WO2018093298A1 - Method of electrochemical treatment of material containing noble metals - Google Patents
Method of electrochemical treatment of material containing noble metals Download PDFInfo
- Publication number
- WO2018093298A1 WO2018093298A1 PCT/RU2017/000828 RU2017000828W WO2018093298A1 WO 2018093298 A1 WO2018093298 A1 WO 2018093298A1 RU 2017000828 W RU2017000828 W RU 2017000828W WO 2018093298 A1 WO2018093298 A1 WO 2018093298A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- noble metals
- gold
- cathode
- containing noble
- material containing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 title claims description 9
- 229910052737 gold Inorganic materials 0.000 claims abstract description 18
- 239000010931 gold Substances 0.000 claims abstract description 18
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 6
- 238000004090 dissolution Methods 0.000 claims abstract description 6
- 239000003792 electrolyte Substances 0.000 claims abstract description 6
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 239000011780 sodium chloride Substances 0.000 claims abstract description 3
- 238000012545 processing Methods 0.000 claims description 2
- 239000010405 anode material Substances 0.000 abstract description 5
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000009854 hydrometallurgy Methods 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- 238000007670 refining Methods 0.000 description 7
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- MKDHTPTXOKJEFU-UHFFFAOYSA-N [N].Cl Chemical compound [N].Cl MKDHTPTXOKJEFU-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001963 alkali metal nitrate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/20—Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
Definitions
- the invention relates to hydrometallurgy of precious metals.
- Nitrogen-hydrochloric acid solutions are distinguished by the high anodic solubility of the main component, gold, component, however, these solutions are also distinguished by high toxicity due to the presence of readily volatile compounds, as well as high solubility with respect to all other elements contained in the starting anode material, including lead , tin, etc., and also, despite the fact that, for example, silver forms a slightly soluble silver chloride upon anodic dissolution, its product of solubility in highly concentrated hydrochloric acid solutions velichivaetsya with the possibility of contamination of the cathode deposit of gold, as well as by increasing the concentration values of soluble elements in the nitrogen-hydrochloric acid medium with gold cathode sediment pollution due to, inter alia, the sorption processes.
- nitric-hydrochloric acid solutions for the electrolytic refining of metals are associated, inter alia, with the overestimated cost of the reagents used, as well as the difficulty of their subsequent disposal.
- the sulfuric acid type of electrolyte proposed in the method of the invention is generally devoid of the above-mentioned disadvantages, that is, it allows implementing electrolysis processes with high concentration parameters for transferring the main material into gold solution, minimizing the presence of water-soluble compounds in the solution, for example, lead and silver, which makes it possible to obtain cathodic deposits with the absence of these impurities already at the first stage of electrolytic refining.
- the implementation of the method is as follows.
- a standard electrolytic cell with a cathode placed in it, consisting of various types of electrically conductive material, for example titanium, chemically pure gold, carbon, etc., and an anode consisting of an electrically conductive alloy containing noble metals, including gold, and as an electrolyte, a sulfuric acid solution of sodium chloride and ammonium nitrate in various concentration ratios, the option of the possible replacement of ammonium nitrate with alkali metal nitrates is not considered.
- the process of anodic dissolution is accompanied by a transition to a solution of Au, Ni, Fe, Cu, etc.
- the cathode deposit is Au or Al, CuCi at sufficiently high Cu contents in the anode material
- the anode "sludge" is a precipitate containing AgCl, PbSO 4 , Pt, Rh, Ru, Ir, etc.
- the ingress of small amounts of copper contained in the anode material to be electrolytically refined into the cathode deposit can be prevented due to its retention in the “tail” electrolyte residues at the last stages of electrolysis processes.
