WO2017085889A1 - Centrifugal fan, air conditioner, and refrigerating cycle device - Google Patents

Centrifugal fan, air conditioner, and refrigerating cycle device Download PDF

Info

Publication number
WO2017085889A1
WO2017085889A1 PCT/JP2015/082791 JP2015082791W WO2017085889A1 WO 2017085889 A1 WO2017085889 A1 WO 2017085889A1 JP 2015082791 W JP2015082791 W JP 2015082791W WO 2017085889 A1 WO2017085889 A1 WO 2017085889A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
region
centrifugal fan
inner peripheral
plate
Prior art date
Application number
PCT/JP2015/082791
Other languages
French (fr)
Japanese (ja)
Inventor
惇司 河野
池田 尚史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017551511A priority Critical patent/JP6430032B2/en
Priority to PCT/JP2015/082791 priority patent/WO2017085889A1/en
Publication of WO2017085889A1 publication Critical patent/WO2017085889A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station

Definitions

  • the present invention relates to a centrifugal fan, an air conditioner including the centrifugal fan, and a refrigeration cycle apparatus.
  • Patent Document 1 JP-A-6-299994 discloses a multiblade centrifugal fan.
  • the centrifugal fan disclosed in Patent Document 1 has a configuration in which the entrance angles on the main plate side and the side plate side of the blades are different from each other.
  • Patent Document 1 in the axial direction from the side plate to the main plate, a portion of 30% to 40% of the total blade width is used as a boundary, and the inlet portion of the blade is divided from the boundary into the side plate side and the main plate side.
  • the blades are configured to have different entrance angles on the side plate side and the main plate side.
  • blade are reduced by such a structure.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to suppress the separation of air currents on the blade surface in the entire width direction of the blade, and to achieve high-efficiency and low-noise centrifugal.
  • an object of the present invention is to suppress the separation of air currents on the blade surface in the entire width direction of the blade, and to achieve high-efficiency and low-noise centrifugal.
  • the centrifugal fan according to the present invention includes a main plate having a main surface, a ring-shaped side plate facing the main surface, and a plurality of blades provided between the main plate and the side plate. On the inner peripheral side of the plurality of blades, the plurality of blades have a blade inlet angle.
  • Each of the plurality of wings has a first region, a second region, and a third region. The first region is connected to the main plate. The third region is connected to the side plate. The second region is located between the first region and the third region.
  • the blade inlet angle in the first region of at least one blade of the plurality of blades is greater than the blade inlet angle in the second region of the at least one blade.
  • the blade inlet angle in the third region of the at least one wing is smaller than the blade inlet angle in the second region of the at least one wing.
  • the angle of attack of the blade is made uniform in the blade width direction, separation from the front edge of the blade surface side on the counter-rotation direction side and the blade surface side on the rotation direction side is suppressed, and high efficiency is achieved. Low noise can be achieved.
  • FIG. 1 It is a perspective schematic diagram of the indoor unit of the air-conditioning apparatus according to Embodiment 1 of the present invention. It is a schematic diagram which shows the internal structure of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. It is a perspective schematic diagram of the centrifugal fan which concerns on Embodiment 1 of this invention. It is a partial expansion schematic diagram of the centrifugal fan according to Embodiment 1 of the present invention. It is the schematic diagram which looked at the blade
  • FIG. 1 is a schematic perspective view of an indoor unit of an air conditioner equipped with a centrifugal fan according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the internal configuration of the indoor unit of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the indoor unit of the air conditioner includes a case 1 installed behind the ceiling of a space to be air-conditioned.
  • the shape of case 1 can employ
  • the case 1 is formed in a rectangular parallelepiped shape.
  • Case 1 includes an upper surface portion 1a, a lower surface portion 1b, and a side surface portion 1c.
  • the air outlet 2 is provided on one surface of the side surface portion 1c of the case 1.
  • Arbitrary shapes can be employ
  • FIG. The shape of the blower outlet 2 is a rectangular shape, for example.
  • the suction inlet 8 is formed in the surface on the opposite side to the surface in which the blower outlet 2 was formed among the side surface parts 1c of the case 1.
  • FIG. Arbitrary shapes can be employ
  • the shape of the suction port 8 is, for example, a rectangular shape.
  • the suction port 8 may be provided with a filter for removing air.
  • a centrifugal fan 3 in which a bell mouth 5 is installed, a fan motor 4, a heat exchanger 6, and a spiral casing 7 are accommodated.
  • the fan motor 4 is supported by a motor support fixed to the upper surface portion 1a of the case 1, for example.
  • the fan motor 4 has a rotating shaft.
  • the rotating shaft is arranged so as to extend in parallel to the surface of the side surface portion 1c where the inlet 8 is formed and the surface where the outlet 2 is formed.
  • a centrifugal fan 3 which is a multiblade centrifugal fan is attached to the rotating shaft. At least one centrifugal fan 3 is attached to the rotating shaft. In the indoor unit shown in FIG. 2, two centrifugal fans 3 are attached to the rotating shaft.
  • the centrifugal fan 3 creates a flow of air that is sucked into the case 1 from the suction port 8 and blown out from the blowout port 2 to the target space.
  • the heat exchanger 6 is disposed in the air flow path.
  • the heat exchanger 6 adjusts the temperature of the air.
  • the spiral casing 7 is provided so as to surround the centrifugal fan 3.
  • the vortex casing 7 rectifies the air blown from the centrifugal fan 3.
  • a bell mouth 5 is disposed at the suction port of the spiral casing 7.
  • the bell mouth 5 is disposed at a position facing the suction port of the centrifugal fan 3.
  • the bell mouth 5 rectifies the airflow flowing into the centrifugal fan 3.
  • the space on the suction side of the bell mouth 5 and the space on the blow-out side of the spiral casing 7 are partitioned by a partition plate. Note that the configurations and modes of the bell mouth 5 and the heat exchanger 6 are not particularly limited, and well-known ones are used in the first embodiment.
  • FIG. 3 is a schematic perspective view of the centrifugal fan 3.
  • FIG. 4 is an enlarged schematic view of the blade of the centrifugal fan shown in FIG.
  • FIG. 5 is a schematic view of the blades of the centrifugal fan 3 as viewed from the axial direction.
  • the centrifugal fan 3 includes a main plate 3a, a side plate 3c, and a plurality of blades 3d.
  • the main plate 3a rotates around the rotation axis.
  • the side plate 3c is provided so as to face the main plate 3a and has a ring shape.
  • the plurality of blades 3d are provided between the main plate 3a and the side plate 3c. On the inner peripheral side of the plurality of blades 3d, the plurality of blades 3d have blade inlet angles ⁇ 1 to ⁇ 3.
  • Each of the plurality of blades 3d has a first region, a second region, and a third region.
  • the first region is connected to the main plate 3a.
  • the third region is connected to the side plate 3c.
  • the second region is located between the first region and the third region.
  • the blade inlet angle ⁇ 1 in the first region of at least one blade 3d of the plurality of blades 3d is larger than the blade inlet angle ⁇ 2 in the second region of the at least one blade 3d.
  • the blade inlet angle ⁇ 3 in the third region of the at least one blade 3d is smaller than the blade inlet angle ⁇ 2 in the second region of the at least one blade 3d.
  • a region on the main plate 3a side from the first position A of the blade 3d is defined as a first region.
  • a region from the first position A to the second position B of the blade 3d is defined as a second region.
  • a region on the side plate 3c side from the second position B of the blade 3d is defined as a third region.
  • the blade inlet angle ⁇ 1 on the inner peripheral side of the blade 3d in the first region is larger than the blade inlet angle ⁇ 2 in the second region of the blade 3d.
  • the blade inlet angle ⁇ 3 in the third region of the blade is smaller than the blade inlet angle ⁇ 2 in the second region.
  • the blade 3d includes an outer peripheral side edge 13b and an inner peripheral side edge 13a.
  • the width of the first region is the distance L1.
  • the width of the second region is the distance (L2-L1).
  • the width of the third region is the distance L3.
  • the main plate 3a has a disk shape.
  • the main plate 3a has a boss 3b at the center thereof.
  • the output shaft of the fan motor 4 (see FIG. 2) is connected to the center of the boss 3b.
  • the centrifugal fan 3 is rotated by the driving force of the fan motor 4.
  • the side plate 3c is disposed so as to face the main plate 3a.
  • the plurality of blades 3d are provided so as to surround the rotation axis X in an annular shape from the main plate 3a toward the side plate 3c.
  • the plurality of blades 3d have the same shape.
  • Each of the blades 3d has an inner peripheral side front edge 9a, an outer peripheral side rear edge 9b, a rotation direction side blade surface 9c, a counter rotation direction side blade surface 9d, and a side plate side end surface 9e.
  • the blade surface 9c on the rotation direction side is a pressure surface.
  • the blade surface 9d on the counter-rotation direction side is a suction surface.
  • the blade surface 9c on the rotation direction side is concave with respect to the air path between the blades.
  • the blade surface 9d on the side opposite to the rotation direction is convex with respect to the air path between the blades.
  • the blade 3d is a forward-facing blade in which the outer peripheral side rear edge 9b is positioned to move forward in the rotational direction from the inner peripheral side front edge 9a.
  • the blade inlet angles ⁇ 1, ⁇ 2, and ⁇ 3 at the inner circumferential front edge 9a of the blade 3d are the inner circumferential front edge 9a from the tangent line of the blade inscribed circle connecting the inner circumferential front edge 9a to the rotational direction side. Is defined by the angle formed by the tangent to the blade center line 9f.
  • the cross-sectional contour 9g on the inner peripheral side of the blade 3d in the first region is inclined toward the half rotation direction side as compared with the cross-sectional contour 9h on the inner peripheral side of the blade 3d in the second region.
  • the cross-sectional contour 9i on the inner peripheral side of the blade 3d in the third region is inclined to the rotational direction side as compared with the cross-sectional contour 9h on the inner peripheral side of the blade 3d in the second region.
  • FIG. 6 shows a change in the blade inlet angle in the blade width direction in the centrifugal fan 3 according to the present embodiment.
  • the horizontal axis in FIG. 6 indicates the position in the blade width direction, and the vertical axis indicates the blade inlet angle.
  • the blade inlet angle ⁇ 2 in the second region described above is constant.
  • the blade inlet angle ⁇ 1 gradually increases from the position A away from the main plate 3a by the first distance toward the main plate 3a. Specifically, the position of the end portion on the inner peripheral side of the blade center line 9f of the blade 3d gradually moves to the counter-rotation direction side toward the main plate 3a in the first region.
  • the blade inlet angle ⁇ 3 gradually decreases from the position B away from the main plate 3a by the second distance toward the side plate 3c. Specifically, the position of the end portion on the inner peripheral side of the blade center line 9f of the blade 3d gradually moves to the rotational direction side toward the side plate 3c in the third region.
  • the blade inlet angle ⁇ is maximized at the end portion on the main plate 3a side and is minimized at the end portion on the side plate 3c side. As shown in FIG. 6, the blade inlet angle ⁇ smoothly changes from the main plate 3a side to the side plate 3c side in the width direction of the blade 3d.
  • the angle of attack of the blade 3d is defined as the airflow inflow angle at the leading edge (inner peripheral side) of the blade 3d.
