WO2018096604A1 - Control method and control device for hybrid vehicle - Google Patents

Control method and control device for hybrid vehicle Download PDF

Info

Publication number
WO2018096604A1
WO2018096604A1 PCT/JP2016/084695 JP2016084695W WO2018096604A1 WO 2018096604 A1 WO2018096604 A1 WO 2018096604A1 JP 2016084695 W JP2016084695 W JP 2016084695W WO 2018096604 A1 WO2018096604 A1 WO 2018096604A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotational speed
acceleration request
clutch
rotation speed
Prior art date
Application number
PCT/JP2016/084695
Other languages
French (fr)
Japanese (ja)
Inventor
充彦 松本
崇 荻野
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to PCT/JP2016/084695 priority Critical patent/WO2018096604A1/en
Publication of WO2018096604A1 publication Critical patent/WO2018096604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers

Definitions

  • the present disclosure relates to a control method and a control apparatus for a hybrid vehicle that includes an oil pump that is rotationally driven by a motor, and that has a friction clutch that operates hydraulically using the oil pump as a hydraulic source and a transmission in a drive system.
  • this is a one-motor / two-clutch hybrid system in which an engine, a first clutch, a motor, a second clutch, and a belt-type continuously variable transmission are mounted in a drive system from a drive source to a drive wheel.
  • the first clutch, the second clutch, and the belt-type continuously variable transmission are hydraulically operated, and an oil pump that is rotationally driven by a motor is provided as a hydraulic pressure source.
  • a device when an engine start request is established, a device is known in which a first clutch is engaged and the engine is cranked and started using the motor as a start motor (see, for example, Patent Document 1).
  • This disclosure has been made by paying attention to the above-described problem, and aims to achieve both of ensuring the required hydraulic pressure for the driver acceleration request and reducing the burden on the friction clutch for the engine start request.
  • a friction clutch and a transmission are hydraulically operated, and an oil pump that is rotationally driven by a motor is provided as the hydraulic pressure source.
  • the friction clutch is engaged, and the engine is cranked and started using the motor as the start motor.
  • the motor speed is increased to a target speed in a speed range that exceeds the allowable rotational speed allowed by the friction clutch. If the engine start request is established while the motor speed is increased, the motor speed is decreased.
  • the motor rotation speed is increased in preparation for the driver acceleration request, and when the friction clutch is predicted to be engaged, the motor rotation speed is decreased to ensure the necessary hydraulic pressure for the driver acceleration request and the engine start request. It is possible to achieve both reduction of the load on the friction clutch.
  • FIG. 1 is an overall system diagram illustrating a drive system and a control system of an FF hybrid vehicle to which a control method and a control device of Example 1 are applied.
  • FIG. 2 is a hydraulic control system configuration diagram illustrating a hydraulic control system configuration of a belt-type continuously variable transmission CVT, a first clutch CL1, and a second clutch CL2 included in the drive system of the FF hybrid vehicle of the first embodiment.
  • 4 is a flowchart showing a flow of a start-up motor rotation speed control process executed by the integrated controller of the first embodiment.
  • the motor speed, engine speed, motor torque, engine torque, transmission input shaft torque, possible hydraulic pressure, and required hydraulic pressure when the hydraulic pressure that can be generated at the start when the driver acceleration request is high are insufficient
  • It is a time chart which shows each characteristic. 4 is a time chart showing brake, accelerator opening (APO), motor rotation speed, engine rotation speed, and hydraulic pressure characteristics for explaining the motor rotation speed control operation at the start when the driver acceleration request of Example 1 is high. . It is a time chart which shows each characteristic of motor number of rotations, input possible torque, and target torque for explaining the target torque rate which can be realized at the time of a start with high driver acceleration demand in a comparative example. 4 is a time chart showing characteristics of a motor rotation speed, an inputable torque, and a target torque for explaining a target torque rate that can be realized at the time of starting with a high driver acceleration request in the first embodiment.
  • Example 1 shown in the drawings.
  • the control method and the control device in the first embodiment are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and equipped with a belt type continuously variable transmission as a transmission.
  • the configuration of the first embodiment will be described by dividing it into “the overall system configuration”, “CVT / CL1 / CL2 hydraulic control system configuration”, and “starting motor speed control processing configuration”.
  • FIG. 1 shows a drive system and a control system of an FF hybrid vehicle (an example of a hybrid vehicle) to which the control method and the control device of the first embodiment are applied.
  • FF hybrid vehicle an example of a hybrid vehicle
  • the drive system of the FF hybrid vehicle includes an engine 1, a first clutch 2, a motor generator 3, a second clutch 4, a transmission input shaft 5, and a belt type continuously variable transmission 6. And a transmission output shaft 7, a final gear 8, and left and right drive wheels 9, 9.
  • the operation mode of the parallel hybrid drive system includes an electric vehicle mode (hereinafter referred to as “EV mode”), a hybrid vehicle mode (hereinafter referred to as “HEV mode”), and a drive torque control start mode (hereinafter referred to as “WSC”). Mode ”)) and the like.
  • EV mode electric vehicle mode
  • HEV mode hybrid vehicle mode
  • WSC drive torque control start mode
  • “EV mode” is a mode in which the first clutch 2 is disengaged and the vehicle is driven only by the power of the motor generator 3.
  • the “HEV mode” is a mode in which the first clutch 2 is engaged and the vehicle travels in any of the motor assist mode, the traveling power generation mode, and the engine mode.
  • the “WSC mode” maintains the slip engagement state of the second clutch 4 by controlling the number of revolutions of the motor generator 3 at the time of P, N ⁇ D selection start from the “EV mode” or “HEV mode”.
  • the driving force transmitted to the left and right drive wheels 9, 9 via the belt-type continuously variable transmission 6 or the like as the engagement capacity of the second clutch 4 is determined by the accelerator opening APO and the vehicle speed VSP. It is a mode to start while controlling to be equivalent to power.
  • “WSC” is an abbreviation of “Wet Start clutch”.
  • Engine 1 is capable of lean combustion, and is controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug. .
  • the engine 1 is set to “MG start” in which the motor generator 3 is used as a starter motor, the second clutch 4 is in a slip engagement state, and the engine 1 is cranked while increasing the engagement torque of the first clutch 2.
  • the first clutch 2 (CL1) is interposed at a position between the engine 1 and the motor generator 3, and is set to “EV mode” when released and “HEV mode” when engaged.
  • the first clutch 2 for example, a normally open dry multi-plate clutch or the like is used, and fastening / slip fastening / release is performed by hydraulic control.
  • the motor generator 3 has an AC synchronous motor structure, and performs torque control and rotation speed control by demonstrating a motor function when starting or running. During braking or deceleration, the generator function is performed to convert vehicle kinetic energy from the left and right drive wheels 9 and 9 into electric energy, and regenerative control is performed to charge the battery 12 via the inverter 11.
  • the second clutch 4 (CL2) is a normally open wet multi-plate clutch or wet multi-plate brake provided in the forward / reverse switching mechanism, and generates clutch transmission torque with CL2 engagement torque by hydraulic control as an upper limit torque.
  • the second clutch 4 sends torque output from the drive source to the left and right drive wheels 9 and 9 via the transmission input shaft 5, the belt type continuously variable transmission 6, the transmission output shaft 7, and the final gear 8. Communicate.
  • the second clutch 2 is set at a position between the motor generator 3 and the belt-type continuously variable transmission 6, and the belt-type continuously variable transmission 6 and the left and right drive wheels 9, 9 are set. You may set to the position between.
  • the belt-type continuously variable transmission 6 includes a primary pulley 61 connected to the transmission input shaft 5, a secondary pulley 62 connected to the transmission output shaft 7, and the primary pulley 61 and the secondary pulley 62. And a passed pulley belt 63.
  • a stepless transmission ratio is obtained according to the winding diameter of the pulley belt 63 around the primary pulley 61 and the secondary pulley 62. That is, when the belt clamping width of the primary pulley 61 is widened and the belt clamping width of the secondary pulley 62 is narrowed, the gear ratio changes to the low gear ratio side. Further, as the belt clamping width of the primary pulley 61 becomes narrower and the belt clamping width of the secondary pulley 62 becomes wider, the gear ratio changes to the High gear ratio side.
  • the control system of the FF hybrid vehicle includes an integrated controller 14, a transmission controller 15, a clutch controller 16, an engine controller 17, a motor controller 18, and a battery controller 19. .
  • the engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, the CVT oil temperature sensor 24, the accelerator opening sensor 25, the G sensor 26, the brake sensor 27, and the wheels A speed sensor 28 and an inhibitor switch 29 are provided.
  • the integrated controller 14 is a controller that manages the parallel hybrid drive system in an integrated manner, and calculates a target driving force, a target state, and the like from the battery SOC state, accelerator opening APO, vehicle speed VSP, hydraulic oil temperature, and the like. Then, based on the calculation result, command values for the actuators (engine 1, first clutch 2, motor generator 3, second clutch 4, belt type continuously variable transmission 6) are calculated, via CAN communication line 20. To each of the controllers 15, 16, 17, 18, and 19.
  • the transmission controller 15 performs shift control by controlling the pulley hydraulic pressure supplied to the primary pulley 61 and the secondary pulley 62 of the belt-type continuously variable transmission 6 so as to achieve the shift command from the integrated controller 14.
  • the clutch controller 16 inputs sensor information from the engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, and the like, and also inputs a command from the integrated controller 14. Then, a CL1 hydraulic pressure command value to the first clutch 2 is output according to the selected operation mode and the like. Further, a CL2 hydraulic pressure command value to the second clutch 4 is output in response to a CL2 slip request or the like.
  • the engine controller 17 inputs sensor information from the engine speed sensor 21 and performs torque control and speed control of the engine 1 so as to achieve the engine torque command value and the engine speed command value from the integrated controller 14. Do.
  • the engine controller 17 outputs a fuel injection command and an ignition command when the cranking rotational speed reaches a predetermined rotational speed when the engine is started.
  • the motor controller 18 outputs a control command to the inverter 8 so as to achieve the motor torque command value and the motor rotation speed command value from the integrated controller 14, and performs torque control and rotation speed control of the motor generator 3.
  • the inverter 11 performs DC / AC mutual conversion, and converts the discharge current from the battery 12 into the drive current of the motor generator 3 during power running. Further, during regeneration, the generated current from the motor generator 3 is converted into a charging current for the battery 12.
  • the battery controller 19 manages the charge capacity (battery SOC) of the battery 9 and the battery temperature, and transmits battery information to the integrated controller 14 and the engine controller 17.
  • FIG. 2 shows a hydraulic control system configuration of the belt-type continuously variable transmission CVT, the first clutch CL1, and the second clutch CL2 included in the drive system of the FF hybrid vehicle of the first embodiment.
  • the hydraulic control system configuration of the belt type continuously variable transmission CVT / first clutch CL1 / second clutch CL2 will be described with reference to FIG.
  • an oil pump 10 and a control valve unit 11 are provided as a hydraulic control system for CVT / CL1 / CL2.
  • the hydraulic control system of CVT / CL1 / CL2 is characterized by the fact that the oil pump 10 that is rotationally driven by the motor generator 3 (MG) is the only hydraulic source, and the belt type continuously variable transmission 6 (CVT) that is hydraulically operated The point is that all the hydraulic pressure to the first clutch 2 (CL1) and the second clutch 4 (CL2) is covered.
  • the control valve unit 11 is attached to the belt type continuously variable transmission CVT, and includes a hydraulic control valve and a hydraulic control circuit.
  • the control valve unit 11 includes a line pressure control valve 111 having a solenoid valve structure, a primary pressure control valve 112, a secondary pressure control valve 113, a first clutch pressure control valve 114, a second clutch pressure control valve 115, Have Each of the hydraulic control valves 111, 112, 113, 114, and 115 has a configuration in which the control pressure output with the minimum command current is maximized and the control pressure output with the maximum command current is minimum.
  • the target line pressure PL * is determined by the magnitude of the accelerator opening APO.
  • the target line pressure PL * is determined, the actual line pressure is controlled to match the target line pressure PL * .
  • the primary pressure control valve 112 uses the line pressure PL as an original pressure, and based on the instruction current from the transmission controller 15 to the solenoid 112a, the primary pressure Ppri that leads to the primary pressure chamber of the belt type continuously variable transmission 6 (CVT). Adjust pressure.
  • the secondary pressure control valve 113 uses the line pressure PL as the original pressure, and based on the instruction current from the transmission controller 15 to the solenoid 113a, the secondary pressure Psec that leads to the secondary pressure chamber of the belt type continuously variable transmission 6 (CVT). Adjust pressure.
  • the target primary rotational speed Npri * corresponding to the target speed ratio is determined by the vehicle speed VSP and the accelerator opening APO.
  • the differential pressure between the primary pressure Ppri and the secondary pressure Psec is feedback-controlled so as to eliminate the deviation from the actual primary rotation speed Npri.
  • the first clutch pressure control valve 114 uses the line pressure PL as a source pressure, and based on the command current from the clutch controller 16 to the solenoid 114a, the first clutch pressure PCL1 that leads to the clutch oil chamber of the first clutch 2 (CL1). Adjust pressure. For example, when an engine start request is made, the engagement capacity of the first clutch 2 (CL1) is gradually increased, and the engine 1 (Eng) is cranked and started using the motor generator 3 as a starter motor.
  • the second clutch pressure control valve 115 uses the line pressure PL as a source pressure, and based on the instruction current from the clutch controller 16 to the solenoid 115a, the second clutch pressure PCL2 that leads to the clutch oil chamber of the second clutch 4 (CL2). Adjust pressure. For example, when “WSC mode” is selected, the driving force transmitted to the left and right drive wheels 9 and 9 via the belt-type continuously variable transmission 6 (CVT) or the like is set as the target when the second clutch pressure PCL2 is engaged. It is controlled so as to be equivalent to the driving force.
  • CVT continuously variable transmission 6
  • FIG. 3 shows a start-up motor rotation speed control process executed by the integrated controller 14 according to the first embodiment.
  • FIG. 3 shows a start-up motor rotation speed control process executed by the integrated controller 14 according to the first embodiment.
  • This flowchart starts with the brake stopped in the “EV mode” and ends when the engagement of the first clutch 2 (CL1) is completed.
  • step S1 it is determined whether or not brake ON ⁇ OFF (brake release operation) has been detected. If YES (brake ON ⁇ OFF), the process proceeds to step S2. If NO (brake ON), the determination in step S1 is repeated.
  • brake ON ⁇ OFF brake release operation
  • step S2 following the determination that the brake is ON ⁇ OFF in step S1, it is determined whether or not accelerator OFF ⁇ ON (accelerator depression operation) is detected. If YES (accelerator OFF ⁇ ON), the process proceeds to step S3. If NO (accelerator OFF), the determination in step S2 is repeated.
  • accelerator OFF ⁇ ON accelerator depression operation
  • step S3 following the detection of accelerator OFF ⁇ ON in step S2, the oil temperature of the belt type continuously variable transmission 6 (CVT) is detected, and the process proceeds to step S4.
  • the “oil temperature” information is obtained from a sensor signal from the CVT oil temperature sensor 24.
  • step S4 following the oil temperature detection in step S3, B and A stepping times from the brake operation to the accelerator operation are calculated, and the process proceeds to step S5.
  • B A stepping time” is the time for determining the acceleration request from the state without creep torque, the time when the brake ON ⁇ OFF is detected in step S1 and the accelerator OFF ⁇ ON in step S2. Calculation is performed based on the time difference from the detected time.
  • step S5 following the calculation of the B and A changeover times in step S4, an accelerator opening deviation that is a change amount of the accelerator opening APO per predetermined time is calculated, and the process proceeds to step S6.
  • the “accelerator opening deviation” is calculated by obtaining an accelerator opening differential value (accelerator opening changing speed) which is a change amount per unit time of the accelerator opening APO from the accelerator opening sensor 25.
  • step S6 following the calculation of the accelerator opening deviation in step S5, whether or not B, A stepping time ⁇ predetermined time, or accelerator opening deviation ⁇ predetermined value, and oil temperature ⁇ predetermined value. Determine whether. If YES (high acceleration requirement condition and oil temperature condition are satisfied), the process proceeds to step S8. If NO (high acceleration requirement condition or oil temperature condition is not satisfied), the process proceeds to step S7.
  • the condition “B, A stepping time ⁇ predetermined time or accelerator opening deviation ⁇ predetermined value” is a high acceleration requirement condition indicating that the driver acceleration requirement is higher than the normal acceleration requirement.
  • the “predetermined time” and the “predetermined value” are set as thresholds for determining that there is a possibility that the generated hydraulic pressure may be insufficient with respect to the required hydraulic pressure when the driver acceleration request is higher than the normal acceleration request.
  • the condition “oil temperature ⁇ predetermined value” is an oil temperature condition indicating that the oil pressure response delay is in a stable oil temperature region. Therefore, the “predetermined value” is set to the lower limit threshold value of the oil temperature region where the hydraulic response delay is stable.
  • step S7 following the determination that the high acceleration requirement condition or the oil temperature condition is not satisfied in step S6, the rotational speed of the motor generator 3 (MG) is increased to the normal acceleration CL1 engagement motor rotational speed.
  • the “normally accelerating CL1 engagement motor rotational speed” is a tolerance that is secured as a differential rotational speed of the first clutch 2 (CL1) that is engaged when starting the engine while securing a necessary hydraulic pressure up to the normal acceleration range.
  • the number of revolutions is set (for example, about 1000 rpm).
  • the process proceeds to step S9.
  • the “hydraulic oil immediately secure flag” means that when the high acceleration requirement condition and the oil temperature condition are satisfied, the rotation speed of the motor generator 3 (MG) is increased to a rotation speed higher than the rotation speed of the normal acceleration CL1 engagement motor. The flag indicates that the oil pressure that can be generated from the oil pump 10 is secured.
  • the “high acceleration request CL1 engagement motor rotation speed” is higher than the normal acceleration CL1 engagement motor rotation speed, and the required hydraulic pressure for the high acceleration request can be realized by the oil pressure that can be generated by the oil pump 10. It is set to the target rotational speed (for example, about 1500 rpm) when a high acceleration is requested.
  • the "high acceleration request CL1 engagement motor speed” is a variable value as shown below according to the values of "B, A stepping time” and “accelerator opening deviation" that determine the high acceleration request condition. Given.
  • step S10 the second clutch 4 (CL2) is slipped following the increase to the normal acceleration CL1 engagement motor rotation speed in step S7 or the increase to the high acceleration request CL1 engagement motor rotation speed in step S9.
  • the fastening operation is performed, and the process proceeds to step S11.
  • the rotation speed of the motor generator 3 (MG) the rotation speed of the second clutch 4 (CL2) is increased to the normal acceleration CL1 engagement motor rotation speed or the high acceleration request CL1 engagement motor rotation speed.
  • a slip fastening operation is performed.
  • step S11 following the CL2 operation in step S10, the engagement capacity of the second clutch 4 (CL2) is set to a capacity capable of obtaining the target driving force, the WSC start is made by selecting the “WSC mode”, and the process proceeds to step S12.
  • the engagement capacity of the second clutch 4 (CL2) is such that the driving force transmitted to the left and right drive wheels 9, 9 via the belt-type continuously variable transmission 6 (CVT) or the like is the accelerator opening APO. It is controlled so as to be equivalent to the target driving force required by the vehicle speed VSP.
  • step S12 following the WSC start in step S11, it is determined whether an engine start request is satisfied. If YES (engine start request is established), the process proceeds to step S13. If NO (engine start request is not established), the determination in step S12 is repeated.
  • “establishment of the engine start request” calculates, for example, the maximum motor torque based on the rotation speed of the motor generator 3 (MG) and the battery output. Then, while the motor torque margin obtained by subtracting the actual motor torque from the maximum motor torque exceeds the cranking required torque of the engine 1, it is determined that the engine start request is not established. However, when the motor torque margin reaches the cranking required torque of the engine 1, it is determined that the engine start request is established.
  • step S13 following the determination that the engine start request is established in step S12, when the rotational speed of the motor generator 3 (MG) is increased to the high acceleration request CL1 engagement motor rotational speed, The speed is decreased to the CL1 fastening motor speed, and the process proceeds to step S14.
  • the engine speed is the normal acceleration CL1 engagement motor rotation speed when the engine start request is established, the normal acceleration CL1 engagement motor rotation speed is maintained as it is.
  • “Cranking start of engine 1 (Eng)” starts engagement of first clutch 2 (CL1) that is released when WSC starts in “EV mode”. Then, the cranking torque of the motor torque from the motor generator 3 (MG) is transmitted to the engine 1 (Eng) via the first clutch 2 (CL1).
  • step S16 following the CL1 engagement control in step S15, it is determined whether or not the engagement of the first clutch 2 (CL1) has been completed. If YES (CL1 fastening is complete), the process proceeds to the end. If NO (CL1 fastening is not complete), the process returns to step S15.
  • “CL1 engagement completion” is determined, for example, when the engine rotational speed ⁇ the motor rotational speed.
  • the operation of the first embodiment is changed to “starting motor rotation speed control processing operation”, “starting motor rotation speed control operation”, “starting torque rate realization operation”, and “starting motor rotation speed control operation”. Separately described.
  • step S7 control is performed to increase the rotation speed of the motor generator 3 (MG) to the normal acceleration CL1 engagement motor rotation speed.
  • step S1 step S2, step S3, step S4, step S5, step S6, step S8.
  • step S9 control is performed to increase the rotation speed of the motor generator 3 (MG) to the high acceleration request CL1 engagement motor rotation speed (> the normal acceleration CL1 engagement motor rotation speed).
  • step S10 the process proceeds from step S10 to step S11 to step S12, and while it is determined in step S12 that the engine start request is not established, the rotational speed of the motor generator 3 (MG) is the CL1 engagement motor rotational speed for high acceleration request. Maintained. Thereafter, when it is determined in step S12 that the engine start request is established, the process proceeds from step S12 to step S13.
  • step S13 the rotation speed of the motor generator 3 (MG) is determined from the high acceleration request CL1 engagement motor rotation speed. Control is normally performed to reduce the rotational speed of the CL1 fastening motor for acceleration.
  • step S13 When the rotational speed of the motor generator 3 (MG) decreases to the normal acceleration CL1 engagement motor rotational speed, the process proceeds from step S13 to step S14 ⁇ step S15 ⁇ step S16. While it is determined that the CL1 engagement is not completed in step S16, the flow from step S15 to step S16 is repeated.
  • step S15 engagement control of the first clutch 2 (CL1) is performed to start cranking the engine 1 (Eng). If it is determined in step S16 that the engagement of the first clutch 2 (CL1) has been completed, the process proceeds from step S16 to the end, and the operation mode is changed to the “HEV mode”.
  • the brake / accelerator switching operation is detected, and only when the high acceleration requirement condition and the oil temperature condition are satisfied, the rotational speed of the motor generator 3 (MG) is set to the high acceleration request CL1.
  • Control is performed to increase the speed to the fastening motor speed (> CL1 fastening motor speed for normal acceleration).
  • the rotation speed of the motor generator 3 (MG) is normally accelerated as before. Control to increase the rotational speed of the CL1 fastening motor is performed.
  • the motor rotation speed increase control is performed only when the condition is satisfied, and the motor rotation speed increase control is not performed when the condition is not satisfied, so that the CL1 engagement motor rotation speed for high acceleration request (> CL1 engagement motor rotation speed for normal acceleration) ) Is reduced in frequency.
  • the high acceleration request CL1 engagement motor rotation is performed while the engine start request is not satisfied. Keep the number. Thereafter, when the engine start request is established, control is performed to reduce the high acceleration request CL1 engagement motor rotation speed to the normal acceleration CL1 engagement motor rotation speed.
  • the first clutch 2 (CL1) that is engaged when the engine 1 (Eng) is started is reduced by reducing the rotational speed of the motor generator 3 (MG) prior to the engagement control of the first clutch 2 (CL1). ) To reduce the burden of expanding the differential rotation speed.
  • FIG. 4 is a time chart showing each characteristic when the hydraulic pressure that can be generated at the time of start when the driver acceleration request is high in the comparative example is insufficient with respect to the required hydraulic pressure.
  • FIG. 4 a description will be given of an operation in which the hydraulic pressure that can be generated at the time of start when the driver acceleration request is high is insufficient with respect to the required hydraulic pressure in the comparative example.
  • the reason for this is that the transmission torque to the drive wheels increases due to high driver acceleration demands, and accordingly, it is necessary to keep the pulley pressures Ppri and Psec at high hydraulic pressure to prevent belt slip in the belt type continuously variable transmission CVT. . If the first clutch CL1 is hydraulically engaged due to the establishment of the engine start request in this state, the required hydraulic pressure is set to the pulley pressures Ppri and Psec to the belt-type continuously variable transmission CVT and the first clutch pressure to the first clutch CL1. PCL1 is added.
  • the motor rotational speed for rotating the oil pump O / P is the differential rotational speed of the first clutch CL1 when the engine is started, the motor rotational speed is kept low so as to suppress the differential rotational speed (for example, Normal CL1 fastening motor speed for acceleration). For this reason, there is a limit to the oil pressure that can be generated (actual PL) using the oil pump O / P as the oil pressure source. As a result, the hydraulic pressure that can be generated (actual PL) is insufficient with respect to the increasing required hydraulic pressure (target PL).
  • FIG. 5 is a time chart showing characteristics for explaining the motor speed control operation at the time of start when the driver acceleration request of Example 1 is high.
  • the motor speed control operation at the time of start when the driver acceleration request of the first embodiment is high will be described.
  • Example 1 as shown in hatching region D in FIG. 5, the motor rotation speed ( ⁇ oil pump rotation speed) is increased from time t3 to time t7 as compared with the comparative example.
  • the hydraulic pressure (actual PL) that can be generated is higher than that of the comparative example from time t5 to time t8.
  • the region E in which the hydraulic pressure rises with a delay from the region D in which the motor rotational speed rises has a time delay according to the amount of hydraulic oil leakage even if the motor rotational speed is reduced at time t7.
  • FIG. 6 is a time chart showing characteristics for explaining a target torque rate that can be realized at the time of start when the driver acceleration request is high in the comparative example.
  • a description will be given of an effect of realizing the torque rate at the start when the driver acceleration request is high in the comparative example.
  • the available hydraulic pressure (actual PL) is insufficient with respect to the required hydraulic pressure (target PL). Since the possible hydraulic pressure (actual PL) is insufficient in this way, the torque that can be input to the belt type continuously variable transmission CVT is kept low, and the target torque climb gradient (target torque rate) that can be achieved is also kept low. It is done. For this reason, in the case of the comparative example, the torque transmitted to the drive wheels via the belt type continuously variable transmission CVT is lower than the torque that realizes the target drive force according to the accelerator operation.
  • FIG. 7 is a time chart showing characteristics for explaining a target torque rate that can be realized at the time of start when the driver acceleration request is high in the first embodiment.
  • FIG. 7 an explanation will be given of the torque rate realization operation at the time of start with a high driver acceleration request in the first embodiment.
  • Example 1 when the start start operation with a high driver acceleration request is performed by the accelerator sudden depression operation, the shortage of the available hydraulic pressure (actual PL) to the required hydraulic pressure (target PL) is solved. Is done. In this way, since the shortage of the possible hydraulic pressure (actual PL) is resolved, the torque that can be input to the belt type continuously variable transmission CVT is not limited, and the input torque characteristics are surrounded by the arrow F in FIG. As shown in the characteristic, the torque increases at a larger gradient angle than the input possible torque characteristic of the comparative example. Along with this, the target torque increase gradient (target torque rate) that can be realized also increases. For this reason, in the case of Example 1, the torque transmitted to the drive wheels 9 and 9 via the belt-type continuously variable transmission 6 (CVT) becomes the torque that realizes the target drive force according to the accelerator operation.
  • CVT continuously variable transmission 6
  • the target torque rate that determines the acceleration responsiveness to the driver operation at the time of start is improved as compared with the target torque rate of the comparative example.
  • the target torque rate is about 200 Nm / sec in the comparative example, whereas the target torque rate is about 400 Nm / sec in the first embodiment. It was. From this experimental result, it has been found that a significant improvement in target torque rate can be expected compared to the comparative example.
  • the motor rotational speed is increased in preparation for a driver acceleration request.
  • the motor speed is decreased.
  • the motor rotation speed is reduced at a timing before the first clutch 2 is started to be engaged.
  • the discharge hydraulic pressure characteristic of the oil pump 10 has a response delay with respect to the increase or decrease of the pump rotation speed ( ⁇ motor rotation speed).
  • the oil pressure is gradually decreasing. For this reason, even if the motor rotational speed is reduced before starting the engagement of the first clutch 2, the hydraulic pressure necessary for engaging the first clutch 2 is ensured by the residual hydraulic pressure when the motor rotational speed is high. Therefore, it is possible to achieve both of ensuring the required oil pressure for the driver acceleration request and reducing the burden on the first clutch 2 for the engine start request.
  • the rotation speed of the motor generator 3 is set to the normal acceleration CL1 engagement motor rotation speed allowed by the first clutch 2.
  • the rotational speed of the motor generator 3 is increased to the high acceleration request CL1 engagement motor rotational speed.
  • Example 1 it is determined that the driver acceleration request is higher than the normal acceleration request when the accelerator opening deviation, which is a change amount of the accelerator opening APO per predetermined time due to the driver's accelerator depression operation, is equal to or greater than a predetermined value. If it is determined that the driver acceleration request is higher than the normal acceleration request, the higher the accelerator opening degree deviation, the higher the high acceleration request CL1 engagement motor rotational speed is set.
  • the high acceleration requirement condition is established in the start acceleration scene or the intermediate acceleration scene due to the sudden depression of the accelerator, and the possible hydraulic pressure using the oil pump 10 as the hydraulic source is increased by increasing the motor rotation speed. Then, as the accelerator depression speed increases, the required oil pressure is ensured regardless of the accelerator depression speed by increasing the increase in the motor rotation speed as the required oil pressure increases. Therefore, in the start acceleration scene and the intermediate acceleration scene, the required hydraulic pressure is ensured regardless of the accelerator depression speed.
  • Example 1 it is determined that the driver acceleration request is higher than the normal acceleration request when the switching time from the brake operation of the driver to the accelerator operation is equal to or shorter than a predetermined time. If it is determined that the driver acceleration request is higher than the normal acceleration request, the higher the rotation speed is set to the higher acceleration request CL1 fastening motor rotation speed, the shorter the stepping time is.
  • the rotational speed of the motor generator 3 is set for high acceleration request. Increase to CL1 fastening motor speed.
  • the oil temperature of the belt-type continuously variable transmission 6 is less than a predetermined value, the viscosity of the hydraulic oil is high, and the required hydraulic pressure may not be ensured even if the motor speed is increased. Therefore, when the motor speed is increased, by adding the oil temperature condition to the high acceleration requirement condition, the frequency of increasing the motor speed is reduced, and the burden on the first clutch 2 is further reduced.
  • the rotation speed of the motor generator 3 is set to the high acceleration request CL1 engagement motor rotation speed.
  • An engine 1 a friction clutch (first clutch 2), a motor (motor generator 3), and a transmission (belt type continuously variable transmission 6) are mounted on a drive system from the drive source to the drive wheels 9, 9.
  • the friction clutch (first clutch 2) and the transmission (belt type continuously variable transmission 6) are hydraulically operated, and an oil pump 10 that is rotationally driven by a motor (motor generator 3) is provided as a hydraulic source of these.
  • the friction clutch (first clutch 2) is engaged, and the engine 1 is cranked using the motor (motor generator 3) as a start motor. Start.
  • the friction clutch (first clutch 2) allows the rotational speed of the motor (motor generator 3) in the operation mode using the motor (motor generator 3) as a drive source.
  • CL1 fastening motor rotational speed for high acceleration request In the target rotational speed (CL1 fastening motor rotational speed for high acceleration request) in the rotational speed range that exceeds the allowable rotational speed (normal acceleration CL1 fastening motor rotational speed).
  • the engine start request is established while the rotational speed of the motor (motor generator 3) is being increased, the rotational speed of the motor (motor generator 3) is decreased (FIG. 5).
  • FF hybrid vehicle FF hybrid vehicle
  • the engine 1, the friction clutch (first clutch 2), the motor (motor generator 3), and the transmission (belt type continuously variable transmission 6) are mounted on the drive system from the drive source to the drive wheels 9, 9.
  • the friction clutch (first clutch 2) and the transmission (belt type continuously variable transmission 6) are hydraulically operated, and an oil pump 10 that is rotationally driven by a motor (motor generator 3) is provided as a hydraulic source of these.
  • the friction clutch (first clutch 2) is engaged, and the engine 1 is cranked using the motor (motor generator 3) as a start motor.
  • a controller (integrated controller 14) for starting is provided.
  • the controller determines the rotational speed of the motor (motor generator 3) as a friction clutch in the operation mode using the motor (motor generator 3) as a drive source.
  • the rotation speed is increased to a target rotation speed (CL1 engagement motor rotation speed for high acceleration request) exceeding the allowable rotation speed (normal acceleration CL1 engagement motor rotation speed) allowed by (first clutch 2). If the engine start request is satisfied while the rotational speed of the motor (motor generator 3) is being increased, a process of decreasing the rotational speed of the motor (motor generator 3) is executed (FIG. 3).
  • the rotation speed of the motor generator 3 when the rotation speed of the motor generator 3 is increased to the high acceleration request CL1 engagement motor rotation speed and the engine start request is satisfied, the rotation speed of the motor generator 3 is changed to the normal acceleration CL1 engagement motor rotation speed.
  • An example of lowering is shown.
  • the rotation that does not reach the normal acceleration CL1 engagement motor rotation speed is possible if the CL1 engagement motor rotation speed for high acceleration request is decreased toward the normal acceleration CL1 engagement motor rotation speed. It may be an example where the number is reduced to a number.
  • the high acceleration request CL1 engagement motor rotational speed may be reduced to a rotational speed exceeding the normal acceleration CL1 engagement motor rotational speed.
  • the driver acceleration request is high when the accelerator opening deviation due to the driver's accelerator depression operation is greater than or equal to a predetermined value, or when the time from the driver's brake operation to the accelerator operation is less than the predetermined time.
  • An example of judging is given. However, it may be an example in which it is determined that the driver acceleration request is high when the accelerator opening degree by the driver's accelerator depression operation becomes equal to or greater than a predetermined opening degree. Furthermore, it is good also as an example which judges that a driver acceleration request
  • Example 1 shows an example in which control is performed to increase the motor speed when it is determined that the driver acceleration request is high in the start scene. However, in an intermediate acceleration scene in which the accelerator is depressed during low-speed traveling in the “EV mode”, if it is determined that the driver acceleration request is high, control for increasing the motor rotation speed may be performed.
  • control method and the control device of the present disclosure are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and having a belt type continuously variable transmission as a transmission.
  • control method and the control device of the present disclosure are also applicable to a hybrid vehicle equipped with a hydraulic stepped transmission that increases the hydraulic pressure to the frictional engagement element for shifting that is hydraulically engaged when acceleration is requested. Can do.
  • the present invention can also be applied to a hybrid vehicle that does not have the second clutch that absorbs the rotation difference by sliding engagement but absorbs the rotation difference by a fluid coupling or the like.

