WO2018095040A1 - 一种混合电池控制系统 - Google Patents
一种混合电池控制系统 Download PDFInfo
- Publication number
- WO2018095040A1 WO2018095040A1 PCT/CN2017/091983 CN2017091983W WO2018095040A1 WO 2018095040 A1 WO2018095040 A1 WO 2018095040A1 CN 2017091983 W CN2017091983 W CN 2017091983W WO 2018095040 A1 WO2018095040 A1 WO 2018095040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery pack
- charging
- mode
- discharging
- battery
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4264—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of electrical energy storage systems, microgrid energy management technologies, and more particularly to a hybrid battery control system.
- the function of the battery control system is to monitor the physical parameters of the battery in real time; battery state estimation; online diagnosis and early warning; charge, discharge and precharge control; balance management and thermal management.
- the present invention provides a hybrid battery control system, the system comprising: a battery pack, a charge and discharge controller, and a cloud server; wherein the charge and discharge controller is configured to transmit parameter information of the battery pack to the cloud server
- the parameter information of the battery pack includes a surrounding environment and working conditions of the battery pack; the cloud server analyzes the surrounding environment and working conditions of the battery pack, automatically matches the corresponding charging and discharging mode according to the analysis result, and the charging The discharge mode is transmitted to the charge and discharge controller, and the charge and discharge controller performs flexible charge and discharge on the battery pack according to the charge and discharge mode.
- the charge and discharge controller comprises a Bluetooth communication module and a GPRS communication module; wherein the charge and discharge controller is connected and bound to the handheld terminal through the Bluetooth communication module, and then the parameter information of the battery pack is transmitted to the handheld terminal through the handheld terminal
- the cloud server; or the charge and discharge controller is connected to the cloud server through a GPRS communication module, and transmits parameter information of the battery pack to the cloud server through the GPRS communication module; through the Bluetooth communication module and
- the GPRS communication module implements a dual authorization mechanism.
- the charge and discharge controller further includes a wireless circuit control module, and the charge and discharge controller adjusts the wireless circuit control module to change a series-parallel manner between the batteries in the battery pack according to the charge and discharge mode to implement a battery pack Flexible charging and discharging.
- the battery pack is mainly composed of one or more of a power type lithium ion battery, an energy type lithium ion battery, a low temperature lithium ion battery, and a sodium ion battery, and a super capacitor.
- the charge and discharge modes include a low temperature mode, a high temperature mode, a high power mode, a low power mode, an ultra high power mode, an overcharge protection mode, an over discharge protection mode, an overheat protection mode, and a self-discharge protection mode.
- an authorization code is set in the dual authorization mechanism implemented by the Bluetooth communication module and the GPRS communication module, the authorization code is an encryption state, and is composed of multiple ID numbers; and the encrypted authorization code is valid once. For the setting of one thing and one secret, beyond the set time of this matter, you need to re-authorize.
- the invention performs a flexible intelligent charging and discharging strategy, thereby improving the charging and discharging efficiency of the battery in the battery pack, reducing the cost of the energy storage module, improving the safety of the battery pack, and improving the overall energy. Use economic benefits.
- FIG. 1 is a schematic structural diagram of a hybrid battery control system according to an embodiment of the present invention.
- FIG. 2 is a schematic structural view of the charge and discharge controller shown in FIG. 1;
- FIG. 3 is a schematic structural view of the battery pack shown in FIG. 1.
- FIG. 1 is a schematic structural diagram of a hybrid battery control system according to an embodiment of the present invention.
- the hybrid battery control system includes a battery pack 10, a charge and discharge controller 20, and a cloud server 30.
- the charging and discharging controller 20 is configured to transmit the parameter information of the battery pack 10 to the cloud server 30.
- the parameter information of the battery pack includes the surrounding environment and working conditions of the battery pack, and the surrounding environment and working conditions of the battery pack include temperature and internal resistance. , operating current, operating voltage and capacity.
- the cloud server 30 analyzes the surrounding environment and working conditions of the received battery pack, automatically matches the corresponding charging and discharging mode according to the analysis result, and transmits the charging and discharging mode to the charging and discharging controller 20, and the charging and discharging controller 20 according to the charging and discharging mode.
- the battery pack 10 is flexibly charged and discharged.
- the above charging and discharging modes include a low temperature mode, a high temperature mode, a high power mode, a low power mode, an ultra high power mode, an overcharge protection mode, an over discharge protection mode, an overheat protection mode, and a self-discharge protection mode.
- the charge and discharge controller 20 includes a Bluetooth communication module 21, a GPRS communication module 22, and a wireless circuit control module 23.
- the charge and discharge controller 20 can perform the same with the cloud server 30 through the Bluetooth communication module 21 and the GPRS communication module 22, respectively. Connect to implement a dual authorization mechanism.
- the charging and discharging controller 20 performs connection binding with the handheld terminal 40 through the Bluetooth communication module 21, and then transmits the parameter information of the battery package to the cloud server 30 through the handheld terminal 40.
- the charge and discharge controller 20 is connected to the cloud server 30 via the GPRS communication module 22, and transmits the parameter information of the battery pack 10 to the cloud server 30 through the GPRS communication module 22.
- An authorization code is set in the dual authorization mechanism implemented by the Bluetooth communication module and the GPRS communication module, and the authorization code is an encryption state, and is composed of multiple ID numbers; and the encrypted authorization code is valid once, for one thing.
- the secret setting beyond the set time of this matter, requires re-authorization.
- FIG. 3 is a schematic structural view of the battery pack 10 shown in FIG. 1.
- the battery pack 10 is mainly composed of a power type lithium ion battery 12, an energy type lithium ion battery 11, a super capacitor 13, a switch 14, a switch 15, and a switch 16.
- the switch 14, the switch 15, and the switch 16 are respectively lowered and lowered.
- the pressure components are connected in parallel and connected to the pulse regulator.
- the power type lithium ion battery 12, the energy type lithium ion battery 11 and the super capacitor 13 are connected in parallel
- the switch 14 is connected in series with the power type lithium ion battery 12
- the switch 15 is connected in series with the energy type lithium ion battery 11, and the super capacitor 13 and
- the switches 16 are connected in series.
- the charge and discharge controller 20 adjusts the wireless circuit control module 23 according to the charge and discharge mode determined by the cloud server 30 to control the switch 14, the switch 15 and the switch 16 in the battery pack 10 to change the series-parallel connection between the batteries in the battery pack 10,
- the flexible charging and discharging of the battery pack 10 is realized, and the operating temperature environment of the battery pack is ensured from -20 ° C to 60 ° C.
- the cloud server 30 when the battery pack is in operation, normal capacity attenuation, a large deviation of the charge and discharge voltage curve, a low discharge capacity, and a large internal resistance will occur.
- the cloud server 30 will judge the above situation and correspondingly give a control strategy.
- the cloud server 30 analyzes the battery charge and discharge data, determines the abnormal battery cell in the battery pack, optimizes the battery pack charging current through the algorithm set by the cloud server 30, and gives an instruction to charge and discharge.
- the controller 20 reduces the polarization of the abnormal cells on the one hand while charging, and does not reduce the charging capacity of other batteries on the other hand according to the instruction requirements. Achieve optimal battery pack capacity processing.
- the invention provides a hybrid battery control system, which can perform a flexible intelligent charging and discharging strategy according to the geographical location information of the battery pack, thereby improving the charging and discharging efficiency and the service life of the battery (so that the battery pack storage life can be Up to 5 years, the service life has increased nearly 1 time), reducing the cost of energy storage modules, improving the safety of battery packs, and improving the economic efficiency of overall energy use.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明涉及一种混合电池控制系统,该系统包括:电池包、充放电控制器和云端服务器;其中,充放电控制器用于将电池包的参数信息传输到所述云端服务器,所述电池包的参数信息包括电池包的周围环境及工作条件;云端服务器对所述电池包的周围环境及工作条件进行分析,根据分析结果自动匹配至相应充放电模式,并将所述充放电模式传输到充放电控制器,所述充放电控制器根据所述充放电模式对电池包进行柔性充放电。本发明根据电池包所处的地理位置信息,对其进行柔性智能充电和放电策略,这样能提高电池包中的电池的充放电效率,降低储能模块成本,提升电池包安全性,提高整体能源使用经济效益。
Description
技术领域
本发明涉及电能存储系统,微电网能量管理技术领域,特别涉及一种混合电池控制系统。
背景技术
电池控制系统的作用在于,对电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
目前的电池控制系统往往无法满足恶劣环境下电池包工作,无法柔性充放电,导致电池包寿命降低,以及无法改善自放电问题。
发明内容
本发明的目的在于,克服现有电池控制系统存在的上述技术问题。
为实现上述目的,本发明提供了一种混合电池控制系统,该系统包括:电池包、充放电控制器和云端服务器;其中,充放电控制器用于将电池包的参数信息传输到所述云端服务器,所述电池包的参数信息包括电池包的周围环境及工作条件;云端服务器对所述电池包的周围环境及工作条件进行分析,根据分析结果自动匹配至相应充放电模式,并将所述充放电模式传输到充放电控制器,所述充放电控制器根据所述充放电模式对所述电池包进行柔性充放电。
优选地,充放电控制器包括蓝牙通讯模块和GPRS通讯模块;其中,充放电控制器通过蓝牙通讯模块与手持终端进行连接绑定,再通过所述手持终端将所述电池包的参数信息传输到所述云端服务器;或者充放电控制器通过GPRS通讯模块与所述云端服务器连接,并通过所述GPRS通讯模块将所述电池包的参数信息传输到所述云端服务器;通过所述蓝牙通讯模块和所述GPRS通讯模块实现双授权机制。
优选地,充放电控制器还包括无线电路控制模块,所述充放电控制器根据所述充放电模式调节所述无线电路控制模块改变所述电池包中电池之间的串并联方式,实现电池包的柔性充放电。
优选地,电池包主要由功率型锂离子电池、能量型锂离子电池、低温锂离子电池和钠离子电池中的一种或多种,以及超级电容构成。
优选地,充放电模式包括低温模式、高温模式、高功率模式、低功率模式、超高功率模式、过充保护模式、过放保护模式、过热保护模式和自放电保护模式。
优选地,在通过蓝牙通讯模块和GPRS通讯模块实现双授权机制中设置有授权码,所述授权码为加密状态,并且是由多个ID号构成的;同时加密的所述授权码均一次有效,为一事一密的设定,超出此事情的设定时间,则需要重新获得授权。
本发明根据电池包所处的地理位置信息,对其进行柔性智能充电和放电策略,这样能提高电池包中的电池的充放电效率,降低储能模块成本,提升电池包安全性,提高整体能源使用经济效益。
附图说明
图1是本发明实施例提供的一种混合电池控制系统结构示意图;
图2是图1所示充放电控制器结构示意图;
图3是图1所示电池包结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为便于对本发明实施例的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本发明实施例的限定。
图1是本发明实施例提供的一种混合电池控制系统结构示意图。如图1所示,该混合电池控制系统包括电池包10、充放电控制器20和云端服务器30。其中,充放电控制器20用于将电池包10的参数信息传输到云端服务器30,电池包的参数信息包括电池包的周围环境及工作条件,电池包的周围环境及工作条件包括温度、内阻、工作电流、工作电压和容量。云端服务器30对接收的电池包的周围环境及工作条件进行分析,根据分析结果自动匹配至相应充放电模式,并将充放电模式传输到充放电控制器20,充放电控制器20根据充放电模式对电池包10进行柔性充放电。上述充放电模式包括低温模式、高温模式、高功率模式、低功率模式、超高功率模式、过充保护模式、过放保护模式、过热保护模式和自放电保护模式。
图2是图1所示充放电控制器结构示意图。如图2所示,充放电控制器20包括蓝牙通讯模块21、GPRS通讯模块22和无线电路控制模块23,充放电控制器20可以通过蓝牙通讯模块21和GPRS通讯模块22分别与云端服务器30进行连接,以实现双授权机制。
具体地,充放电控制器20通过蓝牙通讯模块21与手持终端40进行连接绑定,再通过手持终端40将电池包的参数信息传输到云端服务器30。或者充放电控制器20通过GPRS通讯模块22与云端服务器30连接,并通过GPRS通讯模块22将电池包10的参数信息传输到云端服务器30。在通过蓝牙通讯模块和GPRS通讯模块实现双授权机制中设置有授权码,该授权码为加密状态,并且是由多个ID号构成的;同时加密的所述授权码均一次有效,为一事一密的设定,超出此事情的设定时间,则需要重新获得授权。
图3是图1所示电池包10结构示意图。如图3所示,电池包10主要由功率型锂离子电池12、能量型锂离子电池11、超级电容13、开关14、开关15和开关16构成;开关14、开关15和开关16分别与降压部件并联,以及连接脉冲调节器。其中,功率型锂离子电池12、能量型锂离子电池11和超级电容13并联连接,开关14与功率型锂离子电池12串联连接,开关15与能量型锂离子电池11串联连接,超级电容13和开关16串联连接。充放电控制器20根据云端服务器30确定的充放电模式调节无线电路控制模块23控制电池包10中的开关14、开关15和开关16以改变电池包10中的电池之间的串并联连接方式,实现电池包10的柔性充放电,保证电池包的工作温度环境从-20℃至60℃。
在一个实施例中:电池包工作时,将发生正常容量衰减、充放电电压曲线偏离较大、放电容量偏低,内阻偏大等情况。通过数据传输,云端服务器30将对上述情况进行判断,并相应的给出控制策略。当出现放电容量偏低时,云端服务器30将分析电池充放电数据,判断电池包中出现异常的电芯,经过云端服务器30设定的算法对电池组充电电流进行优化,给出指令至充放电控制器20,按照指令要求,在充电时一方面降低异常电芯的极化,另一方面又不减少其它电池的充电容量。实现电池组容量最优化处理。
本发明提供的一种混合电池控制系统,可以根据电池包所处的地理位置信息,对其进行柔性智能充电和放电策略,这样能提高电池的充放电效率以及使用寿命(使电池包存放寿命可以高达5年,使用寿命增加近1倍),降低储能模块成本,提升电池组安全性,提高整体能源使用经济效益。
以上对本发明所提供的一种电池包进行了详细介绍,并结合具体实施例对本发明做了进一步阐述,必须指出,以上实施例的说明不用于限制而只是用于帮助理解本发明的核心思想,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,对本发明进行的任何改进以及与本产品等同的替代方案,也属于本发明权利要求的保护范围内。
Claims (6)
- 一种混合电池控制系统,其特征在于,包括:电池包、充放电控制器和云端服务器;其中,充放电控制器,用于将电池包的参数信息传输到所述云端服务器,所述电池包的参数信息包括电池包的周围环境及工作条件;云端服务器对所述电池包的周围环境及工作条件进行分析,根据分析结果自动匹配至相应充放电模式,并将所述充放电模式传输到充放电控制器,所述充放电控制器根据所述充放电模式对所述电池包进行柔性充放电。
- 根据权利要求1所述的系统,其特征在于:所述充放电控制器包括蓝牙通讯模块和GPRS通讯模块;其中,所述充放电控制器通过蓝牙通讯模块与手持终端进行连接绑定,再通过所述手持终端将所述电池包的参数信息传输到所述云端服务器;或者所述充放电控制器通过GPRS通讯模块与所述云端服务器连接,并通过所述GPRS通讯模块将所述电池包的参数信息传输到所述云端服务器;通过所述蓝牙通讯模块和所述GPRS通讯模块实现双授权机制。
- 根据权利要求2所述的系统,其特征在于:所述充放电控制器还包括无线电路控制模块,所述充放电控制器根据所述充放电模式调节所述无线电路控制模块改变所述电池包中电池之间的串并联方式,实现电池包的柔性充放电。
- 根据权利要求1所述的系统,其特征在于:所述电池包主要由功率型锂离子电池、能量型锂离子电池、低温锂离子电池和钠离子电池中的一种或多种,以及超级电容构成。
- 根据权利要求1所述的系统,其特征在于:所述充放电模式包括低温模式、高温模式、高功率模式、低功率模式、超高功率模式、过充保护模式、过放保护模式、过热保护模式和自放电保护模式。
- 根据权利要求2所述的系统,其特征在于:在通过蓝牙通讯模块和GPRS通讯模块实现双授权机制中设置有授权码,所述授权码为加密状态,并且是由多个ID号构成的;同时加密的所述授权码均一次有效,为一事一密的设定,超出此事情的设定时间,则需要重新获得授权。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611048967.2 | 2016-11-22 | ||
CN201611048967.2A CN106532149B (zh) | 2016-11-22 | 2016-11-22 | 一种混合电池控制系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018095040A1 true WO2018095040A1 (zh) | 2018-05-31 |
Family
ID=58357001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091983 WO2018095040A1 (zh) | 2016-11-22 | 2017-07-06 | 一种混合电池控制系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106532149B (zh) |
WO (1) | WO2018095040A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111556162A (zh) * | 2020-05-12 | 2020-08-18 | 南京世博电控技术有限公司 | 一种新型抗干扰零误码的电池管理系统 |
CN113675484A (zh) * | 2021-08-23 | 2021-11-19 | 江苏润云新能源有限公司 | 一种基于能量互补的钠-锂离子电池集成热管理系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106532149B (zh) * | 2016-11-22 | 2019-03-15 | 深圳市深清新型材料有限公司 | 一种混合电池控制系统 |
CN108649645A (zh) * | 2018-06-01 | 2018-10-12 | 北京汉能光伏投资有限公司 | 一种电池控制系统 |
CN109510863A (zh) * | 2018-09-27 | 2019-03-22 | 北京金茂绿建科技有限公司 | 一种能源管理方法及装置 |
CN110048479A (zh) * | 2019-04-22 | 2019-07-23 | 维沃移动通信有限公司 | 一种电池控制方法及终端设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050275372A1 (en) * | 2004-06-14 | 2005-12-15 | Crowell Jonathan C | Power controller for managing arrays of smart battery packs |
CN204391838U (zh) * | 2015-02-12 | 2015-06-10 | 苏州泓启业亿电子科技有限公司 | 一种电池管理系统 |
CN204605562U (zh) * | 2015-02-12 | 2015-09-02 | 苏州泓启业亿电子科技有限公司 | 一种智能化云端处理控制系统 |
CN105843729A (zh) * | 2016-03-30 | 2016-08-10 | 苏州美天网络科技有限公司 | 蓄电池智能数据存储系统 |
CN105914822A (zh) * | 2016-05-09 | 2016-08-31 | 常永利 | 一种智能环保节能的电池供电系统及方法 |
CN106532149A (zh) * | 2016-11-22 | 2017-03-22 | 深圳市清深科技有限公司 | 一种混合电池控制系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102890246B (zh) * | 2012-10-11 | 2015-07-29 | 江苏天鹏电源有限公司 | 一种锂电池电池包充放电检测装置 |
CN102983585A (zh) * | 2012-12-30 | 2013-03-20 | 东莞德世特电能科技有限公司 | 一种智能储能系统的控制方法 |
JP6145712B2 (ja) * | 2014-03-24 | 2017-06-14 | パナソニックIpマネジメント株式会社 | 二次電池の充電システム及び方法並びに電池パック |
CN204445859U (zh) * | 2015-01-17 | 2015-07-08 | 深圳市佑康健康管理有限公司 | 血压仪及生理信息管理系统 |
CN105048011A (zh) * | 2015-08-27 | 2015-11-11 | 张家港莫特普数据科技有限公司 | 动力电池云监控系统及方法 |
-
2016
- 2016-11-22 CN CN201611048967.2A patent/CN106532149B/zh not_active Expired - Fee Related
-
2017
- 2017-07-06 WO PCT/CN2017/091983 patent/WO2018095040A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050275372A1 (en) * | 2004-06-14 | 2005-12-15 | Crowell Jonathan C | Power controller for managing arrays of smart battery packs |
CN204391838U (zh) * | 2015-02-12 | 2015-06-10 | 苏州泓启业亿电子科技有限公司 | 一种电池管理系统 |
CN204605562U (zh) * | 2015-02-12 | 2015-09-02 | 苏州泓启业亿电子科技有限公司 | 一种智能化云端处理控制系统 |
CN105843729A (zh) * | 2016-03-30 | 2016-08-10 | 苏州美天网络科技有限公司 | 蓄电池智能数据存储系统 |
CN105914822A (zh) * | 2016-05-09 | 2016-08-31 | 常永利 | 一种智能环保节能的电池供电系统及方法 |
CN106532149A (zh) * | 2016-11-22 | 2017-03-22 | 深圳市清深科技有限公司 | 一种混合电池控制系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111556162A (zh) * | 2020-05-12 | 2020-08-18 | 南京世博电控技术有限公司 | 一种新型抗干扰零误码的电池管理系统 |
CN113675484A (zh) * | 2021-08-23 | 2021-11-19 | 江苏润云新能源有限公司 | 一种基于能量互补的钠-锂离子电池集成热管理系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106532149A (zh) | 2017-03-22 |
CN106532149B (zh) | 2019-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018095040A1 (zh) | 一种混合电池控制系统 | |
KR101485127B1 (ko) | 무선 제어 방식의 배터리 에너지 저장장치 | |
WO2018095039A1 (zh) | 一种远程电池智能管理系统 | |
CN103000957A (zh) | 一种可充电热失控保护的电动自行车锂电池模块 | |
WO2016112718A1 (zh) | 锂电池组充放电保护板及锂电池组保护系统 | |
CN203434607U (zh) | 一种锂电池组充电保护电路 | |
CN102593547A (zh) | 二次电池组低温充电加热及保护方法 | |
WO2023092999A1 (zh) | 电池加热系统、电池包和用电装置 | |
CN104269899B (zh) | 机载锂离子蓄电池系统 | |
CN106253383A (zh) | 一种锂离子电池组自动充放电均衡设备 | |
WO2021083149A1 (zh) | 充电方法和充电系统 | |
CN110911765B (zh) | 一种电池均衡策略验证平台 | |
CN103123991A (zh) | 模块并联的锂系电池 | |
CN209448457U (zh) | 一种高空作业平台锂电池电源控制保护系统 | |
CN108032745A (zh) | 一种适用于低温工作的电池管理系统 | |
CN103010042A (zh) | 一种可以支持网络工作的电池管理系统 | |
WO2024198517A1 (zh) | 一种供电装置及储能系统 | |
WO2016197413A1 (zh) | 储能充电设备及移动充电设备 | |
CN109617193A (zh) | 一种锂电池电源管理系统及高空作业平台 | |
CN203013875U (zh) | 一种具有热失控保护功能的电动自行车锂电池模块 | |
TWI624977B (zh) | Active balance charging device | |
CN209448456U (zh) | 一种锂电池电源管理系统及高空作业平台 | |
CN204465034U (zh) | 锂电池组充放电保护板及锂电池组保护系统 | |
WO2020215583A1 (zh) | 一种电池组监控系统及方法 | |
CN202435066U (zh) | 一种具有双向限流的锂离子电池组管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17873566 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17873566 Country of ref document: EP Kind code of ref document: A1 |