- the technical and economic effect is the use of readily available chemical reagents with low cost, the production of highly concentrated, mainly gold, cathode deposits at the first stage of electrolytic refining, the lowered toxicity of the production process with respect to nitric hydrochloric acid and cyanide electrolyte solutions, and a large depth of cathodic extraction the main material is gold, from wrapped solutions, good process control electrolytic refining, both due to a change in the concentration components of the electrolyte, and electrically controlling processes, due to a change in the interelectrode potential difference with a change in the density characteristics of the cathode current.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Use: The invention relates to hydrometallurgy of noble metals. Essence of the invention: A method comprises anode dissolution of alloys of various compositions that contain noble metals, including gold, and subsequent reduction on a cathode using an electrolyte consisting of dilute sulfuric acid, ammonium nitrate, and sodium chloride. Technical result of the invention: Selective production of noble metals, including gold, having a high degree of purity, from anode material of various compositions. The method is characterized by low costs for the reagent base used, a decreased volume of process waste, and a simplified procedure for recycling the waste.
Description
Способ электрохимической переработки материала содержащего благородные металлы. The method of electrochemical processing of a material containing noble metals.
Описание изобретения. Description of the invention.
Изобретение относиться к гидрометаллургии благородных металлов. The invention relates to hydrometallurgy of precious metals.
Известны методы анодного электролитического аффинирования, включающие растворение золотосодержащего материала в растворах, состоящих из соляной кислоты, азотной кислоты, их смесей в различных соотношениях, а также в цианид содержащих растворах. Азотно- солянокислые растворы отличает высокая анодная растворимость основного - золото, компонента, однако, эти растворы отличает также высокая токсичность по факту наличия легко летучих соединений, а также высокая растворимость по отношению ко всем остальным, содержащимся в исходном анодном материале элементам, в том числе свинцу, олову и др., а также, не смотря на то, что например, серебро образует при анодном растворении мало растворимый хлорид серебра, его произведение растворимости в высококонцентрированных солянокислых растворах увеличивается с возможностью загрязнения катодного осадка золота, а также за счёт увеличения концентрационных величин элементов растворимых в азотно-солянокислой среде с возможностью загрязнения катодного осадка золота за счёт, в том числе, сорбционных процессов. Проблемы применения азотно-солянокислых растворов с целью электролитического аффинирования металлов связаны, в том числе и с завышенной стоимостью применяемых реагентов, а также сложностью их последующей утилизации. Можно обратить внимание и на тот факт, что одним из недостатков получения катодных осадков из азотно-солянокислых
растворов является необходимость проведения электролизных процессов с перенапряжением, от чего зависит сложность управления вольт- амперными характеристиками процесса, следствием чего становится проблематичным получение достаточно однородных катодных осадков. Known methods of anodic electrolytic refining, including the dissolution of a gold-containing material in solutions consisting of hydrochloric acid, nitric acid, mixtures thereof in various ratios, as well as in cyanide-containing solutions. Nitrogen-hydrochloric acid solutions are distinguished by the high anodic solubility of the main component, gold, component, however, these solutions are also distinguished by high toxicity due to the presence of readily volatile compounds, as well as high solubility with respect to all other elements contained in the starting anode material, including lead , tin, etc., and also, despite the fact that, for example, silver forms a slightly soluble silver chloride upon anodic dissolution, its product of solubility in highly concentrated hydrochloric acid solutions velichivaetsya with the possibility of contamination of the cathode deposit of gold, as well as by increasing the concentration values of soluble elements in the nitrogen-hydrochloric acid medium with gold cathode sediment pollution due to, inter alia, the sorption processes. The problems of the use of nitric-hydrochloric acid solutions for the electrolytic refining of metals are associated, inter alia, with the overestimated cost of the reagents used, as well as the difficulty of their subsequent disposal. You can pay attention to the fact that one of the disadvantages of obtaining cathodic deposits from nitric hydrochloric acid of solutions, it is necessary to carry out electrolysis processes with overvoltage, which determines the complexity of controlling the current-voltage characteristics of the process, which makes it difficult to obtain sufficiently uniform cathodic deposits.
