WO2018094681A1 - I-v转换模块 - Google Patents

I-v转换模块 Download PDF

Info

Publication number
WO2018094681A1
WO2018094681A1 PCT/CN2016/107205 CN2016107205W WO2018094681A1 WO 2018094681 A1 WO2018094681 A1 WO 2018094681A1 CN 2016107205 W CN2016107205 W CN 2016107205W WO 2018094681 A1 WO2018094681 A1 WO 2018094681A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
integration
conversion
energy storage
conversion module
Prior art date
Application number
PCT/CN2016/107205
Other languages
English (en)
French (fr)
Inventor
张孟文
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201680001576.7A priority Critical patent/CN109075792B/zh
Priority to PCT/CN2016/107205 priority patent/WO2018094681A1/zh
Priority to EP16922161.1A priority patent/EP3402076A4/en
Publication of WO2018094681A1 publication Critical patent/WO2018094681A1/zh
Priority to US16/057,216 priority patent/US10727791B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/005Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements using switched capacitors, e.g. dynamic amplifiers; using switched capacitors as resistors in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • H03G1/0094Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated using switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/008Control by switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • H03G3/3026Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers the gain being discontinuously variable, e.g. controlled by switching
    • H03G3/3031Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers the gain being discontinuously variable, e.g. controlled by switching using switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/14Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/156One or more switches are realised in the feedback circuit of the amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/159Indexing scheme relating to amplifiers the feedback circuit being closed during a switching time
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/213A variable capacitor being added in the input circuit, e.g. base, gate, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/231Indexing scheme relating to amplifiers the input of an amplifier can be switched on or off by a switch to amplify or not an input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/264An operational amplifier based integrator or transistor based integrator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/02Manually-operated control
    • H03G5/04Manually-operated control in untuned amplifiers
    • H03G5/10Manually-operated control in untuned amplifiers having semiconductor devices
    • H03G5/12Manually-operated control in untuned amplifiers having semiconductor devices incorporating negative feedback

