WO2018094963A1 - 一种微硅麦克风及其制造方法 - Google Patents

一种微硅麦克风及其制造方法 Download PDF

Info

Publication number
WO2018094963A1
WO2018094963A1 PCT/CN2017/081397 CN2017081397W WO2018094963A1 WO 2018094963 A1 WO2018094963 A1 WO 2018094963A1 CN 2017081397 W CN2017081397 W CN 2017081397W WO 2018094963 A1 WO2018094963 A1 WO 2018094963A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diaphragm
silicon microphone
vibrating
micro silicon
Prior art date
Application number
PCT/CN2017/081397
Other languages
English (en)
French (fr)
Inventor
孙恺
胡维
李刚
Original Assignee
苏州敏芯微电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州敏芯微电子技术股份有限公司 filed Critical 苏州敏芯微电子技术股份有限公司
Priority to KR1020177016526A priority Critical patent/KR101966355B1/ko
Priority to US15/622,876 priority patent/US20180146300A1/en
Publication of WO2018094963A1 publication Critical patent/WO2018094963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the invention relates to a microphone and a manufacturing method thereof, in particular to a micro silicon microphone and a manufacturing method thereof.
  • a microphone is a transducer that converts a sound signal into an electrical signal.
  • ECM electret condenser microphones
  • the conventional ECM leaks the resident charge in its sensitive film at high temperatures, which in turn causes ECM to fail.
  • the device surface mount process often requires soldering temperatures of up to 260 ° C, resulting in the loss of advantages of ECM in the mass production of consumer electronics.
  • micro silicon microphone fabricated by microelectromechanical system (MEMS) technology directly supplies the bias voltage to the microphone through the external power supply, and does not need to store the resident charge in the sensitive film, so there is no danger that the resident charge will be lost at high temperature.
  • MEMS microelectromechanical system
  • Micro silicon microphones have the advantage of being able to withstand the high temperatures in the surface mount process and are quickly becoming a replacement for ECM products.
  • Capacitive micro-silicon microphones have high output impedance, which is greatly affected by environmental interference noise and parasitic capacitance. Therefore, micro-silicon microphones need to be integrated in a single chip.
  • a major problem encountered in the fabrication of micro silicon microphones is the control of diaphragm stress.
  • the existing film preparation methods basically adopt deposition, and the vibration mode obtained by deposition may have large residual stress, and generally includes two kinds of thermal mismatch stress and intrinsic stress.
  • the residual stress has a great influence on the characteristics of the micro silicon microphone, and even it fails to work.
  • Large residual tensile stress can significantly reduce the mechanical sensitivity of the vibration mode, and the mechanical sensitivity of the diaphragm is proportional to the sensitivity of the microphone's key indicator, so large residual stress will reduce the sensitivity of the microphone.
  • large residual compressive stresses may cause buckling of the diaphragm, which may cause the microphone to fail.
  • Increasing the sensitivity of the microphone can be achieved by improving the preparation method - deposition, or by using some additional processes such as annealing to reduce the residual stress of the vibration mode, but using this
  • the method has little effect on reducing residual stress, and the repeatability is not good, and the implementation is complicated.
  • Another important way is to optimize the design of the vibration mode structure and improve the mechanical sensitivity of the vibration mode.
  • the embodiments of the present invention provide a micro silicon microphone and a micro silicon microphone manufacturing method for solving the technical problem that the micro silicon microphone is affected by stress and the sensitivity is disturbed.
  • the micro silicon microphone of the present invention includes a vibrating membrane layer including a vibrating beam and a vibrating membrane, the vibrating beam is evenly arranged around an edge of the vibrating membrane, and the first end of the vibrating beam is fixed at the An edge of the diaphragm, the second end of the vibrating beam being fixed to the support structure.
  • the vibration beam is perpendicular to an edge of the diaphragm, and the first end extends into the edge of the diaphragm to be smoothly connected to the surface of the diaphragm.
  • the vibrating beam includes a first vibrating beam and a mirrored second vibrating beam.
  • the vibrating beam comprises a bend.
  • the first vibrating beam is L-shaped, and the L-shaped bend is composed of two intersecting strip supports, wherein one strip support is perpendicularly connected to the edge of the diaphragm, and the other strip The shaped support is fixed to the support structure.
  • the micro silicon microphone further includes a capacitive layer spaced from the diaphragm layer.
  • the capacitor layer and the surface adjacent to the diaphragm layer are provided with isolation bumps, and the surface of the capacitor layer and the diaphragm layer opposite to the back cover layer, the capacitor layer and A through hole is formed in the back plate structural layer.
  • Another aspect of the present invention also provides a method of fabricating a micro silicon microphone, comprising:
  • Forming the diaphragm layer includes forming a diaphragm and a vibration beam distributed around an edge of the diaphragm, and fixing a first end of the vibration beam to an edge of the diaphragm and a second of the vibration beam The end is fixed to the support structure.
  • the method further includes sequentially forming a sacrificial layer, a capacitor layer, and a backing structure layer on the diaphragm layer; forming a back cavity exposing the insulating layer at a bottom of the silicon substrate; A via hole is disposed on the capacitor layer and the backplane structure layer; and a portion of the sacrificial layer is removed through the via hole and a portion of the insulating layer is removed through the back cavity.
  • the forming the sacrificial layer includes forming a process blind via in the middle and a process via located at the edge on the surface of the sacrificial layer.
  • the forming a capacitor layer includes a bottom surface combined with the sacrificial layer, forming a isolation bump by using the process blind via, and forming the capacitor layer by using the process via hole a connector of the diaphragm layer.
  • the routing the via holes in the backplane structure layer includes providing a via hole at an edge of the backplane structure layer, and the through hole of the edge of the backplane structure layer is such that the capacitor layer The edge portion is exposed to form a bonding position, and the method further includes forming a metal bond pad at the bonding position.
  • the micro silicon microphone and the micro silicon microphone manufacturing method provided by the embodiments of the invention can overcome the internal stress of the diaphragm, suppress the irregular stress of the diaphragm, and improve the sensitivity of the diaphragm.
  • the support force that is adapted to the vibration frequency of the diaphragm can be formed by the vibration beam along the normal or radial direction and the bending of the vibration beam.
  • the MEMS process of the microphone can be completed at a relatively low temperature to ensure the quality of the finished product.
  • FIG. 1 is a schematic diagram of a first step of a method for fabricating a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a second step of a method for manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG 3 is a schematic diagram of a third step of a method for fabricating a micro silicon microphone according to an embodiment of the invention.
  • FIG. 4 is a schematic view showing a fourth step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a fifth step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a sixth step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a seventh step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the eighth step of the method for manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a ninth step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a tenth step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the eleventh step of the method for manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a 12th step of a method of manufacturing a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 13 is a top plan view showing a diaphragm layer of a micro silicon microphone according to an embodiment of the present invention.
  • FIG. 14 is a schematic top plan view showing a diaphragm layer of a micro silicon microphone according to another embodiment of the present invention.
  • FIG. 15 is a top plan view showing a diaphragm layer of a micro silicon microphone according to still another embodiment of the present invention.
  • forming the vibrating membrane layer comprises forming a vibrating membrane and a vibrating beam distributed around the edge of the vibrating membrane, and fixing the first end of the vibrating beam to the edge of the vibrating membrane, and fixing the second end of the vibrating beam to the supporting structure.
  • the method may further include forming a sacrificial layer, a capacitor layer and a back plate structure layer on the vibrating film layer;
  • a portion of the sacrificial layer is removed through the via and a portion of the insulating layer is removed through the back cavity.
  • a metal layer is also formed on the backing structure layer for protection or adaptation to the shape of the housing.
  • the manufacturing method of the present embodiment can obtain a stable layer structure of a micro silicon microphone.
  • a method of manufacturing a micro silicon microphone according to an embodiment will be described in detail below with reference to the accompanying drawings.
  • the method for manufacturing the micro silicon microphone according to an embodiment of the present invention is specifically as shown in FIG. 1 to FIG. 12 , and specifically includes:
  • an insulating layer 02 is formed on top of the silicon substrate 01.
  • the insulating layer 02 may be formed by a deposition process to form a silicon oxide layer.
  • the insulating layer 02 serves as a support layer for the subsequently formed film layer.
  • a diaphragm layer 03 is formed on the insulating layer 02.
  • the diaphragm layer 03 may be a polysilicon layer formed by a deposition process.
  • a vibration beam 32 is formed which is distributed at the edge of the diaphragm layer 03.
  • the vibrating membrane layer 03 is further formed into a central (vibrating membrane) vibrating portion and a peripheral (vibrating beam) fixed portion.
  • the vibration beam 32 can be formed using a photolithography, an etching mask, or an anisotropic etching process.
  • the diaphragm layer 03 forms the boss 31 on the insulating layer 02.
  • the sacrificial layer 04 is covered on the diaphragm layer 03.
  • the sacrificial layer 04 may be a silicon oxide layer formed by a deposition process.
  • the sacrificial layer 04 acts as a dielectric layer in the microphone capacitor structure.
  • the sacrificial layer 4 simultaneously covers the outer periphery of the insulating layer 02.
  • the process blind hole 41 and the edge are formed on the surface of the sacrificial layer 04.
  • the process blind vias 41 can be formed by processes such as photolithography, etching mask, anisotropic etching, and the like.
  • the process via 42 may be formed by locally etching the sacrificial layer 04 by a process such as photolithography or etching, so that the end of the vibrating beam 32 of the vibrating film layer 03 is exposed.
  • connection point of a subsequent process is formed in the process via 42 and a partially defined shape of the subsequent process is formed in the process blind hole 41.
  • a capacitor layer 05 covering the sacrificial layer 04 is formed.
  • the capacitor layer 05 can be a polysilicon layer formed by a low pressure chemical vapor deposition (LPCVD) process.
  • LPCVD low pressure chemical vapor deposition
  • the isolation bumps 51 are formed by the process blind holes 41.
  • the isolation bumps 51 can ensure the adhesion between the vibrating film layer 03 and the capacitor layer 05 during the application of the finished product.
  • the hole 42 forms a connecting body 53 of the capacitor layer 05 and the diaphragm layer 03.
  • the capacitor layer 05 simultaneously covers the outer circumference of the sacrificial layer 04. As shown in FIG. 7, a distribution through-hole 52 is formed on the capacitor layer 05.
  • the sound transmission via 52 can be formed by a process such as photolithography, etching, or the like, so that the sacrificial layer 04 is exposed.
  • the method further includes exposing the outer periphery of the insulating layer 02 and the sacrificial layer 04.
  • a backing structural layer 06 is formed which covers the capacitor layer 05.
  • the backing structure layer 06 may employ a silicon nitride layer formed by a deposition process.
  • the backing structure layer 06 is further covered with the outer periphery of the insulating layer 02, the sacrificial layer 04, and the capacitor layer 05.
  • a sound receiving through hole 61 corresponding to the sound transmission through hole 52 is formed on the backing plate structural layer 06.
  • the sound-receiving through-hole 61 can be formed by a process such as photolithography, etching, or the like, and forms a sound receiving passage that communicates with the sound-transmitting through-hole 52.
  • a portion of the edge of the backing structural layer 06 is received by the sound transmission hole 61 so that the edge portion of the capacitor layer is exposed to form a bonding position, and a metal bonding pad 07 is formed at the bonding position 63.
  • the metal bond pad 07 can be fabricated by sputtering, photolithography, etching, and the like.
  • the back cavity 08 can be formed by a double lithography, deep silicon etching or the like.
  • the back cavity 08 exposes the insulating layer 02.
  • the insulating layer 02 and the sacrificial layer 04 which are located within the range of the vibration beam 32 and which are within the projection range of the capacitor layer 05 are removed.
  • the elimination of the insulating layer 02 and the sacrificial layer 04 may be performed by wet etching or the like separately or simultaneously from both the back cavity 08 and the sound transmission via 52.
  • the central portion of the diaphragm layer 03 after the partial elimination of the insulating layer 02 and the sacrificial layer 04 is suspended to become a movable structure, and the edge portion of the diaphragm layer 03 is connected to the remaining silicon-receiving substrate 01 and the back-plate structural layer 06 through the vibration beam 32. Supported on the insulating layer 02 and the sacrificial layer 04.
  • the formation order of the vibrating film layer 03 and the capacitor layer 05 is reversed, resulting in positional interchange without adversely affecting the quality of the finished product.
  • An embodiment of the invention provides a micro silicon microphone comprising a vibrating membrane layer comprising a vibrating beam and a vibrating membrane, the vibrating beam is evenly arranged around the edge of the vibrating membrane, and the first end of the vibrating beam is fixed to the vibrating membrane. The edge and the second end of the vibrating beam are secured to the support structure.
  • the micro silicon microphone adopting the structure can effectively resist the residual stress of the vibration film layer and ensure the structural stability of the micro silicon microphone.
  • Fig. 12 is a cross-sectional structural view showing a micro silicon microphone as an embodiment of the present invention.
  • a silicon substrate 01 and a vibrating film layer 03 and a capacitor layer 05 fixedly supported by an insulating material on the top of the silicon substrate 01 are formed, and a cavity is formed between the vibrating film layer 03 and the capacitor layer 05.
  • a back cavity 08 exposing the diaphragm layer 03 is formed at the bottom of the sheet 01.
  • the surface of the capacitor layer 05 adjacent to the diaphragm layer 03 is provided with an isolation bump 51.
  • the surface of the capacitor layer 05 opposite to the diaphragm layer covers the backplane structure layer 06, and the capacitor layer 05 and the backplane structure layer are opened.
  • a hole (a communicating through hole 52 and a sound receiving through hole 61).
  • the capacitor layer 05 and the diaphragm layer 03 constitute a capacitor structure.
  • the diaphragm layer 03 includes a vibrating membrane located at the center and a vibrating beam 32 distributed around the periphery.
  • the vibrating membrane layer 03 of the micro silicon microphone includes a vibrating beam 32 and a vibrating membrane 33 on the same plane.
  • the vibrating beam 32 is evenly arranged around the edge of the vibrating membrane 33, and one end of the vibrating beam is fixed at the edge of the vibrating membrane.
  • the other end of the vibration beam is fixed to the support structure (the support structure may be, for example, the insulation layer 02 and the sacrificial layer 04 as shown in FIG. 12).
  • the vibration beam of the micro silicon microphone includes bending, and the bending causes the difference of the force directions of the two parts of the beam of the vibration beam to change the elastic modulus of the vibration beam as a whole, and forms an adaptive vibration.
  • the bend can include one or more sequential or symmetrical bends.
  • the vibrating beam can be bent in an L shape.
  • an L-shaped bend consists of two intersecting strip supports, one of which is vertically connected to the edge of the diaphragm and the other of which is fixed to the support. Additionally, the bends can be spaced or continuous.
  • FIG. 13 is a schematic structural view of a diaphragm layer of a micro silicon microphone according to an embodiment of the present invention.
  • a circular vibrating membrane 33, a first vibrating beam 34, and a mirror-mounted second vibrating beam 35 are disposed in the same plane, and the first vibrating beam 34 and the second vibrating beam 35 are arranged in groups to surround the vibration.
  • the edge (circumferential) of the film 33 is evenly laid.
  • the first vibration beam 34 and the second vibration beam 35 constitute a vibration beam group, and the plurality of vibration beam groups are evenly distributed around the edge of the vibration film, for example.
  • the angle between the adjacent two diaphragm groups with respect to the center of the diaphragm is between 20 and 60 degrees.
  • the structural stability of the vibration mold layer can be further improved by grouping the vibration beams in groups and adjusting the distribution angle of the vibration beam group with respect to the vibration film.
  • the first vibrating beam 34 includes two intersecting strip supports (ie, two-section beam bodies) which are bent in an L-shape, wherein one strip-shaped support is perpendicularly connected to the edge of the diaphragm 33 (ie, a radial direction or a normal direction), Another strip support is fixed to the support structure.
  • the vibrating membrane layer of the present embodiment uniformly distributes the first vibrating beam 34 and the second vibrating beam 35 arranged in groups in the circumferential direction of the vibrating membrane, thereby ensuring the radial supporting force when the vibrating membrane vibrates.
  • the dispersion connecting support structure formed by the first vibration beam 34 and the second vibration beam 35 can effectively disperse the internal stress of the diaphragm 33 and prevent premature damage of the diaphragm 33 during high frequency vibration.
  • the first vibrating beam 34 and the second vibrating beam 35 are mirrored, which improves the stability of the supporting moment in the same radial direction, and eliminates the difference of the supporting torques of the vibrating membrane in the high sound pressure and high frequency vibration, and suppresses the vibration.
  • the film exhibits irregular stress and reduces the sensitivity of the diaphragm.
  • FIG. 14 is a schematic structural view of a diaphragm layer of a micro silicon microphone according to another embodiment of the present invention. As shown in Fig. 14, a circular diaphragm 33 and four vibration beams 32 are disposed on the same plane, and the vibration beam 32 is fixed around the contour of the diaphragm 33 at intervals of 90 degrees.
  • the vibrating beam 32 is a strip-shaped support, and one end is perpendicularly connected to the edge of the vibrating membrane 33 (i.e., in the radial direction or the normal direction), and the edge of the vibrating membrane 33 is smoothly connected to the surface of the vibrating membrane 33, and the other end is fixed to the supporting structure.
  • the vibrating membrane layer of the present embodiment optimizes the supporting connection structure of the vibrating beam 32 to the vibrating membrane 33, so that the supporting connection position of the vibrating beam 32 and the vibrating membrane 33 avoids the connection stress, and at the same time ensures a specific frequency range under a large sound pressure. Adaptability.
  • FIG. 15 is a schematic structural view of a diaphragm layer of a micro silicon microphone according to still another embodiment of the present invention. As shown in Fig. 15, on the basis of the above embodiment, six vibration beams 32 are included, and the vibration beams 32 are fixed around the contour of the diaphragm 33 at intervals of 60 degrees.
  • the vibrating membrane layer of the present embodiment optimizes the supporting connection structure of the vibrating beam 32 to the vibrating membrane 33, so that the supporting connection position of the vibrating beam 32 and the vibrating membrane 33 avoids the connection stress, and at the same time ensures a specific frequency range under a large sound pressure. Adaptability.
  • the contour of the diaphragm layer is limited to a custom shape, and may be a circle, a square or other polygon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)

Abstract

本发明的微硅麦克风及制造方法,用于解决微硅麦克风应力影响灵敏度以及制造工艺的技术问题。本发明的微硅麦克风包括振动膜层。所述振动膜层包括振动梁和振动膜,所述振动梁围绕所述振动膜的边缘均匀布设,所述振动梁的第一端固定在所述振动膜的边缘,所述振动梁的第二端固定在支撑结构上。

Description

一种微硅麦克风及其制造方法 技术领域
本发明涉及传声器及制作方法,尤其涉及一种微硅麦克风及制造方法。
背景技术
麦克风是一种将声音信号转化为电信号的换能器。其中驻极体电容式麦克风(ECM)已经广泛应用于各个领域。但传统ECM在高温下其敏感膜中的常驻电荷会发生泄漏,进而导致ECM失效。而器件自动化表面贴装工艺常需经历高达260℃的焊接温度,导致ECM在大批量自动化生产的消费类电子产品领域丧失优势。
而利用微机电系统(MEMS)技术制造的微硅麦克风是通过外电源直接对麦克风提供偏置电压,无须在敏感膜中存储常驻电荷,所以没有常驻电荷在高温下流失的危险。微硅麦克风具有能耐受表面贴装工艺中高温的优点,正迅速成为ECM产品的代替者。电容式微硅麦克风具有高输出阻抗的特点,导致其受环境干扰噪音和寄生电容的影响较大,因此微硅麦克风需要采用单片集成方式。
微型硅麦克风制作中遇到的一个主要问题就是振动膜应力的控制。现有薄膜制备手段基本采用淀积,通过淀积得到的振动模会存在较大的残余应力,通常包括热失配应力和本征应力两种。残余应力对微型硅麦克风特性有很大影响,甚至使其失效不能工作。大的残余张应力会显著降低振动模的机械灵敏度,而振动膜的机械灵敏度与麦克风的关键指标——灵敏度成正比,因此大的残余应力会降低麦克风的灵敏度。另外大的残余压应力可能导致振动膜发生屈曲,从而使麦克风失效。提高麦克风灵敏度可通过改进制备方法——淀积,或采用一些附加工艺如退火等来减小振动模的残余应力,但是采用这 种方法对减小残余应力的效果不大,而且重复性不好,实现也较为复杂;另外一个重要途径就是对振动模结构的设计进行优化,使振动模的机械灵敏度提高。
因此,如何解决现有技术中存在的振动膜残余应力问题而在同一基片上完成标准的IC和MEMS器件的制作,保持麦克风灵敏度,已成为本领域技术人员亟待解决的技术课题。
发明内容
有鉴于此,本发明实施例提供了一种微硅麦克风及微硅麦克风制造方法,用于解决微硅麦克风受应力影响,灵敏度被干扰的技术问题。
本发明的微硅麦克风,包括振动膜层,所述振动膜层包括振动梁和振动膜,所述振动梁围绕所述振动膜的边缘均匀布设,所述振动梁的第一端固定在所述振动膜的边缘,所述振动梁的第二端固定在支撑结构上。
在一个实施例中,所述振动梁与所述振动膜的边缘垂直,并且所述第一端伸入所述振动膜的边缘后与所述振动膜的表面平滑连接。
在一个实施例中,所述振动梁包括第一振动梁和镜像设置的第二振动梁。
在一个实施例中,所述振动梁包括弯折。
在一个实施例,所述第一振动梁呈L型弯折,所述L型弯折由两个相交的条形支撑构成,其中一个条形支撑与所述振动膜边缘垂直连接,另一个条形支撑固定在支撑结构上。
在一个实施例中,微硅麦克风还包括与所述振动膜层间隔设置的电容层。
在一个实施例中,所述电容层和所述振动膜层相邻的表面布设隔离凸点,所述电容层和所述振动膜层相背的表面覆盖背板结构层,所述电容层和所述背板结构层上开设通孔。
本发明的另一个方面还提供了一种微硅麦克风的制造方法,包括:
提供硅基片;在所述硅基片的顶部顺序形成绝缘层和振动膜层;其中,形 成所述振动膜层包括形成振动膜和围绕所述振动膜边缘分布的振动梁,以及使所述振动梁的第一端固定在所述振动膜的边缘,并且使所述振动梁的第二端固定在支撑结构上。
在一个实施例中,所述方法还包括在所述振动膜层上顺序形成牺牲层、电容层和背板结构层;在所述硅基片的底部形成露出所述绝缘层的背腔;并且在所述电容层和所述背板结构层上布设通孔;以及通过所述通孔去除部分所述牺牲层和通过所述背腔去除部分所述绝缘层。
在一个实施例中,所述形成牺牲层,包括在所述牺牲层表面形成位于中部的工艺盲孔和位于边缘的工艺通孔。
在一个实施例中,所述形成电容层,包括在所述电容层与所述牺牲层结合的底面,利用所述工艺盲孔形成隔离凸点,利用所述工艺通孔形成所述电容层与所述振动膜层的连接体。
在一个实施例中,所述在所述背板结构层布设通孔包括在所述背板结构层的边缘布设通孔,所述背板结构层边缘的所述通孔使得所述电容层的边缘部分露出以形成压焊位置,所述方法还包括在所述压焊位置形成金属压焊点。
本发明实施例提供的微硅麦克风以及微硅麦克风制造方法,可以克服振动膜的内应力,抑制振动膜出现不规律应力,提高振动膜灵敏度。利用沿法线或径向的振动梁,以及振动梁的弯折,可以形成与振动膜振动频率适配的支撑力。同时可以在完成硅基片上IC制程后,在相对低的温度下完成麦克风的MEMS制程,保证了成品质量。
附图说明
图1为本发明一实施例的微硅麦克风制造方法的第1步示意图。
图2为本发明一实施例的微硅麦克风制造方法的第2步示意图。
图3为本发明一实施例的微硅麦克风制造方法的第3步示意图。
图4为本发明一实施例的微硅麦克风的制造方法的第4步示意图。
图5为本发明一实施例的微硅麦克风的制造方法的第5步示意图。
图6为本发明一实施例的微硅麦克风的制造方法的第6步示意图。
图7为本发明一实施例的微硅麦克风的制造方法的第7步示意图。
图8为本发明一实施例的微硅麦克风的制造方法的第8步示意图。
图9为本发明一实施例的微硅麦克风的制造方法的第9步示意图。
图10为本发明一实施例的微硅麦克风的制造方法的第10步示意图。
图11为本发明一实施例的微硅麦克风的制造方法的第11步示意图。
图12为本发明一实施例的微硅麦克风的制造方法的第12步示意图。
图13为本发明一实施例的微硅麦克风的振动膜层的俯视结构示意图。
图14为本发明另一实施例的微硅麦克风的振动膜层的俯视结构示意图。
图15为本发明再一实施例的微硅麦克风的振动膜层的俯视结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图纸中的步骤编号仅用于作为该步骤的附图标记,不表示执行顺序。
本发明一实施例的微硅麦克风的制造方法,包括:
提供硅基片;
在硅基片顶部顺序形成绝缘层、振动膜层;
其中,形成振动膜层包括形成振动膜和围绕振动膜边缘分布的振动梁,以及使振动梁的第一端固定在振动膜的边缘,并且使振动梁的第二端固定在支撑结构上。采用该制造方法,可以获得微硅麦克风稳定层结构。
进一步的,该方法还可以包括在上述振动膜层上形成牺牲层、电容层和背板结构层;
在硅基片底部形成露出绝缘层的背腔;
在电容层和背板结构层上布设通孔;以及
通过通孔去除部分牺牲层和通过背腔去除部分绝缘层。
在一些实施例中,背板结构层上还会形成金属层用于保护或与壳体形状适配。
如前所述,本实施例的制造方法能够获得微硅麦克风的稳定层结构。下面将结合附图对一实施例的微硅麦克风的制造方法进行详细描述。
本发明一实施例的微硅麦克风的制造方法具体如图1至图12所示,具体包括:
如图1所示,包括在硅基片01顶部形成绝缘层02。
绝缘层02可以采用淀积工艺形成氧化硅层。绝缘层02作为后续形成的膜层的支撑层。
如图2所示,包括在绝缘层02上形成振动膜层03。
振动膜层03可以为采用淀积工艺形成的多晶硅层。
如图3所示,包括在振动膜层03的边缘形成分布的振动梁32。
使得振动膜层03进一步形成中心的(振动膜)振动部分和外周的(振动梁)固定部分。
振动梁32可以采用光刻、腐蚀掩膜、各向异性刻蚀工艺形成。
在本发明另一实施例的微硅麦克风制造方法中,振动膜层03形成绝缘层02上的凸台31。
如图4所示,包括在振动膜层03上覆盖牺牲层04。
牺牲层04可以采用淀积工艺形成的氧化硅层。
牺牲层04作为麦克风电容结构中的介质层。
在本发明另一实施例的微硅麦克风制造方法中,牺牲层4同时覆盖绝缘层02的外周。
如图5所示,包括在牺牲层04表面形成中部的工艺盲孔41和边缘的工 艺通孔42。
工艺盲孔41可以采用光刻、腐蚀掩膜、各向异性刻蚀等工艺形成。工艺通孔42可以采用光刻、腐蚀等工艺局部腐蚀牺牲层04形成,使得振动膜层03的振动梁32端部露出。
工艺通孔42中形成后续工艺的连接点,工艺盲孔41内形成后续工艺的部分限定形状。
如图6所示,包括形成覆盖牺牲层04的电容层05。
电容层05可以采用低压化学气相沉积(LPCVD)工艺形成的多晶硅层。
在电容层05与牺牲层04结合的底面,利用工艺盲孔41形成隔离凸点51,隔离凸点51可以保证在成品应用时振动膜层03与电容层05间避免出现黏附现象,利用工艺通孔42形成电容层05与振动膜层03的连接体53。
在本发明另一实施例的微硅麦克风制造方法中,电容层05同时覆盖牺牲层04的外周。如图7所示,包括在电容层05上形成分布的传音通孔52。
传音通孔52可以采用光刻、刻蚀等工艺形成,使得牺牲层04露出。
在本发明另一实施例的微硅麦克风制造方法中,还包括使得绝缘层02和牺牲层04的外周露出。
如图8所示,包括形成覆盖电容层05的背板结构层06。
背板结构层06可以采用沉积工艺形成的氮化硅层。
在本发明另一实施例的微硅麦克风制造方法中,还包括背板结构层06同时覆盖绝缘层02、牺牲层04和电容层05的外周。
如图9所示,包括在背板结构层06上形成与传音通孔52相应的受音通孔61。
受音通孔61可以采用光刻、刻蚀等工艺形成,与传音通孔52形成连通的受音通道。
如图10所示,背板结构层06边缘的部分受音通孔61使得电容层的边缘部分露出形成压焊位置,在压焊位置63形成金属压焊点07。
金属压焊点07可以采用溅射、光刻、腐蚀等工艺制作。
如图11所示,包括在硅基片01底部形成。
背腔08可以采用双面光刻、深硅刻蚀等工艺形成。
背腔08使得绝缘层02露出。
如图12所示,包括去除位于振动梁32围绕范围内,且处于电容层05投影范围内的绝缘层02和牺牲层04。
消除绝缘层02和牺牲层04可以采用湿法腐蚀等工艺,从背腔08和传音通孔52两个方向分别或同时进行。
消除部分消除绝缘层02和牺牲层04后的振动膜层03中心部分悬空成为可动结构,振动膜层03的边缘部分通过振动梁32连接至保留的受硅基片01和背板结构层06支撑的绝缘层02和牺牲层04上。
在上述实施例的微硅麦克风的制造方法基础上,振动膜层03和电容层05的形成顺序对调,导致位置互换不对成品质量造成不良影响。
本发明的一实施例提供了一种微硅麦克风,包括振动膜层,振动膜层包括振动梁和振动膜,振动梁围绕振动膜的边缘均匀布设,振动梁的第一端固定在振动膜的边缘,并且振动梁的第二端固定在支撑结构上。采用该结构的微硅麦克风,可有效抵抗振动膜层的残余应力,确保微硅麦克风的结构稳定。
图12同时作为本发明一实施例的微硅麦克风的剖视结构示意图。如图12所示,包括硅基片01和在硅基片01顶部通过绝缘材料固定支撑的振动膜层03和电容层05,振动膜层03和电容层05之间形成空腔,在硅基片01底部形成露出振动膜层03的背腔08。
电容层05与振动膜层03相邻的表面,布设隔离凸点51,电容层05和所述振动膜层相背的表面覆盖背板结构层06,电容层05和背板结构层上开设通孔(相连通的传音通孔52和受音通孔61)。电容层05与振动膜层03构成电容结构。
参照图12,振动膜层03包括位于中心的振动膜和外周分布的振动梁32。
本实施例的振动膜层03两侧形成了供振动膜层03振动的足够腔体空间,通过振动梁分散了振动膜的应力聚集,使得振动膜灵敏度得到提高。通过隔离凸点51避免了振动膜层振动过程中与电容层05的意外黏合。
本发明一实施例的微硅麦克风的振动膜层03包括位于同一平面的振动梁32和振动膜33,振动梁32围绕振动膜33的边缘均匀布设,振动梁的一端固定在振动膜的边缘,振动梁的另一端固定在支撑结构上(支撑结构例如可以是如图12所示的绝缘层02和牺牲层04)。
本发明另一实施例的微硅麦克风的振动梁包括弯折,弯折使振动梁弯折处的两部分梁体受力方向存在差异,可以有效改变振动梁整体的弹性模量,形成适应振动膜在高低频振动时的有效支撑力。例如,弯折可以包括一个或多个顺序或对称的弯折。例如,振动梁可以呈L型弯折。例如,L型弯折由两个相交的条形支撑构成,其中一个条形支撑与振动膜边缘垂直连接,另一个条形支撑固定在支撑结构上。另外,弯折可以是间隔或连续的。
图13为本发明一实施例的微硅麦克风的振动膜层结构示意图。如图13所示,包括位于同一平面的圆形的振动膜33、第一振动梁34和镜像设置的第二振动梁35,第一振动梁34和第二振动梁35成组设置,围绕振动膜33边缘(周向)均匀布设。例如,第一振动梁34和第二振动梁35构成一个振动梁组,多个振动梁组例如围绕振动膜的边缘均布。例如,相邻的两个振动膜组相对于振动膜的圆心的夹角为20-60°之间。通过将振动梁成组设置,并且调节振动梁组相对于振动膜的分布角,可以进一步提高振动模层的结构稳定性。
第一振动梁34包括两个相交的条形支撑(即两段梁体),成L型弯折,其中一个条形支撑与振动膜33边缘垂直连接(即径向方向或法线方向),另一个条形支撑固定在支撑结构上。
本实施例的振动膜层在振动膜的周向均匀布设了成组设置的第一振动梁34和第二振动梁35,保证了振动膜振动时径向的支撑力。
第一振动梁34和第二振动梁35形成的分散连接支撑结构,可以有效分散振动膜33的内应力,避免在高频振动时振动膜33过早损坏。
第一振动梁34和第二振动梁35镜像设置,提高了同一径向方向上支撑力矩的稳定性,消除振动膜在高声压、高频率振动时出现各方向上支撑力矩的差异,抑制振动膜出现不规律应力,降低振动膜灵敏度。
图14为本发明另一实施例的微硅麦克风的振动膜层结构示意图。如图14所示,包括位于同一平面的圆形的振动膜33和四个振动梁32,振动梁32以90度间隔环绕振动膜33的轮廓固定。
振动梁32为条形支撑,一端与振动膜33边缘垂直连接(即径向方向或法线方向),伸入振动膜33边缘与振动膜33表面平滑连接,另一端固定在支撑结构上。
本实施例的振动膜层优化了振动梁32对振动膜33的支撑连接结构,使得振动梁32和振动膜33的支撑连接位置避免出现连接应力,同时保证了对较大声压下特定频率范围的适应性。
图15为本发明再一实施例的微硅麦克风的振动膜层结构示意图。如图15所示,在上述实施例的基础上,包括六个振动梁32,振动梁32以60度间隔环绕振动膜33的轮廓固定。
本实施例的振动膜层优化了振动梁32对振动膜33的支撑连接结构,使得振动梁32和振动膜33的支撑连接位置避免出现连接应力,同时保证了对较大声压下特定频率范围的适应性。
本发明另一实施例的微硅麦克风,在上述实施例的基础上,振动膜层的轮廓受限于定制形状,可以是圆形,方形或其他多边形。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种微硅麦克风,包括振动膜层,其特征在于,所述振动膜层包括振动梁和振动膜,所述振动梁围绕所述振动膜的边缘均匀布设,所述振动梁的第一端固定在所述振动膜的边缘,所述振动梁的第二端固定在支撑结构上。
  2. 如权利要求1所述的微硅麦克风,其特征在于,所述振动梁与所述振动膜的边缘垂直,并且所述第一端伸入所述振动膜的边缘后与所述振动膜的表面平滑连接。
  3. 如权利要求1所述的微硅麦克风,其特征在于,所述振动梁包括第一振动梁和镜像设置的第二振动梁。
  4. 如权利要求3所述的微硅麦克风,其特征在于,所述第一振动梁呈L型弯折,所述L型弯折由两个相交的条形支撑构成,其中一个条形支撑与所述振动膜边缘垂直连接,另一个条形支撑固定在支撑结构上。
  5. 如权利要求1所述的微硅麦克风,其特征在于,所述振动梁包括弯折。
  6. 如权利要求5所述的微硅麦克风,其特征在于,所述振动梁呈L型弯折,所述L型弯折由两个相交的条形支撑构成,其中一个条形支撑与所述振动膜边缘垂直连接,另一个条形支撑固定在支撑结构上。
  7. 如权利要求1所述微硅麦克风,其特征在于,还包括与所述振动膜层间隔设置的电容层。
  8. 如权利要求7所述微硅麦克风,其特征在于,所述电容层和所述振动膜层相邻的表面布设隔离凸点,所述电容层和所述振动膜层相背的表面覆盖背板结构层。
  9. 如权利要求8所述微硅麦克风,其特征在于,所述电容层和所述背板结构层上开设通孔。
  10. 一种微硅麦克风的制造方法,包括:
    提供硅基片;
    在所述硅基片的顶部顺序形成绝缘层和振动膜层;
    其中,形成所述振动膜层包括形成振动膜和围绕所述振动膜边缘分布的振动梁,以及使所述振动梁的第一端固定在所述振动膜的边缘,并且使所述振动梁的第二端固定在支撑结构上。
  11. 根据权利要求10所述的微硅麦克风的制造方法,其特征在于,还包括在所述振动膜层上顺序形成牺牲层、电容层和背板结构层;在所述硅基片的底部形成露出所述绝缘层的背腔;并且在所述电容层和所述背板结构层上布设通孔;以及
    通过所述通孔去除部分所述牺牲层和通过所述背腔去除部分所述绝缘层。
  12. 如权利要求11所述的微硅麦克风的制造方法,其特征在于,所述牺牲层的材料为氧化硅,所述电容层的材料为多晶硅,所述背板结构层的材料为氮化硅。
  13. 如权利要求11所述的微硅麦克风的制造方法,其特征在于,所述形成牺牲层,包括在所述牺牲层表面形成位于中部的工艺盲孔和位于边缘的工艺通孔。
  14. 如权利要求13所述的微硅麦克风的制造方法,其特征在于,所述形成电容层,包括在所述电容层与所述牺牲层结合的底面,利用所述工艺盲孔形成隔离凸点,利用所述工艺通孔形成所述电容层与所述振动膜层的连接体。
  15. 如权利要求11所述的微硅麦克风的制造方法,其特征在于,所述在所述背板结构层布设通孔包括在所述背板结构层的边缘布设通孔,所述背板结构层边缘的所述通孔使得所述电容层的边缘部分露出以形成压焊位置,所述方法还包括在所述压焊位置形成金属压焊点。
PCT/CN2017/081397 2016-11-22 2017-04-21 一种微硅麦克风及其制造方法 WO2018094963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177016526A KR101966355B1 (ko) 2016-11-22 2017-04-21 초소형 실리콘 마이크로폰
US15/622,876 US20180146300A1 (en) 2016-11-22 2017-06-14 Micro-silicon microphone and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611032043.3A CN106412782A (zh) 2016-11-22 2016-11-22 一种微硅麦克风及其制造方法
CN201611032043.3 2016-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/622,876 Continuation US20180146300A1 (en) 2016-11-22 2017-06-14 Micro-silicon microphone and fabrication method thereof

Publications (1)

Publication Number Publication Date
WO2018094963A1 true WO2018094963A1 (zh) 2018-05-31

Family

ID=58083406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081397 WO2018094963A1 (zh) 2016-11-22 2017-04-21 一种微硅麦克风及其制造方法

Country Status (3)

Country Link
KR (1) KR101966355B1 (zh)
CN (1) CN106412782A (zh)
WO (1) WO2018094963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609915A (zh) * 2020-05-25 2020-09-01 中国电子科技集团公司第十三研究所 基于弹性梁结构的mems压电声压传感芯片

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106412782A (zh) * 2016-11-22 2017-02-15 苏州敏芯微电子技术股份有限公司 一种微硅麦克风及其制造方法
CN108810773A (zh) * 2017-04-26 2018-11-13 中芯国际集成电路制造(上海)有限公司 麦克风及其制造方法
US11228845B2 (en) * 2017-09-18 2022-01-18 Knowles Electronics, Llc Systems and methods for acoustic hole optimization
CN110366090B (zh) * 2018-04-11 2021-02-23 中芯国际集成电路制造(上海)有限公司 Mems器件及其制备方法
CN111131987A (zh) * 2019-12-02 2020-05-08 杭州士兰微电子股份有限公司 Mems麦克风及其制造方法
CN112383869B (zh) * 2020-11-09 2021-11-12 瑞声新能源发展(常州)有限公司科教城分公司 一种压电mems换能器及电子设备
CN117835132A (zh) * 2022-09-29 2024-04-05 歌尔微电子股份有限公司 一种微机电芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968547A (zh) * 2005-11-18 2007-05-23 青岛歌尔电子有限公司 硅传声器
CN103974181A (zh) * 2013-01-28 2014-08-06 苏州敏芯微电子技术有限公司 电容式微硅麦克风的制造方法
CN104113812A (zh) * 2014-08-11 2014-10-22 苏州敏芯微电子技术有限公司 电容式微硅麦克风及其制造方法
US20160241979A1 (en) * 2015-02-12 2016-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Monolithic complementary metal-oxide semiconductor (cmos) - integrated silicon microphone
CN106412782A (zh) * 2016-11-22 2017-02-15 苏州敏芯微电子技术股份有限公司 一种微硅麦克风及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968547A (zh) * 2005-11-18 2007-05-23 青岛歌尔电子有限公司 硅传声器
CN103974181A (zh) * 2013-01-28 2014-08-06 苏州敏芯微电子技术有限公司 电容式微硅麦克风的制造方法
CN104113812A (zh) * 2014-08-11 2014-10-22 苏州敏芯微电子技术有限公司 电容式微硅麦克风及其制造方法
US20160241979A1 (en) * 2015-02-12 2016-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Monolithic complementary metal-oxide semiconductor (cmos) - integrated silicon microphone
CN106412782A (zh) * 2016-11-22 2017-02-15 苏州敏芯微电子技术股份有限公司 一种微硅麦克风及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609915A (zh) * 2020-05-25 2020-09-01 中国电子科技集团公司第十三研究所 基于弹性梁结构的mems压电声压传感芯片

Also Published As

Publication number Publication date
KR101966355B1 (ko) 2019-04-08
CN106412782A (zh) 2017-02-15
KR20180078178A (ko) 2018-07-09

Similar Documents

Publication Publication Date Title
WO2018094963A1 (zh) 一种微硅麦克风及其制造方法
US10506345B2 (en) System and method for a microphone
WO2019033854A1 (zh) 具有双振膜的差分电容式麦克风
JP6793208B2 (ja) Memsマイクロホンおよびその準備方法
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
US20120091546A1 (en) Microphone
US20170339494A1 (en) Mems acoustic transducer with combfingered electrodes and corresponding manufacturing process
KR20080008246A (ko) 실리콘 마이크 및 그의 제조 방법
US20180002160A1 (en) Mems device and process
US20150162523A1 (en) Piezoelectric device
US20140353780A1 (en) Detection structure for a mems acoustic transducer with improved robustness to deformation
TW202119829A (zh) 微機電系統麥克風的結構及其製作方法
US20230234837A1 (en) Mems microphone with an anchor
KR101711444B1 (ko) 마이크로폰 및 마이크로폰 제조 방법
CN110113702B (zh) 一种mems结构的制造方法
TW201127738A (en) Silicon capacitive microphone structure
TW202119830A (zh) 微機電系統麥克風的結構
TWI448165B (zh) 麥克風元件及其製造方法
JP4811035B2 (ja) 音響センサ
CN209748811U (zh) 一种mems结构
CN113545108B (zh) 为达更高信噪比的电容式麦克风传感器设计及制造方法
JP2007309892A (ja) 静電容量型センサ
KR101893486B1 (ko) 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법
JP2008022501A (ja) コンデンサマイクロホン及びその製造方法
US20180146300A1 (en) Micro-silicon microphone and fabrication method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177016526

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873554

Country of ref document: EP

Kind code of ref document: A1