WO2018095341A1 - 一种执行传输策略的方法、装置和计算机可读存储介质 - Google Patents
一种执行传输策略的方法、装置和计算机可读存储介质 Download PDFInfo
- Publication number
- WO2018095341A1 WO2018095341A1 PCT/CN2017/112421 CN2017112421W WO2018095341A1 WO 2018095341 A1 WO2018095341 A1 WO 2018095341A1 CN 2017112421 W CN2017112421 W CN 2017112421W WO 2018095341 A1 WO2018095341 A1 WO 2018095341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bdt
- cse
- transmission
- transmission policy
- target node
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/53—Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/535—Allocation or scheduling criteria for wireless resources based on resource usage policies
Definitions
- the present invention relates to the Internet of Things technology, and more particularly to a method, apparatus and computer readable storage medium for performing a transmission strategy.
- Embodiments of the present invention provide a method, apparatus, and computer readable storage medium for performing a transmission policy.
- An embodiment of the present invention provides a method for performing a transmission policy, including:
- the IoT functional entity passes the IoT based on the configured BDT transmission strategy in the underlying network.
- the network platform (IN-CSE) notifies the underlying network to use the target node monitored by the BDT transmission policy, so that the underlying network monitors data transmission of the target node by using the BDT transmission policy;
- the IoT functional entity is an Internet of Things Application Entity (AE) or an Internet of Things General Service Entity (CSE).
- AE Internet of Things Application Entity
- CSE Internet of Things General Service Entity
- the embodiment of the invention further provides a method for executing a transmission strategy, including:
- the IN-CSE receives a message sent by the Internet of Things function entity, and the message is used to notify the underlying network to monitor data transmission of the target node by using a BDT transmission policy, where the Internet of Things function entity is an Internet of Things AE or an Internet of Things CSE;
- the IN-CSE learns the target node monitored by the BDT transmission policy, and transmits a BDT parameter to the underlying network to trigger a Policy and Charging Control (PCC) process, so that the underlying network is in the object
- PCC Policy and Charging Control
- the BDT transmission strategy is executed when the networking function entity interacts with the target node for data interaction.
- An embodiment of the present invention further provides an apparatus for performing a transmission policy, including:
- a notification module configured to notify, by the IN-CSE, the target node monitored by the BDT transmission policy by the IN-CSE according to the BDT transmission policy configured in the underlying network, so that the underlying network uses the BDT transmission policy to monitor Data transfer of the target node.
- An embodiment of the present invention further provides an apparatus for performing a transmission policy, including:
- a receiving module configured to receive a message sent by the IoT function entity, where the message is used to notify the underlying network to monitor data transmission of the target node by using the BDT transmission policy, where the Internet of Things function entity is an Internet of Things AE or an Internet of Things CSE;
- a transmission module configured to learn a target node monitored by using the BDT transmission policy, and transmit a BDT parameter to the underlying network to trigger a PCC process, so that the underlying network performs BDT when the IoT functional entity performs data interaction with the target node. Transmission strategy.
- the embodiment of the present invention further provides a computer readable storage medium, where the computer executable instructions are executed, and when the computer executable instructions are executed by the processor, the method for implementing the transmission strategy of the IoT function entity side is implemented, or the IN- The method of executing the transmission strategy on the CSE side.
- the embodiment of the present invention provides a unified operation mode, which is more convenient for opening the 3GPP network to load and execute the configured BDT transmission policy to various external systems.
- the unified functional entity operates the 3GPP network through the IN-CSE if the external functional entity does not support the 3GPP standard interface. It is possible to implement an external system to notify the 3GPP underlying network to load and execute the configured BDT transmission policy in a unified manner.
- the 3GPP underlying network is notified by the IN-CSE to transmit data by using the BDT transmission policy, so that the 3GPP underlying network can know that the service/application entity of the external system based on the resource architecture mode wants to use the 3GPP underlying network.
- the BDT transmission strategy monitors the transmission data of the target node, thereby filling the gaps in the related art.
- the BDTList attribute of the BDT transmission resource is created or updated, and the IN-CSE can know the target node of the external system's service/application entity that the 3GPP underlying network wants to monitor using the BDT transmission policy.
- the message carries a parameter that uses a BDT transmission policy, so that the IN-CSE knows that the service/application entity of the external system wants the 3GPP underlying network to use the BDT transmission policy to monitor the target node.
- the above two solutions are based on the resource mode to create or update resources, and carry parameters in the operation message of the resource, which simplifies the operation of the external system's service/application entity to use the 3GPP underlying network capability, and improves the operation efficiency.
- Figure 1 is a flow chart for setting a BDT transmission strategy
- FIG. 2 is a flowchart of a method for executing a transmission policy according to Embodiment 1 of the present invention
- FIG. 3 is a flowchart of a method for executing a transmission policy according to Embodiment 2 of the present invention.
- 4 is an application example of the present invention interacting with a 3GPP network based on a oneM2M system, Schematic diagram of BDT transmission between AE/CSE and ADN/ASN/MN by updating BDT resources in oneM2M system;
- FIG. 5 is a schematic diagram of an application according to an embodiment of the present invention interacting with a 3GPP network, and identifying a message by a oneM2M system, automatically triggering a request for a 3GPP network to load a BDT transmission policy, and implementing a BDT between the AE/CSE and the ADN/ASN/MN.
- FIG. 6 is a schematic diagram of an apparatus for performing a transmission policy according to Embodiment 3 of the present invention.
- FIG. 7 is a schematic diagram of an apparatus for performing a transmission policy according to Embodiment 4 of the present invention.
- Step 101 A Service Capability Server (SCS)/Application Server (AS, Application Server) sends a BDT request to a Service Capability Exposure Function (SCEF);
- SCS Service Capability Server
- AS Application Server
- SCEF Service Capability Exposure Function
- Step 102 The SCEF performs authorization authentication on the request.
- Step 103 The SCEF negotiates a future BDT process with a Policy and Charging Rules Function (PCRF), triggers the PCRF to perform a PCC process, and provides a possible BDT transmission policy to the SCEF.
- PCRF Policy and Charging Rules Function
- Step 104 The SCEF returns a BDT response to the SCS/AS, and the response includes a possible BDT transmission policy.
- Step 105 if there is more than one possible BDT transmission policy, the SCS/AS selects one of them and notifies the SCEF;
- Step 106 the SCEF confirms the BDT transmission strategy selected by the SCS/AS;
- Step 107 The SCEF continues to negotiate a BDT transmission policy with the PCRF, and stores a BDT transmission policy selected by the SCS/AS in a User Profile Attribute (SPR).
- SPR User Profile Attribute
- Step 108 At a later point in time, the SCS/AS notifies the PCRF, the PCRF, the Policy and Charging Enforcement Function (PCEF), and the SPR to perform the PCC process, and implements a BDT transmission policy for the node.
- PCEF Policy and Charging Enforcement Function
- Step 108 is: the service/application entity notifies the 3GPP network to load the configured configuration policy within a set time window, and how the service/application entity of the external system based on the resource architecture manner requests the 3GPP network to load and execute the configured BDT transmission policy, Monitoring the transmission process is not within the scope of 3GPP and has not been solved in the prior art.