Definitions

  • Embodiments of the present invention relate to the field of electronic technologies, and in particular, to an I-V conversion module.
  • the existing current-voltage conversion module that is, the I-V conversion module, as shown in FIG. 1, is composed of a current output type sensor 1", an I-V conversion circuit 2".
  • the larger the open loop gain of the inverting amplifier X the larger the bandwidth, and the faster the response time of the I-V conversion circuit 2".
  • a 0 is the low frequency open loop gain of the amplifier
  • p is the bandwidth
  • s is the Laplacian
  • the input step signal is derived from Equation 1, and the response expression of the output I-V conversion circuit is:
  • the inventors have found that the prior art has the following problems: It can be seen from Equation 2 that the low frequency open loop gain A 0 and the bandwidth P of the amplifier affect the response time of the IV conversion circuit, so that the IV conversion circuit The response time is large. To solve this problem, it is necessary to increase the open-loop gain A(s) of the inverting amplifier X and the -3dB bandwidth p; that is, the inverting amplifier X is required to have a sufficiently large gain-bandwidth product (usually 10 of the reciprocal of the IV conversion time). Double). However, according to the theory, the power consumption of the inverting amplifier X is increased by a factor of four for every 2 times increase in the gain bandwidth product. Obviously, although this method satisfies the requirements of the IV conversion module establishment, the inverting amplifier X consumes too much power.
  • An object of embodiments of the present invention is to provide an I-V conversion module, which reduces the time required for the I-V conversion module to be established and reduces power consumption.
  • an embodiment of the present invention provides an IV conversion module including: a current output type sensor, a pre-integration circuit, a charge transfer auxiliary circuit, and an IV conversion circuit including an inverting amplifier; the current output type sensor Connected to an input end of the IV conversion circuit by the pre-integration circuit; the charge transfer auxiliary circuit is connected in parallel with the inverting amplifier; wherein the pre-integration circuit and the charge transfer auxiliary circuit are both open
  • the pre-integration circuit pre-integrates an induced current output by the current output type sensor to store a pre-integrated charge; when the pre-integration circuit and the charge transfer auxiliary circuit are both paths, the pre-integrated charge transfer To the IV conversion circuit.
  • an I-V conversion module includes a pre-integration circuit and a charge transfer assist circuit.
  • the pre-integration circuit pre-integrates the induced current, and the pre-integrated charge is quickly transferred to the IV conversion circuit by the gain bandwidth product provided by the inverting amplifier, so that the IV conversion module needs to establish the same output voltage as the existing IV conversion module. Short time; and, embodiments of the present invention greatly reduce power consumption.
  • the pre-integrated energy storage unit further includes an adjustable energy storage component; the adjustable energy storage component is connected in parallel with the coupling capacitor.
  • the adjustable energy storage component can increase the energy storage capability of the pre-integrated energy storage unit; when the pre-integration switch is in the off state, the I-V conversion circuit can be slowed down.
  • the magnitude of the drop in the input voltage, that is, the adjustable energy storage element can reduce the nonlinearity of the current output type sensor.
  • the number of the conversion branches is two; in this embodiment, the two conversion branches can output a differential voltage signal to realize a differential output characteristic, which facilitates subsequent demodulation of signals by positive and negative decrement, and is suitable for a wide application range. .
  • the I-V conversion circuit further includes a reset switch; the reset switch is connected in parallel with the inverting amplifier.
  • the charge in the I-V conversion circuit can be conveniently cleared to meet the detection requirements.
  • FIG. 1 is a schematic diagram of an I-V conversion module in the background art
  • FIG. 2 is a schematic diagram of an I-V conversion module according to a first embodiment
  • FIG. 3 is a schematic diagram of control timing of an I-V conversion module according to the first embodiment
  • FIG. 4 is a schematic diagram showing a curve comparison of an output step response of an I-V conversion module according to the first embodiment and an I-V conversion module in the background art;
  • FIG. 5 is a schematic diagram of an I-V conversion module according to a second embodiment
  • FIG. 6 is a schematic diagram of control timing of an I-V conversion module according to a second embodiment
  • FIG. 7 is a schematic diagram of an I-V conversion module according to a third embodiment
  • Fig. 8 is a schematic diagram of an I-V conversion module according to a fourth embodiment.
  • a first embodiment of the present invention relates to an IV conversion module shown in Figure 2, IV conversion module comprising: a current output type sensor 1, X-inverting amplifier including an IV converting circuit 2, a charge transfer circuit 3 and a pre-secondary Integral circuit 4.
