direction of the shroud ring 34. For example, the first blade 31 is integrally connected to the outer peripheral surface of the shroud ring 34. The 1st blade | wing 31 is a blade | wing located in the outermost peripheral side in the air blower 20 of this example. The number of first blades 31 is nine in this example. The plurality of first blades 31 have the same shape, and are arranged at equal intervals in the circumferential direction around the rotation axis R. The plurality of first blades 31 may have different shapes from each other, and the circumferential arrangement intervals may be different. The first blade 31 is a propeller fan type blade that blows air in the direction of the rotation axis R by rotating about the rotation axis R.
第2羽根32は、シュラウドリング34の径方向において軸部30とシュラウドリング34との間に設けられている。第2羽根32の内周側は、軸部30の外周面に例えば一体的に接続されている。第2羽根32の外周側は、シュラウドリング34の内周面に例えば一体的に接続されている。すなわち、軸部30とシュラウドリング34とは、第2羽根32を介して接続されている。第2羽根32の枚数は、第1羽根31の枚数と同じであってもよいし異なっていてもよい。本例の第2羽根32の枚数は、第1羽根31の枚数よりも少ない3枚である。複数の第2羽根32は同一の形状を有しており、回転軸Rを中心として周方向に等間隔で配置されている。複数の第2羽根32は互いに異なる形状を有していてもよいし、周方向の配置間隔が異なっていてもよい。第2羽根32は、回転軸Rを中心として回転することにより回転軸R方向に空気を送風するプロペラファン型の翼である。
The second blade 32 is provided between the shaft portion 30 and the shroud ring 34 in the radial direction of the shroud ring 34. For example, the inner peripheral side of the second blade 32 is integrally connected to the outer peripheral surface of the shaft portion 30. For example, the outer peripheral side of the second blade 32 is integrally connected to the inner peripheral surface of the shroud ring 34. That is, the shaft portion 30 and the shroud ring 34 are connected via the second blade 32. The number of second blades 32 may be the same as or different from the number of first blades 31. The number of second blades 32 in this example is three, which is smaller than the number of first blades 31. The plurality of second blades 32 have the same shape, and are arranged at equal intervals in the circumferential direction around the rotation axis R. The plurality of second blades 32 may have different shapes from each other, and the circumferential arrangement intervals may be different. The second blade 32 is a propeller fan type blade that blows air in the direction of the rotation axis R by rotating about the rotation axis R.
第2羽根32のうち周方向に隣り合う2枚の第2羽根32同士は、軸部30に隣接して設けられた板状の連結部36によって一体的に連結されている。連結部36は、周方向に隣り合う2枚の第2羽根32のそれぞれの内周側同士を連結している。連結部36の下流側の表面は、2枚の第2羽根32の下流側の翼面(圧力面)同士を滑らかに接続している。連結部36の上流側の表面は、2枚の第2羽根32の上流側の翼面(負圧面)同士を滑らかに接続している。連結部36の個数は、第2羽根32の枚数と同数の4つである。
Of the second blades 32, the two second blades 32 adjacent to each other in the circumferential direction are integrally connected by a plate-like connecting portion 36 provided adjacent to the shaft portion 30. The connecting portion 36 connects the inner peripheral sides of the two second blades 32 adjacent in the circumferential direction. The downstream surface of the connecting portion 36 smoothly connects the blade surfaces (pressure surfaces) on the downstream side of the two second blades 32. The upstream surface of the coupling portion 36 smoothly connects the blade surfaces (negative pressure surfaces) on the upstream side of the two second blades 32. The number of connecting portions 36 is four, which is the same as the number of second blades 32.
複数の第2羽根32が連結部36を介して一体的につながることにより、一体翼が形成されている。すなわち、複数の第2羽根32及び複数の連結部36は、いわゆるボスレス形のプロペラファンを構成している。軸部30は、一体翼の下流側の翼面上に突出して形成されている。
Integral wings are formed by connecting the plurality of second blades 32 integrally through the connecting portion 36. That is, the plurality of second blades 32 and the plurality of connecting portions 36 constitute a so-called bossless type propeller fan. The shaft portion 30 is formed so as to protrude on the blade surface on the downstream side of the integral blade.
図7は、図6のVII-VII断面を示す断面図である。図8は、図6のVIII-VIII断面を示す断面図である。図7では、第2羽根32のうちシュラウドリング34との接続部に近い第1部分の概略周方向断面を示している。図8では、第2羽根32のうち第1部分よりも内周側に位置する第2部分の概略周方向断面を示している。図7に示す第2羽根32の第1部分における肉厚(最大翼厚)をt1とし、図8に示す第2羽根32の第2部分における肉厚(最大翼厚)をt2とすると、肉厚t1は肉厚t2よりも大きくなっている(t1>t2)。第2羽根32の肉厚は、例えば、外周側(シュラウドリング34側)ほど厚くなっており、内周側(軸部30側)ほど薄くなっている。
FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG. FIG. 8 is a cross-sectional view showing a VIII-VIII cross section of FIG. FIG. 7 shows a schematic circumferential cross section of the first portion of the second blade 32 close to the connection portion with the shroud ring 34. FIG. 8 shows a schematic circumferential cross section of a second portion of the second blade 32 that is located on the inner peripheral side of the first portion. When the thickness (maximum blade thickness) in the first portion of the second blade 32 shown in FIG. 7 is t1, and the thickness (maximum blade thickness) in the second portion of the second blade 32 shown in FIG. The thickness t1 is larger than the wall thickness t2 (t1> t2). The thickness of the second blade 32 is, for example, thicker toward the outer peripheral side (the shroud ring 34 side) and thinner toward the inner peripheral side (the shaft portion 30 side).