- Embodiments of the present invention are implemented in a resource-based oneM2M system architecture based on oneM2M standard organization, and an Internet of Things functional entity (including AE/CSE) initiates an underlying network transmission based on a BDT transmission policy through an IN-CSE (oneM2M Internet of Things platform).
- an Internet of Things functional entity including AE/CSE
- AE/CSE Internet of Things functional entity initiates an underlying network transmission based on a BDT transmission policy through an IN-CSE (oneM2M Internet of Things platform).
- the method for performing a transmission policy according to Embodiment 1 of the present invention includes the following steps:
- Step 201 The Internet of Things function entity notifies the underlying network to use the target node monitored by the BDT transmission policy by using an IN-CSE according to a BDT transmission policy configured in the underlying network, so that the underlying network uses the BDT transmission.
- the policy monitors the data transmission of the target node;
- the IoT functional entity is an Internet of Things AE or an Internet of Things CSE.
- the IoT functional entity is the initiator of the BDT transmission policy configured in the underlying network.
- the IoT functional entity initiates and completes the configuration of the BDT transmission policy by creating a BDT resource in the IN-CSE, and the IoT functional entity provides the standard through the IN-CSE.
- the interface queries the BDT resource to determine its configured BDT transmission policy and learns the BDT transmission policy and other content it configures.
- the embodiment of the present invention provides a unified operation mode, which is more convenient for opening the 3GPP network to load and execute the configured BDT transmission policy to various external system function entities, where the external function entity does not support the 3GPP standard interface.
- the 3GPP network is operated through IN-CSE.
- the 3GPP underlying network is notified by the IN-CSE to transmit data by using the BDT transmission policy, so that the 3GPP underlying network can be aware of the resource-based architecture.
- the service/application entity of the external system of the mode wants the 3GPP underlying network to monitor the transmission data of the target node by using the BDT transmission policy, thereby filling the gap of the prior art.
- the underlying network may include PCEF, SPR, and PCRF.
- the target node may be an Application Dedicated Node (AND) or an Application Service Node (ASN) or an Intermediate Node (MN).
- the IoT functional entity sends a message carrying a parameter using a BDT transmission policy to the IN-CSE, so that the IN-CSE learns that the IoT functional entity requests the underlying network to use the BDT transmission policy,
- the base network is further notified to use the target node monitored by the BDT transmission policy.
- the IoT function entity sends a request message to the IN-CSE to create or update a BDTList attribute of a BDT resource, thereby notifying the underlying network of the target monitored by the BDT transmission policy.
- the node indicates that the IoT functional entity performs data interaction with the target node, the underlying network performs a BDT transmission policy.
- the BDTList attribute of the BDT resource is created or updated to indicate a target node identifier that is monitored by using the BDT transmission policy.
- the IoT function entity sends a request message for creating or updating a BDTList attribute of the BDT resource to the IN-CSE, the request message is included in a message for creating a BDT resource, or the request message is to create a BDTList attribute in an existing BDT resource. Or, the request message is to update the BDTList attribute in the existing BDT resource.
- the above two solutions are based on the resource mode to create or update resources, and carry parameters in the operation message of the resource, which simplifies the operation of the external system's service/application entity to use the 3GPP underlying network capability, and improves the operation efficiency.
- the method for performing a transmission policy according to Embodiment 2 of the present invention includes the following steps:
- Step 301 The IN-CSE receives a message sent by the Internet of Things function entity, where the message is used to notify the underlying network to monitor data transmission of the target node by using the BDT transmission policy, where the Internet of Things functional entity is an Internet of Things AE or an Internet of Things CSE. ;
- Step 302 The IN-CSE learns a target node that is monitored by using the BDT transmission policy, and transmits a BDT parameter to the underlying network to trigger a PCC process, so that the underlying network performs data interaction between the IoT functional entity and the target node.
- the BDT transmission strategy is executed. Among them, IN-CSE transmits BDT parameters to the underlying network according to the standard interface provided by the underlying network.
- the embodiment of the present invention provides a unified operation mode, which is more convenient for opening the 3GPP network to load and execute the configured BDT transmission policy to various external system function entities, where the external function entity does not support the 3GPP standard interface.
- the 3GPP network is operated through IN-CSE.
- the 3GPP underlying network is notified by the IN-CSE to transmit data by using the BDT transmission policy, so that the 3GPP underlying network can know that the service/application entity of the external system based on the resource architecture mode wants to use the 3GPP underlying network.
- the BDT transmission strategy monitors the transmission data of the target node, thereby filling the gaps in the prior art.
- the message sent by the Internet of Things functional entity carries a parameter using a BDT transmission policy
- the IN-CSE learns the target node monitored by using the BDT transmission policy according to the parameter using the BDT transmission policy.
- the target node used by the BDT transmission policy is the receiver in the sending message.
- the message sent by the Internet of Things function entity is a request message for creating or updating a BDTList attribute of an associated BDT resource
- the IN-CSE learns to monitor using the BDT transmission policy according to the request message.
- the BDTList attribute represents the identity of the target node.
- the BDT parameter transmitted by the IN-CSE to the underlying network may include one or more combinations of the following parameters: an identifier or address of a target node that transmits data by the Internet of Things functional entity, a reference identifier that identifies a BDT transmission policy, and a The Internet of Things functional entity identifier.
- the reference identifier that identifies the BDT transmission policy is stored in the BDT resource, and the IN-CSE obtains the reference identifier that identifies the BDT transmission policy according to the BDT resource where the BDTList attribute is created or updated.
- the target node identifier or address is the value of the BDTList attribute of the BDT resource in the request message, or the IN-CSE maps the value of the BDTList attribute of the BDT resource to the target node. IP address or other identifier.
- the above two solutions are based on the resource mode to create or update resources, and carry parameters in the operation message of the resource, and the IN-CSE can perform corresponding operations according to the received message, thereby improving the operation efficiency.
- the oneM2M system interacts with the 3GPP network, and the BDT transmission between the AE/CSE and the ADN/ASN/MN is realized by creating or updating the BDTList attribute of the BDT resource in the oneM2M system.
- the AE/CSE creates a BDT resource on the IN-CSE, that is, the configuration of the BDT transmission policy in 3GPP has been completed, and the AE/CSE requests the 3GPP to adopt a BDT transmission policy for the ADN/ASN/MN node.
- the BDTList attribute can be created while the BDT resource is being created, and then the AE/CSE proceeds directly to step 402.
- Step 401 The AE/CSE sends a request message for creating or updating a BDTList attribute of the BDT resource to the IN-CSE according to the message format of the oneM2M standard, and indicates that the AE/CSE wants the 3GPP network to use the BDT transmission policy to transmit the target node identifier of the data.
- Step 402 The IN-CSE receives the request message for creating or updating the BDTList attribute of the BDT resource, and the authentication AE/CSE has the right to create or update the BDTList attribute of the BDT resource, and according to the information carried in the request message, it is learned that the request is in the BDT resource. Create a new BDTList attribute or update the value of the existing BDTList attribute.
- the BDTList attribute value is the identifier of the target node (ADN/ASN/MN) that the AE/CSE wants the 3GPP network to use the BDT transmission policy.