  • the current output type sensor 1 is connected to the input terminal V in of the IV conversion circuit 2 through the pre-integration circuit 4; the charge transfer auxiliary circuit 3 is connected in parallel with the inverting amplifier X 1 .
  • the IV conversion circuit 2 further includes a conversion branch.
  • the shift branch includes an integral energy storage element C 1 and an integral switch S 1 .
  • the first end of the integral energy storage element C 1 is connected to the input end of the inverting amplifier X 1 and forms the input end V in of the IV conversion circuit; the second end of the integral energy storage element C 1 is connected to the first stage of the integral switch S 1 One end forms the output terminal V OP of the IV conversion circuit 2; the output terminal of the inverting amplifier X 1 is connected to the second terminal of the integrating switch S 1 .
  • the integral energy storage component is a capacitor, but in practice, it is not limited thereto, and other integral energy storage components may also be applied.
  • the charge transfer auxiliary circuit 3 includes a plurality of inverting amplifiers X 2 , and the plurality of inverting amplifiers X 2 are connected in parallel to enable or disable the inverting amplifier X 2 , so that the charge transfer auxiliary circuit 3 can be turned on. .
  • each amplifier connected to an input of X 2 X 1, inverting amplifier, the output terminal of each inverting amplifier X 2 X inverting amplifier is connected to the output terminal of the switch S 1 and the second integrator 1 end.
  • a plurality of inverting amplifiers X 2 are used to provide a sufficient gain bandwidth product to transfer charges.
  • N is greater than 1 and N is an integer.
  • Inverting amplifier gain multiplier X and the number N of the IV conversion circuit 2 the greater the gain multiplier, the number N of inverting amplifier 2 the larger X, the inverting amplifier of the present embodiment, the number N of X 2 without any restrictions, can Set according to the actual situation.
  • the pre-integration circuit 4 includes a pre-integration energy storage unit and a pre-integration switch S 3 .
  • One end of the pre-integration energy storage unit is connected to the first end of the pre-integration switch S 3 and the current output type sensor 1; the other end of the pre-integration energy storage unit is grounded to GND 0 .
  • the second end of the pre-integration switch S 3 is connected to the input terminal V in of the IV conversion circuit 2.
  • the pre-integration energy storage unit includes the coupling capacitance C 0 of the current output type sensor 1 itself.
  • the inverting amplifier (X 1 or X 2 ) includes an inverter or an operational amplifier, which is not limited in this embodiment.
  • the pre-integration switch S 3 is turned off.
  • the inverter amplifier X 1 operates.
  • the pre-integration circuit 4 and the charge-transfer auxiliary circuit 3 are both open, and the pre-integration circuit 4 pre-integrates the induced current I 0 output from the current-output type sensor 1; that is, the coupling capacitor C 0 pre-induces the induced current I 0 Integrate to store the pre-integrated charge.
  • the inverting amplifier X 2 does not operate, and the inverting amplifier X 1 forms a negative feedback loop with the capacitor C 1 , thereby holding the charge in the capacitor C 1 .
  • the pre-integration switch S 3 is closed.
  • the pre-integration circuit 4 and the charge-transfer auxiliary circuit 3 are both paths; the inverting amplifier X 2 provides a sufficient gain-bandwidth product, and the pre-integrated charge is transferred to the IV conversion circuit 2, that is, the pre-integrated charge is transferred from the coupling capacitor C 0 integral to the energy storage element C 1, by integrating holding the storage elements C 1, IV-varying input terminal V in voltage conversion circuit 2 is restored to the midpoint voltage of inverting amplifier X 1.
  • the conversion process of the IV conversion module can be equivalent to a step response of the coupling capacitor C 0 ground plate inputting a 0 to I 0 T int /(C 0 +C 3 ), where T Int is the time of the pre-integration, so the step response expression for this process can be obtained as:
  • Equation 2 10uS
  • Equation 3 10k
  • the abscissa X-axis represents the response time
  • the y-axis represents the amplitude of the output voltage
  • the dashed line represents the existing conventional IV conversion module output response
  • the solid line represents the embodiment IV conversion module output response of the present invention.
  • the total power consumption of the inverting amplifier X 1 and the inverting amplifier X 2 is equal to the total power consumption of the inverting amplifier in the conventional conventional IV conversion module.
  • the inverting amplifier is always in operation, that is, the inverting amplifier is always consuming energy.
  • a 1 period the inverting amplifier and an inverting amplifier X 1 X 2 simultaneously;
  • a 2 period the work of the inverting amplifier X 1, X 2 inverting amplifier Not working.
  • the IV conversion module of the embodiment of the present invention greatly reduces the total power consumption compared to the existing conventional IV conversion module.
  • the A 1 time period is 1/10 of the A 2 time period, that is, it can be understood that the conversion mode takes only 1/10 of the time occupied by the power saving mode; therefore, the inverting amplifier X 1 and the inverting amplifier X 2 operate for a very short time and consume very little power. It can be roughly assumed that the average power consumption of the IV conversion module provided by the embodiment of the present invention is only 1/10 of the average power consumption of the existing conventional IV conversion module.
