WO2018095409A1 - 一体化综合采集图像数据的方法及其取证验证系统 - Google Patents
一体化综合采集图像数据的方法及其取证验证系统 Download PDFInfo
- Publication number
- WO2018095409A1 WO2018095409A1 PCT/CN2017/112875 CN2017112875W WO2018095409A1 WO 2018095409 A1 WO2018095409 A1 WO 2018095409A1 CN 2017112875 W CN2017112875 W CN 2017112875W WO 2018095409 A1 WO2018095409 A1 WO 2018095409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- positioning
- lens
- collector
- housing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/51—Housings
Definitions
- the invention relates to the field of image data collection, discloses a method for comprehensively collecting and collecting image data and a forensic verification system thereof, and is particularly suitable for the field of art scientific filing and verification technology, and the object to be collected is suitable for the artworks which are conditionally allowed to contact the instrument, and Applicable to artworks that are restricted by the cultural relics department and that are not allowed to be touched or flat or three-dimensional.
- the common methods for scientific archival of existing artworks are: firstly taking a whole image of the artwork with a camera; selecting microscopic image collection points on the artwork, and taking microscopic images of these collection points through a microscopic camera; artificial in art These collection points are marked on the copy or duplicated and printed parts of the product, and the position and number of these collection points are manually recorded; the overall image of the artwork and the location and number of the collection points are stored in the database, and the data storage and management needs to be The data of the camera and the microscopic camera are synthesized.
- the business is cumbersome and error-prone. Once the error occurs, it will lead to serious consequences in the future, and will affect the credibility of the scientific record-keeping business.
- the present invention provides an integrated method for comprehensively collecting image data and a forensic verification system thereof, which can realize storage integration, scientifically rigorous fixed-point collection and record verification and fixed-point restoration verification, and improve filing and verification. Credibility and security, and increase the speed of filing and verification.
- the embodiment of the invention discloses a method for comprehensively collecting image data, which comprises:
- Step 200 The master camera captures a relative positioning image of the micro image positioning collector and the collected object, including:
- the microscopic image localization collector independent of the main control camera is placed relative to the region of interest of the object to be captured, and the micro image positioning acquisition is performed via a built-in lens on the master camera or a combination of the built-in lens and the external lens. a relative positioning image of the object and the object to be collected, wherein the relative positioning image includes a positioning identifier of the microscopic image positioning collector;
- the micro image positioning collector includes:
- a housing having a positioning identifier, the positioning identifier including an edge contour formed on the bottom edge of the housing adjacent to the object to be collected and/or a positioning mark on the bottom edge;
- a macro-amplified combined lens and an image sensor are mounted in the housing, and a macro-amplified combined lens is used to image an enlarged optical image of the object to be collected, the image sensor is located behind the macro-magnification combined lens, and the optical image is Converted to an electrical signal;
- a circuit board connected to the image sensor including a photographing control command execution circuit and a circuit for processing and transmitting an electrical signal of the image sensor as a digital image signal, the photographing control command execution circuit executing according to a photographing control command from the master photographing device Imaging control
- a communication interface one end of which is wired or wirelessly connected to the main control camera independently of the micro image positioning collector, and the other end is connected to the circuit board for receiving shooting control commands from the main control camera and Outputting the digital image signal to the master shooting device;
- the circuit board and the communication interface are located in the housing or are connected to the housing In the bracket auxiliary positioning device;
- Step 300 transmitting the microscopic image collected by the micro image positioning collector to the main control photographing device under the photographing control of the main control photographing device,
- step 200 and step 300 can be performed one or more times in the order required.
- the embodiment of the invention discloses a forensic verification system, comprising: a micro image positioning collector, comprising: a housing, the housing having a positioning identifier, the positioning identifier comprising the housing being formed near a bottom edge of the object to be collected Positioning marks on the edge contour and/or the bottom edge; a macro-magnifying combined lens and an image sensor mounted in the housing, the macro-magnifying combined lens for imaging an enlarged optical image of the object to be collected, the image sensor being located Rearward of the macro-amplified combination lens, converting the optical image into an electrical signal; a circuit board connected to the image sensor, including a shooting control command execution circuit and a circuit for processing the electrical signal of the image sensor into a digital image signal and transmitting,
- the photographing control command execution circuit performs imaging control according to a photographing control command from the main control photographing device; one end of the communication interface is wired or wirelessly connected to the main control photographing device independent of the micro image positioning collector, and One end is connected to the circuit board for receiving
- the embodiments of the invention include the following advantages:
- the whole image data acquisition and the micro image data acquisition are integrated, and a convenient integrated integrated image data system is formed.
- the main control camera for shooting control is combined with various lenses and combined with a plurality of micro image positioning collectors to form an integrated integrated image data system. This avoids the previous synthesis work required for the camera and micro-photographing equipment to separately collect the same item data and store them in the database, and avoids the inevitable mistakes of the later synthesis work, improves the work efficiency, and improves the existing scientific filing technology.
- the volume is obviously smaller, and the shape can be designed according to the needs and the positioning mark is added around the lens, which not only facilitates accurate positioning of image data forensics, but also facilitates image data verification.
- Accurate reset, flexible operation can carry out contact positioning shooting for certain items, and can also perform non-contact positioning shooting on certain items, thus solving the problem that some untouchable cultural relics are inconveniently positioned to obtain microscopic image information.
- FIG. 1 is a perspective view of an embodiment of a microscopic image localization collector.
- Figure 2 is a cross-sectional view of Figure 1.
- Figure 3 is a cross-sectional view of the variation of Figure 1.
- FIG. 4 is a schematic block diagram of another embodiment of a microscopic image localization collector.
- FIG. 5 is a structural block diagram of a forensic verification system.
- FIG. 6 is a schematic diagram of positioning of a microscopic image positioning collector for contact microscopic image acquisition on a façade for a planar object.
- FIG. 7 is a schematic diagram of positioning of a microscopic image positioning collector on a desktop for contactless microscopic image acquisition on a planar object.
- Figure 8 is a microscopic image positioning collector for a contactless microscopic image on a desktop for a three-dimensional object. Schematic diagram of the acquisition.
- FIG. 9 is a schematic diagram of positioning of a microscopic image positioning collector for contactless microscopic image acquisition on a façade for a planar object.
- Figure 10 is a schematic view showing the structure of an iron plate.
- Figure 11 is a schematic view of the bottom shape of the base.
- FIG. 12 is a flow chart of an embodiment of a method for integrated integrated image data acquisition of the present invention.
- Figure 13 shows a schematic diagram of the forensic shooting step.
- FIG. 12 An embodiment of an integrated method for collecting image data according to the present invention is described with reference to FIG. 12, which may specifically include the following steps:
- the master shooting device 500 captures an overall image of the object 300, including: according to the characteristics of the object 300 (such as its shape characteristics and size), via the built-in lens or the built-in lens on the master camera 500.
- the overall image of the object 300 is taken in combination with an additional lens.
- the image taken in step 100 may also include images of the manufacturer and/or owner of the object being collected and/or an image collector or the like.
- the built-in lens can be a standard lens or the like.
- the external lens can include a wide-angle lens and/or a multiplier lens that is detachably mounted in front of the built-in lens, and different external lens combinations can be selected depending on the situation.
- Step 200 The master shooting device 500 captures a relative positioning image of the micro image positioning collector 100 and the object 300, including:
- the microscopic image positioning collector 100 which is independent of the main control camera 500, is positioned relative to the object to be collected
- the region of interest of 300 is placed, and the relative positioning image of the micro image positioning collector 100 and the object 300 is captured via a built-in lens on the master camera 500 or a combination of the built-in lens and the external lens, and the relative positioning image includes
- the positioning identifier of the microscopic image positioning collector 100 includes a contour formed by the housing 110 near the bottom edge 111 of the object 300 and/or a positioning mark on the bottom edge 111.
- the relative positioning image can display the corresponding positioning relationship between the bottom and the surrounding surface features of the collected object.
- the region of interest refers in particular to an area on the object that is clearly characterized and easily identifiable.
- it can be a stamp, an irregular shape, a distinct distinction from the surroundings, and the like.
- the contour of the bottom edge itself can constitute a positioning mark.
- the outline of the bottom edge may be a smooth shape such as a circle, an ellipse, or the like.
- the bottom edge may have an angular shape on the contour, such as a square or a circle or an ellipse or a triangle or a star or a polygon or an arbitrary shape, which can be better positioned by the corners.
- the positioning mark on the bottom edge can be any element that functions as a positioning function, such as a tick mark, a corner mark, a bump, a dot, a number, and the like.
- the bottom edge may be formed by an outer edge of the casing. In this way, at the time of shooting, the bottom edge can be exposed compared to other parts on the casing, so that the positioning mark can be conveniently displayed.
- the structure of the micro image positioning collector 100 can be referred to the following description.
- the microscopic image localization collector can be placed relative to the object to be collected 300 in a contact or non-contact manner, where the contact can be direct contact or indirect contact.
- the image captured by the step 200 may include the microscopic image positioning collector 100 and the overall image of the object to be collected.
- the built-in lens or the built-in lens of the master shooting device 500 it is preferable to use to cooperate with the wide-angle lens.
- it may also be a partial image, including only the image near the surface corresponding to the object 300 collected by the micro image positioning collector 100, that is, the positioning mark including the housing 110, and the object 300 and the housing 100 viewed in the shooting direction.
- the image may also contain images of the manufacturer and/or owner of the object being collected and/or the person concerned, such as an image collector.
- Step 300 under the shooting control of the master shooting device 500, the micro image positioning collector will be The microscopic image acquired by 100 is transmitted to the master camera 500.
- step 200 and step 300 can be performed one or more times in sequence, so that microscopic images of a plurality of different collection points can be taken.
- step 100 can be omitted and step 200 and step 300 can be directly performed.
- the order of step 100 is also arbitrary and may be before or after step 200, before or after step 300.
- Figure 13 shows a schematic diagram of the forensic shooting step.
- the image signal generated by the micro image positioning collector 100 is transmitted to the master shooting device 500, and the master camera 500 performs microscopic image positioning collector shooting control to store the forensic image represented by the image signal.
- the captured image is viewed and displayed by the screen on the mastering camera 500. This is convenient for observation.
- the above steps form a complete and accurate process of image data acquisition, and the image data acquired by each step are sequentially input into the main control camera, and each piece of the collected object naturally forms a separate data area. It is convenient for direct storage and transfer, and is conducive to the formation of integrated collection, precise positioning, integrated management and application.
- the microscopic image positioning collector is placed relative to the object to be taken, and shooting is performed under the control of the master shooting device.
- photographing is performed under the control of the photographing control command execution circuit of the board.
- the image sensor converts the optical image formed by the macro-amplified combination lens into an electrical signal, converts it into a digital image signal via the image sensor processing circuit, and then transmits it to the master camera by wireless or wired communication interface.
- the micro image positioning collector itself does not have a storage function.
- the lens of the prior art must be installed on the photographing device itself, and cannot be separated from the photographing device.
- the micro image positioning collector is separated from the main photographing device for performing shooting control, and the micro image positioning collector itself does not perform shooting control.
- the image imaged by the micro image positioning collector must be stored in the main control camera in a timely manner through the wired or wireless connection under the shooting control of the master camera, thus avoiding the prior art separately stored in the camera,
- the synthetic operations required for data management of the same item in the microscope prevent errors that are easily made after the synthesis.