Abstract

The present invention secures the required hydraulic pressure for a driver acceleration request and reduces the load on a friction clutch for an engine start request. A first clutch (2) and a belt-type continuously variable transmission (6) are configured to operate by hydraulic pressure, and as a hydraulic pressure source therefor, an oil pump (10) that is rotationally driven by a motor generator (3) is provided. In an operation mode in which the motor generator (3) serves as a drive source, the first clutch (2) is fastened once an engine start request is established. In a control method of this FF hybrid vehicle, in the operation mode in which the motor generator (3) serves as a drive source, the rotation speed of the motor generator (3) is raised to a CL1 fastening motor rotation speed for a high-acceleration request in a rotation speed zone exceeding a CL1 fastening motor rotation speed for normal acceleration that is permitted by the first clutch (2). Once an engine start request is established during the rising of the rotation speed of the motor generator (3), the rotation speed of the motor generator (3) is lowered.

Description

ハイブリッド車両の制御方法と制御装置Control method and control apparatus for hybrid vehicle
 本開示は、モータにより回転駆動されるオイルポンプを設け、オイルポンプを油圧源として油圧作動する摩擦クラッチと変速機を駆動系に有するハイブリッド車両の制御方法と制御装置に関する。 The present disclosure relates to a control method and a control apparatus for a hybrid vehicle that includes an oil pump that is rotationally driven by a motor, and that has a friction clutch that operates hydraulically using the oil pump as a hydraulic source and a transmission in a drive system.
 従来、駆動源から駆動輪へ至る駆動系に、エンジンと第1クラッチとモータと第2クラッチとベルト式無段変速機が搭載された1モータ・2クラッチ方式のハイブリッドシステムである。このハイブリッドシステムにおいて、第1クラッチと第2クラッチとベルト式無段変速機を油圧作動とし、これらの油圧源としてモータにより回転駆動されるオイルポンプを設けている。そして、EVモードのとき、エンジン始動要求が成立すると、第1クラッチを締結し、モータを始動モータとしてエンジンをクランキング始動する装置が知られている(例えば、特許文献1参照)。 Conventionally, this is a one-motor / two-clutch hybrid system in which an engine, a first clutch, a motor, a second clutch, and a belt-type continuously variable transmission are mounted in a drive system from a drive source to a drive wheel. In this hybrid system, the first clutch, the second clutch, and the belt-type continuously variable transmission are hydraulically operated, and an oil pump that is rotationally driven by a motor is provided as a hydraulic pressure source. In the EV mode, when an engine start request is established, a device is known in which a first clutch is engaged and the engine is cranked and started using the motor as a start motor (see, for example, Patent Document 1).
特開2016-43892号公報JP 2016-43892 A
 しかしながら、従来装置にあっては、発進時、アクセル踏み込み操作等によるドライバー加速要求が高いとき、必要油圧に対して発生可能油圧が不足してしまう。なぜなら、ドライバー加速要求が高いと、駆動輪へ伝達されるトルクが高くなり、ベルト式無段変速機においても高い伝達トルクに対してベルト滑りを抑えなければならない。このため、高いベルトクランプ力を確保するようにプーリ油圧を高油圧にする必要がある。一方、オイルポンプを回転駆動させるモータの回転数は、エンジン始動時に締結される第1クラッチの差回転数になるため、差回転数が大きくならないようにモータ回転数を低く抑えている。このため、オイルポンプからの発生可能油圧には限界がある。この結果、ドライバー加速要求が高いとき、必要油圧に対して発生可能油圧が不足してしまう。 However, in the conventional device, when the driver acceleration request by the accelerator depressing operation or the like is high at the time of starting, the hydraulic pressure that can be generated is insufficient with respect to the required hydraulic pressure. This is because if the demand for driver acceleration is high, the torque transmitted to the drive wheels increases, and even in the belt type continuously variable transmission, the belt slip must be suppressed against the high transmission torque. For this reason, the pulley hydraulic pressure needs to be high so as to ensure a high belt clamping force. On the other hand, since the rotational speed of the motor that rotates the oil pump is the differential rotational speed of the first clutch that is engaged when the engine is started, the motor rotational speed is kept low so that the differential rotational speed does not increase. For this reason, there is a limit to the oil pressure that can be generated from the oil pump. As a result, when the driver acceleration request is high, the hydraulic pressure that can be generated is insufficient with respect to the required hydraulic pressure.
 これに対し、油圧供給能力を上げたオイルポンプを採用する対応案がある。しかし、その跳ね返りとして、コスト・燃費が悪化するというトレードオフが発生する。また、オイルポンプ回転数(∝モータ回転数)を予め高回転数に設定し、発生可能油圧を高く保っておくという対応案がある。しかし、その跳ね返りとして、エンジンとモータの差回転数が拡大し、エンジン始動時に締結される第1クラッチへの負担が増大し、熱や磨耗などの対策が必要となる、という問題があった。 In response to this, there is a plan to adopt an oil pump with increased hydraulic pressure supply capability. However, there is a trade-off that the cost and fuel consumption deteriorate as the rebound. Further, there is a countermeasure for setting the oil pump rotation speed (∝motor rotation speed) to a high rotation speed in advance and keeping the oil pressure that can be generated high. However, as a bounce, there is a problem that the differential rotational speed between the engine and the motor is increased, the load on the first clutch that is fastened when the engine is started is increased, and measures such as heat and wear are required.
 本開示は、上記問題に着目してなされたもので、ドライバー加速要求に対する必要油圧の確保と、エンジン始動要求に対する摩擦クラッチへの負担軽減と、の両立を図ることを目的とする。 This disclosure has been made by paying attention to the above-described problem, and aims to achieve both of ensuring the required hydraulic pressure for the driver acceleration request and reducing the burden on the friction clutch for the engine start request.
 上記目的を達成するため、本開示は、摩擦クラッチと変速機を油圧作動とし、これらの油圧源としてモータにより回転駆動されるオイルポンプを設ける。モータを駆動源とする運転モードのとき、エンジン始動要求が成立すると、摩擦クラッチを締結し、モータを始動モータとしてエンジンをクランキング始動する。
このハイブリッド車両の制御方法において、モータを駆動源とする運転モードのとき、モータの回転数を、摩擦クラッチが許容する許容差回転数を超える回転数域の目標回転数まで上昇させる。
モータの回転数を上昇させているとき、エンジン始動要求が成立すると、モータの回転数を低下させる。
In order to achieve the above object, according to the present disclosure, a friction clutch and a transmission are hydraulically operated, and an oil pump that is rotationally driven by a motor is provided as the hydraulic pressure source. When the engine start request is established in the operation mode using the motor as a drive source, the friction clutch is engaged, and the engine is cranked and started using the motor as the start motor.
In this hybrid vehicle control method, in the operation mode using a motor as a drive source, the motor speed is increased to a target speed in a speed range that exceeds the allowable rotational speed allowed by the friction clutch.
If the engine start request is established while the motor speed is increased, the motor speed is decreased.
 このように、ドライバー加速要求に備えてモータ回転数を上昇しておき、摩擦クラッチの締結が予測されるとモータ回転数を低下させることで、ドライバー加速要求に対する必要油圧の確保と、エンジン始動要求に対する摩擦クラッチへの負担軽減と、の両立を図ることができる。 In this way, the motor rotation speed is increased in preparation for the driver acceleration request, and when the friction clutch is predicted to be engaged, the motor rotation speed is decreased to ensure the necessary hydraulic pressure for the driver acceleration request and the engine start request. It is possible to achieve both reduction of the load on the friction clutch.
実施例1の制御方法と制御装置が適用されたFFハイブリッド車両の駆動系及び制御系を示す全体システム図である。1 is an overall system diagram illustrating a drive system and a control system of an FF hybrid vehicle to which a control method and a control device of Example 1 are applied. 実施例1のFFハイブリッド車両の駆動系に有するベルト式無段変速機CVTと第1クラッチCL1と第2クラッチCL2の油圧制御系構成を示す油圧制御系構成図である。FIG. 2 is a hydraulic control system configuration diagram illustrating a hydraulic control system configuration of a belt-type continuously variable transmission CVT, a first clutch CL1, and a second clutch CL2 included in the drive system of the FF hybrid vehicle of the first embodiment. 実施例1の統合コントローラで実行される発進時モータ回転数制御処理に流れを示すフローチャートである。4 is a flowchart showing a flow of a start-up motor rotation speed control process executed by the integrated controller of the first embodiment. 比較例においてドライバー加速要求が高い発進時に発生可能油圧が必要油圧に対して不足するときのモータ回転数・エンジン回転数・モータトルク・エンジントルク・変速機入力軸トルク・発生可能油圧・必要油圧の各特性を示すタイムチャートである。In the comparative example, the motor speed, engine speed, motor torque, engine torque, transmission input shaft torque, possible hydraulic pressure, and required hydraulic pressure when the hydraulic pressure that can be generated at the start when the driver acceleration request is high are insufficient It is a time chart which shows each characteristic. 実施例1のドライバー加速要求が高いときの発進時モータ回転数制御作用を説明するためのブレーキ・アクセル開度(APO)・モータ回転数・エンジン回転数・油圧の各特性を示すタイムチャートである。4 is a time chart showing brake, accelerator opening (APO), motor rotation speed, engine rotation speed, and hydraulic pressure characteristics for explaining the motor rotation speed control operation at the start when the driver acceleration request of Example 1 is high. . 比較例においてドライバー加速要求が高い発進時に実現できる目標トルクレートを説明するためのモータ回転数・入力可能トルク・目標トルクの各特性を示すタイムチャートである。It is a time chart which shows each characteristic of motor number of rotations, input possible torque, and target torque for explaining the target torque rate which can be realized at the time of a start with high driver acceleration demand in a comparative example. 実施例1においてドライバー加速要求が高い発進時に実現できる目標トルクレートを説明するためのモータ回転数・入力可能トルク・目標トルクの各特性を示すタイムチャートである。4 is a time chart showing characteristics of a motor rotation speed, an inputable torque, and a target torque for explaining a target torque rate that can be realized at the time of starting with a high driver acceleration request in the first embodiment.
 以下、本開示のハイブリッド車両の制御方法と制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing the hybrid vehicle control method and control device of the present disclosure will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。
実施例1における制御方法と制御装置は、1モータ・2クラッチと呼ばれるパラレルハイブリッド駆動系を有し、変速機としてベルト式無段変速機を搭載したFFハイブリッド車両に適用したものである。以下、実施例1の構成を、「全体システム構成」、「CVT/CL1/CL2の油圧制御系構成」、「発進時モータ回転数制御処理構成」に分けて説明する。
First, the configuration will be described.
The control method and the control device in the first embodiment are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and equipped with a belt type continuously variable transmission as a transmission. Hereinafter, the configuration of the first embodiment will be described by dividing it into “the overall system configuration”, “CVT / CL1 / CL2 hydraulic control system configuration”, and “starting motor speed control processing configuration”.
 [全体システム構成]
図1は、実施例1の制御方法と制御装置が適用されたFFハイブリッド車両(ハイブリッド車両の一例)の駆動系及び制御系を示す。以下、図1に基づいて、FFハイブリッド車両の駆動系及び制御系による全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an FF hybrid vehicle (an example of a hybrid vehicle) to which the control method and the control device of the first embodiment are applied. Hereinafter, based on FIG. 1, the whole system configuration by the drive system and control system of FF hybrid vehicle is demonstrated.
 FFハイブリッド車両の駆動系は、図1に示すように、エンジン1と、第1クラッチ2と、モータジェネレータ3と、第2クラッチ4と、変速機入力軸5と、ベルト式無段変速機6と、変速機出力軸7と、ファイナルギア8と、左右駆動輪9,9と、を備えている。パラレルハイブリッド駆動系による運転モードとしては、電気自動車モード(以下、「EVモード」という。)と、ハイブリッド車モード(以下、「HEVモード」という。)と、駆動トルクコントロール発進モード(以下、「WSCモード」という。)等を有する。 As shown in FIG. 1, the drive system of the FF hybrid vehicle includes an engine 1, a first clutch 2, a motor generator 3, a second clutch 4, a transmission input shaft 5, and a belt type continuously variable transmission 6. And a transmission output shaft 7, a final gear 8, and left and right drive wheels 9, 9. The operation mode of the parallel hybrid drive system includes an electric vehicle mode (hereinafter referred to as “EV mode”), a hybrid vehicle mode (hereinafter referred to as “HEV mode”), and a drive torque control start mode (hereinafter referred to as “WSC”). Mode ")) and the like.
 「EVモード」は、第1クラッチ2を解放状態とし、モータジェネレータ3の動力のみで走行するモードである。「HEVモード」は、第1クラッチ2を締結状態とし、モータアシストモード・走行発電モード・エンジンモードの何れかにより走行するモードである。「WSCモード」は、「EVモード」又は「HEVモード」からのP,N→Dセレクト発進時において、モータジェネレータ3を回転数制御することにより第2クラッチ4のスリップ締結状態を維持する。そして、第2クラッチ4の締結容量を、ベルト式無段変速機6等を経由して左右の駆動輪9,9へ伝達される駆動力が、アクセル開度APOと車速VSPにより求められる目標駆動力相当になるようにコントロールしながら発進するモードである。なお、「WSC」とは、「Wet Start clutch」の略である。 “EV mode” is a mode in which the first clutch 2 is disengaged and the vehicle is driven only by the power of the motor generator 3. The “HEV mode” is a mode in which the first clutch 2 is engaged and the vehicle travels in any of the motor assist mode, the traveling power generation mode, and the engine mode. The “WSC mode” maintains the slip engagement state of the second clutch 4 by controlling the number of revolutions of the motor generator 3 at the time of P, N → D selection start from the “EV mode” or “HEV mode”. The driving force transmitted to the left and right drive wheels 9, 9 via the belt-type continuously variable transmission 6 or the like as the engagement capacity of the second clutch 4 is determined by the accelerator opening APO and the vehicle speed VSP. It is a mode to start while controlling to be equivalent to power. “WSC” is an abbreviation of “Wet Start clutch”.
 エンジン1(Eng)は、希薄燃焼可能であり、スロットルアクチュエータによる吸入空気量とインジェクタによる燃料噴射量と、点火プラグによる点火時期の制御により、エンジントルクが指令値と一致するようにトルク制御される。このエンジン1は、モータジェネレータ3を始動モータとし、第2クラッチ4をスリップ締結状態とし、第1クラッチ2の締結トルクを増しながらエンジン1をクランキング始動する「MG始動」とされる。 Engine 1 (Eng) is capable of lean combustion, and is controlled so that the engine torque matches the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug. . The engine 1 is set to “MG start” in which the motor generator 3 is used as a starter motor, the second clutch 4 is in a slip engagement state, and the engine 1 is cranked while increasing the engagement torque of the first clutch 2.
 第1クラッチ2(CL1)は、エンジン1とモータジェネレータ3との間の位置に介装され、解放により「EVモード」とし、締結により「HEVモード」にする。この第1クラッチ2としては、例えば、ノーマルオープンの乾式多板クラッチ等が用いられ、締結/スリップ締結/解放を油圧制御にて行う。 The first clutch 2 (CL1) is interposed at a position between the engine 1 and the motor generator 3, and is set to “EV mode” when released and “HEV mode” when engaged. As the first clutch 2, for example, a normally open dry multi-plate clutch or the like is used, and fastening / slip fastening / release is performed by hydraulic control.
 モータジェネレータ3(MG)は、交流同期モータ構造であり、発進時や走行時、モータ機能を発揮してトルク制御や回転数制御を行う。そして、制動時や減速時、ジェネレータ機能を発揮して左右駆動輪9,9からの車両運動エネルギーを電気エネルギーに変換し、インバータ11を介してバッテリ12を充電する回生制御を行なう。 The motor generator 3 (MG) has an AC synchronous motor structure, and performs torque control and rotation speed control by demonstrating a motor function when starting or running. During braking or deceleration, the generator function is performed to convert vehicle kinetic energy from the left and right drive wheels 9 and 9 into electric energy, and regenerative control is performed to charge the battery 12 via the inverter 11.
 第2クラッチ4(CL2)は、前後進切換機構に設けられたノーマルオープンの湿式多板クラッチや湿式多板ブレーキであり、油圧制御によるCL2締結トルクを上限トルクとして、クラッチ伝達トルクが発生する。この第2クラッチ4は、駆動源から出力されるトルクを、変速機入力軸5、ベルト式無段変速機6、変速機出力軸7、及びファイナルギア8を介し、左右駆動輪9,9へと伝達する。なお、第2クラッチ2は、図1に示すように、モータジェネレータ3とベルト式無段変速機6の間の位置に設定する以外に、ベルト式無段変速機6と左右駆動輪9,9の間の位置に設定しても良い。 The second clutch 4 (CL2) is a normally open wet multi-plate clutch or wet multi-plate brake provided in the forward / reverse switching mechanism, and generates clutch transmission torque with CL2 engagement torque by hydraulic control as an upper limit torque. The second clutch 4 sends torque output from the drive source to the left and right drive wheels 9 and 9 via the transmission input shaft 5, the belt type continuously variable transmission 6, the transmission output shaft 7, and the final gear 8. Communicate. As shown in FIG. 1, the second clutch 2 is set at a position between the motor generator 3 and the belt-type continuously variable transmission 6, and the belt-type continuously variable transmission 6 and the left and right drive wheels 9, 9 are set. You may set to the position between.
 ベルト式無段変速機6(CVT)は、変速機入力軸5に接続したプライマリプーリ61と、変速機出力軸7に接続したセカンダリプーリ62と、プライマリプーリ61とセカンダリプーリ62との間に架け渡されたプーリベルト63と、を有する。そして、プーリベルト63のプライマリプーリ61及びセカンダリプーリ62に対する巻き付き径に応じて無段階の変速比を得る。つまり、プライマリプーリ61のベルト挟持幅が広くなると共に、セカンダリプーリ62のベルト挟持幅が狭くなると変速比がLow変速比側に変化する。また、プライマリプーリ61のベルト挟持幅が狭くなると共に、セカンダリプーリ62のベルト挟持幅が広くなると変速比がHigh変速比側に変化する。 The belt-type continuously variable transmission 6 (CVT) includes a primary pulley 61 connected to the transmission input shaft 5, a secondary pulley 62 connected to the transmission output shaft 7, and the primary pulley 61 and the secondary pulley 62. And a passed pulley belt 63. A stepless transmission ratio is obtained according to the winding diameter of the pulley belt 63 around the primary pulley 61 and the secondary pulley 62. That is, when the belt clamping width of the primary pulley 61 is widened and the belt clamping width of the secondary pulley 62 is narrowed, the gear ratio changes to the low gear ratio side. Further, as the belt clamping width of the primary pulley 61 becomes narrower and the belt clamping width of the secondary pulley 62 becomes wider, the gear ratio changes to the High gear ratio side.
 FFハイブリッド車両の制御系は、図1に示すように、統合コントローラ14と、変速機コントローラ15と、クラッチコントローラ16と、エンジンコントローラ17と、モータコントローラ18と、バッテリコントローラ19と、を備えている。そして、エンジン回転数センサ21と、モータ回転数センサ22と、変速機入力回転数センサ23と、CVT油温センサ24と、アクセル開度センサ25と、Gセンサ26と、ブレーキセンサ27と、車輪速センサ28と、インヒビタースイッチ29と、を備えている。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes an integrated controller 14, a transmission controller 15, a clutch controller 16, an engine controller 17, a motor controller 18, and a battery controller 19. . The engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, the CVT oil temperature sensor 24, the accelerator opening sensor 25, the G sensor 26, the brake sensor 27, and the wheels A speed sensor 28 and an inhibitor switch 29 are provided.
 前記統合コントローラ14は、パラレルハイブリッド駆動系を統合的に管理するコントローラであり、バッテリSOC状態、アクセル開度APO、車速VSP、作動油温等から目標駆動力や目標ステート等を演算する。そして、その演算結果に基づいて、各アクチュエータ(エンジン1、第1クラッチ2、モータジェネレータ3、第2クラッチ4、ベルト式無段変速機6)に対する指令値を演算し、CAN通信線20を介して各コントローラ15,16,17,18,19へと送信する。 The integrated controller 14 is a controller that manages the parallel hybrid drive system in an integrated manner, and calculates a target driving force, a target state, and the like from the battery SOC state, accelerator opening APO, vehicle speed VSP, hydraulic oil temperature, and the like. Then, based on the calculation result, command values for the actuators (engine 1, first clutch 2, motor generator 3, second clutch 4, belt type continuously variable transmission 6) are calculated, via CAN communication line 20. To each of the controllers 15, 16, 17, 18, and 19.
