WO2022234630A1 - Blower, air conditioner, and refrigeration cycle device - Google Patents

Blower, air conditioner, and refrigeration cycle device Download PDF

Info

Publication number
WO2022234630A1
WO2022234630A1 PCT/JP2021/017432 JP2021017432W WO2022234630A1 WO 2022234630 A1 WO2022234630 A1 WO 2022234630A1 JP 2021017432 W JP2021017432 W JP 2021017432W WO 2022234630 A1 WO2022234630 A1 WO 2022234630A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
pressure
suction
curved surface
range
Prior art date
Application number
PCT/JP2021/017432
Other languages
French (fr)
Japanese (ja)
Inventor
惇司 河野
拓矢 寺本
裕樹 宇賀神
幸治 山口
哲央 山下
尚史 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180097651.5A priority Critical patent/CN117222815A/en
Priority to US18/549,418 priority patent/US20240159238A1/en
Priority to EP21939823.7A priority patent/EP4336045A4/en
Priority to PCT/JP2021/017432 priority patent/WO2022234630A1/en
Priority to JP2023518563A priority patent/JP7466765B2/en
Publication of WO2022234630A1 publication Critical patent/WO2022234630A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades

Definitions

  • the present disclosure relates to a blower, an air conditioner, and a refrigeration cycle device equipped with a cross-flow fan.
  • a blower arranged in the housing of the air conditioner has a fan casing and a cross-flow fan housed in the fan casing.
  • a cross-flow fan has a plurality of blades arranged annularly around a rotation axis, and a disk-shaped support plate on which the plurality of blades are installed and which integrally supports the plurality of blades. It has an axially laminated configuration (see, for example, Patent Document 1).
  • the impeller has a suction area and a blowout area in the circumferential direction, the suction area draws in air from the radially outer side to the radially inner side, and the blowing area generates an airflow that blows out from the radially inner side to the radially outer side.
  • the blade thickness of the blades extending in the radial direction of the impeller is constant, and the curvature of the outer peripheral side of the blades is made smaller than the curvature of the inner peripheral side, so that the separation amount of the airflow from the blades in the blowing region is being reduced.
  • Patent Document 1 airflow separation from the blades in the blowout region of the impeller is suppressed, but airflow separation in the boundary region between the suction region and the blowout region of the impeller is not considered.
  • the present disclosure has been made in view of such points, and provides a blower, an air conditioner, and a refrigeration cycle device capable of suppressing airflow separation in the boundary region between the suction region and the discharge region of the impeller. intended to
  • the blower according to the present disclosure is a blower provided with a cross-flow fan having an impeller with a plurality of blades arranged in an annular shape, and the blades are, when viewed in a cross section perpendicular to the rotation axis of the cross-flow fan, the cross-flow fan A concave pressure surface on the rotational direction side, a convex suction surface on the counter-rotational direction side, an arc-shaped inner peripheral end face that connects the pressure surface and the suction surface on the inner peripheral side of the blade, and the blade and an arc-shaped outer peripheral end face that connects the pressure surface and the suction surface on the outer peripheral side of the blade, and the outer peripheral end face is located on the rotational direction side of the inner peripheral end face, and is located on the positive side of the blade.
  • the pressure surface has, in order from the inner peripheral side of the impeller, a pressure side first curved surface, a pressure side second curved surface, and a pressure side third curved surface having different curvatures.
  • the inner peripheral end of the pressure side second curved surface and the outer peripheral end of the pressure side second curved surface are divided into three ranges, and from the inner peripheral side, the pressure side first range and the pressure side second range , pressure side third range, the length when each range is projected onto the chord line connecting the inner peripheral end and the outer peripheral end of the blade, pressure side third range length > pressure side third range It satisfies the relationship of range length of 1>second range length on the positive pressure side.
  • An air conditioner according to the present disclosure includes the blower described above, a housing that accommodates the blower, and a heat exchanger.
  • a refrigeration cycle apparatus includes the blower described above.
  • the pressure side first curved surface of the blade has the smallest curvature among the three curved surfaces forming the pressure side, and the pressure side first range length is greater than the pressure side second range length. , it is possible to suppress separation of the airflow in the boundary region between the suction region and the blowing region of the impeller.
  • FIG. 1 is a schematic perspective view showing the configuration of an air conditioner provided with a blower according to Embodiment 1.
  • FIG. 1 is a schematic vertical cross-sectional view of an air conditioner provided with a blower according to Embodiment 1.
  • FIG. 2 is a schematic front view of the cross-flow fan of the blower according to Embodiment 1;
  • FIG. 3 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 1 cut in a direction perpendicular to the rotating shaft;
  • FIG. FIG. 4 is an explanatory diagram of positive pressure side first to third ranges of the impeller of the blower according to Embodiment 1;
  • FIG. 4 is an explanatory diagram of an inflow angle of an airflow with respect to an impeller of the blower according to Embodiment 1;
  • FIG. 4 is a diagram showing a fan-blown air velocity distribution of a cross-flow fan of the blower according to Embodiment 1;
  • FIG. 8 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 2 cut in a direction perpendicular to the rotating shaft;
  • FIG. 10 is an explanatory diagram of first to third ranges on the negative pressure side of the impeller of the blower according to Embodiment 2;
  • FIG. 10 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 3 cut in a direction perpendicular to the rotation axis;
  • FIG. 11 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 4 cut in a direction perpendicular to the rotation axis;
  • FIG. 12 is a cross-sectional view of a part of the impeller according to Embodiment 5 cut in a direction perpendicular to the rotating shaft;
  • FIG. 12 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 6;
  • FIG. 1 is a schematic perspective view showing the configuration of an air conditioner 1 equipped with a blower 7 according to Embodiment 1.
  • FIG. 2 is a schematic vertical cross-sectional view of the air conditioner 1 including the blower 7 according to Embodiment 1.
  • FIG. 3 is a schematic front view of cross-flow fan 11 of blower 7 according to the first embodiment.
  • the air conditioner 1 supplies conditioned air to an area to be air-conditioned, such as a room, by using a refrigeration cycle that circulates a refrigerant.
  • a housing 2 of the air conditioner 1 has a main body 3 embedded in the ceiling of a room and a decorative panel 4 provided below the main body 3 .
  • a heat exchanger 6 and a blower 7 are housed in the housing 2 .
  • a drain pan 8 for recovering condensed water generated in the heat exchanger 6 is further provided in the housing 2 below the heat exchanger 6 .
  • the decorative panel 4 is formed with a suction port 4a that serves as an inlet for the airflow generated by the rotation of the blower 7 into the air conditioner 1, and a blowout port 4b that serves as an outlet for the airflow.
  • a filter 5 for removing dust and the like in the air sucked into the housing 2 is arranged at the suction port 4a.
  • a vertical airflow direction adjusting plate 9 and a horizontal airflow direction adjusting plate 10 for controlling the direction of the blown air are arranged in the air outlet 4b.
  • a heat exchanger 6 is arranged on the upstream side of the air passage from the inlet 4a to the outlet 4b, and a blower 7 is arranged on the downstream side.
  • the air conditioner 1 sucks air generated by driving the blower 7 into the housing 2 from the suction port 4a, exchanges heat with the refrigerant in the heat exchanger 6, and then blows the air into the room from the blowout port 4b. to adjust the indoor temperature.
  • the forward flow in the following description is the upstream airflow relative to an object, and the wakeward flow is the downstream airflow relative to an object.
  • FIGS. 1 and 2 show an example in which the air conditioner 1 is a ceiling-suspended air conditioner indoor unit, the present invention is not limited to this. may be
  • the blower 7 includes a cross-flow fan 11 that generates airflow, a motor 12 (see FIG. 3) for rotating the cross-flow fan 11, and a fan casing 13 that guides the air blown out from the cross-flow fan 11 to the blowout port 4b. and have As shown in FIG. 3, the cross-flow fan 11 has a plurality of blades 21 annularly arranged around the rotation center of the rotation axis O of the motor 12, and a plurality of blades 21.
  • the impeller 20 having the support plate 22 supported on the .
  • the cross-flow fan 11 is installed horizontally so that the rotation axis O is in the horizontal direction of the housing 2 .
  • the direction in which the rotation axis O extends is called the axial direction
  • the direction perpendicular to the axial direction is called the radial direction
  • the direction around the rotation axis O is called the circumferential direction.
  • the impeller 20 rotates in the direction of the solid line arrow in FIG. 2, sucks the airflow from the suction region E1, and blows the airflow from the blowing region E2.
  • the airflow passes through the gap between the blades 21 (hereinafter referred to as "between the blades") from the radially outer side to the radially inner side. flow.
  • the fan casing 13 has a rear guide 14 and a stabilizer 15.
  • the rear guide 14 is a part that guides the air blown out from the impeller 20 to the outlet 4b.
  • the rear guide 14 forms a spiral surface from the front end 14a of the rear guide 14 to the rear end 14b.
  • the stabilizer 15 is a wall facing the rear guide 14 with the impeller 20 interposed therebetween. The stabilizer 15 is formed along the outer peripheral surface of the impeller 20 .
  • the suction area E1 and the blowout area E2 of the impeller 20 are defined by the rear guide 14 and the stabilizer 15. Specifically, of the regions obtained by dividing the entire circumference of the impeller 20 into two with the portion where the stabilizer 15 and the rear guide 14 facing each other as a boundary, the forward side of the region is the suction region E1, and the downstream side is the blowing region E2. be.
  • a boundary region between the suction region E1 and the blowing region E2 in the circumferential direction of the impeller 20 is a switching region where the flow of air to be drawn in and the flow of air to be blown out are switched.
  • the boundary area on the front end 14a side of the rear guide 14 is referred to as a first boundary area E3
  • the boundary area on the stabilizer 15 side is referred to as a second boundary area E4.
  • FIG. 4 is a cross-sectional view of a portion of the impeller 20 of the blower 7 according to Embodiment 1 cut in a direction perpendicular to the rotation axis O.
  • FIG. 5 is an explanatory diagram of the positive pressure side first to third ranges of the impeller 20 of the blower 7 according to the first embodiment.
  • the blade 21 When viewed in a cross section perpendicular to the rotation axis O, the blade 21 has a positive pressure surface 23 concave in the direction of rotation indicated by an arrow in FIG. , and an outer peripheral side end face 26 .
  • the inner peripheral end surface 25 is an arcuate portion that is located on the inner peripheral side of the blade 21 and connects the pressure surface 23 and the suction surface 24 .
  • the outer peripheral end surface 26 is an arc-shaped portion that is located on the outer peripheral side of the blade 21 and connects the pressure surface 23 and the suction surface 24 .
  • the outer peripheral end face 26 is located on the rotational direction side with respect to the inner peripheral end face 25 .
  • the blade 21 has an inner peripheral end 25-P, which is the inner peripheral end of the blade 21, and an outer peripheral end 26-P, which is the outer peripheral end of the blade 21.
  • FIG. The inner peripheral end 25-P is included in the inner peripheral side end face 25, and the outer peripheral end 26-P is included in the outer peripheral side end face 26.
  • FIG. 4 23-P1 is the inner peripheral end of the pressure surface 23, and 23-P2 is the outer peripheral end of the pressure surface 23.
  • 24-P1 is the inner peripheral edge of the suction surface 24, and 24-P2 is the outer peripheral edge of the suction surface 24.
  • the positive pressure surface 23 is composed of a plurality of curved surfaces.
  • the plurality of curved surfaces are a pressure side first curved surface 23-1, a pressure side second curved surface 23-2, and a pressure side third curved surface 23-3 in order from the inner peripheral side.
  • the pressure surface 23 is configured to satisfy the following relationship: curvature of pressure side second curved surface 23-2 > curvature of pressure side third curved surface 23 - 3 > curvature of pressure side first curved surface 23 - 1 .
  • the pressure-side first curved surface 23-1 may be a flat surface with zero curvature.
  • the blade 21 has a blade surface on the pressure side and a blade surface on the suction side, which are obtained by dividing the blade 21 by an imaginary center plane 27 in the blade thickness direction.
  • the imaginary central plane 27 passes through the inner peripheral edge 25-P and the outer peripheral edge 26-P.
  • the pressure side blade surface is divided into three ranges by the inner peripheral edge 23-2P1 of the pressure side second curved surface 23-2 and the outer peripheral edge 23-2P2 of the pressure side second curved surface 23-2.
  • the three ranges are, in order from the inner peripheral side, a positive pressure side first range 23a-1, a positive pressure side second range 23a-2, and a positive pressure side third range 23a-3.
  • the pressure side first range 23a-1 is a range from the inner peripheral end 25-P of the blade 21 to the inner peripheral end 23-2P1 of the pressure side second curved surface 23-2.
  • the pressure side second extent 23a-2 is equal to the extent of the pressure side second curved surface 23-2.
  • the pressure side third range 23 a - 3 is a range from the outer peripheral end 23 - 2 P 2 of the pressure side second curved surface 23 - 2 to the outer peripheral end 26 -P of the blade 21 .
  • the length when the first pressure side range 23a-1, the second pressure side range 23a-2 and the third pressure side range 23a-3 are projected onto the chord line l are defined, in order, as a pressure side first range length l ps1 , a pressure side second range length l ps2 , and a pressure side third range length l ps3 .
  • the blade 21 is configured to satisfy the relationship of pressure side third range length l ps3 > pressure side first range length l ps1 > pressure side second range length l ps2 .
  • the chord line l is a straight line connecting the inner peripheral edge 25-P and the outer peripheral edge 26-P of the blade 21.
  • FIG. 6 is an explanatory diagram of the inflow angle of the airflow with respect to the impeller 20 of the blower 7 according to Embodiment 1.
  • the inflow angle is the angle between the tangent line L at the inner peripheral end 25-P with respect to the virtual center plane 27 of the blade thickness of the blade 21 and the direction of the airflow.
  • the airflow 30 shows the airflow when the blade 21 is positioned within the blowout region E2, and the inflow angle ⁇ of the airflow 30 is ⁇ 1.
  • An airflow 31 indicates an airflow when the blade 21 is positioned within the first boundary region E3, and the inflow angle ⁇ of the airflow 31 is ⁇ 2.
  • the pressure surface 23 is formed by the curvature of the pressure side first curved surface 23-1 (see FIG. 4) on the inner peripheral side of the blade 21, which is the airflow inlet side of the blade 21.
  • the smallest of the three curved surfaces Therefore, even if the airflow detaches at the inner peripheral end 25-P of the blade 21, reattachment to the pressure surface 23 is likely to be promoted. In other words, airflow separation on the pressure surface 23 of the blade 21 in the first boundary region E3 is suppressed.
  • the direction of the airflow between the blades in the first boundary region E3 is stabilized from the radially inner side to the radially outer side. .
  • This corresponds to classifying the blades 21 in the first boundary region E3 on the side of the front end 14a of the rear guide 14 into the blades 21 in the blowout region E2. That is, the impeller 20 can expand the blowout area E2 toward the front end 14a of the rear guide 14 .
  • the pressure side first range length l ps1 including the pressure side first curved surface 23-1 having the smallest curvature on the pressure side 23 on the airflow inlet side is the pressure side second range length l ps1 . longer than the length lps2 . For this reason, the airflow that has flowed between the blades tends to stick to the pressure surface 23, and separation of the airflow on the pressure surface 23 is suppressed. In addition, the airflow that has flowed between the blades tends to stick to the pressure surface 23, so that the wind speed of the airflow on the pressure surface 23 is increased.
  • the unevenness of the wind speed distribution between the blades is suppressed, and the wind speed distribution between the blades can be made uniform.
  • the airflow resistance between the blades is reduced by suppressing the unevenness of the wind speed distribution between the blades, the effect of reducing the fan input and noise can be obtained.
  • FIG. 7 is a diagram showing the fan-blown air velocity distribution of the cross-flow fan 11 of the blower 7 according to the first embodiment.
  • the horizontal axis indicates a specific range in the circumferential direction of the impeller 20
  • the vertical axis indicates the fan blowing air velocity [m/s].
  • the specific range in the circumferential direction of the impeller 20 is from a position in the circumferential direction of the impeller 20 facing the end of the stabilizer 15 on the upstream side, including the blowout region E2, to the upstream end 14a of the rear guide 14. It is a circumferential range up to the circumferential position of the opposing impeller.
  • FIG. 7 shows the first embodiment
  • FIG. 7 shows the prior art.
  • the blowout region is expanded toward the upstream end of the rear guide compared to the conventional technology.
  • the expansion of the blowing area reduces the maximum flow velocity, and as a result, the airflow resistance is reduced, and the effect of reducing fan input and noise can be obtained.
  • the blower 7 of Embodiment 1 is a blower provided with the cross-flow fan 11 having the impeller 20 in which a plurality of blades 21 are annularly arranged.
  • the pressure surface 23 of the blade 21 satisfies the following relationship: curvature of pressure side second curved surface 23-2 > pressure side third curved surface 23 - 3 curvature > pressure side first curved surface 23 - 1 .
  • the pressure surface 23 of the blade 21 satisfies the relationship of pressure side third range length l ps3 > pressure side first range length l ps1 > pressure side second range length l ps2 .
  • the curvature of the pressure side first curved surface 23-1 is the smallest among the three curved surfaces forming the pressure side 23, and the pressure side first range length lps1 is positive. longer than the compression side second range length lps2 .
  • the blower 7 can suppress airflow separation in the first boundary region E3, specifically, airflow separation on the pressure surface 23 of the blade 21 in the first boundary region E3.
  • the pressure side first range length l ps1 is longer than the pressure side second range length l ps2 , the blower 7 can increase the wind speed of the airflow on the pressure surface 23 .
  • the fan 7 can suppress the unevenness of the wind speed distribution between the blades, reduce the airflow resistance between the blades, and reduce fan input and noise.
  • FIG. 8 is a cross-sectional view of a part of the impeller 20 of the blower 7 according to Embodiment 2 cut in a direction perpendicular to the rotation axis O.
  • FIG. FIG. 9 is an explanatory diagram of the negative pressure side first to third ranges of the impeller 20 of the blower 7 according to the second embodiment.
  • the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • the suction surface 24 of the blade 21 of Embodiment 2 is composed of a plurality of curved surfaces. As shown in FIG. 8, the plurality of curved surfaces are a negative pressure side first curved surface 24-1, a negative pressure side second curved surface 24-2, and a negative pressure side third curved surface 24-3 in order from the inner peripheral side. Among the plurality of curved surfaces, the negative pressure side first curved surface 24-1 is configured to have the smallest curvature. The negative pressure side first curved surface 24-1 may be a flat surface with zero curvature.
  • the blade 21 has a pressure side blade surface and a suction side blade surface which are obtained by dividing the blade 21 by a virtual center plane 27 in the blade thickness direction.
  • the suction side blade surface is divided into three sections bounded by an inner peripheral edge 24-2P1 of the suction side second curved surface 24-2 and an outer peripheral edge 24-2P2 of the suction side second curved surface 24-2. divided into ranges.
  • the three ranges are a suction side first range 24a-1, a suction side second range 24a-2, and a suction side third range 24a-3.
  • the suction side first range 24a-1 is a range from the inner peripheral end 25-P of the blade 21 to the inner peripheral end 24-2P1 of the suction side second curved surface 24-2.
  • the suction side second extent 24a-2 is equal to the extent of the suction side second curved surface 24-2.
  • the negative pressure side third range 24a-3 is a range from the outer peripheral end 24-2P2 of the negative pressure side second curved surface 24-2 to the outer peripheral end 26-P of the blade 21.
  • the blade 21 has a negative pressure side first area 24a-1, a negative pressure side second area 24a-2, and a negative pressure side third area 24a-3 when projected onto the chord line l.
  • a pressure side first range length l ss1 , a suction side second range length l ss2 and a suction side third range length l ss3 are defined.
  • the suction side first range length l ss1 , the suction side second range length l ss2 and the suction side third range length l ss3 are not shown on the chord line l. , on a line parallel to the chord line l.
  • the pressure-side first range length l_ps1 is configured longer than the suction-side first range length l_ss1 .
  • a position P23-1P2 obtained by projecting the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located inside the center Pc of the chord line l.
  • the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 is equal to the inner peripheral end 23-2P1 of the pressure side second curved surface 23-2.
  • the pressure side first curved surface 23-1 has the smallest curvature among the three curved surfaces forming the pressure side 23, and the suction side first curved surface 24-1 has a negative curvature. It is the smallest of the three curved surfaces forming the pressure surface 24 .
  • the pressure side first range length l_ps1 is longer than the suction side first range length l_ss1 .
  • the airflow flowing between the blades can easily follow the pressure surface 23, and the wind speed on the pressure surface 23 side increases.
  • the wind speed of the airflow between the blades on the pressure surface side of the blades 21 is smaller than that on the suction surface side. Uniform distribution can be achieved.
  • a position P23-1P2 obtained by projecting the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located on the inner peripheral side of the center Pc of the chord line l. is doing. If the position P23-1P2 obtained by projecting the outer peripheral end of the pressure side first curved surface 23-1 onto the chord line l is located on the outer peripheral side of the center Pc of the chord line l, then the pressure surface The airflow that has flowed from the inner peripheral side to the outer peripheral side along the pressure surface 23 tends to be directed in the radial direction rather than in the circumferential direction on the outer peripheral side of the pressure surface 23 .
  • the position P23-1P2 obtained by projecting the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located inside the center Pc of the chord line l. located on the periphery.
  • the direction of the airflow from the inner peripheral side to the outer peripheral side along the pressure side first curved surface 23-1 of the blade 21 becomes the circumferential direction toward the outer peripheral side.
  • the effect described above is obtained, and separation of the air flow on the outer peripheral side of the suction surface 24 is suppressed.
  • the same effect as in the first embodiment can be obtained, and the above configuration makes the wind velocity distribution between the blades uniform and the airflow on the outer peripheral side of the suction surface 24 of the blade 21. Suppression of delamination can be achieved.
  • FIG. 10 is a cross-sectional view of a part of the impeller 20 of the blower 7 according to Embodiment 3 cut in a direction perpendicular to the rotation axis O.
  • FIG. 10 The following description will focus on the configuration of the third embodiment that differs from the first and second embodiments, and the configurations not described in the third embodiment are the same as those of the first and second embodiments. be.
  • the suction surface 24 of the blade 21 of Embodiment 3 has a relationship of curvature of the second curved surface 24-2 on the suction side>curvature of the third curved surface 24-3 on the suction side>curvature of the first curved surface 24-1 on the suction side. is configured to satisfy Further, the blade 21 is configured to satisfy the relationship of suction side third range length l ss3 > suction side second range length l ss2 > suction side first range length l ss1 .
  • the suction side third range length l ss3 which is the outermost side of the suction surface 24 , is ensured to be the longest among the suction surfaces 24 . Also, if the curvature is large, separation of the airflow is likely to occur.
  • the negative pressure side second range length l ss2 is ensured to be longer than the negative pressure side first range length l ss1 .
  • the impeller 20 further suppresses separation of the airflow from the suction surface 24 of the blade 21 in the blowout region E2.
  • FIG. 11 is a cross-sectional view of a part of the impeller 20 of the blower 7 according to Embodiment 4 cut in a direction perpendicular to the rotation axis O. As shown in FIG. The following description will focus on the configuration of Embodiment 4 that differs from Embodiments 1 to 3, and configurations not described in Embodiment 4 are the same as those of Embodiments 1 to 3. be.
  • the position A ps on the pressure surface 23 is the position where the vertical distance L ps from the chord line 1 on the pressure surface 23 is maximum when the blade 21 is viewed in a cross section perpendicular to the rotation axis O.
  • the position A ss on the suction surface 24 is the position where the vertical distance L ss from the blade chord line 1 on the suction surface 24 is the maximum when viewing the blade 21 in a cross section perpendicular to the rotation axis O.
  • the position P ps obtained by projecting the position A ps on the pressure surface 23 onto the chord line l is higher than the position P ss obtained by projecting the position A ss on the suction surface 24 onto the chord line l.
  • Embodiment 4 effects similar to those of Embodiments 1 to 3 can be obtained, and the effect of reducing fan input and noise can be obtained due to the above configuration.
  • Embodiment 5 In the first to fourth embodiments, the improvement of the airflow on the blowout side has been mentioned, but in the fifth embodiment, the improvement of the airflow on the suction side will be mentioned.
  • FIG. 12 is a cross-sectional view of a portion of the impeller 20 according to Embodiment 5 cut in a direction perpendicular to the rotation axis O.
  • FIG. 12 is a cross-sectional view of a portion of the impeller 20 according to Embodiment 5 cut in a direction perpendicular to the rotation axis O.
  • the fifth embodiment will be described with a focus on the configuration different from the first to fourth embodiments, and the configurations not described in the fifth embodiment are the same as those in the first to fourth embodiments. be.
  • Embodiment 5 specifies the position where the blade thickness of the blade 21 is maximized.
  • a position P 28a obtained by projecting the center 28a of the maximum blade thickness 28 onto the chord line l (hereinafter referred to as the maximum blade thickness projection position P 28a ) is the pressure side first curved surface 23-1. is located in the range 23-1a projected onto the chord line l.
  • the blade 21 has a maximum blade thickness projection position P 28a positioned within a range of 10% or more and 15% or less of the chord line l from the inner peripheral end 25-P of the blade 21 .
  • the maximum blade thickness projection position P 28a is located inside the position 10% of the chord line l from the inner peripheral end 25-P of the blade 21, the wake in the direction of the airflow on the suction side
  • the blade thickness of the side blades 21 increases, which causes an increase in airflow resistance and an increase in wind noise.
  • the maximum blade thickness projection position P 28a is the direction of the airflow on the outer circumference side of the position 10% of the chord line from the inner peripheral end 25-P of the chord line l, in other words, the direction of the airflow on the suction side. is located on the forward side of the As a result, the blade thickness of the blade 21 on the trailing side in the direction of the airflow on the suction side is reduced. For this reason, considering one blade 21 , the airflow flowing on the pressure surface 23 side of the blade 21 and the airflow flowing on the suction surface 24 side tend to merge in the wake of the blade 21 . Therefore, the blade 21 configured as described above can suppress the occurrence of a dead water area in the wake of the blade 21, reducing airflow resistance and suppressing wind noise.
  • the maximum blade thickness projection position P 28a is located on the outer peripheral side of the position 15% of the chord line l from the inner peripheral end 25-P of the blade 21, The effect of suppressing separation of the airflow is reduced. For this reason, the maximum blade thickness projected position P 28a is positioned within a range of 15% or less of the chord line l from the inner peripheral end 25-P of the blade 21. As shown in FIG.
  • Embodiment 5 the same effects as those of Embodiments 1 to 4 can be obtained, and the maximum blade thickness projection position P 28a is located 10 degrees from the inner peripheral end 25-P of the blade 21 to the chord line l. % or more and 15% or less, the following effects can be obtained. That is, the impeller 20 can reduce the draft resistance on the suction side and suppress the wind noise.
  • the blower 7 having the impeller 20 is installed in the indoor unit, but it may be installed in the outdoor unit. Similar effects can be obtained in this case as well.
  • FIG. 13 is a diagram showing the configuration of a refrigeration cycle device 50 according to Embodiment 6. As shown in FIG. For indoor fan 202 of refrigeration cycle apparatus 50 according to Embodiment 6, fan 7 of any one of Embodiments 1 to 5 is used. Also, in the following description, the refrigeration cycle device 50 will be described as being used for air conditioning, but the refrigeration cycle device 50 is not limited to being used for air conditioning.
  • the refrigerating cycle device 50 is used, for example, for refrigeration or air conditioning applications such as refrigerators, freezers, vending machines, air conditioners, refrigeration systems, and water heaters.
  • the refrigeration cycle device 50 according to Embodiment 6 heats or cools the room by transferring heat between the outside air and the indoor air via the refrigerant, thereby performing air conditioning.
  • a refrigeration cycle device 50 according to Embodiment 6 has an outdoor unit 100 and an indoor unit 200 .
  • the refrigerating cycle device 50 has a refrigerant circuit in which an outdoor unit 100 and an indoor unit 200 are connected by refrigerant pipes 300 and 400 to circulate refrigerant.
  • the refrigerant pipe 300 is a gas pipe through which a vapor-phase refrigerant flows
  • the refrigerant pipe 400 is a liquid pipe through which a liquid-phase refrigerant flows.
  • a gas-liquid two-phase refrigerant may flow through the refrigerant pipe 400 .
  • the compressor 101, the flow switching device 102, the outdoor heat exchanger 103, the expansion valve 105, and the indoor heat exchanger 201 are sequentially connected via refrigerant pipes.
  • the outdoor unit 100 has a compressor 101 , a channel switching device 102 , an outdoor heat exchanger 103 and an expansion valve 105 .
  • Compressor 101 compresses and discharges the sucked refrigerant.
  • the channel switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the coolant channel.
  • the refrigeration cycle device 50 can realize heating operation or cooling operation by switching the refrigerant flow using the flow path switching device 102 based on an instruction from a control device (not shown).
  • the outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 103 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the refrigerant pipe 400 and the outdoor air to evaporate the refrigerant.
  • the outdoor heat exchanger 103 functions as a condenser during cooling operation, and performs heat exchange between the refrigerant that has been compressed by the compressor 101 and has flowed in from the flow path switching device 102 and the outdoor air. Condense and liquefy.
  • the outdoor heat exchanger 103 is provided with an outdoor fan 104 in order to increase the efficiency of heat exchange between the refrigerant and the outdoor air.
  • the outdoor fan 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotational speed of the fan.
  • the expansion valve 105 is a throttle device, functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the degree of opening. For example, if the expansion valve 105 is an electronic expansion valve or the like, the degree of opening is adjusted based on instructions from the control device.
  • the indoor unit 200 has an indoor heat exchanger 201 that exchanges heat between a refrigerant and indoor air, and an indoor fan 202 that adjusts the flow of air with which the indoor heat exchanger 201 exchanges heat.
  • the indoor heat exchanger 201 functions as a condenser, performs heat exchange between the refrigerant flowing from the refrigerant pipe 300 and the indoor air, condenses the refrigerant and liquefies it. let it flow.
  • the indoor heat exchanger 201 functions as an evaporator during cooling operation, and performs heat exchange between the refrigerant brought to a low pressure state by the expansion valve 105 and indoor air, causing the refrigerant to take heat from the air and evaporate.
  • Indoor fan 202 is provided so as to face indoor heat exchanger 201 .
  • Air blower 7 according to Embodiments 1 to 5 is applied to indoor air blower 202 .
  • the operating speed of the indoor fan 202 is determined by user settings.
  • An inverter device may be attached to the indoor fan 202 to change the operating frequency of the fan motor (not shown) to change the rotation speed of the cross-flow fan.
  • the refrigerant that has flowed out of the outdoor heat exchanger 103 is expanded and decompressed by the expansion valve 105 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 201 of the indoor unit 200, evaporates by heat exchange with the indoor air blown by the indoor fan 202, and becomes a low-temperature, low-pressure gas refrigerant in the indoor heat exchanger. 201.
  • the indoor air that has been cooled by absorbing heat by the refrigerant becomes conditioned air, and is blown out from the outlet of the indoor unit 200 into the air-conditioned space.
  • the gas refrigerant that has flowed out of the indoor heat exchanger 201 is sucked into the compressor 101 via the flow switching device 102 and compressed again. The above operations are repeated.
  • the heating operation will be described as an example of the operation of the refrigeration cycle device 50.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow switching device 102 .
  • the gas refrigerant that has flowed into the indoor heat exchanger 201 is condensed by heat exchange with the indoor air blown by the indoor fan 202 , becomes a low-temperature refrigerant, and flows out of the indoor heat exchanger 201 .
  • the indoor air warmed by receiving heat from the gas refrigerant becomes conditioned air and is blown out from the outlet of the indoor unit 200 into the air-conditioned space.
  • the refrigerant flowing out of the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 100, evaporates by heat exchange with the outside air blown by the outdoor fan 104, and becomes a low-temperature, low-pressure gas refrigerant in the outdoor heat exchanger 103. flow out from The gas refrigerant that has flowed out of the outdoor heat exchanger 103 is sucked into the compressor 101 via the flow switching device 102 and compressed again. The above operations are repeated.
  • the refrigeration cycle apparatus 50 according to Embodiment 6 includes the blower 7 according to Embodiments 1 to 5, it is possible to obtain the same effects as those of Embodiments 1 to 5 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This blower comprises a cross flow fan having an impeller in which a plurality of blades are annularly arranged. When viewed from a cross-section perpendicular to the rotary axis of the cross flow fan, the blade has: a pressure surface having a concave shape on the rotation direction side; a suction surface having a convex shape on the counter-rotation direction side; an arc-shaped inner-peripheral-side end surface connecting the pressure surface and the suction surface on the inner peripheral side of the blade; and an arc-shaped outer-peripheral-side end surface connecting the pressure surface and the suction surface on the outer peripheral side of the blade. The outer-peripheral-side end surface is located to the rotation direction side relative to the inner-peripheral-side end surface. The pressure surface of the blade satisfies the relationship of (curvature of a pressure-side second curved surface)>(curvature of a pressure-side third curved surface)>(curvature of a pressure-side first curved surface). Lengths obtained when a pressure-side first range, pressure-side second range, and pressure-side third range of the pressure-surface-side blade surface of the blade are projected onto the chord line connecting the inner peripheral end and outer peripheral end of the blade, satisfy the relationship of (pressure-side third range length)>(pressure-side first range length)>(pressure-side second range length).

Description

送風機、空気調和装置および冷凍サイクル装置Blowers, air conditioners and refrigeration cycle devices
 本開示は、クロスフローファンを備えた送風機、空気調和装置および冷凍サイクル装置に関する。 The present disclosure relates to a blower, an air conditioner, and a refrigeration cycle device equipped with a cross-flow fan.
 空気調和装置の筐体内に配置される送風機は、ファンケーシングと、ファンケーシング内に収納されたクロスフローファンと、を有する。クロスフローファンは、回転軸を中心として環状に配置された複数の翼と、複数の翼が設置され、複数の翼を一体に支持する円板状の支持板と、を有する羽根車が、回転軸方向に積層された構成を有する(例えば、特許文献1参照)。羽根車は、周方向に吸込領域と吹出領域とを有し、吸込領域では径方向外側から径方向内側に空気を吸い込み、吹出領域では径方向内側から径方向外側に吹き出す気流を生成する。特許文献1では、羽根車の径方向に延びる翼の翼厚を一定とし、かつ翼の外周側の曲率を内周側の曲率よりも小さくすることで、吹出領域における翼からの気流のはく離量を低減するようにしている。 A blower arranged in the housing of the air conditioner has a fan casing and a cross-flow fan housed in the fan casing. A cross-flow fan has a plurality of blades arranged annularly around a rotation axis, and a disk-shaped support plate on which the plurality of blades are installed and which integrally supports the plurality of blades. It has an axially laminated configuration (see, for example, Patent Document 1). The impeller has a suction area and a blowout area in the circumferential direction, the suction area draws in air from the radially outer side to the radially inner side, and the blowing area generates an airflow that blows out from the radially inner side to the radially outer side. In Patent Document 1, the blade thickness of the blades extending in the radial direction of the impeller is constant, and the curvature of the outer peripheral side of the blades is made smaller than the curvature of the inner peripheral side, so that the separation amount of the airflow from the blades in the blowing region is being reduced.
特開2001-280288号公報Japanese Patent Application Laid-Open No. 2001-280288
 特許文献1では、羽根車の吹出領域における翼からの気流のはく離については抑制されるが、羽根車の吸込領域と吹出領域との間の境界領域における気流のはく離について検討されていない。 In Patent Document 1, airflow separation from the blades in the blowout region of the impeller is suppressed, but airflow separation in the boundary region between the suction region and the blowout region of the impeller is not considered.
 本開示はこのような点を鑑みなされたもので、羽根車の吸込領域と吹出領域との間の境界領域おける気流のはく離を抑制することが可能な送風機、空気調和装置および冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made in view of such points, and provides a blower, an air conditioner, and a refrigeration cycle device capable of suppressing airflow separation in the boundary region between the suction region and the discharge region of the impeller. intended to
 本開示に係る送風機は、翼が環状に複数配置された羽根車を有するクロスフローファンを備えた送風機であって、翼は、クロスフローファンの回転軸に垂直な断面で見て、クロスフローファンの回転方向側に凹状の正圧面と、反回転方向側に凸状の負圧面と、翼の内周側であって正圧面と負圧面とを接続する円弧状の内周側端面と、翼の外周側であって正圧面と負圧面とを接続する円弧状の外周側端面と、を有し、外周側端面は、内周側端面よりも回転方向側に位置しており、翼の正圧面は、羽根車の内周側から順に、曲率の異なる正圧側第1の曲面と、正圧側第2の曲面と、正圧側第3の曲面と、を有し、正圧側第2の曲面の曲率>正圧側第3の曲面の曲率>正圧側第1の曲面の曲率、の関係を満足し、翼を翼の翼厚方向の仮想中心面で2つに分けたうちの正圧面側翼面を、正圧側第2の曲面の内周端と正圧側第2の曲面の外周端とを境に3つの範囲に分け、内周側から順に、正圧側第1の範囲、正圧側第2の範囲、正圧側第3の範囲としたとき、各範囲を、翼の内周端と外周端とを結んだ翼弦線に投影したときの長さは、正圧側第3の範囲長>正圧側第1の範囲長>正圧側第2の範囲長、の関係を満足するものである。 The blower according to the present disclosure is a blower provided with a cross-flow fan having an impeller with a plurality of blades arranged in an annular shape, and the blades are, when viewed in a cross section perpendicular to the rotation axis of the cross-flow fan, the cross-flow fan A concave pressure surface on the rotational direction side, a convex suction surface on the counter-rotational direction side, an arc-shaped inner peripheral end face that connects the pressure surface and the suction surface on the inner peripheral side of the blade, and the blade and an arc-shaped outer peripheral end face that connects the pressure surface and the suction surface on the outer peripheral side of the blade, and the outer peripheral end face is located on the rotational direction side of the inner peripheral end face, and is located on the positive side of the blade. The pressure surface has, in order from the inner peripheral side of the impeller, a pressure side first curved surface, a pressure side second curved surface, and a pressure side third curved surface having different curvatures. Curvature > pressure side third curved surface curvature > pressure side first curved surface curvature > pressure side curvature , the inner peripheral end of the pressure side second curved surface and the outer peripheral end of the pressure side second curved surface are divided into three ranges, and from the inner peripheral side, the pressure side first range and the pressure side second range , pressure side third range, the length when each range is projected onto the chord line connecting the inner peripheral end and the outer peripheral end of the blade, pressure side third range length > pressure side third range It satisfies the relationship of range length of 1>second range length on the positive pressure side.
 本開示に係る空気調和装置は、上記の送風機と、送風機を収容する筐体と、熱交換器と、を備えたものである。 An air conditioner according to the present disclosure includes the blower described above, a housing that accommodates the blower, and a heat exchanger.
 本開示に係る冷凍サイクル装置は、上記の送風機を備えたものである。 A refrigeration cycle apparatus according to the present disclosure includes the blower described above.
 本開示によれば、送風機は、翼の正圧側第1の曲面の曲率が正圧面を構成する3つの曲面のなかで最も小さく、正圧側第1の範囲長が正圧側第2の範囲長よりも長いことで、羽根車の吸込領域と吹出領域との間の境界領域における気流のはく離を抑制できる。 According to the present disclosure, in the blower, the pressure side first curved surface of the blade has the smallest curvature among the three curved surfaces forming the pressure side, and the pressure side first range length is greater than the pressure side second range length. , it is possible to suppress separation of the airflow in the boundary region between the suction region and the blowing region of the impeller.
実施の形態1に係る送風機を備えた空気調和装置の構成を示す概略斜視図である。1 is a schematic perspective view showing the configuration of an air conditioner provided with a blower according to Embodiment 1. FIG. 実施の形態1に係る送風機を備えた空気調和装置の概略縦断面図である。1 is a schematic vertical cross-sectional view of an air conditioner provided with a blower according to Embodiment 1. FIG. 実施の形態1に係る送風機のクロスフローファンの概略正面図である。2 is a schematic front view of the cross-flow fan of the blower according to Embodiment 1; FIG. 実施の形態1に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。3 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 1 cut in a direction perpendicular to the rotating shaft; FIG. 実施の形態1に係る送風機の羽根車の正圧側第1~第3の範囲の説明図である。FIG. 4 is an explanatory diagram of positive pressure side first to third ranges of the impeller of the blower according to Embodiment 1; 実施の形態1に係る送風機の羽根車に対する気流の流入角度の説明図である。FIG. 4 is an explanatory diagram of an inflow angle of an airflow with respect to an impeller of the blower according to Embodiment 1; 実施の形態1に係る送風機のクロスフローファンのファン吹出風速分布を示す図である。FIG. 4 is a diagram showing a fan-blown air velocity distribution of a cross-flow fan of the blower according to Embodiment 1; 実施の形態2に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。FIG. 8 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 2 cut in a direction perpendicular to the rotating shaft; 実施の形態2に係る送風機の羽根車の負圧側第1~第3の範囲の説明図である。FIG. 10 is an explanatory diagram of first to third ranges on the negative pressure side of the impeller of the blower according to Embodiment 2; 実施の形態3に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。FIG. 10 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 3 cut in a direction perpendicular to the rotation axis; 実施の形態4に係る送風機の羽根車の一部を回転軸に垂直な方向で切断した断面図である。FIG. 11 is a cross-sectional view of a part of the impeller of the blower according to Embodiment 4 cut in a direction perpendicular to the rotation axis; 実施の形態5に係る羽根車の一部を回転軸に垂直な方向で切断した断面図である。FIG. 12 is a cross-sectional view of a part of the impeller according to Embodiment 5 cut in a direction perpendicular to the rotating shaft; 実施の形態6に係る冷凍サイクル装置の構成を示す図である。FIG. 12 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 6;
 以下に、本開示に係る空気調和装置の実施の形態について説明する。なお、図面の形態は一例であり、本開示を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 An embodiment of an air conditioner according to the present disclosure will be described below. In addition, the form of drawing is an example and does not limit this disclosure. In addition, the same reference numerals in each drawing are the same or equivalent, and this is common throughout the specification. Furthermore, in the drawings below, the size relationship of each component may differ from the actual size.
実施の形態1.
 図1は、実施の形態1に係る送風機7を備えた空気調和装置1の構成を示す概略斜視図である。図2は、実施の形態1に係る送風機7を備えた空気調和装置1の概略縦断面図である。図3は、実施の形態1に係る送風機7のクロスフローファン11の概略正面図である。
Embodiment 1.
FIG. 1 is a schematic perspective view showing the configuration of an air conditioner 1 equipped with a blower 7 according to Embodiment 1. FIG. FIG. 2 is a schematic vertical cross-sectional view of the air conditioner 1 including the blower 7 according to Embodiment 1. As shown in FIG. FIG. 3 is a schematic front view of cross-flow fan 11 of blower 7 according to the first embodiment.
[空気調和装置の全体構成]
 この空気調和装置1は、冷媒を循環させる冷凍サイクルを利用することで、室内等の空調対象領域に空調空気を供給するものである。空気調和装置1の筐体2は、部屋の天井に埋め込まれる本体3と、本体3の下方に設けられた化粧パネル4と、を有する。筐体2内には、熱交換器6および送風機7が収納されている。筐体2内にはさらに、熱交換器6の下部に、熱交換器6で発生した結露水を回収するドレンパン8を備えている。
[Overall Configuration of Air Conditioner]
The air conditioner 1 supplies conditioned air to an area to be air-conditioned, such as a room, by using a refrigeration cycle that circulates a refrigerant. A housing 2 of the air conditioner 1 has a main body 3 embedded in the ceiling of a room and a decorative panel 4 provided below the main body 3 . A heat exchanger 6 and a blower 7 are housed in the housing 2 . A drain pan 8 for recovering condensed water generated in the heat exchanger 6 is further provided in the housing 2 below the heat exchanger 6 .
 化粧パネル4には、送風機7の回転で生じる空気流の空気調和装置1への入口となる吸込口4aと、その空気流の出口となる吹出口4bと、が形成されている。吸込口4aには、筐体2内に吸い込まれる空気中の塵埃などを除去するフィルタ5が配置されている。吹出口4bには、吹き出し風の風向を制御する上下風向調整板9および左右風向調整板10が配置されている。そして、吸込口4aから吹出口4bに至る風路の前流側に熱交換器6が配置され、後流側に送風機7が配置されている。 The decorative panel 4 is formed with a suction port 4a that serves as an inlet for the airflow generated by the rotation of the blower 7 into the air conditioner 1, and a blowout port 4b that serves as an outlet for the airflow. A filter 5 for removing dust and the like in the air sucked into the housing 2 is arranged at the suction port 4a. A vertical airflow direction adjusting plate 9 and a horizontal airflow direction adjusting plate 10 for controlling the direction of the blown air are arranged in the air outlet 4b. A heat exchanger 6 is arranged on the upstream side of the air passage from the inlet 4a to the outlet 4b, and a blower 7 is arranged on the downstream side.
 空気調和装置1は、送風機7の駆動によって生じる空気を吸込口4aから筐体2内に吸込み、吸込んだ空気を熱交換器6にて冷媒と熱交換した後、吹出口4bから室内へ吹き出すことで、室内温度の調整を行うものである。以下の説明における前流とは、ある対象に対する気流の上流であり、後流とは、ある対象に対する気流の下流である。なお、図1および図2には、空気調和装置1が天井吊り下げ型空調室内機である例を示しているが、これに限られたものではなく、他に例えば、室内壁掛け型空調室内機であってもよい。 The air conditioner 1 sucks air generated by driving the blower 7 into the housing 2 from the suction port 4a, exchanges heat with the refrigerant in the heat exchanger 6, and then blows the air into the room from the blowout port 4b. to adjust the indoor temperature. The forward flow in the following description is the upstream airflow relative to an object, and the wakeward flow is the downstream airflow relative to an object. Although FIGS. 1 and 2 show an example in which the air conditioner 1 is a ceiling-suspended air conditioner indoor unit, the present invention is not limited to this. may be
[送風機7]
 送風機7は、気流を発生させるクロスフローファン11と、クロスフローファン11を回転させるためのモータ12(図3参照)と、クロスフローファン11から吹き出された空気を吹出口4bに導くファンケーシング13と、を有する。図3に示すように、クロスフローファン11は、モータ12の回転軸Oの回転中心を中心として環状に配置された複数の翼21と、複数の翼21が設置され、複数の翼21を一体に支持する支持板22と、を有する羽根車20が、回転軸O方向に積層された構成を有する。クロスフローファン11は、回転軸Oが筐体2の左右方向となるように水平に設置されている。以下の説明では、回転軸Oが延びる方向を軸方向、軸方向に垂直な方向を径方向、回転軸O周りの方向を周方向という。
[Blower 7]
The blower 7 includes a cross-flow fan 11 that generates airflow, a motor 12 (see FIG. 3) for rotating the cross-flow fan 11, and a fan casing 13 that guides the air blown out from the cross-flow fan 11 to the blowout port 4b. and have As shown in FIG. 3, the cross-flow fan 11 has a plurality of blades 21 annularly arranged around the rotation center of the rotation axis O of the motor 12, and a plurality of blades 21. The impeller 20 having the support plate 22 supported on the . The cross-flow fan 11 is installed horizontally so that the rotation axis O is in the horizontal direction of the housing 2 . In the following description, the direction in which the rotation axis O extends is called the axial direction, the direction perpendicular to the axial direction is called the radial direction, and the direction around the rotation axis O is called the circumferential direction.
 羽根車20は、図2の実線矢印の向きに回転し、吸込領域E1から気流を吸込み、吹出領域E2から気流を吹き出す。吸込領域E1では、気流が翼21同士の間の隙間(以下、翼間という)を径方向外側から径方向内側に通り、吹出領域E2では、気流が翼間を径方向内側から径方向外側に流れる。 The impeller 20 rotates in the direction of the solid line arrow in FIG. 2, sucks the airflow from the suction region E1, and blows the airflow from the blowing region E2. In the suction region E1, the airflow passes through the gap between the blades 21 (hereinafter referred to as "between the blades") from the radially outer side to the radially inner side. flow.
 図2に示すように、ファンケーシング13は、リアガイド14と、スタビライザー15とを有する。リアガイド14は、羽根車20から吹き出された空気を吹出口4bに導く部分である。リアガイド14は、リアガイド14の前流端14aから後流端14bにかけて渦巻面を構成している。スタビライザー15は、羽根車20を挟んでリアガイド14と対向する壁部である。スタビライザー15は羽根車20の外周面に沿って形成されている。 As shown in FIG. 2, the fan casing 13 has a rear guide 14 and a stabilizer 15. The rear guide 14 is a part that guides the air blown out from the impeller 20 to the outlet 4b. The rear guide 14 forms a spiral surface from the front end 14a of the rear guide 14 to the rear end 14b. The stabilizer 15 is a wall facing the rear guide 14 with the impeller 20 interposed therebetween. The stabilizer 15 is formed along the outer peripheral surface of the impeller 20 .
 羽根車20の吸込領域E1および吹出領域E2は、リアガイド14およびスタビライザー15によって区画される。具体的には、羽根車20の全周を、スタビライザー15とリアガイド14とが対向する部分を境に2つに分けた領域のうちの前流側が吸込領域E1、後流側が吹出領域E2である。羽根車20の周方向において吸込領域E1と吹出領域E2との間の境界領域は、吸い込む空気の流れと吹き出す空気の流れとが切り替わる切替領域となっている。境界領域は、リアガイド14の前流端14a側とスタビライザー15側との2つある。以下、リアガイド14の前流端14a側の境界領域を第1境界領域E3、スタビライザー15側の境界領域を第2境界領域E4という。 The suction area E1 and the blowout area E2 of the impeller 20 are defined by the rear guide 14 and the stabilizer 15. Specifically, of the regions obtained by dividing the entire circumference of the impeller 20 into two with the portion where the stabilizer 15 and the rear guide 14 facing each other as a boundary, the forward side of the region is the suction region E1, and the downstream side is the blowing region E2. be. A boundary region between the suction region E1 and the blowing region E2 in the circumferential direction of the impeller 20 is a switching region where the flow of air to be drawn in and the flow of air to be blown out are switched. There are two boundary areas, the front end 14a side of the rear guide 14 and the stabilizer 15 side. Hereinafter, the boundary area on the front end 14a side of the rear guide 14 is referred to as a first boundary area E3, and the boundary area on the stabilizer 15 side is referred to as a second boundary area E4.
 次に、羽根車20の翼21の詳細について説明する。
 図4は、実施の形態1に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。図5は、実施の形態1に係る送風機7の羽根車20の正圧側第1~第3の範囲の説明図である。
Next, details of the blades 21 of the impeller 20 will be described.
FIG. 4 is a cross-sectional view of a portion of the impeller 20 of the blower 7 according to Embodiment 1 cut in a direction perpendicular to the rotation axis O. As shown in FIG. FIG. 5 is an explanatory diagram of the positive pressure side first to third ranges of the impeller 20 of the blower 7 according to the first embodiment.
 翼21は、回転軸Oに垂直な断面で見て、図4の矢印で示す回転方向側に凹状の正圧面23と、反回転方向側に凸状の負圧面24と、内周側端面25と、外周側端面26と、で構成される。内周側端面25は、翼21の内周側であって正圧面23と負圧面24とを接続する円弧状の部分である。外周側端面26は、翼21の外周側であって正圧面23と負圧面24とを接続する円弧状の部分である。外周側端面26は、内周側端面25に対し、回転方向側に位置している。また、翼21は、翼21の内周側の端である内周端25-Pと、翼21の外周側の端である外周端26-Pと、を有する。内周端25-Pは内周側端面25に含まれ、外周端26-Pは外周側端面26に含まれている。図4において23-P1は正圧面23の内周端、23-P2は正圧面23の外周端である。24-P1は負圧面24の内周端、24-P2は負圧面24の外周端である。 When viewed in a cross section perpendicular to the rotation axis O, the blade 21 has a positive pressure surface 23 concave in the direction of rotation indicated by an arrow in FIG. , and an outer peripheral side end face 26 . The inner peripheral end surface 25 is an arcuate portion that is located on the inner peripheral side of the blade 21 and connects the pressure surface 23 and the suction surface 24 . The outer peripheral end surface 26 is an arc-shaped portion that is located on the outer peripheral side of the blade 21 and connects the pressure surface 23 and the suction surface 24 . The outer peripheral end face 26 is located on the rotational direction side with respect to the inner peripheral end face 25 . In addition, the blade 21 has an inner peripheral end 25-P, which is the inner peripheral end of the blade 21, and an outer peripheral end 26-P, which is the outer peripheral end of the blade 21. FIG. The inner peripheral end 25-P is included in the inner peripheral side end face 25, and the outer peripheral end 26-P is included in the outer peripheral side end face 26. FIG. 4, 23-P1 is the inner peripheral end of the pressure surface 23, and 23-P2 is the outer peripheral end of the pressure surface 23. As shown in FIG. 24-P1 is the inner peripheral edge of the suction surface 24, and 24-P2 is the outer peripheral edge of the suction surface 24. As shown in FIG.
 正圧面23は、複数の曲面で構成されている。複数の曲面は、内周側から順に、正圧側第1の曲面23-1、正圧側第2の曲面23-2、正圧側第3の曲面23-3である。正圧面23は、正圧側第2の曲面23-2の曲率>正圧側第3の曲面23-3の曲率>正圧側第1の曲面23-1の曲率の関係を満足するように構成されている。正圧側第1の曲面23-1は、曲率が0の平坦面でもよい。 The positive pressure surface 23 is composed of a plurality of curved surfaces. The plurality of curved surfaces are a pressure side first curved surface 23-1, a pressure side second curved surface 23-2, and a pressure side third curved surface 23-3 in order from the inner peripheral side. The pressure surface 23 is configured to satisfy the following relationship: curvature of pressure side second curved surface 23-2 > curvature of pressure side third curved surface 23 - 3 > curvature of pressure side first curved surface 23 - 1 . there is The pressure-side first curved surface 23-1 may be a flat surface with zero curvature.
 図5に示すように、翼21は、翼21を翼厚方向の仮想中心面27で2つに分けたうちの正圧面側翼面と負圧面側翼面とを有する。仮想中心面27は、内周端25-Pと外周端26-Pとを通過する。正圧面側翼面は、正圧側第2の曲面23-2の内周端23-2P1と正圧側第2の曲面23-2の外周端23-2P2とを境に3つの範囲に分けられる。3つの範囲は、内周側から順に、正圧側第1の範囲23a-1と、正圧側第2の範囲23a-2と、正圧側第3の範囲23a-3と、である。正圧側第1の範囲23a-1は、翼21の内周端25-Pから正圧側第2の曲面23-2の内周端23-2P1までの範囲である。正圧側第2の範囲23a-2は、正圧側第2の曲面23-2の範囲に等しい。正圧側第3の範囲23a-3は、正圧側第2の曲面23-2の外周端23-2P2から翼21の外周端26-Pまでの範囲である。 As shown in FIG. 5, the blade 21 has a blade surface on the pressure side and a blade surface on the suction side, which are obtained by dividing the blade 21 by an imaginary center plane 27 in the blade thickness direction. The imaginary central plane 27 passes through the inner peripheral edge 25-P and the outer peripheral edge 26-P. The pressure side blade surface is divided into three ranges by the inner peripheral edge 23-2P1 of the pressure side second curved surface 23-2 and the outer peripheral edge 23-2P2 of the pressure side second curved surface 23-2. The three ranges are, in order from the inner peripheral side, a positive pressure side first range 23a-1, a positive pressure side second range 23a-2, and a positive pressure side third range 23a-3. The pressure side first range 23a-1 is a range from the inner peripheral end 25-P of the blade 21 to the inner peripheral end 23-2P1 of the pressure side second curved surface 23-2. The pressure side second extent 23a-2 is equal to the extent of the pressure side second curved surface 23-2. The pressure side third range 23 a - 3 is a range from the outer peripheral end 23 - 2 P 2 of the pressure side second curved surface 23 - 2 to the outer peripheral end 26 -P of the blade 21 .
 そして、図5に示すように、正圧側第1の範囲23a-1、正圧側第2の範囲23a-2および正圧側第3の範囲23a-3を翼弦線lに投影したときの長さが、順に、正圧側第1の範囲長lps1、正圧側第2の範囲長lps2、正圧側第3の範囲長lps3と定義される。このとき、翼21は、正圧側第3の範囲長lps3>正圧側第1の範囲長lps1>正圧側第2の範囲長lps2の関係を満足するように構成されている。なお、翼弦線lとは、翼21の内周端25-Pと外周端26-Pとを結んだ直線である。 Then, as shown in FIG. 5, the length when the first pressure side range 23a-1, the second pressure side range 23a-2 and the third pressure side range 23a-3 are projected onto the chord line l are defined, in order, as a pressure side first range length l ps1 , a pressure side second range length l ps2 , and a pressure side third range length l ps3 . At this time, the blade 21 is configured to satisfy the relationship of pressure side third range length l ps3 > pressure side first range length l ps1 > pressure side second range length l ps2 . The chord line l is a straight line connecting the inner peripheral edge 25-P and the outer peripheral edge 26-P of the blade 21. FIG.
 上記構成による作用について説明する。 The action of the above configuration will be explained.
 図6は、実施の形態1に係る送風機7の羽根車20に対する気流の流入角度の説明図である。羽根車20において、ある1枚の翼21に着目すると、翼21に対する気流の流入角度は、その翼21の回転方向の位置によって変わる。流入角度とは、翼21の翼厚の仮想中心面27に対する内周端25-Pにおける接線Lと、気流の方向と、が成す角である。具体的には、図6において気流30は、翼21が吹出領域E2内に位置するときの気流を示しており、気流30の流入角度θはθ1である。気流31は、翼21が第1境界領域E3内に位置するときの気流を示しており、気流31の流入角度θはθ2となる。 FIG. 6 is an explanatory diagram of the inflow angle of the airflow with respect to the impeller 20 of the blower 7 according to Embodiment 1. FIG. Focusing on one blade 21 in the impeller 20, the inflow angle of the airflow to the blade 21 changes depending on the position of the blade 21 in the rotational direction. The inflow angle is the angle between the tangent line L at the inner peripheral end 25-P with respect to the virtual center plane 27 of the blade thickness of the blade 21 and the direction of the airflow. Specifically, in FIG. 6, the airflow 30 shows the airflow when the blade 21 is positioned within the blowout region E2, and the inflow angle θ of the airflow 30 is θ1. An airflow 31 indicates an airflow when the blade 21 is positioned within the first boundary region E3, and the inflow angle θ of the airflow 31 is θ2.
 翼21に対する流入角度θがθ1のように相対的に小さい場合、気流は正圧面23に沿った流れとなるが、流入角度θがθ2のように相対的に大きい場合、気流は正圧面23の内周側ではく離しやすい。つまり、第1境界領域E3では、翼21に対する気流の流入角度θが相対的に大きくなるため、正圧面23の内周側で気流がはく離しやすい。従来技術では、第1境界領域E3に相当する領域の翼においてこのように流入角度が相対的に大きくなって正圧面の内周側で気流がはく離しやすい点について検討されておらず、気流のはく離による騒音が発生していた。 When the inflow angle θ with respect to the blade 21 is relatively small like θ1, the airflow flows along the pressure surface 23, but when the inflow angle θ is relatively large like θ2, the airflow flows along the pressure surface 23. It is easy to peel off on the inner peripheral side. That is, in the first boundary region E3, the airflow is likely to separate on the inner peripheral side of the pressure surface 23 because the inflow angle θ of the airflow with respect to the blade 21 is relatively large. In the prior art, no consideration has been given to the fact that the airflow tends to separate on the inner peripheral side of the pressure surface due to the relatively large inflow angle in the blades in the region corresponding to the first boundary region E3. Noise was generated due to delamination.
 これに対し、実施の形態1では、翼21において気流の入口側となる翼21の内周側の正圧側第1の曲面23-1(図4参照)の曲率が、正圧面23を構成する3つの曲面のなかで最も小さい。このため、気流が翼21の内周端25-Pで仮にはく離しても、正圧面23への再付着が促進されやすい。つまり、第1境界領域E3の翼21において正圧面23での気流のはく離が抑制される。第1境界領域E3の翼21において正圧面23での気流のはく離が抑制されることで、第1境界領域E3の翼間の気流の方向が径方向内側から径方向外側に向かう流れに安定する。このことは、2つの境界領域のうち、リアガイド14の前流端14a側の第1境界領域E3の翼21を、いわば吹出領域E2内の翼21に分類することができることに相当する。つまり、羽根車20は、吹出領域E2をリアガイド14の前流端14a側に拡大できる。 In contrast, in Embodiment 1, the pressure surface 23 is formed by the curvature of the pressure side first curved surface 23-1 (see FIG. 4) on the inner peripheral side of the blade 21, which is the airflow inlet side of the blade 21. The smallest of the three curved surfaces. Therefore, even if the airflow detaches at the inner peripheral end 25-P of the blade 21, reattachment to the pressure surface 23 is likely to be promoted. In other words, airflow separation on the pressure surface 23 of the blade 21 in the first boundary region E3 is suppressed. By suppressing the airflow separation on the pressure surface 23 of the blades 21 in the first boundary region E3, the direction of the airflow between the blades in the first boundary region E3 is stabilized from the radially inner side to the radially outer side. . This corresponds to classifying the blades 21 in the first boundary region E3 on the side of the front end 14a of the rear guide 14 into the blades 21 in the blowout region E2. That is, the impeller 20 can expand the blowout area E2 toward the front end 14a of the rear guide 14 .
 ところで、羽根車20の吹出側では、翼21の正圧面23と隣接する翼21の負圧面24との翼間において、正圧面23側では風速が小さく、負圧面24側では風速が大きい、といった風速分布の偏りが生じやすい。 By the way, on the blowout side of the impeller 20, between the pressure surface 23 of the blade 21 and the suction surface 24 of the adjacent blade 21, the wind speed is small on the pressure surface 23 side, and the wind speed is large on the suction surface 24 side. Deviations in wind speed distribution tend to occur.
 実施の形態1では、正圧面23において気流の入口側であって、曲率の最も小さい正圧側第1の曲面23-1を含む正圧側第1の範囲長lps1が、正圧側第2の範囲長lps2よりも長い。このため、翼間に流入した気流が正圧面23に張り付きやすくなり、正圧面23での気流のはく離が抑制される。また、翼間に流入した気流が正圧面23に張り付きやすくなることで、正圧面23での気流の風速が増速される。正圧面23での気流の風速が増速されることで、翼間の風速分布の偏りが抑制され、翼間の風速分布の均一化が図れる。そして、翼間の風速分布の偏りが抑制されることで翼間の通風抵抗が低減されるため、ファン入力と騒音の低減効果が得られる。 In the first embodiment, the pressure side first range length l ps1 including the pressure side first curved surface 23-1 having the smallest curvature on the pressure side 23 on the airflow inlet side is the pressure side second range length l ps1 . longer than the length lps2 . For this reason, the airflow that has flowed between the blades tends to stick to the pressure surface 23, and separation of the airflow on the pressure surface 23 is suppressed. In addition, the airflow that has flowed between the blades tends to stick to the pressure surface 23, so that the wind speed of the airflow on the pressure surface 23 is increased. By increasing the wind speed of the airflow on the pressure surface 23, the unevenness of the wind speed distribution between the blades is suppressed, and the wind speed distribution between the blades can be made uniform. In addition, since the airflow resistance between the blades is reduced by suppressing the unevenness of the wind speed distribution between the blades, the effect of reducing the fan input and noise can be obtained.
 図7は、実施の形態1に係る送風機7のクロスフローファン11のファン吹出風速分布を示す図である。図7において、横軸は羽根車20の周方向の特定の範囲、縦軸はファン吹出風速[m/s]を示している。羽根車20の周方向の特定の範囲とは、スタビライザー15の前流側の端部に対向する羽根車20の周方向の位置から、吹出領域E2を含み、リアガイド14の前流端14aに対向する羽根車の周方向の位置、に至るまでの周方向範囲である。 FIG. 7 is a diagram showing the fan-blown air velocity distribution of the cross-flow fan 11 of the blower 7 according to the first embodiment. In FIG. 7, the horizontal axis indicates a specific range in the circumferential direction of the impeller 20, and the vertical axis indicates the fan blowing air velocity [m/s]. The specific range in the circumferential direction of the impeller 20 is from a position in the circumferential direction of the impeller 20 facing the end of the stabilizer 15 on the upstream side, including the blowout region E2, to the upstream end 14a of the rear guide 14. It is a circumferential range up to the circumferential position of the opposing impeller.
 図7において、(a)は実施の形態1、(b)は従来技術を示している。図7から明らかなように、実施の形態1では、従来技術に比べて吹出領域がリアガイド上流端側に拡大している。そして、吹出領域が拡大することで最大流速が低減しており、その結果、通風抵抗が低減されてファンの入力と騒音の低減効果が得られる。 In FIG. 7, (a) shows the first embodiment, and (b) shows the prior art. As is clear from FIG. 7, in the first embodiment, the blowout region is expanded toward the upstream end of the rear guide compared to the conventional technology. The expansion of the blowing area reduces the maximum flow velocity, and as a result, the airflow resistance is reduced, and the effect of reducing fan input and noise can be obtained.
 以上説明したように、実施の形態1の送風機7は、翼21が環状に複数配置された羽根車20を有するクロスフローファン11を備えた送風機である。翼21の正圧面23は、正圧側第2の曲面23-2の曲率>正圧側第3の曲面23-3の曲率>正圧側第1の曲面23-1の曲率、の関係を満足する。また、翼21の正圧面23は、正圧側第3の範囲長lps3>正圧側第1の範囲長lps1>正圧側第2の範囲長lps2、の関係を満足する。 As described above, the blower 7 of Embodiment 1 is a blower provided with the cross-flow fan 11 having the impeller 20 in which a plurality of blades 21 are annularly arranged. The pressure surface 23 of the blade 21 satisfies the following relationship: curvature of pressure side second curved surface 23-2 > pressure side third curved surface 23 - 3 curvature > pressure side first curved surface 23 - 1 . In addition, the pressure surface 23 of the blade 21 satisfies the relationship of pressure side third range length l ps3 > pressure side first range length l ps1 > pressure side second range length l ps2 .
 このように、翼21の正圧面23は、正圧側第1の曲面23-1の曲率が正圧面23を構成する3つの曲面のなかで最も小さく、正圧側第1の範囲長lps1が正圧側第2の範囲長lps2よりも長い。これにより、送風機7は、第1境界領域E3における気流のはく離、具体的には第1境界領域E3の翼21の正圧面23における気流のはく離を抑制できる。また、正圧側第1の範囲長lps1が正圧側第2の範囲長lps2、よりも長いことで、送風機7は、正圧面23での気流の風速を増速できる。正圧面23での気流の風速を増速できることで、送風機7は、翼間の風速分布の偏りを抑制でき、翼間の通風抵抗を低減できて、ファン入力と騒音を低減できる。 Thus, in the pressure side 23 of the blade 21, the curvature of the pressure side first curved surface 23-1 is the smallest among the three curved surfaces forming the pressure side 23, and the pressure side first range length lps1 is positive. longer than the compression side second range length lps2 . As a result, the blower 7 can suppress airflow separation in the first boundary region E3, specifically, airflow separation on the pressure surface 23 of the blade 21 in the first boundary region E3. In addition, since the pressure side first range length l ps1 is longer than the pressure side second range length l ps2 , the blower 7 can increase the wind speed of the airflow on the pressure surface 23 . By increasing the wind speed of the airflow on the pressure surface 23, the fan 7 can suppress the unevenness of the wind speed distribution between the blades, reduce the airflow resistance between the blades, and reduce fan input and noise.
実施の形態2.
 図8は、実施の形態2に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。図9は、実施の形態2に係る送風機7の羽根車20の負圧側第1~第3の範囲の説明図である。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
FIG. 8 is a cross-sectional view of a part of the impeller 20 of the blower 7 according to Embodiment 2 cut in a direction perpendicular to the rotation axis O. FIG. FIG. 9 is an explanatory diagram of the negative pressure side first to third ranges of the impeller 20 of the blower 7 according to the second embodiment. Hereinafter, the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 実施の形態2の翼21の負圧面24は、複数の曲面で構成されている。図8に示すように、複数の曲面は、内周側から順に、負圧側第1の曲面24-1、負圧側第2の曲面24-2、負圧側第3の曲面24-3である。複数の曲面のうち、負圧側第1の曲面24-1の曲率が最も小さくなるように構成されている。負圧側第1の曲面24-1は、曲率が0の平坦面でもよい。 The suction surface 24 of the blade 21 of Embodiment 2 is composed of a plurality of curved surfaces. As shown in FIG. 8, the plurality of curved surfaces are a negative pressure side first curved surface 24-1, a negative pressure side second curved surface 24-2, and a negative pressure side third curved surface 24-3 in order from the inner peripheral side. Among the plurality of curved surfaces, the negative pressure side first curved surface 24-1 is configured to have the smallest curvature. The negative pressure side first curved surface 24-1 may be a flat surface with zero curvature.
 また、翼21は、翼21を翼厚方向の仮想中心面27で2つに分けたうちの正圧面側翼面と負圧面側翼面とを有する。負圧面側翼面は、図9に示すように負圧側第2の曲面24-2の内周端24-2P1と負圧側第2の曲面24-2の外周端24-2P2とを境に3つの範囲に分けられる。3つの範囲は、負圧側第1の範囲24a-1と、負圧側第2の範囲24a-2と、負圧側第3の範囲24a-3である。負圧側第1の範囲24a-1は、翼21の内周端25-Pから負圧側第2の曲面24-2の内周端24-2P1までの範囲である。負圧側第2の範囲24a-2は、負圧側第2の曲面24-2の範囲に等しい。負圧側第3の範囲24a-3は、負圧側第2の曲面24-2の外周端24-2P2から翼21の外周端26-Pまでの範囲である。 In addition, the blade 21 has a pressure side blade surface and a suction side blade surface which are obtained by dividing the blade 21 by a virtual center plane 27 in the blade thickness direction. As shown in FIG. 9, the suction side blade surface is divided into three sections bounded by an inner peripheral edge 24-2P1 of the suction side second curved surface 24-2 and an outer peripheral edge 24-2P2 of the suction side second curved surface 24-2. divided into ranges. The three ranges are a suction side first range 24a-1, a suction side second range 24a-2, and a suction side third range 24a-3. The suction side first range 24a-1 is a range from the inner peripheral end 25-P of the blade 21 to the inner peripheral end 24-2P1 of the suction side second curved surface 24-2. The suction side second extent 24a-2 is equal to the extent of the suction side second curved surface 24-2. The negative pressure side third range 24a-3 is a range from the outer peripheral end 24-2P2 of the negative pressure side second curved surface 24-2 to the outer peripheral end 26-P of the blade 21. FIG.
 翼21は、負圧側第1の範囲24a-1、負圧側第2の範囲24a-2、負圧側第3の範囲24a-3を、翼弦線lに投影したときの長さが、順に負圧側第1の範囲長lss1、負圧側第2の範囲長lss2、負圧側第3の範囲長lss3と定義される。なお、図9では、図示の都合上、負圧側第1の範囲長lss1、負圧側第2の範囲長lss2および負圧側第3の範囲長lss3が、翼弦線l上に示されず、翼弦線lに平行な線上に示している。正圧側第1の範囲長lps1は、負圧側第1の範囲長lss1よりも長く構成されている。 The blade 21 has a negative pressure side first area 24a-1, a negative pressure side second area 24a-2, and a negative pressure side third area 24a-3 when projected onto the chord line l. A pressure side first range length l ss1 , a suction side second range length l ss2 and a suction side third range length l ss3 are defined. In FIG. 9, for convenience of illustration, the suction side first range length l ss1 , the suction side second range length l ss2 and the suction side third range length l ss3 are not shown on the chord line l. , on a line parallel to the chord line l. The pressure-side first range length l_ps1 is configured longer than the suction-side first range length l_ss1 .
 また、正圧側第1の曲面23-1の外周端23-1P2を翼弦線lに投影した位置P23-1P2は、翼弦線lの中心Pより内周側に位置する。正圧側第1の曲面23-1の外周端23-1P2は、正圧側第2の曲面23-2の内周端23-2P1に等しい。 Further, a position P23-1P2 obtained by projecting the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located inside the center Pc of the chord line l. The outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 is equal to the inner peripheral end 23-2P1 of the pressure side second curved surface 23-2.
 上記構成による作用について説明する。
 上述したように、翼21は、正圧側第1の曲面23-1の曲率が正圧面23を構成する3つの曲面のなかで最も小さく、かつ負圧側第1の曲面24-1の曲率が負圧面24を構成する3つの曲面のなかで最も小さい。そして、正圧側第1の範囲長lps1が、負圧側第1の範囲長lss1よりも長い。
The action of the above configuration will be described.
As described above, in the blade 21, the pressure side first curved surface 23-1 has the smallest curvature among the three curved surfaces forming the pressure side 23, and the suction side first curved surface 24-1 has a negative curvature. It is the smallest of the three curved surfaces forming the pressure surface 24 . The pressure side first range length l_ps1 is longer than the suction side first range length l_ss1 .
 上記構成により、翼間に流入した気流が正圧面23に沿いやすくなって正圧面23側の風速が増速する。羽根車20の吹出領域E2では、翼21の正圧面側の方が負圧面側よりも翼間の気流の風速が小さいため、正圧面23側の風速が増速することで、翼間の風速分布の均一化が図れる。 With the above configuration, the airflow flowing between the blades can easily follow the pressure surface 23, and the wind speed on the pressure surface 23 side increases. In the blowing region E2 of the impeller 20, the wind speed of the airflow between the blades on the pressure surface side of the blades 21 is smaller than that on the suction surface side. Uniform distribution can be achieved.
 また、翼21は、正圧側第1の曲面23-1の外周端23-1P2を翼弦線lに投影した位置P23-1P2が、翼弦線lの中心Pより内周側に位置している。仮に、正圧側第1の曲面23-1の外周端を翼弦線lに投影した位置P23-1P2が、翼弦線lの中心Pよりも外周側に位置していると、正圧面23に沿って内周側から外周側に流れた気流が、正圧面23の外周側で、周方向ではなく径方向を向きやすくなる。 In the blade 21, a position P23-1P2 obtained by projecting the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located on the inner peripheral side of the center Pc of the chord line l. is doing. If the position P23-1P2 obtained by projecting the outer peripheral end of the pressure side first curved surface 23-1 onto the chord line l is located on the outer peripheral side of the center Pc of the chord line l, then the pressure surface The airflow that has flowed from the inner peripheral side to the outer peripheral side along the pressure surface 23 tends to be directed in the radial direction rather than in the circumferential direction on the outer peripheral side of the pressure surface 23 .
 正圧面23に沿って内周側から外周側に流れた気流が正圧面23の外周側で周方向に向いている場合には、この周方向に向いた気流によって以下の作用が得られる。すなわち、周方向に向いた気流は、隣接する翼21の負圧面24側に向けて流れることになるため、正圧面23と隣接する翼21の負圧面24との翼間の気流を、負圧面24側に向けて周方向に押圧する。よって、負圧面24に向けて内周側から流入した気流が負圧面24の外周側ではく離することを抑制できる。一方で、正圧面23に沿って内周側から外周側に流れた気流が正圧面23の外周側で径方向に向いている場合、この作用が得られず、負圧面24の外周側において気流がはく離しやすくなる。 When the airflow flowing from the inner peripheral side to the outer peripheral side along the pressure surface 23 is directed in the circumferential direction on the outer peripheral side of the pressure surface 23, the following effects are obtained by the airflow directed in the circumferential direction. That is, since the airflow directed in the circumferential direction flows toward the suction surface 24 side of the adjacent blade 21, the airflow between the pressure surface 23 and the suction surface 24 of the adjacent blade 21 is transferred to the suction surface. It is pressed in the circumferential direction toward the 24 side. Therefore, it is possible to suppress separation of the airflow that has flowed from the inner peripheral side toward the negative pressure surface 24 on the outer peripheral side of the negative pressure surface 24 . On the other hand, if the airflow that flows from the inner peripheral side to the outer peripheral side along the pressure surface 23 is directed in the radial direction on the outer peripheral side of the pressure surface 23 , this effect cannot be obtained, and the airflow will flow on the outer peripheral side of the suction surface 24 . becomes easier to peel off.
 これに対し、実施の形態2では、正圧側第1の曲面23-1の外周端23-1P2を翼弦線lに投影した位置P23-1P2が翼弦線lの中心Pよりも内周側に位置している。これにより、翼21の正圧側第1の曲面23-1に沿って内周側から外周側に向かう気流の方向が、外周側に向かうに連れて周方向となる。これにより、上記作用が得られ、負圧面24の外周側における気流のはく離が抑制される。 In contrast, in the second embodiment, the position P23-1P2 obtained by projecting the outer peripheral end 23-1P2 of the pressure side first curved surface 23-1 onto the chord line l is located inside the center Pc of the chord line l. located on the periphery. As a result, the direction of the airflow from the inner peripheral side to the outer peripheral side along the pressure side first curved surface 23-1 of the blade 21 becomes the circumferential direction toward the outer peripheral side. As a result, the effect described above is obtained, and separation of the air flow on the outer peripheral side of the suction surface 24 is suppressed.
 以上説明したように、実施の形態2では、実施の形態1と同様の効果が得られるとともに、上記構成により、翼間の風速分布の均一化および翼21の負圧面24の外周側における気流のはく離の抑制が図れる。 As described above, in the second embodiment, the same effect as in the first embodiment can be obtained, and the above configuration makes the wind velocity distribution between the blades uniform and the airflow on the outer peripheral side of the suction surface 24 of the blade 21. Suppression of delamination can be achieved.
実施の形態3.
 図10は、実施の形態3に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。以下、実施の形態3が実施の形態1および実施の形態2と異なる構成を中心に説明するものとし、実施の形態3で説明されていない構成は実施の形態1および実施の形態2と同様である。
Embodiment 3.
FIG. 10 is a cross-sectional view of a part of the impeller 20 of the blower 7 according to Embodiment 3 cut in a direction perpendicular to the rotation axis O. FIG. The following description will focus on the configuration of the third embodiment that differs from the first and second embodiments, and the configurations not described in the third embodiment are the same as those of the first and second embodiments. be.
 実施の形態3の翼21の負圧面24は、負圧側第2の曲面24-2の曲率>負圧側第3の曲面24-3の曲率>負圧側第1の曲面24-1の曲率の関係を満足するように構成されている。また、翼21は、負圧側第3の範囲長lss3>負圧側第2の範囲長lss2>負圧側第1の範囲長lss1の関係を満足するように構成されている。 The suction surface 24 of the blade 21 of Embodiment 3 has a relationship of curvature of the second curved surface 24-2 on the suction side>curvature of the third curved surface 24-3 on the suction side>curvature of the first curved surface 24-1 on the suction side. is configured to satisfy Further, the blade 21 is configured to satisfy the relationship of suction side third range length l ss3 > suction side second range length l ss2 > suction side first range length l ss1 .
 羽根車20の吹出領域E2では、正圧面側に比べて負圧面側の風速が大きいことから負圧面24では気流がはく離しやすく、特に負圧面24の外周側ほど気流がはく離しやすい。このため、負圧面24のなかで最も外周側である負圧側第3の範囲長lss3が負圧面24のなかで最も長く確保される。また、曲率が大きいと気流のはく離が生じやすい。このため、最も曲率が大きい負圧側第2の曲面24-2の曲率をできるだけ小さくする観点から、負圧側第2の範囲長lss2が負圧側第1の範囲長lss1よりも長く確保されている。 In the blowing region E2 of the impeller 20, since the air velocity on the suction surface side is higher than that on the pressure surface side, the airflow tends to separate on the suction surface 24, and the airflow tends to separate more easily toward the outer peripheral side of the suction surface 24. For this reason, the suction side third range length l ss3 , which is the outermost side of the suction surface 24 , is ensured to be the longest among the suction surfaces 24 . Also, if the curvature is large, separation of the airflow is likely to occur. Therefore, from the viewpoint of minimizing the curvature of the negative pressure side second curved surface 24-2 having the largest curvature, the negative pressure side second range length l ss2 is ensured to be longer than the negative pressure side first range length l ss1 . there is
 上記構成により、羽根車20は、吹出領域E2における翼21の負圧面24からの気流のはく離をより抑制される。 With the above configuration, the impeller 20 further suppresses separation of the airflow from the suction surface 24 of the blade 21 in the blowout region E2.
 実施の形態3によれば、実施の形態1および実施の形態2と同様の効果が得られるとともに、上記構成により、羽根車20は、吹出領域E2おける翼21の負圧面24からの気流のはく離をより抑制できる。 According to the third embodiment, effects similar to those of the first and second embodiments can be obtained. can be further suppressed.
実施の形態4.
 図11は、実施の形態4に係る送風機7の羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。以下、実施の形態4が実施の形態1~実施の形態3と異なる構成を中心に説明するものとし、実施の形態4で説明されていない構成は実施の形態1~実施の形態3と同様である。
Embodiment 4.
FIG. 11 is a cross-sectional view of a part of the impeller 20 of the blower 7 according to Embodiment 4 cut in a direction perpendicular to the rotation axis O. As shown in FIG. The following description will focus on the configuration of Embodiment 4 that differs from Embodiments 1 to 3, and configurations not described in Embodiment 4 are the same as those of Embodiments 1 to 3. be.
 図11において、正圧面23上の位置Apsは、翼21を回転軸Oに垂直な断面で見て、正圧面23において翼弦線lとの垂直距離Lpsが最大となる位置である。翼21において、負圧面24上の位置Assは、翼21を回転軸Oに垂直な断面で見て、負圧面24において翼弦線lとの垂直距離Lssが最大となる位置である。実施の形態4の翼21は、正圧面23上の位置Apsを翼弦線lに投影した位置Ppsが、負圧面24上の位置Assを翼弦線lに投影した位置Pssより外周側に位置する。 In FIG. 11, the position A ps on the pressure surface 23 is the position where the vertical distance L ps from the chord line 1 on the pressure surface 23 is maximum when the blade 21 is viewed in a cross section perpendicular to the rotation axis O. On the blade 21, the position A ss on the suction surface 24 is the position where the vertical distance L ss from the blade chord line 1 on the suction surface 24 is the maximum when viewing the blade 21 in a cross section perpendicular to the rotation axis O. In the blade 21 of Embodiment 4, the position P ps obtained by projecting the position A ps on the pressure surface 23 onto the chord line l is higher than the position P ss obtained by projecting the position A ss on the suction surface 24 onto the chord line l. Located on the outer circumference side.
 上記構成により、吹出領域E2において翼間の風路幅が外周側で広く確保され、翼間の風速増加が抑制される。翼間の風速増加が抑制されるため、羽根車20は、ファン入力と騒音の低減効果が得られる。 With the above configuration, a wide air passage width between the blades is ensured on the outer peripheral side in the blowing region E2, and an increase in the wind speed between the blades is suppressed. Since the wind speed increase between the blades is suppressed, the impeller 20 can obtain the effect of reducing fan input and noise.
 実施の形態4によれば、実施の形態1~実施の形態3と同様の効果が得られるとともに、上記構成により、ファン入力と騒音の低減効果が得られる。 According to Embodiment 4, effects similar to those of Embodiments 1 to 3 can be obtained, and the effect of reducing fan input and noise can be obtained due to the above configuration.
実施の形態5.
 上記実施の形態1~実施の形態4では、吹出側における気流の改善について言及してきたが、実施の形態5では、吸込側における気流の改善について言及する。
Embodiment 5.
In the first to fourth embodiments, the improvement of the airflow on the blowout side has been mentioned, but in the fifth embodiment, the improvement of the airflow on the suction side will be mentioned.
 図12は、実施の形態5に係る羽根車20の一部を回転軸Oに垂直な方向で切断した断面図である。以下、実施の形態5が実施の形態1~実施の形態4と異なる構成を中心に説明するものとし、実施の形態5で説明されていない構成は実施の形態1~実施の形態4と同様である。 FIG. 12 is a cross-sectional view of a portion of the impeller 20 according to Embodiment 5 cut in a direction perpendicular to the rotation axis O. FIG. Hereinafter, the fifth embodiment will be described with a focus on the configuration different from the first to fourth embodiments, and the configurations not described in the fifth embodiment are the same as those in the first to fourth embodiments. be.
 羽根車20の吸込側では、気流の方向が矢印に示す方向となり、翼21の外周側が気流の入口側となり、翼21の内周側が気流の出口側となる。実施の形態5は、翼21の翼厚が最大となる位置について特定するものである。実施の形態5の翼21は、最大翼厚28の中心28aを翼弦線lに投影した位置P28a(以下、最大翼厚投影位置P28aという)が、正圧側第1の曲面23-1を翼弦線lに投影した範囲23-1aに位置する。また、翼21は、最大翼厚投影位置P28aが、翼21の内周端25-Pから翼弦線lの10%以上、15%以下の範囲に位置する。 On the suction side of the impeller 20, the direction of the airflow is the direction indicated by the arrow, the outer peripheral side of the blade 21 is the inlet side of the airflow, and the inner peripheral side of the blade 21 is the outlet side of the airflow. Embodiment 5 specifies the position where the blade thickness of the blade 21 is maximized. In the blade 21 of Embodiment 5, a position P 28a obtained by projecting the center 28a of the maximum blade thickness 28 onto the chord line l (hereinafter referred to as the maximum blade thickness projection position P 28a ) is the pressure side first curved surface 23-1. is located in the range 23-1a projected onto the chord line l. In addition, the blade 21 has a maximum blade thickness projection position P 28a positioned within a range of 10% or more and 15% or less of the chord line l from the inner peripheral end 25-P of the blade 21 .
 仮に、最大翼厚投影位置P28aが、翼21の内周端25-Pから翼弦線lの10%の位置より内周側に位置していると、吸込側の気流の方向で後流側の翼21の翼厚が厚くなり、通風抵抗の増加および風切り音の増加の原因となる。 If the maximum blade thickness projection position P 28a is located inside the position 10% of the chord line l from the inner peripheral end 25-P of the blade 21, the wake in the direction of the airflow on the suction side The blade thickness of the side blades 21 increases, which causes an increase in airflow resistance and an increase in wind noise.
 これに対し、実施の形態5では、最大翼厚投影位置P28aが翼弦線lの内周端25-Pから翼弦線の10%の位置より外周側、言い換えれば吸込側の気流の方向で前流側に位置する。これにより、翼21は、吸込側の気流の方向で後流側の翼21の翼厚が薄くなる。このため、1枚の翼21で考えると、その翼21の正圧面23側を流れた気流と、負圧面24側を流れた気流とが、翼21の後流で合流しやすくなる。よって、上記構成の翼21は、翼21の後流に死水域が発生することを抑制でき、通風抵抗が低減し、風切り音が抑制される。 On the other hand, in the fifth embodiment, the maximum blade thickness projection position P 28a is the direction of the airflow on the outer circumference side of the position 10% of the chord line from the inner peripheral end 25-P of the chord line l, in other words, the direction of the airflow on the suction side. is located on the forward side of the As a result, the blade thickness of the blade 21 on the trailing side in the direction of the airflow on the suction side is reduced. For this reason, considering one blade 21 , the airflow flowing on the pressure surface 23 side of the blade 21 and the airflow flowing on the suction surface 24 side tend to merge in the wake of the blade 21 . Therefore, the blade 21 configured as described above can suppress the occurrence of a dead water area in the wake of the blade 21, reducing airflow resistance and suppressing wind noise.
 また、仮に、最大翼厚投影位置P28aが、翼21の内周端25-Pから翼弦線lの15%の位置より外周側に位置していると、正圧面側および負圧面側における気流のはく離を抑制する効果が減る。このため、最大翼厚投影位置P28aは、翼21の内周端25-Pから翼弦線lの15%の位置以下の範囲に位置するようにしている。 Further, if the maximum blade thickness projection position P 28a is located on the outer peripheral side of the position 15% of the chord line l from the inner peripheral end 25-P of the blade 21, The effect of suppressing separation of the airflow is reduced. For this reason, the maximum blade thickness projected position P 28a is positioned within a range of 15% or less of the chord line l from the inner peripheral end 25-P of the blade 21. As shown in FIG.
 実施の形態5によれば、実施の形態1~実施の形態4と同様の効果が得られるとともに、最大翼厚投影位置P28aが翼21の内周端25-Pから翼弦線lの10%以上、15%以下の範囲に位置することで、以下の効果が得られる。すなわち、羽根車20は、吸込側の通風抵抗を低減でき、風切り音を抑制できる。 According to Embodiment 5, the same effects as those of Embodiments 1 to 4 can be obtained, and the maximum blade thickness projection position P 28a is located 10 degrees from the inner peripheral end 25-P of the blade 21 to the chord line l. % or more and 15% or less, the following effects can be obtained. That is, the impeller 20 can reduce the draft resistance on the suction side and suppress the wind noise.
 なお、上記実施の形態1~実施の形態5では、羽根車20を有する送風機7が室内機に搭載されるものとして説明したが、室外機に搭載されてもよい。この場合も同様の効果が得られる。 In the first to fifth embodiments, the blower 7 having the impeller 20 is installed in the indoor unit, but it may be installed in the outdoor unit. Similar effects can be obtained in this case as well.
実施の形態6.
 図13は、実施の形態6に係る冷凍サイクル装置50の構成を示す図である。なお、実施の形態6に係る冷凍サイクル装置50の室内送風機202には、実施の形態1~実施の形態5のいずれかの送風機7が用いられる。また、以下の説明では、冷凍サイクル装置50について、空調用途に使用される場合について説明するが、冷凍サイクル装置50は、空調用途に使用されるものに限定されるものではない。冷凍サイクル装置50は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの、冷凍用途または空調用途に使用される。
Embodiment 6.
FIG. 13 is a diagram showing the configuration of a refrigeration cycle device 50 according to Embodiment 6. As shown in FIG. For indoor fan 202 of refrigeration cycle apparatus 50 according to Embodiment 6, fan 7 of any one of Embodiments 1 to 5 is used. Also, in the following description, the refrigeration cycle device 50 will be described as being used for air conditioning, but the refrigeration cycle device 50 is not limited to being used for air conditioning. The refrigerating cycle device 50 is used, for example, for refrigeration or air conditioning applications such as refrigerators, freezers, vending machines, air conditioners, refrigeration systems, and water heaters.
 実施の形態6に係る冷凍サイクル装置50は、冷媒を介して外気と室内の空気の間で熱を移動させることにより、室内を暖房または冷房して空気調和を行う。実施の形態6に係る冷凍サイクル装置50は、室外機100と、室内機200とを有する。冷凍サイクル装置50は、室外機100と室内機200とが冷媒配管300および冷媒配管400により配管接続されて、冷媒が循環する冷媒回路を有する。冷媒配管300は、気相の冷媒が流れるガス配管であり、冷媒配管400は、液相の冷媒が流れる液配管である。なお、冷媒配管400には、気液二相の冷媒を流してもよい。そして、冷凍サイクル装置50の冷媒回路では、圧縮機101、流路切替装置102、室外熱交換器103、膨張弁105、室内熱交換器201が冷媒配管を介して順次接続されている。 The refrigeration cycle device 50 according to Embodiment 6 heats or cools the room by transferring heat between the outside air and the indoor air via the refrigerant, thereby performing air conditioning. A refrigeration cycle device 50 according to Embodiment 6 has an outdoor unit 100 and an indoor unit 200 . The refrigerating cycle device 50 has a refrigerant circuit in which an outdoor unit 100 and an indoor unit 200 are connected by refrigerant pipes 300 and 400 to circulate refrigerant. The refrigerant pipe 300 is a gas pipe through which a vapor-phase refrigerant flows, and the refrigerant pipe 400 is a liquid pipe through which a liquid-phase refrigerant flows. A gas-liquid two-phase refrigerant may flow through the refrigerant pipe 400 . In the refrigerant circuit of the refrigeration cycle device 50, the compressor 101, the flow switching device 102, the outdoor heat exchanger 103, the expansion valve 105, and the indoor heat exchanger 201 are sequentially connected via refrigerant pipes.
(室外機100)
 室外機100は、圧縮機101、流路切替装置102、室外熱交換器103、および膨張弁105を有している。圧縮機101は、吸入した冷媒を圧縮して吐出する。流路切替装置102は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。冷凍サイクル装置50は、制御装置(図示せず)からの指示に基づいて、流路切替装置102を用いて冷媒の流れを切り換えることで、暖房運転または冷房運転を実現することができる。
(Outdoor unit 100)
The outdoor unit 100 has a compressor 101 , a channel switching device 102 , an outdoor heat exchanger 103 and an expansion valve 105 . Compressor 101 compresses and discharges the sucked refrigerant. The channel switching device 102 is, for example, a four-way valve, and is a device that switches the direction of the coolant channel. The refrigeration cycle device 50 can realize heating operation or cooling operation by switching the refrigerant flow using the flow path switching device 102 based on an instruction from a control device (not shown).
 室外熱交換器103は、冷媒と室外空気との熱交換を行う。室外熱交換器103は、暖房運転時には蒸発器の働きをし、冷媒配管400から流入した低圧の冷媒と室外空気との間で熱交換を行って冷媒を蒸発させて気化させる。室外熱交換器103は、冷房運転時には、凝縮器の働きをし、流路切替装置102側から流入した圧縮機101で圧縮済の冷媒と室外空気との間で熱交換を行って、冷媒を凝縮させて液化させる。室外熱交換器103には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機104が設けられている。室外送風機104は、インバータ装置を取り付け、ファンモータの運転周波数を変化させてファンの回転速度を変更してもよい。膨張弁105は、絞り装置であり、膨張弁105を流れる冷媒の流量を調節することにより、膨張弁として機能し、開度を変化させることで、冷媒の圧力を調整する。例えば、膨張弁105が、電子式膨張弁等で構成された場合は、制御装置の指示に基づいて開度調整が行われる。 The outdoor heat exchanger 103 exchanges heat between the refrigerant and the outdoor air. The outdoor heat exchanger 103 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant flowing from the refrigerant pipe 400 and the outdoor air to evaporate the refrigerant. The outdoor heat exchanger 103 functions as a condenser during cooling operation, and performs heat exchange between the refrigerant that has been compressed by the compressor 101 and has flowed in from the flow path switching device 102 and the outdoor air. Condense and liquefy. The outdoor heat exchanger 103 is provided with an outdoor fan 104 in order to increase the efficiency of heat exchange between the refrigerant and the outdoor air. The outdoor fan 104 may be equipped with an inverter device to change the operating frequency of the fan motor to change the rotational speed of the fan. The expansion valve 105 is a throttle device, functions as an expansion valve by adjusting the flow rate of the refrigerant flowing through the expansion valve 105, and adjusts the pressure of the refrigerant by changing the degree of opening. For example, if the expansion valve 105 is an electronic expansion valve or the like, the degree of opening is adjusted based on instructions from the control device.
(室内機200)
 室内機200は、冷媒と室内空気との間で熱交換を行う室内熱交換器201と、室内熱交換器201が熱交換を行う空気の流れを調整する室内送風機202とを有する。室内熱交換器201は、暖房運転時には、凝縮器の働きをし、冷媒配管300から流入した冷媒と室内空気との間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管400側に流出させる。室内熱交換器201は、冷房運転時には蒸発器の働きをし、膨張弁105によって低圧状態にされた冷媒と室内空気との間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管300側に流出させる。室内送風機202は、室内熱交換器201と対面するように設けられている。室内送風機202には、実施の形態1~実施の形態5に係る送風機7が適用される。室内送風機202の運転速度は、ユーザの設定により決定される。室内送風機202には、インバータ装置を取り付け、ファンモータ(図示は省略)の運転周波数を変化させてクロスフローファンの回転速度を変更してもよい。
(Indoor unit 200)
The indoor unit 200 has an indoor heat exchanger 201 that exchanges heat between a refrigerant and indoor air, and an indoor fan 202 that adjusts the flow of air with which the indoor heat exchanger 201 exchanges heat. During the heating operation, the indoor heat exchanger 201 functions as a condenser, performs heat exchange between the refrigerant flowing from the refrigerant pipe 300 and the indoor air, condenses the refrigerant and liquefies it. let it flow. The indoor heat exchanger 201 functions as an evaporator during cooling operation, and performs heat exchange between the refrigerant brought to a low pressure state by the expansion valve 105 and indoor air, causing the refrigerant to take heat from the air and evaporate. to vaporize it and flow out to the refrigerant pipe 300 side. Indoor fan 202 is provided so as to face indoor heat exchanger 201 . Air blower 7 according to Embodiments 1 to 5 is applied to indoor air blower 202 . The operating speed of the indoor fan 202 is determined by user settings. An inverter device may be attached to the indoor fan 202 to change the operating frequency of the fan motor (not shown) to change the rotation speed of the cross-flow fan.
[冷凍サイクル装置50の動作例]
 次に、冷凍サイクル装置50の動作例として冷房運転動作を説明する。圧縮機101によって圧縮され吐き出された高温高圧のガス冷媒は、流路切替装置102を経由して、室外熱交換器103に流入する。室外熱交換器103に流入したガス冷媒は、室外送風機104により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器103から流出する。室外熱交換器103から流出した冷媒は、膨張弁105によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機200の室内熱交換器201に流入し、室内送風機202により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器201から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。
[Example of operation of refrigeration cycle device 50]
Next, a cooling operation operation will be described as an operation example of the refrigeration cycle device 50 . The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the outdoor heat exchanger 103 via the channel switching device 102 . The gas refrigerant that has flowed into the outdoor heat exchanger 103 is condensed by heat exchange with the outside air blown by the outdoor fan 104 , becomes a low-temperature refrigerant, and flows out of the outdoor heat exchanger 103 . The refrigerant that has flowed out of the outdoor heat exchanger 103 is expanded and decompressed by the expansion valve 105 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 201 of the indoor unit 200, evaporates by heat exchange with the indoor air blown by the indoor fan 202, and becomes a low-temperature, low-pressure gas refrigerant in the indoor heat exchanger. 201. At this time, the indoor air that has been cooled by absorbing heat by the refrigerant becomes conditioned air, and is blown out from the outlet of the indoor unit 200 into the air-conditioned space. The gas refrigerant that has flowed out of the indoor heat exchanger 201 is sucked into the compressor 101 via the flow switching device 102 and compressed again. The above operations are repeated.
 次に、冷凍サイクル装置50の動作例として暖房運転動作を説明する。圧縮機101によって圧縮され吐き出された高温高圧のガス冷媒は、流路切替装置102を経由して、室内機200の室内熱交換器201に流入する。室内熱交換器201に流入したガス冷媒は、室内送風機202により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器201から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気となって、室内機200の吐出口から空調対象空間に吹き出される。室内熱交換器201から流出した冷媒は、膨張弁105によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機100の室外熱交換器103に流入し、室外送風機104により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出したガス冷媒は、流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以上の動作が繰り返される。 Next, the heating operation will be described as an example of the operation of the refrigeration cycle device 50. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 101 flows into the indoor heat exchanger 201 of the indoor unit 200 via the flow switching device 102 . The gas refrigerant that has flowed into the indoor heat exchanger 201 is condensed by heat exchange with the indoor air blown by the indoor fan 202 , becomes a low-temperature refrigerant, and flows out of the indoor heat exchanger 201 . At this time, the indoor air warmed by receiving heat from the gas refrigerant becomes conditioned air and is blown out from the outlet of the indoor unit 200 into the air-conditioned space. The refrigerant flowing out of the indoor heat exchanger 201 is expanded and decompressed by the expansion valve 105 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 103 of the outdoor unit 100, evaporates by heat exchange with the outside air blown by the outdoor fan 104, and becomes a low-temperature, low-pressure gas refrigerant in the outdoor heat exchanger 103. flow out from The gas refrigerant that has flowed out of the outdoor heat exchanger 103 is sucked into the compressor 101 via the flow switching device 102 and compressed again. The above operations are repeated.
 実施の形態6に係る冷凍サイクル装置50は、実施の形態1~実施の形態5に係る送風機7を備えるため、上記実施の形態1~実施の形態5と同様の効果を得ることができる。 Since the refrigeration cycle apparatus 50 according to Embodiment 6 includes the blower 7 according to Embodiments 1 to 5, it is possible to obtain the same effects as those of Embodiments 1 to 5 above.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 空気調和装置、2 筐体、3 本体、4 化粧パネル、4a 吸込口、4b 吹出口、5 フィルタ、6 熱交換器、7 送風機、8 ドレンパン、9 上下風向調整板、10 左右風向調整板、11 クロスフローファン、12 モータ、13 ファンケーシング、14 リアガイド、14a 前流端、14b 後流端、15 スタビライザー、20 羽根車、21 翼、22 支持板、23 正圧面、23-1 正圧側第1の曲面、23-1P2 外周端、23-1a 範囲、23-2 正圧側第2の曲面、23-2P1 内周端、23-2P2 外周端、23-3 正圧側第3の曲面、23a-1 正圧側第1の範囲、23a-2 正圧側第2の範囲、23a-3 正圧側第3の範囲、24 負圧面、24-1 負圧側第1の曲面、24-2 負圧側第2の曲面、24-2P1 内周端、24-2P2 外周端、24-3 負圧側第3の曲面、24a-1 負圧側第1の範囲、24a-2 負圧側第2の範囲、24a-3 負圧側第3の範囲、25 内周側端面、25-P 内周端、26 外周側端面、26-P 外周端、27 仮想中心面、27-P 内周端、28 最大翼厚、28a 中心、30 気流、31 気流、50 冷凍サイクル装置、100 室外機、101 圧縮機、102 流路切替装置、103 室外熱交換器、104 室外送風機、105 膨張弁、200 室内機、201 室内熱交換器、202 室内送風機、300 冷媒配管、400 冷媒配管、E1 吸込領域、E2 吹出領域、E3 第1境界領域、E4 第2境界領域、L 接線、Lps 垂直距離、Lss 垂直距離、O 回転軸、P28a 最大翼厚投影位置、P 中心、l 翼弦線、lps1 正圧側第1の範囲長、lps2 正圧側第2の範囲長、lps3 正圧側第3の範囲長、lss1 負圧側第1の範囲長、lss2 負圧側第2の範囲長、lss3 負圧側第3の範囲長、θ 流入角度。 1 air conditioner, 2 housing, 3 main body, 4 decorative panel, 4a suction port, 4b outlet, 5 filter, 6 heat exchanger, 7 blower, 8 drain pan, 9 vertical wind direction adjustment plate, 10 left and right wind direction adjustment plate, 11 cross flow fan, 12 motor, 13 fan casing, 14 rear guide, 14a front end, 14b rear end, 15 stabilizer, 20 impeller, 21 blade, 22 support plate, 23 positive pressure surface, 23-1 positive pressure side second 1 curved surface 23-1P2 outer peripheral end 23-1a range 23-2 positive pressure side second curved surface 23-2P1 inner peripheral end 23-2P2 outer peripheral end 23-3 positive pressure side third curved surface 23a- 1 pressure side first area 23a-2 pressure side second area 23a-3 pressure side third area 24 suction surface 24-1 suction side first curved surface 24-2 suction side second area curved surface 24-2P1 inner peripheral end 24-2P2 outer peripheral end 24-3 negative pressure side third curved surface 24a-1 negative pressure side first range 24a-2 negative pressure side second range 24a-3 negative pressure side Third range, 25 inner peripheral side end face, 25-P inner peripheral end, 26 outer peripheral side end face, 26-P outer peripheral end, 27 virtual center plane, 27-P inner peripheral end, 28 maximum blade thickness, 28a center, 30 Airflow 31 Airflow 50 Refrigeration cycle device 100 Outdoor unit 101 Compressor 102 Flow switching device 103 Outdoor heat exchanger 104 Outdoor fan 105 Expansion valve 200 Indoor unit 201 Indoor heat exchanger 202 Indoor Blower, 300 refrigerant pipe, 400 refrigerant pipe, E1 suction area, E2 blow area, E3 first bounding area, E4 second bounding area, L tangent, L ps vertical distance, L ss vertical distance, O axis of rotation, P 28a maximum Blade thickness projection position, P c center, l chord line, l ps1 pressure side first range length, l ps2 pressure side second range length, l ps3 pressure side third range length, l ss1 suction side first range length l ss2 suction side second range length l ss3 suction side third range length θ inlet angle.

Claims (7)

  1.  翼が環状に複数配置された羽根車を有するクロスフローファンを備えた送風機であって、
     前記翼は、前記クロスフローファンの回転軸に垂直な断面で見て、前記クロスフローファンの回転方向側に凹状の正圧面と、反回転方向側に凸状の負圧面と、前記翼の内周側であって前記正圧面と前記負圧面とを接続する円弧状の内周側端面と、前記翼の外周側であって前記正圧面と前記負圧面とを接続する円弧状の外周側端面と、を有し、
     前記外周側端面は、前記内周側端面よりも回転方向側に位置しており、
     前記翼の前記正圧面は、前記羽根車の内周側から順に、曲率の異なる正圧側第1の曲面と、正圧側第2の曲面と、正圧側第3の曲面と、を有し、前記正圧側第2の曲面の曲率>前記正圧側第3の曲面の曲率>前記正圧側第1の曲面の曲率、の関係を満足し、
     前記翼を前記翼の翼厚方向の仮想中心面で2つに分けたうちの正圧面側翼面を、前記正圧側第2の曲面の内周端と前記正圧側第2の曲面の外周端とを境に3つの範囲に分け、内周側から順に、正圧側第1の範囲、正圧側第2の範囲、正圧側第3の範囲としたとき、各範囲を、前記翼の内周端と外周端とを結んだ翼弦線に投影したときの長さは、正圧側第3の範囲長>正圧側第1の範囲長>正圧側第2の範囲長、の関係を満足する送風機。
    A blower equipped with a cross-flow fan having an impeller with a plurality of annularly arranged blades,
    When viewed in a cross section perpendicular to the rotation axis of the cross-flow fan, the blade has a concave positive pressure surface on the side of the rotation direction of the cross-flow fan, a convex suction surface on the counter-rotational direction side, and an inner side of the blade. An arc-shaped inner peripheral end surface on the peripheral side that connects the pressure surface and the suction surface, and an arc-shaped outer peripheral end surface that is on the outer peripheral side of the blade and connects the pressure surface and the suction surface. and
    The outer peripheral side end face is located on the rotational direction side of the inner peripheral side end face,
    The pressure surface of the blade has, in order from the inner peripheral side of the impeller, a first pressure-side curved surface, a second pressure-side curved surface, and a third pressure-side curved surface having different curvatures, and Satisfying the relationship: curvature of pressure side second curved surface>curvature of pressure side third curved surface>curvature of pressure side first curved surface,
    The blade is divided into two by a virtual central plane in the thickness direction of the blade, and the blade surface on the pressure side is divided into the inner peripheral end of the second curved surface on the pressure side and the outer peripheral end of the second curved surface on the pressure side. is divided into three ranges, and from the inner peripheral side, the first range on the positive pressure side, the second range on the positive pressure side, and the third range on the positive pressure side. A fan whose length when projected onto a chord line connecting the outer peripheral edge satisfies the relationship: pressure side third range length>pressure side first range length>pressure side second range length.
  2.  前記翼の前記負圧面は、前記羽根車の内周側から順に、曲率の異なる負圧側第1の曲面と、負圧側第2の曲面と、負圧側第3の曲面と、を有し、前記負圧側第1の曲面の曲率が前記負圧側第2の曲面および前記負圧側第3の曲面の曲率よりも小さく構成されており、
     前記翼を前記仮想中心面で2つに分けたうちの負圧面側翼面を、前記負圧側第2の曲面の内周端と前記負圧側第2の曲面の外周端とを境に3つの範囲に分けたうちの最も内周側の範囲を負圧側第1の範囲とし、前記負圧側第1の範囲を前記翼弦線に投影したときの長さを負圧側第1の範囲長としたとき、
     前記正圧側第1の範囲長は、前記負圧側第1の範囲長よりも長く、かつ、前記正圧側第1の曲面の外周端を前記翼弦線に投影した位置が、前記翼弦線の中心より内周側に位置する請求項1記載の送風機。
    The suction surface of the blade has, in order from the inner peripheral side of the impeller, a first suction-side curved surface, a second suction-side curved surface, and a third suction-side curved surface having different curvatures, and the first curved surface on the negative pressure side has a smaller curvature than the second curved surface on the negative pressure side and the third curved surface on the negative pressure side,
    The blade surface on the suction side of the blade divided into two by the imaginary center plane is divided into three ranges bounded by the inner peripheral end of the second curved surface on the negative pressure side and the outer peripheral end of the second curved surface on the negative pressure side. When the innermost range of the division is defined as the suction side first range, and the length when the suction side first range is projected onto the chord line is defined as the suction side first range length ,
    The pressure side first range length is longer than the suction side first range length, and a position obtained by projecting the outer peripheral end of the pressure side first curved surface onto the chord line is the chord line. 2. The blower according to claim 1, which is located on the inner peripheral side of the center.
  3.  前記翼の前記負圧面は、前記負圧側第2の曲面の曲率>前記負圧側第3の曲面の曲率>前記負圧側第1の曲面の曲率、の関係を満足するように構成され、
     前記負圧面側翼面を、前記負圧側第2の曲面の内周端と前記負圧側第2の曲面の外周端とを境に3つの範囲に分け、内周側から順に、前記負圧側第1の範囲、負圧側第2の範囲、負圧側第3の範囲としたとき、各範囲を、前記翼弦線に投影したときの長さは、負圧側第3の範囲長>負圧側第2の範囲長>負圧側第1の範囲長、の関係を満足する請求項2記載の送風機。
    the suction surface of the blade is configured to satisfy the following relationship: curvature of the second curved surface on the suction side>curvature of the third curved surface on the suction side>curvature of the first curved surface on the suction side;
    The suction side blade surface is divided into three ranges by the inner peripheral end of the suction side second curved surface and the outer peripheral end of the suction side second curved surface, and the suction side first curved surface is divided into three ranges in order from the inner peripheral side. , the second range on the suction side, and the third range on the suction side, the length when each range is projected onto the chord line is the length of the third range on the suction side > the second range on the suction side 3. The blower according to claim 2, which satisfies the relationship of range length>negative pressure side first range length.
  4.  前記正圧面において前記翼弦線との垂直距離が最大となる位置を前記翼弦線に投影した位置が、前記負圧面において前記翼弦線との垂直距離が最大となる位置を前記翼弦線に投影した位置よりも外周側に位置する請求項1~請求項3のいずれか一項に記載の送風機。 The position on the pressure surface where the vertical distance from the chord line is the maximum is projected onto the chord line, and the position on the suction surface where the vertical distance from the chord line is the maximum is the chord line. 4. The fan according to any one of claims 1 to 3, which is located on the outer peripheral side of the position projected on.
  5.  前記翼の翼厚が最大となる位置の翼厚の中心を、前記翼弦線に投影した位置が、前記正圧側第1の曲面を前記翼弦線に投影した範囲に位置し、かつ、前記翼の内周端から前記翼弦線の10%以上、15%以下の範囲に位置する請求項1~請求項4のいずれか一項に記載の送風機。 A position obtained by projecting the center of the blade thickness at the position where the blade has the maximum thickness on the chord line is located in a range obtained by projecting the pressure side first curved surface on the chord line, and The fan according to any one of claims 1 to 4, wherein the blade is located in a range of 10% or more and 15% or less of the chord line from the inner peripheral end of the blade.
  6.  請求項1~請求項5のいずれか一項に記載の送風機と、送風機を収納する筐体と、熱交換器と、を備えた空気調和装置。 An air conditioner comprising the blower according to any one of claims 1 to 5, a housing for housing the blower, and a heat exchanger.
  7.  請求項1~請求項5のいずれか一項に記載の送風機を備えた冷凍サイクル装置。 A refrigeration cycle device comprising the blower according to any one of claims 1 to 5.
PCT/JP2021/017432 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device WO2022234630A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180097651.5A CN117222815A (en) 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device
US18/549,418 US20240159238A1 (en) 2021-05-07 2021-05-07 Air sending device, air-conditioning apparatus, and refrigeration cycle device
EP21939823.7A EP4336045A4 (en) 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device
PCT/JP2021/017432 WO2022234630A1 (en) 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device
JP2023518563A JP7466765B2 (en) 2021-05-07 2021-05-07 Blower, air conditioner and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017432 WO2022234630A1 (en) 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022234630A1 true WO2022234630A1 (en) 2022-11-10

Family

ID=83932665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017432 WO2022234630A1 (en) 2021-05-07 2021-05-07 Blower, air conditioner, and refrigeration cycle device

Country Status (5)

Country Link
US (1) US20240159238A1 (en)
EP (1) EP4336045A4 (en)
JP (1) JP7466765B2 (en)
CN (1) CN117222815A (en)
WO (1) WO2022234630A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911990U (en) * 1972-05-06 1974-01-31
JPS5652599A (en) * 1979-10-04 1981-05-11 Seibu Giken:Kk Impeller of complex multivane blower
JP2001263285A (en) * 2000-03-21 2001-09-26 Mitsubishi Electric Corp Thorough flow air blower and air conditioner
JP2001280288A (en) 2000-03-31 2001-10-10 Daikin Ind Ltd Impeller structure of multiblade blower

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261051B1 (en) * 1998-09-02 2001-07-17 Gordon A. Kolacny Fan duct combination unit
JP4911990B2 (en) 2006-02-27 2012-04-04 三洋電機株式会社 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5652599B2 (en) 2010-07-12 2015-01-14 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program
CN103320631B (en) * 2013-06-26 2015-05-27 苏州天兼新材料科技有限公司 Preparation method of nanoscale silicon carbide magnesium alloy material
EP3372841B1 (en) * 2015-11-02 2019-12-25 Mitsubishi Electric Corporation Axial fan and air-conditioning device having said axial fan
JP7394614B2 (en) * 2019-12-18 2023-12-08 サンデン株式会社 centrifugal blower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911990U (en) * 1972-05-06 1974-01-31
JPS5652599A (en) * 1979-10-04 1981-05-11 Seibu Giken:Kk Impeller of complex multivane blower
JP2001263285A (en) * 2000-03-21 2001-09-26 Mitsubishi Electric Corp Thorough flow air blower and air conditioner
JP2001280288A (en) 2000-03-31 2001-10-10 Daikin Ind Ltd Impeller structure of multiblade blower

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4336045A4

Also Published As

Publication number Publication date
JP7466765B2 (en) 2024-04-12
JPWO2022234630A1 (en) 2022-11-10
CN117222815A (en) 2023-12-12
US20240159238A1 (en) 2024-05-16
EP4336045A4 (en) 2024-06-05
EP4336045A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
TWI676741B (en) Centrifugal blower, air supply device, air conditioner, and refrigeration cycle device
WO2019082392A1 (en) Centrifugal blower, air blower device, air conditioning device, and refrigeration cycle device
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
WO2017077576A1 (en) Air conditioner outdoor unit and refrigeration cycle device
JP6952905B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
TWI716681B (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
JP5295321B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
US11976824B2 (en) Centrifugal fan, air conditioning apparatus, and refrigeration cycle apparatus
WO2018092262A1 (en) Propeller fan and refrigeration cycle device
JP7130061B2 (en) Centrifugal blowers, blowers, air conditioners and refrigeration cycle devices
JP7113819B2 (en) Propeller fan and refrigeration cycle device
WO2022234630A1 (en) Blower, air conditioner, and refrigeration cycle device
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
JP6463497B2 (en) Blower, outdoor unit and refrigeration cycle apparatus
JP7301236B2 (en) SCROLL CASING FOR CENTRIFUGAL BLOWER, CENTRIFUGAL BLOWER INCLUDING THIS SCROLL CASING, AIR CONDITIONER AND REFRIGERATION CYCLE DEVICE
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
JP7258099B2 (en) Air conditioning equipment and refrigeration cycle equipment
WO2024189889A1 (en) Indoor unit of air conditioner, and air conditioner provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518563

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18549418

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180097651.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021939823

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021939823

Country of ref document: EP

Effective date: 20231207