- the micro image positioning collector can be designed according to the shape and volume of the image, and can be placed in any part that needs to be forensic, and the operation is flexible.
- the shell shape can be designed according to the contact and non-contact type of positioning requirements for obtaining microscopic images of various items.
- the method may further include a step 400 of outputting data in the storage device of the master camera 500 to another storage medium.
- Another storage medium is, for example, a recorder or a network Storage platform, etc.
- step 200 contact microscopic image data acquisition is performed on the contactable objects with the microscopic image localization collector 100.
- the macro-amplifying combination lens 1 may not protrude from the bottom surface of the housing 110, and the magnetic member 5 mounted to the bottom surface of the object 300 by the housing cooperates with the iron plate below the object 300 to be collected, and the housing 110 is attracted to be collected.
- the object to be collected 300 may be first placed on the iron plate 400, and then the microscopic image positioning collector 100 is adsorbed thereon.
- the position of the microscopic image positioning collector 100 with respect to the object to be collected 300 can be known by the positional correspondence of the two of the captured positioning images.
- step 200 is a contactless positioning capture step of microscopic image localization collector 100.
- the macro-amplifying combination lens 1 can extend out of the bottom surface of the housing 110, and the positioning bracket 120 connected to the housing 110 assists the positioning device 120 to suspend and support the micro-image positioning collector 100, and the image collection point on the object 300.
- the distance can be preset, for example 1 mm, or 3 mm, 5 mm, preferably no more than 15 mm, more preferably no more than 10 mm. Restore it to this distance when restoring verification.
- the image signal generated by the microscopic image positioning collector 100 can be transmitted to the master shooting device 500, and the image represented by the image signal is observed by the screen on the mastering device 500, and the adjustment distance is stopped when the image is clear. This makes it easy to determine the distance of the microscopic image localization collector 100 from the object to be collected 300. Of course, the distance can also be roughly determined by observation.
- the other orientations of the microscopic image localization collector 100 with respect to the object 300 can be known by the positional correspondence of the two of the captured positioning images.
- the attachment bracket assisted positioning device 120 can also have a mechanism for manually or automatically adjusting the angle or elevation.
- connection bracket auxiliary positioning device 120 may also have a positioning indicator such that the position of the microscopic image positioning collector 100 can be conveniently determined using the positioning indicator.
- the iron plate 200 may have a positioning mark, and the magnetic base 122 may also have a positioning mark.
- the positioning marks of the components can be composed of the contours of the components themselves or on the components.
- the additional positioning mark is formed, and the positioning mark can be any element that functions as a positioning function.
- a plurality of different positioning modes are disclosed in the foregoing embodiments. It should be understood that these positioning modes can be used in combination as long as they do not conflict, which is more helpful for the acquisition and positioning of the microscopic image positioning collector 100, thereby enabling subsequent The position of the microscopic image localization collector 100 is accurately restored in the verification method.
- the method of verifying image data is as follows.
- the relative positioning image captured in the foregoing step 200 (which may also assist the overall image captured in step 100) is placed on the micro image positioning collector 100 relative to the object to be verified, and restored to the position corresponding to step 200. Since the position of the micro image positioning collector 100 is accurately determined by various methods at the time of acquisition, and the positioning image is photographed, it is easy to accurately restore the micro image positioning collector 100 in place during verification.
- the microscopic verification image acquired via the micro image positioning collector 100 is transmitted to the master camera 500 under the shooting control of the master camera 500; this step is the same as the aforementioned step 300.
- the microscopic verification image is compared with the microscopic image taken in the aforementioned step 300 to determine whether the object to be verified is the object 300 in the aforementioned step 200.
- the verification can be performed by a computer or manually by a verification professional.
- the micro image positioning collector here may be used in the original acquisition, or may be a micro image positioning collector of the same product type. Verification can be done at different times and in different places.
- the image utilized here may be stored in the original master camera or data transferred from the original master camera to other media such as a separate database or the like.
- micro image positioning collector is described in detail below.
- the microscopic image positioning collector includes a housing 110 in which a macro-amplifying combined lens 1 and an image sensor are mounted, and the macro-amplifying combined lens 1 is used to image an enlarged optical image of the object to be collected, and the image sensor is located Macro zooming the rear of the combined lens 1 converts the optical image into an electrical signal.
- the macro-magnifying combined lens 1 is used for imaging an optically magnified image of the object to be collected, and may be a macro-magnifying combined lens having various magnifications, for example, 10 times, 15 times, 30 times, 40 times or even higher, and set as needed Just fine.
- the housing 110 has a chamber 10d facing the bottom surface of the object, and the macro-amplifying combination lens 1 is located in the chamber 10d, and the lens barrel can be detachably connected in the housing, so that different magnifications are facilitated.
- the magnification of the macro zoom combination lens 1 is replaced, and only the entire lens barrel needs to be taken out to replace the lens barrel with different magnification lenses.
- the term combination lens does not mean that There are any restrictions on the quantity.
- the object distance range of the macro-amplifying combination lens 1 may be 1 mm, or 3 mm, 5 mm, preferably not more than 15 mm, more preferably not more than 10 mm, and the macro range mentioned herein means such a small range. Of course, more than this range can be used, but the effect of use will be greatly reduced, because accurate positioning cannot be performed at this time, and the positioning here is to determine the placement position of the microscopic image positioning collector with respect to the collected object.
- the image sensor belongs to a structure commonly used in the art, and its structure, installation, and the like are easily conceivable by those skilled in the art, and can be flexibly set according to specific conditions, and thus are not shown in the drawings.
- the circuit board 2 is connected to an image sensor, and includes a photographing control command execution circuit and an image sensor signal processing circuit.
- the photographing control command execution circuit performs imaging control according to a photographing control command for receiving the self-controlled photographing device, which is a conventional setting in the art, such as controlling a shutter, an aperture, an image sensor, and the like of the lens.
- the image sensor signal processing circuit is for converting an electrical signal of the image sensor into a digital signal and transmitting it. The arrangement of these circuits is easily conceivable by those skilled in the art and will not be described again.
- the communication interface 3 is wired or wirelessly connected to the main control device independent of the micro image positioning collector, and the other end is connected to the circuit board 2 for receiving the shooting control command from the main control device and outputting the digital image signal. To the master camera.
- the circuit board 2 and the communication interface 3 may be located in the housing 110 or in the connection bracket auxiliary positioning device 120 that is coupled to the housing 110.
- the housing 110 has a positioning indicator that includes a contour formed by the housing 110 near the bottom edge 111 of the object 300 and/or a positioning mark on the bottom edge 111.
- the contour of the bottom edge itself can constitute a positioning mark.
- the outline of the bottom edge may be a smooth shape such as a circle, an ellipse, or the like.
- the bottom edge may have an angular shape on the contour, such as a square or a circle or an ellipse or a triangle or a star or a polygon or an arbitrary shape, which can be better positioned by the corners.
- the positioning mark on the bottom edge can be any element that functions as a positioning function, such as a tick mark, a corner mark, a bump, a dot, a number, and the like.
- the bottom edge may be formed by the outer periphery of the housing facing the side of the object to be collected.
- the bottom edge can be exposed compared to other parts on the casing, so that the positioning mark can be conveniently displayed, and thus the corresponding positioning relationship with the surrounding surface features of the object to be collected can be displayed.
- the positioning marks of the components mentioned herein may be composed of the contours of the components themselves or by positioning marks provided on the components, and the positioning marks may be any of the aforementioned elements that function as positioning functions.
- FIG. 1 is a perspective view of an embodiment of a microscopic image localization collector.
- Figure 2 is a cross-sectional view of Figure 1.
- the circuit board 2 and the communication interface 3 are located in the housing 110.
- a lens focusing device may also be included for implementing automatic or manual focusing of the macro zoom combination lens.
- the lens focusing device includes a movable lens, a micro motor that drives the movable lens, and a micro motor driving circuit, and the movable lens may be a part of the macro zoom combination lens or a separate lens.
- the focusing device can be set as needed. Under the inspiration of the present application, those skilled in the art can flexibly set various focusing devices to facilitate adapting to different applications.
- an illumination device may also be included that includes more than one illuminator that can be placed at any suitable location radially outward of the macro-amplified combination lens 1 as long as it is guaranteed that the light source can be provided or supplemented to the area of the object being captured Yes, it can be set as needed. In this way, the shooting of the micro image positioning collector is not affected by the external light source.
- the housing 110 is provided with a positioning scale line 110a near the bottom edge of the object to be collected, and a positioning angle indicator 110b is provided at the corner of the bottom edge.
- the contour of the housing 110 itself has a positioning angle, for example, by using the shape of the housing itself corresponding to one side of the object to be collected (such as a square or a circle or an ellipse or a triangle or a star). The corners on the polygon or any shape are used as the markers to perform the positioning.
- positioning can be performed using its own contour as an indicator.
- the macro-amplifying combination lens 1 may not protrude from the bottom surface of the housing 110, and the distance from the bottom surface of the housing 110 is substantially equal to the object distance of the macro-magnification combined lens, that is, the object distance is substantially in the housing.
- This configuration is particularly suitable for performing contact acquisition, ie the housing directly or indirectly contacts the object 300 being collected.
- the bottom surface of the casing 110 facing the object to be collected may further be provided with one or a plurality of magnetic member circular holes 10e for mounting the magnetic member 5, and the magnetic member 5 is mounted in the magnetic member circular hole 10e.
- the microscopic image positioning collector is conveniently fixed and fixed, for example, by being combined with the iron plate 400 under the object to be collected and fixed, and is suitable for the occasion of contacting the collected object.
- the macro-amplifying combination lens 1 can protrude from the bottom surface of the housing 110. This configuration is particularly suitable for implementing contactless acquisition. At this time, the magnetic member 5 may not be mounted in the magnetic member circular hole 10e.
- the attachment bracket assisted positioning device 120 is detachably coupled to the housing 110 for suspending support of the microscopic image localization collector in a manner that is not in contact with the object being collected.
- the attachment bracket auxiliary positioning device 120 can be inserted into the slot 10c (see FIG. 1) on the housing 110.
- board 2 and The communication interface 3 can be located in the housing 110 or can also be located in the connection bracket auxiliary positioning device 120.
- the macro-amplifying combination lens 1 can protrude from the bottom surface of the housing 110. In this way, in the case that the collected object does not allow contact, the microscopic image positioning collector can perform data acquisition away from a certain distance in a manner that it does not contact the collected object.
- the attachment bracket assisted positioning device 120 can take a variety of configurations, such as a straight rod as shown in FIG.
- the connection bracket auxiliary positioning device 120 can have a positioning identifier, which can be opposite to the positioning scale line on the bottom side of the object of the microscopic image positioning collector, so that the micro image positioning collector can be conveniently performed. Positioning.
- the attachment bracket assisted positioning device 120 can include a base and a linkage.
- the base can be a magnetic base, so that the magnetic base is adsorbed on the iron plate, and the microscopic image positioning collector can be stably suspended.
- the lens barrel of the macro-amplifying combination lens 1 can be connected to the housing in a vertically movable manner, and the lower end of the lens barrel faces the object to be collected.
- the macro-magnifying combination lens 1 can be extended or not extended beyond the bottom surface of the housing 110 according to different needs, thereby changing the object distance between the macro-magnifying combination lens 1 and the object to be collected according to requirements, and the shooting can be performed.
- the focus is positioned at the bottom surface of the housing, and the contact imaging of the housing is performed, and the shooting focus can be positioned beyond the bottom surface of the housing, and even the macro zoom combination lens can be detected at an appropriate distance from the housing to perform contactless shooting.
- the range of object distances can be based on lens characteristics and their needs.
- a lens mount 6 may be included, and a lift adjustment device is disposed between the lens mount 6 and the housing, such that the lens mount 6 is movably mounted inside the housing and is enlarged with the macro zoom lens 1
- the upper end of the lens barrel is detachably connected.
- the illuminating device 4 can also be mounted on the lens mount 6, so that the combined mounting of the components is achieved with a simple structure.
- the housing 110 includes an upper housing 10a and a lower housing 10b, and the lens connector 6 is detachably coupled under the circuit board 2, and the lens barrel of the combined lens 1 is enlarged with the macro.
- the upper end of the lens barrel is detachably connected, the lower end of the lens barrel faces the object to be collected, and a gasket 8 is disposed between the circuit board 2 and the lower casing 10b, and the fastener 9 is passed through the gasket 8 to mount the circuit board 2 on the lower casing 10b.
- the macro-amplifying combination lens 1 can be extended or retracted into the chamber 10d as needed.
- the macro-amplifying combination lens 1 extends out of the chamber 10d, similar to that shown in FIG. 3, in which case the collector does not touch the object 300 during operation; after the gasket is added, the macro-magnification combination is made.
- the lens 1 is retracted into the chamber 10d as shown in FIG. 2, and the collector 300 can be contacted while the collector is operating. With this setup, the same collector can transform multiple structures for different The occasion.
- a gasket 8 is provided between the lens mount 6 and the lower casing 10b.
- This example differs from FIG. 2 in that the seat plate 61 of the lens mount 6 is attached to a housing, such as the illustrated lower housing. With this setup, the same collector can be transformed into a variety of configurations for different applications.
- the macro-amplified combination lens 1 can be mounted in the housing 110 in any suitable manner.
- the lens mount 6 is detachably connected under the circuit board 2, and is detachably connected to the upper end of the lens barrel of the macro-amplifying combination lens 1, the lower end of the lens barrel.
- the illumination device 4 can also be mounted on the lens mount 6 on the radially outer side of the lens barrel for providing or supplementing the light source to the area of the object being collected.
- the microscopic image positioning collector faces one side of the object to be collected, and can decide whether it can be in contact with it according to the management needs of the collected object. Those objects that are subject to the regulations of cultural relics management are not allowed to be in direct contact with them, and their microscopic images can only be obtained by non-contact.
- the closest object distance of the macro-amplifying combination lens can be controlled at about 1mm, and can be accurately positioned by 2g, 3mm, etc. according to the needs of different object distance positions, and the controllable operation basis of such a close object distance
- the precise positioning and accurate reset of the micro image positioning collector is very important.
- the housing 110 may be a housing that is integrally connected to the upper and lower sides, and may be divided into an upper housing 10a and a lower housing 10b, and even more portions are combined into a single housing. Macro-amplified combination lens, illumination device, image sensor, circuit board, and interface, etc., can be placed in a specific part of the housing according to the overall design, including somewhere in the housing, the lower housing or the upper housing or Between the upper casing and the lower casing, and the like.
- the micro image positioning collector can design its shape (for example, circular, square, etc.) and volume according to needs, and can be flexibly operated in any part that needs to be forensic, and can use its own positioning scale, angle mark and connecting bracket to assist the positioning device.
- the positioning mark and the positioning mark of the iron plate implement non-contact positioning.
- the microscopic image localization collector may also include some other conventional structures.
- a power supply interface may be provided on the housing for powering various electrical components, such as image sensors, lighting devices, circuit boards, etc., and the power supply interface and the communication interface may be different components, although they may be the same component.
- a shutter assembly, a focusing structure, etc. which are well-known structures in the field of imaging, will not be described again in order to unnecessarily obscure the focus of the present application.
- Figure 6 is a microscopic image positioning collector engaged in contact microscopic image mining on a façade for flat objects.
- the object 300 is a flat book, and the object 300 is placed on the iron plate 400.
- the macro-amplifying combination lens 1 may not protrude beyond the bottom surface of the casing 110, and the casing 110 may be attached with the magnetic member 5 facing the bottom surface of the object to be collected.
- the housing 110 is adsorbed on the object to be collected 300, and in particular, the collected object can be flattened to achieve better collection.
- the micro image positioning collector can also perform contact microscopic image acquisition on a desktop for flat objects.
- the housing 110 may not be provided with the magnetic member 5.
- FIG. 7 is a schematic diagram of positioning of a microscopic image positioning collector on a desktop for contactless microscopic image acquisition on a planar object.
- the object 300 is a flat book, and an iron plate 200 is placed under the object 300.
- the macro-amplifying combination lens 1 can extend out of the bottom surface of the housing 110, and the connection bracket auxiliary positioning device 120 is connected to the housing 110, and the micro-image positioning collector is suspended and supported for a distance without contact with the collected object.
- the attachment bracket assisted positioning device 120 can have a manual or automatic lifting mechanism to facilitate adjustment of the distance, and can also have a mechanism for manually or automatically adjusting the angle.
- the setting of the lifting mechanism and the adjusting angle mechanism is conventional, so it will not be described again.
- the connecting bracket auxiliary positioning device 120 may include a connecting rod 121, a magnetic base 122, and an iron flat plate 200 adsorbed under the magnetic base 122.
- the connecting rod 121 is connected to the housing 110.
- the attachment bracket auxiliary positioning device 120 can have a positioning indicator that facilitates determining the position of the housing 110.
- the link 121 has a positioning indicator 121a
- the magnetic base 122 can also have a positioning indicator.
- the aforementioned lifting mechanism or mechanism for adjusting the angle may be provided on the magnetic base 122.
- the iron plate 200 may have a thickness of, for example, about 1 mm. Such a micro image positioning collector can be positioned very stably to prevent its positional change.
- the iron plate 200 may have a positioning mark, for example, a positioning mark ring and/or a positioning angle mark 200a corresponding to the bottom shape of the magnetic base 122, and may also have a positioning scale corresponding to the collected object area.
- Line 200b which facilitates the positioning of the magnetic base 122 and subsequent restoration by the collection and collector during subsequent verification.
- the bottom of the magnetic base 122 may have various shapes, and the bottom periphery may have a positioning mark 122a, and of course, the bottom periphery may not be provided with a positioning mark.
- FIG. 8 is a schematic diagram of positioning of a microscopic image positioning collector for contactless microscopic image acquisition on a desktop for a three-dimensional object.
- the object 300 is a three-dimensional object, and iron is placed under the object 300. Quality plate 200.
- the macro-amplifying combination lens 1 can protrude from the bottom surface of the housing 110, and the connection bracket auxiliary positioning device 120 is connected to the housing 110.
- the link 121 can include the illustrated angled first and second rods, the first rod being coupled to the magnetic base 122 and the second rod being coupled to the housing 110.
- the link 121 also has a flexible tube 130 at the front end.
- the position of the housing 110 is conveniently adjusted by the flexible tube 130, and the housing 110 is not blocked too much when the master camera is photographed.
- the flexible pipe needs to have a certain rigidity to ensure that no sloshing occurs after positioning.
- the portion of the bottom portion 310 of the object 300 that is pressed on the iron plate 200 can also be used as a basis for positioning.
- FIG. 9 is a schematic diagram of positioning of a microscopic image positioning collector for contactless microscopic image acquisition on a façade for a planar object. This embodiment is similar to the embodiment shown in Figure 7, except that the contactless microscopic image acquisition is performed on the façade for planar objects. At this time, the magnetic setting effect of the iron plate 200 and the magnetic base 122 is more remarkable.
- Figures 6 through 9 illustrate the positioning of the microscopic image localization collector.
- the micro image positioning collector 100 is placed relative to the region of interest of the object 300, and the micro image positioning collector 100 is photographed via a built-in lens on the master camera 500 or a combination of the built-in lens and the external lens.
- the relative positioning image of the collected object 300 includes the positioning identifier of the microscopic image positioning collector 100 and the corresponding positioning relationship between the bottom edge of the outer casing and the surface features of the collected object. In this way, the position of the specific collection point of the collected object can be directly determined, and the collection point is not required to be additionally marked on the copy or the copy or the printed piece of the collected object.
- the microscopic image localization collector 100 then performs photographing under the photographing control of the master photographing device. After receiving the photographing control command from the self-controlled photographing device, photographing is performed under the control of the photographing control command execution circuit of the board.
- the image sensor converts the optical image formed by the macro-magnification combined lens into an electrical signal, converts it into a digital image signal via the image sensor processing circuit, and then synchronously transmits the image to the master camera by wireless or wired communication interface, microscopic image
- the positioning collector itself does not have a storage function.
- the lens of the prior art must be installed on the photographing device itself, and cannot be separated from the photographing device.
- the micro image positioning collector is separated from the main photographing device for performing shooting control, and the micro image positioning collector itself does not perform shooting control.
- the image imaged by the micro image positioning collector must be stored in the main control camera in a timely manner through the wired or wireless connection under the control of the master camera, thus avoiding the prior art separately stored in the camera and the microscope.
- the compositing operations required for data management of the same item in the middle prevent the mistakes that are easy to synthesize after the event.
- the micro image positioning collector can be designed as needed The shape and size, and can be placed in any part that needs to be forensic, flexible operation.
- the shell shape can be designed according to the contact and non-contact type of positioning requirements for obtaining microscopic images of various items.
- the micro image positioning collector After the image data is collected, that is, after the storage is recorded, it is necessary to perform the re-acquisition verification of the image in the original position. At this time, the micro image positioning collector is restored to the same position as the original collection position, the image of the collection point is taken again, and then compared with the previously taken image to determine whether the object to be verified is the previously collected object. . Due to the positioning profile and/or the positioning mark that the standardized microscopic image positioning collector itself has, the positioning image has been previously recorded, so it is easy to accurately restore it in place during verification.
- FIG. 5 Also disclosed is a forensic verification system, as shown in FIG. 5, comprising:
- micro image positioning collector 100 which is the micro image positioning collector described above;
- the master shooting device 500 includes:
- a lens or lens combination for taking a relative positioning image of the micro image positioning collector 100 with respect to the object 300;
- a micro image positioning collector shooting control module configured to send a shooting control command to the micro image positioning collector 100;
- the main control communication interface is configured to be wired or wirelessly connected to the communication interface of the micro image positioning collector 100, output the shooting control command to the micro image positioning collector 100, and receive the digital image signal from the micro image positioning collector 100;
- a storage device for storing an image taken by the lens or lens combination and an image captured by the microscopic image positioning collector 100;
- the forensic verification system can also include an iron plate 200 for placement under the object being collected. As shown in FIG. 10, the iron plate 200 may have a positioning mark.
- the forensic verification system may also include an iron plate 400.
- the master camera may further have a micro image positioning collector signal processing module for processing signals received by the master communication interface.
- Various processing of the signal can be performed as needed, which is common in the art and will not be described again.
- the embodiment of the present application at least includes the following advantages:
- the prior art lens must be mounted on the photographing device itself, and cannot be separated from the photographing device.
- the micro image positioning collector is separated from the main photographing device for performing photographing control, and the microscopic image positioning is collected.
- the camera itself cannot perform shooting control, and the image imaged by the micro image positioning collector must be stored in the master camera under the shooting control of the master camera. In this way, the micro image positioning collector can be placed in any part that needs to be forensic, and the operation is flexible.
- a variety of positioning mechanisms are set up, which can realize accurate forensic positioning of the micro image positioning collector and accurate restoration positioning during verification, and improve the accuracy of filing and forensics.
- the same micro image positioning collector can change its structure as needed to adapt to different applications.
- top and bottom are not used to limit corresponding parts to the illustrated positions.
- installation may be either a fixed connection or a detachable connection, and may be directly connected. It can also be connected indirectly through an intermediate medium.
- connecting may be either a fixed connection or a detachable connection, and may be directly connected. It can also be connected indirectly through an intermediate medium.
- the description of the terms “one embodiment”, “some embodiments”, “example” and the like means that the specific features, structures, materials or characteristics described in connection with the embodiments or examples are included in the invention. In one embodiment or example. In the present specification, the schematic representation of the above terms is not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples. Moreover, those skilled in the art can use different embodiments or examples described in this specification without contradicting each other. Combinations and combinations of features of different embodiments or examples.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- Microscoopes, Condenser (AREA)
- Eye Examination Apparatus (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开一体化综合采集图像数据的方法,包括:步骤200,以主控拍摄装置的镜头或镜头组合拍摄微观图像定位采集器与被采集物的相对定位图像;步骤300,由主控拍摄装置的拍摄控制下将微观图像定位采集器采集的微观图像传输至主控拍摄装置;还可包括步骤100,以主控拍摄装置上的镜头或镜头组合拍摄被采集物的整体图像。以上三步形成了图像数据采集精准有序的完整过程,每一步所拍摄采集的图像数据均输入到主控拍摄装置内的统一存储装置,而且会伴随每件被采集物自然形成一个个相互独立的完成数据区,既便于直接存储与转存,又利于形成综合采集、精准定位、一体化管理与应用的新业务模式。还公开一种取证验证系统。
Description
本发明涉及图像数据采集领域,公开一体化综合采集图像数据的方法及其取证验证系统,尤其适用于艺术品科学备案及验证技术领域,采集对象既适用于有条件让仪器接触的艺术品,又适用于受文物部门有关规定限制不许触及的或平面或立体的艺术品。
目前,艺术品市场繁荣兴盛,越来越多的投资者开始关注艺术品投资领域。但是,当下的艺术品市场秩序也比较混乱,一方面有大批量的原创作品不断问世,另一方面还有大批量仿品、赝品不断产生,手工造假、科技仿真巳大批量的渗入市场与收藏界,以及现实生活中的各个角落,并且分布在字画、陶瓷、玉器、青铜器等艺术品收藏的各个门类。
为了提高艺术品真伪优劣的辨识能力,加强艺术品市场管理,政府有关部门听取了业界呼声与专家建议后,在2016年3月15日开始实施的艺术品管理法规性文件中,已明确规定艺术品交易必须进行备案管理,从而使艺术品科学备案的技术、设备及其操作方法、业务模式就越来越被相关的专业界重视。但是,现有艺术品科学备案的常用方法是:先用照相机拍摄艺术品的整体图像;在艺术品上选择微观图像采集点,并通过显微拍摄设备拍摄这些采集点的微观图像;人工在艺术品的复印件或复制件、缩印件上标注这些采集点,并人工记录这些采集点的位置和编号;将艺术品的整体图像以及采集点位置、编号存储在数据库中,数据存储与管理需要将照相机、显微拍摄设备两个方面数据进行合成,该业务既繁重而又易出错,一但出错将会导致未来会出现真伪难辨的严重后果,还会影响艺术品科学备案业务的公信力。另外,因前期备案取证业务中的定位不严密而影响后期验证工作的顺利实施,也已被业内人士为之担忧和关注。尤其让业内专家感到需要亟待解决的问题是:如何提高艺术品科学备案
专业技术及其数据管理的专业性、权威性,使该项工作得到文化管理部门、文物收藏机构、司法鉴定机构的充分认可与采纳,从而得到社会公信与广泛支持。其中的关键技术就是图像数据取证的精准定位和验证的准确复位,以及图像数据一体化综合采集与存储。
发明内容
针对上述问题,本发明提供一种一体化综合采集图像数据的方法及其取证验证系统,能够实现存储一体化,对被采集物进行科学严谨的定点采集备案以及定点还原验证,提高备案和验证的公信力和安全性,而且提高备案和验证的速度。
本发明实施例公开一种一体化综合采集图像数据的方法,包括:
步骤200,主控拍摄装置拍摄微观图像定位采集器与被采集物的相对定位图像,包括:
将独立于主控拍摄装置外的微观图像定位采集器相对于被采集物的感兴趣区域放置,经由主控拍摄装置上的内置镜头或所述内置镜头与外加镜头的组合来拍摄微观图像定位采集器与被采集物的相对定位图像,所述相对定位图像中包含微观图像定位采集器的定位标识;
其中,所述微观图像定位采集器包括:
壳体,所述壳体具有定位标识,所述定位标识包括所述壳体靠近被采集物的底边形成的边缘轮廓和/或底边上的定位标志;
微距放大组合镜头和图像传感器,安装在所述壳体内,微距放大组合镜头用于成像被采集物的经放大的光学图像,图像传感器位于所述微距放大组合镜头的后方,将光学图像转换为电信号;
电路板,其与图像传感器连接,包括拍摄控制命令执行电路以及将图像传感器的电信号处理为数字图像信号并传输的电路,所述拍摄控制命令执行电路根据来自主控拍摄装置的拍摄控制命令执行成像控制;
通讯接口,其一端与独立于所述微观图像定位采集器的所述主控拍摄装置有线连接或无线连接,另一端与电路板连接,用于接收来自所述主控拍摄装置的拍摄控制命令以及将所述数字图像信号输出至主控拍摄装置;
所述电路板和通讯接口位于所述壳体中,或者位于与所述壳体连接的连接
支架辅助定位装置中;
步骤300,在主控拍摄装置的拍摄控制下将经由微观图像定位采集器采集的微观图像传输至主控拍摄装置,
其中,步骤200和步骤300能够按照需要顺序执行一次或多次。
本发明实施例公开一种取证验证系统,包括:微观图像定位采集器,其包括:壳体,所述壳体具有定位标识,所述定位标识包括所述壳体靠近被采集物的底边形成的边缘轮廓和/或底边上的定位标志;微距放大组合镜头和图像传感器,安装在所述壳体内,微距放大组合镜头用于成像被采集物的经放大的光学图像,图像传感器位于所述微距放大组合镜头的后方,将光学图像转换为电信号;电路板,其与图像传感器连接,包括拍摄控制命令执行电路以及将图像传感器的电信号处理为数字图像信号并传输的电路,所述拍摄控制命令执行电路根据来自主控拍摄装置的拍摄控制命令执行成像控制;通讯接口,其一端与独立于所述微观图像定位采集器的所述主控拍摄装置有线连接或无线连接,另一端与电路板连接,用于接收来自所述主控拍摄装置的拍摄控制命令以及将所述数字图像信号输出至主控拍摄装置;所述电路板和通讯接口位于所述壳体中,或者位于与所述壳体连接的连接支架辅助定位装置中;主控拍摄装置,包括:镜头或镜头组合,用于拍摄所述微观图像定位采集器相对于被采集物的相对定位图像;微观图像定位采集器拍摄控制模块,其用于向所述微观图像定位采集器发送拍摄控制命令;主控通讯接口,用于与所述微观图像定位采集器的通讯接口有线连接或无线连接,将所述拍摄控制命令输出至微观图像定位采集器以及接收来自微观图像定位采集器的数字图像信号;存储装置,用于存储由所述镜头或镜头组合拍摄的图像以及由所述微观图像定位采集器拍摄的图像;以及屏幕,用于显示由所述镜头或镜头组合拍摄的图像以及由所述微观图像定位采集器拍摄的图像。
与现有技术相比,本发明实施例包括以下优点:
无需额外在被采集物的复印件或复制件、缩印件上标注采集点,加快了备案和验证速度;现有的物品数据采集技术设备,其整体图像是由相机实施,其微观图像是由显微拍摄设备实施,二者分别独立完成,其数据各自存储,入数据库时再将二者合成在一起。但是数据采集者与数据库储存管理者往往并非同一个人,其数据移交与合成重编过程并非易事,特别是要将大量相似的显微拍
摄设备数据准确对应相机中的大量作品图像数据,并一件一件地实施合成入库很容易出错,一旦出错就会影响日后验证真伪的正确判断,后果很严重。本申请中,将整体图像数据采集与微观图像数据采集融合于一体,形成了便捷的一体化综合采集图像数据系统。特别是进行拍摄控制的主控拍摄装置分别与多种镜头的组合以及与多种微观图像定位采集器的组合,从而形成了一体化综合采集图像数据系统。这样既避免了以往相机、显微拍摄设备分别采集同一物品数据分别存入数据库所需的合成工作,也避免了后期合成工作难免的失误,提高了工作效率,改善了现有的科学备案技术。特别是该微观图像定位采集器脱离主控拍摄装置后体积明显变小,还可以根据需要设计其外形并在镜头周边加上定位标识,不仅便于图像数据取证的精准定位,而且便于图像数据验证的准确复位,操作灵活,即可对某些物品实施接触式定位拍摄,也可对某些物品实施非接触式定位拍摄,从而解决了某些不许触及的文物不便精准定位获取微观图像信息的难题。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本申请的主旨。
图1为微观图像定位采集器的一实施例的立体示意图。
图2为图1的剖视图。
图3为图1的变型的剖视图。
图4为微观图像定位采集器的另一实施例的示意结构图。
图5为一种取证验证系统的结构框图。
图6为微观图像定位采集器在立面上针对平面物品从事接触式微观图像采集的定位示意图。
图7为微观图像定位采集器在桌面上针对平面物品从事无接触式微观图像采集的定位示意图。
图8为微观图像定位采集器在桌面上针对立体物品从事无接触式微观图像
采集的定位示意图。
图9为微观图像定位采集器在立面上针对平面物品从事无接触式微观图像采集的定位示意图。
图10为铁质平板的结构示意图。
图11为底座的底部形状示意图。
图12是本发明的一体化综合采集图像数据的方法的实施例的流程图;
图13示出取证拍摄步骤的一示意图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示装置结构的剖面图会不依一般比例作局部放大,而且示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
参照图12描述本发明的一种一体化综合采集图像数据的方法实施例,具体可以包括如下步骤:
步骤100,主控拍摄装置500拍摄被采集物300的整体图像,包括:根据被采集物300的特征(例如其形态特点及尺寸等因素),经由主控拍摄装置500上的内置镜头或内置镜头与外加镜头的组合来拍摄被采集物300的整体图像。
当然,步骤100拍摄的图像中还可以包含有被采集物的制造者和/或拥有者和/或图像采集者等相关人的图像。
内置镜头可以是标准镜头等。外加镜头可以包括可拆卸地安装在内置镜头前方的广角镜头和/或增倍镜头,可以根据情况选择不同的外加镜头搭配。
步骤200,主控拍摄装置500拍摄微观图像定位采集器100与被采集物300的相对定位图像,包括:
将独立于主控拍摄装置500外的微观图像定位采集器100相对于被采集物
300的感兴趣区域放置,经由主控拍摄装置500上的内置镜头或内置镜头与外加镜头的组合来拍摄微观图像定位采集器100与被采集物300的相对定位图像,所述相对定位图像中包含微观图像定位采集器100的定位标识,所述定位标识包括壳体110靠近被采集物300的底边111形成的轮廓和/或底边111上的定位标志。相对定位图像可以显示底部与其周边的被采集物表面特征所产生的相互对应的定位关系。
此处,感兴趣区域尤其是指被采集物上特征明显、便于识别的区域。例如可以是图章、不规则形状处、与周围区别明显处等。
此处,底边本身的轮廓可以构成定位标识,此时,利用底边所压被采集物的部位,就可以在后续验证时将采集器还原到与采集时相同的位置。例如,底边的轮廓可以是平滑的形状,如圆形、椭圆形等。或者,底边的轮廓上可以具有棱角,如底边为方形或圆形或椭圆形或三角形或星形或多边形或任意形,利用棱角可以更好的定位。底边上的定位标志可以是任何起到定位功能的元素,例如,刻度线、角标、凸起、圆点、数字等。
此处,所述底边可以是所述壳体的边缘外突形成的。这样在拍摄时,相比于壳体上的其他部位,底边可以外露,方便显示出定位标识。
微观图像定位采集器100的结构可参见后文的描述。微观图像定位采集器可以接触或不接触的方式相对于被采集物300放置,这里接触可以是直接接触,也可以是间接接触。
步骤200拍摄的图像中可以包含微观图像定位采集器100以及被采集物的整体图像,例如,此时优选可以用主控拍摄装置500的内置镜头或内置镜头与广角镜头配合进行拍摄。当然,也可以为局部图像,仅包括微观图像定位采集器100与被采集物300相对应面附近的图像,也即包括壳体110的定位标识、沿拍摄方向看被采集物300与壳体100的重叠部周围的图像,为此例如,优选用主控拍摄装置500的内置镜头或内置镜头与增倍镜头配合进行拍摄。该图像也可以同时包含有被采集物的制造者和/或拥有者和/或图像采集者等相关人的图像。
在拍摄时,优选沿微距放大组合镜头1的轴向方向拍摄,拍摄到整个底边111,这样的定位更正确。
步骤300,在主控拍摄装置500的拍摄控制下将经由微观图像定位采集器
100采集的微观图像传输至主控拍摄装置500。
其中,步骤200和步骤300能够顺序执行一次或多次,这样可以拍摄多个不同采集点的微观图像。
这里,可以省略步骤100,直接进行步骤200和步骤300。步骤100的顺序也是任意的,可以在步骤200之前或之后,步骤300之前或之后。
图13示出了取证拍摄步骤的一示意图。如图所示,微观图像定位采集器100产生的图像信号传输至主控拍摄装置500,主控拍摄装置500执行微观图像定位采集器拍摄控制以存储图像信号代表的取证图像。
在方法的整个过程中,通过主控拍摄装置500上的屏幕观察并显示所拍摄的图像。这样方便观察。
以上步骤形成了图像数据采集精准有序的完整过程,每一步所拍摄采集的图像数据均依次输入到主控拍摄装置内,并伴随每件被采集物自然形成一个个相互独立的完成数据区,既便于直接存储与转存,又利于形成综合采集、精准定位、一体化管理与应用。
在采集时,将微观图像定位采集器相对于被采集物放置,在主控拍摄装置的控制下进行拍摄。在接收到来自主控拍摄装置的拍摄控制命令之后,在电路板的拍摄控制命令执行电路的控制下,进行拍摄。图像传感器将微距放大组合镜头所成的光学图像转换为电信号,经由图像传感器处理电路转换为数字图像信号,然后由通讯接口以无线或有线的方式传输到主控拍摄装置中。微观图像定位采集器本身不具有存储功能。现有技术的镜头是必须安装在拍摄装置本身上的,不能脱离拍摄装置工作,该微观图像定位采集器与进行拍摄控制的主控拍摄装置是分离的,微观图像定位采集器本身不进行拍摄控制,必须是在主控拍摄装置的拍摄控制下才将微观图像定位采集器所成像的图像通过有线或无线连接方式及时存入主控拍摄装置,这样,避免了现有技术以往分别存储在相机、显微镜中的同一物品数据管理所需的合成操作,防止了事后合成易出的失误。微观图像定位采集器可以根据需要设计其外形与体积大小,并能放置在任何需要取证的部位,操作灵活。壳体形体可根据接触式与非接触式获取各类物品微观图像的定位采集需求设计多种式样。
该方法还可以包括步骤400,数据输出步骤,将主控拍摄装置500的存储装置中的数据输出到另一存储介质上。另一存储介质例如为刻录机或者网络存
储平台等。
另外,还可以在主控拍摄装置中输入被采集物(如艺术品)的名称、作者、创作时间、取证地点、取证备案相关人等信息。
在一实施例中,在步骤200中,用微观图像定位采集器100对可接触的被采集物实施接触式微观图像数据采集。微距放大组合镜头1可以不伸出壳体110的底面,利用壳体面向被采集物300的底面安装的磁性部件5与被采集物300下方的铁板配合,将壳体110吸附在被采集物300上。例如,如图6所示,可以先将被采集物300放在铁板400上,然后将微观图像定位采集器100吸附在其上。微观图像定位采集器100相对于被采集物300的位置可以通过拍摄的定位图像中二者的位置对应关系获知。
在一实施例中,步骤200为微观图像定位采集器100的无接触式定位拍摄步骤。此时,微距放大组合镜头1可以伸出壳体110的底面,利用连接至壳体110的连接支架辅助定位装置120悬空支撑微观图像定位采集器100,与被采集物300上的图像采集点相距一定距离。在采集规程中,该距离可以预设,例如是1mm,或3mm、5mm,优选不超过15mm,更优选不超过10mm。在还原验证时将其还原到该距离处。
可以将微观图像定位采集器100产生的图像信号传输至主控拍摄装置500,通过主控拍摄装置500上的屏幕观察图像信号代表的图像,当图像清晰时停止调整距离。这样可以方便的确定微观图像定位采集器100距被采集物300的距离。当然,也可以通过观察大致确定该距离。微观图像定位采集器100相对于被采集物300的其他方位可以通过拍摄的定位图像中二者的位置对应关系获知。
连接支架辅助定位装置120还可具有手动或自动调控角度或升降的机构。
连接支架辅助定位装置120上也可以具有定位标识,这样,利用定位标识可以方便地确定微观图像定位采集器100的位置。
还可以如图7-9所示,将被采集物300放置在铁质平板200的一侧,连接支架辅助定位装置120的磁性底座122固定在铁质平板200的另一侧。这样可以实现牢固的定位,从而提高所拍摄的定位图像的准确性。
铁质平板200上可以具有定位标识,磁性底座122上也可以具有定位标识。
此处,各部件的定位标识既可以由部件本身的轮廓构成,也可以由部件上
加设的定位标志构成,定位标志可以是前述任何起到定位功能的元素。
以上各实施例中公开了多种不同的定位方式,应该理解的是,只要不冲突,这些定位方式都可以组合使用,这样更有助于微观图像定位采集器100的采集定位,从而能够在后续验证方法中精确地还原微观图像定位采集器100的位置。
图像数据采集之后,也即存储备案之后,需要能在原位置实施图像的再次采集验证。验证图像数据的方法如下。
首先,前述步骤200拍摄的相对定位图像(还可以辅助步骤100拍摄的整体图像),将微观图像定位采集器100相对于待验证的被采集物放置,还原到与步骤200对应的位置。由于在采集时利用各种方式精确确定微观图像定位采集器100的位置,拍摄了定位图像,所以在验证时,易于将微观图像定位采集器100准确还原到位。
然后,在主控拍摄装置500的拍摄控制下将经由微观图像定位采集器100采集的微观验证图像传输至主控拍摄装置500;本步骤同前述的步骤300。
最后,将微观验证图像与前述步骤300拍摄的微观图像进行比较,以确定待验证的被采集物是否为前述步骤200中的被采集物300。这里,验证可以由计算机进行,也可由验证专业人员人工来进行。
这里的微观图像定位采集器可以是原采集时使用的,也可以是同产品类型的微观图像定位采集器。验证可以在异时、异地进行。这里利用的图像可以是原主控拍摄装置中存储的,或者是原主控拍摄装置转存到其他介质如单独的数据库等上的数据。
以下详细介绍微观图像定位采集器。
微观图像定位采集器,包括壳体110,在壳体110内安装有微距放大组合镜头1和图像传感器,微距放大组合镜头1用于成像被采集物的经放大的光学图像,图像传感器位于微距放大组合镜头1的后方,将光学图像转换为电信号。
微距放大组合镜头1用于成像被采集物的光学放大图像,可以采用具有各种放大倍数的微距放大组合镜头,例如10倍、15倍、30倍、40倍甚至更高,根据需要设置即可。例如,如图1所示,壳体110面向被采集物的底面具有腔室10d,微距放大组合镜头1位于腔室10d中,其镜筒可以可拆卸地连接在壳体内,这样便于不同放大倍率的微距放大组合镜头1的更换,在更换时仅需将镜筒整体取出以更换带不同放大倍率镜片的镜筒。术语组合镜头并不意味着对
数量有任何限制。
微距放大组合镜头1的物距范围可以是1mm,或3mm、5mm,优选不超过15mm,更优选不超过10mm,本文中提到的微距即指这种小的范围。当然,超过该范围也可以使用,但是使用的效果将大大降低,因为此时不能准确的定位,这里所说的定位是确定微观图像定位采集器相对于采集物的放置位置。
图像传感器属于本领域常用的结构,其结构以及安装等是本领域技术人员容易想到的,可以根据具体情况灵活设置,故图中未示出。
电路板2与图像传感器连接,包括拍摄控制命令执行电路以及图像传感器信号处理电路。拍摄控制命令执行电路根据接收自主控拍摄装置的拍摄控制命令进行成像控制,成像控制是本领域惯常的设置,例如控制镜头的快门、光圈、图像传感器等。图像传感器信号处理电路用于将图像传感器的电信号转换成数字信号并传输。这些电路的设置是本领域技术人员容易想到的,故不再赘述。
通讯接口3其一端与独立于微观图像定位采集器的主控拍摄装置有线连接或无线连接,另一端与电路板2连接,用于接收来自主控拍摄装置的拍摄控制命令以及将数字图像信号输出至主控拍摄装置。
电路板2和通讯接口3可以位于壳体110中,或者位于与壳体110连接的连接支架辅助定位装置120中。
壳体110具有定位标识,定位标识包括壳体110靠近被采集物300的底边111形成的轮廓和/或底边111上的定位标志。
此处,底边本身的轮廓可以构成定位标识,此时,利用底边所压被采集物的部位,就可以在后续验证时将采集器还原到与采集时相同的位置。例如,底边的轮廓可以是平滑的形状,如圆形、椭圆形等。或者,底边的轮廓上可以具有棱角,如底边为方形或圆形或椭圆形或三角形或星形或多边形或任意形,利用棱角可以更好的定位。底边上的定位标志可以是任何起到定位功能的元素,例如,刻度线、角标、凸起、圆点、数字等。