  • an angle formed by the direction of the airflow at the leading edge of the blade 3d from the tangent line of the circle around the rotation axis X to the rotation direction is defined as the angle of attack.
  • FIG. 7 is a graph showing the change in the angle of attack in the blade width direction when the blade inlet angle is constant in the width direction.
  • the horizontal axis of FIG. 7 shows the position in the width direction of a wing
  • the angle of attack also referred to as the inflow angle
  • the angle of attack decreases as the side plate 3c is approached. This is because the inflow speed between the blades is small on the side plate 3c side.
  • the first distance L1 (see FIG. 4) indicating the first position A is the blade width in the direction from the main plate 3a to the side plate 3c (in FIG. 4).
  • the distance L2 + the distance L3) is 20% or less.
  • the second distance L2 (see FIG. 4) indicating the second position B is, for example, 80% or more of the blade width in the direction from the main plate 3a to the side plate 3c.
  • the width (distance L1) of the first region is 20% or less of the blade width in the direction from the main plate 3a to the side plate 3c.
  • the width of the third region (distance L3 in FIG. 4) is 20% or less of the blade width in the direction from the main plate 3a to the side plate 3c.
  • the centrifugal fan 3 of the first embodiment the separation of the airflow from the main plate 3a to the side plate 3c can be suppressed. Therefore, high efficiency and low noise of the centrifugal fan 3 can be achieved by reducing the turbulence of the airflow.
  • the blade inlet angle ⁇ in the width direction of the blade 3d it is possible to suppress variations in the angle of attack in the width direction of the blade 3d. For this reason, about the whole width direction area
  • the first distance may be 20% or less of the blade width in the direction from the main plate 3a to the side plate 3c.
  • the first distance may be 15% or less of the blade width.
  • the second distance may be 80% or more of the blade width in the direction from the main plate 3a toward the side plate 3c.
  • the second distance may be 85% or more of the blade width.
  • the blade inlet angle ⁇ can be adjusted particularly in a region where the angle of attack varies in the main plate 3a side or the side plate 3c side of the blade 3d.
  • FIG. 8 is a schematic view of the blades of the centrifugal fan 3 according to the present embodiment as viewed from the axial direction.
  • the centrifugal fan 3 according to the second embodiment basically has the same configuration as the centrifugal fan 3 according to the first embodiment of the present invention, but the cross-sectional shape of the blade 3d is the centrifugal fan according to the first embodiment. 3 and different. That is, in the centrifugal fan 3 shown in FIG. 8, the blade thickness on the inner peripheral side of the blade 3d in the first region on the main plate 3a side is larger than the second region of the blade 3d. That is, the blade thickness increases in the counter-rotating direction. For this reason, the position of the edge part of the inner peripheral side of the blade center line 9f of the blade 3d in the first region is shifted from the second region to the counter-rotation direction side. More specifically, in the first region, the position of the end portion on the inner peripheral side of the blade center line 9f moves to the counter-rotation direction side as it approaches the main plate 3a.
  • the blade thickness on the inner peripheral side of the blade 3d in the third region on the side plate 3c side is smaller than the second region of the blade 3d. That is, the blade thickness is reduced in the rotational direction. For this reason, the position of the edge part of the inner peripheral side of the blade center line 9f of the blade 3d in the third region is shifted from the second region to the rotational direction side. More specifically, in the third region, as the side plate 3c is approached, the position of the end portion on the inner peripheral side of the blade center line 9f moves to the rotational direction side.
  • the blade thickness on the inner peripheral side of the blade 3d in the first region is thicker than the blade thickness on the inner peripheral side of the blade 3d in the second region.
  • the blade surface on the inner peripheral side of the blade 3d in the second region and on the counter-rotation direction side is opposed to the blade surface on the inner periphery side of the blade 3d in the first region and on the counter-rotation direction side. It protrudes.
  • the blade thickness on the inner peripheral side of the blade 3d in the third region is thinner than the blade thickness on the inner peripheral side of the blade 3d in the second region.
  • the blade surface on the inner peripheral side of the blade 3d in the second region and the blade surface on the counter-rotation direction side is recessed in the rotation direction on the inner periphery side of the blade 3d in the third region and on the counter-rotation direction side. It is out.
  • the same effect as the centrifugal fan 3 according to the first embodiment can be obtained.
  • the blade thickness on the inner peripheral side of the blade 3d gradually decreases in the width direction from the first region to the second region and the third region. For this reason, for example, when the wing 3d is molded using a mold, the mold can be separated from the wing 3d from the third region side, that is, the side plate 3c side.
  • the distance between the blades on the main plate 3a side is small and the ventilation resistance can be increased.
  • the distance between the blades is large on the side plate 3c side, and the ventilation resistance can be reduced. For this reason, the flow biased toward the main plate 3a can be made uniform in the blade width direction. As a result, friction loss and vortices caused by wind speed differences in the blade width direction can be suppressed. Therefore, high efficiency and low noise of the centrifugal fan 3 can be achieved.
  • FIG. 9 is a partially enlarged schematic view of the centrifugal fan 3 according to the present embodiment.
  • the centrifugal fan 3 according to the third embodiment basically has the same configuration as the centrifugal fan 3 according to the first embodiment of the present invention, but the shape of the blade 3d is the centrifugal fan 3 according to the first embodiment. Is different. That is, in Embodiment 3, the centrifugal fan 3 further includes a bell mouth 5 that is disposed on the side plate 3c side and includes an opening 5a that faces the wing 3d. The inner diameter of the opening 5a of the bell mouth 5 is larger than the inner diameter of the plurality of blades 3d arranged in an annular shape along the side plate 3c. On the inner peripheral side of the opening 5a of the bell mouth 5, the end 19a on the side plate 3c side of the wing 3d is inclined in the rotational direction.
  • the inner diameter of the plurality of blades 3d arranged in an annular shape means that the inner diameter side of the annular region occupied by the blades 3d when the plurality of blades 3d arranged in a ring shape are viewed from the axial direction. It means the diameter of the opening to be formed.
  • the inner diameter of the downstream end of the opening 5a of the bell mouth 5 (see FIG. 2) is larger than the inner diameter of the blade 3d of the centrifugal fan 3.
  • An inner peripheral front edge 9 a of the wing 3 d protrudes from the opening 5 a of the bell mouth 5.
  • the side plate side blade end (end portion 19a) of the blade 3d is inclined in the rotational direction.
  • the side plate side blade end (end portion 19b) of the blade 3d faces the counter-rotation direction side from the side plate side blade end on the inner peripheral side.
  • the end 19b of the blade 3d on the outer peripheral side of the opening 5a is also basically inclined in the rotational direction in the blade width direction.
  • the inclination of the end portion 19b in the rotation direction is smaller than the inclination in the rotation direction in the blade width direction with respect to the end portion 19a of the blade 3d on the inner peripheral side from the opening 5a.
  • Both the rotation direction side surface and the counter rotation direction side surface of the end portions 19a and 19b are curved.
  • the separation of the airflow flowing from the end portions 19a and 19b of the side plate side wings is further suppressed. it can.
  • FIG. 10 is a configuration diagram of an air-conditioning apparatus according to Embodiment 4 of the present invention.
  • an air conditioner as a refrigeration cycle apparatus having an indoor unit 200 including the centrifugal fan described above will be described.
  • the air conditioner shown in FIG. 10 includes an outdoor unit 100 and an indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are connected by a refrigerant pipe to form a refrigerant circuit.
  • a refrigerant is circulated in the refrigerant circuit.
  • a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300.
  • a pipe through which a liquid-containing refrigerant (a liquid refrigerant or a gas-liquid two-phase refrigerant may flow) flows is referred to as a liquid pipe 400.
  • the outdoor unit 100 includes a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an outdoor blower 104, and a throttle device (expansion valve) 105.
  • Compressor 101 compresses and discharges the sucked refrigerant.
  • the compressor 101 includes an inverter device or the like, and can arbitrarily change the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operation frequency.
  • the four-way valve 102 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from a control device (not shown).
  • the outdoor heat exchanger 103 exchanges heat between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the liquid pipe 400 and the air. In this case, the outdoor heat exchanger 103 evaporates and vaporizes the refrigerant. Further, during the cooling operation, the outdoor heat exchanger 103 functions as a condenser. In this case, the refrigerant compressed in the compressor 101 flows into the outdoor heat exchanger 103 from the four-way valve 102 side. In the outdoor heat exchanger 103, heat is exchanged between the refrigerant and air, and the refrigerant is condensed and liquefied.
  • the outdoor heat exchanger 103 is provided with an outdoor fan 104 having the centrifugal fan 3 described in the first to third embodiments in order to efficiently exchange heat between the refrigerant and the air.
  • the rotational speed of the centrifugal fan 3 as the blower fan may be finely changed by arbitrarily changing the operating frequency of the fan motor by the inverter device.
  • the expansion device 105 is provided to adjust the refrigerant pressure or the like by changing the opening degree.
  • the indoor unit 200 includes a load side heat exchanger 201 and a load side blower 202.
  • the load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation.
  • the load-side heat exchanger 201 performs heat exchange between the refrigerant flowing in from the gas pipe 300 and the air, condensing the refrigerant and liquefying (or gas-liquid two-phase). As a result, the liquefied refrigerant flows out from the load side heat exchanger 201 to the liquid pipe 400 side.
  • the load-side heat exchanger 201 functions as an evaporator.
  • the load-side heat exchanger 201 performs heat exchange between the refrigerant and the air that have been brought into a low pressure state by the expansion device 105.
  • the refrigerant is vaporized by causing the refrigerant to take heat of the air and evaporate it.
  • the refrigerant evaporated from the load side heat exchanger 201 flows out to the gas pipe 300 side.
  • the indoor unit 200 is provided with a load-side blower 202 for adjusting the flow of air for heat exchange.
  • the operating speed of the load-side blower 202 is determined by, for example, user settings.
  • the centrifugal fan described in the first to third embodiments can be used for the load-side blower 202.
  • the air conditioner according to the fourth embodiment by using the blower described in the first to third embodiments for the outdoor unit 100 and further for the indoor unit 200, air volume reduction, noise suppression, and the like can be realized. Can do.
  • the present invention can be widely used not only for indoor units constituting a refrigeration cycle apparatus, for example, indoor units for air conditioners, but also for various devices and facilities in which a centrifugal fan is installed.
  • the present invention is particularly advantageously applied to a multiblade centrifugal fan.

Abstract

A centrifugal fan that operates with little noise at high efficiency is provided. The centrifugal fan is provided with a main panel, a side panel, and a plurality of blades. The side panel, which is provided so as to face the main panel, has the shape of a ring. The plurality of blades are provided between the main panel and the side panel. In the inner peripheral side of the plurality of blades, the plurality of blades have a blade inlet angle of θ1-θ3. Each of the plurality of blades has a first section, a second section, and a third section. The first section is connected to the main panel. The third section is connected to the side panel. The second section is positioned between the first section and the third section. The blade inlet angle θ1 in the first section of at least one of the plurality of blades is greater than the blade inlet angle θ2 in the second section of said at least one blade. The blade inlet angle θ3 in the third section of said at least one blade is less than the blade inlet angle θ2 in the second section of said at least one blade.

Description

遠心ファン、空気調和装置および冷凍サイクル装置Centrifugal fan, air conditioner and refrigeration cycle apparatus
 この発明は、遠心ファン、および遠心ファンを備えた空気調和装置および冷凍サイクル装置に関する。 The present invention relates to a centrifugal fan, an air conditioner including the centrifugal fan, and a refrigeration cycle apparatus.
 特開平6-299994号公報(特許文献1)には、多翼の遠心ファンが開示されている。特許文献1に開示された遠心ファンは、翼の主板側および側板側の入口角をそれぞれ異ならせた構成となっている。 JP-A-6-299994 (Patent Document 1) discloses a multiblade centrifugal fan. The centrifugal fan disclosed in Patent Document 1 has a configuration in which the entrance angles on the main plate side and the side plate side of the blades are different from each other.
特開平6-299994号公報JP-A-6-299994
 遠心ファンにおいて、回転軸方向の翼幅が広いほど、翼幅方向に不均一な風速分布になりやすい。この場合、翼の前縁における迎角が不均一になり、反回転方向側の翼表面では気流がはく離しやすくなる。このような気流のはく離は、翼間の有効風路幅の縮小を招く。そのため、気流のはく離は、遠心ファンの効率の低下、さらには渦の発生による騒音増大という問題の原因となっていた。 In a centrifugal fan, the wider the blade width in the direction of the rotation axis, the more likely to be a non-uniform wind speed distribution in the blade width direction. In this case, the angle of attack at the leading edge of the blade becomes non-uniform, and the airflow is easily separated on the blade surface on the counter-rotating direction side. Such separation of the air current leads to a reduction in the effective air path width between the blades. For this reason, the separation of the air current has caused problems such as a decrease in the efficiency of the centrifugal fan and an increase in noise due to the generation of vortices.
 特許文献1では、側板から主板に向かう軸方向において、全翼幅の30%~40%の部位を境界とし、前記翼の入口部を境界から側板側と主板側に分割している。そして、側板側と主板側とで、翼が異なる入口角を有するように構成されている。特許文献1では、このような構成により、翼の入口部で発生する渦および渦音の低減を図っている。 In Patent Document 1, in the axial direction from the side plate to the main plate, a portion of 30% to 40% of the total blade width is used as a boundary, and the inlet portion of the blade is divided from the boundary into the side plate side and the main plate side. The blades are configured to have different entrance angles on the side plate side and the main plate side. In patent document 1, the vortex and vortex sound which generate | occur | produce at the entrance part of a wing | blade are reduced by such a structure.
 しかし、上述した従来の送付ファンでは、主板近傍においても迎角が大きく変化する。このため、回転方向側の翼表面で前縁から気流がはく離する。この結果、騒音低減効果が十分に得られないという課題があった。 However, in the conventional sending fan described above, the angle of attack changes greatly even near the main plate. For this reason, the airflow is separated from the leading edge on the blade surface on the rotational direction side. As a result, there has been a problem that the noise reduction effect cannot be obtained sufficiently.
 本発明は、上記のような課題を解決するためになされたものであり、本発明の目的は、翼の幅方向全域で翼表面での気流のはく離を抑制し、高効率で低騒音の遠心ファン、空気調和装置および冷凍サイクル装置を提供することである。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to suppress the separation of air currents on the blade surface in the entire width direction of the blade, and to achieve high-efficiency and low-noise centrifugal. To provide a fan, an air conditioner, and a refrigeration cycle apparatus.
 本発明に係る遠心ファンは、主面を有する主板と、主面に面したリング状の側板と、主板と側板との間に設けられた複数の翼とを備える。複数の翼の内周側において、複数の翼は翼入口角を有する。複数の翼のそれぞれは、第1領域と、第2領域と、第3領域とを有する。第1領域は主板に接続される。第3領域は側板に接続される。第2領域は第1領域と第3領域との間に位置する。複数の翼のうちの少なくとも1つの翼の第1領域での翼入口角は、当該少なくとも1つの翼の第2領域での翼入口角より大きい。当該少なくとも1つの翼の第3領域での翼入口角は、当該少なくとも1つの翼の第2領域での翼入口角より小さい。 The centrifugal fan according to the present invention includes a main plate having a main surface, a ring-shaped side plate facing the main surface, and a plurality of blades provided between the main plate and the side plate. On the inner peripheral side of the plurality of blades, the plurality of blades have a blade inlet angle. Each of the plurality of wings has a first region, a second region, and a third region. The first region is connected to the main plate. The third region is connected to the side plate. The second region is located between the first region and the third region. The blade inlet angle in the first region of at least one blade of the plurality of blades is greater than the blade inlet angle in the second region of the at least one blade. The blade inlet angle in the third region of the at least one wing is smaller than the blade inlet angle in the second region of the at least one wing.
 本発明によれば、翼幅方向に翼の迎角が均一化するため、反回転方向側の翼表面側および回転方向側の翼表面側の前縁からのはく離が抑制され、高効率化と低騒音化を図ることができる。 According to the present invention, since the angle of attack of the blade is made uniform in the blade width direction, separation from the front edge of the blade surface side on the counter-rotation direction side and the blade surface side on the rotation direction side is suppressed, and high efficiency is achieved. Low noise can be achieved.
本発明の実施の形態1に係る空気調和装置の室内機の斜視模式図である。It is a perspective schematic diagram of the indoor unit of the air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の室内機の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the indoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る遠心ファンの斜視模式図である。It is a perspective schematic diagram of the centrifugal fan which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る遠心ファンの部分拡大模式図である。It is a partial expansion schematic diagram of the centrifugal fan according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る遠心ファンの翼を軸方向から見た模式図である。It is the schematic diagram which looked at the blade | wing of the centrifugal fan which concerns on Embodiment 1 of this invention from the axial direction. 本発明の実施の形態1に係る遠心ファンの翼の幅方向における翼入口角の変化を示すグラフである。It is a graph which shows the change of the blade inlet angle in the width direction of the blade | wing of the centrifugal fan which concerns on Embodiment 1 of this invention. 遠心ファンの翼の幅方向における迎角の変化を示すグラフである。It is a graph which shows the change of the angle of attack in the width direction of the blade | wing of a centrifugal fan. 本発明の実施の形態2に係る遠心ファンの翼を軸方向から見た模式図である。It is the schematic diagram which looked at the blade | wing of the centrifugal fan which concerns on Embodiment 2 of this invention from the axial direction. 本発明の実施の形態3に係る遠心ファンの部分拡大模式図である。It is the partial expansion schematic diagram of the centrifugal fan which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus which concerns on Embodiment 4 of this invention.
 以下、図面を参照しながら本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 <本実施形態に係る空気調和装置の室内機の構成および動作>
 図1は、本発明の実施の形態1に係る遠心ファンを搭載する空気調和装置の室内機の斜視模式図である。図2は、本発明の実施の形態1に係る空気調和装置の室内機の内部構成を示す模式図である。
(Embodiment 1)
<Configuration and operation of indoor unit of air-conditioning apparatus according to this embodiment>
FIG. 1 is a schematic perspective view of an indoor unit of an air conditioner equipped with a centrifugal fan according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing the internal configuration of the indoor unit of the air-conditioning apparatus according to Embodiment 1 of the present invention.
 図1および図2に示すように、空気調和装置の室内機は、空調対象の空間の天井裏に設置されたケース1を備えている。なお、ケース1の形状は任意の形状を採用できる。たとえば一例として、ケース1は直方体状に形成されている。ケース1は、上面部1aと、下面部1bと、側面部1cとを含む。 As shown in FIGS. 1 and 2, the indoor unit of the air conditioner includes a case 1 installed behind the ceiling of a space to be air-conditioned. In addition, the shape of case 1 can employ | adopt arbitrary shapes. For example, as an example, the case 1 is formed in a rectangular parallelepiped shape. Case 1 includes an upper surface portion 1a, a lower surface portion 1b, and a side surface portion 1c.
 ケース1の側面部1cの内、1面に吹出口2が設けられている。吹出口2の形状は任意の形状を採用し得る。吹出口2の形状はたとえば矩形状である。また、ケース1の側面部1cのうち、吹出口2が形成された面と反対側の面に、吸込口8が形成されている。吸込口8の形状は任意の形状を採用し得る。吸込口8の形状はたとえば矩形状である。吸込口8には、空気を除塵するフィルタが設けられていてもよい。 The air outlet 2 is provided on one surface of the side surface portion 1c of the case 1. Arbitrary shapes can be employ | adopted for the shape of the blower outlet 2. FIG. The shape of the blower outlet 2 is a rectangular shape, for example. Moreover, the suction inlet 8 is formed in the surface on the opposite side to the surface in which the blower outlet 2 was formed among the side surface parts 1c of the case 1. FIG. Arbitrary shapes can be employ | adopted for the shape of the suction inlet 8. FIG. The shape of the suction port 8 is, for example, a rectangular shape. The suction port 8 may be provided with a filter for removing air.
 ケース1内には、ベルマウス5が設置された遠心ファン3と、ファンモータ4と、熱交換器6と、渦形ケーシング7とが収容されている。ファンモータ4は、たとえばケース1の上面部1aに固定されたモータサポートにより支持されている。ファンモータ4は回転軸を有する。回転軸は、側面部1cのうち吸込口8が形成された面および吹出口2が形成された面に対して平行に伸びるように配置されている。回転軸には、多翼遠心ファンである遠心ファン3が取り付けられている。遠心ファン3は、少なくとも1つが回転軸に取り付けられている。図2に示した室内機では、2つの遠心ファン3が回転軸に取り付けられている。遠心ファン3は、吸込口8からケース1内に吸込まれ吹出口2から対象空間へと吹出される空気の流れを作る。 In the case 1, a centrifugal fan 3, in which a bell mouth 5 is installed, a fan motor 4, a heat exchanger 6, and a spiral casing 7 are accommodated. The fan motor 4 is supported by a motor support fixed to the upper surface portion 1a of the case 1, for example. The fan motor 4 has a rotating shaft. The rotating shaft is arranged so as to extend in parallel to the surface of the side surface portion 1c where the inlet 8 is formed and the surface where the outlet 2 is formed. A centrifugal fan 3 which is a multiblade centrifugal fan is attached to the rotating shaft. At least one centrifugal fan 3 is attached to the rotating shaft. In the indoor unit shown in FIG. 2, two centrifugal fans 3 are attached to the rotating shaft. The centrifugal fan 3 creates a flow of air that is sucked into the case 1 from the suction port 8 and blown out from the blowout port 2 to the target space.
 熱交換器6は、空気の流動路中に配置される。熱交換器6は空気の温度を調整する。渦形ケーシング7は、遠心ファン3を囲うように設けられる。渦形ケーシング7は、遠心ファン3から吹出された空気を整流する。渦形ケーシング7の吸込口にはベルマウス5が配置されている。また、ベルマウス5は遠心ファン3の吸込口に対向する位置に配置されている。ベルマウス5は遠心ファン3に流入する気流を整流する。ベルマウス5の吸込側の空間と渦形ケーシング7の吹出側の空間は、仕切板により仕切られている。なお、ベルマウス5や熱交換器6の構成や態様は特に限定されるものではなく、本実施の形態1では周知のものが用いられている。 The heat exchanger 6 is disposed in the air flow path. The heat exchanger 6 adjusts the temperature of the air. The spiral casing 7 is provided so as to surround the centrifugal fan 3. The vortex casing 7 rectifies the air blown from the centrifugal fan 3. A bell mouth 5 is disposed at the suction port of the spiral casing 7. The bell mouth 5 is disposed at a position facing the suction port of the centrifugal fan 3. The bell mouth 5 rectifies the airflow flowing into the centrifugal fan 3. The space on the suction side of the bell mouth 5 and the space on the blow-out side of the spiral casing 7 are partitioned by a partition plate. Note that the configurations and modes of the bell mouth 5 and the heat exchanger 6 are not particularly limited, and well-known ones are used in the first embodiment.
 このような構成において、遠心ファン3が回転すると、空調対象の部屋の空気は、吸込口8に吸い込まれる。ケース1の内部に吸い込まれた空気は、ベルマウス5によって案内されて、遠心ファン3に吸い込まれる。さらに、遠心ファン3では、吸い込まれた空気が、遠心ファン3の径方向の外側に吹き出される。遠心ファン3から吹き出された空気は、渦形ケーシング7の内部を通過後、熱交換器6に供給される。熱交換器6に供給された空気は、熱交換器6を通過する際に、熱交換および湿度調整される。その後、空気は吹出口2から部屋に吹き出される。 In such a configuration, when the centrifugal fan 3 rotates, the air in the air-conditioned room is sucked into the suction port 8. The air sucked into the case 1 is guided by the bell mouth 5 and sucked into the centrifugal fan 3. Further, in the centrifugal fan 3, the sucked air is blown out to the outside in the radial direction of the centrifugal fan 3. The air blown out from the centrifugal fan 3 is supplied to the heat exchanger 6 after passing through the inside of the spiral casing 7. The air supplied to the heat exchanger 6 is subjected to heat exchange and humidity adjustment when passing through the heat exchanger 6. Thereafter, air is blown out from the air outlet 2 into the room.
 <遠心ファンの構成>
 次に、図3~5に基づいて、遠心ファン3の構成について説明する。図3は、遠心ファン3の斜視模式図である。図4は図3に示した遠心ファンの翼の拡大模式図である。図5は遠心ファン3の翼を軸方向から見た模式図である。遠心ファン3は、主板3aと、側板3cと、複数の翼3dとを備える。
<Configuration of centrifugal fan>
Next, the configuration of the centrifugal fan 3 will be described with reference to FIGS. FIG. 3 is a schematic perspective view of the centrifugal fan 3. FIG. 4 is an enlarged schematic view of the blade of the centrifugal fan shown in FIG. FIG. 5 is a schematic view of the blades of the centrifugal fan 3 as viewed from the axial direction. The centrifugal fan 3 includes a main plate 3a, a side plate 3c, and a plurality of blades 3d.
 主板3aは回転軸を中心に回転する。側板3cは主板3aに面するように設けられ、リング状の形状を有する。複数の翼3dは、主板3aと側板3cとの間に設けられる。複数の翼3dの内周側において、複数の翼3dは翼入口角θ1~θ3を有する。複数の翼3dのそれぞれは、第1領域と、第2領域と、第3領域とを有する。第1領域は主板3aに接続される。第3領域は側板3cに接続される。第2領域は第1領域と第3領域との間に位置する。複数の翼3dのうちの少なくとも1つの翼3dの第1領域での翼入口角θ1は、当該少なくとも1つの翼3dの第2領域での翼入口角θ2より大きい。当該少なくとも1つの翼3dの第3領域での翼入口角θ3は、当該少なくとも1つの翼3dの第2領域での翼入口角θ2より小さい。また、異なる観点から言えば、翼3dにおいて、主板3aから側板3cに向かう方向にて主板3aから第1の距離L1だけ離れた第1位置Aと、主板3aから第1の距離L1より大きい第2の距離L2だけ離れた第2位置Bとを考える。このとき、翼3dの第1位置Aから主板3a側の領域を第1領域とする。翼3dの第1位置Aから第2位置Bまでの領域を第2領域とする。翼3dの第2位置Bから側板3c側の領域を第3領域とする。第1領域での翼3dの内周側における翼入口角θ1は、翼3dの第2領域での翼入口角θ2より大きい。翼の第3領域での翼入口角θ3は、第2領域での翼入口角θ2より小さい。上記遠心ファン3において、翼3dは外周側縁部13bおよび内周側縁部13aを含む。また、図4からわかるように、主板3aから側板3cに向かう方向において、第1領域の幅は上記距離L1である。第2領域の幅は距離(L2-L1)である。第3領域の幅は距離L3である。 The main plate 3a rotates around the rotation axis. The side plate 3c is provided so as to face the main plate 3a and has a ring shape. The plurality of blades 3d are provided between the main plate 3a and the side plate 3c. On the inner peripheral side of the plurality of blades 3d, the plurality of blades 3d have blade inlet angles θ1 to θ3. Each of the plurality of blades 3d has a first region, a second region, and a third region. The first region is connected to the main plate 3a. The third region is connected to the side plate 3c. The second region is located between the first region and the third region. The blade inlet angle θ1 in the first region of at least one blade 3d of the plurality of blades 3d is larger than the blade inlet angle θ2 in the second region of the at least one blade 3d. The blade inlet angle θ3 in the third region of the at least one blade 3d is smaller than the blade inlet angle θ2 in the second region of the at least one blade 3d. Further, from a different point of view, in the blade 3d, the first position A that is separated from the main plate 3a by the first distance L1 in the direction from the main plate 3a to the side plate 3c, and the first position A that is larger than the first distance L1 from the main plate 3a. Consider a second position B separated by a distance L2. At this time, a region on the main plate 3a side from the first position A of the blade 3d is defined as a first region. A region from the first position A to the second position B of the blade 3d is defined as a second region. A region on the side plate 3c side from the second position B of the blade 3d is defined as a third region. The blade inlet angle θ1 on the inner peripheral side of the blade 3d in the first region is larger than the blade inlet angle θ2 in the second region of the blade 3d. The blade inlet angle θ3 in the third region of the blade is smaller than the blade inlet angle θ2 in the second region. In the centrifugal fan 3, the blade 3d includes an outer peripheral side edge 13b and an inner peripheral side edge 13a. Further, as can be seen from FIG. 4, in the direction from the main plate 3a to the side plate 3c, the width of the first region is the distance L1. The width of the second region is the distance (L2-L1). The width of the third region is the distance L3.
 主板3aは円盤状である。主板3aはその中心部にボス部3bを有する。ボス部3bの中央には、ファンモータ4(図2参照)の出力軸が接続される。遠心ファン3はファンモータ4の駆動力によって回転される。側板3cは、主板3aに対向するように配置される。複数の翼3dは、主板3aから側板3cに向かって回転軸Xを環状に囲むように設けられている。 The main plate 3a has a disk shape. The main plate 3a has a boss 3b at the center thereof. The output shaft of the fan motor 4 (see FIG. 2) is connected to the center of the boss 3b. The centrifugal fan 3 is rotated by the driving force of the fan motor 4. The side plate 3c is disposed so as to face the main plate 3a. The plurality of blades 3d are provided so as to surround the rotation axis X in an annular shape from the main plate 3a toward the side plate 3c.
 複数の翼3dは、相互に同一形状を有する。翼3dは、それぞれ内周側前縁9a、外周側後縁9b、回転方向側の翼表面9c、反回転方向側の翼表面9d、側板側端面9eを有している。回転方向側の翼表面9cは正圧面である。反回転方向側の翼表面9dは負圧面である。翼3dにおいて、翼間の風路に対し、回転方向側の翼表面9cは凹面となっている。翼3dにおいて、翼間の風路に対し、反回転方向側の翼表面9dは凸面となっている。翼3dは、外周側後縁9bが内周側前縁9aより回転方向に前進して位置した前向き羽根である。 The plurality of blades 3d have the same shape. Each of the blades 3d has an inner peripheral side front edge 9a, an outer peripheral side rear edge 9b, a rotation direction side blade surface 9c, a counter rotation direction side blade surface 9d, and a side plate side end surface 9e. The blade surface 9c on the rotation direction side is a pressure surface. The blade surface 9d on the counter-rotation direction side is a suction surface. In the blade 3d, the blade surface 9c on the rotation direction side is concave with respect to the air path between the blades. In the blade 3d, the blade surface 9d on the side opposite to the rotation direction is convex with respect to the air path between the blades. The blade 3d is a forward-facing blade in which the outer peripheral side rear edge 9b is positioned to move forward in the rotational direction from the inner peripheral side front edge 9a.
 ここで、翼3dの内周側前縁9aにおける翼入口角θ1、θ2、θ3は、内周側前縁9aを結んだ翼内接円の接線から回転方向側に、内周側前縁9aにおける翼中心線9fの接線とのなす角で定義される。図5に示すように、第2領域での翼3dの内周側の断面輪郭9hと比べて、第1領域での翼3dの内周側の断面輪郭9gは半回転方向側に傾いている。また、第2領域での翼3dの内周側の断面輪郭9hと比べて、第3領域での翼3dの内周側の断面輪郭9iは回転方向側に傾いている。 Here, the blade inlet angles θ1, θ2, and θ3 at the inner circumferential front edge 9a of the blade 3d are the inner circumferential front edge 9a from the tangent line of the blade inscribed circle connecting the inner circumferential front edge 9a to the rotational direction side. Is defined by the angle formed by the tangent to the blade center line 9f. As shown in FIG. 5, the cross-sectional contour 9g on the inner peripheral side of the blade 3d in the first region is inclined toward the half rotation direction side as compared with the cross-sectional contour 9h on the inner peripheral side of the blade 3d in the second region. . Further, the cross-sectional contour 9i on the inner peripheral side of the blade 3d in the third region is inclined to the rotational direction side as compared with the cross-sectional contour 9h on the inner peripheral side of the blade 3d in the second region.
 図6に、本実施形態に係る遠心ファン3における翼の幅方向における翼入口角の変化を示す。図6の横軸は翼の幅方向での位置を示し、縦軸は翼入口角を示す。図6に示すように、本実施形態に係る遠心ファン3では、上述した第2領域での翼入口角θ2は一定とする。 FIG. 6 shows a change in the blade inlet angle in the blade width direction in the centrifugal fan 3 according to the present embodiment. The horizontal axis in FIG. 6 indicates the position in the blade width direction, and the vertical axis indicates the blade inlet angle. As shown in FIG. 6, in the centrifugal fan 3 according to the present embodiment, the blade inlet angle θ2 in the second region described above is constant.
 一方、第1領域においては、主板3aから第1の距離だけ離れた位置Aから主板3aに向かうにつれて翼入口角θ1は徐々に大きくなる。具体的には、翼3dの翼中心線9fの内周側の端部の位置が、第1領域にて主板3aに向かうにつれて徐々に反回転方向側に移動する。 On the other hand, in the first region, the blade inlet angle θ1 gradually increases from the position A away from the main plate 3a by the first distance toward the main plate 3a. Specifically, the position of the end portion on the inner peripheral side of the blade center line 9f of the blade 3d gradually moves to the counter-rotation direction side toward the main plate 3a in the first region.
 一方、第3領域では、主板3aから第2の距離だけ離れた位置Bから側板3cに向かうにつれて翼入口角θ3は徐々に小さくなる。具体的には、翼3dの翼中心線9fの内周側の端部の位置が、第3領域にて側板3cに向かうにつれて徐々に回転方向側に移動する。翼入口角θは、主板3a側端部で最大となり、側板3c側端部で最小となる。図6に示すように、翼入口角θは、翼3dの幅方向において、主板3a側から側板3c側にかけて、滑らかに変化する。 On the other hand, in the third region, the blade inlet angle θ3 gradually decreases from the position B away from the main plate 3a by the second distance toward the side plate 3c. Specifically, the position of the end portion on the inner peripheral side of the blade center line 9f of the blade 3d gradually moves to the rotational direction side toward the side plate 3c in the third region. The blade inlet angle θ is maximized at the end portion on the main plate 3a side and is minimized at the end portion on the side plate 3c side. As shown in FIG. 6, the blade inlet angle θ smoothly changes from the main plate 3a side to the side plate 3c side in the width direction of the blade 3d.
 なお、翼入口角θが翼3dの幅方向において一定である場合には、図7に示すように翼3dの幅方向において迎角が変化する。ここで、翼3dの迎角を、翼3dの前縁(内周側)における気流の流入角として規定する。具体的には、回転軸Xを中心とする円の接線から回転方向に、翼3dの前縁における気流の方向とのなす角度を迎角とする。 If the blade inlet angle θ is constant in the width direction of the blade 3d, the angle of attack changes in the width direction of the blade 3d as shown in FIG. Here, the angle of attack of the blade 3d is defined as the airflow inflow angle at the leading edge (inner peripheral side) of the blade 3d. Specifically, an angle formed by the direction of the airflow at the leading edge of the blade 3d from the tangent line of the circle around the rotation axis X to the rotation direction is defined as the angle of attack.
 図7は翼入口角が幅方向で一定である場合の翼の幅方向における迎角の変化を示すグラフである。図7の横軸は翼の幅方向での位置を示し、縦軸は迎角を示す。図7に示すように、迎角(流入角とも呼ぶ)は、主板3a近傍と側板3c近傍とでそれぞれ変化する。より具体的には、主板3aから側板3cまでの距離、すなわち翼幅、の20%の位置から主板3aまでの領域では、主板3aに近付くにつれて迎角が大きくなる。これは、主板3a近傍では翼間への流入風速が大きいためである。また、主板3aから翼幅の80%の位置から側板3cまでの領域では、側板3cに近付くにつれて迎角が小さくなる。これは、側板3c側では翼間への流入速度が小さいためである。 FIG. 7 is a graph showing the change in the angle of attack in the blade width direction when the blade inlet angle is constant in the width direction. The horizontal axis of FIG. 7 shows the position in the width direction of a wing | blade, and a vertical axis | shaft shows an angle of attack. As shown in FIG. 7, the angle of attack (also referred to as the inflow angle) varies in the vicinity of the main plate 3a and the side plate 3c. More specifically, in the region from the position of 20% of the distance from the main plate 3a to the side plate 3c, that is, the blade width, to the main plate 3a, the angle of attack increases as it approaches the main plate 3a. This is because the inflow wind speed between the blades is large in the vicinity of the main plate 3a. Further, in the region from the main plate 3a to the side plate 3c from the position of 80% of the blade width, the angle of attack decreases as the side plate 3c is approached. This is because the inflow speed between the blades is small on the side plate 3c side.
 <遠心ファンの作用効果>
 図6および図7に示すように、主板3a側では翼入口角θ1を拡大することで、回転方向側の翼表面9c(図5参照)側の前縁における気流のはく離を抑制することができる。また、側板3c側では翼入口角θ3を縮小することで、反回転方向側の翼表面9d(図5参照)側の前縁における気流のはく離を抑制することができる。
<Effect of centrifugal fan>
As shown in FIGS. 6 and 7, by separating the blade inlet angle θ <b> 1 on the main plate 3 a side, it is possible to suppress the separation of airflow at the leading edge on the blade surface 9 c (see FIG. 5) side on the rotational direction side. . Further, by reducing the blade inlet angle θ3 on the side plate 3c side, it is possible to suppress separation of airflow at the leading edge on the blade surface 9d (see FIG. 5) side on the counter-rotating direction side.
 図7に示したデータから考えると、上記遠心ファン3において、第1位置Aを示す第1の距離L1(図4参照)は、主板3aから側板3cに向かう方向での翼幅(図4における距離L2+距離L3)のたとえば20%以下である。また、遠心ファン3において、第2位置Bを示す第2の距離L2(図4参照)は、主板3aから側板3cに向かう方向での翼幅のたとえば80%以上である。また、異なる観点から言えば、主板3aから側板3cに向かう方向において、第1領域の幅(距離L1)は、主板3aから側板3cに向かう方向での翼幅の20%以下である。また、主板3aから側板3cに向かう方向において、第3領域の幅(図4の距離L3)は、主板3aから側板3cに向かう方向での翼幅の20%以下である。 Considering the data shown in FIG. 7, in the centrifugal fan 3, the first distance L1 (see FIG. 4) indicating the first position A is the blade width in the direction from the main plate 3a to the side plate 3c (in FIG. 4). For example, the distance L2 + the distance L3) is 20% or less. In the centrifugal fan 3, the second distance L2 (see FIG. 4) indicating the second position B is, for example, 80% or more of the blade width in the direction from the main plate 3a to the side plate 3c. From a different point of view, in the direction from the main plate 3a to the side plate 3c, the width (distance L1) of the first region is 20% or less of the blade width in the direction from the main plate 3a to the side plate 3c. In the direction from the main plate 3a to the side plate 3c, the width of the third region (distance L3 in FIG. 4) is 20% or less of the blade width in the direction from the main plate 3a to the side plate 3c.
 以上のように、本実施の形態1の遠心ファン3によれば、主板3aから側板3cにかけて気流の剥離を抑制できる。よって、気流の乱れの低減により、遠心ファン3の高効率化と低騒音化を図ることができる。また異なる観点からいえば、翼入口角θを翼3dの幅方向において調整することで、翼3dの幅方向における迎角のばらつきを抑えることができる。このため、翼3dの幅方向全域について、反回転方向側の翼表面9dおよび回転方向側の翼表面9cでの気流の剥離を抑制できる。この結果、高効率かつ低騒音の遠心ファンを提供できる。 As described above, according to the centrifugal fan 3 of the first embodiment, the separation of the airflow from the main plate 3a to the side plate 3c can be suppressed. Therefore, high efficiency and low noise of the centrifugal fan 3 can be achieved by reducing the turbulence of the airflow. From a different point of view, by adjusting the blade inlet angle θ in the width direction of the blade 3d, it is possible to suppress variations in the angle of attack in the width direction of the blade 3d. For this reason, about the whole width direction area | region of the wing | blade 3d, peeling of the airflow can be suppressed on the blade surface 9d on the anti-rotation direction side and the blade surface 9c on the rotation direction side. As a result, a highly efficient and low noise centrifugal fan can be provided.
 また、上記遠心ファン3において、第1の距離は、主板3aから側板3cに向かう方向での翼幅の20%以下であってもよい。第1の距離は翼幅の15%以下でもよい。また、第2の距離は、主板3aから側板3cに向かう方向での翼幅の80%以上であってもよい。第2の距離は翼幅の85%以上でもよい。この場合、翼3dの主板3a側や側板3c側において特に迎角の変動が起きる領域について、翼入口角θを調整することができる。 Further, in the centrifugal fan 3, the first distance may be 20% or less of the blade width in the direction from the main plate 3a to the side plate 3c. The first distance may be 15% or less of the blade width. Further, the second distance may be 80% or more of the blade width in the direction from the main plate 3a toward the side plate 3c. The second distance may be 85% or more of the blade width. In this case, the blade inlet angle θ can be adjusted particularly in a region where the angle of attack varies in the main plate 3a side or the side plate 3c side of the blade 3d.
 (実施の形態2)
 <遠心ファンの構成>
 図8に基づいて、本発明の実施の形態2について説明する。図8は本実施の形態に係る遠心ファン3の翼を軸方向から見た模式図である。
(Embodiment 2)
<Configuration of centrifugal fan>
A second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic view of the blades of the centrifugal fan 3 according to the present embodiment as viewed from the axial direction.
 本実施の形態2に係る遠心ファン3は、基本的には本発明の実施の形態1に係る遠心ファン3と同様の構成を備えるが、翼3dの断面形状が実施の形態1に係る遠心ファン3と異なっている。すなわち、図8に示した遠心ファン3では、翼3dの第2領域に対して、主板3a側の第1領域における翼3dの内周側の翼厚が大きくなっている。つまり、反回転方向に向かって翼厚が拡大している。このため、第2領域より、第1領域において翼3dの翼中心線9fの内周側の端部の位置が、反回転方向側にずれている。より詳しく言えば、第1領域では、主板3aに近付くにつれて、翼中心線9fの内周側の端部の位置が反回転方向側に移動している。 The centrifugal fan 3 according to the second embodiment basically has the same configuration as the centrifugal fan 3 according to the first embodiment of the present invention, but the cross-sectional shape of the blade 3d is the centrifugal fan according to the first embodiment. 3 and different. That is, in the centrifugal fan 3 shown in FIG. 8, the blade thickness on the inner peripheral side of the blade 3d in the first region on the main plate 3a side is larger than the second region of the blade 3d. That is, the blade thickness increases in the counter-rotating direction. For this reason, the position of the edge part of the inner peripheral side of the blade center line 9f of the blade 3d in the first region is shifted from the second region to the counter-rotation direction side. More specifically, in the first region, the position of the end portion on the inner peripheral side of the blade center line 9f moves to the counter-rotation direction side as it approaches the main plate 3a.
 さらに、図8に示した遠心ファン3では、翼3dの第2領域に対して、側板3c側の第3領域における翼3dの内周側の翼厚が小さくなっている。つまり、回転方向に向かって翼厚が縮小している。このため、第2領域より、第3領域において翼3dの翼中心線9fの内周側の端部の位置が、回転方向側にずれている。より詳しく言えば、第3領域では、側板3cに近付くにつれて、翼中心線9fの内周側の端部の位置が回転方向側に移動している。 Furthermore, in the centrifugal fan 3 shown in FIG. 8, the blade thickness on the inner peripheral side of the blade 3d in the third region on the side plate 3c side is smaller than the second region of the blade 3d. That is, the blade thickness is reduced in the rotational direction. For this reason, the position of the edge part of the inner peripheral side of the blade center line 9f of the blade 3d in the third region is shifted from the second region to the rotational direction side. More specifically, in the third region, as the side plate 3c is approached, the position of the end portion on the inner peripheral side of the blade center line 9f moves to the rotational direction side.
 <遠心ファンの作用効果>
 上記遠心ファン3においては、図8に示すように、第2領域における翼3dの内周側の翼厚に対し、第1領域における翼3dの内周側の翼厚は厚い。第2領域における翼3dの内周側であって反回転方向側の翼面に対し、第1領域における翼3dの内周側であって反回転方向側の翼面が反回転方向に向かって突出している。また、遠心ファン3において、第2領域における翼3dの内周側の翼厚に対し、第3領域における翼3dの内周側の翼厚は薄い。第2領域における翼3dの内周側であって反回転方向側の翼面に対し、第3領域における翼3dの内周側であって反回転方向側の翼面が回転方向に向かって凹んでいる。
<Effect of centrifugal fan>
In the centrifugal fan 3, as shown in FIG. 8, the blade thickness on the inner peripheral side of the blade 3d in the first region is thicker than the blade thickness on the inner peripheral side of the blade 3d in the second region. The blade surface on the inner peripheral side of the blade 3d in the second region and on the counter-rotation direction side is opposed to the blade surface on the inner periphery side of the blade 3d in the first region and on the counter-rotation direction side. It protrudes. In the centrifugal fan 3, the blade thickness on the inner peripheral side of the blade 3d in the third region is thinner than the blade thickness on the inner peripheral side of the blade 3d in the second region. The blade surface on the inner peripheral side of the blade 3d in the second region and the blade surface on the counter-rotation direction side is recessed in the rotation direction on the inner periphery side of the blade 3d in the third region and on the counter-rotation direction side. It is out.
 この場合、本実施の形態1に係る遠心ファン3と同様の効果を得られる。さらに、翼3dの内周側の翼厚が、第1領域から第2領域、第3領域と幅方向に徐々に薄くなる。このため、たとえば金型を用いて翼3dを成型する場合に、第3領域側、すなわち側板3c側から、金型を翼3dより分離することができる。 In this case, the same effect as the centrifugal fan 3 according to the first embodiment can be obtained. Further, the blade thickness on the inner peripheral side of the blade 3d gradually decreases in the width direction from the first region to the second region and the third region. For this reason, for example, when the wing 3d is molded using a mold, the mold can be separated from the wing 3d from the third region side, that is, the side plate 3c side.
 また、主板3a側の翼厚を拡大することで、主板3a側で翼間の距離が小さく通風抵抗を大きくできる。一方、側板3c側の翼厚を縮小することで、側板3c側で翼間の距離が大きく通風抵抗を小さくできる。このため、主板3a側に偏る流れを翼幅方向で均一化できる。この結果、翼幅方向における風速差によって生じる摩擦損失と渦を抑制できる。したがって、遠心ファン3の高効率化と低騒音化が図れる。 Also, by increasing the blade thickness on the main plate 3a side, the distance between the blades on the main plate 3a side is small and the ventilation resistance can be increased. On the other hand, by reducing the blade thickness on the side plate 3c side, the distance between the blades is large on the side plate 3c side, and the ventilation resistance can be reduced. For this reason, the flow biased toward the main plate 3a can be made uniform in the blade width direction. As a result, friction loss and vortices caused by wind speed differences in the blade width direction can be suppressed. Therefore, high efficiency and low noise of the centrifugal fan 3 can be achieved.
 (実施の形態3)
 <遠心ファンの構成>
 次に、図9に基づいて、本発明の実施の形態3について説明する。図9は本実施の形態に係る遠心ファン3の部分拡大模式図である。
(Embodiment 3)
<Configuration of centrifugal fan>
Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 9 is a partially enlarged schematic view of the centrifugal fan 3 according to the present embodiment.
 本実施の形態3に係る遠心ファン3は、基本的には本発明の実施の形態1に係る遠心ファン3と同様の構成を備えるが、翼3dの形状が実施の形態1に係る遠心ファン3と異なっている。すなわち、本実施の形態3では、遠心ファン3が、側板3c側に配置され、翼3dと対向する開口部5aを含むベルマウス5をさらに備える。ベルマウス5の開口部5aの内径が、側板3cに沿って環状に配置された複数の翼3dの内径よりも大きい。ベルマウス5の開口部5aより内周側では、翼3dの側板3c側の端部19aが回転方向に傾いている。ベルマウス5の開口部5aより外周側では、翼3dの側板3c側の端部19bが、開口部5aより内周側における翼3dの側板3c側の端部19aより、反回転方向側を向いている。なお、環状に配置された複数の翼3dの内径とは、環状に配置されている複数の翼3dを軸方向から見たときに、当該翼3dが占有している環状領域の内周側に形成される開口部の径を意味する。 The centrifugal fan 3 according to the third embodiment basically has the same configuration as the centrifugal fan 3 according to the first embodiment of the present invention, but the shape of the blade 3d is the centrifugal fan 3 according to the first embodiment. Is different. That is, in Embodiment 3, the centrifugal fan 3 further includes a bell mouth 5 that is disposed on the side plate 3c side and includes an opening 5a that faces the wing 3d. The inner diameter of the opening 5a of the bell mouth 5 is larger than the inner diameter of the plurality of blades 3d arranged in an annular shape along the side plate 3c. On the inner peripheral side of the opening 5a of the bell mouth 5, the end 19a on the side plate 3c side of the wing 3d is inclined in the rotational direction. On the outer peripheral side of the opening 5a of the bell mouth 5, the end 19b on the side plate 3c side of the wing 3d faces the counter-rotation direction side from the end 19a on the side plate 3c side of the wing 3d on the inner peripheral side of the opening 5a. ing. The inner diameter of the plurality of blades 3d arranged in an annular shape means that the inner diameter side of the annular region occupied by the blades 3d when the plurality of blades 3d arranged in a ring shape are viewed from the axial direction. It means the diameter of the opening to be formed.
 異なる観点からいえば、ベルマウス5(図2参照)の開口部5aの下流端の内径が遠心ファン3の翼3dの内径よりも大きい。翼3dの内周側前縁9aがベルマウス5の開口部5aから突出している。ベルマウス5の開口部5aの下流端より内周側では、翼3dの側板側翼端(端部19a)が回転方向に傾いている。ベルマウス5の開口部5aの下流端より外周側では、翼3dの側板側翼端(端部19b)が、内周側における側板側翼端より反回転方向側を向いている。なお、開口部5aより外周側の翼3dの端部19bも、基本的には翼幅方向において回転方向に傾いている。しかし、当該端部19bの回転方向への傾きは、開口部5aより内周側の翼3dの端部19aに関する翼幅方向での回転方向に向けた傾きより小さくなっている。端部19a、19bの回転方向側表面および反回転方向側表面はともに曲面状となっている。 From a different point of view, the inner diameter of the downstream end of the opening 5a of the bell mouth 5 (see FIG. 2) is larger than the inner diameter of the blade 3d of the centrifugal fan 3. An inner peripheral front edge 9 a of the wing 3 d protrudes from the opening 5 a of the bell mouth 5. On the inner peripheral side of the downstream end of the opening 5a of the bell mouth 5, the side plate side blade end (end portion 19a) of the blade 3d is inclined in the rotational direction. On the outer peripheral side of the downstream end of the opening 5a of the bell mouth 5, the side plate side blade end (end portion 19b) of the blade 3d faces the counter-rotation direction side from the side plate side blade end on the inner peripheral side. Note that the end 19b of the blade 3d on the outer peripheral side of the opening 5a is also basically inclined in the rotational direction in the blade width direction. However, the inclination of the end portion 19b in the rotation direction is smaller than the inclination in the rotation direction in the blade width direction with respect to the end portion 19a of the blade 3d on the inner peripheral side from the opening 5a. Both the rotation direction side surface and the counter rotation direction side surface of the end portions 19a and 19b are curved.
 <遠心ファンの作用効果>
 ベルマウスの開口部5aより内周側では、主板に向かって垂直に気流が流入するため、側板側翼端(端部19a)を回転方向側に向けることで、ベルマウスの開口部5a側から流入する気流に対する迎角を小さくできる。このため、翼3dの反回転方向側の面である翼負圧面の気流のはく離を抑制できる。ベルマウスの開口部5aより外周側では、スクロール内を回転方向に循環する気流が、側板側翼端(端部19b)流入する。このため、側板側翼端(端部19b)をベルマウスの開口部5aより内周側の翼の端部19aより反回転方向側に向けることで、迎角を小さくすることができる。
<Effect of centrifugal fan>
On the inner peripheral side of the bell mouth opening 5a, the airflow flows vertically toward the main plate. Therefore, the side plate side wing tip (end portion 19a) is directed to the rotation direction side so that the air flows from the bell mouth opening 5a side. The angle of attack against the airflow can be reduced. For this reason, it is possible to suppress separation of the airflow on the blade suction surface, which is the surface on the side opposite to the rotation direction of the blade 3d. On the outer peripheral side of the bell mouth opening 5a, airflow circulating in the direction of rotation in the scroll flows into the side plate side wing tip (end 19b). For this reason, the angle of attack can be reduced by directing the side plate side wing tip (end portion 19b) toward the counter-rotation direction side from the wing end portion 19a of the inner peripheral side of the bell mouth opening 5a.
 以上のように構成された本実施の形態3の遠心ファン3によれば、本実施の形態1による効果に加えて、側板側の翼の端部19a、19bから流入する気流のはく離をさらに抑制できる。 According to the centrifugal fan 3 of the third embodiment configured as described above, in addition to the effects of the first embodiment, the separation of the airflow flowing from the end portions 19a and 19b of the side plate side wings is further suppressed. it can.
 (実施の形態4)
 図10は本発明の実施の形態4に係る空気調和装置の構成図である。本実施の形態では、上述した遠心ファン等を備える室内機200を有する冷凍サイクル装置としての空気調和装置について説明する。図10に示した空気調和装置は、室外機100と室内機200とを備える。これらの室外機100と室内機200とは冷媒配管で連結され、冷媒回路を構成している。冷媒回路中では冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とする。また、液体を含む冷媒(液冷媒、あるいは気液二相冷媒の場合もある)が流れる配管を液配管400とする。
(Embodiment 4)
FIG. 10 is a configuration diagram of an air-conditioning apparatus according to Embodiment 4 of the present invention. In the present embodiment, an air conditioner as a refrigeration cycle apparatus having an indoor unit 200 including the centrifugal fan described above will be described. The air conditioner shown in FIG. 10 includes an outdoor unit 100 and an indoor unit 200. The outdoor unit 100 and the indoor unit 200 are connected by a refrigerant pipe to form a refrigerant circuit. A refrigerant is circulated in the refrigerant circuit. Among the refrigerant pipes, a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300. A pipe through which a liquid-containing refrigerant (a liquid refrigerant or a gas-liquid two-phase refrigerant may flow) flows is referred to as a liquid pipe 400.
 室外機100は、本実施の形態においては、圧縮機101、四方弁102、室外側熱交換器103、室外側送風機104、絞り装置(膨張弁)105で構成する。 In the present embodiment, the outdoor unit 100 includes a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, an outdoor blower 104, and a throttle device (expansion valve) 105.
 圧縮機101は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機101は、インバータ装置等を備え、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものとする。四方弁102は、制御装置(図示せず)からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。 Compressor 101 compresses and discharges the sucked refrigerant. Here, the compressor 101 includes an inverter device or the like, and can arbitrarily change the capacity of the compressor 101 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operation frequency. The four-way valve 102 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from a control device (not shown).
 また、室外側熱交換器103は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、液配管400から流入した低圧の冷媒と空気との熱交換を行う。この場合、室外側熱交換器103では、冷媒を蒸発させ、気化させる。また、冷房運転時において室外側熱交換器103は凝縮器として機能する。この場合、圧縮機101において圧縮された冷媒が四方弁102側から室外側熱交換器103に流入する。室外側熱交換器103では、冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。室外側熱交換器103には、冷媒と空気との熱交換を効率よく行うため、上述の実施の形態1~3で説明した遠心ファン3を有する室外側送風機104が設けられている。室外側送風機104についても、インバータ装置によりファンモータの運転周波数を任意に変化させて送風ファンとしての遠心ファン3の回転速度を細かく変化させるようにしてもよい。絞り装置105は、開度を変化させることで、冷媒の圧力等を調整するために設けられる。 The outdoor heat exchanger 103 exchanges heat between the refrigerant and air (outdoor air). For example, it functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the liquid pipe 400 and the air. In this case, the outdoor heat exchanger 103 evaporates and vaporizes the refrigerant. Further, during the cooling operation, the outdoor heat exchanger 103 functions as a condenser. In this case, the refrigerant compressed in the compressor 101 flows into the outdoor heat exchanger 103 from the four-way valve 102 side. In the outdoor heat exchanger 103, heat is exchanged between the refrigerant and air, and the refrigerant is condensed and liquefied. The outdoor heat exchanger 103 is provided with an outdoor fan 104 having the centrifugal fan 3 described in the first to third embodiments in order to efficiently exchange heat between the refrigerant and the air. Regarding the outdoor blower 104, the rotational speed of the centrifugal fan 3 as the blower fan may be finely changed by arbitrarily changing the operating frequency of the fan motor by the inverter device. The expansion device 105 is provided to adjust the refrigerant pressure or the like by changing the opening degree.
 一方、室内機200は、負荷側熱交換器201及び負荷側送風機202で構成される。負荷側熱交換器201は冷媒と空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能する。この場合、負荷側熱交換器201では、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(又は気液二相化)させる。この結果、負荷側熱交換器201から液配管400側に液化した冷媒が流出する。一方、冷房運転時においては負荷側熱交換器201は蒸発器として機能する。例えば、負荷側熱交換器201では、絞り装置105により低圧状態にされた冷媒と空気との熱交換を行う。この場合、負荷側熱交換器201では、冷媒に空気の熱を奪わせて蒸発させることにより冷媒を気化させる。負荷側熱交換器201から気化した冷媒がガス配管300側に流出する。また、室内機200には、熱交換を行う空気の流れを調整するための負荷側送風機202が設けられている。この負荷側送風機202の運転速度は、例えば利用者の設定により決定される。特に限定するものではないが、負荷側送風機202にも実施の形態1~3で説明した遠心ファンを用いるようにすることができる。 On the other hand, the indoor unit 200 includes a load side heat exchanger 201 and a load side blower 202. The load side heat exchanger 201 performs heat exchange between the refrigerant and air. For example, it functions as a condenser during heating operation. In this case, the load-side heat exchanger 201 performs heat exchange between the refrigerant flowing in from the gas pipe 300 and the air, condensing the refrigerant and liquefying (or gas-liquid two-phase). As a result, the liquefied refrigerant flows out from the load side heat exchanger 201 to the liquid pipe 400 side. On the other hand, during the cooling operation, the load-side heat exchanger 201 functions as an evaporator. For example, the load-side heat exchanger 201 performs heat exchange between the refrigerant and the air that have been brought into a low pressure state by the expansion device 105. In this case, in the load-side heat exchanger 201, the refrigerant is vaporized by causing the refrigerant to take heat of the air and evaporate it. The refrigerant evaporated from the load side heat exchanger 201 flows out to the gas pipe 300 side. Further, the indoor unit 200 is provided with a load-side blower 202 for adjusting the flow of air for heat exchange. The operating speed of the load-side blower 202 is determined by, for example, user settings. Although not particularly limited, the centrifugal fan described in the first to third embodiments can be used for the load-side blower 202.
 以上のように実施の形態4の空気調和装置では、実施の形態1~3において説明した送風機を室外機100、さらには室内機200に用いることで、風量低下、騒音の抑制等を実現することができる。 As described above, in the air conditioner according to the fourth embodiment, by using the blower described in the first to third embodiments for the outdoor unit 100 and further for the indoor unit 200, air volume reduction, noise suppression, and the like can be realized. Can do.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.
 例えば、本発明の活用例としては、冷凍サイクル装置を構成する室内機、例えば空気調和装置の室内機は勿論、その他、遠心ファンが設置される各種装置や設備などに広く利用することができる。 For example, as an application example of the present invention, it can be widely used not only for indoor units constituting a refrigeration cycle apparatus, for example, indoor units for air conditioners, but also for various devices and facilities in which a centrifugal fan is installed.
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiments of the present invention have been described above, the above-described embodiments can be variously modified. The scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、多翼の遠心ファンに特に有利に適用される。 The present invention is particularly advantageously applied to a multiblade centrifugal fan.
 1 ケース、1a 上面部、1b 下面部、1c 側面部、2 吹出口、3 遠心ファン、3a 主板、3b ボス部、3c 側板、3d 翼、4 ファンモータ、5 ベルマウス、5a 開口部、6 熱交換器、7 渦形ケーシング、8 吸込口、9a 前縁、9b 外周側後縁、9c,9d 翼表面、9e 側板側端面、9f 翼中心線、9g,9h,9i 断面輪郭、13a 内周側縁部、13b 外周側縁部、19a,19b 端部、100 室外機、101 圧縮機、102 四方弁、103 室外側熱交換器、104 室外側送風機、105 絞り装置、200 室内機、201 負荷側熱交換器、202 負荷側送風機、300 ガス配管、400 液配管。 1 case, 1a upper surface portion, 1b lower surface portion, 1c side surface portion, 2 outlet, 3 centrifugal fan, 3a main plate, 3b boss portion, 3c side plate, 3d blade, 4 fan motor, 5 bell mouth, 5a opening, 6 heat Exchanger, 7 vortex casing, 8 suction port, 9a front edge, 9b outer peripheral side rear edge, 9c, 9d blade surface, 9e side plate side end surface, 9f blade centerline, 9g, 9h, 9i cross-sectional contour, 13a inner peripheral side Edge, 13b Outer peripheral edge, 19a, 19b end, 100 outdoor unit, 101 compressor, 102 four-way valve, 103 outdoor heat exchanger, 104 outdoor blower, 105 throttle device, 200 indoor unit, 201 load side Heat exchanger, 202 load side blower, 300 gas piping, 400 liquid piping.

Claims (8)

  1.  主面を有する主板と、
     前記主面に面したリング状の側板と、
     前記主板と前記側板との間に設けられた複数の翼とを備え、
     前記複数の翼の内周側において、前記複数の翼はそれぞれ翼入口角を有し、
     前記複数の翼のそれぞれは、第1領域と、第2領域と、第3領域とを有し、前記第1領域は前記主板に接続され、前記第3領域は前記側板に接続され、前記第2領域は前記第1領域と前記第3領域との間に位置し、
     前記複数の翼のうちの少なくとも1つの翼の前記第1領域での前記翼入口角が、前記少なくとも1つの翼の前記第2領域での前記翼入口角より大きく、前記少なくとも1つの翼の前記第3領域での前記翼入口角が、前記少なくとも1つの翼の前記第2領域での前記翼入口角より小さい、遠心ファン。
    A main plate having a main surface;
    A ring-shaped side plate facing the main surface;
    A plurality of wings provided between the main plate and the side plate;
    On the inner peripheral side of the plurality of blades, each of the plurality of blades has a blade inlet angle,
    Each of the plurality of wings has a first region, a second region, and a third region, wherein the first region is connected to the main plate, the third region is connected to the side plate, Two regions are located between the first region and the third region,
    The blade inlet angle in the first region of at least one blade of the plurality of blades is greater than the blade inlet angle in the second region of the at least one blade, and the blade of the at least one blade is The centrifugal fan, wherein the blade inlet angle in a third region is smaller than the blade inlet angle in the second region of the at least one blade.
  2.  前記主板から前記側板に向かう方向において、前記第1領域の幅は、前記主板から前記側板に向かう方向での翼幅の20%以下である、請求項1に記載の遠心ファン。 The centrifugal fan according to claim 1, wherein in the direction from the main plate to the side plate, the width of the first region is 20% or less of the blade width in the direction from the main plate to the side plate.
  3.  前記主板から前記側板に向かう方向において、前記第3領域の幅は、前記主板から前記側板に向かう方向での翼幅の20%以下である、請求項1または請求項2に記載の遠心ファン。 The centrifugal fan according to claim 1 or 2, wherein in the direction from the main plate to the side plate, the width of the third region is 20% or less of the blade width in the direction from the main plate to the side plate.
  4.  前記第2領域における前記翼の内周側の翼厚に対し、前記第1領域における前記翼の内周側の翼厚が厚く、
     前記第2領域における前記翼の内周側であって反回転方向側の翼面に対し、前記第1領域における前記翼の内周側であって反回転方向側の翼面が反回転方向に向かって突出している、請求項1~請求項3のいずれか1項に記載の遠心ファン。
    The blade thickness on the inner peripheral side of the blade in the first region is thicker than the blade thickness on the inner peripheral side of the blade in the second region,
    The blade surface on the inner peripheral side of the blade in the first region and on the counter-rotating direction side is opposite to the blade surface on the inner peripheral side of the blade in the first region and on the counter-rotating direction side. The centrifugal fan according to any one of claims 1 to 3, wherein the centrifugal fan projects toward the center.
  5.  前記第2領域における前記翼の内周側の翼厚に対し、前記第3領域における前記翼の内周側の翼厚が薄く、
     前記第2領域における前記翼の内周側であって反回転方向側の翼面に対し、前記第3領域における前記翼の内周側であって反回転方向側の翼面が回転方向に向かって凹んでいる、請求項1~請求項4のいずれか1項に記載の遠心ファン。
    The blade thickness on the inner peripheral side of the wing in the third region is thinner than the blade thickness on the inner peripheral side of the wing in the second region,
    The blade surface on the inner peripheral side of the blade in the second region and on the counter-rotation direction side is opposed to the blade surface on the inner periphery side of the blade in the third region on the counter-rotation direction side. The centrifugal fan according to any one of claims 1 to 4, wherein the centrifugal fan is recessed.
  6.  前記側板側に配置され、前記翼と対向する開口部を含むベルマウスをさらに備え、
     前記ベルマウスの前記開口部の内径が、前記側板に沿って環状に配置された複数の前記翼の内径よりも大きく、
     前記ベルマウスの前記開口部より内周側では、前記翼の前記側板側の端部が回転方向に傾き、
     前記ベルマウスの前記開口部より外周側では、前記翼の前記側板側の端部が、前記開口部より内周側における前記翼の前記側板側の端部より、反回転方向側を向いている、請求項1~請求項5のいずれか1項に記載の遠心ファン。
    Further comprising a bell mouth disposed on the side plate side and including an opening facing the wing;
    The inner diameter of the opening of the bell mouth is larger than the inner diameter of the plurality of wings arranged annularly along the side plate,
    On the inner peripheral side from the opening of the bell mouth, the end on the side plate side of the wing is inclined in the rotation direction,
    On the outer peripheral side from the opening of the bell mouth, the end on the side plate side of the wing faces the counter-rotation direction side from the end on the side plate side of the wing on the inner peripheral side from the opening. The centrifugal fan according to any one of claims 1 to 5.
  7.  請求項1~請求項6のいずれか1項に記載の遠心ファンを備えた空気調和装置。 An air conditioner comprising the centrifugal fan according to any one of claims 1 to 6.
  8.  請求項1~請求項6のいずれか1項に記載の遠心ファンを備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the centrifugal fan according to any one of claims 1 to 6.
PCT/JP2015/082791 2015-11-20 2015-11-20 Centrifugal fan, air conditioner, and refrigerating cycle device WO2017085889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017551511A JP6430032B2 (en) 2015-11-20 2015-11-20 Centrifugal fan, air conditioner and refrigeration cycle apparatus
PCT/JP2015/082791 WO2017085889A1 (en) 2015-11-20 2015-11-20 Centrifugal fan, air conditioner, and refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082791 WO2017085889A1 (en) 2015-11-20 2015-11-20 Centrifugal fan, air conditioner, and refrigerating cycle device

Publications (1)

Publication Number Publication Date
WO2017085889A1 true WO2017085889A1 (en) 2017-05-26

Family

ID=58718675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082791 WO2017085889A1 (en) 2015-11-20 2015-11-20 Centrifugal fan, air conditioner, and refrigerating cycle device

Country Status (2)

Country Link
JP (1) JP6430032B2 (en)
WO (1) WO2017085889A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421702B2 (en) 2019-08-21 2022-08-23 Pratt & Whitney Canada Corp. Impeller with chordwise vane thickness variation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170331A (en) * 2005-12-26 2007-07-05 Daikin Ind Ltd Turbofan and indoor unit of air conditioner using it
JP2010174671A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Turbofan and air-conditioning device having the same
WO2015045907A1 (en) * 2013-09-30 2015-04-02 ダイキン工業株式会社 Centrifugal blower and air conditioner provided with same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170331A (en) * 2005-12-26 2007-07-05 Daikin Ind Ltd Turbofan and indoor unit of air conditioner using it
JP2010174671A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Turbofan and air-conditioning device having the same
WO2015045907A1 (en) * 2013-09-30 2015-04-02 ダイキン工業株式会社 Centrifugal blower and air conditioner provided with same

Also Published As

Publication number Publication date
JP6430032B2 (en) 2018-11-28
JPWO2017085889A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
CN111279085B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
JP6732037B2 (en) Indoor unit and air conditioner
JP6671469B2 (en) Centrifugal blower, air conditioner and refrigeration cycle device
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
TW201918635A (en) Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
US20220196254A1 (en) Centrifugal fan, air conditioning apparatus, and refrigeration cycle apparatus
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
JP6695403B2 (en) Centrifugal blower and air conditioner
JP7130061B2 (en) Centrifugal blowers, blowers, air conditioners and refrigeration cycle devices
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
JP6463497B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
WO2022234630A1 (en) Blower, air conditioner, and refrigeration cycle device
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
JP5558449B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP7301236B2 (en) SCROLL CASING FOR CENTRIFUGAL BLOWER, CENTRIFUGAL BLOWER INCLUDING THIS SCROLL CASING, AIR CONDITIONER AND REFRIGERATION CYCLE DEVICE
WO2019198150A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908828

Country of ref document: EP

Kind code of ref document: A1