  • an I-V conversion module includes a pre-integration circuit and a charge transfer assist circuit.
  • the induced current is pre-integrated by the parasitic capacitance of the current-type sensor, and the pre-integrated charge is transferred to the IV conversion circuit by the gain bandwidth product provided by the inverting amplifier, so that the IV conversion module establishes the same output voltage as the existing IV conversion module, only
  • the average power consumption of the IV conversion module provided by the embodiment of the present invention is only 1/10 of the average power consumption of the existing IV conversion module, which greatly reduces power consumption.
  • a second embodiment of the invention relates to an I-V conversion module.
  • the second embodiment is substantially the same as the first embodiment, and the main difference is that in the first embodiment of the present invention, the number of conversion branches is one in the I-V conversion circuit. In the second embodiment of the present invention, as shown in FIG. 5, the number of conversion branches is two.
  • the added one of the conversion branches includes the integral energy storage element C 2 and the integral switch S 2 .
  • the first end of the integral energy storage element C 2 is connected to the input end of the inverting amplifier X 1 ; the second end of the integral energy storage element C 2 is connected to the first end of the integrating switch S 2 and forms another of the IV conversion circuit
  • the output terminal V on ; the second end of the integrating switch S 2 is connected to the output terminal of the inverting amplifier X 1 .
  • the control timing chart is shown.
  • the IV conversion circuit 2 is a symmetrical structure, therefore, Time of work can be Similarly, it can be specifically referred to the first embodiment.
  • the working process of the IV conversion module is not described herein.
  • the present embodiment does not impose any limitation on the number of conversion branches, and M conversion branches can be set as needed, and M is a positive integer greater than zero.
  • each conversion branch can output a differential voltage signal, thereby realizing a differential output characteristic, which is convenient for subsequent positive and negative deletion. Subtracting the demodulated signal, a suitable range of applications is wide.
  • a third embodiment of the invention relates to an IV conversion module.
  • the third embodiment is improved on the basis of the second embodiment, and the main improvement is that, in the third embodiment of the present invention, as shown in FIG. 7, in the pre-integration circuit 4, the pre-integration energy storage unit further includes Adjustable energy storage component C 3 .
  • the adjustable energy storage element C 3 is connected in parallel with the coupling capacitor C 0 . That is, one end of the adjustable energy storage element C 3 is connected to the first end of the coupling capacitor C 0 and the pre-integration switch S 3 , and the other end is grounded to GND 1 .
  • the adjustable energy storage component C 3 is a tunable capacitor, but the actual storage is not limited thereto, and the adjustable energy storage component C 3 may include any component having an energy storage function.
  • the size of the adjustable energy storage component C 3 is related to the size of the coupling capacitor C 0 and the induced current I 0 .
  • the adjustable energy storage component can increase the energy storage capability of the pre-integration energy storage unit; when the pre-integration switch is in the off state, The amplitude of the drop of the input voltage of the IV conversion circuit is slowed down, that is, the adjustable energy storage element can reduce the nonlinearity of the current output type sensor.
  • a fourth embodiment of the invention relates to an IV conversion module.
  • the fourth embodiment is improved on the basis of the third embodiment, and the main improvement is that, in the fourth embodiment of the present invention, as shown in FIG. 8, the IV conversion circuit further includes a reset switch S 4 .
  • the reset switch S 4 is connected in parallel with the inverting amplifier X 1 ; that is, the first end of the reset switch S 4 is connected to the input end of the inverting amplifier X 1 , and the second end of the reset switch S 4 is connected to the opposite end.
  • the output of phase amplifier X 1 In effect, the reset switch S 4 is also connected in parallel with the inverting amplifier X 2 .
  • the embodiment of the present invention adds a reset switch to the I-V conversion circuit, which can conveniently clear the charge in the I-V conversion circuit to meet the detection requirements.
  • each module involved in this embodiment is a logic module.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical entities. A combination of units is implemented.
  • the present embodiment does not introduce a unit that is not closely related to solving the technical problem proposed by the present invention, but this does not mean that there are no other units in the present embodiment.
  • a program instructing related hardware may be completed by a program instructing related hardware, and the program is stored in a storage medium, and includes a plurality of instructions for making a device (which may be a single chip microcomputer). , a chip, etc. or a processor performs all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Amplifiers (AREA)

