WO2018095315A1 - 双断点触桥的压力自平衡结构 - Google Patents

双断点触桥的压力自平衡结构 Download PDF

Info

Publication number
WO2018095315A1
WO2018095315A1 PCT/CN2017/112176 CN2017112176W WO2018095315A1 WO 2018095315 A1 WO2018095315 A1 WO 2018095315A1 CN 2017112176 W CN2017112176 W CN 2017112176W WO 2018095315 A1 WO2018095315 A1 WO 2018095315A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact bridge
contact
torsion spring
balancing
angle
Prior art date
Application number
PCT/CN2017/112176
Other languages
English (en)
French (fr)
Inventor
许文良
敖登贵
顾翔
周荣伟
Original Assignee
浙江正泰电器股份有限公司
上海电科电器科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江正泰电器股份有限公司, 上海电科电器科技有限公司 filed Critical 浙江正泰电器股份有限公司
Publication of WO2018095315A1 publication Critical patent/WO2018095315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • H01H1/2041Rotating bridge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/04Contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/04Contacts
    • H01H73/045Bridging contacts

Definitions

  • the invention relates to the field of low-voltage electrical appliances, in particular to a pressure self-balancing structure of a double-breakpoint contact bridge.
  • the double-breakpoint contact structure has the ability to break the fault current compared to the traditional single-breakpoint contact structure, and has become an important technical development direction of today's low-voltage circuit breaker products.
  • Most of the new high-breaking molded case circuit breakers adopt double-breakpoint contact structure.
  • circuit breakers with double-breakpoint contact structures are prone to wear due to machining or assembly errors, or mechanical or electrical effects on the contact surfaces (including wear or static contact of moving contacts). Point wear), and one of the breakpoints is in poor contact, which seriously affects the product's connection reliability and electrical life.
  • the double breakpoint contact structure must have the following characteristics: it can provide the contact pressure required for the product; can provide the contact opening distance and overtravel required by the product; processing or assembly error, or contact surface After the wear caused by mechanical or electrical action, the moving contact has a certain amount of position adjustment to ensure that the two break points are simultaneously turned on.
  • the existing double-breakpoint contact structure generally has the function of elastically fixing the contact bridge by providing a spring, and provides the contact pressure to the contact bridge, and there is also a waist-shaped hole to realize the contact bridge overtravel, but does not exist.
  • the structure of the self-balancing adjustment of the contact bridge after assembly deviation and contact wear makes it difficult to ensure that both breakpoints are reliably turned on at the same time and have a sufficiently large contact pressure. This seriously affects the connection reliability and electrical life of the product, posing a safety hazard.
  • the spring should increase the force acting in the closing direction when the contacts are closed to provide sufficient contact pressure to provide the desired contact opening and overtravel of the product.
  • a double-breakpoint contact structure existing in the prior art realizes self-rebound of the contact by using a spring on the double-breakpoint contact, and the spring provides a force to the opening position after the break point
  • the head is automatically reset to prevent the contacts from reclosing; when the brake is in the over-dead position, the spring provides a force to the closing position to urge the contacts toward the closing direction, providing the contact opening distance and overtravel required for the product.
  • This configuration also requires an increased force in the closing direction when closed, which makes it difficult for the double breakpoint contacts to self-adjust to maintain contact after the contacts are worn.
  • the object of the present invention is to overcome the shortcomings of the prior art and to provide a pressure self-balancing structure with a simple structure, low assembly precision requirement, flexible and reliable adjustment, and reliable double-breakpoint contact bridge for ensuring reliable contact between two breakpoints.
  • a pressure self-balancing structure for a double break point contact bridge comprising a rotor support 1, a contact bridge 2 pivotally mounted on the rotor support 1, and two elastic members 3 disposed between the rotor support 1 and the contact bridge 2,
  • the two ends of the contact bridge 2 are provided with two contacts 20 which are centrally symmetrical.
  • the middle of the contact bridge 2 is pivotally mounted on the rotor support 1 via the support shaft 4, between the rotor support 1 and the contact bridge 2.
  • a guide groove 5 for guiding and limiting the support shaft 4 is provided, and the length of the guide groove 5 is larger than the outer diameter of the support shaft 4, so that the support shaft 4 has a movable freedom in the guide groove 5 along the length direction of the guide groove 5.
  • the two upper and lower sides of the middle of the contact bridge 2 are provided with two centrally symmetrical adjustment portions 21, respectively, which cooperate with two elastic members 3, and the two ends of the elastic member 3 respectively act on the rotor support 1 And the adjustment portion 21 of the contact bridge 2;
  • the contact 20 has an angle ⁇ between the contact surface in contact with the stationary contact and the longitudinal direction of the guiding groove 5, 60° ⁇ the angle ⁇ 120°; the elastic member 3 is applied to the adjusting portion
  • the direction of the force on 21 has an angle ⁇ with the longitudinal direction of the guide groove 5, and 60° ⁇ angle ⁇ ⁇ 120°.
  • the guiding groove is a waist groove that cooperates with the support shaft 4.
  • the elastic member 3 is a torsion spring
  • the torsion spring is mounted between the limiting boss 10 of the rotor holder 1 and the adjusting portion 21 of the contact bridge 2, and the middle spring body of the torsion spring is sleeved on the rotor bracket 1
  • the two ends of the torsion spring abut against the limiting boss 10 of the rotor holder 1 and the adjusting portion 21 of the contact bridge 2, respectively.
  • an adjustment structure is provided between the torsion spring and the adjustment portion 21, the adjustment structure includes a hook 7 of the torsion spring, and a side wall of the adjustment portion 21 for abutting the hook 7, the torsion spring
  • the end portion for abutting against the adjusting portion 21 is bent to form the hook 7, and the side wall of the adjusting portion 21 for abutting against the hook 7 is a flat surface.
  • an adjustment structure is provided between the torsion spring and the adjustment portion 21, the adjustment structure includes an arc convex hull 6 of the adjustment portion 21, and an end side wall of the torsion spring for abutting the adjustment portion 21,
  • the arcuate convex hull 6 is disposed on the adjusting portion 21, and the end wall of the torsion spring for abutting the adjusting portion 21 is a straight wall body.
  • the contact bridge 2 is provided with the guiding groove 5, and the rotor bracket 1 is provided with a fixing groove for fixing the connecting support shaft 4, and the fixing groove is disposed opposite to the guiding groove 5.
  • the rotor bracket 1 is provided with the guiding groove 5, and the contact bridge 2 is provided with a fixing A fixing groove of the support shaft 4 is connected, and the fixing groove is disposed opposite to the guide groove 5.
  • the elastic member 3 is a tension spring, and both ends of the tension spring are fixedly connected to the adjusting portion 21 of the rotor bracket 1 and the contact bridge 2 respectively.
  • the angle ⁇ is 90°.