第3羽根33は、一体翼の下流側の翼面上(すなわち、第2羽根32の下流側の翼面上、又は連結部36の下流側の表面上)にリブ状に突出した構成を有している。第3羽根33は、第2羽根32及び連結部36と一体的に形成されている。また、第3羽根33は、軸部30の外周面に一体的に接続されている。第3羽根33の枚数は、第1羽根31の枚数及び第2羽根32の枚数と同じであってもよいし異なっていてもよい。本例の第3羽根33の枚数は、第1羽根31の枚数よりも少なく第2羽根32の枚数よりも多い6枚である。複数の第3羽根33は同一の形状を有しており、回転軸Rを中心として周方向に等間隔で配置されている。複数の第3羽根33は互いに異なる形状を有していてもよいし、周方向の配置間隔が異なっていてもよい。第3羽根33は、例えば遠心翼形状を有している。すなわち、第3羽根33の翼面(圧力面及び負圧面)は、回転軸Rと平行になっている。本例の第3羽根33は、送風機20の反回転方向側に凸となるように湾曲したシロッコ翼形状を有している。第3羽根33は、軸部30から、第2羽根32の下流側の翼面に沿って、連結部36よりも外周側まで延伸している。第3羽根33の高さ(すなわち、第3羽根33の回転軸R方向の寸法)は、軸部30から離れるほど低くなっている。
The third blade 33 has a configuration protruding in a rib shape on the blade surface on the downstream side of the integral blade (that is, on the blade surface on the downstream side of the second blade 32 or on the downstream surface of the connecting portion 36). is doing. The third blade 33 is formed integrally with the second blade 32 and the connecting portion 36. The third blade 33 is integrally connected to the outer peripheral surface of the shaft portion 30. The number of third blades 33 may be the same as or different from the number of first blades 31 and the number of second blades 32. The number of third blades 33 in this example is six, which is smaller than the number of first blades 31 and larger than the number of second blades 32. The plurality of third blades 33 have the same shape, and are arranged at equal intervals in the circumferential direction around the rotation axis R. The plurality of third blades 33 may have different shapes from each other, and the circumferential arrangement intervals may be different. The third blade 33 has, for example, a centrifugal blade shape. That is, the blade surface (pressure surface and suction surface) of the third blade 33 is parallel to the rotation axis R. The third blade 33 of this example has a sirocco blade shape that is curved so as to protrude toward the counter-rotating direction of the blower 20. The third blade 33 extends from the shaft portion 30 to the outer peripheral side of the connecting portion 36 along the blade surface on the downstream side of the second blade 32. The height of the third blade 33 (that is, the dimension of the third blade 33 in the direction of the rotation axis R) decreases as the distance from the shaft portion 30 increases.
軸部30、第3羽根33及び連結部36は、送風機20のハブを構成している。第3羽根33は、遠心翼として空気力学的な仕事を行うだけでなく、軸部30及び第2羽根32を連結部36と共に補強する機能を有している。
The shaft part 30, the third blade 33 and the connecting part 36 constitute a hub of the blower 20. The third blade 33 not only performs aerodynamic work as a centrifugal blade, but also has a function of reinforcing the shaft portion 30 and the second blade 32 together with the connecting portion 36.
図9~図11は、本実施の形態に係る送風機20の構成の変形例を示す正面図である。本実施の形態に係る送風機20は、図9~図11のそれぞれに示すような構成を有していてもよい。
9 to 11 are front views showing modified examples of the configuration of the blower 20 according to the present embodiment. The blower 20 according to the present embodiment may have a configuration as shown in each of FIGS.
図9に示す例では、第3羽根33は、送風機20の回転方向側に凸となるように湾曲したターボ翼形状を有している。第3羽根33が遠心翼形状を有している点は、図5及び図6等に示した構成と同様である。
In the example shown in FIG. 9, the third blade 33 has a turbo blade shape curved so as to protrude toward the rotation direction of the blower 20. The point that the third blade 33 has a centrifugal blade shape is the same as the configuration shown in FIGS.
図10に示す例では、図9に示した構成に加えて、第1羽根31のさらに外周側にシュラウドリング37が設けられている。シュラウドリング37は、回転軸Rを中心としてシュラウドリング34よりも外周側に設けられている。第1羽根31はシュラウドリング37の内周面に接続されている。既に述べた第2羽根32の肉厚t1、t2の関係と同様に、第1羽根31のうち第1部分における肉厚(最大翼厚)t1は、第1羽根31のうち第1部分よりも内周側に位置する第2部分における肉厚(最大翼厚)t2よりも大きくなっている。
In the example shown in FIG. 10, a shroud ring 37 is provided on the outer peripheral side of the first blade 31 in addition to the configuration shown in FIG. 9. The shroud ring 37 is provided on the outer peripheral side of the shroud ring 34 around the rotation axis R. The first blade 31 is connected to the inner peripheral surface of the shroud ring 37. Similar to the relation between the thicknesses t1 and t2 of the second blade 32 already described, the thickness (maximum blade thickness) t1 of the first portion of the first blade 31 is larger than that of the first portion of the first blade 31. It is larger than the wall thickness (maximum blade thickness) t2 in the second portion located on the inner peripheral side.