- the identifier may be the node URL, the external network. Identification, identification of group resources, etc.; that is, AE/CSE hopes that the 3GPP network performs a BDT transmission policy on the target node when performing data interaction with the target node.
- Step 403 The IN-CSE sends a message to the SCEF, which is used to request the PCC process of the 3GPP, and requests the 3GPP to perform a BDT transmission policy for data interaction between the AE/CSE and the ADN/ASN/MN, and the message includes the initiator AE/CSE.
- Identification, AE/CSE has configured the referenceID of the BDT transmission policy, the IP address of the target node (ADN/ASN/MN), etc.
- the SCEF may be deployed by the operator in the underlying network, or may be deployed by the third party outside the underlying network.
- Step 404 The SECF transmits the service information to the relevant network element of the 3GPP through the interface of the Rx defined by the 3GPP, triggers the PCC process, creates a related session, binds the associated session and the IP-CAN bearer, and the related 3GPP network element loads the referenceID.
- the corresponding BDT transmission strategy is used to subsequently perform a BDT transmission strategy in the AE/CSE and ADN/ASN/MN data interaction.
- Step 405 the underlying network completes the PCC process, and after the BDT transmission policy is provided to the 3GPP network element configured as the BDT transmission policy control, the SCEF returns a success message to the IN-CSE, indicating that the 3GPP network pairs the AE/CSE and the ADN/ASN/MN. Data interaction uses a BDT transmission strategy.
- Step 406 the IN-CSE completes the request to create or update the BDTList attribute of the BDT resource, and returns a resource creation or update success message.
- Step 407 The AE/CSE sends the service data to the ADN/ASN/MN according to the interface and the message flow defined by the oneM2M, and the 3GPP gateway performs related data transmission monitoring according to the previously loaded BDT transmission policy.
- the oneM2M system interacts with the 3GPP network, parses the message through the oneM2M system, and automatically triggers the request for the 3GPP network to load the BDT transmission policy, so that the 3GPP network pairs AE/CSE and ADN/ A schematic diagram of the BDT transmission strategy for data transmission between ASN/MN.
- AE/CSE has created BDT resources in IN-CSE, that is, the configuration of BDT transmission policy in 3GPP has been completed.
- AE/CSE requests 3GPP network to AE/CSE and ADN/
- the data transmission of the ASN/MN node adopts the BDT transmission strategy.
- Step 501 The AE/CSE sends a request message for operating the remote ADN/ASN/MN to the IN-CSE.
- the BDT parameter is added to the existing message parameter, indicating that the 3GPP network is required to perform AE/CSE.
- the data exchange with ADN/ASN/MN uses the BDT transmission strategy.
- Step 502 The IN-CSE receives the message sent in step 501, and learns the content of the parameter in the partial message.
- the originator of the message is AE/CSE
- the destination (to) of the message is ADN/ASN/MN
- the transmission policy is transmitted, and the IN-CSE learns and confirms that the initiator has configured the relevant BDT transmission policy according to the initiator of the message; if the BDT transmission policy is not configured, IN-CSE will refuse to send the message and return an error to AE/CSE.
- Step 503 The IN-CSE sends a message to the SCEF, which is used to request the PCC process of the 3GPP, and requests the 3GPP to perform a BDT transmission policy for data interaction between the AE/CSE and the ADN/ASN/MN, and the message includes the initiator AE/CSE.
- Identification, AE/CSE has configured the referenceID of the BDT transmission policy, the IP address of the target node (ADN/ASN/MN), etc.;
- Step 504 The SECF transmits the service information to the relevant network element of the 3GPP through the interface of the Rx defined by the 3GPP, triggers the PCC process, creates a related session, binds the associated session and the IP-CAN bearer, and the related 3GPP network element loads the referenceID.
- the corresponding BDT transmission strategy is used to subsequently perform a BDT transmission strategy in the AE/CSE and ADN/ASN/MN data interaction.
- Step 505 the underlying network completes the PCC process, and after the BDT transmission policy is provided to the 3GPP network element configured as the BDT transmission policy control, the SCEF returns a success message to the IN-CSE, indicating that the 3GPP network pairs the AE/CSE and the ADN/ASN/MN. Data interaction uses a BDT transmission strategy.
- Step 506 The IN-CSE sends the data sent by the AE/CSE to the ADN/ASN/MN according to the interface and the message flow defined by the oneM2M, and the 3GPP gateway performs related data transmission monitoring according to the previously loaded BDT transmission policy.
- FIG. 6 it is a schematic diagram of an apparatus for performing a transmission policy according to Embodiment 3 of the present invention.
- the apparatus for performing a transmission policy may be applied to an Internet of Things functional entity (including an AE/CSE), including:
- the notification module 60 is configured to notify, by the IN-CSE, the target node monitored by the BDT transmission policy by using the BDT transmission policy configured in the underlying network, so that the underlying network uses the BDT transmission policy. Monitor the data transmission of the target node.
- the embodiment of the present invention provides a unified operation mode, which is more convenient for opening the 3GPP network to load and execute the configured BDT transmission policy to various external system function entities, where the external function entity does not support the 3GPP standard interface.
- the 3GPP network is operated through IN-CSE.
- the notification module 60 notifies the 3GPP underlying network to transmit data by using the BDT transmission policy by using the IN-CSE, so that the 3GPP underlying network can know that the service/application entity of the external system based on the resource architecture mode wants 3GPP.
- the BDT transmission strategy monitors the transmission data of the target node, thereby filling the gaps in related technologies.
- the notification module 60 includes a first notification unit 61,
- the first notification unit 61 is configured to send the message carrying the parameter of the BDT transmission policy to the IN-CSE, so that the IN-CSE learns that the Internet of Things function entity requests the underlying network to use the BDT transmission policy, thereby notifying the The underlying network uses the target node monitored by the BDT transmission policy.
- the notification module 60 includes a second notification unit 62,
- the second notification unit 62 is configured to send a request message for creating or updating a BDTList attribute of the BDT resource to the IN-CSE, instructing the underlying network to perform BDT transmission when the IoT function entity performs data interaction with the target node. Strategy.
- the BDTList attribute of the create or update BDT resource indicates a target node identifier that is monitored using the BDT transmission policy.
- the above two solutions are based on the resource mode to create or update resources, and carry parameters in the operation message of the resource, which simplifies the operation of the external system's service/application entity to use the 3GPP underlying network capability, and improves the operation efficiency.
- the notification module 60, the first notification module 61, and the second notification module may be implemented by a processor in the apparatus for executing the transmission policy in combination with a communication interface.
- the processor needs to run a computer program stored in the memory to perform the above-described method on the physical side of the Internet of Things function.
- FIG. 7 it is a schematic diagram of an apparatus for performing a transmission policy according to Embodiment 4 of the present invention, where the apparatus for performing a transmission policy is applicable to an IN-CSE, including:
- the receiving module 71 is configured to receive a message sent by the Internet of Things function entity, where the message is used to notify the underlying network to monitor data transmission of the target node by using the BDT transmission policy, where the Internet of Things functional entity is an AE or a CSE;
- the transmitting module 72 is configured to learn the target node monitored by using the BDT transmission policy, and transmit the BDT parameter to the underlying network to trigger the policy and charging control PCC process, so that the underlying network is in the IoT functional entity and the target node. Perform BDT transmission policy when data interaction slightly.
- the embodiment of the present invention provides a unified operation mode, which is more convenient for opening the 3GPP network to load and execute the configured BDT transmission policy to various external system function entities, where the external function entity does not support the 3GPP standard interface.
- the 3GPP network is operated through IN-CSE.
- the 3GPP underlying network is notified by the IN-CSE to transmit data by using the BDT transmission policy, so that the 3GPP underlying network can know that the service/application entity of the external system based on the resource architecture mode wants to use the 3GPP underlying network.
- the BDT transmission strategy monitors the transmission data of the target node, thereby filling the gaps in the related art.
- the message sent by the Internet of Things functional entity carries a parameter using a BDT transmission policy
- the transmission module 72 may be further configured to learn to use the BDT transmission policy according to the parameter that uses the BDT transmission policy.
- the target node of the monitoring The target node of the monitoring.
- the message sent by the Internet of Things functional entity is a request message for creating or updating a BDTList attribute of an associated BDT resource
- the transmitting module 72 may be further configured to learn to use the BDT according to the request message.
- the BDT parameter transmitted by the IN-CSE to the underlying network includes one or more combinations of the following parameters: an identifier or address of a target node that transmits data by the IoT functional entity, a reference identifier that identifies a BDT transmission policy, and the IoT functional entity identity.
- the above two solutions are based on the resource mode to create or update resources, and carry parameters in the operation message of the resource, and the IN-CSE can perform corresponding operations according to the received message, thereby improving the operation efficiency.
- the receiving module 71 and the transmitting module 72 can be implemented by a processor in the apparatus for executing the transmission policy in combination with a communication interface.
- the processor needs to run a computer program stored in the memory to perform the above-described method on the IN-CSE side.
- the Internet of Things functional entity can select a transmission strategy based on 3GPP to optimize the transmission of information interaction between the Internet of Things functional entity and the device.
- the embodiment of the invention further provides a computer readable storage medium, which is stored in a computer executable And a method for implementing the foregoing transmission strategy when the computer-executable instructions are executed by the processor, that is, a method for implementing a transmission policy on the physical-network functional entity side, or a method for performing a transmission strategy on the IN-CSE side.
- the solution provided by the embodiment of the present invention by using the IN-CSE to notify the 3GPP underlying network to transmit data by using the BDT transmission policy, may enable the 3GPP underlying network to know that the service/application entity of the external system based on the resource architecture mode wants the 3GPP underlying network.
- Using the BDT transmission strategy to monitor the transmission data of the target node provides a unified operation mode, which is more convenient for opening the 3GPP network to load and execute the configured BDT transmission policy to various external system function entities, externally
- the 3GPP network is operated through the IN-CSE. It is possible to implement an external system to notify the 3GPP underlying network to load and execute the configured BDT transmission policy in a unified manner.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种执行传输策略的方法、装置和计算机可读存储介质。其中,所述方法包括:物联网功能实体根据在底层网络中已配置的背景数据传输(BDT)传输策略,通过物联网平台(IN-CSE)通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输;其中,所述物联网功能实体为物联网应用实体(AE)或物联网通用业务实体(CSE)。
Description
相关申请的交叉引用
本申请基于申请号为201611054714.6、申请日为2016年11月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本发明涉及物联网技术,尤指一种执行传输策略的方法、装置和计算机可读存储介质。
随着物联网的发展,将有亿万级的终端设备连接到物联网平台,与应用进行信息交互,一个应用可以同时与多个设备进行通信,这对网络传输能力,特别是在高峰时段是一个巨大的考验。目前,第三代合作伙伴计划(3GPP,The 3rd Generation Partnership Project)针对物联网中海量终端设备的通信问题,提供一种背景数据传输(BDT,Background Date Transfer,)的传输方式,通过设置网络非繁忙时间窗,为应用与设备提供费率更低、速度更快的通信,同时,也减轻网络在高峰时段的压力。
但是,基于资源架构方式的外部系统的功能实体如何请求3GPP网络加载并执行配置的BDT传输策略,并不属于3GPP的范围,且没有得到解决。
发明内容
本发明实施例提供了一种执行传输策略的方法、装置和计算机可读存储介质。
本发明实施例提供了一种执行传输策略的方法,包括:
物联网功能实体根据在底层网络中已配置的BDT传输策略,通过物联
网平台(IN-CSE)通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输;
其中,所述物联网功能实体为物联网应用实体(AE)或物联网通用业务实体(CSE)。
本发明实施例还提供了一种执行传输策略的方法,包括:
IN-CSE接收物联网功能实体发送的消息,所述消息用于通知底层网络使用BDT传输策略监控目标节点的数据传输,所述物联网功能实体为物联网AE或物联网CSE;
所述IN-CSE获知使用所述BDT传输策略监控的目标节点,向底层网络传输BDT参数以触发策略与计费控制(PCC,Policy and Charging Control)过程,以使所述底层网络在所述物联网功能实体与目标节点进行数据交互时执行BDT传输策略。
本发明实施例还提供了一种执行传输策略的装置,包括:
通知模块,配置为根据在底层网络中已配置的BDT传输策略,通过IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输。
本发明实施例还提供了一种执行传输策略的装置,包括:
接收模块,配置为接收物联网功能实体发送的消息,所述消息用于通知底层网络使用所述BDT传输策略监控目标节点的数据传输,所述物联网功能实体为物联网AE或物联网CSE;
传输模块,配置为获知使用所述BDT传输策略监控的目标节点,向底层网络传输BDT参数以触发PCC过程,以使所述底层网络在所述物联网功能实体与目标节点进行数据交互时执行BDT传输策略。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述物联网功能实体侧执行传输策略的方法,或者实现上述IN-CSE侧执行传输策略的方法。
与相关技术相比,本发明实施例提供一种统一的操作方式,更有利于将3GPP网络加载并执行配置的BDT传输策略的能力开放给各种的外部系
统功能实体,在外部功能实体不支持3GPP标准接口的情况下,通过IN-CSE对3GPP网络进行操作。能够实现外部系统通过统一方式通知3GPP底层网络加载并执行配置的BDT传输策略。在本发明实施例中,通过IN-CSE通知所述3GPP底层网络使用所述BDT传输策略传输数据,可以使得3GPP底层网络可以知晓基于资源架构方式的外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略监控目标节点的传输数据,从而填补了相关技术的空白。
在一个可选方案中,采用创建或更新BDT传输资源的BDTList属性,IN-CSE即可获知外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略进行监控的目标节点。
在另一个可选方案中,采用消息中携带有使用BDT传输策略的参数,使IN-CSE获知外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略进行监控的目标节点。
上述两种方案基于资源方式对资源的创建或更新,以及在对资源的操作消息中携带参数,简化了外部系统的业务/应用实体对使用3GPP底层网络能力的操作,提高了操作的效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案。
图1为设置BDT传输策略流程图;
图2为本发明实施例一的执行传输策略的方法流程图;
图3为本发明实施例二的执行传输策略的方法流程图;
图4为本发明应用实例的基于oneM2M系统与3GPP网络进行交互,
通过对oneM2M系统中BDT资源更新,实现AE/CSE与ADN/ASN/MN之间的BDT传输的示意图;
图5为本发明应用实例的基于oneM2M系统与3GPP网络进行交互,通过oneM2M系统对其消息进行识别,自动触发请求3GPP网络加载BDT传输策略,实现AE/CSE与ADN/ASN/MN之间的BDT传输的示意图;
图6为本发明实施例三的执行传输策略的装置示意图;
图7为本发明实施例四的执行传输策略的装置示意图。
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,为设置BDT传输策略流程,包括如下步骤:
步骤101,业务能力服务器(SCS,Services Capability Server)/应用服务器(AS,Application Server)向业务能力开放功能(SCEF,Service Capability Exposure Function)发送BDT请求;
步骤102,SCEF对请求进行授权认证;
步骤103,SCEF与策略与计费规则功能(PCRF,Policy and Charging Rules Function)协商未来的BDT过程,触发PCRF执行PCC过程,提供可能的BDT传输策略给SCEF;
步骤104,SCEF向SCS/AS返回BDT响应,响应包括可能的BDT传输策略;
步骤105,如果有不止一个可能的BDT传输策略,SCS/AS选择其中一个并通知SCEF;
步骤106,SCEF确认SCS/AS所选BDT传输策略;
步骤107,SCEF继续与PCRF协商BDT传输策略,并在用户属性存储器(SPR,Subscription Profile Repository)中存储SCS/AS选择的BDT传输策略;
步骤108,SCS/AS在后来的某一时间点,通知PCRF,PCRF、策略和计费执行功能(PCEF,Policy and Charging Enforcement Function)、SPR执行PCC过程,对节点实施BDT传输策略。
其中,步骤108是业务/应用实体在设定的时间窗内通知3GPP网络加载使用配置的策略,基于资源架构方式的外部系统的业务/应用实体如何请求3GPP网络加载并执行配置的BDT传输策略,对其传输过程进行监控,并不属于3GPP的范围,现有技术中没有得到解决。
本发明实施例是在基于oneM2M标准组织的基于资源的oneM2M系统架构中实现,物联网功能实体(包括AE/CSE)通过IN-CSE(oneM2M的物联网平台)发起基于BDT传输策略的底层网络传输。
实施例一
如图2所示,本发明实施例一的执行传输策略的方法包括如下步骤:
步骤201,物联网功能实体根据在底层网络中已配置的BDT传输策略,通过IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输;
其中,所述物联网功能实体为物联网AE或物联网CSE。
物联网功能实体为配置在底层网络中BDT传输策略的发起者,物联网功能实体通过在IN-CSE中创建BDT资源发起并完成BDT传输策略的配置,物联网功能实体通过IN-CSE提供的标准接口查询BDT资源确定其已配置BDT传输策略并获知其所配置的BDT传输策略等内容。
本发明实施例提供一种统一的操作方式,更有利于将3GPP网络加载并执行配置的BDT传输策略的能力开放给各种的外部系统功能实体,在外部功能实体不支持3GPP标准接口的情况下,通过IN-CSE对3GPP网络进行操作。在本发明实施例中,通过IN-CSE通知所述3GPP底层网络使用所述BDT传输策略传输数据,可以使得3GPP底层网络可以知晓基于资源架构
方式的外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略监控目标节点的传输数据,从而填补了现有技术的空白。
所述底层网络可以包括PCEF、SPR和PCRF。所述目标节点可以是应用专用节点(AND,Application Dedicated Node)或应用业务节点(ASN,Application Service Node)或中间节点(MN,Middle Node)。
在一些实施例中,所述物联网功能实体通过发送携带使用BDT传输策略的参数的消息给IN-CSE,以使所述IN-CSE获知物联网功能实体请求底层网络使用所述BDT传输策略,进而通知所述底层网络使用所述BDT传输策略监控的目标节点。
在一些实施例中,所述物联网功能实体向所述IN-CSE发送创建或更新BDT资源的BDTList(BDT列表)属性的请求消息,进而通知所述底层网络使用所述BDT传输策略监控的目标节点,即指示所述物联网功能实体与目标节点进行数据交互时,所述底层网络执行BDT传输策略。
其中,所述创建或更新BDT资源的BDTList属性指示使用所述BDT传输策略监控的目标节点标识。
其中,物联网功能实体向所述IN-CSE发送创建或更新BDT资源的BDTList属性的请求消息,请求消息包含在创建BDT资源的消息中,或者请求消息是在已存在的BDT资源中创建BDTList属性,或者请求消息是更新已存在的BDT资源中BDTList属性。
上述两种方案基于资源方式对资源的创建或更新,以及在对资源的操作消息中携带参数,简化了外部系统的业务/应用实体对使用3GPP底层网络能力的操作,提高了操作的效率。
实施例二
如图3所示,本发明实施例二的执行传输策略的方法包括如下步骤:
步骤301,IN-CSE接收物联网功能实体发送的消息,所述消息用于通知底层网络使用所述BDT传输策略监控目标节点的数据传输,所述物联网功能实体为物联网AE或物联网CSE;
步骤302,所述IN-CSE获知使用所述BDT传输策略监控的目标节点,向底层网络传输BDT参数以触发PCC过程,以使所述底层网络在所述物联网功能实体与目标节点进行数据交互时执行BDT传输策略。其中,IN-CSE根据底层网络提供的标准接口向底层网络传输BDT参数。
本发明实施例提供一种统一的操作方式,更有利于将3GPP网络加载并执行配置的BDT传输策略的能力开放给各种的外部系统功能实体,在外部功能实体不支持3GPP标准接口的情况下,通过IN-CSE对3GPP网络进行操作。在本发明实施例中,通过IN-CSE通知所述3GPP底层网络使用所述BDT传输策略传输数据,可以使得3GPP底层网络可以知晓基于资源架构方式的外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略监控目标节点的传输数据,从而填补了现有技术的空白。
在一些实施例中,所述物联网功能实体发送的消息中携带有使用BDT传输策略的参数,所述IN-CSE根据所述使用BDT传输策略的参数获知使用所述BDT传输策略监控的目标节点。
其中,BDT传输策略使用的目标节点为发送消息中接收方。
在一些实施例中,所述物联网功能实体发送的消息为创建或更新相关的BDT资源的BDTList属性的请求消息,所述IN-CSE根据所述请求消息,获知使用所述BDT传输策略监控的目标节点,并相应地创建或更新所述BDT资源的BDTList属性。
其中,BDTList属性表示目标节点的标识。
所述IN-CSE向底层网络传输的BDT参数可包括以下参数中的一种或多种组合:所述物联网功能实体传输数据的目标节点的标识或地址、标识BDT传输策略的参考标识、所述物联网功能实体标识。
其中,标识BDT传输策略的参考标识存储在BDT资源中,IN-CSE根据创建或更新的BDTList属性所在的BDT资源,获取标识BDT传输策略的参考标识。
其中,目标节点标识或地址是请求消息中BDT资源的BDTList属性的值,或者,IN-CSE通过BDT资源的BDTList属性的值映射到目标节点的
IP地址或其他标识。
上述两种方案基于资源方式对资源的创建或更新,以及在对资源的操作消息中携带参数,IN-CSE可以根据接收到的消息进行相应操作,提高了操作的效率。
如图4所示,为本发明应用实例的基于oneM2M系统与3GPP网络进行交互,通过对oneM2M系统中创建或更新BDT资源BDTList属性,实现AE/CSE与ADN/ASN/MN之间的BDT传输的示意图。
AE/CSE在IN-CSE上创建了BDT资源,即已完成了在3GPP中的BDT传输策略的配置,AE/CSE请求3GPP对ADN/ASN/MN节点采用BDT传输策略。在创建BDT资源的同时可创建BDTList属性,那么AE/CSE直接进行步骤402。
步骤401,AE/CSE按照oneM2M标准的消息格式向IN-CSE发送创建或更新BDT资源的BDTList属性的请求消息,表示了AE/CSE希望3GPP网络使用BDT传输策略进行传输数据的目标节点标识;
步骤402,IN-CSE接收到创建或更新BDT资源的BDTList属性的请求消息,鉴权AE/CSE有权限创建或更新BDT资源的BDTList属性,根据请求消息所带的信息,获知是请求在BDT资源下创建新的BDTList属性或更新现有BDTList属性的值,BDTList属性值为AE/CSE希望3GPP网络使用BDT传输策略的目标节点(ADN/ASN/MN)的标识,标识可以是节点URL、外部网络标识、组资源的标识等;即AE/CSE希望在与目标节点进行数据交互时,3GPP网络对目标节点执行BDT传输策略。
步骤403,IN-CSE向SCEF发送消息,该消息用于请求3GPP的PCC过程,请求3GPP对于AE/CSE与ADN/ASN/MN之间的数据交互执行BDT传输策略,消息包含发起者AE/CSE的标识、AE/CSE已配置BDT传输策略的referenceID、目标节点(ADN/ASN/MN)IP地址等;
其中,SCEF可以由运营商部署在底层网络中,也可以由第三方部署在底层网络之外。
步骤404,SECF通过3GPP定义的Rx的接口将业务信息传送给3GPP的相关网元,触发PCC过程,创建相关的会话,绑定相关联的会话及IP-CAN承载,相关3GPP网元将加载referenceID对应的BDT传输策略,用于后续在AE/CSE与ADN/ASN/MN数据交互中执行BDT传输策略。
步骤405,底层网络完成PCC过程,将BDT传输策略提供给配置为BDT传输策略控制的3GPP网元后,SCEF返回成功消息给IN-CSE,表示3GPP网络对AE/CSE与ADN/ASN/MN的数据交互采用BDT传输策略。
步骤406,IN-CSE完成请求创建或更新BDT资源的BDTList属性,返回资源创建或更新成功消息。
步骤407,AE/CSE按照oneM2M定义的接口及消息流程,向ADN/ASN/MN发送业务数据,3GPP网关会根据之前已经加载的BDT传输策略进行相关的数据传输监控。
如图5所示,为本发明应用实例的基于oneM2M系统与3GPP网络进行交互,通过oneM2M系统对其消息进行解析,自动触发请求3GPP网络加载BDT传输策略,使3GPP网络对AE/CSE与ADN/ASN/MN之间数据传输采用BDT传输策略的示意图。
AE/CSE在IN-CSE已创建BDT资源,即已完成了在3GPP中的BDT传输策略的配置,当满足BDT传输策略中的时间窗时,AE/CSE请求3GPP网络对AE/CSE与ADN/ASN/MN节点的数据传输采用BDT传输策略。
步骤501,AE/CSE向IN-CSE发送操作远程ADN/ASN/MN的请求消息,消息中除了oneM2M已定义的消息参数,新增BDT参数扩展现有消息参数,表示希望3GPP网络对AE/CSE与ADN/ASN/MN的数据交互采用BDT传输策略。
步骤502,IN-CSE接收步骤501发送的消息,获知部分消息中参数的内容,消息的发起者(from)为AE/CSE,消息的目的地(to)为ADN/ASN/MN,消息采用BDT传输策略进行传输,IN-CSE根据消息的发起者获知并确认该发起者已经配置相关的BDT传输策略;如果没有配置BDT传输策略,
IN-CSE将拒绝发送给消息,返回错误给AE/CSE。
步骤503,IN-CSE向SCEF发送消息,该消息用于请求3GPP的PCC过程,请求3GPP对于AE/CSE与ADN/ASN/MN之间的数据交互执行BDT传输策略,消息包含发起者AE/CSE的标识、AE/CSE已配置BDT传输策略的referenceID、目标节点(ADN/ASN/MN)的IP地址等;
步骤504,SECF通过3GPP定义的Rx的接口将业务信息传送给3GPP的相关网元,触发PCC过程,创建相关的会话,绑定相关联的会话及IP-CAN承载,相关3GPP网元将加载referenceID对应的BDT传输策略,用于后续在AE/CSE与ADN/ASN/MN数据交互中执行BDT传输策略。
步骤505,底层网络完成PCC过程,将BDT传输策略提供给配置为BDT传输策略控制的3GPP网元后,SCEF返回成功消息给IN-CSE,表示3GPP网络对AE/CSE与ADN/ASN/MN的数据交互采用BDT传输策略。
步骤506,IN-CSE按照oneM2M定义的接口及消息流程,向ADN/ASN/MN发送AE/CSE发送的数据,3GPP网关会根据之前已经加载的BDT传输策略进行相关的数据传输监控。
实施例三
如图6所示,为本发明实施例三的执行传输策略的装置示意图,所述执行传输策略的装置可应用于物联网功能实体(包括AE/CSE),包括:
通知模块60,配置为根据在底层网络中已配置的BDT传输策略,通过IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输。
本发明实施例提供一种统一的操作方式,更有利于将3GPP网络加载并执行配置的BDT传输策略的能力开放给各种的外部系统功能实体,在外部功能实体不支持3GPP标准接口的情况下,通过IN-CSE对3GPP网络进行操作。在本发明实施例中,通知模块60通过IN-CSE通知所述3GPP底层网络使用所述BDT传输策略传输数据,可以使得3GPP底层网络可以知晓基于资源架构方式的外部系统的业务/应用实体希望3GPP底层网络使用所
述BDT传输策略监控目标节点的传输数据,从而填补了相关技术的空白。
在一些实施例中,所述通知模块60包括第一通知单元61,
所述第一通知单元61配置为通过发送携带使用BDT传输策略的参数的消息给IN-CSE,以使所述IN-CSE获知物联网功能实体请求底层网络使用所述BDT传输策略,进而通知所述底层网络使用所述BDT传输策略监控的目标节点。
在一些实施例中,所述通知模块60包括第二通知单元62,
所述第二通知单元62配置为向所述IN-CSE发送创建或更新BDT资源的BDTList属性的请求消息,指示所述物联网功能实体与目标节点进行数据交互时,所述底层网络执行BDT传输策略。
所述创建或更新BDT资源的BDTList属性指示使用所述BDT传输策略监控的目标节点标识。
上述两种方案基于资源方式对资源的创建或更新,以及在对资源的操作消息中携带参数,简化了外部系统的业务/应用实体对使用3GPP底层网络能力的操作,提高了操作的效率。
需要说明的是:通知模块60、第一通知模块61及第二通知模块可由所述执行传输策略的装置中的处理器结合通信接口实现。当然,处理器需要运行存储在存储器的计算机程序,以执行上述物联网功能实体侧的方法。
实施例四
如图7所示,为本发明实施例四的执行传输策略的装置示意图,所述执行传输策略的装置可应用于IN-CSE,包括:
接收模块71,配置为接收物联网功能实体发送的消息,所述消息用于通知所述底层网络使用所述BDT传输策略监控目标节点的数据传输,所述物联网功能实体为AE或CSE;
传输模块72,配置为获知使用所述BDT传输策略监控的目标节点,向底层网络传输BDT参数以触发策略与计费控制PCC过程,以使所述底层网络在所述物联网功能实体与目标节点进行数据交互时执行BDT的传输策
略。
本发明实施例提供一种统一的操作方式,更有利于将3GPP网络加载并执行配置的BDT传输策略的能力开放给各种的外部系统功能实体,在外部功能实体不支持3GPP标准接口的情况下,通过IN-CSE对3GPP网络进行操作。在本发明实施例中,通过IN-CSE通知所述3GPP底层网络使用所述BDT传输策略传输数据,可以使得3GPP底层网络可以知晓基于资源架构方式的外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略监控目标节点的传输数据,从而填补了相关技术的空白。
在一些实施例中,所述物联网功能实体发送的消息中携带有使用BDT传输策略的参数,所述传输模块72还可以配置为根据所述使用BDT传输策略的参数获知使用所述BDT传输策略监控的目标节点。
在一些实施例中,所述物联网功能实体发送的消息为创建或更新相关的BDT资源的BDTList属性的请求消息,所述传输模块72还可以配置为根据所述请求消息,获知使用所述BDT传输策略监控的目标节点,并相应地创建或更新所述BDT资源的BDTList属性。
所述IN-CSE向底层网络传输的BDT参数包括以下参数中的一种或多种组合:所述物联网功能实体传输数据的目标节点的标识或地址、标识BDT传输策略的参考标识、所述物联网功能实体标识。
上述两种方案基于资源方式对资源的创建或更新,以及在对资源的操作消息中携带参数,IN-CSE可以根据接收到的消息进行相应操作,提高了操作的效率。
需要说明的是:接收模块71及传输模块72可由所述执行传输策略的装置中的处理器结合通信接口实现。当然,处理器需要运行存储在存储器的计算机程序,以执行上述IN-CSE侧的方法。
综上所述,本发明实施例在物联网架构中,物联网功能实体基于自身需求可根据3GPP提供传输策略进行选择,优化物联网功能实体与设备之间信息交互的传输。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行
指令,所述计算机可执行指令被处理器执行时实现上述执行传输策略的方法,即实现上述物联网功能实体侧的执行传输策略的方法,或者实现上述IN-CSE侧的执行传输策略的方法。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
本发明实施例提供的方案,通过IN-CSE通知所述3GPP底层网络使用所述BDT传输策略传输数据,可以使得3GPP底层网络可以知晓基于资源架构方式的外部系统的业务/应用实体希望3GPP底层网络使用所述BDT传输策略监控目标节点的传输数据,提供了一种统一的操作方式,更有利于将3GPP网络加载并执行配置的BDT传输策略的能力开放给各种的外部系统功能实体,在外部功能实体不支持3GPP标准接口的情况下,通过IN-CSE对3GPP网络进行操作。能够实现外部系统通过统一方式通知3GPP底层网络加载并执行配置的BDT传输策略。
Claims (16)
- 一种执行传输策略的方法,包括:物联网功能实体根据在底层网络中已配置的背景数据传输BDT传输策略,通过物联网平台IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输;其中,所述物联网功能实体为物联网应用实体AE或物联网通用业务实体CSE。
- 根据权利要求1所述的方法,其中,所述物联网功能实体通过IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,包括:所述物联网功能实体通过发送携带使用BDT传输策略的参数的消息给IN-CSE,以使所述IN-CSE获知物联网功能实体请求底层网络使用所述BDT传输策略,并通知所述底层网络使用所述BDT传输策略监控的目标节点。
- 根据权利要求1所述的方法,其中,所述物联网功能实体通过IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,包括:所述物联网功能实体向所述IN-CSE发送创建或更新BDT资源的BDT列表BDTList属性的请求消息,指示所述物联网功能实体与目标节点进行数据交互时,所述底层网络执行BDT传输策略。
- 根据权利要求3所述的方法,其中,所述创建或更新BDT资源的BDTList属性指示使用所述BDT传输策略监控的目标节点标识。
- 一种执行传输策略的方法,包括:物联网平台IN-CSE接收物联网功能实体发送的消息,所述消息用于通知底层网络使用所述BDT传输策略监控目标节点的数据传输,所述物联网功能实体为物联网应用实体AE或物联网通用业务实体CSE;所述IN-CSE获知使用所述BDT传输策略监控的目标节点,向底层网络传输BDT参数以触发策略与计费控制PCC过程,以使所述底层网络在所 述物联网功能实体与目标节点进行数据交互时执行BDT传输策略。
- 根据权利要求5所述的方法,其中,所述物联网功能实体发送的消息中携带有使用BDT传输策略的参数;所述IN-CSE获知使用所述BDT传输策略监控的目标节点,包括:所述IN-CSE根据所述使用BDT传输策略的参数获知使用所述BDT传输策略监控的目标节点。
- 根据权利要求5所述的方法,其中,所述物联网功能实体发送的消息为创建或更新相关的BDT资源的BDTList属性的请求消息;所述IN-CSE获知使用所述BDT传输策略监控的目标节点,包括:所述IN-CSE根据所述请求消息,获知使用所述BDT传输策略监控的目标节点,并相应地创建或更新所述BDT资源的BDTList属性。
- 根据权利要求5所述的方法,其中,所述IN-CSE向底层网络传输的BDT参数包括以下参数中的一种或多种组合:所述物联网功能实体传输数据的目标节点的标识或地址、标识BDT传输策略的参考标识、所述物联网功能实体标识。
- 根据权利要求8所述的方法,其中,所述目标节点的标识为单个节点的标识或组资源的标识。
- 一种执行传输策略的装置,包括:通知模块,配置为根据在底层网络中已配置的背景数据传输BDT传输策略,通过物联网平台IN-CSE通知所述底层网络使用所述BDT传输策略监控的目标节点,以使所述底层网络使用所述BDT传输策略监控目标节点的数据传输。
- 根据权利要求10所述的装置,其中,所述通知模块包括第一通知单元,所述第一通知单元配置为通过发送携带使用BDT传输策略的参数的消息给IN-CSE,以使所述IN-CSE获知物联网功能实体请求底层网络使用所述BDT传输策略,并通知所述底层网络使用所述BDT传输策略监控的目标节点。
- 根据权利要求10所述的装置,其中,所述通知模块包括第二通知单元,所述第二通知单元配置为向所述IN-CSE发送创建或更新BDT资源的BDTList属性的请求消息,指示所述物联网功能实体与目标节点进行数据交互时,所述底层网络执行BDT传输策略。
- 一种执行传输策略的装置,包括:接收模块,配置为接收物联网功能实体发送的消息,所述消息用于通知所述底层网络使用所述BDT传输策略监控目标节点的数据传输,所述物联网功能实体为物联网应用实体AE或物联网通用业务实体CSE;传输模块,配置为获知使用所述BDT传输策略监控的目标节点,向底层网络传输BDT参数以触发策略与计费控制PCC过程,以使所述底层网络在所述物联网功能实体与目标节点进行数据交互时执行BDT传输策略。
- 根据权利要求13所述的装置,其中,所述物联网功能实体发送的消息中携带有使用BDT传输策略的参数,所述传输模块配置为根据所述使用BDT传输策略的参数获知使用所述BDT传输策略监控的目标节点。
- 根据权利要求13所述的装置,其中,所述物联网功能实体发送的消息为创建或更新相关的BDT资源的BDTList属性的请求消息,所述传输模块配置为根据所述请求消息,获知使用所述BDT传输策略监控的目标节点,并相应地创建或更新所述BDT资源的BDTList属性。
- 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至4任一项所述方法的步骤,或者实现权利要求5至9任一项所述方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611054714.6A CN108111964B (zh) | 2016-11-25 | 2016-11-25 | 一种执行传输策略的方法和装置 |
CN201611054714.6 | 2016-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018095341A1 true WO2018095341A1 (zh) | 2018-05-31 |
Family
ID=62194786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112421 WO2018095341A1 (zh) | 2016-11-25 | 2017-11-22 | 一种执行传输策略的方法、装置和计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108111964B (zh) |
WO (1) | WO2018095341A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108900524A (zh) * | 2018-07-13 | 2018-11-27 | 中国电子科技集团公司第十五研究所 | 一种物联网中物体节点交互系统 |
WO2020040723A1 (en) * | 2018-08-20 | 2020-02-27 | Nokia Solutions And Networks Oy | Method, apparatus and computer program |
CN112104464B (zh) * | 2019-06-17 | 2021-09-07 | 华为技术有限公司 | 一种传输背景流量传输信息的方法、装置及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110013516A1 (en) * | 2009-07-15 | 2011-01-20 | Microsoft Corporation | Control of Background Data Transfers |
CN104105059A (zh) * | 2013-04-12 | 2014-10-15 | 宏达国际电子股份有限公司 | 移动装置和背景数据传输的管理方法 |
CN107343294A (zh) * | 2016-04-29 | 2017-11-10 | 中兴通讯股份有限公司 | 背景数据传输策略配置方法及装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7768960B1 (en) * | 2004-07-20 | 2010-08-03 | Atheros Communications, Inc. | Efficient communication channel survey |
US10111168B2 (en) * | 2012-05-02 | 2018-10-23 | Mediatek Inc. | User equipment enhancement for diverse data application |
US10412651B2 (en) * | 2014-08-28 | 2019-09-10 | Apple Inc. | User equipment triggered handover with long connected-discontinuous-reception cycle in connected mode |
-
2016
- 2016-11-25 CN CN201611054714.6A patent/CN108111964B/zh active Active
-
2017
- 2017-11-22 WO PCT/CN2017/112421 patent/WO2018095341A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110013516A1 (en) * | 2009-07-15 | 2011-01-20 | Microsoft Corporation | Control of Background Data Transfers |
CN104105059A (zh) * | 2013-04-12 | 2014-10-15 | 宏达国际电子股份有限公司 | 移动装置和背景数据传输的管理方法 |
CN107343294A (zh) * | 2016-04-29 | 2017-11-10 | 中兴通讯股份有限公司 | 背景数据传输策略配置方法及装置 |
Non-Patent Citations (3)
Title |
---|
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications (Release 13", 3GPP TS 23.682, 31 March 2016 (2016-03-31), pages 63 - 75, XP051086077 * |
HUAWEI ET AL.: "Resource Management for Background Data Transfer Via Rx", 3GPP SA WG2 MEETING #109 S 2-151941, 29 May 2015 (2015-05-29), XP050982175 * |
NTT DOCOMO ET AL.: "Addition of Resource Management for Background Data Transfer Feature", 3GPP SA WG2 MEETING #109, 29 May 2015 (2015-05-29), XP050982536 * |
Also Published As
Publication number | Publication date |
---|---|
CN108111964B (zh) | 2021-02-12 |
CN108111964A (zh) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7272736B2 (ja) | サービス加入方法、当該方法を実行するためのチップ、情報伝達装置およびプログラム、並びにネットワーク機能ネットワーク要素 | |
JP6670926B2 (ja) | ユーザ機器のためのモバイルコアネットワークサービスエクスポージャ | |
KR102546956B1 (ko) | 3gpp 네트워크들에서의 소량 데이터 사용 가능 | |
US8151321B2 (en) | Modular network-assisted policy resolution | |
EP3171542B1 (en) | Session management method, application function entity, policy server and protocol converter | |
US10159018B2 (en) | Data processing method for accommodating legacy network service in 4G or next generation network | |
KR20150094630A (ko) | M2m(machine-to-machine)시스템에서 게이트웨이 변경 방법 및 이를 위한 장치 | |
CN107343294B (zh) | 背景数据传输策略配置方法及装置 | |
EP3099097B1 (en) | Trigger management method and apparatus for cse, cse and network element of bearer network | |
WO2018095341A1 (zh) | 一种执行传输策略的方法、装置和计算机可读存储介质 | |
CN104767722B (zh) | 会话的管理方法、策略服务器及应用功能装置 | |
JP2016511451A (ja) | ネットワーク機能を開くためのシステムおよび方法、ならびに関連するネットワーク要素 | |
WO2017124807A1 (zh) | 策略计费控制方法、协议转换器、策略计费规则设备、系统 | |
US10230800B2 (en) | Method for establishing management session, customer premises equipment, and auto-configuration server | |
US10211995B2 (en) | Background traffic downloading method, device, and system | |
US10581979B2 (en) | Information transmission method and apparatus | |
US20220295580A1 (en) | Methods of and Devices for Enabling a Core Network of a Mobile Communication Network to Perform Mobility Actions based on a Radio Access Technology, RAT, with which a User Equipment, UE, Connects to Said Core Network | |
US20170311135A1 (en) | Control Signaling Transmission Method in MCPTT Architecture and Related Device | |
JP6397133B2 (ja) | 接続オブジェクトの制御および監視 | |
RU2783811C2 (ru) | Способ подписки на услуги и устройство | |
US20230007576A1 (en) | Access network intelligent controller for multiple types of access networks | |
CN106992868B (zh) | 第三方应用业务部署方法、scef实体、pcrf实体及pcc框架 | |
WO2023079075A1 (en) | Usage monitoring control at smf relocation | |
EP4136861A1 (en) | Shared reference for a charging data resource for pdu sessions in communications system | |
CN117242745A (zh) | 接入和移动性策略控制 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17874749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17874749 Country of ref document: EP Kind code of ref document: A1 |