Основными недостатками анодного растворения в среде цианидных растворов являются - достаточно низкая избирательность получения катодных осадков по основному материалу - золото, из-за перехода в раствор водорастворимых соединений серебра и др., с последующим загрязнением катодного осадка, а также необходимость поддержания достаточно жестких условий проведения электролизных процессов, связанных с возможностью образования высоко токсичных легко летучих цианистых соединений. Существенным недостатком любых электролитических аффинажных процессов связанных с применением цианидных растворов является необходимость применения большого объёма оборотных растворов, следствием чего является и проблема их утилизации. The main disadvantages of anodic dissolution in the environment of cyanide solutions are the rather low selectivity of obtaining cathodic precipitates for the main material - gold, due to the transition of water-soluble silver compounds to the solution, etc., followed by contamination of the cathodic precipitate, and the need to maintain rather stringent conditions for electrolysis processes associated with the possibility of the formation of highly toxic easily volatile cyanide compounds. A significant drawback of any electrolytic refining processes associated with the use of cyanide solutions is the need to use a large volume of circulating solutions, which also leads to the problem of their disposal.
Предлагаемый в способе изобретения сернокислотный тип электролита, в общем, лишён вышеперечисленных недостатков, то есть позволяет реализовать электролизные процессы с высокими концентрационными параметрами по переводу в раствор основного - золото материала, с минимизацией присутствия в растворе водорастворимых соединений, например свинца и серебра, что позволяет получать катодные осадки с отсутствием этих примесей уже на первой стадии электролитического аффинирования. The sulfuric acid type of electrolyte proposed in the method of the invention is generally devoid of the above-mentioned disadvantages, that is, it allows implementing electrolysis processes with high concentration parameters for transferring the main material into gold solution, minimizing the presence of water-soluble compounds in the solution, for example, lead and silver, which makes it possible to obtain cathodic deposits with the absence of these impurities already at the first stage of electrolytic refining.
Реализация способа осуществляется следующим образом. В стандартную электролитическую ячейку с размещёнными в ней катодом,
состоящим из различного типа электропроводного материала, например титан, химически чистое золото, углерод и др, и анодом, состоящим из электропроводного сплава, содержащим благородные металлы, в том числе золото, а в качестве электролита используется сернокислотный раствор хлорида натрия и нитрата аммония в различных концентрационных соотношениях, вариант с возможной заменой нитрата аммония на нитраты щелочных металлов не рассматривается. Процесс анодного растворения сопровождается переходом в раствор Au, Ni, Fe, Си и т.д., катодный осадок представляет собой Аи ИЛИ АиСи при достаточно высоких содержаниях Си в анодном материале, анодный «шлам» представляет собой осадок, содержащий AgCl, PbSO4 , Pt, Rh, Ru, Ir и др. Попадание небольших количеств меди, содержащейся в анодном материале подвергаемому электролитическому аффинированию в катодный осадок возможно предотвратить за счёт её удержания в «хвостовых» остатках электролита на последних стадиях электролизных процессов. Обращаем внимание на то обстоятельство, что при азотно-солянокислотном и цианидном электролитическом аффинировании невозможно предотвратить попадание меди в катодные осадки при достаточно высоких её концентрациях в анодном материале, в патентных разработках данный факт особо не афишируется. The implementation of the method is as follows. In a standard electrolytic cell with a cathode placed in it, consisting of various types of electrically conductive material, for example titanium, chemically pure gold, carbon, etc., and an anode consisting of an electrically conductive alloy containing noble metals, including gold, and as an electrolyte, a sulfuric acid solution of sodium chloride and ammonium nitrate in various concentration ratios, the option of the possible replacement of ammonium nitrate with alkali metal nitrates is not considered. The process of anodic dissolution is accompanied by a transition to a solution of Au, Ni, Fe, Cu, etc., the cathode deposit is Au or Al, CuCi at sufficiently high Cu contents in the anode material, the anode "sludge" is a precipitate containing AgCl, PbSO 4 , Pt, Rh, Ru, Ir, etc. The ingress of small amounts of copper contained in the anode material to be electrolytically refined into the cathode deposit can be prevented due to its retention in the “tail” electrolyte residues at the last stages of electrolysis processes. We draw attention to the fact that with nitrogen-hydrochloric acid and cyanide electrolytic refining, it is impossible to prevent copper from entering the cathode deposits at sufficiently high concentrations in the anode material, this fact is not particularly advertised in patent developments.
Технико-экономическим эффектом является использование легкодоступных химических реагентов с низкой стоимостью, получение высококонцентрированного, по основному веществу - золото, катодного осадка уже на первой стадии электролитического аффинирования, заниженная токсичность производственного процесса по отношению к азотно-солянокислым и цианидным растворам электролитов, большая глубина катодного извлечения основного материала - золото, из оборачиваемых растворов, хорошая управляемость процессом
электролитического аффинирования, как за счёт изменения концентрационных составляющих электролита, так и электроуправляющими процессами, за счёт изменения межэлектродной разности потенциалов с изменением плотностных характеристик катодного тока. Возможность получения высокопробного катодного материала - золото, по факту реализации предлагаемого способа изобретения с переводом материала с заниженными пробными характеристиками, например 99. или 99,9. в материал 99,99 или 99,999, что позволит перевести, например, весь золотой запас - золото, в более высокопробный со всеми вытекающими из этого экономическими последствиями.
The technical and economic effect is the use of readily available chemical reagents with low cost, the production of highly concentrated, mainly gold, cathode deposits at the first stage of electrolytic refining, the lowered toxicity of the production process with respect to nitric hydrochloric acid and cyanide electrolyte solutions, and a large depth of cathodic extraction the main material is gold, from wrapped solutions, good process control electrolytic refining, both due to a change in the concentration components of the electrolyte, and electrically controlling processes, due to a change in the interelectrode potential difference with a change in the density characteristics of the cathode current. The possibility of obtaining a high-quality cathode material is gold, upon the implementation of the proposed method of the invention with the translation of material with low test characteristics, for example 99. or 99.9. into the material 99.99 or 99.999, which will allow, for example, to transfer the entire gold reserve - gold, to a higher grade with all the economic consequences arising from this.
Claims
Формула изобретения Claim
Способ электрохимической переработки материала, содержащего благородные металлы, включающий анодное растворение сплавов различного состава содержащих благородные металлы, в том числе золото, с последующим восстановлением на катоде с использованием электролита состоящего из разбавленной серной кислоты, нитрата аммония и хлорида натрия.
A method for electrochemical processing of a material containing noble metals, including anodic dissolution of alloys of various compositions containing noble metals, including gold, followed by reduction at the cathode using an electrolyte consisting of dilute sulfuric acid, ammonium nitrate and sodium chloride.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016144893A RU2652938C1 (en) | 2016-11-15 | 2016-11-15 | Method of electrochemical processing of the gold-containing alloy |
RU2016144893 | 2016-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018093298A1 true WO2018093298A1 (en) | 2018-05-24 |
Family
ID=62105343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2017/000828 WO2018093298A1 (en) | 2016-11-15 | 2017-11-07 | Method of electrochemical treatment of material containing noble metals |
Country Status (3)
Country | Link |
---|---|
EA (1) | EA033018B1 (en) |
RU (1) | RU2652938C1 (en) |
WO (1) | WO2018093298A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114941076B (en) * | 2022-06-28 | 2023-06-02 | 中国矿业大学 | Method for extracting and recovering gold from aqueous solution |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2181780C2 (en) * | 2000-03-06 | 2002-04-27 | Перцов Николай Валерьевич | Method for extracting gold from gold containing polymetallic materials |
JP2005060832A (en) * | 2003-07-31 | 2005-03-10 | Mitsubishi Materials Corp | Method of recovering silver, and high purity metal silver |
CN103572322A (en) * | 2012-08-02 | 2014-02-12 | 厦门紫金矿冶技术有限公司 | Method for recycling gold and copper from copper-containing oxidization gold ores |
RU2598726C1 (en) * | 2015-05-12 | 2016-09-27 | Сергей Марциянович Совка | Method for complex processing of material containing precious metals |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2090633C1 (en) * | 1994-12-16 | 1997-09-20 | Караев Виктор Габоевич | Method of processing electronics scrap containing precious metals |
RU2357012C1 (en) * | 2007-12-25 | 2009-05-27 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" | Extraction method of noble metals from wastes of radio-electronic industry |
-
2016
- 2016-11-15 RU RU2016144893A patent/RU2652938C1/en active
-
2017
- 2017-06-15 EA EA201700262A patent/EA033018B1/en not_active IP Right Cessation
- 2017-11-07 WO PCT/RU2017/000828 patent/WO2018093298A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2181780C2 (en) * | 2000-03-06 | 2002-04-27 | Перцов Николай Валерьевич | Method for extracting gold from gold containing polymetallic materials |
JP2005060832A (en) * | 2003-07-31 | 2005-03-10 | Mitsubishi Materials Corp | Method of recovering silver, and high purity metal silver |
CN103572322A (en) * | 2012-08-02 | 2014-02-12 | 厦门紫金矿冶技术有限公司 | Method for recycling gold and copper from copper-containing oxidization gold ores |
RU2598726C1 (en) * | 2015-05-12 | 2016-09-27 | Сергей Марциянович Совка | Method for complex processing of material containing precious metals |
Also Published As
Publication number | Publication date |
---|---|
RU2652938C1 (en) | 2018-05-03 |
EA033018B1 (en) | 2019-08-30 |
EA201700262A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10544481B2 (en) | Method for the recovery of precious metal | |
US10526682B2 (en) | Methods, materials and techniques for precious metal recovery | |
US10563283B2 (en) | Methods, materials and techniques for precious metal recovery | |
MX2010013510A (en) | Electrorecovery of gold and silver from thiosulfate solutions. | |
RU2357012C1 (en) | Extraction method of noble metals from wastes of radio-electronic industry | |
JP2009035808A (en) | Method for separating tin from coexistence metal | |
EP3239310A1 (en) | Method for leaching valuable metals contained in copper removal slime | |
WO2018093298A1 (en) | Method of electrochemical treatment of material containing noble metals | |
CN110656353A (en) | Method for electrolyzing and recycling platinum group metals from Fe-PGMs (Fe-PGMs) alloy | |
Agrawal et al. | Recovery of nickel powder from copper bleed electrolyte of an Indian copper smelter by electrolysis | |
KR100991229B1 (en) | Separation and recycling method of gold and silver from gold and silver alloy | |
JP4323297B2 (en) | Method for producing electrolytic copper powder | |
RU2280086C2 (en) | Refined silver producing method | |
RU2258768C1 (en) | Method of extraction of gold and silver from polymetallic raw material | |
JP7180039B1 (en) | Method for separating tin and nickel from mixtures containing tin and nickel | |
RU2742763C1 (en) | Silver-containing raw material processing method | |
RU2000105358A (en) | METHOD FOR GOLD EXTRACTION FROM GOLD-CONTAINING POLYMETALLIC MATERIALS | |
RU2051991C1 (en) | Electrolytic bismuth refining method | |
RU2467082C1 (en) | Method of electrochemical extraction of silver from silver-bearing current-conducting wastes | |
US5997719A (en) | Electrochemical process for refining platinum group metals with ammonium chloride electrocyte | |
EA035935B1 (en) | Method of recovering gold from a gold-bearing concentrated copper chloride solution | |
JP2001192878A (en) | Method for recovering noble metal from metallic composition | |
Bieszczad et al. | Electrowinning of copper and lead from ammonium acetate solutions | |
RU2241773C1 (en) | Method for production of noble metal-based selective concentrates | |
RU2256711C2 (en) | Method of processing materials containing platinum metals and silver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17872545 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17872545 Country of ref document: EP Kind code of ref document: A1 |