 変速機コントローラ15は、統合コントローラ14からの変速指令を達成するように、ベルト式無段変速機6のプライマリプーリ61とセカンダリプーリ62に供給されるプーリ油圧を制御することにより変速制御を行なう。 The transmission controller 15 performs shift control by controlling the pulley hydraulic pressure supplied to the primary pulley 61 and the secondary pulley 62 of the belt-type continuously variable transmission 6 so as to achieve the shift command from the integrated controller 14.
 クラッチコントローラ16は、エンジン回転数センサ21やモータ回転数センサ22や変速機入力回転数センサ23等からのセンサ情報を入力すると共に、統合コントローラ14からの指令を入力する。そして、選択される運転モード等に応じて第1クラッチ2へのCL1油圧指令値を出力する。また、CL2スリップ要求等に応じて第2クラッチ4へのCL2油圧指令値を出力する。 The clutch controller 16 inputs sensor information from the engine speed sensor 21, the motor speed sensor 22, the transmission input speed sensor 23, and the like, and also inputs a command from the integrated controller 14. Then, a CL1 hydraulic pressure command value to the first clutch 2 is output according to the selected operation mode and the like. Further, a CL2 hydraulic pressure command value to the second clutch 4 is output in response to a CL2 slip request or the like.
 エンジンコントローラ17は、エンジン回転数センサ21からのセンサ情報を入力すると共に、統合コントローラ14からのエンジントルク指令値やエンジン回転数指令値を達成するように、エンジン1のトルク制御や回転数制御を行なう。このエンジンコントローラ17では、エンジン始動時、クランキング回転数が所定回転数に到達すると、燃料噴射指令と点火指令を出力する。 The engine controller 17 inputs sensor information from the engine speed sensor 21 and performs torque control and speed control of the engine 1 so as to achieve the engine torque command value and the engine speed command value from the integrated controller 14. Do. The engine controller 17 outputs a fuel injection command and an ignition command when the cranking rotational speed reaches a predetermined rotational speed when the engine is started.
 モータコントローラ18は、統合コントローラ14からのモータトルク指令値やモータ回転数指令値を達成するように、インバータ8に対し制御指令を出力し、モータジェネレータ3のトルク制御や回転数制御を行なう。なお、インバータ11は、直流/交流の相互変換を行うもので、力行時、バッテリ12からの放電電流をモータジェネレータ3の駆動電流に変換する。また、回生時、モータジェネレータ3からの発電電流をバッテリ12への充電電流に変換する。 The motor controller 18 outputs a control command to the inverter 8 so as to achieve the motor torque command value and the motor rotation speed command value from the integrated controller 14, and performs torque control and rotation speed control of the motor generator 3. The inverter 11 performs DC / AC mutual conversion, and converts the discharge current from the battery 12 into the drive current of the motor generator 3 during power running. Further, during regeneration, the generated current from the motor generator 3 is converted into a charging current for the battery 12.
 バッテリコントローラ19は、バッテリ9の充電容量(バッテリSOC)やバッテリ温度を管理し、バッテリ情報を統合コントローラ14やエンジンコントローラ17へと送信する。 The battery controller 19 manages the charge capacity (battery SOC) of the battery 9 and the battery temperature, and transmits battery information to the integrated controller 14 and the engine controller 17.
 [CVT/CL1/CL2の油圧制御系構成]
 図2は、実施例1のFFハイブリッド車両の駆動系に有するベルト式無段変速機CVTと第1クラッチCL1と第2クラッチCL2の油圧制御系構成を示す。以下、図2に基づいて、ベルト式無段変速機CVT/第1クラッチCL1/第2クラッチCL2の油圧制御系構成を説明する。
[Hydraulic control system configuration of CVT / CL1 / CL2]
FIG. 2 shows a hydraulic control system configuration of the belt-type continuously variable transmission CVT, the first clutch CL1, and the second clutch CL2 included in the drive system of the FF hybrid vehicle of the first embodiment. Hereinafter, the hydraulic control system configuration of the belt type continuously variable transmission CVT / first clutch CL1 / second clutch CL2 will be described with reference to FIG.
 CVT/CL1/CL2の油圧制御系としては、図2に示すように、オイルポンプ10と、コントロールバルブユニット11と、を備えている。CVT/CL1/CL2の油圧制御系の特徴は、モータジェネレータ3(MG)により回転駆動されるオイルポンプ10をただ1つの油圧源とし、油圧作動するベルト式無段変速機6(CVT)と第1クラッチ2(CL1)と第2クラッチ4(CL2)への油圧を全て賄っている点にある。 As shown in FIG. 2, an oil pump 10 and a control valve unit 11 are provided as a hydraulic control system for CVT / CL1 / CL2. The hydraulic control system of CVT / CL1 / CL2 is characterized by the fact that the oil pump 10 that is rotationally driven by the motor generator 3 (MG) is the only hydraulic source, and the belt type continuously variable transmission 6 (CVT) that is hydraulically operated The point is that all the hydraulic pressure to the first clutch 2 (CL1) and the second clutch 4 (CL2) is covered.
 コントロールバルブユニット11は、ベルト式無段変速機CVTに付設され、油圧制御弁と油圧制御回路により構成される。このコントロールバルブユニット11は、ソレノイドバルブ構造によるライン圧制御弁111と、プライマリ圧制御弁112と、セカンダリ圧制御弁113と、第1クラッチ圧制御弁114と、第2クラッチ圧制御弁115と、を有する。なお、各油圧制御弁111,112,113,114,115は、指示電流が最小で出力される制御圧が最大になり、指示電流が最大で出力される制御圧が最小になる形態である。 The control valve unit 11 is attached to the belt type continuously variable transmission CVT, and includes a hydraulic control valve and a hydraulic control circuit. The control valve unit 11 includes a line pressure control valve 111 having a solenoid valve structure, a primary pressure control valve 112, a secondary pressure control valve 113, a first clutch pressure control valve 114, a second clutch pressure control valve 115, Have Each of the hydraulic control valves 111, 112, 113, 114, and 115 has a configuration in which the control pressure output with the minimum command current is maximized and the control pressure output with the maximum command current is minimum.
 ライン圧制御弁111は、オイルポンプ10からのポンプ吐出圧を元圧とし、変速機コントローラ15からのソレノイド111aへの指示電流に基づき、変速圧や締結圧として最も高い油圧であるライン圧PL(=発生可能油圧)を調圧する。ライン圧PLの調圧制御では、先ず、アクセル開度APOの大きさにより目標ライン圧PL*を決められる。そして、目標ライン圧PL*が決められると、実ライン圧を目標ライン圧PL*に一致させるように制御される。 The line pressure control valve 111 uses the pump discharge pressure from the oil pump 10 as a source pressure, and the line pressure PL (the highest hydraulic pressure as the transmission pressure or the engagement pressure based on the command current from the transmission controller 15 to the solenoid 111a. = Adjustable oil pressure). In the pressure regulation control of the line pressure PL, first, the target line pressure PL * is determined by the magnitude of the accelerator opening APO. When the target line pressure PL * is determined, the actual line pressure is controlled to match the target line pressure PL * .
 プライマリ圧制御弁112は、ライン圧PLを元圧とし、変速機コントローラ15からのソレノイド112aへの指示電流に基づき、ベルト式無段変速機6(CVT)のプライマリ圧室へ導くプライマリ圧Ppriを調圧する。 The primary pressure control valve 112 uses the line pressure PL as an original pressure, and based on the instruction current from the transmission controller 15 to the solenoid 112a, the primary pressure Ppri that leads to the primary pressure chamber of the belt type continuously variable transmission 6 (CVT). Adjust pressure.
 セカンダリ圧制御弁113は、ライン圧PLを元圧とし、変速機コントローラ15からのソレノイド113aへの指示電流に基づき、ベルト式無段変速機6(CVT)のセカンダリ圧室へ導くセカンダリ圧Psecを調圧する。 The secondary pressure control valve 113 uses the line pressure PL as the original pressure, and based on the instruction current from the transmission controller 15 to the solenoid 113a, the secondary pressure Psec that leads to the secondary pressure chamber of the belt type continuously variable transmission 6 (CVT). Adjust pressure.
 ここで、ベルト式無段変速機6(CVT)の変速油圧制御は、先ず、車速VSPとアクセル開度APOにより目標変速比相当の目標プライマリ回転数Npri*が決められる。そして、目標プライマリ回転数Npri*が決められると、実プライマリ回転数Npriとの偏差を無くすように、プライマリ圧Ppriとセカンダリ圧Psecとの差圧をフィードバック制御される。 Here, in the transmission hydraulic pressure control of the belt type continuously variable transmission 6 (CVT), first, the target primary rotational speed Npri * corresponding to the target speed ratio is determined by the vehicle speed VSP and the accelerator opening APO. When the target primary rotation speed Npri * is determined, the differential pressure between the primary pressure Ppri and the secondary pressure Psec is feedback-controlled so as to eliminate the deviation from the actual primary rotation speed Npri.
 第1クラッチ圧制御弁114は、ライン圧PLを元圧とし、クラッチコントローラ16からのソレノイド114aへの指示電流に基づき、第1クラッチ2(CL1)のクラッチ油室へ導く第1クラッチ圧PCL1を調圧する。例えば、エンジン始動要求時には、第1クラッチ2(CL1)の締結容量を徐々に増大し、モータジェネレータ3を始動モータとしてエンジン1(Eng)をクランキング始動する。 The first clutch pressure control valve 114 uses the line pressure PL as a source pressure, and based on the command current from the clutch controller 16 to the solenoid 114a, the first clutch pressure PCL1 that leads to the clutch oil chamber of the first clutch 2 (CL1). Adjust pressure. For example, when an engine start request is made, the engagement capacity of the first clutch 2 (CL1) is gradually increased, and the engine 1 (Eng) is cranked and started using the motor generator 3 as a starter motor.
 第2クラッチ圧制御弁115は、ライン圧PLを元圧とし、クラッチコントローラ16からのソレノイド115aへの指示電流に基づき、第2クラッチ4(CL2)のクラッチ油室へ導く第2クラッチ圧PCL2を調圧する。例えば、「WSCモード」の選択時には、第2クラッチ圧PCL2の締結容量が、ベルト式無段変速機6(CVT)等を経由して左右の駆動輪9,9へ伝達される駆動力が目標駆動力相当になるように制御される。 The second clutch pressure control valve 115 uses the line pressure PL as a source pressure, and based on the instruction current from the clutch controller 16 to the solenoid 115a, the second clutch pressure PCL2 that leads to the clutch oil chamber of the second clutch 4 (CL2). Adjust pressure. For example, when “WSC mode” is selected, the driving force transmitted to the left and right drive wheels 9 and 9 via the belt-type continuously variable transmission 6 (CVT) or the like is set as the target when the second clutch pressure PCL2 is engaged. It is controlled so as to be equivalent to the driving force.
 [発進時モータ回転数制御処理構成]
 図3は、実施例1の統合コントローラ14にて実行される発進時モータ回転数制御処理流れを示す。以下、発進時モータ回転数制御処理構成をあらわす図3の各ステップについて説明する。なお、このフローチャートは、「EVモード」でのブレーキ停車状態で開始し、第1クラッチ2(CL1)の締結が完了すると終了する。
[Starting motor speed control processing configuration]
FIG. 3 shows a start-up motor rotation speed control process executed by the integrated controller 14 according to the first embodiment. Hereinafter, each step of FIG. 3 showing the configuration of the motor speed control process at the time of start will be described. This flowchart starts with the brake stopped in the “EV mode” and ends when the engagement of the first clutch 2 (CL1) is completed.
 ステップS1では、ブレーキON→OFF(ブレーキ解放操作)が検出されたか否かを判断する。YES(ブレーキON→OFF)の場合はステップS2へ進み、NO(ブレーキON)の場合はステップS1の判断を繰り返す。
ここで、「ブレーキON→OFF(ブレーキ解放操作)」は、ブレーキセンサ27やブレーキスイッチからの信号により検出する。
In step S1, it is determined whether or not brake ON → OFF (brake release operation) has been detected. If YES (brake ON → OFF), the process proceeds to step S2. If NO (brake ON), the determination in step S1 is repeated.
Here, “brake ON → OFF (brake release operation)” is detected by a signal from the brake sensor 27 or the brake switch.
 ステップS2では、ステップS1でのブレーキON→OFFであるとの判断に続き、アクセルOFF→ON(アクセル踏み込み操作)が検出されたか否かを判断する。YES(アクセルOFF→ON)の場合はステップS3へ進み、NO(アクセルOFF)の場合はステップS2の判断を繰り返す。
ここで、「アクセルOFF→ON(アクセル踏み込み操作)」は、アクセル開度センサ25からのセンサ信号が、アクセル開度APO=0を示す信号からアクセル開度APO>0に切り替わることにより取得する。
In step S2, following the determination that the brake is ON → OFF in step S1, it is determined whether or not accelerator OFF → ON (accelerator depression operation) is detected. If YES (accelerator OFF → ON), the process proceeds to step S3. If NO (accelerator OFF), the determination in step S2 is repeated.
Here, “accelerator OFF → ON (accelerator depression operation)” is acquired when the sensor signal from the accelerator opening sensor 25 switches from the signal indicating the accelerator opening APO = 0 to the accelerator opening APO> 0.
 ステップS3では、ステップS2でのアクセルOFF→ONの検出に続き、ベルト式無段変速機6(CVT)の油温を検出し、ステップS4へ進む。
ここで、「油温」の情報は、CVT油温センサ24からのセンサ信号により取得する。
In step S3, following the detection of accelerator OFF → ON in step S2, the oil temperature of the belt type continuously variable transmission 6 (CVT) is detected, and the process proceeds to step S4.
Here, the “oil temperature” information is obtained from a sensor signal from the CVT oil temperature sensor 24.
 ステップS4では、ステップS3での油温検出に続き、ブレーキ操作からアクセル操作までのB,A踏みかえ時間を演算し、ステップS5へ進む。
ここで、「B,A踏みかえ時間」は、クリープトルク無しの状態からの加速要求を判定する時間であり、ステップS1でブレーキON→OFFが検出された時間とステップS2でアクセルOFF→ONが検出された時間との時間差により演算する。
In step S4, following the oil temperature detection in step S3, B and A stepping times from the brake operation to the accelerator operation are calculated, and the process proceeds to step S5.
Here, “B, A stepping time” is the time for determining the acceleration request from the state without creep torque, the time when the brake ON → OFF is detected in step S1 and the accelerator OFF → ON in step S2. Calculation is performed based on the time difference from the detected time.
 ステップS5では、ステップS4でのB,A踏みかえ時間の演算に続き、所定時間当たりのアクセル開度APOの変化量であるアクセル開度偏差を演算し、ステップS6へ進む。
ここで、「アクセル開度偏差」は、アクセル開度センサ25からのアクセル開度APOの単位時間当たりの変化量であるアクセル開度微分値(アクセル開度変化速度)等を求めることにより演算される。
In step S5, following the calculation of the B and A changeover times in step S4, an accelerator opening deviation that is a change amount of the accelerator opening APO per predetermined time is calculated, and the process proceeds to step S6.
Here, the “accelerator opening deviation” is calculated by obtaining an accelerator opening differential value (accelerator opening changing speed) which is a change amount per unit time of the accelerator opening APO from the accelerator opening sensor 25. The
 ステップS6では、ステップS5でのアクセル開度偏差の演算に続き、B,A踏みかえ時間≦所定時間、又は、アクセル開度偏差≧所定値であり、かつ、油温≧所定値であるか否かを判断する。YES(高加速要求条件と油温条件が成立)の場合はステップS8へ進み、NO(高加速要求条件又は油温条件が不成立)の場合はステップS7へ進む。
ここで、「B,A踏みかえ時間≦所定時間、又は、アクセル開度偏差≧所定値である」という条件は、ドライバー加速要求が通常加速要求よりも高いことを示す高加速要求条件である。よって、「所定時間」と「所定値」は、ドライバー加速要求が通常加速要求よりも高いことで必要油圧に対し発生可能油圧が不足する可能性があることを判定する閾値に設定される。「油温≧所定値」という条件は、油圧応答遅れが安定した油温領域にあることを示す油温条件である。よって、「所定値」は、油圧応答遅れが安定する油温領域の下限閾値に設定される。
In step S6, following the calculation of the accelerator opening deviation in step S5, whether or not B, A stepping time ≦ predetermined time, or accelerator opening deviation ≧ predetermined value, and oil temperature ≧ predetermined value. Determine whether. If YES (high acceleration requirement condition and oil temperature condition are satisfied), the process proceeds to step S8. If NO (high acceleration requirement condition or oil temperature condition is not satisfied), the process proceeds to step S7.
Here, the condition “B, A stepping time ≦ predetermined time or accelerator opening deviation ≧ predetermined value” is a high acceleration requirement condition indicating that the driver acceleration requirement is higher than the normal acceleration requirement. Therefore, the “predetermined time” and the “predetermined value” are set as thresholds for determining that there is a possibility that the generated hydraulic pressure may be insufficient with respect to the required hydraulic pressure when the driver acceleration request is higher than the normal acceleration request. The condition “oil temperature ≧ predetermined value” is an oil temperature condition indicating that the oil pressure response delay is in a stable oil temperature region. Therefore, the “predetermined value” is set to the lower limit threshold value of the oil temperature region where the hydraulic response delay is stable.
 ステップS7では、ステップS6での高加速要求条件又は油温条件が不成立であるとの判断に続き、モータジェネレータ3(MG)の回転数を、通常加速用CL1締結モータ回転数まで上昇させ、ステップS10へ進む。
ここで、「通常加速用CL1締結モータ回転数」は、通常加速域までの必要油圧を確保すると共に、エンジン始動時に締結される第1クラッチ2(CL1)の差回転数として許容される許容差回転数(例えば、1000rpm程度)に設定される。
In step S7, following the determination that the high acceleration requirement condition or the oil temperature condition is not satisfied in step S6, the rotational speed of the motor generator 3 (MG) is increased to the normal acceleration CL1 engagement motor rotational speed. Proceed to S10.
Here, the “normally accelerating CL1 engagement motor rotational speed” is a tolerance that is secured as a differential rotational speed of the first clutch 2 (CL1) that is engaged when starting the engine while securing a necessary hydraulic pressure up to the normal acceleration range. The number of revolutions is set (for example, about 1000 rpm).
 ステップS8では、ステップS6での高加速要求条件と油温条件が成立であるとの判断に続き、“油圧即確保フラグ”を、油圧即確保フラグ=0から油圧即確保フラグ=1に書き替え、ステップS9へ進む。
ここで、「油圧即確保フラグ」とは、高加速要求条件と油温条件が成立したとき、モータジェネレータ3(MG)の回転数を、通常加速用CL1締結モータ回転数より高い回転数まで上昇させ、オイルポンプ10からの発生可能油圧を確保することを示すフラグである。
In step S8, following the determination that the high acceleration requirement condition and the oil temperature condition are satisfied in step S6, the “hydraulic pressure immediate securing flag” is rewritten from the immediately hydraulic pressure securing flag = 0 to the immediate hydraulic pressure securing flag = 1. The process proceeds to step S9.
Here, the “hydraulic oil immediately secure flag” means that when the high acceleration requirement condition and the oil temperature condition are satisfied, the rotation speed of the motor generator 3 (MG) is increased to a rotation speed higher than the rotation speed of the normal acceleration CL1 engagement motor. The flag indicates that the oil pressure that can be generated from the oil pump 10 is secured.
 ステップS9では、ステップS8での油圧即確保フラグ=1への書き替えに続き、モータジェネレータ3(MG)の回転数を、高加速要求用CL1締結モータ回転数まで上昇させ、ステップS10へ進む。
ここで、「高加速要求用CL1締結モータ回転数」は、通常加速用CL1締結モータ回転数より高く、高加速要求での必要油圧を、オイルポンプ10での発生可能油圧により実現することができる高加速要求時の目標回転数(例えば、1500rpm程度)に設定される。
また、「高加速要求用CL1締結モータ回転数」は、高加速要求条件を判断する「B,A踏みかえ時間」と「アクセル開度偏差」の値に応じ、下記のように可変値にて与えられる。
(a) B,A踏みかえ時間が短い時間であるほど、高加速要求用モータ回転数を高回転数に設定する。
(b) アクセル開度偏差が大きい値であるほど、高加速要求用CL1締結モータ回転数を高回転数に設定する。
なお、(a),(b)については、高加速要求条件と油温条件が成立したときのモータ回転数基準値を決めておき、このモータ回転数基準値の補正演算により高加速要求用CL1締結モータ回転数を設定しても良いし。また、B,A踏みかえ時間マップやアクセル開度偏差マップを用い、マップ検索により高加速要求用CL1締結モータ回転数を設定しても良い。
In step S9, following the rewriting to the immediate oil pressure securing flag = 1 in step S8, the rotation speed of the motor generator 3 (MG) is increased to the high acceleration request CL1 engagement motor rotation speed, and the process proceeds to step S10.
Here, the “high acceleration request CL1 engagement motor rotation speed” is higher than the normal acceleration CL1 engagement motor rotation speed, and the required hydraulic pressure for the high acceleration request can be realized by the oil pressure that can be generated by the oil pump 10. It is set to the target rotational speed (for example, about 1500 rpm) when a high acceleration is requested.
The "high acceleration request CL1 engagement motor speed" is a variable value as shown below according to the values of "B, A stepping time" and "accelerator opening deviation" that determine the high acceleration request condition. Given.
(a) The higher the motor speed for high acceleration request is set to a higher speed as the time for stepping B and A is shorter.
(b) The higher the accelerator opening deviation, the higher the high acceleration requesting CL1 engagement motor rotational speed is set.
For (a) and (b), the motor rotation speed reference value when the high acceleration request condition and the oil temperature condition are satisfied is determined, and the high rotation request CL1 is calculated by correcting the motor rotation speed reference value. The fastening motor speed may be set. Further, the CL1 engagement motor rotational speed for high acceleration request may be set by map search using a B, A stepping time map or an accelerator opening deviation map.
 ステップS10では、ステップS7での通常加速用CL1締結モータ回転数への上昇、或いは、ステップS9での高加速要求用CL1締結モータ回転数への上昇に続き、第2クラッチ4(CL2)をスリップ締結作動とし、ステップS11へ進む。
ここで、モータジェネレータ3(MG)を回転数制御することで、通常加速用CL1締結モータ回転数、或いは、高加速要求用CL1締結モータ回転数へ上昇させるため、第2クラッチ4(CL2)の入力側と出力側での回転差を吸収するためにスリップ締結作動とする。
In step S10, the second clutch 4 (CL2) is slipped following the increase to the normal acceleration CL1 engagement motor rotation speed in step S7 or the increase to the high acceleration request CL1 engagement motor rotation speed in step S9. The fastening operation is performed, and the process proceeds to step S11.
Here, by controlling the rotation speed of the motor generator 3 (MG), the rotation speed of the second clutch 4 (CL2) is increased to the normal acceleration CL1 engagement motor rotation speed or the high acceleration request CL1 engagement motor rotation speed. In order to absorb the rotational difference between the input side and the output side, a slip fastening operation is performed.
 ステップS11では、ステップS10でのCL2作動に続き、第2クラッチ4(CL2)の締結容量を目標駆動力が得られる容量とし、「WSCモード」の選択によるWSC発進とし、ステップS12へ進む。
ここで、第2クラッチ4(CL2)の締結容量は、ベルト式無段変速機6(CVT)等を経由して左右の駆動輪9,9へ伝達される駆動力が、アクセル開度APOと車速VSPにより求められる目標駆動力相当になるように制御される。
In step S11, following the CL2 operation in step S10, the engagement capacity of the second clutch 4 (CL2) is set to a capacity capable of obtaining the target driving force, the WSC start is made by selecting the “WSC mode”, and the process proceeds to step S12.
Here, the engagement capacity of the second clutch 4 (CL2) is such that the driving force transmitted to the left and right drive wheels 9, 9 via the belt-type continuously variable transmission 6 (CVT) or the like is the accelerator opening APO. It is controlled so as to be equivalent to the target driving force required by the vehicle speed VSP.
 ステップS12では、ステップS11でのWSC発進に続き、エンジン始動要求が成立したか否かを判断する。YES(エンジン始動要求成立)の場合はステップS13へ進み、NO(エンジン始動要求不成立)の場合はステップS12の判断を繰り返す。
ここで、「エンジン始動要求の成立」は、例えば、モータジェネレータ3(MG)の回転数やバッテリ出力により最大モータトルクを演算する。そして、最大モータトルクから実モータトルクを差し引いたモータトルク余裕分が、エンジン1のクランキング必要トルクを超えている間は、エンジン始動要求が不成立と判断される。しかし、モータトルク余裕分が、エンジン1のクランキング必要トルクに到達すると、エンジン始動要求が成立と判断される。
In step S12, following the WSC start in step S11, it is determined whether an engine start request is satisfied. If YES (engine start request is established), the process proceeds to step S13. If NO (engine start request is not established), the determination in step S12 is repeated.
Here, “establishment of the engine start request” calculates, for example, the maximum motor torque based on the rotation speed of the motor generator 3 (MG) and the battery output. Then, while the motor torque margin obtained by subtracting the actual motor torque from the maximum motor torque exceeds the cranking required torque of the engine 1, it is determined that the engine start request is not established. However, when the motor torque margin reaches the cranking required torque of the engine 1, it is determined that the engine start request is established.
 ステップS13では、ステップS12でのエンジン始動要求成立であるとの判断に続き、モータジェネレータ3(MG)の回転数を、高加速要求用CL1締結モータ回転数へ上昇させているとき、通常加速用CL1締結モータ回転数まで低下させ、ステップS14へ進む。
ここで、エンジン始動要求成立時に通常加速用CL1締結モータ回転数であるときは、通常加速用CL1締結モータ回転数がそのまま維持される。
In step S13, following the determination that the engine start request is established in step S12, when the rotational speed of the motor generator 3 (MG) is increased to the high acceleration request CL1 engagement motor rotational speed, The speed is decreased to the CL1 fastening motor speed, and the process proceeds to step S14.
Here, when the engine speed is the normal acceleration CL1 engagement motor rotation speed when the engine start request is established, the normal acceleration CL1 engagement motor rotation speed is maintained as it is.
 ステップS14では、ステップS13での通常加速用CL1締結モータ回転数への低下に続き、“油圧即確保フラグ”を、油圧即確保フラグ=1から油圧即確保フラグ=0に書き替え、ステップS15へ進む。
ここで、油圧即確保フラグ=0であるときは、油圧即確保フラグ=0が維持される。
In step S14, following the decrease to the normal acceleration CL1 engagement motor rotation speed in step S13, the "hydraulic pressure immediately secure flag" is rewritten from the immediately hydraulic pressure secure flag = 1 to the immediate hydraulic pressure secure flag = 0, and the process proceeds to step S15. move on.
Here, when the immediate hydraulic pressure securing flag = 0, the immediate hydraulic pressure securing flag = 0 is maintained.
 ステップS15では、ステップS14での油圧即確保フラグ=0への書き替え、或いは、ステップS16でのCL1締結未完了であるとの判断に続き、エンジン1(Eng)をクランキング始動させるために第1クラッチ2(CL1)の締結制御を行い、ステップS16へ進む。
ここで、「エンジン1(Eng)のクランキング始動」は、「EVモード」のWSC発進時に解放されている第1クラッチ2(CL1)の締結を開始する。そして、モータジェネレータ3(MG)からのモータトルクのうち、クランキングトルク分を、第1クラッチ2(CL1)を介してエンジン1(Eng)に伝達することで行われる。
In step S15, in order to start the cranking of the engine 1 (Eng) following the rewriting to the immediate hydraulic pressure securing flag = 0 in step S14 or the determination that the CL1 engagement is not completed in step S16. Engagement control of 1 clutch 2 (CL1) is performed and it progresses to step S16.
Here, “Cranking start of engine 1 (Eng)” starts engagement of first clutch 2 (CL1) that is released when WSC starts in “EV mode”. Then, the cranking torque of the motor torque from the motor generator 3 (MG) is transmitted to the engine 1 (Eng) via the first clutch 2 (CL1).
 ステップS16では、ステップS15でのCL1締結制御に続き、第1クラッチ2(CL1)の締結が完了したか否かを判断する。YES(CL1締結完了)の場合はエンドへ進み、NO(CL1締結未完了)の場合はステップS15へ戻る。
ここで、「CL1締結完了」は、例えば、エンジン回転数≒モータ回転数になったときに判断する。なお、第1クラッチ2(CL1)の締結が完了すると、運転モードが「HEVモード」へとモード遷移する。
In step S16, following the CL1 engagement control in step S15, it is determined whether or not the engagement of the first clutch 2 (CL1) has been completed. If YES (CL1 fastening is complete), the process proceeds to the end. If NO (CL1 fastening is not complete), the process returns to step S15.
Here, “CL1 engagement completion” is determined, for example, when the engine rotational speed≈the motor rotational speed. When the engagement of the first clutch 2 (CL1) is completed, the operation mode is changed to the “HEV mode”.
 次に、作用を説明する。
実施例1の作用を、「発進時モータ回転数制御処理作用」、「発進時モータ回転数制御作用」、「発進時のトルクレート実現作用」、「発進時モータ回転数制御の特徴作用」に分けて説明する。
Next, the operation will be described.
The operation of the first embodiment is changed to “starting motor rotation speed control processing operation”, “starting motor rotation speed control operation”, “starting torque rate realization operation”, and “starting motor rotation speed control operation”. Separately described.
 [発進時モータ回転数制御処理作用]
 以下、図3に示すフローチャートに基づき、発進時モータ回転数制御処理作用を説明する。
[Starting motor speed control processing action]
Hereinafter, based on the flowchart shown in FIG.
 発進時、ブレーキとアクセルの踏みかえ操作が検出されたが、高加速要求条件又は油温条件が不成立であるときは、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7へと進む。よって、ステップS7では、モータジェネレータ3(MG)の回転数を、通常加速用CL1締結モータ回転数まで上昇させる制御が行われる。 When starting, a brake / accelerator switching operation is detected, but if the high acceleration requirement condition or the oil temperature condition is not established, step S1, step S2, step S3, step S4, step S5, step S6, step Proceed to S7. Therefore, in step S7, control is performed to increase the rotation speed of the motor generator 3 (MG) to the normal acceleration CL1 engagement motor rotation speed.
 一方、発進時、ブレーキとアクセルの踏みかえ操作が検出され、高加速要求条件と油温条件が成立するときは、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS8→ステップS9へと進む。よって、ステップS8では、“油圧即確保フラグ”が、油圧即確保フラグ=0から油圧即確保フラグ=1に書き替えられる。ステップS9では、モータジェネレータ3(MG)の回転数を、高加速要求用CL1締結モータ回転数(>通常加速用CL1締結モータ回転数)まで上昇させる制御が行われる。 On the other hand, at the time of departure, when the operation of switching between the brake and the accelerator is detected and the high acceleration requirement condition and the oil temperature condition are satisfied, step S1, step S2, step S3, step S4, step S5, step S6, step S8. → Proceed to step S9. Therefore, in step S8, the “immediate hydraulic pressure securing flag” is rewritten from the immediate hydraulic pressure securing flag = 0 to the immediate hydraulic pressure securing flag = 1. In step S9, control is performed to increase the rotation speed of the motor generator 3 (MG) to the high acceleration request CL1 engagement motor rotation speed (> the normal acceleration CL1 engagement motor rotation speed).
 そして、ステップS10→ステップS11→ステップS12へ進み、ステップS12にてエンジン始動要求が不成立と判断されている間は、モータジェネレータ3(MG)の回転数が、高加速要求用CL1締結モータ回転数に維持される。その後、ステップS12にてエンジン始動要求が成立と判断されると、ステップS12からステップS13へ進み、ステップS13では、モータジェネレータ3(MG)の回転数を、高加速要求用CL1締結モータ回転数から通常加速用CL1締結モータ回転数まで低下させる制御が行われる。 Then, the process proceeds from step S10 to step S11 to step S12, and while it is determined in step S12 that the engine start request is not established, the rotational speed of the motor generator 3 (MG) is the CL1 engagement motor rotational speed for high acceleration request. Maintained. Thereafter, when it is determined in step S12 that the engine start request is established, the process proceeds from step S12 to step S13. In step S13, the rotation speed of the motor generator 3 (MG) is determined from the high acceleration request CL1 engagement motor rotation speed. Control is normally performed to reduce the rotational speed of the CL1 fastening motor for acceleration.
 そして、モータジェネレータ3(MG)の回転数が、通常加速用CL1締結モータ回転数まで低下すると、ステップS13からステップS14→ステップS15→ステップS16へと進む。ステップS16にてCL1締結未完了であると判断されている間は、ステップS15→ステップS16へと進む流れが繰り返される。ステップS14では、“油圧即確保フラグ”が、油圧即確保フラグ=1から油圧即確保フラグ=0に書き替えられる。ステップS15では、エンジン1(Eng)をクランキング始動させるために第1クラッチ2(CL1)の締結制御が行われる。そして、ステップS16において、第1クラッチ2(CL1)の締結が完了したと判断されると、ステップS16からエンドへ進み、運転モードが「HEVモード」へとモード遷移する。 When the rotational speed of the motor generator 3 (MG) decreases to the normal acceleration CL1 engagement motor rotational speed, the process proceeds from step S13 to step S14 → step S15 → step S16. While it is determined that the CL1 engagement is not completed in step S16, the flow from step S15 to step S16 is repeated. In step S14, the “hydraulic oil immediately secure flag” is rewritten from the immediately oil pressure secure flag = 1 to the immediately oil pressure secure flag = 0. In step S15, engagement control of the first clutch 2 (CL1) is performed to start cranking the engine 1 (Eng). If it is determined in step S16 that the engagement of the first clutch 2 (CL1) has been completed, the process proceeds from step S16 to the end, and the operation mode is changed to the “HEV mode”.
 上記のように、発進時、ブレーキとアクセルの踏みかえ操作が検出され、高加速要求条件と油温条件が成立するときに限り、モータジェネレータ3(MG)の回転数を、高加速要求用CL1締結モータ回転数(>通常加速用CL1締結モータ回転数)まで上昇させる制御が行われる。言い換えると、発進時、ブレーキとアクセルの踏みかえ操作が検出されたが、高加速要求条件又は油温条件が不成立であるときは、従前通り、モータジェネレータ3(MG)の回転数を、通常加速用CL1締結モータ回転数まで上昇させる制御が行われる。このように、条件成立時にのみモータ回転数上昇制御を実施し、条件不成立時にはモータ回転数上昇制御を実施しないことによって、高加速要求用CL1締結モータ回転数(>通常加速用CL1締結モータ回転数)まで上昇させる頻度を下げるようにしている。 As described above, at the time of departure, the brake / accelerator switching operation is detected, and only when the high acceleration requirement condition and the oil temperature condition are satisfied, the rotational speed of the motor generator 3 (MG) is set to the high acceleration request CL1. Control is performed to increase the speed to the fastening motor speed (> CL1 fastening motor speed for normal acceleration). In other words, at the time of starting, a brake / accelerator switching operation is detected, but when the high acceleration requirement condition or the oil temperature condition is not satisfied, the rotation speed of the motor generator 3 (MG) is normally accelerated as before. Control to increase the rotational speed of the CL1 fastening motor is performed. In this way, the motor rotation speed increase control is performed only when the condition is satisfied, and the motor rotation speed increase control is not performed when the condition is not satisfied, so that the CL1 engagement motor rotation speed for high acceleration request (> CL1 engagement motor rotation speed for normal acceleration) ) Is reduced in frequency.
 そして、条件成立の判断タイミングにてモータジェネレータ3(MG)の回転数を、高加速要求用CL1締結モータ回転数まで上昇させると、エンジン始動要求が不成立の間は高加速要求用CL1締結モータ回転数を維持する。その後、エンジン始動要求が成立すると、高加速要求用CL1締結モータ回転数を、通常加速用CL1締結モータ回転数まで低下させる制御を行う。このように、第1クラッチ2(CL1)の締結制御に先行してモータジェネレータ3(MG)の回転数を低下させることで、エンジン1(Eng)の始動時に締結される第1クラッチ2(CL1)への差回転数拡大による負担を軽減するようにしている。 Then, when the rotational speed of the motor generator 3 (MG) is increased to the high acceleration request CL1 engagement motor rotation speed at the determination timing of the satisfaction of the condition, the high acceleration request CL1 engagement motor rotation is performed while the engine start request is not satisfied. Keep the number. Thereafter, when the engine start request is established, control is performed to reduce the high acceleration request CL1 engagement motor rotation speed to the normal acceleration CL1 engagement motor rotation speed. Thus, the first clutch 2 (CL1) that is engaged when the engine 1 (Eng) is started is reduced by reducing the rotational speed of the motor generator 3 (MG) prior to the engagement control of the first clutch 2 (CL1). ) To reduce the burden of expanding the differential rotation speed.
 [発進時モータ回転数制御作用]
 図4は、比較例においてドライバー加速要求が高い発進時に発生可能油圧が必要油圧に対して不足するときの各特性を示すタイムチャートである。以下、図4に基づき、比較例においてドライバー加速要求が高い発進時に発生可能油圧が必要油圧に対して不足する作用を説明する。
[Motor speed control at start-up]
FIG. 4 is a time chart showing each characteristic when the hydraulic pressure that can be generated at the time of start when the driver acceleration request is high in the comparative example is insufficient with respect to the required hydraulic pressure. Hereinafter, based on FIG. 4, a description will be given of an operation in which the hydraulic pressure that can be generated at the time of start when the driver acceleration request is high is insufficient with respect to the required hydraulic pressure in the comparative example.
 比較例の場合、アクセル急踏み操作等によりドライバー加速要求が高い発進開始操作を時刻t1にて開始すると、モータ回転数は、予め設定された回転数(例えば、通常加速用CL1締結モータ回転数)まで上昇する。そして、時刻t2にて第1クラッチCL1の油圧締結が開始され、時刻t3にて第1クラッチCL1の油圧締結が完了するとする。このとき、図4の矢印Cで囲まれる油圧特性に示すように、第1クラッチCL1の締結領域に対して油圧応答遅れにより時間軸方向にずれた領域において、必要油圧特性が、発生可能油圧特性よりも高圧側の特性となり、必要油圧(目標PL)に対し発生可能油圧(実PL)が不足してしまう。なお、図4の油圧特性にてハッチングにて示す部分が油圧不足分である。 In the case of the comparative example, when a start start operation with a high driver acceleration request is started at time t1 due to a sudden accelerator stepping operation or the like, the motor rotation speed is set to a preset rotation speed (for example, CL1 engagement motor rotation speed for normal acceleration) To rise. Then, it is assumed that the hydraulic engagement of the first clutch CL1 is started at time t2, and the hydraulic engagement of the first clutch CL1 is completed at time t3. At this time, as shown in the hydraulic characteristic surrounded by the arrow C in FIG. 4, the necessary hydraulic characteristic is generated in the region shifted in the time axis direction due to the hydraulic response delay with respect to the engagement region of the first clutch CL1. Therefore, the hydraulic pressure that can be generated (actual PL) is insufficient for the required hydraulic pressure (target PL). The portion indicated by hatching in the hydraulic characteristics of FIG.
 この理由は、高いドライバー加速要求により駆動輪への伝達トルクが高くなり、これに伴いベルト式無段変速機CVTにおいてベルト滑りを防止するためにプーリ圧Ppri,Psecを高油圧に保つ必要がある。この状態でエンジン始動要求の成立により、第1クラッチCL1を油圧締結させると、必要油圧として、ベルト式無段変速機CVTへのプーリ圧Ppri,Psecに、第1クラッチCL1への第1クラッチ圧PCL1が加わる。 The reason for this is that the transmission torque to the drive wheels increases due to high driver acceleration demands, and accordingly, it is necessary to keep the pulley pressures Ppri and Psec at high hydraulic pressure to prevent belt slip in the belt type continuously variable transmission CVT. . If the first clutch CL1 is hydraulically engaged due to the establishment of the engine start request in this state, the required hydraulic pressure is set to the pulley pressures Ppri and Psec to the belt-type continuously variable transmission CVT and the first clutch pressure to the first clutch CL1. PCL1 is added.
 一方、オイルポンプO/Pを回転駆動させるモータ回転数は、エンジン始動時における第1クラッチCL1の差回転数になるため、差回転数を抑えるようにモータ回転数を低く抑えている(例えば、通常加速用CL1締結モータ回転数)。このため、オイルポンプO/Pを油圧源とする発生可能油圧(実PL)には限界がある。この結果、増大する必要油圧(目標PL)に対して発生可能油圧(実PL)が不足してしまう。 On the other hand, since the motor rotational speed for rotating the oil pump O / P is the differential rotational speed of the first clutch CL1 when the engine is started, the motor rotational speed is kept low so as to suppress the differential rotational speed (for example, Normal CL1 fastening motor speed for acceleration). For this reason, there is a limit to the oil pressure that can be generated (actual PL) using the oil pump O / P as the oil pressure source. As a result, the hydraulic pressure that can be generated (actual PL) is insufficient with respect to the increasing required hydraulic pressure (target PL).
 これに対し、油圧供給能力を上げた大容量のオイルポンプを採用する対応案があるが、その跳ね返りとして、コスト・燃費が悪化するというトレードオフが発生する。また、ドライバー加速要求の高低にかかわらず、発進時にオイルポンプ回転数(∝モータ回転数)を一律に上昇させるという対応案がある。しかし、その跳ね返りとして、オイルポンプ回転数を上昇させる頻度が上がるし、エンジン始動時のエンジンEngとモータMGとの間の差回転数が大きくなる。このため、オイルポンプ回転数(∝モータ回転数)を上昇させたままにしておくと、エンジン始動要求に対する第1クラッチCL1の締結時の負担が大きくなり、熱や磨耗などの対策が必要となる。 On the other hand, there is a countermeasure to adopt a large-capacity oil pump with an increased hydraulic pressure supply capacity, but as a bounce, a trade-off occurs that cost and fuel consumption deteriorate. In addition, there is a countermeasure to uniformly increase the oil pump rotation speed (回 転 motor rotation speed) when starting, regardless of whether the driver acceleration request is high or low. However, as the rebound, the frequency of increasing the oil pump rotational speed increases, and the differential rotational speed between the engine Eng and the motor MG at the time of starting the engine increases. For this reason, if the oil pump rotation speed (回 転 motor rotation speed) is kept increased, the burden at the time of engaging the first clutch CL1 with respect to the engine start request becomes large, and measures such as heat and wear are required. .