Abstract

公开了一种I-V转换模块,包括:电流输出型传感器(1)、预积分电路(4)、电荷转移辅助电路(3)以及包括反相放大器的I-V变换电路(2);电流输出型传感器(1)通过预积分电路(4)连接至I-V变换电路(2)的输入端Vin;电荷转移辅助电路(3)与反相放大器并联连接;其中,预积分电路(4)与电荷转移辅助电路(3)均为开路时,预积分电路(4)对电流输出型传感器(1)输出的感应电流进行预积分,以储存预积分电荷;预积分电路(4)与电荷转移辅助电路(3)均为通路时,预积分电荷转移至I-V变换电路(2)。该模块减小了I-V转换模块建立所需的时间,且降低了功耗。

Description

I-V转换模块 技术领域
本发明实施例涉及电子技术领域,特别涉及一种I-V转换模块。
背景技术
现有的电流-电压转换模块,即I-V转换模块,如图1所示,由电流输出型传感器1",I-V变换电路2"组成。其中,反相放大器X的开环增益越大,带宽越大,I-V变换电路2"的响应时间越快。
如图1所示,
Figure PCTCN2016107205-appb-000001
为两相非交叠时钟,由于I-V变换电路2"是对称型结构,这里以
Figure PCTCN2016107205-appb-000002
为例进行说明I-V转换模块的工作过程(
Figure PCTCN2016107205-appb-000003
可同理得出)。当
Figure PCTCN2016107205-appb-000004
时,开关S1导通,电容C1同反相放大器X形成负反馈环路,I-V变换电路2"的输入电压恒定为反相放大器X的中点电压,因此,电流型传感器1"的输出电流I0不流过传感器寄生电容C0,而随之流过电容C1
若A0为放大器低频开环增益,p为带宽,s为拉普拉斯算子,Vop为I-V变换电路2"的其中一个支路的输出电压。假设反相放大器X的开环增益为A(s)=A0p/(s+p),可得该I-V转换模块的传递函数:
(Vop(s))/(I0(s))=(A0p)/s[s(C0+C1)+p(C0+C1+A0C1)]      (式1)
从式1推导得出输入阶跃信号,输出I-V变换电路的响应表达式:
y1(t)=[(I0t)/C1]*LG/(LG+1){1-[1/(p(LG+1)t)][1-e^(-(LG+1)pt)]}   (式2)
其中,LG=A0β,β=C1/(C0+C1)。
在实现本发明的过程中,发明人发现现有技术中存在如下问题:从式2可以看出,放大器低频开环增益A0和带宽P会影响到I-V变换电路的响应时 间,使得I-V变换电路的响应时间较大。若要解决该问题,需要增加反相放大器X的开环增益A(s)和-3dB带宽p;即,需要反相放大器X有足够大的增益带宽积(通常是I-V转换时间的倒数的10倍)。然而,根据理论可知,增益带宽积每增加2倍,反相放大器X的功耗要增加4倍。显然,该方法虽然满足了I-V转换模块建立的需求,但反相放大器X功耗太大。
发明内容
本发明实施例实施方式的目的在于提供一种I-V转换模块,减小了I-V转换模块建立所需的时间,且降低了功耗。
为解决上述技术问题,本发明的实施例提供了一种I-V转换模块,包括:电流输出型传感器、预积分电路、电荷转移辅助电路以及包括反相放大器的I-V变换电路;所述电流输出型传感器通过所述预积分电路连接至所述I-V变换电路的输入端;所述电荷转移辅助电路与所述反相放大器并联连接;其中,所述预积分电路与所述电荷转移辅助电路均为开路时,所述预积分电路对所述电流输出型传感器输出的感应电流进行预积分,以储存预积分电荷;所述预积分电路与所述电荷转移辅助电路均为通路时,所述预积分电荷转移至所述I-V变换电路。
本发明的实施例相对于现有技术而言,I-V转换模块包括预积分电路、电荷转移辅助电路。利用预积分电路对感应电流进行预积分,利用反相放大器提供的增益带宽积将预积分电荷快速转移至I-V变换电路,使得I-V转换模块建立与现有I-V转换模块同样的输出电压时,需要较短的时间;并且,本发明实施例极大的降低了功耗。
另外,预积分储能单元还包括可调式储能元件;所述可调式储能元件与所述耦合电容并联连接。本实施例中,可调式储能元件能够增加预积分储能单元的储能能力;在预积分开关处于断开状态时,能够减缓I-V变换电路的 输入电压的下降幅度,即,可调式储能元件可以减小电流输出型传感器的非线性。
另外,变换支路的数目为2条;本实施例中,两条变换支路可以输出差分电压信号,实现差分输出特性,便于后续通过正负删减来解调信号,适合的应用范围较广。
另外,I-V变换电路还包括复位开关;所述复位开关与所述反相放大器并联连接。本实施例中,增加复位开关,可以方便的将I-V变换电路中的电荷清零,满足检测需要。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是背景技术中的I-V转换模块的示意图;
图2是根据第一实施方式的I-V转换模块的示意图;
图3是根据第一实施方式中I-V转换模块控制时序的示意图;
图4是根据第一实施方式中I-V转换模块与背景技术中I-V转换模块的输出阶跃响应的曲线对比示意图;
图5是根据第二实施方式的I-V转换模块的示意图;
图6是根据第二实施方式的I-V转换模块控制时序的示意图;
图7是根据第三实施方式的I-V转换模块的示意图;
图8是根据第四实施方式的I-V转换模块的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本发明的第一实施方式涉及一种I-V转换模块,如图2所示,I-V转换模块包括:电流输出型传感器1、包括反相放大器X1的I-V变换电路2、电荷转移辅助电路3以及预积分电路4。
本实施方式中,电流输出型传感器1通过预积分电路4连接至I-V变换电路2的输入端Vin;电荷转移辅助电路3与反相放大器X1并联连接。
本实施方式中,如图2所示,I-V变换电路2还包括变换支路。变换支路包括积分储能元件C1与积分开关S1。积分储能元件C1的第一端连接于反相放大器X1的输入端,并形成I-V变换电路的输入端Vin;积分储能元件C1的第二端连接于积分开关S1的第一端,并形成I-V变换电路2的输出端VOP;反相放大器X1的输出端连接于积分开关S1的第二端。
本实施方式中,积分储能元件为电容,然实际中不限于此,还可以应用其他积分储能元件。