  • the angle ⁇ is 90°.
  • the pressure self-balancing structure of the double break point contact bridge of the present invention is controlled by the angle between the contact groove and the contact surface of the contact, and the force applied by the elastic member to the contact bridge and the moving direction of the contact bridge self-balancing adjustment
  • the angle control between the two can make the contact bridge move along the length of the guiding slot, so that the position of the contact can be automatically adjusted.
  • the setting of the specific angle range makes the two centrally symmetrical contacts have a good adjustment margin and the contact bridge.
  • the balance ensures the assembly deviation or wear of the contact bridge, the two break points are still in reliable contact and have sufficient contact pressure, the structure is simple, the assembly precision is low, the adjustment is flexible and reliable, and the connection reliability and electrical life of the product are improved.
  • the force of the elastic member in the closing direction is reduced, and the force of the elastic member perpendicular to the closing direction is increased, so that after the contact wears, the force of the elastic member on the contact bridge is mainly torque, so as to utilize the guiding groove Achieve self-balancing adjustment.
  • the angle between the longitudinal direction of the guiding groove and the contact surface of the contact is 90°, and the angle between the force applied by the elastic member to the contact bridge and the moving direction of the contact bridge self-balancing adjustment is 90°.
  • the force of the elastic member on the contact bridge is perpendicular to the longitudinal direction of the guide groove, and the force of the elastic member on the contact bridge is perpendicular to the contact closing direction, so that the elastic member maintains the largest contact bridge after the contact wears. Torque.
  • FIG. 1 is a schematic structural view of a pressure self-balancing structure of a double break point contact bridge of the present invention
  • FIG. 2 is a schematic view of the automatic adjustment of the contact of the present invention after wear
  • FIG. 3 is a schematic view of the working principle of the present invention, which is convenient for explanation by using a case where the angle ⁇ and the angle ⁇ are large;
  • Figure 4 is a schematic view showing another embodiment of the arrangement of the guide grooves of the present invention.
  • Figure 5 is a schematic view showing another embodiment of the arrangement of the adjustment structure of the present invention.
  • Figure 6 is a schematic illustration of another embodiment of an elastic member of the present invention.
  • the specific embodiment of the pressure self-balancing structure of the double break point contact bridge of the present invention will be further described below with reference to the embodiments given in FIGS. 1 to 6.
  • the pressure self-balancing structure of the double break point contact bridge of the present invention is not limited to the description of the following embodiments.
  • the pressure self-balancing structure of the double break point contact bridge of the present invention comprises a rotor bracket 1 , a contact bridge 2 pivotally mounted on the rotor bracket 1 , and a rotor bracket 1 and a contact bridge 2 .
  • Two elastic members 3, the elastic members 3 provide contact pressure for the contact bridge 2, the left and right ends of the contact bridge 2 are provided with two contacts 20 which are centrally symmetrical, and the middle portion of the contact bridge 2 is pivoted by the support shaft 4.
  • a guide groove 5 for guiding and limiting the support shaft 4 is provided, and the length of the guide groove 5 is larger than the outer diameter of the support shaft 4, so that the support shaft 4 in the guide groove 5, there is a movable degree of freedom along the length direction of the guide groove 5; and the upper and lower sides of the contact bridge 2 are provided with two adjustment portions 21 which are centrally symmetrical, respectively, and two elastic members 3, the two elastic members 3 are also symmetrically mounted between the rotor support 1 and the contact bridge 2, and the two ends of the elastic member 3 respectively act on the adjustment portion 21 of the rotor support 1 and the contact bridge 2;
  • the contact surface of the contact 20 for contacting the stationary contact is not parallel to the longitudinal direction of the guiding slot 5, and the contact 20 is used for static
  • the contact surface of the head contact has an angle ⁇ with the longitudinal direction of the guide groove 5, 60° ⁇ angle ⁇ ⁇ 120°; the direction of the force applied by the elastic member 3 on the
  • the pressure self-balancing structure of the double break point contact bridge of the present invention is controlled by the angle between the contact groove and the contact surface of the contact, and the force applied by the elastic member to the contact bridge and the moving direction of the contact bridge self-balancing adjustment
  • the angle control between the two ends allows the contact bridge to move along the length of the guide groove, so that the contact position can be automatically adjusted, and the angle between the length direction of the guide groove and the contact surface of the contact is controlled at 60° to 120°.
  • the range of adjustable contact position is maximized, and the angle between the force applied to the contact bridge by the elastic member and the moving direction of the contact bridge self-balancing adjustment is controlled within a range of 60° to 120°. The maximization of the adjustable position of the contact position is achieved.
  • the setting of the specific angle range makes the two centrally symmetric contacts have a good adjustment margin and the balance of the contact bridge, ensuring assembly deviation or wear after the contact bridge.
  • the breakpoint is still reliably contacted and has sufficient contact pressure, the structure is simple, the assembly precision is low, the adjustment is flexible and reliable, and the connection reliability and electrical life of the product are improved.
  • the force of the elastic member on the contact bridge is mainly torque, so that the self-balancing adjustment is realized by the guide groove.
  • the contact 20 at one end of the contact bridge 2 first contacts the corresponding static contact, and then the contact bridge 2 can be automatically adjusted under the force of the elastic member 3. Position, the contact bridge 2 will move along the length of the guiding slot 5, providing sufficient contact pressure for the contact 20 at the other end of the contact bridge 2, so that the contact 20 at the other end will also contact its corresponding stationary contact, keeping The contacts 20 at both ends are in good contact. Comparing Fig. 1 and Fig. 2, as shown in Fig. 1, in the case where the contacts on both sides are not worn, the support shaft 4 is located at a position close to the middle of the guide groove 5 when closed, and as shown in Fig.
  • the support shaft 4 is located at a position where the guide groove 5 is offset from the middle when closed.
  • the adjustment amount of the overtravel is the distance b shown in FIG. 3
  • the distance that the contact bridge 2 moves along the longitudinal direction of the guide groove 5 is the distance a shown in FIG. 3
  • the value of the distance b is the distance a multiplied by the clip.
  • the sine of the angle ⁇ , ie b a*sin ⁇ .
  • the angle between the guiding direction of the contact bridge 2 and the direction perpendicular to the force of the contact 20 is controlled within a range of 60° to 120°, that is, 60° ⁇ angle ⁇ ⁇ 120°. Most preferably, the angle ⁇ is 90°.