 図5は、実施例1のドライバー加速要求が高いときの発進時モータ回転数制御作用を説明するための各特性を示すタイムチャートである。以下、図5に基づき、実施例1のドライバー加速要求が高いときの発進時モータ回転数制御作用を説明する。 FIG. 5 is a time chart showing characteristics for explaining the motor speed control operation at the time of start when the driver acceleration request of Example 1 is high. Hereinafter, based on FIG. 5, the motor speed control operation at the time of start when the driver acceleration request of the first embodiment is high will be described.
 時刻t0にてブレーキON→OFF操作を行うと、その直後の時刻t1にてモータジェネレータ3(MG)の回転数を、通常加速用CL1締結モータ回転数まで上昇させる制御が行われる。続いて、時刻t2にてアクセルOFF→ON操作を行うと、発進開始操作の時刻t2にて高加速要求条件と油温条件が成立する。よって、発進開始操作直後の時刻t2でのタイミングにて、モータジェネレータ3(MG)の回転数を、通常加速用CL1締結モータ回転数から高加速要求用CL1締結モータ回転数まで上昇させる制御が行われる。 When the brake ON → OFF operation is performed at time t0, control is performed to increase the rotation speed of the motor generator 3 (MG) to the normal acceleration CL1 engagement motor rotation speed at time t1 immediately thereafter. Subsequently, when an accelerator OFF → ON operation is performed at time t2, the high acceleration requirement condition and the oil temperature condition are satisfied at time t2 of the start start operation. Therefore, at the timing at time t2 immediately after the start start operation, control is performed to increase the rotation speed of the motor generator 3 (MG) from the normal acceleration CL1 engagement motor rotation speed to the high acceleration request CL1 engagement motor rotation speed. Is called.
 そして、高加速要求用CL1締結モータ回転数に到達する時刻t4から、エンジン始動要求成立時刻t6までは、モータジェネレータ3(MG)の回転数が、高加速要求用CL1締結モータ回転数に維持される。そして、エンジン始動要求成立時刻t6になると、モータジェネレータ3(MG)の回転数が、高加速要求用CL1締結モータ回転数から下げられ、時刻t7にて通常加速用CL1締結モータ回転数に到達する。時刻t7になると第1クラッチ2(CL1)の締結が開始され、時刻t8になると第1クラッチ2(CL1)の締結が完了する。 From the time t4 when the high acceleration request CL1 engagement motor rotation speed is reached until the engine start request establishment time t6, the rotation speed of the motor generator 3 (MG) is maintained at the high acceleration request CL1 engagement motor rotation speed. The When the engine start request establishment time t6 is reached, the rotation speed of the motor generator 3 (MG) is decreased from the high acceleration request CL1 engagement motor rotation speed and reaches the normal acceleration CL1 engagement motor rotation speed at time t7. . Engagement of the first clutch 2 (CL1) is started at time t7, and engagement of the first clutch 2 (CL1) is completed at time t8.
 このように、実施例1では、図5のハッチング領域Dに示すように、時刻t3から時刻t7までの間、比較例よりもモータ回転数(∝オイルポンプ回転数)を上昇させている。このオイルポンプ10の回転数上昇によりポンプ吐出圧が高くなり、図5のハッチング領域Eに示すように、時刻t5から時刻t8以降まで、比較例よりも発生可能油圧(実PL)が高くなる。このように、モータ回転数が上昇する領域Dから遅れて油圧が上昇する領域Eになるのは、時刻t7でモータ回転数を低下させても、作動油のリーク量に応じて時間遅れを持った状態で油圧が低下することによる。この結果、第1クラッチ2(CL1)の締結が開始される時刻t7以降においても、発生可能油圧特性が必要油圧特性よりも高圧側の特性になり、増大する必要油圧(目標PL)に対する発生可能油圧(実PL)の不足が解消される。 Thus, in Example 1, as shown in hatching region D in FIG. 5, the motor rotation speed (∝ oil pump rotation speed) is increased from time t3 to time t7 as compared with the comparative example. As the rotational speed of the oil pump 10 increases, the pump discharge pressure increases, and as shown in the hatched region E of FIG. 5, the hydraulic pressure (actual PL) that can be generated is higher than that of the comparative example from time t5 to time t8. As described above, the region E in which the hydraulic pressure rises with a delay from the region D in which the motor rotational speed rises has a time delay according to the amount of hydraulic oil leakage even if the motor rotational speed is reduced at time t7. This is because the oil pressure drops in the state where As a result, even after time t7 when the engagement of the first clutch 2 (CL1) is started, the hydraulic pressure characteristics that can be generated become characteristics higher than the required hydraulic pressure characteristics, and can be generated for the increased required hydraulic pressure (target PL). The shortage of hydraulic pressure (actual PL) is resolved.
 [発進時のトルクレート実現作用]
 図6は、比較例においてドライバー加速要求が高い発進時に実現できる目標トルクレートを説明するための各特性を示すタイムチャートである。以下、図6に基づいて、比較例においてドライバー加速要求が高い発進時のトルクレート実現作用を説明する。
[Achieving torque rate when starting]
FIG. 6 is a time chart showing characteristics for explaining a target torque rate that can be realized at the time of start when the driver acceleration request is high in the comparative example. Hereinafter, based on FIG. 6, a description will be given of an effect of realizing the torque rate at the start when the driver acceleration request is high in the comparative example.
 上記のように、比較例の場合、アクセル急踏み操作等によりドライバー加速要求が高い発進開始操作を行うと、必要油圧(目標PL)に対し発生可能油圧(実PL)が不足してしまう。このように発生可能油圧(実PL)が不足するため、ベルト式無段変速機CVTへの入力可能トルクが低く抑えられ、これに伴い実現可能な目標トルク上昇勾配(目標トルクレート)も低く抑えられる。このため、比較例の場合は、ベルト式無段変速機CVTを介して駆動輪へ伝達されるトルクが、アクセル操作に応じた目標駆動力を実現するトルクより低くなってしまう。 As described above, in the case of the comparative example, if the start start operation with a high driver acceleration request is performed by an accelerator sudden depression operation or the like, the available hydraulic pressure (actual PL) is insufficient with respect to the required hydraulic pressure (target PL). Since the possible hydraulic pressure (actual PL) is insufficient in this way, the torque that can be input to the belt type continuously variable transmission CVT is kept low, and the target torque climb gradient (target torque rate) that can be achieved is also kept low. It is done. For this reason, in the case of the comparative example, the torque transmitted to the drive wheels via the belt type continuously variable transmission CVT is lower than the torque that realizes the target drive force according to the accelerator operation.
 図7は、実施例1においてドライバー加速要求が高い発進時に実現できる目標トルクレートを説明するための各特性を示すタイムチャートである。以下、図7に基づいて、実施例1においてドライバー加速要求が高い発進時のトルクレート実現作用を説明する。 FIG. 7 is a time chart showing characteristics for explaining a target torque rate that can be realized at the time of start when the driver acceleration request is high in the first embodiment. Hereinafter, based on FIG. 7, an explanation will be given of the torque rate realization operation at the time of start with a high driver acceleration request in the first embodiment.
 上記のように、実施例1の場合、アクセル急踏み操作等によりドライバー加速要求が高い発進開始操作を行うと、必要油圧(目標PL)に対し発生可能油圧(実PL)が不足するのが解消される。このように、発生可能油圧(実PL)の不足が解消されるため、ベルト式無段変速機CVTへの入力可能トルクが制限を受けず、入力可能トルク特性は、図7の矢印Fで囲まれる特性に示すように、比較例の入力可能トルク特性よりも大きな勾配角度で上昇する。これに伴い実現可能な目標トルク上昇勾配(目標トルクレート)も高くなる。このため、実施例1の場合は、ベルト式無段変速機6(CVT)を介して駆動輪9,9へ伝達されるトルクが、アクセル操作に応じた目標駆動力を実現するトルクになる。 As described above, in the case of Example 1, when the start start operation with a high driver acceleration request is performed by the accelerator sudden depression operation, the shortage of the available hydraulic pressure (actual PL) to the required hydraulic pressure (target PL) is solved. Is done. In this way, since the shortage of the possible hydraulic pressure (actual PL) is resolved, the torque that can be input to the belt type continuously variable transmission CVT is not limited, and the input torque characteristics are surrounded by the arrow F in FIG. As shown in the characteristic, the torque increases at a larger gradient angle than the input possible torque characteristic of the comparative example. Along with this, the target torque increase gradient (target torque rate) that can be realized also increases. For this reason, in the case of Example 1, the torque transmitted to the drive wheels 9 and 9 via the belt-type continuously variable transmission 6 (CVT) becomes the torque that realizes the target drive force according to the accelerator operation.
 このように、実施例1の場合は、発進時、ドライバー操作に対する加速応答性を決める目標トルクレートが、比較例の目標トルクレートに比べて向上する。ちなみに、発明者が行った実験例によると、比較例の場合には目標トルクレートが200Nm/sec程度であったのに対し、実施例1の場合には目標トルクレートが400Nm/sec程度になった。この実験結果によって、比較例に比べて大幅な目標トルクレートの向上代を見込めることが判明した。 Thus, in the case of Example 1, the target torque rate that determines the acceleration responsiveness to the driver operation at the time of start is improved as compared with the target torque rate of the comparative example. Incidentally, according to the experimental example conducted by the inventor, the target torque rate is about 200 Nm / sec in the comparative example, whereas the target torque rate is about 400 Nm / sec in the first embodiment. It was. From this experimental result, it has been found that a significant improvement in target torque rate can be expected compared to the comparative example.
 [発進時モータ回転数制御の特徴作用]
 実施例1では、モータジェネレータ3を駆動源とする運転モードのとき、モータジェネレータ3の回転数を、第1クラッチ2が許容する通常加速用CL1締結モータ回転数を超える回転数域の高加速要求用CL1締結モータ回転数まで上昇させる。モータジェネレータ3の回転数を上昇させているとき、エンジン始動要求が成立すると、モータジェネレータ3の回転数を低下させる。
[Characteristics of motor speed control at start-up]
In the first embodiment, in the operation mode using the motor generator 3 as a drive source, the high speed request for the high speed range of the motor generator 3 exceeding the normal acceleration CL1 engagement motor rotational speed allowed by the first clutch 2 is required. Increase to CL1 fastening motor speed. If the engine start request is established while the rotational speed of the motor generator 3 is being increased, the rotational speed of the motor generator 3 is decreased.
 即ち、モータジェネレータ3を駆動源とする運転モードのとき、ドライバー加速要求に備えてモータ回転数を上昇しておく。このように、オイルポンプ10を回転駆動するモータジェネレータ3の回転数を上昇することで、ドライバー加速要求があるときに必要油圧が確保される。
そして、第1クラッチ2の締結がエンジン始動要求の成立により予測されるとモータ回転数を低下させる。このように、第1クラッチ2の締結を開始する前のタイミングにてモータ回転数を低下させることで、エンジン1とモータジェネレータ3との間の差回転数による第1クラッチ2への負担が軽減される。
ここで、エンジン始動時には第1クラッチ2を締結する油圧を確保しておく必要があるのに対し、第1クラッチ2の締結を開始する前のタイミングにてモータ回転数を低下させている。しかし、オイルポンプ10の吐出油圧特性は、ポンプ回転数(∝モータ回転数)の上昇や下降に対して応答遅れがあり、ポンプ回転数が低下しても作動油のリーク量に応じて遅れを持って油圧が緩やかに低下している状態である。このため、第1クラッチ2の締結を開始する前にモータ回転数を低下させても、モータ回転数が高いときの残留油圧により第1クラッチ2の締結に必要な油圧が確保される。
従って、ドライバー加速要求に対する必要油圧の確保と、エンジン始動要求に対する第1クラッチ2への負担軽減と、の両立が図られる。
That is, in the operation mode using the motor generator 3 as a drive source, the motor rotational speed is increased in preparation for a driver acceleration request. In this way, by increasing the rotational speed of the motor generator 3 that rotationally drives the oil pump 10, the required hydraulic pressure is ensured when there is a driver acceleration request.
When the engagement of the first clutch 2 is predicted due to the establishment of the engine start request, the motor speed is decreased. Thus, by reducing the motor rotation speed at the timing before starting the engagement of the first clutch 2, the burden on the first clutch 2 due to the differential rotation speed between the engine 1 and the motor generator 3 is reduced. Is done.
Here, while it is necessary to ensure the hydraulic pressure for engaging the first clutch 2 when the engine is started, the motor rotation speed is reduced at a timing before the first clutch 2 is started to be engaged. However, the discharge hydraulic pressure characteristic of the oil pump 10 has a response delay with respect to the increase or decrease of the pump rotation speed (∝motor rotation speed). The oil pressure is gradually decreasing. For this reason, even if the motor rotational speed is reduced before starting the engagement of the first clutch 2, the hydraulic pressure necessary for engaging the first clutch 2 is ensured by the residual hydraulic pressure when the motor rotational speed is high.
Therefore, it is possible to achieve both of ensuring the required oil pressure for the driver acceleration request and reducing the burden on the first clutch 2 for the engine start request.
 実施例1では、モータジェネレータ3を駆動源とする運転モードのとき、ドライバー操作によるドライバー加速要求が通常加速要求よりも高いかどうかを判断する。そして、ドライバー加速要求が通常加速要求以下であると判断されると、モータジェネレータ3の回転数を第1クラッチ2が許容する通常加速用CL1締結モータ回転数とする。一方、ドライバー加速要求が通常加速要求よりも高いと判断されると、モータジェネレータ3の回転数を高加速要求用CL1締結モータ回転数まで上昇させる。 In the first embodiment, in the operation mode using the motor generator 3 as a drive source, it is determined whether or not the driver acceleration request by the driver operation is higher than the normal acceleration request. When it is determined that the driver acceleration request is equal to or less than the normal acceleration request, the rotation speed of the motor generator 3 is set to the normal acceleration CL1 engagement motor rotation speed allowed by the first clutch 2. On the other hand, if it is determined that the driver acceleration request is higher than the normal acceleration request, the rotational speed of the motor generator 3 is increased to the high acceleration request CL1 engagement motor rotational speed.
 即ち、必要油圧が高くなるかどうかをドライバー加速要求が通常加速要求よりも高いかどうかにより予測している。そして、ドライバー加速要求が通常加速要求以下と判断されると、モータジェネレータ3の回転数上昇を抑えている。一方、ドライバー加速要求が通常加速要求よりも高いと判断されると、オイルポンプ10を回転駆動するモータジェネレータ3の回転数を上昇するようにしている。このように、モータ回転数を上昇させる機会を、ドライバー加速要求が通常加速要求よりも高いとき、つまり、必要油圧が高くなることが予測されるときに限ることで、モータ回転数の上昇頻度が下げられる。
従って、モータ回転数の上昇頻度を下げることで、エンジン始動要求に対する第1クラッチ2への負担がさらに軽減される。
That is, whether or not the required hydraulic pressure is high is predicted based on whether or not the driver acceleration request is higher than the normal acceleration request. When it is determined that the driver acceleration request is equal to or less than the normal acceleration request, the increase in the rotational speed of the motor generator 3 is suppressed. On the other hand, when it is determined that the driver acceleration request is higher than the normal acceleration request, the rotational speed of the motor generator 3 that rotationally drives the oil pump 10 is increased. In this way, the opportunity for increasing the motor speed is limited to when the driver acceleration request is higher than the normal acceleration request, that is, when the required hydraulic pressure is predicted to be high, so that the frequency of the motor rotation speed increases. Be lowered.
Therefore, the burden on the first clutch 2 with respect to the engine start request is further reduced by reducing the frequency of increase in the motor rotation speed.
 実施例1では、ドライバーのアクセル踏み込み操作による所定時間当たりのアクセル開度APOの変化量であるアクセル開度偏差が所定値以上であるとき、ドライバー加速要求が通常加速要求よりも高いと判断する。ドライバー加速要求が通常加速要求よりも高いと判断されると、アクセル開度偏差が大きい値であるほど、高加速要求用CL1締結モータ回転数を高回転数に設定する。 In Example 1, it is determined that the driver acceleration request is higher than the normal acceleration request when the accelerator opening deviation, which is a change amount of the accelerator opening APO per predetermined time due to the driver's accelerator depression operation, is equal to or greater than a predetermined value. If it is determined that the driver acceleration request is higher than the normal acceleration request, the higher the accelerator opening degree deviation, the higher the high acceleration request CL1 engagement motor rotational speed is set.
 即ち、アクセル急踏みによる発進加速シーンや中間加速シーンのときに高加速要求条件が成立し、モータ回転数を上昇させることで、オイルポンプ10を油圧源とする発生可能油圧が高められる。そして、アクセル踏み込み速度が速いほど、必要油圧が高くなるのに応じてモータ回転数の上昇幅を大きくとることで、アクセル踏み込み速度にかかわらず必要油圧が確保される。従って、発進加速シーンや中間加速シーンにおいて、アクセル踏み込み速度にかかわらず必要油圧が確保される。 That is, the high acceleration requirement condition is established in the start acceleration scene or the intermediate acceleration scene due to the sudden depression of the accelerator, and the possible hydraulic pressure using the oil pump 10 as the hydraulic source is increased by increasing the motor rotation speed. Then, as the accelerator depression speed increases, the required oil pressure is ensured regardless of the accelerator depression speed by increasing the increase in the motor rotation speed as the required oil pressure increases. Therefore, in the start acceleration scene and the intermediate acceleration scene, the required hydraulic pressure is ensured regardless of the accelerator depression speed.
 実施例1では、ドライバーのブレーキ操作からアクセル操作への踏みかえ時間が所定時間以下であるとき、ドライバー加速要求が通常加速要求よりも高いと判断する。ドライバー加速要求が通常加速要求よりも高いと判断されると、踏みかえ時間が短い時間であるほど、高加速要求用CL1締結モータ回転数を高回転数に設定する。 In Example 1, it is determined that the driver acceleration request is higher than the normal acceleration request when the switching time from the brake operation of the driver to the accelerator operation is equal to or shorter than a predetermined time. If it is determined that the driver acceleration request is higher than the normal acceleration request, the higher the rotation speed is set to the higher acceleration request CL1 fastening motor rotation speed, the shorter the stepping time is.
 即ち、ブレーキ操作中は、モータジェネレータ3によるクリープトルクが無い状態であるため、ブレーキ操作状態からアクセル操作への踏みかえは短時間でなされる。ブレーキ操作からアクセル操作への踏みかえが素早くなされるシーンのときに高加速要求条件が成立し、モータ回転数を上昇させることで、オイルポンプ10を油圧源とする発生可能油圧が高められる。そして、踏みかえ時間が短い時間であるほど、車両のずり下がりを抑えるように必要油圧が高くなるのに応じてモータ回転数の上昇幅を大きくとることで、踏みかえ時間の長短にかかわらず必要油圧が確保される。従って、ブレーキ操作からアクセル操作への踏みかえが素早くなされるシーンにおいて、踏みかえ時間の長短にかかわらず必要油圧が確保される。 That is, during the brake operation, since there is no creep torque by the motor generator 3, the switching from the brake operation state to the accelerator operation is performed in a short time. The high acceleration requirement condition is satisfied in a scene where the switching from the brake operation to the accelerator operation is performed quickly, and by increasing the motor rotation speed, the possible hydraulic pressure using the oil pump 10 as a hydraulic source is increased. And the shorter the changeover time, the greater the required oil pressure increases so as to prevent the vehicle from slipping down. Hydraulic pressure is secured. Therefore, in a scene where the stepping from the brake operation to the accelerator operation is performed quickly, the necessary hydraulic pressure is ensured regardless of the length of the stepping time.
 実施例1では、ドライバー加速要求が通常加速要求よりも高いと判断され、かつ、ベルト式無段変速機6の油温が所定値以上であるとき、モータジェネレータ3の回転数を高加速要求用CL1締結モータ回転数まで上昇させる。 In the first embodiment, when it is determined that the driver acceleration request is higher than the normal acceleration request, and the oil temperature of the belt-type continuously variable transmission 6 is equal to or higher than a predetermined value, the rotational speed of the motor generator 3 is set for high acceleration request. Increase to CL1 fastening motor speed.
 即ち、ベルト式無段変速機6の油温が所定値未満であるときは作動油の粘性が高く、モータ回転数を上昇させても必要油圧を確保することができないことがある。従って、モータ回転数を上昇させる際、高加速要求条件に油温条件を加えることで、モータ回転数を上昇させる頻度が下がり、第1クラッチ2への負担がさらに軽減される。 That is, when the oil temperature of the belt-type continuously variable transmission 6 is less than a predetermined value, the viscosity of the hydraulic oil is high, and the required hydraulic pressure may not be ensured even if the motor speed is increased. Therefore, when the motor speed is increased, by adding the oil temperature condition to the high acceleration requirement condition, the frequency of increasing the motor speed is reduced, and the burden on the first clutch 2 is further reduced.
 実施例1では、モータジェネレータ3を駆動源とする発進操作時、ドライバー加速要求が通常加速要求よりも高いと判断されると、モータジェネレータ3の回転数を、高加速要求用CL1締結モータ回転数まで上昇させる。モータジェネレータ3の回転数上昇を第2クラッチ4の滑り締結により吸収し、第2クラッチ4の締結容量制御により駆動輪9,9への伝達トルクを目標駆動力相当とする「WSCモード」で発進する。 In the first embodiment, when it is determined that the driver acceleration request is higher than the normal acceleration request during the start operation using the motor generator 3 as a drive source, the rotation speed of the motor generator 3 is set to the high acceleration request CL1 engagement motor rotation speed. To rise. Start up in “WSC mode” in which the increase in the rotational speed of the motor generator 3 is absorbed by sliding engagement of the second clutch 4 and the transmission torque to the drive wheels 9 and 9 is equivalent to the target driving force by the engagement capacity control of the second clutch 4 To do.
 即ち、発進加速シーンにおいて、目標トルク以上の入力可能トルクを実現できる必要油圧が確保され、目標トルクレートが比較例に比べて向上する。従って、発進加速シーンにおいて、ドライバーのアクセル操作に応じた目標トルクレートによる発進加速応答性が実現される。 That is, in the start acceleration scene, a necessary hydraulic pressure that can realize an inputable torque that is higher than the target torque is secured, and the target torque rate is improved as compared with the comparative example. Therefore, in the start acceleration scene, the start acceleration response with the target torque rate corresponding to the driver's accelerator operation is realized.
 次に、効果を説明する。
実施例1におけるFFハイブリッド車両の制御方法と制御装置にあっては、下記に列挙する効果が得られる。
Next, the effect will be described.
In the control method and control apparatus for the FF hybrid vehicle in the first embodiment, the effects listed below can be obtained.
 (1) 駆動源から駆動輪9,9へ至る駆動系に、エンジン1と摩擦クラッチ(第1クラッチ2)とモータ(モータジェネレータ3)と変速機(ベルト式無段変速機6)が搭載される。
摩擦クラッチ(第1クラッチ2)と変速機(ベルト式無段変速機6)を油圧作動とし、これらの油圧源としてモータ(モータジェネレータ3)により回転駆動されるオイルポンプ10を設ける。
モータ(モータジェネレータ3)を駆動源とする運転モードのとき、エンジン始動要求が成立すると、摩擦クラッチ(第1クラッチ2)を締結し、モータ(モータジェネレータ3)を始動モータとしてエンジン1をクランキング始動する。
このハイブリッド車両(FFハイブリッド車両)の制御方法において、モータ(モータジェネレータ3)を駆動源とする運転モードのとき、モータ(モータジェネレータ3)の回転数を、摩擦クラッチ(第1クラッチ2)が許容する許容差回転数(通常加速用CL1締結モータ回転数)を超える回転数域の目標回転数(高加速要求用CL1締結モータ回転数)まで上昇させる。
モータ(モータジェネレータ3)の回転数を上昇させているとき、エンジン始動要求が成立すると、モータ(モータジェネレータ3)の回転数を低下させる(図5)。
  このため、ドライバー加速要求に対する必要油圧の確保と、エンジン始動要求に対する摩擦クラッチ(第1クラッチ2)への負担軽減と、の両立を図るハイブリッド車両(FFハイブリッド車両)の制御方法を提供することができる。
(1) An engine 1, a friction clutch (first clutch 2), a motor (motor generator 3), and a transmission (belt type continuously variable transmission 6) are mounted on a drive system from the drive source to the drive wheels 9, 9. The
The friction clutch (first clutch 2) and the transmission (belt type continuously variable transmission 6) are hydraulically operated, and an oil pump 10 that is rotationally driven by a motor (motor generator 3) is provided as a hydraulic source of these.
When the engine start request is established in the operation mode using the motor (motor generator 3) as a drive source, the friction clutch (first clutch 2) is engaged, and the engine 1 is cranked using the motor (motor generator 3) as a start motor. Start.
In this hybrid vehicle (FF hybrid vehicle) control method, the friction clutch (first clutch 2) allows the rotational speed of the motor (motor generator 3) in the operation mode using the motor (motor generator 3) as a drive source. To the target rotational speed (CL1 fastening motor rotational speed for high acceleration request) in the rotational speed range that exceeds the allowable rotational speed (normal acceleration CL1 fastening motor rotational speed).
If the engine start request is established while the rotational speed of the motor (motor generator 3) is being increased, the rotational speed of the motor (motor generator 3) is decreased (FIG. 5).
For this reason, it is possible to provide a control method for a hybrid vehicle (FF hybrid vehicle) that achieves both securing of the required hydraulic pressure for a driver acceleration request and reducing the burden on the friction clutch (first clutch 2) for an engine start request. it can.
 (2) モータ(モータジェネレータ3)を駆動源とする運転モードのとき、ドライバー操作によるドライバー加速要求が通常加速要求よりも高いかどうかを判断する(図3のS6)。
ドライバー加速要求が通常加速要求以下であると判断されると、モータ(モータジェネレータ3)の回転数を摩擦クラッチ(第1クラッチ2)が許容する許容差回転数(通常加速用CL1締結モータ回転数)とする(図3のS6→S7)。
ドライバー加速要求が通常加速要求よりも高いと判断されると、モータ(モータジェネレータ3)の回転数を目標回転数(高加速要求用CL1締結モータ回転数)まで上昇させる(図3のS6→S8→S9)。
  このため、(1)の効果に加え、モータ回転数の上昇頻度を下げることで、エンジン始動要求に対する摩擦クラッチ(第1クラッチ2)への負担をさらに軽減することができる。
(2) In the operation mode using the motor (motor generator 3) as a drive source, it is determined whether or not the driver acceleration request by the driver operation is higher than the normal acceleration request (S6 in FIG. 3).
When it is determined that the driver acceleration request is equal to or less than the normal acceleration request, the allowable rotational speed (the normal acceleration CL1 engagement motor rotational speed) at which the friction clutch (first clutch 2) allows the rotational speed of the motor (motor generator 3). (S6 → S7 in FIG. 3).
If it is determined that the driver acceleration request is higher than the normal acceleration request, the rotational speed of the motor (motor generator 3) is increased to the target rotational speed (CL1 engagement motor rotational speed for high acceleration request) (S6 → S8 in FIG. 3). → S9).
For this reason, in addition to the effect of (1), the burden on the friction clutch (first clutch 2) with respect to the engine start request can be further reduced by reducing the frequency of increase in the motor rotation speed.
 (3) ドライバーのアクセル踏み込み操作による所定時間当たりのアクセル開度APOの変化量であるアクセル開度偏差が所定値以上であるとき、ドライバー加速要求が通常加速要求よりも高いと判断する。
ドライバー加速要求が通常加速要求よりも高いと判断されると、アクセル開度偏差が大きい値であるほど、目標回転数(高加速要求用CL1締結モータ回転数)を高回転数に設定する(図3のS6→S8→S9)。
  このため、(2)の効果に加え、発進加速シーンや中間加速シーンにおいて、アクセル踏み込み速度にかかわらず必要油圧を確保することができる。
(3) When the accelerator opening deviation, which is the amount of change in the accelerator opening APO per predetermined time due to the driver's accelerator depression operation, is greater than or equal to a predetermined value, it is determined that the driver acceleration request is higher than the normal acceleration request.
When it is determined that the driver acceleration request is higher than the normal acceleration request, the target rotation speed (CL1 engagement motor rotation speed for high acceleration request) is set to a higher rotation speed as the accelerator opening degree deviation becomes larger (Fig. 3 S6 → S8 → S9).
For this reason, in addition to the effect of (2), the required hydraulic pressure can be secured regardless of the accelerator depression speed in the start acceleration scene and the intermediate acceleration scene.
 (4) ドライバーのブレーキ操作からアクセル操作への踏みかえ時間が所定時間以下であるとき、ドライバー加速要求が通常加速要求よりも高いと判断する。
ドライバー加速要求が通常加速要求よりも高いと判断されると、踏みかえ時間が短い時間であるほど、目標回転数(高加速要求用CL1締結モータ回転数)を高回転数に設定する(図3のS6→S8→S9)。
  このため、(2)又は(3)の効果に加え、ブレーキ操作からアクセル操作への踏みかえが素早くなされるシーンにおいて、踏みかえ時間の長短にかかわらず必要油圧を確保することができる。
(4) When the time required for the driver to switch from the brake operation to the accelerator operation is less than or equal to the predetermined time, it is determined that the driver acceleration request is higher than the normal acceleration request.
When it is determined that the driver acceleration request is higher than the normal acceleration request, the target rotation speed (CL1 engagement motor rotation speed for high acceleration request) is set to a higher rotation speed as the time required for switching is shorter (FIG. 3). S6 → S8 → S9).
For this reason, in addition to the effect of (2) or (3), in the scene where the stepping from the brake operation to the accelerator operation is performed quickly, the necessary hydraulic pressure can be ensured regardless of the length of the stepping time.
 (5) ドライバー加速要求が通常加速要求よりも高いと判断され、かつ、変速機(ベルト式無段変速機6)の油温が所定値以上であるとき、モータ(モータジェネレータ3)の回転数を目標回転数(高加速要求用CL1締結モータ回転数)まで上昇させる(図3のS6→S8→S9)。
  このため、(2)~(4)の効果に加え、モータ回転数を上昇させる際、高加速要求条件に油温条件を加えることで、モータ回転数を上昇させる頻度が下がり、摩擦クラッチ(第1クラッチ2)への負担をさらに軽減することができる。
(5) When it is determined that the driver acceleration request is higher than the normal acceleration request and the oil temperature of the transmission (belt type continuously variable transmission 6) is equal to or higher than a predetermined value, the rotational speed of the motor (motor generator 3) Is increased to a target rotational speed (CL1 engagement motor rotational speed for high acceleration request) (S6 → S8 → S9 in FIG. 3).
For this reason, in addition to the effects (2) to (4), when increasing the motor speed, adding the oil temperature condition to the high acceleration requirement condition reduces the frequency of increasing the motor speed, and the friction clutch (first The burden on 1 clutch 2) can be further reduced.
 (6) エンジン1とモータ(モータジェネレータ3)との間に介装した摩擦クラッチを第1クラッチ2というとき、モータ(モータジェネレータ3)と駆動輪9,9の間に第2クラッチ4を介装する。
モータ(モータジェネレータ3)を駆動源とする発進操作時、ドライバー加速要求が通常加速要求よりも高いと判断されると、モータ(モータジェネレータ3)の回転数を、目標回転数(高加速要求用CL1締結モータ回転数)まで上昇させる。
モータ(モータジェネレータ3)の回転数上昇を第2クラッチ4の滑り締結により吸収し、第2クラッチ4の締結容量制御により駆動輪9,9への伝達トルクを目標駆動力相当とする駆動トルクコントロール発進モード(WSCモード)で発進する(図3)。
  このため、(2)~(5)の効果に加え、発進加速シーンにおいて、ドライバーのアクセル操作に応じた目標トルクレートによる発進加速応答性を実現することができる。
(6) When the friction clutch interposed between the engine 1 and the motor (motor generator 3) is referred to as the first clutch 2, the second clutch 4 is interposed between the motor (motor generator 3) and the drive wheels 9, 9. Disguise.
During a start operation using the motor (motor generator 3) as a drive source, if it is determined that the driver acceleration request is higher than the normal acceleration request, the rotation speed of the motor (motor generator 3) is changed to the target rotation speed (for high acceleration request). Increase to CL1 fastening motor speed).
Drive torque control that absorbs the increase in the rotational speed of the motor (motor generator 3) by sliding engagement of the second clutch 4, and makes the transmission torque to the drive wheels 9, 9 equivalent to the target driving force by the engagement capacity control of the second clutch 4. Start in the start mode (WSC mode) (Figure 3).
Therefore, in addition to the effects (2) to (5), it is possible to realize start acceleration response at a target torque rate according to the driver's accelerator operation in the start acceleration scene.
 (7) 駆動源から駆動輪9,9へ至る駆動系に、エンジン1と摩擦クラッチ(第1クラッチ2)とモータ(モータジェネレータ3)と変速機(ベルト式無段変速機6)が搭載される。
摩擦クラッチ(第1クラッチ2)と変速機(ベルト式無段変速機6)を油圧作動とし、これらの油圧源としてモータ(モータジェネレータ3)により回転駆動されるオイルポンプ10を設ける。
モータ(モータジェネレータ3)を駆動源とする運転モードのとき、エンジン始動要求が成立すると、摩擦クラッチ(第1クラッチ2)を締結し、モータ(モータジェネレータ3)を始動モータとしてエンジン1をクランキング始動するコントローラ(統合コントローラ14)を備える。
このハイブリッド車両(FFハイブリッド車両)の制御装置において、コントローラ(統合コントローラ14)は、モータ(モータジェネレータ3)を駆動源とする運転モードのとき、モータ(モータジェネレータ3)の回転数を、摩擦クラッチ(第1クラッチ2)が許容する許容差回転数(通常加速用CL1締結モータ回転数)を超える回転数域の目標回転数(高加速要求用CL1締結モータ回転数)まで上昇させる。
モータ(モータジェネレータ3)の回転数を上昇させているとき、エンジン始動要求が成立すると、モータ(モータジェネレータ3)の回転数を低下させる処理を実行する(図3)。
  このため、ドライバー加速要求に対する必要油圧の確保と、エンジン始動要求に対する摩擦クラッチ(第1クラッチ2)への負担軽減と、の両立を図るハイブリッド車両(FFハイブリッド車両)の制御装置を提供することができる。
(7) The engine 1, the friction clutch (first clutch 2), the motor (motor generator 3), and the transmission (belt type continuously variable transmission 6) are mounted on the drive system from the drive source to the drive wheels 9, 9. The
The friction clutch (first clutch 2) and the transmission (belt type continuously variable transmission 6) are hydraulically operated, and an oil pump 10 that is rotationally driven by a motor (motor generator 3) is provided as a hydraulic source of these.
When the engine start request is established in the operation mode using the motor (motor generator 3) as a drive source, the friction clutch (first clutch 2) is engaged, and the engine 1 is cranked using the motor (motor generator 3) as a start motor. A controller (integrated controller 14) for starting is provided.
In this hybrid vehicle (FF hybrid vehicle) control device, the controller (integrated controller 14) determines the rotational speed of the motor (motor generator 3) as a friction clutch in the operation mode using the motor (motor generator 3) as a drive source. The rotation speed is increased to a target rotation speed (CL1 engagement motor rotation speed for high acceleration request) exceeding the allowable rotation speed (normal acceleration CL1 engagement motor rotation speed) allowed by (first clutch 2).
If the engine start request is satisfied while the rotational speed of the motor (motor generator 3) is being increased, a process of decreasing the rotational speed of the motor (motor generator 3) is executed (FIG. 3).
For this reason, it is possible to provide a control device for a hybrid vehicle (FF hybrid vehicle) that achieves both securing of a required hydraulic pressure for a driver acceleration request and reducing a burden on a friction clutch (first clutch 2) for an engine start request. it can.
 以上、本開示のハイブリッド車両の制御方法と制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The hybrid vehicle control method and control device of the present disclosure have been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are permitted without departing from the gist of the invention according to each claim of the claims.
 実施例1では、モータジェネレータ3の回転数を高加速要求用CL1締結モータ回転数に上昇させているとき、エンジン始動要求が成立すると、モータジェネレータ3の回転数を通常加速用CL1締結モータ回転数まで低下させる例を示した。しかし、エンジン始動要求が成立すると、高加速要求用CL1締結モータ回転数を、通常加速用CL1締結モータ回転数に向かって低下させるものであれば、通常加速用CL1締結モータ回転数に到達しない回転数まで低下させるような例であっても良い。また、エンジン始動要求が成立すると、高加速要求用CL1締結モータ回転数を、通常加速用CL1締結モータ回転数を超える回転数まで低下させるような例としても良い。 In the first embodiment, when the rotation speed of the motor generator 3 is increased to the high acceleration request CL1 engagement motor rotation speed and the engine start request is satisfied, the rotation speed of the motor generator 3 is changed to the normal acceleration CL1 engagement motor rotation speed. An example of lowering is shown. However, if the engine start request is established, the rotation that does not reach the normal acceleration CL1 engagement motor rotation speed is possible if the CL1 engagement motor rotation speed for high acceleration request is decreased toward the normal acceleration CL1 engagement motor rotation speed. It may be an example where the number is reduced to a number. In addition, when the engine start request is established, the high acceleration request CL1 engagement motor rotational speed may be reduced to a rotational speed exceeding the normal acceleration CL1 engagement motor rotational speed.
 実施例1では、ドライバーのアクセル踏み込み操作によるアクセル開度偏差が所定値以上であるとき、又は、ドライバーのブレーキ操作からアクセル操作への踏みかえ時間が所定時間以下であるとき、ドライバー加速要求が高いと判断する例を示した。しかし、ドライバーのアクセル踏み込み操作によるアクセル開度が所定開度以上になったとき、ドライバー加速要求が高いと判断する例としても良い。さらに、アクセル開度偏差とアクセル開度を組み合わせてドライバー加速要求が高いと判断する例としても良い。 In the first embodiment, the driver acceleration request is high when the accelerator opening deviation due to the driver's accelerator depression operation is greater than or equal to a predetermined value, or when the time from the driver's brake operation to the accelerator operation is less than the predetermined time. An example of judging is given. However, it may be an example in which it is determined that the driver acceleration request is high when the accelerator opening degree by the driver's accelerator depression operation becomes equal to or greater than a predetermined opening degree. Furthermore, it is good also as an example which judges that a driver acceleration request | requirement is high combining an accelerator opening deviation and an accelerator opening.
 実施例1では、発進シーンにおいて、ドライバー加速要求が高いと判断されると、モータ回転数を上昇させる制御を行う例を示した。しかし、「EVモード」での低速走行中にアクセル踏み込み操作する中間加速シーンにおいて、ドライバー加速要求が高いと判断されると、モータ回転数を上昇させる制御を行う例としても良い。 Example 1 shows an example in which control is performed to increase the motor speed when it is determined that the driver acceleration request is high in the start scene. However, in an intermediate acceleration scene in which the accelerator is depressed during low-speed traveling in the “EV mode”, if it is determined that the driver acceleration request is high, control for increasing the motor rotation speed may be performed.
 実施例1では、本開示の制御方法と制御装置を、1モータ・2クラッチと呼ばれるパラレルハイブリッド駆動系を有し、変速機としてベルト式無段変速機を搭載したFFハイブリッド車両に適用する例を示した。しかし、本開示の制御方法と制御装置は、変速機として、加速要求時に油圧締結されている変速用摩擦締結要素への油圧を高める油圧式有段変速機を搭載したハイブリッド車両にも適用することができる。さらに、滑り締結により回転差を吸収する第2クラッチを有さず、流体継ぎ手などにより回転差を吸収するようにしたハイブリッド車両にも適用することができる。 In the first embodiment, an example in which the control method and the control device of the present disclosure are applied to an FF hybrid vehicle having a parallel hybrid drive system called a one-motor / two-clutch and having a belt type continuously variable transmission as a transmission. Indicated. However, the control method and the control device of the present disclosure are also applicable to a hybrid vehicle equipped with a hydraulic stepped transmission that increases the hydraulic pressure to the frictional engagement element for shifting that is hydraulically engaged when acceleration is requested. Can do. Furthermore, the present invention can also be applied to a hybrid vehicle that does not have the second clutch that absorbs the rotation difference by sliding engagement but absorbs the rotation difference by a fluid coupling or the like.

Claims (7)

  1.  駆動源から駆動輪へ至る駆動系に、エンジンと摩擦クラッチとモータと変速機が搭載され、
     前記摩擦クラッチと前記変速機を油圧作動とし、これらの油圧源として前記モータにより回転駆動されるオイルポンプを設け、
     前記モータを駆動源とする運転モードのとき、エンジン始動要求が成立すると、前記摩擦クラッチを締結し、前記モータを始動モータとして前記エンジンをクランキング始動するハイブリッド車両の制御方法において、
     前記モータを駆動源とする運転モードのとき、前記モータの回転数を、前記摩擦クラッチが許容する許容差回転数を超える回転数域の目標回転数まで上昇させ、
     前記モータの回転数を上昇させているとき、前記エンジン始動要求が成立すると、前記モータの回転数を低下させる
     ことを特徴とするハイブリッド車両の制御方法。
    The drive system from the drive source to the drive wheels is equipped with an engine, friction clutch, motor, and transmission,
    The friction clutch and the transmission are hydraulically operated, and an oil pump that is rotationally driven by the motor is provided as a hydraulic source of these,
    In an operation mode using the motor as a drive source, when an engine start request is established, the friction clutch is engaged, and the engine is cranked and started using the motor as a start motor.
    When in the operation mode using the motor as a drive source, the rotational speed of the motor is increased to a target rotational speed in a rotational speed range exceeding the allowable rotational speed allowed by the friction clutch,
    The method of controlling a hybrid vehicle, wherein when the engine start request is satisfied while the rotational speed of the motor is increased, the rotational speed of the motor is decreased.
  2.  請求項1に記載されたハイブリッド車両の制御方法において、
     前記モータを駆動源とする運転モードのとき、ドライバー操作によるドライバー加速要求が通常加速要求よりも高いかどうかを判断し、
     前記ドライバー加速要求が通常加速要求以下であると判断されると、前記モータの回転数を前記摩擦クラッチが許容する許容差回転数とし、
     前記ドライバー加速要求が通常加速要求よりも高いと判断されると、前記モータの回転数を前記目標回転数まで上昇させる
     ことを特徴とするハイブリッド車両の制御方法。
    The hybrid vehicle control method according to claim 1, wherein:
    When the operation mode using the motor as a drive source, it is determined whether the driver acceleration request by the driver operation is higher than the normal acceleration request,
    When it is determined that the driver acceleration request is equal to or less than the normal acceleration request, the rotation speed of the motor is set as a permissible rotation speed allowed by the friction clutch,
    When it is determined that the driver acceleration request is higher than the normal acceleration request, the rotational speed of the motor is increased to the target rotational speed.
  3.  請求項2に記載されたハイブリッド車両の制御方法において、
     ドライバーのアクセル踏み込み操作による所定時間当たりのアクセル開度の変化量であるアクセル開度偏差が所定値以上であるとき、ドライバー加速要求が通常加速要求よりも高いと判断し、
     前記ドライバー加速要求が通常加速要求よりも高いと判断されると、前記アクセル開度偏差が大きい値であるほど、前記目標回転数を高回転数に設定する
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle described in Claim 2,
    When the accelerator opening deviation, which is the amount of change in the accelerator opening per predetermined time due to the driver's accelerator depressing operation, is greater than or equal to a predetermined value, it is determined that the driver acceleration request is higher than the normal acceleration request,
    When it is determined that the driver acceleration request is higher than the normal acceleration request, the target rotational speed is set to a higher rotational speed as the accelerator opening deviation is larger. .
  4.  請求項2又は請求項3に記載されたハイブリッド車両の制御方法において、
     ドライバーのブレーキ操作からアクセル操作への踏みかえ時間が所定時間以下であるとき、ドライバー加速要求が通常加速要求よりも高いと判断し、
     前記ドライバー加速要求が通常加速要求よりも高いと判断されると、前記踏みかえ時間が短い時間であるほど、前記目標回転数を高回転数に設定する
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle according to claim 2 or claim 3,
    When the time for the driver to switch from the brake operation to the accelerator operation is less than the predetermined time, the driver acceleration request is determined to be higher than the normal acceleration request,
    When it is determined that the driver acceleration request is higher than the normal acceleration request, the target rotational speed is set to a higher rotational speed as the changeover time is shorter.
  5.  請求項2から請求項4までの何れか一項に記載されたハイブリッド車両の制御方法において、
     ドライバー加速要求が通常加速要求よりも高いと判断され、かつ、前記変速機の油温が所定値以上であるとき、前記モータの回転数を前記目標回転数まで上昇させる
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle as described in any one of Claim 2 to Claim 4,
    A hybrid vehicle characterized in that when the driver acceleration request is determined to be higher than the normal acceleration request and the oil temperature of the transmission is equal to or higher than a predetermined value, the rotational speed of the motor is increased to the target rotational speed. Control method.
  6.  請求項2から請求項5までの何れか一項に記載されたハイブリッド車両の制御方法において、
     前記エンジンと前記モータとの間に介装した摩擦クラッチを第1クラッチというとき、前記モータと前記駆動輪の間に第2クラッチを介装し、
     前記モータを駆動源とする発進操作時、ドライバー加速要求が通常加速要求よりも高いと判断されると、前記モータの回転数を、前記目標回転数まで上昇させ、
     前記モータの回転数上昇を前記第2クラッチの滑り締結により吸収し、前記第2クラッチの締結容量制御により前記駆動輪への伝達トルクを目標駆動力相当とする駆動トルクコントロール発進モードで発進する
     ことを特徴とするハイブリッド車両の制御方法。
    In the control method of the hybrid vehicle as described in any one of Claim 2-5,
    When the friction clutch interposed between the engine and the motor is referred to as a first clutch, a second clutch is interposed between the motor and the driving wheel,
    During a start operation using the motor as a drive source, if it is determined that the driver acceleration request is higher than the normal acceleration request, the rotational speed of the motor is increased to the target rotational speed,
    Starting up in a drive torque control start mode in which the increase in the rotational speed of the motor is absorbed by slip engagement of the second clutch, and the transmission torque to the drive wheels is equivalent to the target drive force by the engagement capacity control of the second clutch. A control method of a hybrid vehicle characterized by the above.
  7.  駆動源から駆動輪へ至る駆動系に、エンジンと摩擦クラッチとモータと変速機が搭載され、
     前記摩擦クラッチと前記変速機を油圧作動とし、これらの油圧源として前記モータにより回転駆動されるオイルポンプを設け、
     前記モータを駆動源とする運転モードのとき、エンジン始動要求が成立すると、前記摩擦クラッチを締結し、前記モータを始動モータとして前記エンジンをクランキング始動するコントローラを備えるハイブリッド車両の制御装置において、
     前記コントローラは、
     前記モータを駆動源とする運転モードのとき、前記摩擦クラッチが許容する許容差回転数を超える回転数域の目標回転数まで上昇させ、
     前記モータの回転数を上昇させているとき、前記エンジン始動要求が成立すると、前記モータの回転数を低下させる処理を実行する
     ことを特徴とするハイブリッド車両の制御装置。
    The drive system from the drive source to the drive wheels is equipped with an engine, friction clutch, motor, and transmission,
    The friction clutch and the transmission are hydraulically operated, and an oil pump that is rotationally driven by the motor is provided as a hydraulic source of these,
    In an operation mode using the motor as a drive source, when an engine start request is established, the friction clutch is engaged, and the hybrid vehicle control device includes a controller that starts cranking the engine using the motor as a start motor.
    The controller is
    When in the operation mode using the motor as a drive source, increase to a target rotational speed in a rotational speed range exceeding the allowable rotational speed allowed by the friction clutch,
    A control apparatus for a hybrid vehicle, wherein when the engine start request is satisfied while increasing the rotation speed of the motor, a process of decreasing the rotation speed of the motor is executed.
PCT/JP2016/084695 2016-11-24 2016-11-24 Control method and control device for hybrid vehicle WO2018096604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084695 WO2018096604A1 (en) 2016-11-24 2016-11-24 Control method and control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084695 WO2018096604A1 (en) 2016-11-24 2016-11-24 Control method and control device for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2018096604A1 true WO2018096604A1 (en) 2018-05-31