図11に示す例では、図10に示した構成に加えて、径方向においてシュラウドリング37よりも外側に複数の第4羽根38が設けられている。第4羽根38は、シュラウドリング37の外周面に接続されている。第4羽根38は、プロペラファン型の翼である。第4羽根38の枚数は、第1羽根31の枚数と同じであってもよいし異なっていてもよい。
In the example shown in FIG. 11, in addition to the configuration shown in FIG. 10, a plurality of fourth blades 38 are provided outside the shroud ring 37 in the radial direction. The fourth blade 38 is connected to the outer peripheral surface of the shroud ring 37. The fourth blade 38 is a propeller fan type blade. The number of the fourth blades 38 may be the same as or different from the number of the first blades 31.
次に、本実施の形態に係る室外機100の動作について図2を参照して説明する。室外機100において送風機20が動作すると、筐体1の外部の室外空気が筐体1内に吸い込まれる。筐体1内に吸い込まれた空気は、熱交換器8を通過する。これにより、熱交換器8では、熱交換器8を通過する空気と、熱交換器8の伝熱管内を流通する冷媒と、の熱交換が行われる。冷媒との熱交換が行われた空気は、送風機20及びベルマウス9を通過して、吹出口1gから室外に吹き出される。以上のように、送風機20が動作することによって、室外機100には、図2中に矢印で示すような気流Aが生じる。
Next, the operation of the outdoor unit 100 according to the present embodiment will be described with reference to FIG. When the blower 20 operates in the outdoor unit 100, outdoor air outside the housing 1 is sucked into the housing 1. The air sucked into the housing 1 passes through the heat exchanger 8. Thereby, in the heat exchanger 8, heat exchange between the air passing through the heat exchanger 8 and the refrigerant flowing through the heat transfer pipe of the heat exchanger 8 is performed. The air that has undergone heat exchange with the refrigerant passes through the blower 20 and the bell mouth 9, and is blown out from the outlet 1g. As described above, when the blower 20 operates, the outdoor unit 100 generates an airflow A as indicated by an arrow in FIG.
次に、本実施の形態の送風機20によって生じる気流Aについて、比較例と対比して説明する。図12は、比較例の送風機を備えた室外機を下流側から見た構成を示す斜視図である。図12に示す比較例の送風機は、本実施の形態に係る送風機20と以下の点で異なっている。すなわち、比較例の送風機では、本実施の形態の軸部30、連結部36及び第3羽根33に代えて、少なくとも軸部30よりも大径のボス39が回転軸上に設けられている。また、比較例の送風機では、第2羽根32の肉厚が径方向で均一であり、本実施の形態の第2羽根32のような肉厚分布が形成されていない。
Next, the airflow A generated by the blower 20 of the present embodiment will be described in comparison with a comparative example. FIG. 12 is a perspective view showing a configuration of an outdoor unit provided with a blower of a comparative example as viewed from the downstream side. The blower of the comparative example shown in FIG. 12 is different from the blower 20 according to the present embodiment in the following points. That is, in the blower of the comparative example, at least the boss 39 having a diameter larger than that of the shaft portion 30 is provided on the rotating shaft instead of the shaft portion 30, the connecting portion 36, and the third blade 33 of the present embodiment. Moreover, in the air blower of a comparative example, the thickness of the 2nd blade | wing 32 is uniform in radial direction, and thickness distribution like the 2nd blade | wing 32 of this Embodiment is not formed.
図12に示すように、比較例の送風機は、ボス39、第2羽根32、シュラウドリング34、第1羽根31を有している。第2羽根32の内周側は、ボス39の外周面に直角に接続されている。第2羽根32の外周側はシュラウドリング34に接続されている。第1羽根31はシュラウドリング34に接続されている。
As shown in FIG. 12, the blower of the comparative example has a boss 39, a second blade 32, a shroud ring 34, and a first blade 31. The inner peripheral side of the second blade 32 is connected to the outer peripheral surface of the boss 39 at a right angle. The outer peripheral side of the second blade 32 is connected to the shroud ring 34. The first blade 31 is connected to the shroud ring 34.
図13は、比較例の送風機を備えた室外機に生じる気流Aを説明するための図である。図13に示すように、比較例の送風機では、ボス39が大径の円筒形状を有している。このため、第2羽根32の回転により発生した気流Aは、ボス39の外周面に沿って流れた後、ボス39の下流側の先端部で剥離する。これにより、ボス39の下流側には、比較的大きい剥離域40が発生する。
FIG. 13 is a diagram for explaining the airflow A generated in the outdoor unit equipped with the blower of the comparative example. As shown in FIG. 13, in the blower of the comparative example, the boss 39 has a large diameter cylindrical shape. For this reason, the airflow A generated by the rotation of the second blade 32 flows along the outer peripheral surface of the boss 39 and then peels off at the distal end portion on the downstream side of the boss 39. As a result, a relatively large peeling area 40 is generated on the downstream side of the boss 39.
図14は、本実施の形態に係る送風機20を備えた室外機100に生じる気流Aを説明するための図である。図14に示すように、本実施の形態に係る送風機20では、複数の第2羽根32が一体翼を形成しており、その一体翼の下流側の翼面上には、軸部30に接続された第3羽根33が形成されている。このため、第2羽根32よりも内周側の軸部30近傍でも、第3羽根33によって気流を発生させることができる。また、軸部30が第3羽根33により補強されることから、軸部30を小径にすることができる。したがって、軸部30の下流側で発生する剥離域40を小さくすることができる。
FIG. 14 is a diagram for explaining the airflow A generated in the outdoor unit 100 including the blower 20 according to the present embodiment. As shown in FIG. 14, in the blower 20 according to the present embodiment, the plurality of second blades 32 form an integral blade, and the shaft portion 30 is connected to the blade surface on the downstream side of the integral blade. A third blade 33 is formed. For this reason, air current can be generated by the third blade 33 even in the vicinity of the shaft portion 30 on the inner peripheral side of the second blade 32. In addition, since the shaft portion 30 is reinforced by the third blade 33, the shaft portion 30 can be reduced in diameter. Therefore, the peeling area 40 generated on the downstream side of the shaft portion 30 can be reduced.
以上説明したように、本実施の形態に係る送風機20は、回転軸R上に設けられた筒状の軸部30と、回転軸Rを中心として軸部30よりも外周側に設けられたシュラウドリング34(リング部の一例)と、シュラウドリング34の径方向においてシュラウドリング34よりも外側に設けられた複数の第1羽根31と、シュラウドリング34の径方向において軸部30とシュラウドリング34との間に設けられた複数の第2羽根32と、軸部30に隣接して設けられ、複数の第2羽根32のうち周方向に隣り合う2つの第2羽根32同士を連結する板状の連結部36と、複数の第2羽根32の下流側の翼面上又は連結部36の下流側の表面上に設けられるとともに軸部30に接続された複数の第3羽根33と、を有するものである。
As described above, the blower 20 according to the present embodiment includes the cylindrical shaft portion 30 provided on the rotation shaft R, and the shroud provided on the outer peripheral side with respect to the rotation portion R around the rotation shaft R. A ring 34 (an example of a ring portion), a plurality of first blades 31 provided outside the shroud ring 34 in the radial direction of the shroud ring 34, a shaft portion 30 and a shroud ring 34 in the radial direction of the shroud ring 34, A plurality of second blades 32 provided between and a plate-like member provided adjacent to the shaft portion 30 and connecting two second blades 32 adjacent to each other in the circumferential direction among the plurality of second blades 32. A connecting portion 36 and a plurality of third blades 33 provided on the downstream blade surface of the plurality of second blades 32 or on the downstream surface of the connecting portion 36 and connected to the shaft portion 30. It is.
この構成によれば、軸部30及び第2羽根32を第3羽根33によって補強することができる。このため、軸部30及び第2羽根32の強度を維持しつつ、軸部30を小径化及び薄肉化でき、第2羽根32を薄型化できる。したがって、送風機20の羽根車3を軽量化することができる。これにより、ファンモータ4の小型化、ファンモータ4の長寿命化、及び送風機20の製造コスト低減などを併せて実現できる。
According to this configuration, the shaft portion 30 and the second blade 32 can be reinforced by the third blade 33. For this reason, while maintaining the strength of the shaft portion 30 and the second blade 32, the shaft portion 30 can be reduced in diameter and thickness, and the second blade 32 can be thinned. Therefore, the impeller 3 of the blower 20 can be reduced in weight. Thereby, size reduction of the fan motor 4, long life of the fan motor 4, and manufacturing cost reduction of the blower 20 can be realized together.
また、第3羽根33は、軸部30及び第2羽根32を補強するだけでなく、空気力学的な仕事を行う。このため、第3羽根33によっても軸部30の周囲に気流を発生させることができる。したがって、軸部30の下流側で発生する剥離域40を小さくすることができ、軸部30の下流側において渦が発生するのを抑制することができる。これにより、渦の発生による圧力流量特性の損失を低減させることができるとともに、渦の発生による騒音を低減させることができる。
Further, the third blade 33 not only reinforces the shaft portion 30 and the second blade 32 but also performs aerodynamic work. For this reason, the third blade 33 can also generate an air current around the shaft portion 30. Therefore, the peeling area 40 generated on the downstream side of the shaft portion 30 can be reduced, and the generation of vortices on the downstream side of the shaft portion 30 can be suppressed. Thereby, the loss of the pressure flow characteristic due to the generation of vortices can be reduced, and the noise due to the generation of vortices can be reduced.
また、本実施の形態に係る送風機20において、複数の第2羽根32のそれぞれは、第1部分(例えば、図7に示すシュラウドリング34との接続部に近い部分)と、第1部分よりも内周側に位置する第2部分(例えば、図8に示す部分)とを有している。第1部分での肉厚(例えば、第1部分の周方向断面における最大翼厚)をt1とし、第2部分での肉厚(例えば、第2部分の周方向断面における最大翼厚)をt2としたとき、肉厚t1及び肉厚t2は、t1>t2の関係を満たしている。
Further, in the blower 20 according to the present embodiment, each of the plurality of second blades 32 has a first portion (for example, a portion close to a connection portion with the shroud ring 34 illustrated in FIG. 7) and the first portion. And a second portion (for example, a portion shown in FIG. 8) located on the inner peripheral side. The thickness at the first portion (for example, the maximum blade thickness in the circumferential section of the first portion) is t1, and the thickness at the second portion (for example, the maximum blade thickness in the circumferential section of the second portion) is t2. , The thickness t1 and the thickness t2 satisfy the relationship of t1> t2.
この構成によれば、第2羽根32全体としての重量を増加させずに、第2羽根32の外周側部分の肉厚を厚くすることができる。したがって、第2羽根32とシュラウドリング34との接続部の強度を高めることができる。一方で、第3羽根33によって補強される第2羽根32の内周側部分では、肉厚を薄くしても十分な強度が得られる。したがって、上記の構成によれば、高回転速度でも十分に強度を維持できる送風機20を実現することができる。
According to this configuration, the thickness of the outer peripheral side portion of the second blade 32 can be increased without increasing the weight of the second blade 32 as a whole. Therefore, the strength of the connection portion between the second blade 32 and the shroud ring 34 can be increased. On the other hand, in the inner peripheral side portion of the second blade 32 reinforced by the third blade 33, sufficient strength can be obtained even if the wall thickness is reduced. Therefore, according to said structure, the air blower 20 which can fully maintain intensity | strength even at high rotational speed is realizable.