  • the angle between the direction of the force applied to the contact bridge 2 by the elastic member 3 and the direction of the guiding structure of the contact bridge 2 is ensured to ensure that the overtravel adjustment amount can be fully utilized.
  • the principle is that, as shown in FIG. 3, the force applied by the elastic member 3 to the contact bridge 2 is F, and the component in the direction of the guiding structure of the contact bridge 2 is Fx, which reduces the utilization of the overtravel adjustment amount, and the component The larger the Fx, the lower the utilization of the overtravel adjustment. As shown in FIG. 3, the force applied by the elastic member 3 to the contact bridge 2 is F, and the component in the direction of the guiding structure of the contact bridge 2 is Fx, which reduces the utilization of the overtravel adjustment amount, and the component The larger the Fx, the lower the utilization of the overtravel adjustment. As shown in FIG.
  • the angle between the direction of the force of the elastic member 3 on the contact bridge 2 and the direction of the guiding structure of the contact bridge 2 is the angle ⁇
  • the magnitude of Fx is equal to the cosine of the angle ⁇ .
  • the included angle ⁇ is 90°.
  • the technical solution of the present application breaks the prior art prejudice, and does not increase the force of the elastic member in the closing direction of the contact when closing, but reduces the force acting in the closing direction of the contact, and increases the direction perpendicular to the contact closure.
  • the force is applied to provide a large torque.
  • the elastic force of the elastic member 3 is smaller along the component Fx that hinders the guiding movement of the contact bridge 2, while the larger component Fy causes the contact bridge 2 to move along the guiding groove 5 to adjust the position while the other end of the contact bridge 2 is
  • the worn contact 20 moves in the closing direction, and the self-balancing adjustment function of the contact bridge is realized, and an unexpected effect is obtained.
  • the technical solution of the present application realizes the self-balancing adjustment function by using the elastic member that assembles the contact bridge, the elastic member can no longer be used to realize the self-rebound function of the prior art contact.
  • the guiding groove is a waist groove that cooperates with the support shaft 4.
  • the arc portions at both ends of the waist groove match the outer contour of the support shaft 4.
  • the maximum distance a is the center distance of the waist groove.
  • the contact bridge 2 is provided with the guiding groove 5, and the rotor bracket 1 is provided with a fixing groove for fixing the connecting support shaft 4,
  • the fixing groove is disposed opposite to the guiding groove 5;
  • the guiding groove 5 is a groove structure for the supporting shaft 5 to pass through the contact bridge 2. It is easy to locate the bridge when assembling and improve assembly efficiency.
  • Another embodiment of the guiding groove arrangement is as shown in FIG. 4-6.
  • the rotor bracket 1 is provided with the guiding groove 5, and the contact bridge 2 is provided with a fixing groove for fixing the connecting support shaft 4,
  • the fixing groove is disposed opposite to the guiding groove 5; the fixing groove is a groove structure for the supporting shaft 5 to pass through the contact bridge 2.
  • the adjusting structure between the contact bridge and the elastic member of the present invention, an embodiment of the elastic member is as shown in FIGS. 1-5, and the rotor bracket 1 is provided with a limiting protrusion spaced from the adjusting portion 21 of the contact bridge 2.
  • a mounting post 11 is disposed between the limiting boss 10 and the adjusting portion 21 of the table 10.
  • the elastic member 3 is a torsion spring which is mounted between the limiting boss 10 of the rotor holder 1 and the adjusting portion 21 of the contact bridge 2, and the central spring body of the torsion spring is fitted on the mounting post 11 of the rotor holder 1. Upper ends of the torsion spring abut on the limiting boss 10 of the rotor holder 1 and the adjusting portion 21 of the contact bridge 2, respectively.
  • the torsion spring is limited between the limiting boss of the rotor bracket and the adjusting portion of the contact bridge, which facilitates the positioning of the torsion spring during assembly, improves the assembly efficiency and position accuracy, and maintains the force applied by the torsion spring to the contact bridge. direction.
  • an adjustment structure is provided between the torsion spring and the adjustment portion 21 .
  • An embodiment of the adjustment structure arrangement is as shown in FIGS. 1-4, the adjustment structure includes an arc convex hull 6 of the adjustment portion 21, and an end side wall of the torsion spring for abutting the adjustment portion 21, The arc convex hull 6 is disposed on the adjusting portion 21 for abutting the adjusting portion 21 The end side wall is a straight wall body.
  • Another embodiment of the adjustment structure arrangement is as shown in FIG. 5.
  • An adjustment structure is provided between the torsion spring and the adjustment portion 21, the adjustment structure includes a hook 7 of the torsion spring, and the adjustment portion 21 is used for bending a side wall of the hook 7 abutting, the torsion spring is bent at an end portion abutting the adjusting portion 21 to form the hook 7.
  • the hook 7 has a circular arc structure, and the adjusting portion 21 is used for the hook 7
  • the abutting side walls are flat.
  • the adjusting structure of the arc and the plane is arranged between the contact bridge and the torsion spring, and the direction of the force applied by the torsion spring to the contact bridge can be adjusted, so that the elastic direction and the direction of the contact bridge guiding structure are in a specific range. Maximize the adjustable range utilization of the contact position.
  • the value of the included angle ⁇ is adjusted and controlled by adjusting the structure.
  • the direction of the force applied by the torsion spring on the contact bridge 2, by adjusting the adjustment of the structure, the angle between the guiding direction of the contact bridge 2 can be controlled within the range of 60° to 120°, and the adjustment amount of the contact bridge 2 is ensured. Can be fully utilized.
  • the force line of the torsion spring on the contact bridge and the center of rotation of the contact bridge ensure a certain distance to ensure sufficient contact pressure for the contact, so that the two contacts are still in good contact and large enough after assembly deviation or wear. Contact pressure.
  • FIG. 6 Another embodiment of the elastic member of the present invention is shown in FIG. 6.
  • the elastic member 3 is a tension spring, and both ends of the tension spring are fixedly coupled to the adjustment portion 21 of the rotor holder 1 and the contact bridge 2, respectively.
  • the tension spring is applied to the axial direction of the contact bridge 2, that is, the axial direction of the tension spring, so that the relative angular setting of the tension spring and the guiding structure is simpler.
  • the axial direction of the tension spring is perpendicular to the longitudinal direction of the guide groove 5, that is, the angle ⁇ is 90°, and the direction of the force of the tension spring to the contact bridge 2 is perpendicular to the support shaft 4 at the waist.
  • the center distance of the guide groove 5 is such that the tension spring maintains a maximum torque to the contact bridge 2 after electrical wear.
  • the elastic member of the present invention may of course be a structural member that can be force-outputted by elastic deformation, such as a spring piece.
  • force transmission such as a cam or a connecting rod.