本实施方式中,电荷转移辅助电路3包括多个反相放大器X2,多个反相放大器X2并联连接,使能或禁能反相放大器X2,就可以使得电荷转移辅助电路3导通。
具体的,各反相放大器X2的输入端连接于反相放大器X1的输入端,各反相放大器X2的输出端连接于反相放大器X1的输出端与积分开关S1的第二端。
需要说明的是,本实施例中,多个反相放大器X2用于提供足够的增益带宽积以转移电荷。当反相放大器X2的数目为N时,N大于1且N为整数。反相放大器X2的数目N与I-V变换电路的增益倍数有关,增益倍数越大,反相放大器X2的数目N越大,本实施方式对反相放大器X2的数目N不作任何限制,可以根据实际情况具体设置。
本实施方式中,预积分电路4包括预积分储能单元与预积分开关S3。预积分储能单元的一端连接于预积分开关S3的第一端与电流输出型传感器1;预积分储能单元的另一端接地GND0。预积分开关S3的第二端连接于I-V变换电路2的输入端Vin。本实施例中,预积分储能单元包括电流输出型传感器1自身的耦合电容C0
本实施方式中,反相放大器(X1或X2)包括反相器或者运算放大器,本实施方式对此不作任何限制。
本实施方式中,如图2、3所示,
Figure PCTCN2016107205-appb-000005
为两相非交叠时钟,时钟信号
Figure PCTCN2016107205-appb-000006
控制反相器放大器X2与预积分开关S3的导通。下面以
Figure PCTCN2016107205-appb-000007
为例进行说明I-V转换模块的工作过程。
具体而言,当
Figure PCTCN2016107205-appb-000008
时,积分开关S1闭合、预积分开关S3断开。反相器放大器X1工作。此时,预积分电路4与电荷转移辅助电路3均为开路,预积分电路4对电流输出型传感器1输出的感应电流I0进行预积分;即,耦合电容C0对感应电流I0进行预积分,以储存预积分电荷。与此同时,反相放大器X2不工作,反相放大器X1与电容C1形成负反馈环路,从而将电容C1中的电荷保持住。
具体而言,当
Figure PCTCN2016107205-appb-000009
时,积分开关S1闭合,预积分开关S3闭合。此时,预积分电路4与电荷转移辅助电路3均为通路;反相放大器X2提供足够的增益带宽积,预积分电荷转移至I-V变换电路2,即,预积分电荷从耦合电容C0转移至积分储能元件C1中,并由积分储能元件C1保持住,I-V变 换电路2的输入端Vin的电压恢复至反相放大器X1的中点电压。
总的来说,本实施方式中,I-V转换模块的转换过程可以等效为耦合电容C0接地极板输入一个0到I0Tint/(C0+C3)的阶跃响应,其中Tint为预积分的时间,因此,可以得到该过程的阶跃响应表达式为:
y2(t)=[(I0Tint)/C1]*[LG/(LG+1)][1-e^(-(LG+1)pt)]    (式3)
假设预积分时间为Tint=10uS,C0=50pF,C1=100pF,p=100rad/s,A0=10k。将上述参数代入背景技术中的式2、上式的式3中,并绘制曲线如图4所示,分别对应图1、图2的I-V转换模块的输出阶跃响应的曲线。
如图4所示,横坐标X轴表示响应时间,y轴表示输出电压的幅度;虚线表示现有的常规I-V转换模块输出响应,实体线表示本发明实施例I-V转换模块输出响应。不难看出,本实施例I-V转换模块相比现有的常规I-V转换模块,建立同样的输出电压,例如建立0.01V的电压,现有常规I-V转换模块需要10-5Us,而本发明实施例的I-V转换模块只需0.1*10-5Us;显然,本实施例I-V转换模块所需的时间只是常规I-V转换模块所需时间的1/10。
本实施方式中,反相放大器X1和反向放大器X2的总功耗同现有的常规I-V转换模块中的反向放大器的总功耗相等。如图3所示,在A1与A2时间段内,现有的常规I-V转换模块中,反相放大器一直处于工作状态,即,反相放大器一直在耗能。而在本发明实施例的I-V转换模块中,A1时间段内,反相放大器X1和反向放大器X2同时工作;A2时间段内,反相放大器X1工作,反向放大器X2不工作。由此可知,本实施例中,在A2时间段内,只有反相放大器X1有功耗,整个I-V转换模块相对于现有技术较为省电,即可以理解为,在A2时间段内整个I-V转换模块处于省电模式。因此,与现有的常规I-V转换模块相比,本发明实施例的I-V转换模块极大的降低了总功耗。进一步的,本实施例中,A1时间段为A2时间段的1/10,即可以理解为,转换模式所占时间只需省电模式所占时间的1/10;因此,反相放大器X1与反向放大器X2同时工作的时间非常短,消耗的功率也非常低。可以粗略地认为,本发明实施例提供的I-V转换模块的平均功耗 只有现有的常规I-V转换模块平均功耗的1/10。
本发明的实施例相对于现有技术而言,I-V转换模块包括预积分电路、电荷转移辅助电路。利用电流型传感器的寄生电容对感应电流进行预积分,利用反相放大器提供的增益带宽积将预积分电荷转移至I-V变换电路,使得I-V转换模块建立与现有I-V转换模块同样的输出电压,只需现有所需时间的1/10,并且,本发明实施例提供的I-V转换模块的平均功耗只有现有I-V转换模块平均功耗的1/10,极大的降低了功耗。
本发明的第二实施方式涉及一种I-V转换模块。第二实施方式与第一实施方式大致相同,主要区别之处在于:在本发明的第一实施方式中,在I-V变换电路中,变换支路的数目为1条。而在本发明的第二实施方式中,如图5所示,变换支路的数目为2条。
本实施方式中,增加的一条变换支路包括积分储能元件C2与积分开关S2。积分储能元件C2的第一端连接于反相放大器X1的输入端;积分储能元件C2的第二端连接于积分开关S2的第一端,并形成I-V变换电路的另一个输出端Von;积分开关S2的第二端连接于反相放大器X1的输出端。
本实施方式中,如图6所示为控制时序图,
Figure PCTCN2016107205-appb-000010
为两相非交叠时钟,I-V变换电路2是对称型结构,因此,
Figure PCTCN2016107205-appb-000011
时的工作过程,可由
Figure PCTCN2016107205-appb-000012
同理得出,具体可参照第一实施方式中
Figure PCTCN2016107205-appb-000013
为例时I-V转换模块的工作过程,本实施例在此不在赘述。