また、本実施の形態に係る送風機20において、複数の第3羽根33のそれぞれは、遠心翼形状を有している。この構成によれば、軸部30近傍で気流を発生させることができる。また、この構成によれば、第3羽根33の翼面が回転軸Rと平行になっていることから、アンダーカット部が生じるのを防ぐことができる。したがって、金型を用いた羽根車3の成形を容易に行うことができる。
Further, in the blower 20 according to the present embodiment, each of the plurality of third blades 33 has a centrifugal blade shape. According to this configuration, an air flow can be generated in the vicinity of the shaft portion 30. Moreover, according to this structure, since the blade surface of the 3rd blade | wing 33 is parallel to the rotating shaft R, it can prevent that an undercut part arises. Therefore, the impeller 3 using the mold can be easily formed.
また、本実施の形態に係る室外機100は、本実施の形態に係る送風機20と、送風機20により空気が供給される熱交換器8と、を備えている。この構成によれば、室外機100において上記と同様の効果を得ることができる。
Moreover, the outdoor unit 100 according to the present embodiment includes the blower 20 according to the present embodiment and the heat exchanger 8 to which air is supplied by the blower 20. According to this configuration, the same effect as described above can be obtained in the outdoor unit 100.
実施の形態2.
本発明の実施の形態2に係る送風機について説明する。図15は、本実施の形態に係る送風機20の構成を示す正面図である。本実施の形態に係る送風機20は、第3羽根33の構成において上記実施の形態1の送風機20と異なっている。Embodiment 2. FIG.
A blower according toEmbodiment 2 of the present invention will be described. FIG. 15 is a front view showing the configuration of the blower 20 according to the present embodiment. The blower 20 according to the present embodiment is different from the blower 20 of the first embodiment in the configuration of the third blade 33.
本発明の実施の形態2に係る送風機について説明する。図15は、本実施の形態に係る送風機20の構成を示す正面図である。本実施の形態に係る送風機20は、第3羽根33の構成において上記実施の形態1の送風機20と異なっている。
A blower according to
図15に示すように、第3羽根33は、第2羽根32の下流側の翼面上、又は連結部36の下流側の表面上に設けられている。第3羽根33は、断面円弧状の翼面を備えた遠心翼形状を有している。本例では、3枚の第3羽根33のそれぞれの端部同士が接続され、全体として軸部30を囲む略三角形状に配置されている。第3羽根33のそれぞれの翼面は、回転軸R側に凸となっている。また、第3羽根33のそれぞれは、軸部30の外周面に一体的に接続されている。
As shown in FIG. 15, the third blade 33 is provided on the blade surface on the downstream side of the second blade 32 or on the downstream surface of the connecting portion 36. The third blade 33 has a centrifugal blade shape having a blade surface with an arcuate cross section. In this example, the end portions of the three third blades 33 are connected to each other, and are arranged in a substantially triangular shape surrounding the shaft portion 30 as a whole. Each blade surface of the third blade 33 is convex toward the rotation axis R side. Each of the third blades 33 is integrally connected to the outer peripheral surface of the shaft portion 30.
図16は、本実施の形態に係る送風機20の構成の変形例を示す正面図である。図16に示す変形例では、3枚の第3羽根33のそれぞれの翼面が外周側に凸となっている。第3羽根33のそれぞれは、不図示のリブを介して軸部30の外周面に一体的に接続されている。
FIG. 16 is a front view showing a modification of the configuration of the blower 20 according to the present embodiment. In the modification shown in FIG. 16, the blade surfaces of the three third blades 33 are convex on the outer peripheral side. Each of the 3rd blade | wing 33 is integrally connected to the outer peripheral surface of the axial part 30 via the rib not shown.
本実施の形態に係る送風機20によれば、上記実施の形態1に係る送風機20と同様の効果を得ることができる。また、本実施の形態では、第3羽根33のそれぞれが軸部30に接続されているだけでなく、第3羽根33の端部同士が相互に接続されている。したがって、第3羽根33による軸部30及び第2羽根32の補強効果をより高めることができる。
According to the blower 20 according to the present embodiment, the same effect as the blower 20 according to the first embodiment can be obtained. Moreover, in this Embodiment, each of the 3rd blade | wing 33 is not only connected to the axial part 30, but the edge parts of the 3rd blade | wing 33 are mutually connected. Accordingly, the reinforcing effect of the shaft portion 30 and the second blade 32 by the third blade 33 can be further enhanced.
本実施の形態では、3枚の第3羽根33が軸部30を囲んで略三角形状に配置されているが、4枚以上の第3羽根が軸部30を囲んで多角形状に配置されていてもよい。
In the present embodiment, the three third blades 33 are disposed in a substantially triangular shape surrounding the shaft portion 30, but four or more third blades are disposed in a polygonal shape surrounding the shaft portion 30. May be.
実施の形態3.
本発明の実施の形態3に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置として空気調和装置を例示している。本実施の形態に係る空気調和装置は、例えば、実施の形態1に係る室外機100を有している。図17は、本実施の形態に係る空気調和装置の構成を示す回路図である。Embodiment 3 FIG.
A refrigeration cycle apparatus according toEmbodiment 3 of the present invention will be described. In the present embodiment, an air conditioner is exemplified as the refrigeration cycle apparatus. The air conditioning apparatus according to the present embodiment includes, for example, the outdoor unit 100 according to Embodiment 1. FIG. 17 is a circuit diagram showing a configuration of the air-conditioning apparatus according to the present embodiment.
本発明の実施の形態3に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置として空気調和装置を例示している。本実施の形態に係る空気調和装置は、例えば、実施の形態1に係る室外機100を有している。図17は、本実施の形態に係る空気調和装置の構成を示す回路図である。
A refrigeration cycle apparatus according to
図17に示すように、空気調和装置は、冷媒を循環させる冷媒回路を有している。冷媒回路は、圧縮機101、四方弁102、室外熱交換器103、絞り装置105(例えば、膨張弁)、室内熱交換器201が冷媒配管によって接続された構成を有している。また、空気調和装置は、室外機100と室内機200とを備えている。室外機100と室内機200との間は、ガス配管300及び液配管400を介して接続されている。ガス配管300は、冷媒配管の一部を構成し、ガス冷媒を流通させるものである。液配管400は、冷媒配管の一部を構成し、液冷媒又は気液二相冷媒を流通させるものである。
As shown in FIG. 17, the air conditioner has a refrigerant circuit for circulating the refrigerant. The refrigerant circuit has a configuration in which a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an expansion device 105 (for example, an expansion valve), and an indoor heat exchanger 201 are connected by a refrigerant pipe. In addition, the air conditioner includes an outdoor unit 100 and an indoor unit 200. The outdoor unit 100 and the indoor unit 200 are connected via a gas pipe 300 and a liquid pipe 400. The gas pipe 300 constitutes a part of the refrigerant pipe and distributes the gas refrigerant. The liquid pipe 400 constitutes a part of the refrigerant pipe and circulates the liquid refrigerant or the gas-liquid two-phase refrigerant.
本実施の形態における室外機100には、圧縮機101、四方弁102、室外熱交換器103、絞り装置105と、室外熱交換器103に空気を供給する室外送風機104と、が収容されている。室外熱交換器103としては、実施の形態1における熱交換器8が用いられている。室外送風機104としては、実施の形態1又は2における送風機20が用いられている。
The outdoor unit 100 in the present embodiment accommodates a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an expansion device 105, and an outdoor fan 104 that supplies air to the outdoor heat exchanger 103. . As the outdoor heat exchanger 103, the heat exchanger 8 in Embodiment 1 is used. As the outdoor blower 104, the blower 20 in the first or second embodiment is used.
圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機101は、インバータ装置等を備え、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりに冷媒を送り出す量)を細かく変化させることができるものとする。四方弁102は、制御装置(図示せず)からの指示に基づいて、冷房運転時と暖房運転時とで冷媒の流れを切り換える。
Compressor 101 compresses and discharges the sucked refrigerant. Here, the compressor 101 includes an inverter device or the like, and can arbitrarily change the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operation frequency. The four-way valve 102 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from a control device (not shown).
室外熱交換器103は、冷媒と空気(例えば、室外空気)との熱交換を行う。暖房運転時には、室外熱交換器103は蒸発器として機能する。すなわち、室外熱交換器103は、液配管400から流入した低圧の二相冷媒と、室外送風機104により供給される空気との熱交換を行い、冷媒を蒸発させる。一方、冷房運転時には、室外熱交換器103は凝縮器として機能する。すなわち、室外熱交換器103は、圧縮機101で圧縮された高圧のガス冷媒と、室外送風機104により供給される空気との熱交換を行い、冷媒を凝縮させる。室外送風機104は、インバータ装置を備え、運転周波数を任意に変化させることにより回転速度を細かく変化させるようにしてもよい。絞り装置105は、開度を変化させることで、冷媒の圧力等を調整する。
The outdoor heat exchanger 103 performs heat exchange between the refrigerant and air (for example, outdoor air). During the heating operation, the outdoor heat exchanger 103 functions as an evaporator. That is, the outdoor heat exchanger 103 performs heat exchange between the low-pressure two-phase refrigerant flowing from the liquid pipe 400 and the air supplied by the outdoor blower 104, and evaporates the refrigerant. On the other hand, during the cooling operation, the outdoor heat exchanger 103 functions as a condenser. That is, the outdoor heat exchanger 103 performs heat exchange between the high-pressure gas refrigerant compressed by the compressor 101 and the air supplied by the outdoor blower 104 to condense the refrigerant. The outdoor blower 104 may include an inverter device, and may change the rotation speed finely by arbitrarily changing the operation frequency. The expansion device 105 adjusts the refrigerant pressure and the like by changing the opening.
室内機200には、室内熱交換器201と、室内熱交換器201に空気を供給する室内送風機202と、が収容されている。
The indoor unit 200 contains an indoor heat exchanger 201 and an indoor blower 202 that supplies air to the indoor heat exchanger 201.
室内熱交換器201は、冷媒と空気(例えば、室内空気)との熱交換を行う。暖房運転時には、室内熱交換器201は凝縮器として機能する。すなわち、室内熱交換器201は、ガス配管300から流入した高圧のガス冷媒と、室内送風機202により供給される空気との熱交換を行い、冷媒を凝縮させて液冷媒又は気液二相冷媒として液配管400側に流出させる。室内熱交換器201を通過した空気は、冷媒との熱交換により加熱される。一方、冷房運転時には、室内熱交換器201は蒸発器として機能する。すなわち、室内熱交換器201は、絞り装置105で減圧されて液配管400から流入した低圧の二相冷媒と、室内送風機202により供給される空気との熱交換を行い、冷媒を蒸発させてガス冷媒としてガス配管300側に流出させる。室内熱交換器201を通過した空気は、冷媒との熱交換により冷却される。
The indoor heat exchanger 201 performs heat exchange between the refrigerant and air (for example, indoor air). During the heating operation, the indoor heat exchanger 201 functions as a condenser. That is, the indoor heat exchanger 201 performs heat exchange between the high-pressure gas refrigerant flowing in from the gas pipe 300 and the air supplied from the indoor blower 202, and condenses the refrigerant as a liquid refrigerant or a gas-liquid two-phase refrigerant. The liquid pipe 400 is caused to flow out. The air that has passed through the indoor heat exchanger 201 is heated by heat exchange with the refrigerant. On the other hand, during the cooling operation, the indoor heat exchanger 201 functions as an evaporator. That is, the indoor heat exchanger 201 exchanges heat between the low-pressure two-phase refrigerant that has been decompressed by the expansion device 105 and flows from the liquid pipe 400 and the air supplied by the indoor blower 202, and evaporates the refrigerant to provide gas. The refrigerant flows out to the gas pipe 300 side. The air that has passed through the indoor heat exchanger 201 is cooled by heat exchange with the refrigerant.
室内送風機202の回転速度は、例えば利用者の設定により決定される。特に限定するものではないが、室内送風機202にも、実施の形態1又は2における送風機20を用いることができる。
The rotation speed of the indoor blower 202 is determined by, for example, user settings. Although it does not specifically limit, the air blower 20 in Embodiment 1 or 2 can be used also for the indoor air blower 202. FIG.
以上説明したように、本実施の形態に係る空気調和装置(冷凍サイクル装置の一例)は、上記実施の形態1に係る室外機100を備えたものである。この構成によれば、空気調和装置において、上記実施の形態1と同様の効果を得ることができる。
As described above, the air-conditioning apparatus (an example of a refrigeration cycle apparatus) according to the present embodiment includes the outdoor unit 100 according to the first embodiment. According to this configuration, the same effect as in the first embodiment can be obtained in the air conditioner.
上記実施の形態1~3は、互いに組み合わせて実施することが可能である。
The above Embodiments 1 to 3 can be implemented in combination with each other.
本発明の活用例として、冷凍サイクル装置を構成する室外機、例えば空気調和装置や給湯器などの室外機、その他、送風機が設置される各種装置や設備などが挙げられる。本発明は、これらの送風機が設置される各種装置や設備などに広く利用することができる。
Examples of utilization of the present invention include outdoor units constituting the refrigeration cycle apparatus, for example, outdoor units such as an air conditioner and a water heater, and various devices and facilities in which a blower is installed. The present invention can be widely used for various devices and equipment in which these fans are installed.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 筐体、1a 第1側面、1b 前面、1c 第2側面、1d 背面、1e 上面、1f 底面、1g 吹出口、2 ファングリル、3 羽根車、4 ファンモータ、4a 駆動軸、5 仕切板、6 送風機室、7 機械室、8 熱交換器、9 ベルマウス、10 圧縮機、12 基板箱、20 送風機、30 軸部、31 第1羽根、32 第2羽根、33 第3羽根、34 シュラウドリング、36 連結部、37 シュラウドリング、38 第4羽根、39 ボス、40 剥離域、100 室外機、101 圧縮機、102 四方弁、103 室外熱交換器、104 室外送風機、105 絞り装置、200 室内機、201 室内熱交換器、202 室内送風機、300 ガス配管、400 液配管、A 気流、R 回転軸。
1 housing, 1a first side, 1b front, 1c second side, 1d back, 1e top, 1f bottom, 1g outlet, 2 fan grill, 3 impeller, 4 fan motor, 4a drive shaft, 5 partition plate, 6 blower room, 7 machine room, 8 heat exchanger, 9 bellmouth, 10 compressor, 12 substrate box, 20 blower, 30 shaft, 31 first blade, 32 second blade, 33 third blade, 34 shroud ring , 36 connecting part, 37 shroud ring, 38 4th blade, 39 boss, 40 peeling zone, 100 outdoor unit, 101 compressor, 102 four-way valve, 103 outdoor heat exchanger, 104 outdoor blower, 105 throttle device, 200 indoor unit , 201 indoor heat exchanger, 202 indoor blower, 300 gas piping, 400 liquid piping, A airflow, R rotating shaft.
Claims (5)
- 回転軸上に設けられた筒状の軸部と、
前記回転軸を中心として前記軸部よりも外周側に設けられたリング部と、
前記リング部の径方向において前記リング部よりも外側に設けられた複数の第1羽根と、
前記リング部の径方向において前記軸部と前記リング部との間に設けられた複数の第2羽根と、
前記軸部に隣接して設けられ、前記複数の第2羽根のうち周方向に隣り合う2つの第2羽根同士を連結する板状の連結部と、
前記複数の第2羽根の下流側の翼面上又は前記連結部の下流側の表面上に設けられるとともに前記軸部に接続された複数の第3羽根と、
を有する送風機。 A cylindrical shaft provided on the rotary shaft;
A ring portion provided on the outer peripheral side with respect to the shaft portion around the rotation shaft;
A plurality of first blades provided outside the ring portion in the radial direction of the ring portion;
A plurality of second blades provided between the shaft portion and the ring portion in the radial direction of the ring portion;
A plate-like connecting portion that is provided adjacent to the shaft portion and connects two second blades adjacent in the circumferential direction among the plurality of second blades;
A plurality of third blades provided on the downstream blade surface of the plurality of second blades or on the downstream surface of the connecting portion and connected to the shaft portion;
With blower. - 前記複数の第2羽根のそれぞれは、第1部分と、前記第1部分よりも内周側に位置する第2部分とを有しており、
前記第1部分での肉厚をt1とし、前記第2部分での肉厚をt2としたとき、
肉厚t1及び肉厚t2は、t1>t2の関係を満たす請求項1に記載の送風機。 Each of the plurality of second blades includes a first portion and a second portion located on the inner peripheral side of the first portion,
When the thickness at the first portion is t1, and the thickness at the second portion is t2,
The blower according to claim 1, wherein the wall thickness t1 and the wall thickness t2 satisfy a relationship of t1> t2. - 前記複数の第3羽根のそれぞれは、遠心翼形状を有する請求項1又は請求項2に記載の送風機。 The blower according to claim 1 or 2, wherein each of the plurality of third blades has a centrifugal blade shape.
- 請求項1~請求項3のいずれか一項に記載の送風機と、前記送風機により空気が供給される熱交換器と、を備えた室外機。 An outdoor unit comprising the blower according to any one of claims 1 to 3 and a heat exchanger to which air is supplied by the blower.
- 請求項4に記載の室外機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the outdoor unit according to claim 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018552358A JP6745902B2 (en) | 2016-11-25 | 2016-11-25 | Blower, outdoor unit and refrigeration cycle device |
PCT/JP2016/085021 WO2018096658A1 (en) | 2016-11-25 | 2016-11-25 | Blower, outdoor unit,and refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/085021 WO2018096658A1 (en) | 2016-11-25 | 2016-11-25 | Blower, outdoor unit,and refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018096658A1 true WO2018096658A1 (en) | 2018-05-31 |
Family
ID=62194863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085021 WO2018096658A1 (en) | 2016-11-25 | 2016-11-25 | Blower, outdoor unit,and refrigeration cycle device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6745902B2 (en) |
WO (1) | WO2018096658A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021234859A1 (en) * | 2020-05-20 | 2021-11-25 | 三菱電機株式会社 | Axial flow fan, blowing device, and refrigeration cycle device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224540A (en) * | 2009-06-28 | 2014-12-04 | バルミューダ株式会社 | Axial flow fan |
WO2016021555A1 (en) * | 2014-08-07 | 2016-02-11 | 三菱電機株式会社 | Axial flow fan, and air conditioner having said axial flow fan |
-
2016
- 2016-11-25 WO PCT/JP2016/085021 patent/WO2018096658A1/en active Application Filing
- 2016-11-25 JP JP2018552358A patent/JP6745902B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224540A (en) * | 2009-06-28 | 2014-12-04 | バルミューダ株式会社 | Axial flow fan |
WO2016021555A1 (en) * | 2014-08-07 | 2016-02-11 | 三菱電機株式会社 | Axial flow fan, and air conditioner having said axial flow fan |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021234859A1 (en) * | 2020-05-20 | 2021-11-25 | 三菱電機株式会社 | Axial flow fan, blowing device, and refrigeration cycle device |
JPWO2021234859A1 (en) * | 2020-05-20 | 2021-11-25 | ||
CN115516211A (en) * | 2020-05-20 | 2022-12-23 | 三菱电机株式会社 | Axial fan, air supply device, and refrigeration cycle device |
JP7378611B2 (en) | 2020-05-20 | 2023-11-13 | 三菱電機株式会社 | Axial fans, blowers, and refrigeration cycle equipment |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018096658A1 (en) | 2019-06-24 |
JP6745902B2 (en) | 2020-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6611818B2 (en) | Blower, outdoor unit and refrigeration cycle device | |
WO2017042877A1 (en) | Propeller fan, propeller fan device and outdoor unit for air conditioning device | |
WO2017060987A1 (en) | Blower and air conditioning device provided with same | |
JP6377172B2 (en) | Outdoor unit for propeller fan, propeller fan device and air conditioner | |
JP5295321B2 (en) | Blower, outdoor unit and refrigeration cycle apparatus | |
JP5079063B2 (en) | Propeller, blower and heat pump device | |
JP6811866B2 (en) | Propeller fan, blower, and refrigeration cycle device | |
KR20080054153A (en) | Turbo fan and air-conditioner having the same | |
JP2007205268A (en) | Centrifugal fan | |
US11976872B2 (en) | Axial flow fan, air-sending device, and refrigeration cycle apparatus | |
WO2018096658A1 (en) | Blower, outdoor unit,and refrigeration cycle device | |
JP5611277B2 (en) | Blower, outdoor unit and refrigeration cycle apparatus | |
CN109891101B (en) | Propeller fan, outdoor unit, and refrigeration cycle device | |
JP6463497B2 (en) | Blower, outdoor unit and refrigeration cycle apparatus | |
JP5558449B2 (en) | Blower, outdoor unit and refrigeration cycle apparatus | |
WO2017085889A1 (en) | Centrifugal fan, air conditioner, and refrigerating cycle device | |
WO2024214327A1 (en) | Centrifugal blower, air conditioning machine, and refrigeration cycle device | |
WO2021255882A1 (en) | Outdoor unit for air conditioner | |
KR100459129B1 (en) | In-door-unit of ceiling type air-conditioner | |
CN116507809A (en) | Axial fan, air supply device, and refrigeration cycle device | |
WO2016038690A1 (en) | Indoor unit for air conditioning device, and air conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16922135 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018552358 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16922135 Country of ref document: EP Kind code of ref document: A1 |