Family

ID=62194950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084695 WO2018096604A1 (en) 2016-11-24 2016-11-24 Control method and control device for hybrid vehicle

Country Status (1)

Country Link
WO (1) WO2018096604A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301399A (en) * 2018-12-12 2020-06-19 丰田自动车株式会社 Hybrid vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262749A (en) * 2008-04-24 2009-11-12 Nissan Motor Co Ltd Start controller for hybrid vehicle
JP2010083426A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Control device and method of hybrid vehicle
JP2010190267A (en) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd Driving force control device and driving force control method for vehicle
JP2012250602A (en) * 2011-06-02 2012-12-20 Fuji Heavy Ind Ltd Control device of hybrid vehicle
JP5955455B2 (en) * 2013-03-21 2016-07-20 日産自動車株式会社 Hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262749A (en) * 2008-04-24 2009-11-12 Nissan Motor Co Ltd Start controller for hybrid vehicle
JP2010083426A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Control device and method of hybrid vehicle
JP2010190267A (en) * 2009-02-16 2010-09-02 Nissan Motor Co Ltd Driving force control device and driving force control method for vehicle
JP2012250602A (en) * 2011-06-02 2012-12-20 Fuji Heavy Ind Ltd Control device of hybrid vehicle
JP5955455B2 (en) * 2013-03-21 2016-07-20 日産自動車株式会社 Hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301399A (en) * 2018-12-12 2020-06-19 丰田自动车株式会社 Hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5521340B2 (en) Control device for hybrid vehicle
EP3275752B1 (en) Starting control device for vehicle and starting control method
JP5980436B2 (en) Control device for hybrid vehicle
JP6420461B2 (en) Control device for hybrid vehicle
RU2660088C1 (en) Device for the vehicle speed recuperative control
JP6614597B2 (en) Control device for hybrid vehicle
US20140088813A1 (en) Control device
EP3231679B1 (en) Hybrid vehicle control device and hybrid vehicle control method
US20180043880A1 (en) Control device
WO2014170749A1 (en) Control device for vehicle
JP4992457B2 (en) Drive device for hybrid vehicle
JP2018177084A (en) Control method of hybrid vehicle and control device of hybrid vehicle
JP5696495B2 (en) Control device for hybrid vehicle
WO2018096604A1 (en) Control method and control device for hybrid vehicle
JP6409363B2 (en) Control device for hybrid vehicle
JP2021054135A (en) Control method and control device for hybrid vehicle
JP2004251452A (en) Controller for hybrid vehicle
WO2014156931A1 (en) Failure determination device for hybrid vehicles and failure determination method therefor
JPWO2018189891A1 (en) HYBRID VEHICLE CONTROL METHOD AND HYBRID VEHICLE CONTROL DEVICE
JP5696502B2 (en) Control device for hybrid vehicle
JP5257143B2 (en) Control device for hybrid vehicle
JP6717063B2 (en) Control method and control device for hybrid vehicle
JP2006189113A (en) Automobile and method for controlling the same
JP5998921B2 (en) Control device for hybrid vehicle
JP5391177B2 (en) Vehicle speed change control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP