WO2018094694A1 - 仿真指纹的制作方法 - Google Patents

仿真指纹的制作方法 Download PDF

Info

Publication number
WO2018094694A1
WO2018094694A1 PCT/CN2016/107299 CN2016107299W WO2018094694A1 WO 2018094694 A1 WO2018094694 A1 WO 2018094694A1 CN 2016107299 W CN2016107299 W CN 2016107299W WO 2018094694 A1 WO2018094694 A1 WO 2018094694A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
conductive material
mold
simulated
ridge
Prior art date
Application number
PCT/CN2016/107299
Other languages
English (en)
French (fr)
Inventor
陈文斌
杨旺旺
余旖
王玉栋
李丹
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2016/107299 priority Critical patent/WO2018094694A1/zh
Priority to CN201680001507.6A priority patent/CN106796659B/zh
Publication of WO2018094694A1 publication Critical patent/WO2018094694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger

Definitions

  • the embodiments of the present invention relate to the field of fingerprint recognition, and in particular, to a method for manufacturing a simulated fingerprint.
  • Fingerprint sensor is the key device for automatic fingerprint acquisition. Capacitive fingerprint sensor has been widely used in intelligent terminals.
  • the principle of the capacitive fingerprint sensor is on a "flat plate" integrated with thousands of semiconductor devices.
  • the finger is attached to the other side of the capacitor and the other side of the capacitor. Since the finger plane is uneven, the bump and the concave point correspond respectively.
  • the fingerprint ridge feature and the fingerprint valley feature result in different actual distances of the contact plate, and the capacitance values formed are also different. According to this principle, the collected different values are summarized, and the fingerprint collection is completed.
  • Rejection rate and acknowledgment rate are important indicators for evaluating fingerprint sensors.
  • capacitive fingerprint sensors are semiconductor fingerprint sensors, their manufacturing processes are complex, and there are many sensing units per unit area, involving IC design technology and large-scale integrated circuit manufacturing technology. IC chip packaging technology, etc., easily lead to the rejection rate and the falsehood rate do not meet the demand, making the quality of the capacitive fingerprint sensor difficult to be guaranteed.
  • the industry generally uses simulated fingerprints to evaluate the indicators such as the rejection rate and the false rate of the capacitive fingerprint sensor.
  • the image quality of the currently produced simulated fingerprint is poor. Therefore, the artificial fingerprint produced by the fingerprint has a low recognition rate when evaluating the capacitive fingerprint sensor, and thus the recognition rate cannot meet the requirements when using the current simulated fingerprint to evaluate the capacitive fingerprint sensor. Moreover, the deviation between the rejection rate and the falsehood rate is further caused, and finally the current simulated fingerprint cannot correctly evaluate the performance of the capacitive fingerprint sensor, hindering the improvement of the performance of the capacitive fingerprint sensor, and using the current simulated fingerprint pair. When the capacitive fingerprint sensor is tested in batches, the yield of the product cannot be guaranteed.
  • the purpose of the embodiment of the present application is to provide a method for manufacturing a simulated fingerprint, which is used to overcome the above technical defects in the prior art.
  • the embodiment of the present application provides a method for manufacturing a simulated fingerprint, including:
  • a simulated fingerprint is produced using a solid conductive material or a liquid conductive material and based on a fingerprint mold having the characteristics of the fingerprint ridge.
  • the generating the simulated fingerprint includes:
  • performing fingerprint ridge feature clarification processing on the pre-acquired fingerprint image comprises: performing binarization processing on the pre-acquired fingerprint image according to the set threshold value to make the fingerprint ridge The valley features are clear.
  • the method further includes: classifying the pre-acquired fingerprint images according to different acquisition states, and setting different threshold values for different types of the pre-acquired fingerprint images;
  • Performing binarization of the pre-acquired fingerprint image according to the set threshold to clear the fingerprint ridge feature comprises: determining the type according to the pre-acquired fingerprint image for the type of the fingerprint The pre-acquired fingerprint image is binarized to make the fingerprint ridge valley feature clear.
  • the valley feature and the ridge feature width of the fingerprint image obtained after the clearing process are obtained.
  • the valley feature corresponding to the ratio and the true finger is consistent with the width ratio of the ridge feature.
  • the fingerprint mold is prepared according to the fingerprint image after the clearing process, and the fingerprint ridge feature is formed on the fingerprint mold, including: the clearing process
  • the fingerprint image is converted into a fingerprint image recognizable by the printed circuit board production control software and the circuit board description file is output, and the printed circuit board fingerprint mold is prepared according to the circuit board description file.
  • the fingerprint mold is formed according to the fingerprint image after the clearing process, and the fingerprint ridge feature is formed on the fingerprint mold, and the method includes:
  • the printed circuit board of the film with the fingerprint image is processed to form a printed circuit board fingerprint mold.
  • the pressing treatment of the solid conductive material poured onto the fingerprint mold comprises: pressing the solid conductive material poured onto the fingerprint mold and continuously setting For a predetermined period of time, the fingerprint ridge valley feature on the fingerprint mold is imprinted on the pressed solid conductive material to generate a simulated fingerprint according to the solid conductive material subjected to the pressing treatment. determine.
  • the method further includes: feeding the solid conductive material into The line forming treatment is such that the depth difference of the ridge characteristics on the solid conductive material after pressing is from 0.010 mm to 0.1 mm.
  • the molding process of the solid conductive material comprises: adding a curing agent capable of molding the solid conductive material, and adding the curing agent after the adding
  • the solid conductive material has a softness of 10-50 HA.
  • the volume of the curing agent added is greater than one-twentieth of the volume of the solid conductive material.
  • the method before the placing the solid conductive material into the fingerprint mold, the method further comprises: coating the fingerprint mold with a layer of insulating material to prevent the solid conductive material from being Bonding to the fingerprint mold.
  • the simulated fingerprint meets at least one or more parameter requirements:
  • the thickness of the simulated fingerprint is 0.010 mm-1.5 mm;
  • the softness of the simulated fingerprint is lower than 50HA;
  • the simulated fingerprint resistance value is 0-50 M ⁇ .
  • the generating the simulated fingerprint includes:
  • a liquid conductive material is applied to the fingerprint mold such that the fingerprint ridge valley feature on the fingerprint mold is imprinted onto the film layer formed by the liquid conductive material to generate a simulated fingerprint.
  • the embodiment of the present application provides a method for manufacturing a simulated fingerprint, including:
  • the clearing processed fingerprint image is used as a template, and the conductive ink is printed on the material, so that the fingerprint ridge valley feature is formed on the material to generate a simulated fingerprint.
  • the material has a predetermined softness.
  • the conductive fingerprint is added to the simulated fingerprint to electrically connect all the ridge features of the simulated fingerprint. It is an electric conductor.
  • the method before the clearing the processed fingerprint image as a template, before printing the conductive ink onto the material, the method further includes: mirroring the fingerprint image.
  • the fingerprint of the pre-acquired fingerprint image is sharpened, and the simulated fingerprint is prepared according to the fingerprint image after the clearing process, so that the simulated fingerprint has obvious fingerprint ridge characteristics.
  • the recognition rate of the simulated fingerprint is improved.
  • the capacitive fingerprint sensor is used to evaluate the capacitive fingerprint sensor, the recognition rate reaches the requirement, and the accuracy of the rejection rate and the falsehood rate are higher, which is beneficial to improve the capacitive fingerprint sensor. Performance, and when testing in batches, the yield of the product can be guaranteed.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for manufacturing a simulated fingerprint according to an embodiment of the present application
  • FIG. 2(a) is a schematic diagram of a fingerprint image collected in an embodiment of the present application.
  • FIG. 2(b) is a fingerprint image obtained by performing binarization processing according to an embodiment of the present application
  • FIG. 3 is a schematic flow chart of a method for obtaining a printed circuit board fingerprint mold by using a printed circuit board according to an embodiment of the present application
  • FIG. 4 is a schematic flow chart of still another embodiment of a method for obtaining a fingerprint mold by printing a circuit board according to an embodiment of the present application;
  • FIG. 5( a ) is a picture saved after the ridge valley conversion according to the embodiment of the present application.
  • Figure 5 (b) is a schematic view of a film printed by an embodiment of the present application.
  • FIG. 5(c) is a schematic view showing a fingerprint mold of a printed circuit board according to an embodiment of the present application.
  • FIG. 6 is a schematic flow chart of a method for fabricating a simulated fingerprint by using a solid black conductive material according to an embodiment of the present application
  • FIG. 7 is a schematic flow chart of an embodiment of a method for manufacturing a simulated fingerprint by using a liquid conductive material according to the present application
  • FIG. 8 is a schematic flow chart of still another embodiment of a method for manufacturing a simulated fingerprint by using a liquid conductive material according to the present application;
  • FIG. 9 is a schematic flow chart of an embodiment of a method for preparing a simulated fingerprint by printing according to the present application.
  • This embodiment provides a schematic flowchart of an embodiment of a method for manufacturing a simulated fingerprint. As shown in FIG. 1 , the method includes:
  • the fingerprint may be pre-acquired by the following method to form a fingerprint image:
  • the sharpness of the fingerprint image may not be high enough. If the processing is directly based on the original image, the quality of the simulated fingerprint is low, and the fingerprint ridge feature is not obvious. Therefore, it is necessary to clear the collected fingerprint image to improve the quality of the completed simulated fingerprint.
  • the fingerprint ridge valley feature clearing process on the fingerprint image in step S11 may specifically include: performing binarization processing on the pre-acquired fingerprint image according to the set threshold value to make the fingerprint ridge valley feature clear.
  • the fingerprint image in order to form a clear fingerprint ridge valley feature on the fingerprint mold, the fingerprint image is binarized, and the gray value of the pixel of the fingerprint image is set to 0 or 255, so that the image is presented. Obvious black and white visual effects, black for the ridge and white for the valley.
  • the above-described clearing process can be implemented by a global binarization technique.
  • a global grayscale threshold T is set, and the grayscale value of the fingerprint image is divided into two groups of a pixel group larger than the grayscale threshold T and a pixel group smaller than the threshold T by the grayscale threshold T.
  • the grayscale value of the fingerprint image is compared with the grayscale threshold T, and the pixel group larger than the grayscale threshold T is set as the valley of the fingerprint image, and the grayscale corresponding to the pixel is uniformly set to 255, indicating white; less than grayscale
  • the pixel group of the threshold T is set as the ridge of the fingerprint image, and the gray value corresponding to all the pixels in the pixel group is uniformly set to 0, indicating black.
  • the black and white color makes the fingerprint ridge valley feature of the fingerprint image more prominent, resulting in a clear and clear fingerprint image.
  • the method before the global threshold binarization process, the method further includes: classifying the fingerprint images collected in advance according to different collection environments, and setting different threshold values for different types of pre-acquired fingerprint images;
  • the fingerprint ridge features on the fingerprint image formed in different collection environments may have different clarity, and the finger is in a dry state.
  • a dry finger fingerprint is formed, and a wet finger fingerprint is formed in a wet state, and a normal finger fingerprint is formed in a normal state.
  • the fingerprint of the dry finger fingerprint collected in the dry state has lower definition of the fingerprint ridge valley; the fingerprint of the wet finger fingerprint collected in the wet state has higher definition of the fingerprint ridge valley; the normal state is collected under normal conditions.
  • Fingerprint imagery on the fingerprint ridges feature clarity between the dry finger fingerprint and the wet finger fingerprint image on the fingerprint ridge valley feature clarity.
  • the method further includes: binarizing the pre-acquired fingerprint image of the type according to the gray threshold set for the pre-acquired fingerprint image of the type, so that the fingerprint ridge feature is clear
  • the corresponding grayscale threshold is determined according to the type of the fingerprint image, and the binarized fingerprint image is formed by comparing the grayscale value with the threshold value.
  • the fingerprint is binarized by setting the global threshold T to make the fingerprint ridge valley feature clear.
  • the global threshold of the fingerprint image does not necessarily apply to the partial region of the fingerprint image, resulting in the specific details of the partial region of the fingerprint image being inconspicuous during processing. . Therefore, in other embodiments, the fingerprint image may be subjected to local binarization processing, and the fingerprint image is divided into different regions according to the distribution of the fingerprint distribution position or the fingerprint gradation, and is set in different regions. Different gray thresholds are used to complete the local binarization of the fingerprint image.
  • the local details of the fingerprint ridge valley feature on the fingerprint image obtained by the localized binarization processing of the fingerprint image are more obvious, and the fingerprint image fingerprint ridge valley feature is more clear.
  • the obtained ratio of the width of the valley feature to the ridge feature of the fingerprint image and the valley feature corresponding to the true finger are consistent with the width ratio of the ridge feature.
  • the ratio of the valley feature of the fingerprint image to the width of the ridge feature can be adjusted to match the width ratio of the valley feature of the true finger to the width of the ridge feature.
  • FIG. 2(a) is a schematic diagram of a fingerprint image collected in the embodiment of the present application
  • FIG. 2(b) is a fingerprint image obtained by binarization processing in the embodiment of the present application, as shown in FIG. 2(a) and FIG.
  • FIG. 2(a) and FIG. There is a clear distinction between the sharpness of the fingerprint image before and after the conversion.
  • the size of the fingerprint image obtained by binarizing the fingerprint image is adjusted to be 1:1 with the true finger fingerprint ratio.
  • the image is such that the simulated fingerprint is consistent with the size of the original finger fingerprint, and if used for the fingerprint sensor test, the real finger fingerprint is simulated as much as possible, thereby improving the accuracy of the fingerprint sensor test.
  • the fingerprint image is preferably a BMP bitmap, so that the fingerprint ridge feature of the formed fingerprint image is greatly ensured to be the same as the binarized fingerprint image, as shown in FIG. 5(a).
  • the fingerprint image is subjected to ridge valley conversion, so that the fingerprint of the original fingerprint image is made.
  • the valley feature becomes a fingerprint ridge feature on the fingerprint mold
  • the fingerprint ridge feature of the original fingerprint image becomes a fingerprint valley feature on the fingerprint mold, such that the fingerprint on the solid conductive material when the subsequent solid conductive material is poured into the fingerprint mold
  • the ridge valley features are consistent with the real fingerprint.
  • the ridge valley conversion can be completed at the same time as the fingerprint image required for the fingerprint mold, or can be completed after the fingerprint image is created and the fingerprint template is created.
  • the fingerprint image required for the fingerprint mold is completed, and the ridge valley conversion is specifically performed: the fingerprint image obtained by binarizing the fingerprint image in the above steps has only two gray levels, that is, the gray value is 0 and 255, the fingerprint image color only includes white or black. Among them, white in the fingerprint image represents the valley line and black represents the ridge line.
  • the ridge valley is converted, it can be directly converted into black and white, that is, the gray value of the area where the gray value of the original fingerprint image is 0 is changed to 255. To change the gray value of the area with the gray value of 255 to 0, the fingerprint image after the valley conversion can be obtained.
  • the material of the fingerprint mold needs a certain hardness to ensure that a sufficiently thin line is fixedly formed on the material. Therefore, in this embodiment, the printed circuit board is selected as the substrate, and the fingerprint image is used.
  • the upper fingerprint ridge valley feature is printed on the printed circuit board to form a fingerprint ridge valley feature that is sufficiently clear and sufficiently thin to form a printed circuit board fingerprint mold.
  • the fingerprint mold can also be obtained by other methods, such as laser engraving.
  • the fingerprint ridge feature of the fingerprint is more obvious according to the fingerprint mold obtained by the clear printed fingerprint image printed circuit board.
  • the solid conductive material poured onto the fingerprint mold is pressed, so that the pressed solid conductive material has a set thickness, and the fingerprint ridge valley feature on the fingerprint mold is printed on the pressed solid conductive material. .
  • the fingerprint ridge valley feature is formed on the fingerprint mold, the ridge valley conversion is performed with respect to the fingerprint ridge valley feature on the pre-acquired fingerprint image, and therefore, when the solid conductive material is pressed on the fingerprint mold, it is solid.
  • the conductive material is imprinted with the same fingerprint ridge characteristics as the real finger fingerprint.
  • a curing agent capable of molding the solid conductive material may be added before the solid conductive material is poured into the fingerprint mold, thereby being easily formed during the pressing process.
  • the curing agent may be added in multiple times, and the curing agent and the solid conductive material are kneaded several times after each time the curing agent is added, so that the curing agent and the solid conductive material are thoroughly mixed, so that the final simulated fingerprint has good performance. Softness, which improves the quality of the simulated fingerprint.
  • the added curing agent is an electrically conductive electric solution, on the one hand, the conductive property of the solid conductive material is enhanced, and on the other hand, the solid conductive material is easily formed during the pressing process.
  • the thickness of the solid conductive material after pressing is in the range of 0.010 mm to 1.5 mm, and the resistance value of the simulated fingerprint formed after pressing is 0-50 M ⁇ . Therefore, it is accurately recognized by the capacitive fingerprint sensor during testing.
  • the simulated fingerprint provided by the embodiment has higher similarity with the true finger fingerprint, and thus the fingerprint image is corrected according to the clear fingerprint image.
  • the recognition rate is higher.
  • the simulated fingerprint is made of solid conductive material.
  • the capacitance is also sensed, which is accurately recognized by the capacitive fingerprint sensor.
  • the method for manufacturing a simulated fingerprint provided by the embodiment provides a fingerprint ridge feature on the fingerprint image collected in advance, and a fingerprint mold is prepared according to the fingerprint image after the clear processing, so that the fingerprint ridge feature is formed in the fingerprint mold.
  • a solid conductive material and generating a simulated fingerprint based on a fingerprint mold having the characteristics of the fingerprint ridge valley the recognition rate of the simulated fingerprint is improved, and when the capacitive fingerprint sensor is evaluated using the simulated fingerprint, the recognition rate reaches the requirement, and the evaluation result is obtained.
  • the accuracy of the rejection rate and the falsehood rate is high, which is beneficial to improve the performance of the capacitive fingerprint sensor, and can ensure the yield of the product when performing batch testing.
  • the present application provides a schematic flowchart of an embodiment of a method for obtaining a fingerprint mold by using a printed circuit board. As shown in FIG. 3, the method includes:
  • the fingerprint image after the clear processing is converted into a fingerprint image recognizable by the production control software of the printed circuit board factory, and the circuit board description file is output;
  • the fingerprint image after the sharpening process may be a fingerprint image in which the valley conversion is completed.
  • the image can be converted into a fingerprint image recognizable by the printed circuit board production control software by the Allegro tool of Cadence Electronic Technology Co., Ltd.
  • the fingerprint image can be converted into a fingerprint image that can be recognized by the printed circuit board production control software by other means, and those skilled in the art can operate according to common knowledge in the art, and no further examples are provided herein. .
  • the Gerber file is a standard format for image conversion in the circuit board industry. Therefore, in this embodiment, the identifiable file of the printed circuit board production control software is made into a Gerber file, and according to the contents of the Gerber file, the printed circuit board manufacturer can A printed circuit board having the same features as the sharpened fingerprint image fingerprint ridge valley is printed, and the printed circuit board fingerprint mold can be a planar body.
  • the resulting Gerber file is provided to the manufacturer, which prints the printed circuit board fingerprint mold from the Gerber file.
  • the method for obtaining a panel fingerprint mold by printing a circuit board provided by the embodiment, converts the fingerprint image after the ridge valley conversion into a fingerprint image recognizable by the printed circuit board production control software, and outputs the circuit board description file. And printed by the printed circuit board manufacturer, the obtained printed circuit board fingerprint mold ridge valley features high precision.
  • the present application also provides a schematic flowchart of still another embodiment of a method for obtaining a fingerprint mold by printing a printed circuit board. As shown in FIG. 4, the method includes:
  • transparent, translucent film can be used.
  • the transparent film is taken as an example to illustrate that after the fingerprint image of the ridge valley conversion is printed on the film, the ridge feature of the fingerprint is attached to the film, and the fingerprint ridge feature is black, and is printed on the transparent film.
  • the black part will be opaque; the fingerprint valley will be white, and the white part will be transmitted after printing on the transparencies, as shown in Figure 5(b).
  • the film can be directly attached to the printed circuit board by manual operation. If the fake fingerprint is produced in large quantities, the film can be processed by professional equipment such as a robot arm or an automatic suction cup. Paste on the printed circuit board.
  • the photosensitive circuit board has the positive and negative photosensitive plates.
  • the positive photosensitive plate is taken as an example to illustrate that the fingerprint image used for printing the positive photosensitive plate is a fingerprint image after the valley conversion.
  • the fingerprint ridge feature is black
  • the fingerprint valley feature is white
  • the different black and white colors on the transparent film are different due to the fingerprint ridge feature on the film.
  • the light transmissive effect makes the photosensitive film dissolve to generate the same fingerprint ridge characteristics as the image fingerprint ridges on the transparent film.
  • the light is irradiated onto the photosensitive film through the film, and the photosensitive film in the white region is dissolved after exposure, and then subjected to etching treatment to correspond to the characteristics of the fingerprint valley; the photosensitive film in the black region is not exposed and does not dissolve, and then corresponds to the fingerprint ridge feature after the etching treatment. See Figure 5(c) for details.
  • the black lines in Fig. 5(c) are ridge features
  • the white areas in the black lines are valley features.
  • the circuit board gets the printed circuit board fingerprint mold.
  • the solid black conductive material formed by adding graphite to the solid conductive material is as follows, and the printed circuit board fingerprint mold is taken as an example to illustrate the schematic process of making the simulated fingerprint by the solid black conductive material. Process.
  • the present application provides a schematic flow chart of a method for fabricating a simulated fingerprint by using a solid black conductive material. As shown in FIG. 6, the method includes:
  • the area of the simulated fingerprint and the thickness of the required simulated fingerprint may be estimated first to determine the volume of the simulated fingerprint.
  • the volume of the solid conductive material taken out can be 1 times or more of the simulated fingerprint volume to reduce the waste of materials on the basis of ensuring that the simulated fingerprint can be produced.
  • the curing agent is a liquid curing agent.
  • the total amount of the liquid curing agent added is related to the volume of the solid black conductive material. Specifically, the volume of the curing agent added is greater than one-twentieth of the volume of the solid conductive material, and the volume of the solid black conductive material is larger. The larger the total amount of liquid curing agent to be added, the single simulated fingerprint made of solid black conductive material is taken as an example. When the volume of the solid black conductive material is 0.24 cm 3 , the volume of the liquid curing agent added is 0.1-0.25 cm. The best between 3 .
  • the curing agent may be added to the solid black conductive material in 2 to 5 times.
  • the curing agent and the solid black conductive material are kneaded after each addition of the curing agent to ensure that the curing agent is thoroughly mixed with the solid conductive material, and the number of kneading is 10-13 times after each addition of the curing agent, The total number of times the curing agent and solid black conductive material are extruded is 20-45 times.
  • the surface of the fingerprint mold is coated with a layer of insulating material before the solid black conductive material is poured into the fingerprint mold to prevent the solid black conductive material from being bonded to the fingerprint mold.
  • the insulating material may be thin oil or the like.
  • the solid black conductive material after the addition of the curing agent will solidify under certain circumstances, and then solidified while pressing, and the fingerprint ridges on the fingerprint mold will be printed to the solid black after the curing is completed.
  • the layer of colored conductive material has the same fingerprint ridge characteristics as the captured fingerprint image.
  • the black conductive material is cured under certain conditions for a certain period of time, and the curing conditions and time are determined according to the properties of the different solid conductive adhesives and the volume of the added curing agent, and those skilled in the art can according to the prior art. Determine by yourself.
  • the solid black conductive material poured onto the fingerprint mold is subjected to pressing treatment for a set period of time, and the set length is determined according to the volume of the solid black conductive material and the added curing agent, and the volume of the added curing agent. The larger the setting, the smaller the duration.
  • the curing time is approximately 6 hours
  • the volume of liquid curing agent was added to 0.15cm 3
  • the curing time is When the volume of the liquid curing agent to be added is 0.25 cm 3 for about 3 hours, the curing time is about 1 hour.
  • the solid conductive material after the pressing treatment is subjected to a molding treatment by adding a curing agent to the solid conductive material, thereby controlling the depth difference of the ridge characteristics on the solid conductive material after pressing.
  • a molding treatment by adding a curing agent to the solid conductive material, thereby controlling the depth difference of the ridge characteristics on the solid conductive material after pressing.
  • the method of molding treatment includes not only the addition of a curing agent to the solid conductive material, but also other molding methods, which can be determined by those skilled in the art and will not be exemplified herein.
  • the upper surface of the existing fingerprint sensor includes a concave surface that guides the finger.
  • the simulated fingerprint generated by the method provided by the embodiment has a preset softness. When the fingerprint sensor is evaluated, the soft fingerprint can be simulated. Without changing the characteristics of the ridges of the simulated fingerprint, the shape is changed, so that the simulated fingerprint is attached to the concave surface of the fingerprint sensor to accurately measure the performance of the fingerprint sensor. Specifically, the simulated fingerprint softness is generated. Less than 50HA.
  • the method for preparing a simulated fingerprint by solid black conductive silica gel provided by the embodiment of the present application has a preset softness, and the recognition rate is high when evaluating the capacitive fingerprint sensor, thereby resulting in the evaluation of the obtained capacitive fingerprint sensor.
  • the deviation between the rejection rate and the false alarm rate is small, thereby ensuring that the simulated fingerprint can correctly evaluate the performance of the capacitive fingerprint sensor.
  • the method for preparing a simulated fingerprint by using solid black conductive silica gel provided by the embodiment of the present application, by pressing the solid black conductive silica gel poured into the fingerprint mold, so that the ridge valley feature in the fingerprint mold is printed on the solid black conductive silica gel, and the obtained simulated fingerprint is obtained.
  • the texture is soft and the thickness is in the range of 0.010mm-1.5mm.
  • the embodiment of the present application provides a method for manufacturing a simulated fingerprint, and the simulated fingerprint is used for testing a capacitive fingerprint sensor, as shown in FIG. 7 , including:
  • the liquid conductive material can be applied to the fingerprint mold to imprint the fingerprint ridges on the fingerprint mold onto the film formed by the liquid conductive material.
  • the present application provides a schematic flowchart of a method for fabricating a simulated fingerprint by using a liquid conductive material, as shown in FIG. 8 , which includes:
  • liquid conductive material may include wood glue, gelatin, etc., and the specific drying time can be determined by those skilled in the art according to the material characteristics, and will not be described here.
  • the method for preparing a simulated fingerprint by using a liquid conductive material provided by the embodiment by applying a liquid conductive material to the fingerprint mold, so that the fingerprint ridge valley feature on the fingerprint mold is printed on the film formed by the liquid solidified conductive material,
  • the obtained simulated fingerprint thickness is in the range of 0.010 mm-1.5 mm; at the same time, the simulated fingerprint formed by the liquid conductive material has a preset softness, so that the simulated fingerprint changes its shape without destroying the characteristics of the ridge valley, thereby
  • the simulated fingerprint fits the concave surface of the fingerprint sensor to accurately measure the performance of the fingerprint sensor.
  • the present application provides a schematic flowchart of a method for fabricating a simulated fingerprint by using a conductive ink.
  • a conductive silver ink is taken as an example to describe a manufacturing process, as shown in FIG. 9, which includes:
  • S71 Collect fingerprints and perform preprocessing.
  • the pre-processing is to clear the fingerprint image.
  • the specific processing procedure has been explained in detail in the above embodiments, and details are not described herein again.
  • S72 Print the conductive ink onto the material by using the fingerprint image after the sharpening process as a template.
  • the printed fingerprint image is a fingerprint image that has not been converted by the valley ridge after the clearing process, and the fingerprint image collected by the collecting method in the above step has a mirror image relationship with the fingerprint image recognized by the fingerprint sensor. Therefore, in this embodiment, before the clearing processed fingerprint image is used as a template, before the conductive ink is printed on the material, the method further includes: mirroring the fingerprint image. At this point, the print uses normal printing. If the fingerprint image is not mirrored, the printer needs to mirror the fingerprint image after the sharpening process.
  • the printing material used is a conductive ink, so that the printed ridge feature can be electrically conductive, the valley feature is not conductive, and the non-conductive valley feature can default to a maximum resistance value.
  • the capacitance value of the ridge valley feature recognized by the capacitive fingerprint sensor is different, thereby achieving the requirement of capacitive fingerprint recognition.
  • the conductive ink may be a conductive silver ink.
  • the printed fingerprint obtained by the simulated fingerprint includes a plurality of electrical conductors
  • a conductive line is added on the simulated fingerprint, and the simulated fingerprint is made without affecting the identification of the simulated fingerprint. All ridge features are electrically connected as one electrical conductor.
  • a circle of conductive lines may be added around the simulated fingerprint, and a thin conductive line is added inside the simulated fingerprint to electrically connect all the ridge features of the simulated fingerprint into one electrical conductor.
  • the fingerprint image printed on the photo paper can keep the image on the paper for a long time, and the quality of the photo paper is better, so that the simulated fingerprint has a higher service life.
  • the material has a preset softness so that the simulated fingerprint can be better fitted to the concave surface of the fingerprint sensor to accurately measure the performance of the fingerprint sensor.
  • the clear printed fingerprint image is used as a template, and the conductive ink is printed on the material, and the obtained simulated fingerprint has obvious features, and the capacitive fingerprint sensor is evaluated by using the simulated fingerprint.
  • the recognition rate is high, so that the performance of the capacitive fingerprint sensor can be correctly evaluated.
  • the simulated fingerprints produced in the above embodiments are not limited to the test for the capacitive fingerprint sensor, and the simulation for testing other types of fingerprint sensors can be made by replacing different materials for making the simulated fingerprints. Fingerprints, such as changing the material of the simulated fingerprint to a flesh-colored material, can be used to test the optical fingerprint sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

一种仿真指纹的制作方法,包括:对预先采集的指纹图像进行指纹脊谷特征清晰化处理(S11),根据清晰化处理后的指纹图像制作指纹模具,使指纹脊谷特征形成于指纹模具上(S12);采用固体导电材料或者液态导电材料并基于具有所述指纹脊谷特征的指纹模具制作生成仿真指纹(S13)。上述制作方法制作出来的仿真指纹脊谷特征明显,提高了仿真指纹的识别率,在使用仿真指纹评测电容式指纹传感器时,识别率达到要求,评测得到的拒真率与认假率的准确度较高,有利于提高电容式指纹传感器的性能,且在进行批量测试时,可以保证产品的良品率。

Description

仿真指纹的制作方法 技术领域
本申请实施例涉及指纹识别领域,尤其涉及一种仿真指纹的制作方法。
背景技术
由于指纹唯一性、稳定性的特点,据此可实现身份识别。指纹传感器是实现指纹自动采集的关键器件,其中电容式指纹传感器在智能终端上得到了广泛的应用。
电容式指纹传感器的原理在一块集成有成千上万半导体器件的“平板”上,手指贴在其上与其构成了电容的另一面,由于手指平面凸凹不平,凸点处和凹点处分别对应指纹脊特征、指纹谷特征,导致接触平板的实际距离大小不同,从而形成的电容数值也不相同,根据这个原理将采集到的不同的数值汇总,也就完成了指纹的采集。
拒真率与认假率是评定指纹传感器的重要指标,但是,由于电容式指纹传感器属于半导体指纹传感器,其制造工艺复杂,单位面积上传感单元多,涉及IC设计技术、大规模集成电路制造技术、IC芯片封装技术等,容易导致拒真率和认假率不满足需求,使得电容式指纹传感器的质量难以得到保障。
为此,业界一般采用仿真指纹来评测电容式指纹传感器的拒真率和认假率等指标。
但是,目前制作仿真指纹的图像质量差,因此制作出的仿真指纹在评测电容式指纹传感器时识别率低,进而导致在使用目前的仿真指纹评测电容式指纹传感器时,识别率达不到要求,且进一步导致拒真率与认假率存在偏差,最终导致目前的仿真指纹不能正确评测电容式指纹传感器的产品性能,阻碍了电容式指纹传感器的产品性能的提高,且在使用目前的仿真指纹对电容式指纹传感器进行批量测试时,不能保证产品的良品率。
发明内容
本申请实施例的目的在于提供一种仿真指纹的制作方法,用于克服现有技术中的上述技术缺陷。
本申请实施例采用的技术方案如下:
本申请实施例提供一种仿真指纹的制作方法,包括:
对预先采集的指纹图像进行指纹脊谷特征清晰化处理,根据清晰化处理后的所述指纹图像制作指纹模具,使所述指纹脊谷特征形成于所述指纹模具上;
采用固体导电材料或者液态导电材料并基于具有所述指纹脊谷特征的指纹模具制作生成仿真指纹。
可选地,在本申请任一实施例中,所述生成仿真指纹包括:
对倒入到所述指纹模具上的固体导电材料进行压制处理,使压制后的所述固体导电材料具有设定的厚度,并且使所述指纹模具上的所述指纹脊谷特征印刻于压制后的所述固体导电材料上,以生成仿真指纹。
可选地,在本申请任一实施例中,对预先采集的指纹图像进行指纹脊谷特征清晰化处理包括:根据设定的阈值对所述预先采集的指纹图像进行二值化处理使指纹脊谷特征清晰化。
可选地,在本申请任一实施例中,还包括:根据采集状态的不同,对所述预先采集到指纹图像进行分类,为不同类型所述预先采集到的指纹图像设定不同的阈值;
根据设定的阈值对所述预先采集的指纹图像进行二值化使指纹脊谷特征清晰化包括:根据针对所在类型的所述预先采集的指纹图像设定的阈值对所述所在类型的所述预先采集的指纹图像进行二值化处理,使指纹脊谷特征清晰化。
可选地,在本申请任一实施例中,所述对预先采集的指纹图像进行指纹脊谷特征清晰化处理后,得到的清晰化处理后的所述指纹图像的谷特征与脊特征的宽度比例和真手指对应的谷特征与脊特征的宽度比例一致。
可选地,在本申请任一实施例中,根据清晰化处理后的所述指纹图像制作指纹模具,使所述指纹脊谷特征形成于所述指纹模具上包括:清晰化处理后的所述指纹图像转换成印制电路板生产控制软件可识别的指纹图像并输出线路板描述文件,根据所述线路板描述文件制作印制电路板指纹模具。
可选地,在本申请任一实施例中,根据清晰化处理后的所述指纹图像制作指纹模具,使所述指纹脊谷特征形成于所述指纹模具上包括:
将清晰化处理后的所述指纹图像印制在胶片上,并将印制有清晰化处理后的指纹图像的胶片贴到包括感光膜的印制电路板上;
对贴有指纹图像的胶片的印制电路板进行处理形成印制电路板指纹模具。
可选地,在本申请任一实施例中,对倒入到所述指纹模具上的固体导电材料进行压制处理包括:对倒入到所述指纹模具上的固体导电材料进行压制处理并持续设定的时长,使所述指纹模具上的所述指纹脊谷特征印刻于压制后的所述固体导电材料上,以生成仿真指纹,所述设定的时长根据进行压制处理的所述固体导电材料确定。
可选地,在本申请任一实施例中,还包括:对所述固体导电材料进 行成型处理,使压制后的所述固体导电材料上的脊谷特征的深度差为0.010mm-0.1mm。
可选地,在本申请任一实施例中,所述对所述固体导电材料进行成型处理包括:加入可使所述固体导电材料成型的固化剂,并使加入所述固化剂后的所述固体导电材料的柔软度为10-50HA。
可选地,在本申请任一实施例中,加入的所述固化剂的体积大于所述固体导电材料体积的二十分之一。
可选地,在本申请任一实施例中,所述将所述固体导电材料放入指纹模具内前,还包括:将所述指纹模具上涂覆一层隔离材料,防止所述固体导电材料与所述指纹模具粘结。
可选地,在本申请任一实施例中,所述仿真指纹满足以下至少一个或多个参数要求:
所述仿真指纹的厚度为0.010mm-1.5mm;
所述仿真指纹的柔软度低于50HA;
所述仿真指纹电阻值为0-50MΩ。
可选地,在本申请任一实施例中,所述生成仿真指纹包括:
将液态导电材料涂覆到所述指纹模具上,使所述指纹模具上的所述指纹脊谷特征印刻到所述液态导电材料形成的膜层上,以生成仿真指纹。
本申请实施例提供一种仿真指纹的制作方法,包括:
对预先采集的指纹图像进行指纹脊谷特征清晰化处理;
以清晰化处理后的所述指纹图像为模板,将导电油墨打印到材料上,使所述指纹脊谷特征形成于所述材料上,以生成仿真指纹。
可选地,在本申请任一实施例中,所述材料具有预设的柔软度。
可选地,在本申请任一实施例中,打印得到的所述仿真指纹包括的脊特征为多个导电体时,在仿真指纹上增加导电线,使所述仿真指纹的全部脊特征电连接为一个导电体。
可选地,在本申请任一实施例中,所述以清晰化处理后的所述指纹图像为模板,将导电油墨打印到材料上之前,还包括:对所述指纹图像进行镜像处理。
本申请实施例中,通过对预先采集的指纹图像进行指纹脊谷特征清晰化处理,根据清晰化处理后的所述指纹图像制作仿真指纹,从而使制作出的仿真指纹具有明显的指纹脊谷特征,提高了仿真指纹的识别率,在使用仿真指纹评测电容式指纹传感器时,识别率达到要求,评测得到的拒真率与认假率的准确度较高,进而有利于提高电容式指纹传感器的性能,且在进行批量测试时,可以保证产品的良品率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将 对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种仿真指纹的制作方法实施例流程示意图;
图2(a)为本申请实施例采集到的指纹图像示意图;
图2(b)为本申请实施例进行二值化处理后得到的指纹图像;
图3为本申请实施例提供的通过印制电路板得到印制电路板指纹模具的方法一实施例流程示意图;
图4为本申请实施例提供的一种通过印制电路板得到指纹模具的方法又一实施例流程示意图;
图5(a)为本申请实施例进行脊谷转换后保存的图片;
图5(b)为本申请实施例打印得到的胶片示意图;
图5(c)为本申请实施例印制电路板指纹模具示意图;
图6为本申请实施例提供的通过固体黑色导电材料制作仿真指纹的方法一实施例流程示意图;
图7为本申请提供的通过液态导电材料制作仿真指纹的方法一实施例流程示意图;
图8为本申请提供的通过液态导电材料制作仿真指纹的方法再一实施例流程示意图;
图9为本申请提供的通过打印制作仿真指纹的方法一实施例流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面通过具体实施方式对本申请的技术方案做进一步的说明。
实施例一
本实施例提供一种仿真指纹的制作方法实施例流程示意图,如图1所示,其包括:
S11、对预先采集的指纹图像进行指纹脊谷特征清晰化处理。
本实施例中,可以通过以下方法预先采集指纹形成指纹图像:
(1)在手指上蘸取有色印泥后,在纸上按压,最后通过扫描仪扫描得到指纹图像;或者,
(2)通过光学传感器采集指纹,通过感应指纹反射回的光的明暗程度得到指纹图像;或者,
(3)用石墨粉显现物体上的手指指纹后,进行图像采集,得到物体上的指纹图像。
为保证制作出来的仿真指纹与真手指指纹相似度比较高,在指纹采集过程中优选地尽可能采集到面积足够大的指纹图像,以使得采集到的指纹图像包含的指纹特征足够多。
采集到指纹图像后,指纹图像的清晰度可能不够高,若是直接根据其原图进行加工制作,得到仿真指纹质量低,指纹脊谷特征并不明显。因此需要对采集到的指纹图像进行清晰化处理,以提高制作完成的仿真指纹的质量。
为此,本实施例中,步骤S11中对指纹图像进行指纹脊谷特征清晰化处理具体可以包括:根据设定的阈值对预先采集的指纹图像进行二值化处理使指纹脊谷特征清晰化。
本实施例中,为了后续在指纹模具上形成清晰的指纹脊谷特征,通过对指纹图像进行二值化处理,将指纹图像的像素点的灰度值设置为0或255,从而使其呈现出明显的黑白视觉效果,黑色表示脊,白色表示谷。本实施例中,可以通过全局二值化技术来实现上述清晰化处理。
具体地,设定一个全局的灰度阈值T,用灰度阈值T将指纹图像的灰度值分成大于灰度阈值T的像素群和小于阈值T的像素群两部分。将指纹图像的灰度值与灰度阈值T进行比对,大于灰度阈值T的像素群设定为指纹图像的谷,像素对应的灰度重新统一设定为255,表示白色;小于灰度阈值T的像素群设定为指纹图像的脊,该像素群内所有像素对应的灰度值重新统一设定为0,表示黑色。黑白颜色使指纹图像的指纹脊谷特征更加突出,从而得到明显清晰的指纹图像。
本实施例中,在全局阈值二值化处理之前还可以包括:根据采集环境的不同,对预先采集到指纹图像进行分类,为不同类型预先采集到的指纹图像设定不同的阈值;
本实施例中,假如采集的状态为手指处于干燥状态、手指处于湿润状态、或手指处于正常状态,不同采集环境下形成的指纹图像上指纹脊谷特征清晰度也会存在不同,手指处于干燥状态形成干手指指纹,处于湿润状态形成湿手指指纹,处于正常状态形成正常手指指纹。干燥状态下采集的干手指指纹的指纹图像上指纹脊谷特征清晰度较低;湿润状态下被采集的湿手指指纹的指纹图像上指纹脊谷特征清晰度较高;正常状态下被采集的正常手指的指纹图像上指纹脊谷特征清晰度介干干手指指纹和湿手指指纹图像上指纹脊谷特征清晰度之间。
而上述不同类型指纹脊谷特征清晰度的不同,如果用灰度值来表现 也会存在不同。为此,针对不同类型的指纹图像设置了不同的灰度阈值,比如对于湿手指指纹图像的指纹脊谷特征清晰,其灰度值相差也较大,且相近的灰度值分布集中,则针对其设置的灰度阈值较高;对于干手指指纹图像的指纹脊谷特征较低,其灰度值相差较小,且相近的灰度值分布较为分散,则针对其设置的灰度阈值较小,以将指纹图像的指纹脊谷特征处理得更加突出;对于正常手指指纹图像的指纹脊谷特征清晰度介于上述两种类型之间,则设置的灰度阈值也可以介于上述两个灰度阈值之间。
进一步地,在二值化处理时,还包括:根据针对所属类型的预先采集的指纹图像设定的灰度阈值对所属类型的预先采集的指纹图像进行二值化处理,使指纹脊谷特征清晰化,根据不同的指纹图像的类型进而确定对应的灰度阈值,再通过上述灰度值与阈值比对的方式形成二值化后的指纹图像。
通过设置全局阈值T对指纹进行二值化处理使指纹脊谷特征清晰化,然而指纹图像的全局阈值不一定适用于指纹图像的部分区域,导致在处理过程中指纹图像的部分区域具体细节不明显。因此,可替代地,在其他实施例中,还可以对指纹图像进行局部二值化处理,根据指纹分布位置或指纹灰度的分布,将指纹图像划分为不同的区域,在不同的区域内设置不同的灰度阈值,从而完成指纹图像的局部二值化处理。相对于全局二值化处理来说,指纹图像经过局部二值化处理后得到的指纹图像上指纹脊谷特征局部细节更加明显,指纹图像指纹脊谷特征更加清晰。本实施例中,得到的清晰化处理后的所述指纹图像的谷特征与脊特征的宽度比例和真手指对应的谷特征与脊特征的宽度比例一致。具体地,可以通过调整二值化处理中阈值的大小,调整指纹图像的谷特征与脊特征的宽度比例,使其和真手指的谷特征与脊特征的宽度比例一致。
图2(a)为本申请实施例采集到的指纹图像示意图,图2(b)为本申请实施例进行二值化处理后得到的指纹图像,如图2(a)、(b)所示,转换前后指纹图像的清晰度有较为明显的区别。
需要说明的是,为了后续使制作得到的仿真指纹被指纹传感器识别,本实施例中,将指纹图像进行二值化处理后得到的指纹图像的尺寸调整为与真实手指指纹比例为1:1的图像,从而使得到的仿真指纹与原手指指纹的尺寸一致,如果用于指纹传感器的测试的话,从而尽可能的模仿真实的手指指纹,从而提高指纹传感器测试的准确率。
本实施例中,指纹图像优选采用BMP位图,从而很大的保证形成的指纹图像的指纹脊谷特征与二值化后的指纹图像相同,具体可见图5(a)。
S12、根据清晰化处理后的指纹图像制作指纹模具,使指纹脊谷特征形成于指纹模具上。
本实施例中,为了使仿真指纹的指纹脊谷特征与采集指纹的指纹脊谷特征一致,在根据清晰化处理后的指纹图像制作时,对指纹图像进行脊谷转换,使原指纹图像的指纹谷特征变为在指纹模具上的指纹脊特征,原指纹图像的指纹脊特征变为在指纹模具上的指纹谷特征,这样在后续固体导电材料倒入指纹模具时,在固体导电材料上的指纹脊谷特征与真实的指纹一致。
脊谷转换可以在制作指纹模具所需的指纹图像的同时完成,也可以在制作完指纹图像后,制作指纹模板时完成。
其中,制作指纹模具所需的指纹图像的同时,完成脊谷转换具体为:经过上述步骤中对指纹图像进行二值化处理后得到的指纹图像只有两个灰度,即灰度值为0和255,此时指纹图像颜色只包括白色或黑色。其中,指纹图像中白色代表谷线、黑色代表脊线,对其进行脊谷转换时,可以直接将其进行黑白转换,即将原指纹图像的灰度值为0的区域的灰度值改为255,将灰度值为255的区域的灰度值改为0,即可得到脊谷转换后的指纹图像。
根据指纹转换后的指纹图像制作指纹模具时,指纹模具的材料需要一定的硬度,以保证足够细的线条固定形成于材料上,因此,本实施例中选用印制电路板作为基板,将指纹图像上的指纹脊谷特征印制在印制电路板上,使其形成足够清晰且线条足够细的指纹脊谷特征,从而形成印制电路板指纹模具。
可替代的,指纹模具还可以通过其他的方法得到,如激光雕刻等。
与直接根据指纹图像制作指纹模具相比,根据清晰化处理后的指纹图像印制电路板得到的指纹模具,指纹的脊谷特征更加明显。
S13、采用固体导电材料并基于具有所述指纹脊谷特征的指纹模具制作生成仿真指纹。
具体的,对倒入到指纹模具上的固体导电材料进行压制处理,使压制后的固体导电材料具有设定的厚度,并且使指纹模具上的指纹脊谷特征印刻于压制后的固体导电材料上。
由于指纹模具上形成了指纹脊谷特征,而相对于预先采集的指纹图像上的指纹脊谷特征来说,进行了脊谷转换,因此,当固体导电材料在指纹模具上被压制时,在固体导电材料上印刻有与真实手指指纹同样的指纹脊谷特征。
进一步地,在实施例中,在固体导电材料倒入指纹模具之前,还可加入可使固体导电材料成型的固化剂,从而在压制过程中容易成型。具体地,可以分多次加入固化剂,每次加入固化剂后对固化剂和固体导电材料进行多次揉捏,使固化剂和固体导电材料充分混合,使最终制作出的仿真指纹具有良好的柔软度,从而提高仿真指纹的质量。
加入的固化剂为可以导电的电溶液,一方面增强固体导电材料的导电性能,一方面使固体导电材料在压制的过程中容易成型。
本实施例中,如果形成的仿真指纹用于电容式指纹传感器的测试,优选压制后的固体导电材料厚度在0.010mm-1.5mm范围内,压制后形成的仿真指纹的电阻值在0-50MΩ之间,从而在测试时被电容式指纹传感器准确地识别。
本实施例提供的仿真指纹,与现有的仿真指纹相比,根据清晰化后的指纹图像制作后生成的仿真指纹,与真手指指纹的相似度更高,从而导致根据清晰化后的指纹图像生成的仿真指纹被电容式指纹传感器识别时,识别率更高。
同时,仿真指纹通过固体导电材料制作而成,电容式指纹传感器采集时,同样会感应到电容,从而被电容式指纹传感器准确地识别。
本实施例提供的一种仿真指纹的制作方法,通过对预先采集的指纹图像进行指纹脊谷特征清晰化处理,根据清晰化处理后的指纹图像制作指纹模具,使指纹脊谷特征形成于指纹模具上;采用固体导电材料并基于具有所述指纹脊谷特征的指纹模具制作生成仿真指纹,提高了仿真指纹的识别率,在使用仿真指纹评测电容式指纹传感器时,识别率达到要求,评测得到的拒真率与认假率的准确度较高,有利于提高电容式指纹传感器的性能,且在进行批量测试时,可以保证产品的良品率。
实施例二
本申请提供通过印制电路板得到指纹模具的方法一实施例流程示意图,如图3所示,其包括:
S21、清晰化处理后的指纹图像转换成印制电路板厂生产控制软件可识别的指纹图像并输出线路板描述文件;
本实施例中,清晰化处理后的指纹图像可以是完成了脊谷转换的指纹图像。
本实施例中,举例来说,可以通过铿腾(Cadence)电子科技有限公司的Allegro工具将图像转换为印制电路板生产控制软件可识别的指纹图像。
本实施例中,还可以通过其他方式将指纹图像转生成为印制电路板生产控制软件可识别的指纹图像,本领域技术人员可以根据本领域内的公知常识进行操作,在此不再进一步举例说明。
目前,Gerber文件是线路板行业图像转换的标准格式,因此,本实施例中,印制电路板生产控制软件可识别的文件制作成Gerber文件,根据Gerber文件包含的内容,印制电路板厂家可印制出完整的、与清晰化处理后的指纹图像指纹脊谷特征相同的印制电路板,该印制电路板指纹模具可以为一平面体。
S22、根据线路板描述文件制作印制电路指纹模具。
将得到的Gerber文件提供给生产厂家,由其根据Gerber文件印制印制电路板指纹模具。
本实施例提供的一种通过印制电路板得到板指纹模具的方法,将清晰化后进行脊谷转换的指纹图像转换成印制电路板生产控制软件可识别的指纹图像并输出线路板描述文件,并交由印制电路板厂家进行印制,得到的印制电路板指纹模具脊谷特征精度较高。
实施例三
本申请还提供一种通过印制印制电路板得到指纹模具的方法又一实施例流程示意图,如图4所示,其包括:
S31、将清晰化处理后的指纹图像印制在胶片上;
为了后续便于进行感光处理,可以用透明、半透明胶片。本实施例中以透明胶片为例说明,将清晰化处理进行脊谷转换的指纹图像印制在胶片上后,指纹的脊谷特征附着在胶片上,指纹脊特征为黑色,在透明胶片上打印后黑色的部分将会不透光;指纹谷特征为白色,在透明胶片上打印后白色的部分将会透光,具体可见图5(b)。
S32、将印制有清晰化处理后的指纹图像的胶片贴到包括感光膜的印制电路板上;
如果是手工制作仿真指纹,则本步骤中可以直接通过手动操作将胶片贴到印制电路板上,如果是大批量的制作假指纹,则可以通过专业的设备比如机械手臂、自动吸盘等将胶片贴到印制电路板上。
S33、对贴有指纹图像的胶片的印制电路板进行处理形成印制电路板指纹模具。感光电路板有正、负性感光板之分,本实施例以正性感光板为例说明,印制正性感光板采用的指纹图像为经过脊谷转换后的指纹图像。
具体的,对贴有指纹图像的胶片的印制电路板进行曝光处理时,由于胶片上有指纹脊谷特征,指纹脊特征为黑色,指纹谷特征为白色,透明胶片上不同的黑白颜色产生不同的透光效果,不同的透光效果使感光膜溶解后生成与透明胶片上的图像指纹脊谷特征相同的指纹脊谷特征。光透过胶片照射到感光膜上,白色区域的感光膜曝光后溶解,再进行腐蚀处理之后对应指纹谷特征;黑色区域的感光膜未曝光不会溶解,再进行腐蚀处理之后对应指纹脊特征,具体可见图5(c)。图5(c)中的黑色纹路为脊特征,黑色纹路内的白色区域为谷特征。
本申请提供的通过感光法印制印制电路板得到指纹模具的方法,直接将清晰化处理后进行脊谷转换得到的指纹图像印制在胶片上,以其为基准用感光法印制印制电路板,得到印制电路板指纹模具。
实施例四
由于石墨具有较好的导电性能,所以下面以固体导电材料加入了石墨后形成的固体黑色导电材料,以及以印制电路板指纹模具为例,说明通过固体黑色导电材料制作仿真指纹的示意性工艺流程。
本申请提供通过固体黑色导电材料制作仿真指纹的方法一实施例流程示意图,如图6所示,其包括:
S41、采集指纹并进行清晰化处理后,以生成指纹模具。
此步骤在以上实施例中已详细解释,在此不再赘述。上述实施例中得到的指纹模具均可用于本实施例。
S42、取出一定体积的固体黑色导电材料。
本实施例中,可以先预估出仿真指纹的面积以及需要的仿真指纹达到的厚度,从而确定仿真指纹的体积。取出的固体导电材料的体积可以在仿真指纹体积的1倍及以上,以在保证仿真指纹可以制作出来的基础上,减少材料的浪费。
S43、将固体黑色导电材料中加入固化剂,使加入所述固化剂后所述固体导电材料的柔软度为10-50HA,导电材料的柔软度可以通过加入固化剂的体积控制。
本实施例中,由于制作仿真指纹的材料为固体导电材料,因此固化剂选用液体固化剂。
加入的液体固化剂的总量与固体黑色导电材料的体积有关,具体的,加入的所述固化剂的体积大于所述固体导电材料体积的二十分之一,固体黑色导电材料的体积越大,需要加入的液体固化剂的总量越大,以固体黑色导电材料制作单个仿真指纹为例,选用的固体黑色导电材料的体积为0.24cm3时,加入液体固化剂的体积在0.1-0.25cm3之间最佳。
本实施例中,若是将液态固化剂滴入固体黑色导电材料内,加入的固化剂总量为0.1-0.25cm3时,可以分2-5次将固化剂加入到固体黑色导电材料中。每次加入固化剂后对固化剂和固体黑色导电材料进行揉捏,以保证所述固化剂与所述固体导电材料充分混合,每次加入固化剂后揉捏的次数为10-13次,对固化剂和固体黑色导电材料挤压的总次数为20-45次。
S44、将固体黑导电硅胶倒入指纹模具内进行压制,使指纹模具上的指纹脊谷特征印刻于压制后的固体黑色导电材料上。
本实施例中,将固体黑色导电材料倒入指纹模具之前将指纹模具表面涂覆一层隔离材料,防止固体黑色导电材料与指纹模具粘结,本实施例中,隔离材料可以为薄油等。
S45、压制一定时间,使固体黑色导电材料完全干燥。
加入固化剂后的固体黑色导电材料在一定环境下会固化,此时一边压制一边固化,固化完成后指纹模具上的指纹脊谷特征会印刻到固体黑 色导电材料的膜层上,使其具有与采集的指纹图像相同指纹脊谷特征。
加入固化剂后,黑色导电材料在一定条件下经过一定的时间固化,固化的条件与时间根据不同的固体导电胶的性质以及加入的固化剂的体积决定,本领域的技术人员可根据现有技术自行确定。
本实施例中,对倒入到指纹模具上的固体黑色导电材料进行压制处理并持续设定的时长,设定的时长根据固体黑色导电材料与加入固化剂的体积确定,加入的固化剂的体积越大,设定的时长越小。
以体积为0.24cm3的固体黑色导电材料为例,加入的液体固化剂的体积为0.1cm3时,固化时间为6小时左右,加入的液体固化剂的体积为0.15cm3时,固化时间为3小时左右,加入的液体固化剂的体积为0.25cm3时,固化时间为1小时左右。
S46、用工具将已经粘结的多余固体黑色导电材料切除后,取下印刻有指纹脊谷特征的固体黑色导电材料,得到仿真指纹。
S47、将仿真指纹上的隔离材料清洗掉,以提高仿真指纹的导电性。
本实施例中,通过在固体导电材料中加入固化剂,对进行压制处理后的所述固体导电材料,进行成型处理,从而控制压制后的所述固体导电材料上的脊谷特征的深度差在0.010mm-0.1mm之内。
成型处理的方法不仅包括在固体导电材料中加入固化剂,还可以包括其他成型方法,本领域的技术人员可以自行确定,在此不再进行举例说明。
现有的指纹传感器上表面均包括以一引导手指的下凹表面,通过本实施例提供的方法生成的仿真指纹具有预设的柔软度,在评测指纹传感器时,具有柔软度的仿真指纹可以在不破坏仿真指纹具有的脊谷特征的条件下,改变其形状,从而使仿真指纹与指纹传感器的下凹表面贴合,以准确评测指纹传感器的性能,具体的,生成的所述仿真指纹柔软度低于50HA。
本申请实施例提供的通过固体黑导电硅胶制作仿真指纹的方法,生成的仿真指纹具有预设的柔软度,在评测电容式指纹传感器时的识别率高,从而导致评测得到的电容式指纹传感器的拒真率与认假率偏差较小,进而保证仿真指纹可以正确的评测电容式指纹传感器的产品性能。
本申请实施例提供的通过固体黑导电硅胶制作仿真指纹的方法,通过压制倒入指纹模具内的固体黑导电硅胶,使指纹模具内的脊谷特征印刻于固体黑导电硅胶上,得到的仿真指纹质地柔软、厚度在0.010mm-1.5mm范围内。
本申请上述实施例以固体导电胶为例对制作仿真指纹进行了说明,对于本领域普通技术人员来说,也可以用液态导电材料来制作仿真指纹,详细示意性过程如下述实施例五记载。
实施例五
本申请实施例提供一种仿真指纹的制作方法,仿真指纹用于测试电容式指纹传感器,如图7所示,包括:
S51、对预先采集的指纹图像进行指纹脊谷特征清晰化处理,根据清晰化处理后的指纹图像制作指纹模具,使指纹脊谷特征形成于指纹模具上。制作指纹模具的详细技术类似于上述实施例三,在此不再赘述。
S52、采用液态导电材料并基于具有所述指纹脊谷特征的指纹模具制作生成仿真指纹。
具体的,可以将液态导电材料涂覆到指纹模具上,使指纹模具上的指纹脊谷特征印刻到液态导电材料形成的膜层上。
涂覆的详细说明可参见下述实施例六的示意性说明。
实施例六
本申请提供通过液态导电材料制作仿真指纹的方法一实施例流程示意图,如图8所示,其包括:
S61、采集指纹并进行预处理后,生成指纹模具。
此步骤在以上实施例中已详细解释,在此不再赘述。上述实施例中得到的指纹模具均可用于本实施例。
S62、将液体导电材料均匀涂覆在指纹模具上。
S63、将液态导电材料烘干,指纹模具上的指纹脊谷特征印刻到液态导电材料形成的膜层上。
S64、取下烘干后印刻完成的液态导电材料的膜层,得到仿真指纹。
此外,液态导电材料可以包括木胶、明胶等,具体的烘干时间可由本领域技术人员根据材料特性确定,在此不再进行说明。
本实施例提供的通过液态导电材料制作仿真指纹的方法,通过将液态导电材料涂覆到指纹模具上,使指纹模具上的指纹脊谷特征印刻到液态固化后的导电材料形成的膜层上,得到的仿真指纹厚度在0.010mm-1.5mm范围内;同时,通过液态导电材料形成的仿真指纹具有预设的柔软度,使仿真指纹在不破坏脊谷特征的条件下,改变其形状,从而使仿真指纹与指纹传感器的下凹表面贴合,以准确评测指纹传感器的性能。
实施例七
本申请提供通过导电油墨制作仿真指纹的方法一实施例流程示意图,本实施例中,以导电银油墨为例,对制作过程进行说明,如图9所示,其包括:
S71、采集指纹并进行预处理。
预处理即对指纹图像进行清晰化处理,具体的处理过程在以上实施例中已详细解释,在此不再赘述。
S72、以清晰化处理后的所述指纹图像为模板,将导电油墨打印到材料上。
具体的,本实施例中,打印的指纹图像是清晰化处理后未经过谷脊转换的指纹图像,由于通过上述步骤中的采集方法采集到的指纹图像与指纹传感器识别的指纹图像具有镜像关系,因此,本实施例中,以清晰化处理后的所述指纹图像为模板,将导电油墨打印到材料上之前,还包括:对所述指纹图像进行镜像处理。此时,打印采用正常打印。若指纹图像未经过镜像处理,则打印机需要镜像打印清晰化处理后的指纹图像。
本实施例中,打印清晰化处理后的指纹图像时,使用的打印材料为导电油墨,使打印出的脊特征可以导电,谷特征不导电,不导电的谷特征可以默认为电阻值极大,以在评测电容式指纹传感器时,使电容式指纹传感器识别到的脊谷特征的电容值不同,从而达到电容式指纹识别的要求。具体的,本实施例中,导电油墨可以为导电银油墨。
在打印完成后,打印得到的所述仿真指纹包括的脊特征为多个导电体时,在仿真指纹上增加导电线,在不影响所述仿真指纹被识别的基础上,使所述仿真指纹的全部脊特征电连接为一个导电体。
具体的,在打印完成后,可以在仿真指纹的周围增加一圈导电线,并在仿真指纹内部增加较细的导电线,以使所述仿真指纹的全部脊特征电连接为一个导电体。
将导电银墨水打印到材料上,如相片纸。与通过其他纸张打印相比,通过相片纸打印的指纹图像可以使图像在纸张上的保持时间较长,且相片纸的质量较好,从而使仿真指纹的具有较高的使用寿命。
具体的,材料具有预设的柔软度,从而可以使仿真指纹更好地与指纹传感器的下凹表面贴合,以准确评测指纹传感器的性能。
本实施例提供的通过打印制作仿真指纹的方法,以清晰化处理后的指纹图像为模板,将导电油墨打印到材料上,得到的仿真指纹脊谷特征明显,在使用仿真指纹评测电容式指纹传感器时识别率高,从而可以正确评测电容式指纹传感器的产品性能。
需要说明的是,上述实施例中制作得到的仿真指纹不局限于用于电容式指纹传感器的测试,还可以通过更换不同的制作仿真指纹的材料,制作出用于测试其他类型的指纹传感器的仿真指纹,如将仿真指纹的制作材料改为肉色材料,制作出的仿真指纹可以用于光学指纹传感器的测试。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替 换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种仿真指纹的制作方法,其特征在于,包括:
    对预先采集的指纹图像进行指纹脊谷特征清晰化处理,根据清晰化处理后的所述指纹图像制作指纹模具,使所述指纹脊谷特征形成于所述指纹模具上;
    采用固体导电材料或者液态导电材料并基于具有所述指纹脊谷特征的指纹模具制作生成仿真指纹。
  2. 根据权利要求1所述的方法,其特征在于,所述生成仿真指纹包括:
    对倒入到所述指纹模具上的固体导电材料进行压制处理,使压制后的所述固体导电材料具有设定的厚度,并且使所述指纹模具上的所述指纹脊谷特征印刻于压制后的所述固体导电材料上,以生成仿真指纹。
  3. 根据权利要求1所述的方法,其特征在于,对预先采集的指纹图像进行指纹脊谷特征清晰化处理包括:根据设定的阈值对所述预先采集的指纹图像进行二值化处理使指纹脊谷特征清晰化。
  4. 根据权利要求1所述的方法,其特征在于,还包括:根据采集状态的不同,对所述预先采集到指纹图像进行分类,为不同类型所述预先采集到的指纹图像设定不同的阈值;
    根据设定的阈值对所述预先采集的指纹图像进行二值化使指纹脊谷特征清晰化包括:根据针对所在类型的所述预先采集的指纹图像设定的阈值对所述所在类型的所述预先采集的指纹图像进行二值化处理,使指纹脊谷特征清晰化。
  5. 根据权利要求1所述的方法,其特征在于,所述对预先采集的指纹图像进行指纹脊谷特征清晰化处理后,得到的清晰化处理后的所述指纹图像的谷特征与脊特征的宽度比例和真手指对应的谷特征与脊特征的宽度比例一致。
  6. 根据权利要求1所述的方法,其特征在于,根据清晰化处理后的所述指纹图像制作指纹模具,使所述指纹脊谷特征形成于所述指纹模具上包括:清晰化处理后的所述指纹图像转换成印制电路板生产控制软件可识别的指纹图像并输出线路板描述文件,根据所述线路板描述文件制作印制电路板指纹模具。
  7. 根据权利要求1所述的方法,其特征在于,根据清晰化处理后的所述指纹图像制作指纹模具,使所述指纹脊谷特征形成于所述指纹模具上包括:
    将清晰化处理后的所述指纹图像印制在胶片上,并将印制有清晰化 处理后的指纹图像的胶片贴到包括感光膜的印制电路板上;
    对贴有指纹图像的胶片的印制电路板进行处理形成印制电路板指纹模具。
  8. 根据权利要求2所述的方法,其特征在于,对倒入到所述指纹模具上的固体导电材料进行压制处理包括:对倒入到所述指纹模具上的固体导电材料进行压制处理并持续设定的时长,使所述指纹模具上的所述指纹脊谷特征印刻于压制后的所述固体导电材料上,以生成仿真指纹,所述设定的时长根据进行压制处理的所述固体导电材料确定。
  9. 根据权利要求2或8任一项所述的方法,其特征在于,还包括:对所述固体导电材料进行成型处理,使压制后的所述固体导电材料上的脊谷特征的深度差为0.010mm-0.1mm。
  10. 根据权利要求9所述的方法,其特征在于,所述对所述固体导电材料进行成型处理包括:加入可使所述固体导电材料成型的固化剂,并使加入所述固化剂后的所述固体导电材料的柔软度为10-50HA。
  11. 根据权利要求10所述的方法,其特征在于,加入的所述固化剂的体积大于所述固体导电材料体积的二十分之一。
  12. 根据权利要求2所述的方法,其特征在于,所述将所述固体导电材料放入指纹模具内前,还包括:将所述指纹模具上涂覆一层隔离材料,防止所述固体导电材料与所述指纹模具粘结。
  13. 根据权利要求1所述的方法,其特征在于,所述仿真指纹满足以下至少一个或多个参数要求:
    所述仿真指纹的厚度为0.010mm-1.5mm;
    所述仿真指纹的柔软度低于50HA;
    所述仿真指纹电阻值为0-50MΩ。
  14. 根据权利要求1所述的方法,其特征在于,所述生成仿真指纹包括:
    将液态导电材料涂覆到所述指纹模具上,使所述指纹模具上的所述指纹脊谷特征印刻到所述液态导电材料形成的膜层上,以生成仿真指纹。
  15. 一种仿真指纹的制作方法,其特征在于,包括:
    对预先采集的指纹图像进行指纹脊谷特征清晰化处理;
    以清晰化处理后的所述指纹图像为模板,将导电油墨打印到材料上,使所述指纹脊谷特征形成于所述材料上,以生成仿真指纹。
  16. 根据权利要求15所述的方法,其特征在于,所述材料具有预设的柔软度。
  17. 根据权利要求15所述的方法,其特征在于,打印得到的所述仿真指纹包括的脊特征为多个导电体时,在仿真指纹上增加导电线,使所述仿真指纹的全部脊特征电连接为一个导电体。
  18. 根据权利要求15所述的方法,其特征在于,所述以清晰化处理后的所述指纹图像为模板,将导电油墨打印到材料上之前,还包括:对所述指纹图像进行镜像处理。
PCT/CN2016/107299 2016-11-25 2016-11-25 仿真指纹的制作方法 WO2018094694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/107299 WO2018094694A1 (zh) 2016-11-25 2016-11-25 仿真指纹的制作方法
CN201680001507.6A CN106796659B (zh) 2016-11-25 2016-11-25 仿真指纹的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107299 WO2018094694A1 (zh) 2016-11-25 2016-11-25 仿真指纹的制作方法

Publications (1)

Publication Number Publication Date
WO2018094694A1 true WO2018094694A1 (zh) 2018-05-31

Family

ID=58952985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107299 WO2018094694A1 (zh) 2016-11-25 2016-11-25 仿真指纹的制作方法

Country Status (2)

Country Link
CN (1) CN106796659B (zh)
WO (1) WO2018094694A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109514773A (zh) * 2018-10-17 2019-03-26 广州市高奈特网络科技有限公司 一种仿真指纹的制作方法
CN109977889B (zh) * 2019-03-29 2021-04-30 深圳市利成兴科技有限公司 一种指纹采集器
CN110674745B (zh) * 2019-09-24 2022-11-04 山东省计算中心(国家超级计算济南中心) 一种基于现场遗留指纹的指纹复原方法及系统
CN110839107A (zh) * 2019-10-29 2020-02-25 大连宏利信网络科技有限公司 一种手机解锁方法
CN111310677B (zh) * 2020-02-21 2023-10-27 维沃移动通信有限公司 一种指纹图像处理方法及电子设备
CN116758593A (zh) * 2023-08-17 2023-09-15 荣耀终端有限公司 假体指纹模型及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124694A (zh) * 1994-12-17 1996-06-19 欧阳歌军 指纹印章及其制法和用法
CN1176896A (zh) * 1996-09-13 1998-03-25 张立福 制做指纹防伪印章的方法及其印章
CN1197734A (zh) * 1998-05-14 1998-11-04 武进市城区新宇印章厂 指纹防伪印章及其制作方法
CN1250723A (zh) * 1998-10-09 2000-04-19 魏建深 一种指纹防伪标志的制作方法
CN1605449A (zh) * 2003-10-09 2005-04-13 李建蔚 带有各种仿真纹路、图案的塑料建材及其制作方法
CN102101339A (zh) * 2009-12-21 2011-06-22 天津市世纪东方建筑景观雕塑技术开发中心 一种为机器人配套仿真人形体皮肤的制作方法
US8453709B1 (en) * 2010-08-13 2013-06-04 Brent Williams Jewelry with positive fingerprint impression

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124694A (zh) * 1994-12-17 1996-06-19 欧阳歌军 指纹印章及其制法和用法
CN1176896A (zh) * 1996-09-13 1998-03-25 张立福 制做指纹防伪印章的方法及其印章
CN1197734A (zh) * 1998-05-14 1998-11-04 武进市城区新宇印章厂 指纹防伪印章及其制作方法
CN1250723A (zh) * 1998-10-09 2000-04-19 魏建深 一种指纹防伪标志的制作方法
CN1605449A (zh) * 2003-10-09 2005-04-13 李建蔚 带有各种仿真纹路、图案的塑料建材及其制作方法
CN102101339A (zh) * 2009-12-21 2011-06-22 天津市世纪东方建筑景观雕塑技术开发中心 一种为机器人配套仿真人形体皮肤的制作方法
US8453709B1 (en) * 2010-08-13 2013-06-04 Brent Williams Jewelry with positive fingerprint impression

Also Published As

Publication number Publication date
CN106796659B (zh) 2020-11-17
CN106796659A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018094694A1 (zh) 仿真指纹的制作方法
TWI313748B (en) Board inspecting method and apparatus and inspection logic setting method and apparatus
CN103091331B (zh) 一种rfid天线毛刺和污点缺陷的视觉检测系统及方法
CN108519314A (zh) 一种基于数字图像处理的纸张孔隙率测量与孔径分析方法
CN101904229B (zh) 在电路布置中或者涉及其的改进以及关联的装置和方法
CN108920850A (zh) 一种基于卷积神经网络的柔印压力预测方法
TW201042274A (en) Non-contact testing of printed electronics
CN207882648U (zh) 图案形成片及图案制造装置
CN110533660B (zh) 一种电子产品外壳丝印缺陷的检测方法
CN108763663A (zh) 一种自动生成印刷出血位及裁剪线的印刷系统及其方法
CN108182707A (zh) 采集不完整条件下的棋盘格标定模板及其自动识别方法
CN109514773A (zh) 一种仿真指纹的制作方法
JP5036637B2 (ja) 凹凸文字抽出のための画像処理方法及び画像処理装置
WO2009070142A1 (en) Method and system for measuring text-rendering quality
CN111042566A (zh) 一种古建筑外墙修复方法
CN109000887B (zh) 一种图案检测装置及方法、图案化控制系统及方法
CN109887856A (zh) 一种可检测led温度的cob生产工艺
CN109345577B (zh) 一种印章校准方法、装置、印控仪及存储介质
CN113319423A (zh) 一种激光打标机及调整方法
CN107924136B (zh) 生产用于柔版印刷的印刷板的方法以及一种原始印刷板
CN111723665A (zh) 生物特征信息采集系统与处理方法
CN111414774A (zh) 一种自动校准拍照输入参数的防伪标识
CN111542218B (zh) 一种电能表可信生产贴片环节采集验证方法及系统
CN113954366B (zh) 底部细线条加强的光固化三维打印方法、装置和设备
CN113436196B (zh) 基于图像识别技术的二维码膜生产管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922460

Country of ref document: EP

Kind code of ref document: A1