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Fluid-Damping Devices (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

双断点触桥的压力自平衡结构包括转子支架、触桥、以及两个弹性件,触桥的两端设有呈中心对称的两个触头,触桥2的中部通过支轴枢转安装在转子支架上,转子支架与触桥之间导向槽,且导向槽的长度大于支轴的外径;触桥的中部上下两侧设有呈中心对称的两个调节部,分别与两个弹性件相配合,弹性件的两端分别作用在转子支架和调节部上;触头用于与静触头接触的接触面与导向槽的长度方向之间具有夹角β,60°≤夹角β≤120°;弹性件施加在调节部上的作用力方向与导向槽的长度方向之间具有夹角γ,60°≤夹角γ≤120°。本发明提供一种结构简单、且保障两断点接触可靠的双断点触桥的压力自平衡结构。

Description

双断点触桥的压力自平衡结构 技术领域
本发明涉及低压电器领域,具体涉及一种双断点触桥的压力自平衡结构。
背景技术
双断点触头结构,因相比于传统单断点触头结构,具有更好的分断故障电流的能力,成为当今低压断路器产品的一个重要技术发展方向。当代新型的高分断塑壳断路器大都采用双断点触头结构。不同于传统的单断点低压断路器,采用双断点触头结构的断路器,容易因加工或装配误差、或者触头表面机械或电作用造成的磨损(包括动触点的磨损或静触点的磨损),而出现其中一个断点接触不良的情况,严重影响产品的接通可靠性和电气寿命。为了克服该技术问题,双断点触头结构须具备以下特征:能提供产品所需的触头压力;能提供产品所需的触头开距和超程;加工或装配误差、或者触头表面机械或电作用造成的磨损后,动触头具备一定的位置调整量,确保两断点同时接通。
现有的双断点触头结构,一般通过设有弹簧起到弹性固定触桥的作用,并提供给触桥的触头压力,也存在设有腰型孔实现触桥超程,但是不存在装配偏差和触头磨损后触桥实现自我平衡调节的结构,从而难以确保两断点同时可靠接通并具有足够大的触头压力。这严重影响了产品的接通可靠性和电气寿命,造成安全隐患。现有技术通常存在一种技术偏见,认为在触头闭合时,弹簧应增加作用在闭合方向的作用力,以提供足够的触头压力,提供产品所需的触头开距和超程。现有技术中存在的一种双断点触头结构,利用双断点触头上的弹簧实现触头自回弹,分断时在过死点位置后弹簧提供向分闸位置的作用力使触头自动复位,以防止触头重新闭合;闭合时在过死点位置后弹簧提供向合闸位置的作用力使触头朝闭合方向推迫,提供产品所需的触头开距和超程,这种结构也需要在闭合时加大向闭合方向的作用力,这种结构使得触头磨损后,双断点触头难以自调节以保持接触。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种结构简单、装配精度要求低、调节灵活可靠且保障两断点接触可靠的双断点触桥的压力自平衡结构。
为实现上述目的,本发明采用了如下技术方案:
一种双断点触桥的压力自平衡结构,包括转子支架1、枢转安装在转子支架1上的触桥2、以及设置在转子支架1与触桥2之间的两个弹性件3,所述触桥2的左右两端设有呈中心对称的两个触头20,触桥2的中部通过支轴4枢转安装在转子支架1上,所述转子支架1与触桥2之间设有用于导向和限位支轴4的导向槽5,且导向槽5的长度大于支轴4的外径,使得支轴4在导向槽5内沿导向槽5的长度方向有可移动的自由度;并且,所述触桥2的中部上下两侧设有呈中心对称的两个调节部21,分别与两个弹性件3相配合,所述弹性件3的两端分别作用在转子支架1和触桥2的调节部21上;
所述触头20用于与静触头接触的接触面与所述导向槽5的长度方向之间具有夹角β,60°≤夹角β≤120°;所述弹性件3施加在调节部21上的作用力方向与所述导向槽5的长度方向之间具有夹角γ,60°≤夹角γ≤120°。
优选地,所述导向槽为与支轴4配合的腰形槽。
优选地,所述弹性件3为扭簧,所述扭簧安装在转子支架1的限位凸台10与触桥2的调节部21之间,扭簧的中部弹簧体套装在转子支架1的安装柱11上,扭簧的两端分别抵接在转子支架1的限位凸台10和触桥2的调节部21上。
优选地,所述扭簧与调节部21之间设有调节结构,所述调节结构包括扭簧的弯钩7、以及调节部21用于与弯钩7抵接的侧壁,所述扭簧用于与调节部21抵接的端部弯折形成所述弯钩7,所述调节部21用于与弯钩7抵接的侧壁为平面。
优选地,所述扭簧与调节部21之间设有调节结构,所述调节结构包括调节部21的圆弧凸包6、以及扭簧用于与调节部21抵接的端部侧壁,所述圆弧凸包6设置在调节部21上,所述扭簧用于与调节部21抵接的端部侧壁为直壁体。
优选地,所述触桥2上设有所述导向槽5,所述转子支架1上设有用于固定连接支轴4的固定槽,所述固定槽与导向槽5相对设置。
优选地,所述转子支架1上设有所述导向槽5,所述触桥2上设有用于固定 连接支轴4的固定槽,所述固定槽与导向槽5相对设置。
优选地,所述弹性件3为拉簧,所述拉簧的两端分别固定连接在转子支架1和触桥2的调节部21上。
优选地,所述夹角β为90°。
优选地,所述夹角γ为90°。
本发明的双断点触桥的压力自平衡结构,通过导向槽与触头的接触面之间的夹角控制,以及弹性件施加给触桥的作用力与触桥自平衡调节时移动方向之间的夹角控制,使得触桥可沿导向槽的长度方向移动,实现触头位置可自动调节,通过特定角度范围的设置使得中心对称的两个触头同时具有良好的调节余量以及触桥的平衡,确保触桥出现装配偏差或磨损后两断点仍可靠接触并具有足够大的接触压力,结构简单,装配精度要求低,调节灵活可靠,提高产品的接通可靠性和电气寿命。闭合时,减小弹性件在闭合方向的作用力,加大弹性件垂直于闭合方向的作用力,使得在触头磨损后,弹性件对触桥的作用力主要为转矩,以利用导向槽实现自平衡的调节。优选的,导向槽的长度方向与触头的接触面之间的夹角为90°,弹性件施加给触桥的作用力与触桥自平衡调节时移动方向之间的夹角为90°,此时,弹性件对触桥的作用力垂直于导向槽的长度方向,弹性件对触桥的作用力与触头闭合方向垂直,使得在触头磨损后,弹性件对触桥保持一个最大的转矩。
附图说明
图1是本发明的双断点触桥的压力自平衡结构的结构示意图;
图2是本发明的触头磨损后自动调节的示意图;
图3是本发明的工作原理示意图,采用夹角β和夹角γ角度较大的情况便于说明;
图4是本发明的导向槽设置方式的另一种实施例的示意图;
图5是本发明的调节结构设置方式的另一种实施例的示意图;
图6是本发明的弹性件的另一种实施例的示意图。
具体实施方式
以下结合附图1至6给出的实施例,进一步说明本发明的双断点触桥的压力自平衡结构的具体实施方式。本发明的双断点触桥的压力自平衡结构不限于以下实施例的描述。
如图1所示,本发明的双断点触桥的压力自平衡结构,包括转子支架1、枢转安装在转子支架1上的触桥2、以及设置在转子支架1与触桥2之间的两个弹性件3,弹性件3为触桥2提供接触压力,所述触桥2的左右两端设有呈中心对称的两个触头20,触桥2的中部通过支轴4枢转安装在转子支架1上,所述转子支架1与触桥2之间设有用于导向和限位支轴4的导向槽5,且导向槽5的长度大于支轴4的外径,使得支轴4在导向槽5内沿导向槽5的长度方向有可移动的自由度;并且,所述触桥2的中部上下两侧设有呈中心对称的两个调节部21,分别与两个弹性件3相配合,两个弹性件3也呈中心对称安装在转子支架1与触桥2之间,所述弹性件3的两端分别作用在转子支架1和触桥2的调节部21上;所述触头20用于与静触头接触的接触面与所述导向槽5的长度方向不平行,且所述触头20用于与静触头接触的接触面与所述导向槽5的长度方向之间具有夹角β,60°≤夹角β≤120°;所述弹性件3施加在调节部21上的作用力方向与所述导向槽5的长度方向不平行,且所述弹性件3施加在调节部21上的作用力方向与所述导向槽5的长度方向之间具有夹角γ,60°≤夹角γ≤120°。导向槽5的长度方向即触桥2自平衡调节时的移动方向。
本发明的双断点触桥的压力自平衡结构,通过导向槽与触头的接触面之间的夹角控制,以及弹性件施加给触桥的作用力与触桥自平衡调节时移动方向之间的夹角控制,使得触桥可沿导向槽的长度方向移动,实现触头位置可自动调节,且导向槽的长度方向与触头的接触面之间的夹角控制在60°到120°的范围内,实现触头位置可调幅度最大化,并通过弹性件施加给触桥的作用力与触桥自平衡调节时移动方向之间的夹角控制在60°到120°的范围内,实现触头位置可调幅度利用率的最大化,通过特定角度范围的设置使得中心对称的两个触头同时具有良好的调节余量以及触桥的平衡,确保触桥出现装配偏差或磨损后两断点仍可靠接触并具有足够大的接触压力,结构简单,装配精度要求低,调节灵活可靠,提高产品的接通可靠性和电气寿命。闭合时,减小弹性件在闭合方向的作用力,加大弹性件垂直于闭合方向的作用力,使得在触头磨损后, 弹性件对触桥的作用力主要为转矩,以利用导向槽实现自平衡的调节。当双断点触桥存在装配偏差或触头部分磨损时,触桥2一端的触头20会先与其相应的静触头接触,然后触桥2在弹性件3的作用力下,可以自动调节位置,触桥2会沿着导向槽5的长度方向移动,为触桥2另一端的触头20提供足够的接触压力,使得另一端的触头20也会与其相应的静触头接触,保持两端的触头20都能够接触良好。对比图1、图2,如图1所示,在两侧触头都没有磨损的情况下,闭合时支轴4位于导向槽5靠近中间的位置,而如图2所示,当一侧的静触点磨损后,在压力自平衡结构的作用下,闭合时支轴4位于导向槽5偏离中间的位置。其中,超程的调节量为图3所示的距离b,触桥2沿导向槽5的长度方向移动的距离即为图3所示的距离a,距离b的值则为距离a乘以夹角β的正弦值,即b=a*sinβ。基于上述原理,优选地,触桥2的导向方向与触头20的受力垂直方向之间的夹角控制在60°到120°的范围内,即60°≤夹角β≤120°。最优地,所述夹角β为90°。在距离a的值一定时,当β=90°,距离b的值最大,达到触桥自平衡调节的最优状态。保证装配偏差或磨损后触桥有足够的调节量。
同时,通过弹性件3施加在触桥2上的作用力方向与触桥2的导向结构方向之间的夹角,以保证超程调节量能得到充分的利用。其原理在于,如图3所示,弹性件3对触桥2施加的作用力为F,在触桥2导向结构方向上的分量为Fx,该Fx会降低超程调节量的利用率,分量Fx越大,超程调节量的利用率越低。如图3所示,弹性件3在触桥2上的作用力方向与触桥2的导向结构方向之间的夹角即为夹角γ,Fx的大小与所述夹角γ的余弦值成正比,即有Fx=F*cosγ。基于上述原理,优选地,弹性件3对触桥2施加的作用力方向与触桥2的导向方向之间的夹角控制在60°到120°的范围内,即60°≤夹角γ≤120°。最优地,所述夹角γ为90°。在作用力F的大小一定时,当γ=90°,Fx=0,使得超程调节量的利用率最大,达到触桥自平衡调节的最优状态,保证触桥的调节量能得到最充分的利用。弹性件3在触桥2上的作用力线与触桥2转动中心保证一定的距离,以确保提供足够的触头力,从而实现触桥2装配偏差或磨损后两端的触头20依然能够良好接触并具有足够大的触头压力。
本申请的技术方案,突破现有技术偏见,闭合时不增加弹性件向触头闭合方向的作用力,反而减小向触头闭合方向的作用力,增大垂直于触头闭合方向 的作用力以提供较大的转矩,在触桥出现装配偏差或触头磨损后,弹性件3与用于导向触桥2的导向槽5呈特定夹角设置,使得在触桥2的一端触头20先闭合后,弹性件3的弹力沿阻碍触桥2导向移动的分量Fx较小,同时较大的分量Fy使得触桥2沿导向槽5移动调整位置同时触桥2的另一端被磨损的触头20朝闭合方向移动,实现触桥的自平衡调节功能,取得了出乎意料的效果。当然,由于本申请的技术方案利用装配触桥的弹性件实现了自平衡调节功能,也就无法再利用弹性件实现现有技术的触头的自回弹功能。
本发明的触桥的导向结构,所述导向槽为与支轴4配合的腰形槽。所述腰形槽两端的圆弧部与支轴4的外轮廓相匹配。所述距离a最大值为腰形槽的中心距。此外,导向槽设置方式的一种实施例如图1-3所示,所述触桥2上设有所述导向槽5,所述转子支架1上设有用于固定连接支轴4的固定槽,所述固定槽与导向槽5相对设置;所述导向槽5为可供支轴5穿过触桥2的通槽结构。便于装配时触桥的定位,提高装配效率。导向槽设置方式的另一种实施例如图4-6所示,所述转子支架1上设有所述导向槽5,所述触桥2上设有用于固定连接支轴4的固定槽,所述固定槽与导向槽5相对设置;所述固定槽为可供支轴5穿过触桥2的通槽结构。自平衡调节时,触桥2随其上的支轴5沿转子支架1上的导向槽5移动,移动更加稳定可靠。
本发明的触桥与弹性件之间的调节结构,弹性件的一种实施例如图1-5所示,所述转子支架1上设有与触桥2的调节部21相间隔的限位凸台10,所述限位凸台10与调节部21的之间设有安装柱11。所述弹性件3为扭簧,所述扭簧安装在转子支架1的限位凸台10与触桥2的调节部21之间,扭簧的中部弹簧体套装在转子支架1的安装柱11上,扭簧的两端分别抵接在转子支架1的限位凸台10和触桥2的调节部21上。将扭簧限位在转子支架的限位凸台与触桥的调节部之间,便于装配时扭簧的定位,提高装配的效率和位置准确性,同时保持扭簧施加给触桥的作用力方向。
进一步地,为了实现所述夹角γ控制在60°到120°的范围内,所述扭簧与调节部21之间设有调节结构。调节结构设置方式的一种实施例如图1-4所示,所述调节结构包括调节部21的圆弧凸包6、以及扭簧用于与调节部21抵接的端部侧壁,所述圆弧凸包6设置在调节部21上,所述扭簧用于与调节部21抵接 的端部侧壁为直壁体。调节结构设置方式的另一种实施例如图5所示,所述扭簧与调节部21之间设有调节结构,所述调节结构包括扭簧的弯钩7、以及调节部21用于与弯钩7抵接的侧壁,所述扭簧用于与调节部21抵接的端部弯折形成所述弯钩7,弯钩7为圆弧结构,所述调节部21用于与弯钩7抵接的侧壁为平面。通过触桥与扭簧之间设有圆弧与平面配合的调节结构,可调节扭簧施加给触桥的作用力方向,使得弹力方向与触桥平动导向结构方向成特定范围的夹角,实现触头位置可调幅度利用率的最大化。所述夹角γ的值,通过调节结构实施调节与控制。扭簧施加在触桥2上的作用力方向,通过调节结构调节,可实现与触桥2的导向方向之间的夹角控制在60°到120°的范围内,保证触桥2的调节量能得到充分的利用。扭簧在触桥上的作用力线与触桥转动中心保证一定的距离,以确保为触头提供足够的接触压力,从而实现装配偏差或磨损后两触点依然能够良好接触并具有足够大的触头压力。
本发明的弹性件的另一种实施例如图6所示,所述弹性件3为拉簧,所述拉簧的两端分别固定连接在转子支架1和触桥2的调节部21上。所述拉簧施加在触桥2上的作用力方向即拉簧的轴向,使得拉簧与导向结构的相对角度设置更加简单。如图6所示,所述拉簧的轴向垂直于导向槽5的长度方向,即所述夹角γ为90°,保证拉簧对触桥2的力的方向垂直于支轴4在腰形导向槽5的中心距,使得在电磨损后,拉簧对触桥2保持一个最大的转矩。本发明的弹性件除了设置为扭簧和拉簧外,当然也可以使用其它弹簧如弹簧片等可通过弹性变形进行力输出的结构件。当然也可以通过凸轮、连杆等力传动方式实现施加在触桥上作用力方向与触桥的移动导向结构的方向之间呈特定夹角。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种双断点触桥的压力自平衡结构,其特征在于:包括转子支架(1)、枢转安装在转子支架(1)上的触桥(2)、以及设置在转子支架(1)与触桥(2)之间的两个弹性件(3),所述触桥(2)的左右两端设有呈中心对称的两个触头(20),触桥(2)的中部通过支轴(4)枢转安装在转子支架(1)上,所述转子支架(1)与触桥(2)之间设有用于导向和限位支轴(4)的导向槽(5),且导向槽(5)的长度大于支轴(4)的外径,使得支轴(4)在导向槽(5)内沿导向槽(5)的长度方向有可移动的自由度;并且,所述触桥(2)的中部上下两侧设有呈中心对称的两个调节部(21),分别与两个弹性件(3)相配合,所述弹性件(3)的两端分别作用在转子支架(1)和触桥(2)的调节部(21)上;
    所述触头(20)用于与静触头接触的接触面与所述导向槽(5)的长度方向之间具有夹角β,60°≤夹角β≤120°;所述弹性件(3)施加在调节部(21)上的作用力方向与所述导向槽(5)的长度方向之间具有夹角γ,60°≤夹角γ≤120°。
  2. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述导向槽为与支轴(4)配合的腰形槽。
  3. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述弹性件(3)为扭簧,所述扭簧安装在转子支架(1)的限位凸台(10)与触桥(2)的调节部(21)之间,扭簧的中部弹簧体套装在转子支架(1)的安装柱(11)上,扭簧的两端分别抵接在转子支架(1)的限位凸台(10)和触桥(2)的调节部(21)上。
  4. 根据权利要求3所述的双断点触桥的压力自平衡结构,其特征在于:所述扭簧与调节部(21)之间设有调节结构,所述调节结构包括扭簧的弯钩(7)、以及调节部(21)用于与弯钩(7)抵接的侧壁,所述扭簧用于与调节部(21)抵接的端部弯折形成所述弯钩(7),所述调节部(21)用于与弯钩(7)抵接的侧壁为平面。
  5. 根据权利要求3所述的双断点触桥的压力自平衡结构,其特征在于:所述扭簧与调节部(21)之间设有调节结构,所述调节结构包括调节部(21)的 圆弧凸包(6)、以及扭簧用于与调节部(21)抵接的端部侧壁,所述圆弧凸包(6)设置在调节部(21)上,所述扭簧用于与调节部(21)抵接的端部侧壁为直壁体。
  6. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述触桥(2)上设有所述导向槽(5),所述转子支架(1)上设有用于固定连接支轴(4)的固定槽,所述固定槽与导向槽(5)相对设置。
  7. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述转子支架(1)上设有所述导向槽(5),所述触桥(2)上设有用于固定连接支轴(4)的固定槽,所述固定槽与导向槽(5)相对设置。
  8. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述弹性件(3)为拉簧,所述拉簧的两端分别固定连接在转子支架(1)和触桥(2)的调节部(21)上。
  9. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述夹角β为90°。
  10. 根据权利要求1所述的双断点触桥的压力自平衡结构,其特征在于:所述夹角γ为90°。
PCT/CN2017/112176 2016-11-23 2017-11-21 双断点触桥的压力自平衡结构 WO2018095315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611041283.X 2016-11-23
CN201611041283.XA CN108091500B (zh) 2016-11-23 2016-11-23 双断点触桥的压力自平衡结构

Publications (1)

Publication Number Publication Date
WO2018095315A1 true WO2018095315A1 (zh) 2018-05-31

Family

ID=62170929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112176 WO2018095315A1 (zh) 2016-11-23 2017-11-21 双断点触桥的压力自平衡结构

Country Status (2)

Country Link
CN (1) CN108091500B (zh)
WO (1) WO2018095315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112015A (zh) * 2019-04-30 2019-08-09 德力西电气有限公司 组合式触头支持

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950064B (zh) * 2019-03-11 2020-12-29 西安开天铁路电气股份有限公司 一种具有研磨功能的触头
CN113539755A (zh) * 2020-04-17 2021-10-22 北京人民电器厂有限公司 一种断路器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598997A (zh) * 2003-09-16 2005-03-23 富士电机机器制御株式会社 断路器
CN1949433A (zh) * 2005-10-13 2007-04-18 浙江德力西电器股份有限公司 断路器的触头系统
US7221246B2 (en) * 2005-01-07 2007-05-22 General Electric Company Split rotor system and method with springs
CN1971801A (zh) * 2006-11-30 2007-05-30 Tcl低压电器(无锡)有限公司 带自调节容差和反力扭簧刚度的触头系统
US20070251809A1 (en) * 2003-12-16 2007-11-01 Moeller Gmbh Electrodynamically Tilting Contact System for Power Circuit Breakers
CN101958211A (zh) * 2009-12-09 2011-01-26 上海诺雅克电气有限公司 具有高分断能力的断路器自动闭合触头装置
CN206322595U (zh) * 2016-11-23 2017-07-11 浙江正泰电器股份有限公司 双断点触桥的压力自平衡结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2842716Y (zh) * 2005-11-17 2006-11-29 浙江德力西电器股份有限公司 断路器的限流机构
DE102006009645A1 (de) * 2006-03-02 2007-09-06 Moeller Gmbh Schaltwelleneinheit für ein elektrisches Kontaktsystem
CN200990355Y (zh) * 2006-11-30 2007-12-12 Tcl低压电器(无锡)有限公司 带自调节容差和反力扭簧刚度的触头机构
CN104465254A (zh) * 2013-09-24 2015-03-25 上海电科电器科技有限公司 旋转双断点触头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598997A (zh) * 2003-09-16 2005-03-23 富士电机机器制御株式会社 断路器
US20070251809A1 (en) * 2003-12-16 2007-11-01 Moeller Gmbh Electrodynamically Tilting Contact System for Power Circuit Breakers
US7221246B2 (en) * 2005-01-07 2007-05-22 General Electric Company Split rotor system and method with springs
CN1949433A (zh) * 2005-10-13 2007-04-18 浙江德力西电器股份有限公司 断路器的触头系统
CN1971801A (zh) * 2006-11-30 2007-05-30 Tcl低压电器(无锡)有限公司 带自调节容差和反力扭簧刚度的触头系统
CN101958211A (zh) * 2009-12-09 2011-01-26 上海诺雅克电气有限公司 具有高分断能力的断路器自动闭合触头装置
CN206322595U (zh) * 2016-11-23 2017-07-11 浙江正泰电器股份有限公司 双断点触桥的压力自平衡结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112015A (zh) * 2019-04-30 2019-08-09 德力西电气有限公司 组合式触头支持

Also Published As

Publication number Publication date
CN108091500B (zh) 2021-05-18
CN108091500A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2018095315A1 (zh) 双断点触桥的压力自平衡结构
US7394032B2 (en) Electrodynamically tilting contact system for power circuit breakers
US8604374B2 (en) Moveable contact closing energy transfer system for miniature circuit breakers
JPH0869736A (ja) 電磁リレー用の接極子保持部
US6504116B2 (en) Switch
JPH01225028A (ja) 継電器のための接触装置
EP1777423B1 (en) Pivot joint
US2729715A (en) Snap action electrical switch
US2559568A (en) Flcrum type ignition contact breaker
CN103531409A (zh) 一种断路器的触头系统
CN211398257U (zh) 一种转臂结构
CN206322595U (zh) 双断点触桥的压力自平衡结构
ATE33289T1 (de) Verbindungsvorrichtung fuer zwei bauteile.
CN209206967U (zh) 用于夹持零件的夹具
US3662130A (en) Release device, particularly for switches or similar, of small power
JPS581495B2 (ja) デンジカイヘイキ
CN112017922B (zh) 低压触头组件
US2724946A (en) Hair spring regulator for watches
CN101887825B (zh) 断路器
CN205508697U (zh) 一种四向摇摆开关
TWM612781U (zh) 扭力工具
WO2015184966A1 (zh) 一种开关装置及具有该开关装置的导轨灯
CN219755902U (zh) 俯仰旋转装置
CN220106411U (zh) 一种断路器动触头安装结构
SU1523802A1 (ru) Винтовой привод

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874873

Country of ref document: EP

Kind code of ref document: A1