此处,所述底边可以是所述壳体朝向被采集物一面的边缘外突形成的。这样在拍摄时,相比于壳体上的其他部位,底边可以外露,方便显示出定位标识,并由此可以与其周边的被采集物表面特征产生的相互对应的定位关系。
本文提到的各部件的定位标识既可以由部件本身的轮廓构成,也可以由部件上加设的定位标志构成,定位标志可以是前述任何起到定位功能的元素。
图1为微观图像定位采集器的一实施例的立体示意图。图2为图1的剖视示意图。在该实施例中,电路板2和通讯接口3位于壳体110中。
在一示例中,还可以包括镜头调焦装置,用于实现微距放大组合镜头的自动或手动对焦。例如,镜头调焦装置包括可动镜头、驱动可动镜头的微型电机和微型电机驱动电路,可动镜头可以为微距放大组合镜头的一部分或者为单独镜头。调焦装置可以根据需要设置,在本申请的启发下,本领域技术人员可以灵活设置各种调焦装置,利于适应不同的应用场合。
在一示例中,还可以包括照明装置,其包括一个以上发光体,其可以放置在微距放大组合镜头1径向外侧的任何合适位置,只要保证可以向被采集物的区域提供或补充光源即可,可以根据需要合理设置。这样,微观图像定位采集器的拍摄不受外界光源的影响。
如图1所示,壳体110在靠近被采集物的底边设置有定位刻度线110a,在底边的拐角设置有定位角标110b。这样,可以直观地记录微观图像定位采集器相对于被采集物的准确定位。当然,也可不用定位刻度线与定位角标,壳体110本身的轮廓具有定位棱角,例如,利用壳体本身对应被采集物一面的形状(如方形或圆形或椭圆形或三角形或星形或多边形或任意形)上的棱角作为标识来实施定位。当然,即使壳体是不具有棱角的圆滑形状,也可以利用其自身轮廓作为标识来实施定位。
如图2所示,微距放大组合镜头1可以不伸出壳体110的底面,距壳体110的底面的距离基本等于微距放大组合镜头的物距,也即物距基本在壳体的底面的水平位置。这种结构尤其适于实施接触式采集,即壳体直接或间接接触被采集物300。壳体110面向被采集物的底面还可以设置有用于安装磁性部件5的一个或多个磁性部件圆孔10e,磁性部件5安装在磁性部件圆孔10e中。这样,便于将微观图像定位采集器吸附固定,例如可以通过与被采集物下面的铁板400结合来吸附固定,适用于对被采集物接触采集的场合。
如图3所示,微距放大组合镜头1可以伸出壳体110的底面。这种结构尤其适于实施无接触式采集。此时,磁性部件圆孔10e中可以不安装磁性部件5。
为了支撑,连接支架辅助定位装置120可拆卸地连接至壳体110,用于将微观图像定位采集器以与被采集物不接触的方式悬空支撑。例如,连接支架辅助定位装置120可以插入壳体110上的孔槽10c(见图1)。此时,电路板2和
通讯接口3可以位于壳体110中,或者也可以位于连接支架辅助定位装置120中。微距放大组合镜头1可以伸出壳体110的底面。这样,在被采集物不允许接触的情况下,可以将微观图像定位采集器以与被采集物不接触的方式实施离开其一定距离的数据采集。
连接支架辅助定位装置120可以采用各种结构,例如如图4所示是一直杆。连接支架辅助定位装置120上可以具有定位标识,可与微观图像定位采集器的壳体的侧壁靠近被采集物的底边上的定位刻度线相对接,这样,方便对微观图像定位采集器进行定位。或者,连接支架辅助定位装置120可以包括底座和连杆。底座可以是磁性底座,这样将磁性底座吸附在铁质平板上,可以稳固地悬空支撑微观图像定位采集器。
微距放大组合镜头1的镜筒可以可上下移动地连接在壳体内,镜筒的下端朝向被采集物。这样,可根据不同的需要将微距放大组合镜头1伸出或不伸出壳体110的底面,从而根据需求改动微距放大组合镜头1与被采集物之间的物距,既可将拍摄焦点定位在壳体的底面位置,实施壳体接触式拍摄,也可将拍摄焦点定位在超出壳体底面的位置,甚至让微距放大组合镜头探出壳体适当距离,实施无接触式拍摄,其物距范围可以根据镜头特性及其需求。
可以有多种方式实现镜筒的可上下移动。例如,可以包括镜头连接座6,在镜头连接座6和所述壳体之间设置升降调节装置,这样镜头连接座6可上下移动地安装在壳体内部,并且与微距放大组合镜头1的镜筒的上端可拆卸地连接。照明装置4也可以安装在镜头连接座6上,这样用简单的结构实现了部件的组合安装。
在一示例中,如图2所示,壳体110包括上壳体10a和下壳体10b,镜头连接座6可拆卸地连接在电路板2下方,并且与微距放大组合镜头1的镜筒的上端可拆卸地连接,镜筒的下端朝向被采集物,在电路板2和下壳体10b之间设置垫圈8,紧固件9穿过垫圈8将电路板2安装在下壳体10b上。这样,通过调整垫圈是否存在以及垫圈的厚度,可以根据需要将微距放大组合镜头1伸出或缩回腔室10d。例如,在不设置垫圈时,微距放大组合镜头1伸出腔室10d,类似图3所示,此时采集器操作时不接触被采集物300;在加设垫圈之后,使得微距放大组合镜头1缩回腔室10d中,如图2所示,此时采集器操作时可以接触被采集物300。利用这种设置,同一采集器可以变换多种结构,用于不同
的场合。
在一示例中,作为对图2的变型,如图3所示,在镜头连接座6和下壳体10b之间设置垫圈8。该示例与图2的区别在于,镜头连接座6的座板61连接在壳体,如图示的下壳体上。利用这种设置,同一采集器可以变换多种结构,用于不同的场合。
微距放大组合镜头1可以任何合适的方式安装在壳体110中。例如,如图2所示,在壳体110内,镜头连接座6可拆卸地连接在电路板2下方,并且与微距放大组合镜头1的镜筒的上端可拆卸地连接,镜筒的下端朝向被采集物。照明装置4也可以安装在镜头连接座6上,位于镜筒的径向外侧,用于向被采集物的区域提供或补充光源。
微观图像定位采集器面对被采集物的一面,可根据被采集物的管理需求决定是否可与其接触。对于受文物管理法规所约束的那些被采集物,就不可与其直接接触,只能采用非接触式获取其微观图像。微距放大组合镜头的最近物距已可控在1mm左右,并可以根据需要通过调控装置将其准确定位在2mm、3mm……等不同物距档位,在如此近物距的可控操作基础上,微观图像定位采集器的精确定位以及准确复位就显得非常重要了。
壳体110可以是一个上下连为一体的壳体,也可以分为上壳体10a和下壳体10b,甚至更多部分组合为一体的壳体。微距放大组合镜头、照明装置、图像传感器、电路板、及接口等部件,可根据整体设计需要放在壳体的某具体部位,包括壳体某处、下壳体或上壳体某处或者上壳体与下壳体之间等。
微观图像定位采集器可根据需要设计其外形(例如,圆形、方形等)与体积大小,可在任何需要取证的部位灵活操作,并可以利用自身定位刻度、角标以及连接支架辅助定位装置的定位标识、铁质平板的定位标识实施无接触式定位。
微观图像定位采集器还可以包括一些其他常规的结构。例如,壳体上可以设置供电接口,用于为各种电器部件供电,如图像传感器、照明器件、电路板等,供电接口与通讯接口可以是不同的部件,当然它们也可以是同一部件。例如,快门组件、调焦结构等,这些是成像领域公知的结构,为了不必要的模糊本申请的重点,这些结构就不再赘述。
图6为微观图像定位采集器在立面上针对平面物品从事接触式微观图像采
集的定位示意图。如图所示,例如,被采集物300为平面书画,将被采集物300放在铁板400上。此时,微距放大组合镜头1可以不伸出壳体110的底面,壳体110面向被采集物的底面安装有磁性部件5。这样,将壳体110吸附在被采集物300上,尤其是在被采集点局部可以将被采集物展平实现较佳的采集。当然,微观图像定位采集器也可在桌面上针对平面物品从事接触式微观图像采集。此时,壳体110也可以不设置磁性部件5。
图7为微观图像定位采集器在桌面上针对平面物品从事无接触式微观图像采集的定位示意图。
如图所示,例如,被采集物300为平面书画,在被采集物300下方放置铁质平板200。此时,微距放大组合镜头1可以伸出壳体110的底面,连接支架辅助定位装置120连接至壳体110,将微观图像定位采集器以与被采集物不接触的方式悬空支撑一距离。连接支架辅助定位装置120可以具有手动或自动升降机构,以方便调整该距离,还可以具有手动或自动调控角度的机构。升降机构及调控角度机构的设置是常规的,故不再赘述。
连接支架辅助定位装置120可以包括连杆121、磁性底座122、吸附在磁性底座122下方的铁质平板200,连杆121与壳体110连接。连接支架辅助定位装置120上可以具有定位标识,这样便于确定壳体110的位置,例如在图示中,连杆121具有定位标识121a,磁性底座122上也可以具有定位标识。例如,磁性底座122上可以设置前述的升降机构或调控角度的机构。
铁质平板200例如可以为厚度1mm左右。这样微观图像定位采集器可以非常稳定地定位,防止其位置变动。
如图10所示,铁质平板200上可以具有定位标识,例如,与磁性底座122的底部形状对应的定位标识圈和/或定位角标200a,也可以具有与被采集物区域对应的定位刻度线200b,这样方便磁性底座122的定位以及后续验证时被采集物和采集器快速还原。
如图11所示,磁性底座122的底部可以为各种形状,底部外围可具有定位标识122a,当然底部外围也可以不设置定位标识。
图8为微观图像定位采集器在桌面上针对立体物品从事无接触式微观图像采集的定位示意图。
如图所示,例如,被采集物300为立体物品,在被采集物300下方放置铁
质平板200。此时,微距放大组合镜头1可以伸出壳体110的底面,连接支架辅助定位装置120连接至壳体110。
该实施例与图7的实施例的区别在于,连杆121可以包括图示的成角度的第一杆和第二杆,第一杆与磁性底座122连接,第二杆与壳体110连接,连杆121还具有前端的柔性管130。这样,通过柔性管130方便调节壳体110的位置,以及在主控拍摄装置拍摄时,不会过多的遮挡壳体110。当然,柔性管需要具有一定的刚度以保证在定位后不会发生晃动。当然,在该实施例中,被采集物300的底部310在铁质平板200上所压部位也可以成为定位的依据。
图9为微观图像定位采集器在立面上针对平面物品从事无接触式微观图像采集的定位示意图。该实施例类似于图7所示的实施例,区别在于在立面上针对平面物品从事无接触式微观图像采集。此时,铁质平板200和磁性底座122的磁性设置效果更明显。
图6至图9示意出了微观图像定位采集器的定位。采集时,将微观图像定位采集器100相对于被采集物300的感兴趣区域放置,经由主控拍摄装置500上的内置镜头或内置镜头与外加镜头的组合来拍摄微观图像定位采集器100相对于被采集物300的相对定位图像,相对定位图像中包含微观图像定位采集器100的前述定位标识,以及外壳的底边与其周边的被采集物表面特征所产生的相互对应的定位关系。这样就可直接确定出被采集物的特定采集点的位置,无需额外在被采集物的复印件或复制件、缩印件上标注采集点。然后微观图像定位采集器100在主控拍摄装置的拍摄控制下进行拍摄。在接收到来自主控拍摄装置的拍摄控制命令之后,在电路板的拍摄控制命令执行电路的控制下,进行拍摄。图像传感器将微距放大组合镜头所成的光学图像转换为电信号,经由图像传感器处理电路转换为数字图像信号,然后由通讯接口以无线或有线的方式同步传输到主控拍摄装置中,微观图像定位采集器本身不具有存储功能。现有技术的镜头是必须安装在拍摄装置本身上的,不能脱离拍摄装置工作,该微观图像定位采集器与进行拍摄控制的主控拍摄装置是分离的,微观图像定位采集器本身不进行拍摄控制,必须是在主控拍摄装置的控制下才将微观图像定位采集器所成像的图像通过有线或无线连接方式及时存入主控拍摄装置,这样,避免了现有技术以往分别存储在相机、显微镜中的同一物品数据管理所需的合成操作,防止了事后合成易出的失误。微观图像定位采集器可以根据需要设计其
外形与体积大小,并能放置在任何需要取证的部位,操作灵活。壳体形体可根据接触式与非接触式获取各类物品微观图像的定位采集需求设计多种式样。
图像数据采集之后,也即存储备案之后,需要能在原位置实施图像的再次采集验证。此时需将微观图像定位采集器还原到与原采集位置相同的位置,再次拍摄采集点的图像,然后与之前拍摄的图像进行比较来确定待验证的被采集物是否是之前采集的被采集物。由于标准化生产的微观图像定位采集器自身具有的定位轮廓和/或定位标识,先前已经记录了定位图像,所以验证时易于将其准确还原到位。
还公开了一种取证验证系统,如图5所示,包括:
微观图像定位采集器100,其为上述的微观图像定位采集器;
主控拍摄装置500,包括:
镜头或镜头组合,用于拍摄微观图像定位采集器100相对于被采集物300的相对定位图像;
微观图像定位采集器拍摄控制模块,其用于向微观图像定位采集器100发送拍摄控制命令;
主控通讯接口,用于与微观图像定位采集器100的通讯接口有线连接或无线连接,将拍摄控制命令输出至微观图像定位采集器100以及接收来自微观图像定位采集器100的数字图像信号;
存储装置,用于存储由镜头或镜头组合拍摄的图像以及由微观图像定位采集器100拍摄的图像;以及
屏幕,用于显示由镜头或镜头组合拍摄的图像以及由微观图像定位采集器100拍摄的图像。
在一示例中,取证验证系统还可以包括用于放置在被采集物下面的铁质平板200。如图10所示,铁质平板200上可以具有定位标识。
在一示例中,取证验证系统还可以包括铁板400。
在一示例中,主控拍摄装置还可以具有微观图像定位采集器信号处理模块,用于对主控通讯接口接收的信号进行处理。根据需要可以对信号进行各种处理,这是本领域常见的,不再赘述。
以上各装置的作用已经在前述中进行了描述,故不再重复。
综上,与现有技术相比,本申请实施例至少包括以下优点:
(1)现有技术的镜头是必须安装在拍摄装置本身上的,不能脱离拍摄装置工作,本发明中,微观图像定位采集器与进行拍摄控制的主控拍摄装置是分离的,微观图像定位采集器本身不能进行拍摄控制,必须是在主控拍摄装置的拍摄控制下才能将微观图像定位采集器所成像的图像存储在主控拍摄装置中。这样,微观图像定位采集器可以放置在任何需要取证的部位,操作灵活。
(2)图像数据集中式存储:拍摄所形成的图像数据均统一存储在主控拍摄装置的存储装置内,微观图像定位采集器成像的图像也存储在主控拍摄装置中,这样便于取储与应用,避免了现有技术中后期数据库合成的繁重劳动以及易出错的问题。
(3)形成了图像数据采集精准有序的完整过程,每一步所拍摄采集的图像数据均依次输入到主控拍摄装置内,并伴随每件被采集物自然形成一个个相互独立的完成数据区,既便于直接存储与转存,又利于形成综合采集、精准定位、一体化管理与应用。
(4)设置了多种定位机制,可以实现微观图像定位采集器的精确取证定位以及验证时精确还原定位,提高了备案和取证的准确性。
(5)采集时,无需额外在被采集物的复印件或复制件、缩印件上标注采集点。
(6)同一微观图像定位采集器可以根据需要改变其结构,适应不同的应用场合。
在本说明书的描述中,“顶部”和“底部”等并不用于将相应部件限制为图示的位置。除非另有明确的规定和限定,术语“安装”、“连接”、“固定”等术语应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以
及不同实施例或示例的特征进行结合和组合。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。
Claims (22)
- 一种一体化综合采集图像数据的方法,其特征在于,包括:步骤200,主控拍摄装置(500)拍摄微观图像定位采集器(100)与被采集物(300)的相对定位图像,包括:将独立于主控拍摄装置(500)外的微观图像定位采集器(100)相对于被采集物(300)的感兴趣区域放置,经由主控拍摄装置(500)上的内置镜头或所述内置镜头与外加镜头的组合来拍摄微观图像定位采集器(100)与被采集物(300)的相对定位图像,所述相对定位图像中包含微观图像定位采集器(100)的定位标识;其中,所述微观图像定位采集器(100)包括:壳体(110),所述壳体(110)具有定位标识,所述定位标识包括所述壳体(110)靠近被采集物(300)的底边(111)形成的边缘轮廓和/或底边(111)上的定位标志;微距放大组合镜头(1)和图像传感器,安装在所述壳体(110)内,微距放大组合镜头(1)用于成像被采集物的经放大的光学图像,图像传感器位于所述微距放大组合镜头(1)的后方,将光学图像转换为电信号;电路板(2),其与图像传感器连接,包括拍摄控制命令执行电路以及将图像传感器的电信号处理为数字图像信号并传输的电路,所述拍摄控制命令执行电路根据来自主控拍摄装置的拍摄控制命令执行成像控制;通讯接口(3),其一端与独立于所述微观图像定位采集器的所述主控拍摄装置有线连接或无线连接,另一端与电路板(2)连接,用于接收来自所述主控拍摄装置的拍摄控制命令以及将所述数字图像信号输出至主控拍摄装置;所述电路板(2)和通讯接口(3)位于所述壳体(110)中,或者位于与所述壳体(110)连接的连接支架辅助定位装置(120)中;步骤300,在主控拍摄装置(500)的拍摄控制下将经由微观图像定位采集器(100)采集的微观图像传输至主控拍摄装置(500),其中,步骤200和步骤300能够按照需要顺序执行一次或多次。
- 根据权利要求1所述的方法,其特征在于,还包括步骤100,以主控拍 摄装置上的内置镜头或所述内置镜头与外加镜头的组合来拍摄被采集物的整体图像;或者拍摄被采集物的整体图像以及被采集物的制造者和/或拥有者和/或图像采集者的合照。
- 根据权利要求1所述的方法,其特征在于,用微观图像定位采集器(100)对可接触的被采集物实施接触式微观图像数据采集时,所述微距放大组合镜头(1)不伸出所述壳体(110)的底面,利用其壳体面向被采集物一面所安装的磁性部件(5)与被采集物(300)下方的铁板(400)配合,将壳体(110)吸附在被采集物(300)上。
- 根据权利要求1所述的方法,其特征在于,用微观图像定位采集器(100)对不可接触的被采集物实施无接触式微观图像数据采集时,所述微距放大组合镜头(1)伸出所述壳体(110)的底面,利用连接至所述壳体(110)的连接支架辅助定位装置(100)悬空支撑所述微观图像定位采集器,与被采集物(300)上的图像采集点相距一定距离。
- 根据权利要求4所述的方法,其特征在于,所述连接支架辅助定位装置(120)上具有定位标识。
- 根据权利要求4所述的方法,其特征在于,所述连接支架辅助定位装置(120)包括连杆(121)、磁性底座(122)以及吸附在所述磁性底座(122)下方的铁质平板(200),所述连杆(121)与所述壳体(110)相连接,将被采集物(300)放置在所述铁质平板(200)上。
- 根据权利要求6所述的方法,其特征在于,所述铁质平板(200)上具有定位标识;和/或所述连杆(121)上具有定位标识;和/或所述磁性底座(122)上具有定位标识。
- 根据权利要求1至7中任一项所述的方法,其特征在于,所述底边(111)是所述壳体朝向被采集物一面的边缘外突形成的,沿微距放大组合镜头的轴线方向拍摄所述壳体的整个底边以及整个底边与其周边的被采集物表面特征所产生的相互对应的定位关系。
- 根据权利要求1至7中任一项所述的方法,其特征在于,在步骤200中,所述微观图像定位采集器(100)产生的图像信号传输至所述主控拍摄装置(500),通过所述主控拍摄装置(500)上的屏幕观察所述图像信号代表的图像,当图像清晰时停止调整所述距离;和/或,通过所述微观图像定位采集器(100)的镜头调焦装置对微距放大组合镜头(1)进行手动或自动对焦;和/或,所述微距放大组合镜头(1)的物距在1mm至15mm之间。
- 一种取证验证系统,其特征在于,包括:微观图像定位采集器(100),其包括:壳体(110),所述壳体(110)具有定位标识,所述定位标识包括所述壳体(110)靠近被采集物(300)的底边(111)形成的边缘轮廓和/或底边(111)上的定位标志;微距放大组合镜头(1)和图像传感器,安装在所述壳体(110)内,微距放大组合镜头(1)用于成像被采集物的经放大的光学图像,图像传感器位于所述微距放大组合镜头(1)的后方,将光学图像转换为电信号;电路板(2),其与图像传感器连接,包括拍摄控制命令执行电路以及将图像传感器的电信号处理为数字图像信号并传输的电路,所述拍摄控制命令执行电路根据来自主控拍摄装置的拍摄控制命令执行成像控制;通讯接口(3),其一端与独立于所述微观图像定位采集器的所述主控拍摄装置有线连接或无线连接,另一端与电路板(2)连接,用于接收来自所述主控拍摄装置的拍摄控制命令以及将所述数字图像信号输出至主控拍摄装置;所述电路板(2)和通讯接口(3)位于所述壳体(110)中,或者位于与所述壳体(110)连接的连接支架辅助定位装置(120)中;主控拍摄装置(500),包括:镜头或镜头组合,用于拍摄所述微观图像定位采集器(100)相对于被采集物(300)的相对定位图像;微观图像定位采集器拍摄控制模块,其用于向所述微观图像定位采集器(100)发送拍摄控制命令;主控通讯接口,用于与所述微观图像定位采集器(100)的通讯接口有线连接或无线连接,将所述拍摄控制命令输出至微观图像定位采集器(100)以及接收来自微观图像定位采集器(100)的数字图像信号;存储装置,用于存储由所述镜头或镜头组合拍摄的图像以及由所述微观图像定位采集器(100)拍摄的图像;以及屏幕,用于显示由所述镜头或镜头组合拍摄的图像以及由所述微观图像定位采集器(100)拍摄的图像。
- 一种微观图像定位采集器(100),包括:壳体(110),所述壳体(110)具有定位标识,所述定位标识包括所述壳体(110)靠近被采集物(300)的底边(111)形成的边缘轮廓和/或底边(111)上的定位标志;微距放大组合镜头(1)和图像传感器,安装在所述壳体(110)内,微距放大组合镜头(1)用于成像被采集物的经放大的光学图像,图像传感器位于所述微距放大组合镜头(1)的后方,将光学图像转换为电信号;电路板(2),其与图像传感器连接,包括拍摄控制命令执行电路以及将图像传感器的电信号处理为数字图像信号并传输的电路,所述拍摄控制命令执行电路根据来自主控拍摄装置的拍摄控制命令执行成像控制;通讯接口(3),其一端与独立于所述微观图像定位采集器的所述主控拍摄装置有线连接或无线连接,另一端与电路板(2)连接,用于接收来自所述主控拍摄装置的拍摄控制命令以及将所述数字图像信号输出至主控拍摄装置;所述电路板(2)和通讯接口(3)位于所述壳体(110)中,或者位于与所述壳体(110)连接的连接支架辅助定位装置(120)中。
- 根据权利要求11所述的微观图像定位采集器,其特征在于,所述微距放大组合镜头(1)不伸出所述壳体(110)的底面,其物距基本在壳体的底面的水平位置。
- 根据权利要求12所述的微观图像定位采集器,其特征在于,所述壳体(110)面向被采集物的底面设置有用于安装磁性部件(5)的一个或多个磁性部件圆孔(10e),磁性部件(5)安装在磁性部件圆孔(10e)中。
- 根据权利要求11所述的微观图像定位采集器,其特征在于,所述微距放大组合镜头(1)伸出所述壳体(110)的底面。
- 根据权利要求14所述的微观图像定位采集器,其特征在于,还包括连接在所述壳体(110)上的连接支架辅助定位装置(120),用于将微观图像定位采集器实施不接触式采集的支撑定位,所述连接支架辅助定位装置(120)上具有定位标识。
- 根据权利要求14所述的微观图像定位采集器,其特征在于,还包括 连接在所述壳体(110)上的连接支架辅助定位装置(120),用于将微观图像定位采集器实施不接触式采集的支撑定位,所述连接支架辅助定位装置(120)包括连杆(121)、磁性底座(122)以及吸附在所述磁性底座(122)下方的铁质平板(200),所述连杆(121)与所述壳体(110)相连接。
- 根据权利要求16所述的微观图像定位采集器,其特征在于,所述铁质平板(200)上具有定位标识;和/或所述连杆(121)上具有定位标识;和/或所述磁性底座(122)上具有定位标识。
- 根据权利要求11至17中任一项所述的微观图像定位采集器,其特征在于,包括镜头连接座(6),在所述镜头连接座(6)和所述壳体之间设置升降调节装置,所述微距放大组合镜头(1)的镜筒的上端连接在所述镜头连接座(6)上;或者,包括镜头连接座(6),镜头连接座(6)连接在所述电路板(2)下方,在所述电路板(2)和所述壳体之间设置升降调节装置,所述微距放大组合镜头(1)的镜筒的上端连接在所述镜头连接座(6)上。
- 根据权利要求11至17中任一项所述的微观图像定位采集器,其特征在于,还包括位于所述微距放大组合镜头(1)径向外侧的照明装置(4),其包括一个以上发光体,用于向被采集物的区域提供或补充光源。
- 根据权利要求11至17中任一项所述的微观图像定位采集器,其特征在于,所述底边(111)是所述壳体朝向被采集物一面的边缘外突形成的。
- 根据权利要求11至17中任一项所述的微观图像定位采集器,其特征在于,所述微距放大组合镜头(1)的物距在1mm至15mm之间。
- 一种取证验证系统,其特征在于,包括:微观图像定位采集器(100),其为根据权利要求11至21中任一项所述的微观图像定位采集器;主控拍摄装置(500),包括:镜头或镜头组合,用于拍摄所述微观图像定位采集器(100)相对于被采集物(300)的相对定位图像;微观图像定位采集器拍摄控制模块,其用于向所述微观图像定位采集器(100)发送拍摄控制命令;主控通讯接口,用于与所述微观图像定位采集器(100)的通讯接口有线连接或无线连接,将所述拍摄控制命令输出至微观图像定位采集器(100)以及接收来自微观图像定位采集器(100)的数字图像信号;存储装置,用于存储由所述镜头或镜头组合拍摄的图像以及由所述微观图像定位采集器(100)拍摄的图像;以及屏幕,用于显示由所述镜头或镜头组合拍摄的图像以及由所述微观图像定位采集器(100)拍摄的图像。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620500230 | 2016-05-26 | ||
CN201621267046.0 | 2016-11-24 | ||
CN201611053599.0A CN106686286B (zh) | 2016-05-26 | 2016-11-24 | 一体化综合采集图像数据的方法及其取证验证系统 |
CN201621267046.0U CN206212134U (zh) | 2016-05-26 | 2016-11-24 | 微观图像定位采集器及取证验证系统 |
CN201611053599.0 | 2016-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018095409A1 true WO2018095409A1 (zh) | 2018-05-31 |
Family
ID=58312687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112875 WO2018095409A1 (zh) | 2016-05-26 | 2017-11-24 | 一体化综合采集图像数据的方法及其取证验证系统 |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN206039035U (zh) |
WO (1) | WO2018095409A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110018560A (zh) * | 2019-05-22 | 2019-07-16 | 程昔恩 | 一种和手机配套使用的便携电子显微镜及其使用方法 |
CN112311995A (zh) * | 2020-11-20 | 2021-02-02 | 神华神东煤炭集团有限责任公司 | 油液磨损颗粒图像采集装置及其图像采集方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206039035U (zh) * | 2016-05-26 | 2017-03-22 | 尹毅 | 一种磁性放大器 |
CN107049219B (zh) * | 2017-05-09 | 2018-11-06 | 青岛大学附属医院 | 可调控放大窥视镜 |
CN109241812B (zh) * | 2017-07-10 | 2022-10-11 | 安徽爱观视觉科技有限公司 | 一种原物识别装置及识别方法 |
CN110398871B (zh) * | 2019-08-01 | 2024-04-12 | 厦门富莱仕影视器材有限公司 | 一种应用于摄影灯的光效调节装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001101191A (ja) * | 1999-09-27 | 2001-04-13 | Cadix Inc | 画像識別装置及び画像識別に用いられるデータベースシステム |
CN103150554A (zh) * | 2013-02-08 | 2013-06-12 | 北京盛世融宝国际艺术品投资有限公司 | 书画作品保真鉴定方法 |
CN104330074A (zh) * | 2014-11-03 | 2015-02-04 | 熊友谊 | 一种智能测绘平台及其实现方法 |
CN106686286A (zh) * | 2016-05-26 | 2017-05-17 | 尹毅 | 一体化综合采集图像数据的方法及其取证验证系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6895181B2 (en) * | 2002-08-27 | 2005-05-17 | Olympus Corporation | Camera and distance measuring method thereof |
JP2007013556A (ja) * | 2005-06-30 | 2007-01-18 | Sharp Corp | 接写用電子機器 |
KR101391951B1 (ko) * | 2013-02-04 | 2014-05-07 | 주식회사 고글텍 | 사이드 바이 사이드 스테레오 영상 촬영 방법 및 이를 위한 단안식 카메라 |
CN103900535B (zh) * | 2014-03-10 | 2016-04-20 | 天津大学 | 面向文物微小变化检测的相机四点重定位方法 |
CN204229417U (zh) * | 2014-07-18 | 2015-03-25 | 刘宝旭 | 一种将光学图像转换为数字图像的装置及书画真伪鉴定系统 |
CN104809454B (zh) * | 2015-05-18 | 2018-09-21 | 尹毅 | 一种取证验证仪 |
CN104951946B (zh) * | 2015-05-26 | 2019-06-14 | 尹毅 | 一种艺术品定位取证安全备案的方法和系统 |
CN105243384A (zh) * | 2015-09-17 | 2016-01-13 | 上海大学 | 一种基于模式识别的文物与艺术品唯一性标识方法 |
-
2016
- 2016-05-30 CN CN201620509465.4U patent/CN206039035U/zh active Active
- 2016-11-24 CN CN201611053599.0A patent/CN106686286B/zh active Active
- 2016-11-24 CN CN201621267046.0U patent/CN206212134U/zh active Active
-
2017
- 2017-11-24 WO PCT/CN2017/112875 patent/WO2018095409A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001101191A (ja) * | 1999-09-27 | 2001-04-13 | Cadix Inc | 画像識別装置及び画像識別に用いられるデータベースシステム |
CN103150554A (zh) * | 2013-02-08 | 2013-06-12 | 北京盛世融宝国际艺术品投资有限公司 | 书画作品保真鉴定方法 |
CN104330074A (zh) * | 2014-11-03 | 2015-02-04 | 熊友谊 | 一种智能测绘平台及其实现方法 |
CN106686286A (zh) * | 2016-05-26 | 2017-05-17 | 尹毅 | 一体化综合采集图像数据的方法及其取证验证系统 |
CN206212134U (zh) * | 2016-05-26 | 2017-05-31 | 尹毅 | 微观图像定位采集器及取证验证系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110018560A (zh) * | 2019-05-22 | 2019-07-16 | 程昔恩 | 一种和手机配套使用的便携电子显微镜及其使用方法 |
CN112311995A (zh) * | 2020-11-20 | 2021-02-02 | 神华神东煤炭集团有限责任公司 | 油液磨损颗粒图像采集装置及其图像采集方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106686286A (zh) | 2017-05-17 |
CN206039035U (zh) | 2017-03-22 |
CN206212134U (zh) | 2017-05-31 |
CN106686286B (zh) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018095409A1 (zh) | 一体化综合采集图像数据的方法及其取证验证系统 | |
CA2828795C (en) | Photography system | |
JP6441895B2 (ja) | メモを管理するためのシステム及び方法 | |
JP5276111B2 (ja) | セルフ撮影の際に顔の構図を決定できるようにサポートする方法及びシステム | |
US7427983B1 (en) | Visual communication system | |
CN107206670A (zh) | 3d工装机器 | |
US7023475B2 (en) | System and method for identifying an object with captured images | |
CN105264436A (zh) | 用于控制与图像捕捉有关的设备的系统和方法 | |
JP2010219825A (ja) | 三次元計測用画像撮影装置 | |
WO2016184435A1 (zh) | 一种艺术品定位取证安全备案的方法和系统 | |
BR112021004153A2 (pt) | sistema e método de formação de imagem digital | |
CN111818270B (zh) | 用于多机位摄像的自动控制方法和系统 | |
CN101505329A (zh) | 手机与相机互动系统及其方法 | |
CN112712405A (zh) | 一种文物艺术品取证验证点交方法 | |
CN106559609B (zh) | 摄像模组及其组装方法 | |
CN207010793U (zh) | 一种反射变换智能成像系统 | |
CN104700392B (zh) | 虚拟影像定位方法及其装置 | |
JP2021521495A (ja) | 商品情報収集装置 | |
CN105632315B (zh) | 一种交通事故现场摄影勘测原理的实验方法 | |
CN201757827U (zh) | 扣拍仪 | |
CN213245476U (zh) | 一种艺术品信息采集点交装置 | |
CN202259151U (zh) | 可自动对焦的电子显微镜 | |
JP4273134B2 (ja) | 3次元マニュアルの作成方法 | |
JP6565763B2 (ja) | 撮影装置、撮影システム、及び撮影プログラム | |
JP2016140962A (ja) | 眼鏡レンズ加工用装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17875018 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17875018 Country of ref document: EP Kind code of ref document: A1 |