于实际上,在I-V变换电路2中,本实施方式对变换支路的数目不作任何限制,可根据需要设置M条变换支路,M为大于零的正整数。
本发明的实施例相对于第一实施方式而言,在I-V变换电路中,应用两条变换支路,每条变换支路可以输出差分电压信号,从而实现差分输出特性,便于后续通过正负删减来解调信号,适合的应用范围较广。
本发明的第三实施方式涉及一种I-V转换模块。第三实施方式在第二实 施方式的基础上作出改进,主要改进之处在于:在本发明第三实施方式中,如图7所示,在预积分电路4中,预积分储能单元还包括可调式储能元件C3
本实施方式中,可调式储能元件C3与耦合电容C0并联连接。即,可调式储能元件C3的一端连接于耦合电容C0与预积分开关S3的第一端,另一端接地GND1
本实施方式中,如图7所示,可调式储能元件C3为可调电容,然而实际中不限于此,可调式储能元件C3可以包括任何具有储能功能的元器件。
需要说明的是,本实施例中,可调式储能元件C3的大小与耦合电容C0、感应电流I0的大小有关。耦合电容C0越大、感应电流I0越小,可调式储能元件C3越大。因此,可调式储能元件C3可以根据耦合电容C0与感应电流I0的大小在[0,∞)区间内可调,本实施方式对可调电容C3的具体大小不作任何限制,可根据实际情况调节。
本发明的实施例相对于第二实施方式而言,在预积分电路中,增加可调式储能元件,能够增加预积分储能单元的储能能力;在预积分开关处于断开状态时,能够减缓I-V变换电路的输入电压的下降幅度,即,可调式储能元件可以减小电流输出型传感器的非线性。
本发明第四实施方式涉及一种I-V转换模块。第四实施方式在第三实施方式的基础上作出改进,主要改进之处在于:在本发明第四实施方式中,如图8所示,I-V变换电路还包括复位开关S4
本实施方式中,复位开关S4与反相放大器X1并联连接;即,复位开关S4的第一端连接于反相放大器X1的输入端,复位开关S4的第二端连接于反相放大器X1的输出端。于实际上的,复位开关S4亦与反相放大器X2并联连接。
本发明的实施例相对于第三实施方式而言,在I-V变换电路中增加复位开关,可以方便的将I-V变换电路中的电荷清零,满足检测需要。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本发明的创新部分,本实施方式中并没有将与解决本发明所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种I-V转换模块,其特征在于,包括:电流输出型传感器、预积分电路、电荷转移辅助电路以及包括反相放大器的I-V变换电路;
    所述电流输出型传感器通过所述预积分电路连接至所述I-V变换电路的输入端;
    所述电荷转移辅助电路与所述反相放大器并联连接;
    其中,所述预积分电路与所述电荷转移辅助电路均为开路时,所述预积分电路对所述电流输出型传感器输出的感应电流进行预积分,以储存预积分电荷;所述预积分电路与所述电荷转移辅助电路均为通路时,所述预积分电荷转移至所述I-V变换电路。
  2. 根据权利要求1所述的I-V转换模块,其特征在于,所述预积分电路包括预积分储能单元与预积分开关;
    所述预积分储能单元的一端连接于所述预积分开关的第一端与所述电流输出型传感器;所述预积分储能单元的另一端接地;
    所述预积分开关的第二端连接于所述I-V变换电路的输入端;
    所述预积分储能单元至少包括所述电流输出型传感器自身的耦合电容。
  3. 根据权利要求2所述的I-V转换模块,其特征在于,所述预积分储能单元还包括可调式储能元件;
    所述可调式储能元件与所述耦合电容并联连接。
  4. 根据权利要求3所述的I-V转换模块,其特征在于,所述可调式储能元件包括可调电容。
  5. 根据权利要求1所述的I-V转换模块,其特征在于,所述I-V变换电路还包括至少一条变换支路;每条变换支路包括积分储能元件与积分开关;
    所述积分储能元件的第一端连接于所述反相放大器的输入端,并形成所述I-V变换电路的输入端;
    所述积分储能元件的第二端连接于所述积分开关的第一端,并形成所述I-V变换电路的输出端;
    所述反相放大器的输出端连接于所述积分开关的第二端。
  6. 根据权利要求5所述的I-V转换模块,其特征在于,所述积分储能元件包括电容。
  7. 根据权利要求5所述的I-V转换模块,其特征在于,所述变换支路的数目为2条。
  8. 根据权利要求1所述的I-V转换模块,其特征在于,所述电荷转移辅助电路包括多个反相放大器,所述多个反相放大器并联连接。
  9. 根据权利要求1或8所述的I-V转换模块,其特征在于,所述反相放大器包括反相器或者运算放大器。
  10. 根据权利要求1所述的I-V转换模块,其特征在于,所述I-V变换电路还包括复位开关;
    所述复位开关与所述反相放大器并联连接。
PCT/CN2016/107205 2016-11-25 2016-11-25 I-v转换模块 WO2018094681A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680001576.7A CN109075792B (zh) 2016-11-25 2016-11-25 I-v转换模块
PCT/CN2016/107205 WO2018094681A1 (zh) 2016-11-25 2016-11-25 I-v转换模块
EP16922161.1A EP3402076A4 (en) 2016-11-25 2016-11-25 MODULE FOR I-V CONVERSION
US16/057,216 US10727791B2 (en) 2016-11-25 2018-08-07 I—V conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107205 WO2018094681A1 (zh) 2016-11-25 2016-11-25 I-v转换模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/057,216 Continuation US10727791B2 (en) 2016-11-25 2018-08-07 I—V conversion module

Publications (1)

Publication Number Publication Date
WO2018094681A1 true WO2018094681A1 (zh) 2018-05-31

Family

ID=62194587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107205 WO2018094681A1 (zh) 2016-11-25 2016-11-25 I-v转换模块

Country Status (4)

Country Link
US (1) US10727791B2 (zh)
EP (1) EP3402076A4 (zh)
CN (1) CN109075792B (zh)
WO (1) WO2018094681A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933912A (ja) * 1982-08-18 1984-02-24 Nippon Telegr & Teleph Corp <Ntt> 電流電圧変換回路
US20030161640A1 (en) * 2002-02-25 2003-08-28 Matsushita Electric Industrial Co., Ltd. Optical receiving circuit
CN202085151U (zh) * 2011-03-10 2011-12-21 上海信诚电子技术工程有限公司 一种i/v转换器电路
CN102566641A (zh) * 2010-12-07 2012-07-11 联咏科技股份有限公司 低噪声电流缓冲电路及电流电压转换器
CN102651633A (zh) * 2012-05-15 2012-08-29 江苏科技大学 一种噪声电流前馈型噪声抵消电路
CN103383404A (zh) * 2013-07-04 2013-11-06 清华大学 电流测量电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902886A (en) * 1989-01-23 1990-02-20 Hewlett-Packard Company Noise reduction for photodiode arrays
US5367302A (en) * 1993-08-24 1994-11-22 Burr-Brown Corporation Isolating a CDAC array in a current integrating ADC
US6150851A (en) * 1997-06-06 2000-11-21 Tadahiro Ohmi Charge transfer amplifier circuit, voltage comparator, and sense amplifier
TW550447B (en) * 2000-10-30 2003-09-01 Realtek Semiconductor Corp Signal generator with adjustable oscillation frequency and its method
US7400121B2 (en) * 2002-08-06 2008-07-15 Texas Instruments Incorporated Soft-start system for voltage regulator and method of implementing soft-start
GB2423429B (en) * 2003-10-10 2007-04-25 That Corp Low-power integrated-circuit signal processor with wide dynamic range
US8159204B2 (en) * 2008-09-29 2012-04-17 Active-Semi, Inc. Regulating current output from a buck converter without external current sensing
EP2399350B1 (en) * 2009-02-23 2017-10-18 Hewlett-Packard Enterprise Development LP Dynamic impedance photodetector receiver circuit
US7936299B2 (en) * 2009-06-30 2011-05-03 General Electric Company Capacitive integrate and fold charge-to-digital converter
US8120439B2 (en) * 2009-08-13 2012-02-21 Texas Instruments Incorporated Fast start-up crystal oscillator
FR2981229B1 (fr) * 2011-10-10 2013-12-27 Commissariat Energie Atomique Dispositif de conversion d'impulsions de courant en impulsions de tension.
US20140177304A1 (en) * 2012-12-24 2014-06-26 Laurence P. Sadwick Constant Current Source
CN103364614B (zh) * 2013-07-14 2015-10-28 中国科学院近代物理研究所 自适应宽量程电流电压转换装置
EP3059857B1 (en) * 2015-02-17 2021-11-03 Nxp B.V. Time to digital converter and phase locked loop
CN105406829B (zh) * 2015-12-03 2018-02-27 中国科学院电子学研究所 一种增益连续可调的可变增益放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933912A (ja) * 1982-08-18 1984-02-24 Nippon Telegr & Teleph Corp <Ntt> 電流電圧変換回路
US20030161640A1 (en) * 2002-02-25 2003-08-28 Matsushita Electric Industrial Co., Ltd. Optical receiving circuit
CN102566641A (zh) * 2010-12-07 2012-07-11 联咏科技股份有限公司 低噪声电流缓冲电路及电流电压转换器
CN202085151U (zh) * 2011-03-10 2011-12-21 上海信诚电子技术工程有限公司 一种i/v转换器电路
CN102651633A (zh) * 2012-05-15 2012-08-29 江苏科技大学 一种噪声电流前馈型噪声抵消电路
CN103383404A (zh) * 2013-07-04 2013-11-06 清华大学 电流测量电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3402076A4 *

Also Published As

Publication number Publication date
CN109075792A (zh) 2018-12-21
EP3402076A1 (en) 2018-11-14
CN109075792B (zh) 2022-04-01
US20180375481A1 (en) 2018-12-27
US10727791B2 (en) 2020-07-28
EP3402076A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
CN101281220B (zh) 电容检测电路及其电容式传感器接口电路芯片
US20150061786A1 (en) Crystal oscillator circuit having low power consumption, low jitter and wide operating range
US7453322B2 (en) Transimpedance amplifier using negative impedance compensation
US9310409B2 (en) Capacitance-to-voltage interface circuits
WO2016138807A1 (zh) 一种用于Gm-C滤波器的高精度频率校准电路
CN107454350A (zh) 脉冲宽度调制型图像传感器电路及其处理方法
CN113922776B (zh) 一种基于开关电容式共模反馈电荷放大器的c/v转换电路
US8547148B2 (en) Semiconductor device with dynamically calibrated oscillator
CN102480270B (zh) 功率放大器和使用了该功率放大器的mmic
WO2018166130A1 (zh) 占空比调节装置
CN100539403C (zh) 电子放大器
WO2018094681A1 (zh) I-v转换模块
CN100380932C (zh) 焦平面读出电路像素单元电路
KR20200074729A (ko) 온도 센서
Freitas et al. A CMOS slew-rate enhanced OTA for imaging
CN102158226B (zh) 电压保持电路
CN103905037B (zh) 一种用于Gm-C滤波器的主从结构频率校准电路
Hoyle et al. Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers
CN110098810B (zh) 一种开关电容积分器
CN104113709A (zh) 相关双采样电路和可变增益放大器一体化电路
CN103338028A (zh) 三重振荡反馈微弱信号处理电路
CN204013403U (zh) 一种宽压控低相噪晶体振荡器
CN203352540U (zh) 应用于高速全差分运算放大器的连续时间共模反馈电路
KR100355413B1 (ko) 데이타 통신시스템에 있어서 클럭 및 데이타 복원회로
CN102710242B (zh) 一种应用于高频pll的片内上电复位检测电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016922161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016922161

Country of ref document: EP

Effective date: 20180807

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE