WO2018093195A1 - Dc-dc converter - Google Patents

Dc-dc converter Download PDF

Info

Publication number
WO2018093195A1
WO2018093195A1 PCT/KR2017/013090 KR2017013090W WO2018093195A1 WO 2018093195 A1 WO2018093195 A1 WO 2018093195A1 KR 2017013090 W KR2017013090 W KR 2017013090W WO 2018093195 A1 WO2018093195 A1 WO 2018093195A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
coil
substrate
flow path
converter
Prior art date
Application number
PCT/KR2017/013090
Other languages
French (fr)
Korean (ko)
Inventor
김지훈
김근호
나현민
정재후
배석
염재훈
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170148773A external-priority patent/KR102458279B1/en
Priority claimed from KR1020170152771A external-priority patent/KR102536990B1/en
Priority claimed from KR1020170152770A external-priority patent/KR102417581B1/en
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP17870977.0A priority Critical patent/EP3544396B1/en
Priority to CN202110908075.XA priority patent/CN113645776B/en
Priority to US16/343,963 priority patent/US11251694B2/en
Priority to JP2019521115A priority patent/JP7055800B2/en
Priority to CN201780070562.5A priority patent/CN109964548B/en
Publication of WO2018093195A1 publication Critical patent/WO2018093195A1/en
Priority to US17/575,992 priority patent/US11575313B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This embodiment relates to a DC-DC converter.
  • a vehicle DC-DC converter is a device for controlling a DC voltage in a vehicle.
  • the electric vehicle serves to change the voltage of the current produced by the battery to supply the motor.
  • the motor becomes a generator to charge the battery. In this case, it changes the voltage of the current produced by the motor and supplies the battery.
  • the main configuration of the DC-DC converter the primary coil through which the current supplied from the outside flows, the secondary coil and the secondary coil in which the induced current is generated by the current flowing through the primary coil and the current converted by being electrically connected
  • the inductor coil controls the frequency of More specifically, the conversion of the current is made by the electromagnetic interaction of the primary and secondary coils, and the converted current is filtered through the inductor coil and the noise frequency is filtered out to the external device via a busbar. Supplied.
  • secondary coils, inductor coils, and busbars are made of each single member through complex processes such as sheet press cutting, bolt hole punching, bending, forging, and the like, and are coupled and electrically connected by bolts.
  • the gap may be caused by the fastening of the bolts or the warping of the material.
  • the gap between the secondary coil-inductor coil and the inductor coil-bus bar causes problems such as heat generation due to an increase in contact resistance as well as a decrease in electrical characteristics.
  • the secondary coil, the inductor coil, and the bus bar are made of a single member, there is a problem in that the size and weight of the DC-DC converter increase.
  • the DC-DC converter may include a cooling plate disposed in the housing and the horizontal partition wall to partition the housing into the first region and the second region.
  • a cooling flow path is formed in the first region, and cooling water flows, and an electronic component (for example, a substrate on which various elements are mounted) is disposed in the second region. That is, the first region performs the function of cooling the electronic component by the cooling unit, and the second region performs the electronic control function of converting the voltage of the external power source into the electronic component.
  • the secondary coil, the inductor coil, and the bus bar are integrally formed to simplify the manufacturing process, improve conversion efficiency, and include a DC module including a coil module having a compact structure. To provide a DC converter.
  • the DC-DC converter of the first embodiment includes a housing; A plurality of electronic components disposed in the housing; A flow path disposed on the lower plate of the housing, wherein the flow path includes an expansion part, a width of the expansion part is greater than a width of the flow path of the front end of the expansion part, and a vertical width of the expansion part is a flow path of the front end of the expansion part
  • the difference between the largest portion and the smallest portion of the cross section smaller than the vertical width of the cross section perpendicular to the moving direction of the cooling material of the flow path may be within 10%.
  • the plurality of electronic components may include a plurality of heat generating elements, and one of the plurality of heat generating elements may be disposed to correspond to the extension part.
  • One of the plurality of heat generating elements may overlap the expansion part in a vertical direction.
  • An area overlapping with one of the plurality of heating elements in a vertical direction in a maximum horizontal cross section of the extension may be 30% or more.
  • the maximum horizontal cross section of the extension may be 90% or more of the maximum horizontal cross section of one of the plurality of heating elements.
  • a protrusion protruding in the lower plate direction may be located on the bottom surface of the extension part.
  • the protruding height of the protrusion may increase and decrease along the moving direction of the cooling material.
  • the protrusion may have a vertical cross section, and the area of the vertical cross section of the protrusion may increase and decrease along a moving direction of the cooling material.
  • the horizontal cross section of the protrusion may have a convex curvature toward the lower plate, and the area of the horizontal cross section of the protrusion may decrease from the center of the horizontal width of the flow path toward the edge.
  • the area of the vertical cross section of the flow path may be the same along the direction of movement of the cooling material.
  • the plurality of electronic components may include a plurality of heat generating elements, the plurality of the heat generating elements may include a diode module, and the diode module may be disposed to correspond to the extension in a vertical direction.
  • the flow passage further includes an inlet portion through which the cooling material moves sequentially, a first curve portion, a second curve portion, and a discharge portion, wherein the inflow portion and the discharge portion are spaced apart in the horizontal width direction of the flow passage,
  • the first curve portion and the expansion portion may be spaced apart in the horizontal width direction of the flow path.
  • the inlet portion and the discharge portion are disposed in parallel to each other, the first curve portion is formed convexly convex in the direction in which the expansion portion is located, the second curve portion is the space between the first curve portion and the expansion portion is located
  • the curvature may be formed convexly in the opposite direction.
  • the plurality of electronic components includes a heating element, wherein the heating element includes an inductor, a transformer, a Zero-Voltage-Switching (ZVS) inductor, a switching module, and a diode module.
  • the transformer is disposed to correspond to the first curve portion in a vertical direction
  • the Zero-Voltage-Switching (ZVS) inductor is to correspond to the front end of the second curve portion in a vertical direction.
  • the switching module may be disposed to correspond to the second curve portion in a vertical direction
  • the diode module may be disposed to correspond to the expansion portion in a vertical direction.
  • the inductor continuously controls the flow of current, the transformer changes the voltage of the current to control power, and the zero-voltage-switching (ZVS) inductor controls light load
  • the switching module controls the on / off of the current, and the diode module controls the direction of the current.
  • the housing may include a side plate extending upward from the lower plate, and an upper cover disposed on the side plate, and the plurality of electronic components may be disposed in a space formed by the lower plate, the side plate, and the upper cover.
  • a connector electrically connected to an external electronic device, an inlet port through which cooling material flows into the flow path, and an outlet port through which cooling material is discharged from the flow path, wherein the connector is disposed on the side plate.
  • the outlet may be located opposite the connector and disposed on the side plate.
  • the housing includes a first side wall extending downward from the lower plate, a second side wall extending downward from the lower plate and spaced apart from the first side wall, and a lower cover disposed below the first side wall and the second side wall.
  • the flow path may be formed by the lower plate, the first side wall, the second side wall, and the lower cover.
  • the ceiling surface of the flow path may be located on the lower plate, the bottom surface of the flow path may be located on the lower cover, and the side surfaces of the flow path may be located on the first side wall and the second side wall.
  • the vertical width of the flow path may be defined by the vertical shortest distance between the lower plate and the lower cover, and the horizontal width of the flow path may be defined by the horizontal shortest distance between the first side wall and the second side wall. .
  • the DC-DC converter of the second embodiment includes a primary coil; A secondary coil in which an induced current is generated by the primary coil; A first terminal and a second terminal extending from the secondary coil; An inductor coil connected to the second terminal to rectify a current; And a third terminal extending from the inductor coil, wherein the first terminal, the primary coil, the second terminal, the inductor coil, and the third terminal may be integrally formed.
  • the secondary coil has a form in which a plate including an upper surface and a lower surface is formed to have an open ring, one end of which is connected to the first terminal, and the other end of which may be connected to the second terminal.
  • the inductor coil may have a shape in which a plate including an upper surface and a lower surface is grown in three-dimensional spiral.
  • the inductor coil may have an angular solid spiral shape including a plurality of corner parts.
  • At least one or more of the first terminal, the second terminal, and the third terminal may include at least one of a bent portion and a curved portion.
  • a current may flow in the first terminal, the secondary coil, the second terminal, the inductor coil, and the third terminal in both directions.
  • the method may further include a first magnetic core in which the secondary coil is disposed and a second magnetic core in which the inductor coil is disposed.
  • bus bar extending from the third terminal, wherein the first terminal, the secondary coil, the second terminal, the inductor coil, the third terminal and the bus bar (bus bar) It can be formed integrally.
  • the DC-DC converter of the second embodiment includes a primary coil; A secondary coil and a tertiary coil in which induced current is generated by the primary coil; A first terminal and a second terminal extending from the secondary coil; A third terminal and a fourth terminal extending from the tertiary coil; A fifth terminal connected to the second terminal and the fourth terminal; An inductor coil extending from the fifth terminal to rectify current; A sixth terminal extending from the inductor coil; And a bus bar extending from the sixth terminal, wherein the secondary coil, the first terminal, and the second terminal are integrally formed, and the tertiary coil, the third terminal, and the fourth terminal are integrally formed.
  • the fifth terminal, the inductor coil, the sixth terminal, and the bus bar may be integrally formed.
  • the secondary coil is disposed above the primary coil, the tertiary coil is disposed below the primary coil, the secondary coil is electrically connected to the diode module by the first terminal, The car coil may be electrically connected to the diode module by the third terminal.
  • the DC-DC converter of the third embodiment includes a housing including a cooling plate; A cooling passage disposed on one surface of the cooling plate; An insulation layer disposed on the other surface of the cooling plate; A pattern layer disposed on the insulating layer; An electric element disposed on the pattern layer; The substrate may be spaced apart from the cooling plate and electrically connected to the pattern layer.
  • the electrical device may include an upper surface and a lower surface, and the lower surface of the electrical element may be soldered to the pattern layer to face the cooling plate.
  • the cooling plate may be integrally formed with the housing.
  • a plurality of heat dissipation fins are formed on one surface of the cooling plate, and the heat dissipation fins may have a protrusion shape extending to one side.
  • the first substrate and the second substrate may be electrically connected by soldering a signal leg or by a press fit method.
  • the signal bridge may include a first conductive member forming part of the pattern layer; It may include a second conductive member which is bent or bent from the first conductive member and electrically connected to the substrate.
  • the signal bridge may include a first conductive member electrically connected to the pattern layer; It may include a second conductive member which is bent or bent from the first conductive member and electrically connected to the substrate.
  • the signal leg is electrically connected to the pattern layer and has a plate-shaped first conductive member;
  • a second conductive member may extend from the center of the first conductive member to the second substrate and electrically connected to the substrate.
  • the signal leg may include a first conductive member which forms a part of the pattern layer and has a groove formed at the center in the form of a plate;
  • the protrusion may be formed in the groove of the first conductive member, and may include a second conductive member extending from the protrusion toward the substrate to be electrically connected to the substrate.
  • One end and the other end of the housing is opened, the housing, the first cover for covering the opening of the one end; It may further include a second cover for covering the opening of the other end.
  • the insulating layer may be coated on the other surface of the cooling plate.
  • the DC-DC converter of the third embodiment includes a first region in which a flow path of a cooling fluid is formed, and a cooling region disposed between the first region and the second region in which the electronic component is disposed separately from the first region.
  • the difference in the area of the vertical cross section in all parts of the flow path is within 10%, the flow rate of the cooling material is increased and the pressure drop width is reduced to improve the cooling efficiency.
  • an electronic component eg, a diode module
  • an expansion part a large width and a small vertical width
  • a secondary coil, an inductor coil, and a bus bar are integrally formed by a casting process to increase conversion efficiency, and provide a DC-DC converter including a lightweight coil module having a compact structure.
  • the size of the electronic component assembly and the converter can be reduced by increasing the mounting rate of the devices in the same space by using the stacked main substrate and the auxiliary substrate. Furthermore, the cooling efficiency can be improved by mounting an active element having a high heat generation amount on an auxiliary substrate directly contacting the cooling plate.
  • FIG. 1 is a perspective view from above of the DC-DC converter of the first embodiment.
  • FIG. 2 is an exploded perspective view of the upper cover in the DC-DC converter of the first embodiment.
  • FIG 3 is an exploded perspective view of the upper cover and the protective plate in the DC-DC converter of the first embodiment.
  • FIG. 4 is a cross-sectional view of the DC-DC converter of the first embodiment with reference to the A-A 'line.
  • FIG 5 is a perspective view from below of a lower cover removed from the DC-DC converter of the first embodiment.
  • FIG. 6 is a plan view of the lower plate removed in the DC-DC converter of the first embodiment.
  • FIG. 7 is a plan view of the lower cover removed from the DC-DC converter of the first embodiment.
  • FIG 8 is a plan view and a side view showing the lower cover of the first embodiment.
  • FIG. 9 (1) shows the "vertical cross section” of the expansion part of this 1st Example
  • FIG. 9 (2) shows the "vertical cross section” of the other part of a flow path.
  • FIG. 10 is a perspective view showing a DC-DC converter of a comparative example of the second embodiment.
  • Fig. 11 is a perspective view showing the DC-DC converter of the second embodiment.
  • FIG. 12 is a perspective view showing a state in which the coil module of the second embodiment is mounted on the first and second magnetic cores (primary coil omitted).
  • Fig. 13 is a perspective view showing the coil module of the second embodiment (primary coil omitted).
  • FIG. 14 is a perspective view showing a state in which the coil module of the modification of the second embodiment is mounted on the first and second magnetic cores.
  • 15 is an exploded perspective view showing a coil module of a modification of the second embodiment.
  • Fig. 16 is a perspective view showing the DC-DC converter of the third embodiment with the first cover removed.
  • Fig. 17 is a cutaway perspective view of the DC-DC converter of the third embodiment.
  • FIG. 18 is a cross-sectional conceptual view showing a main board, an auxiliary board, and a cooling plate of the DC-DC converter of the third embodiment.
  • 19 is a conceptual diagram showing the signal legs of the DC-DC converter of the third embodiment.
  • 20 is a cross-sectional conceptual view showing a main board, an auxiliary board, and a cooling plate of a DC-DC converter according to a modification of the third embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms.
  • a component is described as being “connected”, “coupled” or “connected” to another component, the component may be directly connected, coupled or connected to the other component, but the component and its other components It is to be understood that another component may be “connected”, “coupled” or “connected” between the elements.
  • vertical direction may mean an upper direction and / or a lower direction
  • horizontal direction may mean one of any direction on a plane perpendicular to the “vertical direction”.
  • the "vertical direction” may be the vertical width direction of the flow path 200
  • the "horizontal direction” may be the horizontal width direction of the flow path 200.
  • vertical cross section may mean a cross section perpendicular to the moving direction of the cooling material
  • horizontal cross section may be a cross section perpendicular to the "vertical cross section”.
  • FIG. 1 is a perspective view from above of the DC-DC converter of the first embodiment
  • FIG. 2 is an exploded perspective view of the DC-DC converter of the first embodiment
  • FIG. 3 is a DC-DC of the first embodiment
  • 4 is an exploded perspective view illustrating an upper cover and a protective plate of the converter
  • FIG. 4 is a cross-sectional view of the DC-DC converter of the first embodiment with reference to the line A-A '
  • FIG. 6 is a plan view of the lower plate removed from the DC-DC converter of the first embodiment
  • FIG. 7 is a plan view from which the lower cover is removed from the DC-DC converter of the first embodiment.
  • FIG. 8 is a plan view and a side view showing the lower cover of the first embodiment
  • FIG. 9 (1) shows the "vertical cross section" of the extension of the first embodiment
  • FIG. 9 (2) shows another part of the flow path.
  • the "vertical cross section" of is shown.
  • the DC-DC converter 1000 may be used in a vehicle.
  • the DC-DC converter 1000 receives an electric current from an external power supply device (such as a lithium ion battery) and boosts or lowers a voltage to supply an external electronic device (motor, etc.) to supply a motor. It can play a role to control the rotation speed.
  • an external power supply device such as a lithium ion battery
  • the DC-DC converter 1000 includes a housing 100, a flow path 200, a plurality of electronic components 300, an inlet 400, an outlet 500, a terminal 600, and one or more connectors 700. can do.
  • the housing 100 may be an exterior member of the DC-DC converter 1000.
  • the flow path 200 may be formed in the housing 100.
  • the plurality of electronic components 300 may be accommodated in the housing 100.
  • a plurality of electronic components 300 may be disposed therein with the lower plate 110 of the housing 100 interposed therebetween, and a flow path 200 may be disposed below.
  • the plurality of electronic components 300 may be cooled by the cooling material flowing along the flow path 200.
  • the housing 100 may be connected to the inlet 400, the outlet 500, the terminal 600, and one or more connectors 700.
  • the material of the housing 100 may include a plastic material and / or a metal material.
  • the housing 100 may include a lower plate 110, a side plate 120, a protective plate 121, an upper cover 130, a lower cover 140, a first side wall 150, and a second side wall 160. .
  • the lower plate 110 may form a lower surface of the inner space of the housing 100.
  • the lower plate 110 may have a substantially rectangular plate shape.
  • the side plate 120 may form a side surface of the inner space of the housing 100.
  • the side plate 120 may have a form extending upward from the edge of the lower plate 110.
  • the housing 100 may be provided with an inner space in which the upper surface is opened by the lower plate 110 and the side plate 120.
  • a plurality of electronic components 300 may be accommodated in the internal space of the housing 100.
  • One side of the side plate 120 may be located inlet 400, outlet 500 and the terminal 600.
  • One or more connectors 700 may be located at the other side of the side plate 120.
  • the inlet 400, the outlet 500, and the terminal 600 may be located at opposite sides of the one or more connectors 700.
  • the protection plate 121 may be located in an inner space of the housing 100.
  • the protective plate 121 may be spaced apart from the main substrate 310 upwardly.
  • the protection plate 121 may overlap at least a portion of the main substrate 310 in a vertical direction. That is, some of the upper surface of the main substrate 310 may be covered by the protective plate 121.
  • the protection plate 121 may be a cover member for protecting a specific portion of the main substrate 310.
  • the upper cover 130 may be disposed on the side plate 120.
  • the upper cover 130 and the side plate 120 may be fastened by a screw.
  • the top cover 130 may be in the form of a substantially square plate.
  • the inner cover of the housing 100 may be closed by the upper cover 130.
  • the upper cover 130 may include a pattern portion 131 protruding upwardly in a grid pattern in the center thereof.
  • the pattern unit 131 may increase the strength of the upper cover 130 to perform a function of protecting the plurality of electronic components 300 accommodated in the internal space of the housing 100.
  • the upper cover 130 may include a flange portion 132 protruding in the horizontal direction from the edge.
  • the flange portion 132 may have a hole in which a screw is inserted in the form of a plate.
  • the lower plate 110 may have a flow path 200 formed therein.
  • the flow path 200 may be located on the bottom surface of the lower plate 110.
  • the first side wall 150 and the second side wall 160 may be spaced apart from each other in the horizontal direction, and may extend downward from the bottom surface of the lower plate 110.
  • the first side wall 150 and the second side wall 160 may be connected to each other at the point where the flow path 200 is connected to the inlet 400 and the outlet 500.
  • a flow path 200 having a lower surface opened by the lower plate 110, the first side wall 150, and the second side wall 160 may be formed.
  • the lower cover 140 may be disposed under the first side wall 150 and the second side wall 160 to close the opened lower surface.
  • the flow path 200 may be formed by the lower surface of the lower plate 110, the inner surface of the first side wall 150, the inner surface of the second side wall 160, and the upper surface of the lower cover 140.
  • the ceiling surface of the flow path 200 may be located on the bottom surface of the lower plate 110, and both side surfaces of the flow path 200 may be formed on the inner surface of the first side wall 150 and the inner surface of the second side wall 160.
  • Each may be positioned, and the bottom surface of the flow path 200 may be positioned on the upper surface of the lower cover 140.
  • the horizontal widths a and a 'of the flow path 200 may be the "horizontal direction” shortest distance between the inner side surface of the first side wall 150 and the inner side surface of the second side wall 160.
  • the vertical widths b and b ′ of the flow path 200 may be the “vertical direction” shortest distance between the lower surface of the lower plate 110 and the upper surface of the lower cover 140.
  • the vertical widths a and a 'of the flow path 200 and the horizontal widths b and b' of the flow path 200 may be the vertical and horizontal sides of the “vertical cross-sections 40 and 50” of the flow path 200. .
  • the cooling material flowing in the flow path 200 may absorb heat emitted from the plurality of electronic components 300. In this case, heat transfer occurs through the lower plate 110, and the plurality of electronic components 300 may be cooled.
  • the lower cover 140 may be in the form of a plate.
  • the lower cover 140 may be spaced apart from the lower plate 110.
  • the upper surface of the lower cover 140 and the lower surface of the lower plate 110 may be connected by the first side wall 150 and the second side wall 160.
  • the lower cover 140 may include a protrusion 141 protruding upward from the upper surface (the direction in which the lower plate of the housing is located).
  • the protrusion 141 may be positioned to correspond to the expansion part 240 of the flow path 200 in a vertical direction.
  • the width a is larger on the "vertical cross-section 40" of the extension 240, the width b may be smaller.
  • the area of the "vertical cross section 50" at the extension 240, the front end (upstream) of the extension 240, and the rear end (downstream) of the extension 250 can be kept constant (10%). Within, see FIG. 9). As a result, it is possible to prevent the pressure difference between the cooling materials from becoming larger and the flow rate to be lowered to lower the cooling efficiency.
  • the lower cover 140 may be in the form of a plate.
  • the lower cover 140 may include a first sealing part 142 and a second sealing part 143.
  • the material of the first sealing part 142 and the second sealing part 143 may include a sealing material such as rubber.
  • the first sealing part 142 and the second sealing part 143 may be formed to protrude downward from the lower surface of the lower cover 140.
  • the first sealing part 142 and the second sealing part 143 may be spaced apart from each other in the "horizontal direction" (the transverse direction of the flow path).
  • the first sealing part 142 may overlap the first side wall 150 in the "vertical direction".
  • the first sealing part 142 may contact the bottom surface of the first side wall 150.
  • the first sealing part 142 may have a shape corresponding to the first side wall 150.
  • the second sealing part 143 may overlap the second side wall 160 in the "vertical direction".
  • the second sealing part 143 may contact the bottom surface of the second side wall 160.
  • the second sealing part 143 may have a shape corresponding to the second side wall 160.
  • the first sealing part 142 may function to close the gap between the lower cover 140 and the first side wall 150, and the second sealing part 143 may serve as the lower cover 140 and the second side wall. The function of closing the gap between the 160 may be performed.
  • first sealing part 142 and the second sealing part 143 are formed at the point where the flow path 200 is connected to the inlet 400 and the outlet 500. It may be connected to each other.
  • the lower cover 140 may be fastened to the first side wall 150 and the second side wall 160 by a screw.
  • the lower cover 140 may include a guide hole 144.
  • the guide protrusion 111 protruding downward from the lower plate 110 may be inserted into the guide hole 144 to guide the lower cover 140.
  • the lower cover 140 may include a flange portion 145. A hole into which a screw is inserted may be formed in the flange portion 145 of the lower cover 140.
  • the flow path 200 may be formed in the housing 100.
  • the flow path 200 may be located at one side of the housing 100.
  • the flow path 200 may be located under the lower plate 110 of the housing 100. Therefore, the lower plate 110 of the housing 100 may be a "cooling plate".
  • the flow path 200 may be connected to the inlet 400.
  • the flow path 200 may be connected to the outlet 500.
  • the most upstream of the flow path 200 may be connected to the inlet 400 to receive a cooling material.
  • the most downstream of the flow path 200 may be connected to the outlet 500 to discharge the cooling material.
  • the cooling material flows along the flow path 200 and cools the heat generated by the plurality of electronic components 300.
  • Various types of heat exchange fluids eg, cooling water
  • the flow path 200 may be formed by the lower plate 110, the first side wall 150, the second side wall 160, and the lower cover 140.
  • the bottom surface of the flow path 200 may be located on the top surface of the lower cover 140. That is, the upper surface of the lower cover 140 may be the bottom surface of the flow path 200.
  • the ceiling surface of the flow path 200 may be located on the bottom surface of the lower plate 110. That is, the lower surface of the lower plate 110 may be the ceiling surface of the flow path 200.
  • Both side surfaces of the flow path 200 may be located on inner surfaces of the first side wall 150 and the second side wall 160, respectively. That is, inner surfaces of the first side wall 150 and the second side wall 160 may be both side surfaces of the flow path 200.
  • the horizontal widths a and a 'of the flow path 200 may be defined by the "horizontal" shortest distance between the inner side surface of the first side wall 150 and the inner side surface of the second side wall 160.
  • the vertical widths b and b 'of 200 may be defined by the "vertical direction" shortest distance between the lower surface of the lower plate 110 and the upper surface of the lower cover 140.
  • the horizontal widths a and a 'of the flow path 200 and the vertical widths b and b' of the flow path 200 may vary according to the moving direction of the cooling material.
  • the horizontal width a of the flow path 200 in the expansion part 240 is the horizontal width a 'of the front end (upstream side of the extension part) or the rear end (downstream side of the extension part) of the expansion part 240.
  • the vertical width b of the flow path 200 in the expansion part 240 is larger than the vertical width b 'of the front end (upstream side of the expansion part) or the rear end (downstream side of the expansion part) of the expansion part 240.
  • the flow path 200 may include an inlet part 210, a first curve part 220, a second curve part 230, an expansion part 240, and an outlet part 250.
  • Upstream of the inlet 210 may be connected to the inlet 400.
  • the downstream of the outlet 250 may be connected to the outlet 500.
  • Downstream of the inlet 210 may be connected to the upstream of the first curve portion 220, downstream of the first curve portion 220 may be connected to the upstream of the second curve portion 230, the second curve portion Downstream of 230 may be connected upstream of extension 240, and downstream of extension 240 may be connected upstream of outlet 250. Therefore, the cooling material introduced from the inlet 400 moves sequentially through the inlet 210, the first curve 220, the second curve 230, the expansion 240 and the discharge 250. It may be discharged through the outlet 500.
  • the inlet part 210 and the outlet part 250 may be disposed adjacent to each other.
  • the inlet 210 and the outlet 250 may be arranged in parallel to each other.
  • the inlet 210 and the outlet 250 may be spaced apart in the "horizontal direction" (the horizontal width direction of the flow path).
  • the first curve part 220 and the expansion part 240 may be disposed adjacent to each other.
  • the first curve portion 220 and the expansion portion 240 may be spaced apart in the "horizontal direction” (the horizontal width direction of the flow path).
  • the second curve portion 230 may be a point at which the advancing direction of the coolant in the flow path 200 becomes completely turn-up or U-turn.
  • the second curve part 230 may be formed in a “U” shape.
  • One end of the second curve portion 230 may be connected to the first curve portion 220.
  • the other end of the second curve part 230 may be connected to the expansion part 240.
  • the second curve portion 230 may connect the first curve portion 220 and the expansion portion 240.
  • a curvature may be formed in the first curve portion 220 convexly in the direction in which the expansion portion 240 is located. Therefore, the shortest "horizontal direction" distance between the first curve part 220 and the expansion part 240 may be shorter than the shortest "horizontal direction” distance between the inlet part 210 and the outlet part 250.
  • the second curve portion 230 may have a curvature formed convexly in the opposite direction in which the inlet 210 and the outlet 250 are positioned (U-shaped).
  • the extension 240 may have a curvature formed convexly in the "horizontal direction”. Therefore, the horizontal width a of the flow path 200 in the expansion part 240 may be larger than the horizontal width a 'of another portion of the flow path 200 (for example, the front end or the rear end of the expansion part 240). ).
  • the inlet part 210, the first curve part 220, the second curve part 230, the expansion part 240, and the discharge part 250 are formed in the flow path 200. This is to efficiently cool the 320.
  • the plurality of heating elements 320 includes an inductor 321, a transformer 322, a zero-voltage-switching (ZVS) inductor 323, a switching module 324, a diode module 325, and the like.
  • the 210 may be disposed to correspond to the inductor 210 in a vertical direction (the vertical width direction of the flow path), and the first curve part 220 may be disposed to correspond to the transformer 220 in a vertical direction.
  • the front end of the second curve portion 230 (upstream of the second curve portion) may be disposed to correspond to the ZVS inductor 323 in a vertical direction, and the second curve portion 230 may be perpendicular to the switching module 324.
  • Direction, and the extension 240 may be disposed to correspond to the diode module 240 in a vertical direction (see FIG. 7).
  • the first curve portion 220 is positioned in the direction in which the expansion portion 240 is positioned to efficiently cool the transformer 322 having a larger "horizontal area" than the inductor 321 (cooling the center of the transformer).
  • the convex curvature is formed.
  • the expansion unit 240 has a larger "horizontal area” than other portions of the flow path 200 in order to efficiently cool the diode module 325 having a high heat generation amount.
  • the expansion unit 240 is disposed between the transformer 322 and the diode module 325 as well as the diode module 325 by a large "horizontal area", so that the conductive member 326 electrically connects the two. ) Can also be cooled.
  • the maximum “horizontal area” of the extension 240 (10, the largest area of the horizontal area of the extension) is the maximum “horizontal area” of the diode module 325 (20, the largest area of the horizontal area of the diode module). 90% or more).
  • the area 30 overlapping the diode module 325 in the "vertical direction" at the maximum “horizontal area” 10 of the expansion unit 240 may be 30% or more.
  • the flow path 200 of the first embodiment is characterized in that the "vertical cross section 50" is equal along the moving direction of the cooling material.
  • the difference between the largest area and the smallest area of the “vertical cross section 50” of the flow path 200 may be within 10% (hereinafter).
  • the area of the "vertical cross section 50" of the flow path 200 may be the same along the direction of movement of the cooling material.
  • the width width a of the flow path 200 increases to efficiently cool the diode module 325.
  • the area of the "vertical cross section 40" in the extension 240 may be larger than the area of the "vertical cross section 50" of the other portion of the flow path 200. This may be arranged with the intention of this first embodiment to equalize the " vertical cross section 50 "
  • the vertical width b of the "vertical cross section 40" in the extension 240 is changed to the "vertical cross section of another part of the flow path 200 (for example, the front end of the extension). It was made smaller than the vertical width b 'of (50).
  • the area of "vertical cross-section 40" of extension 240 may be the same or similar to the area of "vertical cross-section 50" of another portion of flow path 200 (see FIG. 9).
  • the protrusion 141 may be located on the bottom surface of the extension 240. That is, the protrusion 141 may be positioned at a position corresponding to the extension 240 in the “vertical direction” of the lower cover 140. As a result, while maintaining the height of the first side wall 150 and the second side wall 160, it is possible to increase the vertical width b of the expansion part 240.
  • the protrusion 141 may protrude in a direction in which the lower plate 110 is located at the bottom surface of the extension 240.
  • the protrusion height of the protrusion 141 may increase and decrease along the moving direction of the cooling material.
  • the “vertical cross section” of the protrusion 141 may be rectangular (see FIG. 8A).
  • the area of the “vertical cross section” of the protrusion 141 may increase and decrease along the direction of movement of the cooling material.
  • the “horizontal cross section” of the protrusion 141 may have a shape in which a curvature is formed convexly in the direction in which the lower plate 110 is located (see FIG. 8B).
  • the area of the “horizontal cross section” of the protrusion 141 may decrease from the center of the horizontal width a of the extension 240 to the edge.
  • the discharge part 250 may include an inclined part 251.
  • the inclined portion 251 may be located between the discharge part 250 and the discharge port 500.
  • the inclined portion 251 may be located at the most downstream of the discharge portion 250.
  • the bottom surface of the flow path 200 may be inclined upwardly toward the downstream side.
  • the plurality of electronic components 300 may be located in the internal space of the housing 100.
  • the plurality of electronic components 300 may be disposed on the lower plate 110 (cooling plate).
  • a flow path 200 through which a cooling material flows is formed under the lower plate 110 (cooling plate) to cool the heat generated by the plurality of electronic components 300.
  • the plurality of electronic components 300 may include a main substrate 310, a plurality of heat generating elements 320, a first auxiliary substrate 330, and a second auxiliary substrate 340.
  • the main substrate 320 may be disposed on the lower plate 110.
  • the main substrate 320 may be spaced apart from the lower plate 110.
  • Various electronic component chips may be mounted on the main substrate 320.
  • a circuit for connecting various electronic component chips may be formed on the main substrate 320.
  • the main substrate 320 may be electrically connected to the first auxiliary substrate 330 and the second auxiliary substrate 340.
  • One of the plurality of heating elements 320 may overlap the expansion unit 240 in the "vertical direction".
  • the maximum “horizontal area” 10 of the extension 240 may be 90% or more of the maximum “horizontal area” 20 of one of the plurality of heating elements 320 overlapping in the "vertical direction”.
  • the area 30 overlapping one of the plurality of heating elements 320 overlapping in the “vertical direction” at the maximum “horizontal area” 10 of the expansion unit 240 may be 30% or more.
  • the heating element overlapping the expansion part 240 in the "vertical direction" of the plurality of heating elements 320 may be a diode module 325.
  • the plurality of heating elements 320 may include an inductor 321, a transformer 322, a zero-voltage-switching (ZVS) inductor 323, a switching module 324, a diode module 325, and a conductive member 326. It may include.
  • ZVS zero-voltage-switching
  • the inductor 321, the transformer 322, and the zero-voltage-switching (ZVS) inductor 323 may be disposed on an upper surface of the lower plate 110.
  • the switching module 324 may be mounted on the first auxiliary substrate 330.
  • the diode module 325 may be mounted on the second auxiliary substrate 340.
  • the conductive member 326 may be a member that electrically connects the transformer 322 and the diode module 325.
  • the inductor 321, the transformer 322, and the zero-voltage-switching (ZVS) inductor 323 may be electrically connected to the main substrate 320 by a conductive member.
  • the main substrate 320 may not be disposed in the lower plate 110 where the inductor 321, the transformer 322, and the zero-voltage-switching (ZVS) inductor 323 are disposed.
  • the inductor 321 may perform a function of smoothing current and reducing ripple current. Furthermore, the current flow can be made continuously. That is, the inductor 321 may perform a rectifying function. The inductor 321 may be disposed to correspond to the inlet portion 210 of the flow path 200 in the "vertical direction".
  • the transformer 322 may perform a function of boosting or depressurizing a current.
  • the transformer 322 may perform a function of converting power.
  • the transformer 322 may be disposed to correspond to the first curve portion 220 of the flow path 200 in the "vertical direction".
  • Zero-Voltage-Switching (ZVS) inductor 323 may control light load. That is, it may be an auxiliary inductor for improving light load efficiency. Zero-Voltage-Switching (ZVS) inductor 323 may be disposed to correspond to the front end of the second curve portion 230 in the "vertical direction".
  • the switching module 324 may control on / off of the current. Furthermore, the switching module 324 may be integrated with the transformer 322 to reduce and output the input DC. The switching module 324 may be disposed to correspond to the second curve portion 230 in the "vertical direction".
  • the diode module 325 may control the direction of the current. That is, the diode module 325 may perform a function of moving a current in a specific direction.
  • the diode module 325 may be disposed to correspond to the extension 240 in the "vertical direction".
  • the conductive member 326 may electrically connect the transformer 322 and the diode module 325.
  • the first auxiliary substrate 330 and the second auxiliary substrate 340 may be positioned below the main substrate 310.
  • the first auxiliary substrate 330 and the second auxiliary substrate 340 may be spaced apart from the main substrate 310.
  • the first auxiliary substrate 330 and the second auxiliary substrate 340 may be disposed between the lower plate 110 and the main substrate 310.
  • the first auxiliary substrate 330 and the second auxiliary substrate 340 may be electrically connected to the main substrate 310 by separate conductive members.
  • the switching module 324 may be mounted on the first auxiliary substrate 330.
  • the diode module 325 may be mounted on the second auxiliary substrate 340.
  • the inlet 400 and the outlet 500 may be located at one side of the side plate 120 of the housing 100. External cooling material may be introduced into the flow path 200 through the inlet 400. Cooling material may be discharged from the flow path 200 through the outlet 500.
  • the terminal 600 may be located at one side of the side plate 120 of the housing 100.
  • the terminal 600 may be located between the inlet 400 and the outlet 500.
  • An external power supply device may be electrically connected to the terminal 600. That is, external current may be supplied to the plurality of electronic components 300 through the terminal 600.
  • One or more connectors 700 may be located at the other side of the side plate 120 of the housing 100. One or more connectors 700 may be located opposite the inlets 400 and outlets 500. External electronic components (eg, electric motors) may be electrically connected to one or more connectors 700.
  • External electronic components eg, electric motors
  • the DC-DC converter 2001 of the comparative example of the second embodiment will be described below with reference to the drawings.
  • 10 is a perspective view showing a DC-DC converter of a comparative example of the second embodiment.
  • the DC-DC converter 2001 of the present comparative example may be a DC-DC converter used in a vehicle.
  • the DC-DC converter 2001 receives current from an external power supply device (such as a lithium ion battery) and boosts or lowers a voltage to supply an external electronic device (motor, etc.) to supply a motor. It can play a role to control the rotation speed.
  • the DC-DC converter 2001 may include a case 2010, a converter 2020, an inductor 2030, a bus bar (not shown) and an external terminal 2050.
  • the case 2010 may be an exterior member of the DC-DC converter 2001. An internal space is formed in the case 2001 to accommodate the converter 2020, the inductor 2030, and a bus bar (not shown).
  • the case 2010 may include first, second, third, fourth, and fifth case terminals 2010a, 2010b, 2010c, 2010d, and 2010e and external terminals 2050.
  • the converter 2020 may include a primary coil 2021 and a secondary coil 2022 disposed to be spaced apart from the primary coil 2021.
  • the primary coil 2021 may flow a current supplied from an external power supply device, and the secondary coil 2022 may output the converted current by electromagnetic interaction with the primary coil 2021.
  • the primary coil 2021 may be electrically connected to the first and second case terminals 2010a and 2010b to receive current from an external power supply device.
  • the secondary coil 2022 may be electrically connected to the third, fourth and fifth case terminals 2010c, 2010d and 2010e.
  • the third case terminal 2010c and the fourth case terminal 2010d may be electrically connected to the diode module. Therefore, the secondary coil 2022 may be electrically connected to the diode module.
  • the fifth case terminal 2010e may be electrically connected to the inductor unit 2030.
  • the inductor unit 2030 may include an inductor coil 2031.
  • the inductor coil 2031 may have a three-dimensional spiral shape. Such solid spirals are sometimes referred to as "screw spirals".
  • the start of the inductor coil 2031 may be electrically connected to the fifth case terminal 2010e.
  • a start portion of the inductor coil 2031 may be electrically connected to the secondary coil 2022 at the fifth case terminal 2010e.
  • An end portion of the inductor coil 2031 may be electrically connected to the external terminal 2050 through a bus bar (not shown).
  • the converted current output from the secondary coil 2022 may flow in the inductor coil 2031.
  • the inductor coil 2031 may rectify the converted current output from the secondary coil 2022.
  • the current rectified by the inductor coil 2031 may be supplied to the external terminal 2050.
  • the secondary coil 2022 may output a boosted or lowered converted current.
  • the conversion current output from the secondary coil 2022 may be rectified in the inductor coil 2031.
  • the rectified current may be supplied to an external electronic device (eg, a motor) through the external terminal 2050.
  • the secondary coil 2022 may be electrically connected to one side of the external terminal 2050 through the third case terminal 2010c.
  • the secondary coil 2022 may be electrically connected to the other side of the external terminal 2050 through the fifth case terminal 2010e, the inductor coil 2031, and the bus bar 2040.
  • a circuit in which the current generated by the secondary coil 2022 is rectified by the inductor coil 2031 and supplied to an external electronic device may be formed.
  • the external electronic device connected to the external terminal 2050 may be converted in the secondary coil 2022 and supplied with rectified electricity in the inductor coil 2031.
  • the secondary coil 2022, the inductor coil 2031, and the bus bar are electrically connected to each other, but are made of each single member. Thereafter, the secondary coil 2022 and the inductor coil 2031 may be electrically connected by being bolted to the fifth case terminal 2010e. In addition, the inductor coil 2031 and the bus bar (not shown) may also be bolted and electrically connected. In this fastening process, a gap may occur, which may lead to an increase in contact resistance as well as a decrease in electrical characteristics, thereby lowering the conversion efficiency of the DC-DC converter 2001.
  • FIG. 11 is a perspective view showing the DC-DC converter of the second embodiment
  • FIG. 12 is a perspective view showing a state in which the coil module of the second embodiment is mounted on the first and second magnetic cores (primary coil omitted).
  • 13 is a perspective view showing the coil module of the second embodiment (primary coil omitted).
  • the DC-DC converter 2100 of the second embodiment may include a case 2110, a converter 2120, an inductor 2130, a bus bar 2140, and a first external terminal 2150.
  • a case 2110 a converter 2120, an inductor 2130, a bus bar 2140, and a first external terminal 2150.
  • the first, second, and third terminals 2123, 2124, and 2132 and the busbars 2140 may be omitted by design request as a conductive member for electrical connection.
  • the secondary coils 2122, the first and second terminals 2123 and 2124, the inductor coils 2131, the third terminal 2132 and the busbars 2140 may be integrally manufactured by casting. Can be. That is, among the “coil modules”, the secondary coils 2122, the first and second terminals 2123 and 2124, the inductor coils 2131, the third terminal 2132, and the busbars 2140 may be integrally formed. have.
  • the DC-DC converter 2100 of the second embodiment has a secondary coil 2122, an inductor coil 2131, and a bus bar 2140 compared with the DC-DC converter 2010 of the comparative example.
  • the secondary coil 2122, the inductor coil 2131, and the bus bar 2140 may be integrally formed. Therefore, a complicated process such as sheet press cutting, bolt hole punching, bending, forging, etc. for manufacturing the secondary coil 2122 and the inductor coil 2131 can be omitted.
  • bolt fastening for connecting the secondary coil 2122 and the inductor coil 2131 may be omitted.
  • bolt fastening for connecting the inductor coil 2131 and the bus bar 2140 may be omitted (as a result, the fifth case terminal 2010e of the comparative example for bolt fastening may also be omitted). Since the integrated coil module does not need bolt fastening, there is no gap that may be caused by bolt fastening. As a result, the above-described problem of bolting does not occur, and the conversion efficiency of the DC-DC converter 2100 can be improved.
  • the case 2110 may be an exterior member of the DC-DC converter 2100.
  • An internal space is formed in the case 2110 to accommodate the converter 2120, the inductor 2130, and the bus bar 2140.
  • first and second case terminals 2110a, 2110b, and 2110c and first external terminals 2150 may be formed in the case 2110.
  • the converter 2120 may receive a current from an external power device. In addition, the converter 2120 may convert an external current and output the converted current.
  • the converter 2120 may include a primary coil 2121, a secondary coil 2122, a first terminal 2123, a second terminal 2124, and a first magnetic core 2125.
  • the primary coil 2121 may receive a current from an external power device.
  • the primary coil 2121 may have a three-dimensional spiral shape, and the start of spiral growth may be electrically connected to the first case terminal 2100a by the conductive member.
  • the end of the spiral growth of the primary coil 2121 may be electrically connected to the second case terminal 2100b by a conductive line.
  • External power devices may be electrically connected to the first and second case terminals 2100a and 2100b.
  • the current supplied from the external power device may flow in the primary coil 2121.
  • the primary coil 2121 has a three-dimensional spiral shape having a curve, but the three-dimensional spiral shape of the primary coil 2121 is not limited thereto.
  • Secondary coil 2122 may be a component of a "coil module".
  • the secondary coil 2122 may be spaced apart from the primary coil 2121.
  • the secondary coil 2122 may be disposed above the primary coil 2121.
  • the secondary coil 2122 may have electromagnetic interaction with the primary coil 2121.
  • current may be induced by the current of the primary coil 2121 to generate an induced current.
  • the induced current generated in the secondary coil 2122 may be a current in which the current flowing through the primary coil 2121 is stepped up or down.
  • the secondary coil 2122 may have a form in which a ring including an upper surface and a lower surface is opened.
  • the beginning portion (one end) of the secondary coil 2122 may extend from the first terminal 2123.
  • an end portion (the other end) of the secondary coil 2122 may be connected to the second terminal 2124. That is, one end of the secondary coil 2122 may be electrically connected to the first terminal 2123, and the other end of the secondary coil 2122 may be electrically connected to the second terminal 2124.
  • the secondary coils 2122 and the first and second terminals 2123 and 2124 may be integrally formed.
  • the shape of the secondary coil 2122 is not limited to the above-described ring shape.
  • the secondary coil 2122 may be disposed in a three-dimensional spiral shape and spaced vertically or horizontally from the primary coil 2121.
  • the secondary coil 2122 may be interleaved in a three-dimensional spiral form and spaced apart from the primary coil 2121.
  • the primary and secondary coils 2121 and 2122 may form one double solid helix.
  • the first terminal 2123 may be a component of the "coil module".
  • the first terminal 2123 may be a member for electrically connecting the secondary coil 2122 to an external terminal.
  • the first terminal 2123 may be a conductive member in the form of a plate.
  • the first terminal 2123 may extend from top to bottom (vertical direction). One end of the first terminal 2123 may be located above. The other end of the first terminal 2123 may be located below.
  • One end of the first terminal 123 may be bent or bent to extend in a vertical direction at the beginning of the secondary coil 2122.
  • the other end of the first terminal 2123 may be bent or bent to extend in the horizontal direction and then divided into first and second terminal parts 2123a and 2123b to be described later.
  • the first terminal 2123 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
  • the first terminal 2123 may be electrically connected to the start of the secondary coil 2122.
  • the other end of the first terminal 2123 may be divided into a first terminal portion 2123a and a second terminal portion 2123b.
  • the first terminal portion 2123a may be electrically connected to the third case terminal 2100c by bolting. Therefore, a hole for fastening the bolt may be formed in the first terminal portion 2123a.
  • the second terminal portion 2123b may be electrically connected to the fourth case terminal 2110d by bolting. Therefore, a hole for fastening the bolt may be formed in the second terminal portion 2123b.
  • the third case terminal 2110c and the fourth case terminal 2100c may be electrically connected to a diode module (not shown). Therefore, the secondary coil 2122 may be electrically connected to the diode module through the first terminal 2123.
  • the second terminal 2124 may be a component of the "coil module".
  • the second terminal 2124 may extend from the secondary coil 2122.
  • the second terminal 2124 may be a member for electrically connecting the secondary coil 2122 and the inductor coil 2131.
  • the second terminal 2124 may be a conductive member in the form of a plate.
  • the second terminal 2124 may extend from the top to the bottom (vertical direction) and then extend in the direction of the inductor coil 2131 (horizontal direction).
  • One end of the second terminal 2124 may be bent or bent in a vertical direction to extend from the end of the secondary coil 2122.
  • the middle portion of the second terminal 2124 may be bent or bent to extend in the inductor coil 2131 direction (horizontal direction).
  • the other end of the second terminal 2124 may be connected to the start of the inductor coil 2131.
  • the second terminal 2124 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
  • One end of the second terminal 2124 may be electrically connected to an end of the secondary coil 2122.
  • the other end of the second terminal 2124 may be electrically connected to the start of the inductor coil 2131.
  • the current generated in the secondary coil 2122 may be supplied to the inductor coil 2131 through the second terminal 2124.
  • the primary coil 2121 and the secondary coil 2122 may be disposed on the first magnetic core 2125.
  • the first magnetic core 2125 may be a ferromagnetic member that collects magnetic field lines of the primary coil 2121 and the secondary coil 2122 to increase the strength of the magnetic field.
  • the first magnetic core 2125 may include a first bobbin portion 2125a and a first support portion 2125b.
  • the first support portion 2125b has a block shape in which an inner space is formed in the center, and a first bobbin portion 2125a is formed in the inner space, and may support the primary coil 2121.
  • the primary coil 2121 and the secondary coil 2122 may be wound around the first bobbin portion 2125a.
  • the outer surface of the first magnetic core 2125 may be coated by an insulator.
  • the first magnetic core 2125 may have various forms by design request.
  • the inductor 2130 may rectify the current generated by the converter 2120.
  • the inductor unit 2130 may include an inductor coil 2131, a third terminal 2132, and a second magnetic core 2133.
  • Inductor coil 2131 may be a component of a "coil module".
  • the inductor coil 2131 may receive a conversion current from the secondary coil 2122.
  • the inductor coil 2131 may rectify the converted current.
  • the inductor coil 2131 may be connected to the first external terminal 2150 to supply a rectified current.
  • the inductor coil 2131 may have a shape in which a plate including an upper surface and a lower surface is grown in three-dimensional spiral. That is, the inductor coil 2131 may have a three-dimensional spiral shape, and a start portion (lower portion) of the spiral growth may be electrically connected by the secondary coil 2122 and the second terminal 2124. That is, the inductor coil 2131 may extend from the other end of the second terminal 2124. An end portion (top) of the spiral growth of the inductor coil 2131 may be electrically connected to the first external terminal 2150 by the bus bar 2140.
  • the inductor coil 2131 has a three-dimensional spiral shape having a curve, but the three-dimensional spiral shape of the inductor coil 2131 is not limited thereto.
  • the third terminal 2132 may be a component of the "coil module".
  • the third terminal 2132 may be a member for electrically connecting the inductor coil 2131 to an external terminal.
  • the third terminal 2132 may be a conductive member in the form of a plate.
  • the third terminal 2132 may extend from top to bottom (vertical direction). One end of the third terminal 2132 may be located above. The other end of the third terminal 2132 may be located below.
  • One end of the third terminal 2132 may be bent or bent in the horizontal direction (the direction opposite to the horizontal spiral growth direction) of the inductor coil 2131 at the end of the inductor coil 2131. Thereafter, one end of the third terminal 2132 may be curved or bent to extend in a vertical direction (from top to bottom).
  • the other end of the third terminal 2132 may be bent or bent to extend in a horizontal direction (direction of the bus bar 2140) and then be connected to the bus bar 2140.
  • the third terminal 2132 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
  • One end of the third terminal 2132 may be electrically connected to an end of the inductor coil 2131.
  • the other end of the third terminal 2132 may be electrically connected to the bus bar 2140. Therefore, the inductor coil 2131 may be electrically connected to the bus bar 2140 through the third terminal 2132.
  • the inductor coil 2131 may be electrically connected to the external terminal 2150 through the third terminal 2132 and the bus bar 2140. have.
  • An inductor coil 2131 may be disposed on the second magnetic core 2133.
  • the second magnetic core 2133 may be a ferromagnetic member that collects the magnetic field lines of the inductor coil 2131 to increase the strength of the magnetic field.
  • the second magnetic core 2133 may include a second bobbin portion 2133a and a second support portion 2133b.
  • the first support part 2133b has a block shape in which an internal space is formed in the center thereof, and a second bobbin part 2133a is formed in the internal space and may support the inductor coil 2131.
  • the inductor coil 2131 may be wound around the second bobbin portion 2133a.
  • the outer surface of the second magnetic core 2133 may be coated by an insulator.
  • the second magnetic core 2133 may have various forms by design request.
  • the bus bar 2140 may be a component of a "coil module".
  • the bus bar 2140 may be in the form of an elongated plate extending toward the external terminal 2150.
  • One end of the bus bar 2140 may be electrically connected to the other end of the third terminal 2132.
  • the other end of the bus bar 2140 may be electrically connected to the first external terminal 2150.
  • the other end of the bus bar 2140 and the first external terminal 2150 may be bolted.
  • a third terminal portion 2140a may be formed at the other end of the bus bar 2140.
  • a bolt hole may be formed in the third terminal portion 2140a. Therefore, the rectified current of the inductor coil 2131 may be supplied to the external terminal 2150 through the third terminal 2132 and the bus bar 2140.
  • the external terminal 2150 may be connected to an external electronic device (eg, a motor for a vehicle).
  • An external electronic device may be connected to the external terminal 2150 to receive a current. Accordingly, the external electronic device may be converted by the secondary coil 2122 and receive the rectified current from the inductor coil 2131. That is, the rectified conversion current in which the external electronic device is converted to the rated voltage through the secondary coil 2122 and the noise is filtered through the inductor coil 2131 may be supplied.
  • the current may flow in both directions of the first terminal 2123, the secondary coil 2122, the second terminal 2124, the inductor coil 2131, the third terminal 2132, and the bus bar 2140.
  • an electric vehicle travels downhill and an external electronic device (motor) generates a current like a generator
  • the first terminal 2123, the second terminal 2124, the inductor coil 2131, and the third It may be supplied to the secondary coil 122 through the terminal 2132 and the bus bar 2140.
  • an induction current may be generated in the primary coil 2121 to charge the external power device (lithium ion battery).
  • the "coil module” of the second embodiment includes at least one or more of the first or second terminals 2123, 2124, and 3132, which includes at least one of bends and bends. can do.
  • the "coil module” is to have a compact and stable support structure.
  • the plate constituting the "coil module" for a vehicle is a flat and long plate including an upper surface and a lower surface. This is because it is necessary to have a large resistance value to cover the electric shock capacity supplied to various electronic components of the vehicle.
  • the bent portion or the bent portion is inevitably worn, lost or crushed due to the shape of the plate and the characteristics of the forming process. This is undesirable due to reduced electrical properties and reduced durability of the "coil module".
  • the first terminal 2123, the second terminal 2124, and the third terminal 2132 are molded by "casting".
  • the bent portion or the curved portion can be formed. Therefore, the "coil module” of the second embodiment may have a compact and stable support structure and at the same time improve electrical characteristics and durability.
  • FIG. 14 is a perspective view showing a state in which the coil module of the modification of the second embodiment is mounted on the first and second magnetic cores
  • FIG. 15 is an exploded perspective view showing the coil module of the modification of the second embodiment.
  • the modification of the second embodiment differs from the second embodiment in the "coil module".
  • the modification of the second embodiment has the same technical spirit as that of the second embodiment except for the above difference. Therefore, the second embodiment can be analogically applied to the modification of the second embodiment.
  • parts having the same technical spirit as those of the second embodiment will be omitted.
  • the "coil module" in the modification of the second embodiment may include a converter, an inductor, and a bus bar.
  • the conversion unit may be a primary coil 2121-1, a secondary coil 2122-1, a tertiary coil 2122-2, a first terminal 2123-1, a second terminal 2124-1, It may include a third terminal 2124-2 and a fourth terminal 2123-2.
  • the inductor unit may include an inductor coil 211-1-1, a fifth terminal 2133-1, and a sixth terminal 2132-1.
  • the biggest characteristic point is that the coil in which the induced current flows by the primary coil has two coils, a secondary coil and a tertiary coil.
  • the primary coil 212-1 may receive current from an external power supply device.
  • the primary coil 212-1 may have a three-dimensional spiral shape, and a start of spiral growth may be electrically connected to the first case terminal 2100a by the conductive member.
  • the end of the spiral growth of the primary coil 212-1 may be electrically connected to the second case terminal 2100b by a conductive line.
  • the secondary coil 2122-1 may be spaced apart from the primary coil 212-1.
  • the secondary coil 2122-1 may be positioned above the primary coil 212-1.
  • the secondary coil 2122-1 may have electromagnetic interaction with the primary coil 212-1.
  • current may be induced by the current of the primary coil 212-11 to generate an induced current.
  • the induced current generated in the secondary coil 2122-1 may be a current in which the current flowing through the primary coil 212-1 is boosted or stepped down.
  • the secondary coil 2122-1 may have a form in which a plate including an upper surface and a lower surface is opened.
  • the beginning portion (one end) of the secondary coil 2122-1 may be extended from the first terminal 2123-1.
  • an end portion (the other end) of the secondary coil 2122-1 may be connected to the second terminal 2124-1. That is, one end of the secondary coil 2122-1 may be electrically connected to the first terminal 2123-1, and the other end of the secondary coil 2122-1 is electrically connected to the second terminal 2124-1.
  • the secondary coils 2122-1 and the first and second terminals 2123-1 and 2124-1 may be integrally formed.
  • the shape of the secondary coil 2122-1 is not limited to the above-described ring shape.
  • the secondary coil 2122-1 may be disposed in a three-dimensional spiral shape and spaced vertically or horizontally from the primary coil 212-1.
  • the secondary coil 2122-1 may be interleaved with a three-dimensional spiral shape and spaced apart from the primary coil 212-1.
  • the primary and secondary coils 2121-1 and 2122-1 may form one double solid helix.
  • the first terminal 2123-1 may be a member for electrically connecting the secondary coil 2122-1 to the terminal.
  • the first terminal 2123-1 may be a conductive member having a plate shape.
  • the first terminal 2123-1 may have a shape extending from top to bottom (vertical direction).
  • One end of the first terminal 2123-1 may be positioned at an upper portion thereof.
  • the other end of the first terminal 2123-1 may be located below.
  • One end of the first terminal 123-1 may be bent or bent to extend in a vertical direction at the beginning of the secondary coil 2122-1.
  • the other end of the first terminal 2123-1 may be bent or bent to extend in the horizontal direction and then divided into first and second terminal parts 2123-1a and 2123-1b to be described later.
  • the first terminal 2123-1 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
  • the first terminal 2123-1 may be electrically connected to a start portion of the secondary coil 2122-1.
  • the other end of the first terminal 2123-1 may be divided into a first terminal portion 2123-1a and a second terminal portion 2123-1b.
  • the first terminal portion 2123-1a may be electrically connected to the third case terminal 2100c by bolting. Therefore, a hole for fastening the bolt may be formed in the first terminal portion 2123-1a.
  • the second terminal portion 2123-1b may be electrically connected to the fourth case terminal 2110d by bolting. Therefore, a hole for fastening the bolt may be formed in the second terminal portion 2123-1b.
  • the third case terminal 2110c and the fourth case terminal 2100c may be electrically connected to a diode module (not shown). Accordingly, the secondary coil 2122-1 may be electrically connected to the diode module through the first terminal 2123-1.
  • the second terminal 2124-1 may extend from the secondary coil 2122-1.
  • the second terminal 2124-1 may be a member for electrically connecting the secondary coil 2122-1 and the inductor coil 2213-1.
  • the second terminal 2124-1 may be a conductive member having a plate shape.
  • the second terminal 2124-1 may extend from top to bottom (vertical direction) and then extend in a horizontal direction.
  • One end of the second terminal 2124-1 may be bent or bent to extend in a vertical direction at the end of the secondary coil 2122-1.
  • the middle portion of the second terminal 2124-1 may extend downward.
  • the other end of the second terminal 2124-1 may be in the form of a plate that is bent or curved in the horizontal direction in the middle portion of the second terminal 2124-1.
  • a third terminal portion 2124-1a may be formed at the other end of the second terminal 2124-1.
  • the third terminal portion 2124-1a may be electrically connected to the seventh terminal portion 2133-1a by bolting.
  • a hole for fastening the bolt may be formed in the third terminal portion 2124-1a.
  • the second terminal 2124-1 and the fifth terminal 2133-1 may be electrically connected, and ultimately, the secondary coil 2122-1 and the inductor coil 2131-1 may be electrically connected to each other.
  • the second terminal 2124-1 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
  • the tertiary coil 2122-2 may be spaced apart from the primary coil 212-1.
  • the tertiary coil 2122-2 may be located below the primary coil 212-1.
  • the tertiary coil 2122-2 may have electromagnetic interaction with the primary coil 212-1.
  • current may be induced by the current of the primary coil 212-11 to generate an induced current.
  • the induced current generated in the tertiary coil 2122-2 may be a current in which the current flowing through the primary coil 212-1 is boosted or stepped down.
  • the tertiary coil 2122-2 may have a form in which a plate including an upper side and a lower side is opened.
  • the start portion (one end) of the tertiary coil 2122-2 may extend from the third terminal 2123-2.
  • an end portion (the other end) of the tertiary coil 2122-2 may be connected to the fourth terminal 2124-2. That is, one end of the tertiary coil 2122-2 may be electrically connected to the fourth terminal 2123-2, and the other end of the tertiary coil 2122-2 is electrically connected to the third terminal 2124-2. Can be connected.
  • the tertiary coil 2122-2 and the third and fourth terminals 2123-2 and 2124-2 may be integrally formed.
  • the shape of the tertiary coil 2122-2 is not limited to the above-described ring shape.
  • the tertiary coil 2122-2 may be disposed in a three-dimensional spiral form and spaced vertically or horizontally from the primary coil 212-1.
  • the tertiary coil 2122-2 may be interleaved in a three-dimensional spiral form and spaced apart from the primary coil 212-1.
  • the primary and secondary coils 2121-1 and 2122-2 may form one double solid helix.
  • the third terminal 2123-2 may be a member for electrically connecting the tertiary coil 2122-2 to the diode module.
  • the third terminal 2123-2 may be a conductive member having a plate shape.
  • the third terminal 2123-2 may extend in a horizontal direction from one end (start portion) of the tertiary coil 2122-2.
  • the other end of the third terminal 2123-2 may be divided into fourth and fifth terminal portions 2123-2a and 2123-2b which will be described later.
  • One end of the third terminal 2123-2 may be electrically connected to the start of the tertiary coil 2122-2.
  • the other end of the third terminal 2123-2 may be divided into a fourth terminal portion 2123-2a and a fifth terminal portion 2123-2b.
  • the fourth terminal portion 2123-2a and the fifth terminal portion 2123-2b may be electrically connected to the diode module by bolting. Accordingly, holes for fastening bolts may be formed in the fourth terminal portion 2123-1a and the fifth terminal portion 2123-2b. Accordingly, the tertiary coil 2122-2 may be electrically connected to the diode module through the third terminal 2123-2.
  • the fourth terminal 2124-2 may extend from the tertiary coil 2122-2.
  • the fourth terminal 2124-2 may be a member for electrically connecting the tertiary coil 2122-2 and the inductor coil 2213-1.
  • the fourth terminal 2124-2 may be a conductive member having a plate shape.
  • the fourth terminal 2124-2 may extend in the horizontal direction from the other end of the tertiary coil 2122-2.
  • One end of the fourth terminal 2124-2 may be located at the end of the tertiary coil 2122-2.
  • a sixth terminal portion 2124-2a may be formed at the other end of the fourth terminal 2124-2.
  • the sixth terminal portion 2124-2a may be electrically connected to the seventh terminal portion 2133-1a by bolting.
  • the third terminal portion 2124-1a, the sixth terminal portion 2124-2a, and the seventh terminal portion 2133-1a may overlap each other in the vertical direction.
  • a hole for fastening the bolt may be formed in the sixth terminal portion 2124-2a.
  • the fourth terminal 2124-2 and the fifth terminal 2133-1 may be electrically connected, and ultimately, the tertiary coil 2122-2 and the inductor coil 2131-1 may be electrically connected to each other. Can be.
  • the inductor coil 2131-1 may receive a conversion current from the secondary coil 2122-1 and the tertiary coil 2122-2.
  • the inductor coil 211-1 may rectify the converted current.
  • the inductor coil 211-1 may be connected to the external terminal 2150 to supply a rectified current.
  • the inductor coil 211-1 may have a form in which a plate including an upper surface and a lower surface is grown in three-dimensional spiral. That is, the inductor coils 211-1 may have a three-dimensional spiral shape.
  • the start portion (lower portion) of the spiral growth of the inductor coil 2131-1 may extend from the fifth terminal 2133-1.
  • the sixth terminal 2132-1 may be connected to the spiral growth end portion (top) of the inductor coil 211-11-1.
  • the bus bar 2140-1 may extend from the sixth terminal 2132-1.
  • the inductor coil 211-1-1, the fifth terminal 2133-1, the sixth terminal 2132-1, and the bus bar 2140-1 may be integrally formed.
  • a seventh terminal portion 2133-1a may be formed at one end of the fifth terminal 2133-1.
  • the seventh terminal portion 2133-1a may be electrically connected to the third terminal portion 2124-1a by bolting.
  • the seventh terminal portion 2133-1a may be electrically connected to the sixth terminal portion 2124-2a by bolting. Therefore, the inductor coil 2131-1 may be electrically connected to the secondary coil 2122-1 and the tertiary coil 2122-2. Induced currents generated in the secondary coil 2122-1 and the tertiary coil 2122-2 may be rectified in the inductor coil 2131-2.
  • the other end of the fifth terminal 2133-1 extends from one end of the fifth terminal 2133-1 in the horizontal direction (the direction in which the inductor coil is located), so as to start the spiral growth of the inductor coil 2131-2. Can be connected.
  • One end of the sixth terminal 2132-1 may be connected to the end of the spiral growth of the inductor coil 2131-2.
  • the other end of the sixth terminal 2132-1 may be connected to one end of the bus bar 2140-1.
  • the other end of the bus bar 2140-1 may be electrically connected to the external terminal 2150.
  • an eighth terminal portion 2140-1a may be formed to be electrically connected to the external terminal 2150. Bolting holes for fixing and electrical connection may be formed in the eighth terminal portion 2140-1a.
  • the inductor coil 2131-2 may be electrically connected to the external terminal 2150 through the bus bar 2140-1. As a result, the induced current generated in the secondary coil 2122-1 and the tertiary coil 2122-2 is rectified in the inductor coil 2131-2, and then external electronic device through the bus bar 2140-1. Can be delivered.
  • FIG. 16 is a perspective view showing the DC-DC converter of the third embodiment with the first cover removed
  • FIG. 17 is a cutaway perspective view of the DC-DC converter of the third embodiment
  • FIG. 18 is the third embodiment.
  • Fig. 19 is a schematic cross-sectional view showing a main board, an auxiliary board, and a cooling plate of a DC-DC converter.
  • the DC-DC converter 3001 of the third embodiment may be a DC-DC converter used in a vehicle.
  • the DC-DC converter 3001 receives a current from an external power supply device (such as a lithium ion battery) and boosts or lowers a voltage to supply an external electronic device (motor, etc.) to supply a motor. It can play a role to control the rotation speed.
  • the DC-DC converter 3001 includes a housing 3010, a first substrate 3020, a second substrate 3030, a connection member 3040, a coil unit 3050, and a bus bar 3060. ) May be included.
  • the DC-DC converter 3001 may be referred to as an "electronic component assembly.”
  • auxiliary components such as the coil unit 3050 and the bus bar 3060 may be omitted.
  • the "electronic component assembly” of the third embodiment may have a range of rights not only in the DC-DC converter 3001 but also in various electronic component assemblies.
  • the first substrate 3020 may be referred to as an "auxiliary substrate” as a substrate provided to cool an element having a high heat generation amount. Since the first substrate 3020 has a configuration completely different from that of the general substrate (the cooling plate replaces the role of the base of the general substrate), the name of the substrate may be omitted.
  • the second substrate 3030 may be referred to as a “main substrate” as a substrate provided to cool an element having a low heat generation amount.
  • the second substrate 3030 may be referred to as a "substrate”.
  • the housing 3010 may be a hollow block shape as an exterior member of the DC-DC converter 3001.
  • the housing 3010 includes a main body 3011, a cooling plate 3012, a first cover 3013, a second cover 3014, an inlet port 3015, an outlet port 3016, a cooling channel guide 3017, and a cooling channel ( 3018 and heat dissipation fins 3019.
  • the interior of the housing 3010 may be separated into a first region 3002 positioned below and a second region 3003 positioned above by the cooling plate 3012.
  • the first region 3002 may be a cooling unit through which a cooling fluid flows
  • the second region 3003 may be an electronic component unit in which electronic components are disposed.
  • Cooling plate 3012 of housing 3010, first cover 3013, second cover 3014, inlet port 3015, outlet port 3016, cooling channel guide 3017, cooling channel 3018 and heat dissipation fins ( 3019 may be integrally formed.
  • the material of the housing 3010 may be metal (eg, aluminum).
  • the main body 3011 may be formed by a side surface, and may have a hollow shape in which lower and upper ends are opened.
  • the first cover 3013 may be disposed at the lower end of the main body 3011. In this case, the first cover 3013 may cover the opening of the lower end of the main body 3011 to close.
  • the second cover 3014 may be disposed at an upper end of the main body 3011. In this case, the second cover 3013 may cover the opening of the upper end of the main body 3011 to close.
  • the interior space of the housing 3010 may be formed by the main body 3011 and the first and second covers 3012 and 3013.
  • the cooling plate 3012 may be disposed in the body 3011 in the form of a horizontal partition wall.
  • the cooling plate 3012 may be formed over the entire surface of the horizontal cross section of the interior of the body 3011.
  • the cooling plate 3012 may partition or separate the inside of the main body 3011 into the first region 3002 and the second region 3003.
  • the first area 3002 and the second area 3003 may be separate areas that are blocked from each other.
  • the first region 3002 may be disposed below the cooling plate 3012, and the second region 3003 may be disposed above the cooling plate 3012.
  • An inlet 3015 for introducing a cooling fluid and an outlet 3016 for discharging the cooling fluid flowing along the first region 3002 may be formed at a portion corresponding to the first region 3002 on the side of the main body 3011. Can be.
  • the first region 3002 may serve as a region through which a cooling fluid flows.
  • the cooling channel guide 3017 may be disposed on the lower surface of the cooling plate 3012.
  • the cooling flow path guide 3017 may have various shapes, and the cooling flow path 3018 may be formed by the cooling flow path guide 3017.
  • a plurality of heat dissipation fins 3019 may be formed in the cooling passage 3018.
  • the plurality of heat dissipation fins 3019 may have a protrusion shape extending downward from the lower surface of the cooling plate 3012.
  • the second area 3003 is a place where the electronic component is disposed, and may perform an electronic control function.
  • a first substrate 3020, a second substrate 3030, a connection member 3040, a coil unit 3050, and a bus bar 3060 may be disposed in the second region 3003.
  • the first substrate 3020 may be a metal printed circuit board (MPCB) having high thermal conductivity.
  • the first substrate 3020 may be referred to as an "auxiliary substrate” as a substrate for mounting an element having a high heat generation amount. That is, the element mounted on the first substrate 3020 has a higher heat generation amount than the element mounted on the second substrate 3030 described later.
  • the device mounted on the first substrate 3020 may also be referred to as an “active device”.
  • the "active device” may be a device having an ability to generate electrical energy.
  • the transistor and the IC controller may correspond to this.
  • the first substrate 3020 may be disposed on an upper surface of the cooling plate 3012. In this case, the bottom surface of the first substrate 3020 may contact the top surface of the cooling plate 3012. As a result, the first substrate 3020 may have a higher cooling efficiency than the second substrate 3030 described later. Since the bottom surface of the first substrate 3020 is in direct contact with the cooling plate 3012, the device may be mounted only on the top surface of the first substrate 3020.
  • the first substrate 3020 may be spaced apart from the second substrate 3030. That is, the first substrate 3020 may be stacked spaced apart from the second substrate 3030. As a result, in the third embodiment, the mounting rate of the device can be increased in the same space.
  • the area of the first substrate 3020 may be smaller than the area of the second substrate 3030.
  • the first substrate 3020 may be electrically connected to the second substrate 3030.
  • the first substrate 3020 may be electrically connected to the second substrate 3030 by the connecting member 3040.
  • the first substrate 3020 may include an adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024.
  • the first substrate 3020 may have a form in which an adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024 are sequentially stacked.
  • the first substrate 3020 may be composed of only an adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024.
  • the adhesive layer 3021 may be disposed on the cooling plate 3012 with a thermally conductive adhesive.
  • the adhesive layer 3021 may be directly coated on the upper surface of the cooling plate 3012. That is, the adhesive layer 3021 may adhere to the top surface of the cooling plate 3012.
  • the adhesive layer 3021 may be a thermal grease having high thermal conductivity. As a result, it is possible to efficiently cool the heat generated by the element having a high heat generation amount mounted on the first substrate 3020.
  • the adhesive layer 3021 may perform a function of bonding the metal layer 3022 and the cooling plate 3012.
  • the metal layer 3022 may be disposed on the adhesive layer 3021. That is, the metal layer 3022 may be disposed on the adhesive layer 3021.
  • the metal layer 3022 may be in the form of a metal plate. The bottom surface of the metal layer 3022 may be combined with the top surface of the adhesive layer 3021.
  • the material of the metal layer 3022 may include copper or aluminum having high thermal conductivity.
  • the first substrate 3020 may be referred to as a "metal printed circuit board" by the metal layer 3022. The cooling efficiency of the first substrate 3020 may be increased by the metal layer 3022.
  • the metal layer 3022 may serve as a support part in the first substrate 3020.
  • the insulating layer 3023 and the pattern layer 3024 may be supported by the metal layer 3022.
  • the insulating layer 3023 may be disposed on the metal layer 3022. That is, the insulating layer 3023 may be disposed on the metal layer 3022.
  • the insulating layer 3023 may be in the form of a plate of an insulating material.
  • the insulating layer 3023 may be a layer for forming the pattern layer 3024.
  • the pattern layer 3024 may be disposed on the insulating layer 3023.
  • the pattern layer 3024 may be coated on the insulating layer 3023.
  • the pattern layer 3024 may be a layer forming a circuit of the first substrate 3020. Accordingly, the pattern layer 3024 may be various circuit patterns made of an electrically conductive material.
  • An "active element” may be disposed in the pattern layer 3024. In this case, the “active element” may include an upper surface and a lower surface. The lower surface of the “active element” may be soldered to the pattern layer 3024. Accordingly, the bottom surface of the "active element” may be opposite to the cooling plate 3012.
  • the "active element” may be electrically connected to the pattern layer 3024 by surface mount theory (SMT). For example, the "active element” may be electrically connected to the pattern layer 3024 by a plurality of wires.
  • the first substrate 3020 is completely different from the general substrate in that the first substrate 3020 is made of materials directly coated on the cooling plate 3012 based on the cooling plate 3012. Therefore, the first substrate 3020 may be omitted.
  • the first substrate 3020 may be referred to as an "adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024.”
  • the second substrate 3030 may be a printed circuit board (PCB).
  • the second substrate 3030 may be referred to as a “main substrate” as a substrate for mounting a device having a low heat generation amount. That is, the element mounted on the second substrate 3030 has a lower heat generation amount than the element mounted on the first substrate 3020.
  • the device mounted on the second substrate 3030 may also be referred to as a "passive device”.
  • the "passive element” may be a device that does not have an active function, such as only to transfer or absorb electrical energy, or to convert electrical energy.
  • the second substrate 3030 may be spaced apart from the cooling plate 3012 upwardly.
  • a member (not shown) for supporting the second substrate 3030 may be disposed on an inner side surface of the second region 3003 of the main body 3011.
  • the first substrate 3020 may be disposed between the second substrate 3030 and the cooling plate 3012. That is, the second substrate 3030 and the first substrate 3020 may be spaced apart and overlap.
  • the second substrate 3030 may have a lower cooling efficiency than the first substrate 3020. That is, the second substrate 3030 may be stacked spaced apart from the first substrate 3020. In this case, an area of the second substrate 3030 may be larger than that of the first substrate 3020.
  • the second substrate 3030 may be electrically connected to the first substrate 3020.
  • the second substrate 3030 may be electrically connected to the first substrate 3020 by the connecting member 3040.
  • the second substrate 3030 may be spaced apart from the coil unit 3050 to be described later.
  • the coil unit 3050 may penetrate the first substrate 3020.
  • the coil part 3050 is supported and disposed on the cooling plate 3012, and since the first substrate 3020 is disposed to be spaced apart from the cooling plate 3012, the first substrate 3020 and the coil part 3050 overlap each other.
  • a hole may be formed in the first substrate 3020 to allow the coil unit 3050 to pass therethrough. (See FIG. 16.)
  • the passive substrate may be mounted on both the top and bottom surfaces of the first substrate 3020. have. As a result, in the third embodiment, the mounting rate of the device can be increased in the same space.
  • connection member 3040 may electrically connect the first substrate 3020 and the second substrate 3030.
  • the connection member 3040 may be a fastening member by a press fit method.
  • the connection member 3040 may be a signal leg.
  • the connection member 3040 may be a flexible printed circuit board (FPCB). That is, the connection member 3040 may have various forms.
  • FPCB flexible printed circuit board
  • connection member 3040 is bent or bent by the first conductive member 3041 and the first conductive member 3041 to form part of the pattern layer 3024 to form a second substrate.
  • the second conductive member 3052 may be electrically connected to the 3030.
  • the first conductive member 3041 may be a pattern of the pattern layer 3024.
  • the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030.
  • the upper end of the second conductive member 3042 may be soldered to the second substrate 3030, or may be joined by pin bonding or the like.
  • connection member 3040 is bent or bent from the first conductive member 3041 and the first conductive member 3041 to be electrically connected to the pattern layer 3024 to form a second substrate.
  • the second conductive member 3052 may be electrically connected to the 3030.
  • the bottom surface of the first conductive member 3041 may be electrically connected to the pattern layer 3024.
  • the bottom surface of the first conductive member 3041 may be soldered to the pattern layer 3024 or may be bonded by pin bonding or the like.
  • the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030.
  • the upper end of the second conductive member 3042 may be soldered to the second substrate 3030 or may be coupled by pin bonding or the like.
  • the connection member 3040 is electrically connected to the pattern layer 3024, and is formed at the center of the plate-shaped first conductive member 3041 and the first conductive member 3041. It may include a second conductive member (3042) extending toward the second substrate 3030 and electrically connected to the second substrate (3030). In this case, the bottom surface of the first conductive member 3041 may be electrically connected to the pattern layer 3024. The bottom surface of the first conductive member 3041 may be soldered to the pattern layer 3024 or may be bonded by pin bonding or the like.
  • the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030. The upper end of the second conductive member 3042 may be soldered to the second substrate 3030 or may be coupled by pin bonding or the like.
  • the connecting member 3040 forms part of the pattern layer 3024 and has a first conductive member 3041 and a first conductive member having a groove formed at the center in the form of a plate.
  • a protrusion accommodated in the groove of the 3041 is formed, and may include a second conductive member 3042 extending from the protrusion toward the second substrate 3030 and electrically connected to the second substrate 3030.
  • the first conductive member 3041 may be a pattern of the pattern layer 3024.
  • a protrusion corresponding to the groove of the first conductive member 3041 may be formed at the lower end of the second conductive member 3042 to be soldered.
  • the second conductive member 3042 can be electrically connected to the first conductive member 3041 and supported by the first conductive member 3041 at the same time.
  • the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030.
  • the upper end of the second conductive member 3042 may be soldered to the second substrate 3030 or may be coupled by pin bonding or the like.
  • the "active element” is disposed on the first substrate 3020 and the “passive element” is disposed on the second substrate 3030.
  • the third embodiment is not limited thereto.
  • the "active element” and the “passive element” may be collectively referred to as an "electronic element”, and the “electronic element” may be a first substrate 3020 and a second substrate 3030 without being divided into “active element” and a passive element. It may be arranged in.
  • the coil unit 3050 may be supported by the cooling plate 3012. In this case, the lower portion of the coil unit 3050 may be coupled to the upper surface of the cooling plate 3012. In addition, the coil unit 3050 may be spaced apart from the second substrate 3030. In addition, the coil unit 3050 may be disposed to overlap the second substrate 3030. In this case, the coil unit 3050 may pass through the second substrate 3030. There may be a plurality of coil units 3050.
  • the coil unit 3050 may be a transcoil unit or an inductor coil unit. When the coil unit 3050 is a transcoil unit, the coil unit 3050 may convert the voltage of the power supplied from the outside. When the coil unit 3050 is an inductor coil unit, the coil unit 3050 may rectify the converted power.
  • the bus bar 3050 may be electrically connected to the coil unit 3050 to output the converted and / or rectified power to the outside.
  • the DC-DC converter 1 of the modification of the third embodiment will be described below with reference to the drawings.
  • 20 is a cross-sectional conceptual view showing a main board, an auxiliary board, and a cooling plate of a DC-DC converter according to a modification of the third embodiment.
  • the modification of the third embodiment has the same technical spirit as the third embodiment except for the first substrate 3020.
  • the description of the technical idea that is substantially the same as in the third embodiment will be omitted.
  • the first substrate of the modification of the third embodiment may include an insulating layer 3023 and a pattern layer 3024.
  • the first substrate may have a form in which the insulating layer 3023 and the pattern layer 3024 are sequentially stacked.
  • the first substrate may be composed of only the insulating layer 3023 and the pattern layer 3024.
  • the adhesive layer 3021 and the metal layer 3022 may be omitted.
  • the cold plate 3012 may perform the function of the metal layer 3022. Therefore, the adhesive layer 3021 for bonding the metal layer 3022 and the cooling plate 3012 may also be omitted.
  • the insulating layer 3023 of the first substrate may be directly coated on the upper surface of the cooling plate 3012. That is, the insulating layer 3023 and the upper surface of the cooling plate 3012 may contact.
  • the cooling plate 3012 may be a metal material to perform the supporting function of the metal layer 3022 of the third embodiment. That is, the first substrate of the modified example of the third embodiment may have the same effect as compared with the first substrate 3020 of the third embodiment.
  • the cooling efficiency can be increased, the size is reduced in the vertical direction to secure the space in the vertical direction caused by mounting the element on the lower surface of the second substrate 3030 It can also be solved, there is an advantage in the manufacturing process and cost due to the simplification of the member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present embodiment relates to a DC-DC converter comprising: a housing; a plurality of electronic components disposed inside the housing; and a flow path disposed on a lower substrate of the housing. The flow path comprises an expanding portion. The horizontal width of the expanding portion is greater than the horizontal width of a flow path on the front end of the expanding portion, and the vertical width of the expanding portion is less than the vertical width of the flow path on the front end of the expanding portion. The differential between the part in which the surface area of the vertical cross section of the flow path is the biggest and the part in which the surface area of the vertical cross section of the flow path is the smallest is 10% or less.

Description

직류-직류 컨버터DC-DC converter
본 실시예는 직류-직류 컨버터에 관한 것이다.This embodiment relates to a DC-DC converter.
이하에서 기술되는 내용은 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 기재한 것은 아니다.The contents described below provide background information on the present embodiment, but do not describe the prior art.
전력을 이용한 친환경 자동차의 출현 등과 함께 차량용 전장 부품의 경량화, 사이즈의 축소가 요구되고 있다. 차량용 DC-DC(직류-직류) 컨버터는 차량 내에서 직류전압을 제어하는 장치이다.Along with the emergence of eco-friendly vehicles using electric power, it is required to reduce the weight and size of automotive electronic components. A vehicle DC-DC converter is a device for controlling a DC voltage in a vehicle.
특히, 전기 자동차에서는 전지에서 생산된 전류의 전압을 변경하여 모터에 공급하는 역할을 한다. 또, 전기 자동차가 경사길을 내려갈 때는 모터가 발전기가 되어 전지를 충전하는데, 이 경우, 모터에서 생산된 전류의 전압을 변경하여 전지에 공급하는 역할을 한다.In particular, the electric vehicle serves to change the voltage of the current produced by the battery to supply the motor. In addition, when the electric vehicle goes down the slope, the motor becomes a generator to charge the battery. In this case, it changes the voltage of the current produced by the motor and supplies the battery.
DC-DC 컨버터에는 다양한 전자 부품이 배치되는데, DC-DC 컨버터의 경량화와 컴팩트한 구조의 구현 등 다양한 이유로 발열 모듈의 냉각 효율을 개선할 필요가 있다.Various electronic components are disposed in the DC-DC converter, and the cooling efficiency of the heating module needs to be improved for various reasons such as the light weight of the DC-DC converter and the implementation of a compact structure.
한편, DC-DC 컨버터의 주요 구성은, 외부로부터 공급받은 전류가 흐르는 1차코일, 1차코일을 흐르는 전류에 의해 유도 전류가 생성되는 2차코일 및 2차코일과 전기적으로 연결되어 변환된 전류의 주파수를 제어하는 인덕터코일이다. 좀 더 상세하게, 전류의 변환은 1차코일과 2차코일의 전자기적 상호작용에 의해 이루어지고, 변환된 전류는 인덕터코일을 거쳐 노이즈 주파수가 필터링된 후 버스바(busbar)를 통해 외부 장치로 공급된다. 일반적으로, 2차코일, 인덕터코일, 버스바는 시트 프레스 절단, 볼트 홀 타발, 절곡, 단조 등의 복잡한 과정을 거쳐 각각의 단일 부재로 제작된 후 볼트에 의해 결합되어 전기적으로 연결된다. 그러나 이러한 제작 과정은 너무 복잡하고, 나아가 볼트 체결시 체결이 완전히 안 되거나 소재 뒤틀림 등으로 갭을 유발할 수 있는 문제점이 있다. 특히, 2차코일-인덕터코일, 인덕터코일-버스바 사이의 갭은 전기적 특성 저하뿐만 아니라 접촉 저항 상승으로 발열 등의 문제를 유발한다. 또, 2차코일, 인덕터코일, 버스바가 단일 부재로 제작됨으로써 DC-DC 컨버터의 사이즈와 무게가 증가하는 문제점이 있다.On the other hand, the main configuration of the DC-DC converter, the primary coil through which the current supplied from the outside flows, the secondary coil and the secondary coil in which the induced current is generated by the current flowing through the primary coil and the current converted by being electrically connected The inductor coil controls the frequency of More specifically, the conversion of the current is made by the electromagnetic interaction of the primary and secondary coils, and the converted current is filtered through the inductor coil and the noise frequency is filtered out to the external device via a busbar. Supplied. In general, secondary coils, inductor coils, and busbars are made of each single member through complex processes such as sheet press cutting, bolt hole punching, bending, forging, and the like, and are coupled and electrically connected by bolts. However, such a manufacturing process is too complicated, and furthermore, there is a problem that the gap may be caused by the fastening of the bolts or the warping of the material. In particular, the gap between the secondary coil-inductor coil and the inductor coil-bus bar causes problems such as heat generation due to an increase in contact resistance as well as a decrease in electrical characteristics. In addition, since the secondary coil, the inductor coil, and the bus bar are made of a single member, there is a problem in that the size and weight of the DC-DC converter increase.
한편, DC-DC 컨버터는 하우징과 하우징에 수평 격벽 형태로 배치되어 하우징을 제1영역과 제2영역으로 구획하는 냉각판을 포함할 수 있다. 또, 제1영역에는 냉각유로가 형성되어 있어 냉각수가 흐르고 제2영역에는 전자부품(예를 들면, 여러 소자를 실장하는 기판)이 배치된다. 즉, 제1영역은 냉각부로 전자부품부를 냉각하는 기능을 수행하고, 제2영역은 전자부품부로 외부전원의 전압을 변환시키는 전자제어 기능을 수행한다. 최근 차량 제작사의 요청과 스마트 및 하이브리드 자동차의 도래에 의해, DC-DC 컨버터의 사이즈 축소와 전자부품부의 냉각효율을 높이는 것에 대한 연구가 진행되고 있다.Meanwhile, the DC-DC converter may include a cooling plate disposed in the housing and the horizontal partition wall to partition the housing into the first region and the second region. In addition, a cooling flow path is formed in the first region, and cooling water flows, and an electronic component (for example, a substrate on which various elements are mounted) is disposed in the second region. That is, the first region performs the function of cooling the electronic component by the cooling unit, and the second region performs the electronic control function of converting the voltage of the external power source into the electronic component. Recently, due to the request of a vehicle manufacturer and the arrival of smart and hybrid vehicles, research on reducing the size of the DC-DC converter and increasing the cooling efficiency of the electronic component part is being conducted.
본 제1실시예에서는 발열 모듈의 냉각 효율이 개선된 DC-DC 컨버터를 제공하고자 한다.In the first embodiment, to provide a DC-DC converter with improved cooling efficiency of the heat generating module.
본 제2실시예에서는 2차코일, 인덕터코일, 버스바를 일체로 형성함으로써 제조 공정을 단순화할 수 있고, 변환 효율을 향상시킬 수 있으며, 컨팩트(compact)한 구조를 가지는 코일 모듈을 포함하는 DC-DC 컨버터를 제공하고자 한다.In the second embodiment, the secondary coil, the inductor coil, and the bus bar are integrally formed to simplify the manufacturing process, improve conversion efficiency, and include a DC module including a coil module having a compact structure. To provide a DC converter.
본 제3실시예에서는 사이즈가 축소될 수 있고, 냉각효율이 높은 DC-DC 컨버터를 제공하고자 한다.In the third embodiment, it is possible to reduce the size and to provide a DC-DC converter having high cooling efficiency.
본 제1실시예의 DC-DC 컨버터는 하우징; 상기 하우징 내에 배치되는 복수 개의 전자 부품; 상기 하우징의 하판에 배치되는 유로를 포함하고, 상기 유로는 확장부를 포함하고, 상기 확장부의 가로 폭은 상기 확장부의 앞단의 유로의 가로 폭보다 크고, 상기 확장부의 세로 폭은 상기 확장부의 앞단의 유로의 세로 폭보다 작고, 상기 유로의 냉각 물질의 이동 방향과 수직인 단면의 면적이 가장 큰 부분과 가장 작은 부분의 차이는 10% 이내일 수 있다.The DC-DC converter of the first embodiment includes a housing; A plurality of electronic components disposed in the housing; A flow path disposed on the lower plate of the housing, wherein the flow path includes an expansion part, a width of the expansion part is greater than a width of the flow path of the front end of the expansion part, and a vertical width of the expansion part is a flow path of the front end of the expansion part The difference between the largest portion and the smallest portion of the cross section smaller than the vertical width of the cross section perpendicular to the moving direction of the cooling material of the flow path may be within 10%.
상기 복수 개의 전자 부품은 복수 개의 발열 소자를 포함하고, 상기 복수 개의 상기 발열 소자 중 하나는 상기 확장부와 대응되게 배치될 수 있다.The plurality of electronic components may include a plurality of heat generating elements, and one of the plurality of heat generating elements may be disposed to correspond to the extension part.
상기 복수 개의 상기 발열 소자 중 하나는 상기 확장부와 수직 방향으로 오버랩될 수 있다.One of the plurality of heat generating elements may overlap the expansion part in a vertical direction.
상기 확장부의 최대 수평 단면에서 상기 복수 개의 상기 발열 소자 중 하나와 수직 방향으로 오버랩되는 면적은 30% 이상일 수 있다.An area overlapping with one of the plurality of heating elements in a vertical direction in a maximum horizontal cross section of the extension may be 30% or more.
상기 확장부의 최대 수평 단면은 상기 복수 개의 상기 발열 소자 중 하나의 최대 수평 단면의 90% 이상일 수 있다.The maximum horizontal cross section of the extension may be 90% or more of the maximum horizontal cross section of one of the plurality of heating elements.
상기 확장부의 바닥면에는 상기 하판 방향으로 돌출된 돌출부가 위치할 수 있다.A protrusion protruding in the lower plate direction may be located on the bottom surface of the extension part.
상기 돌출부의 돌출 높이는 상기 냉각 물질의 이동 방향을 따라 증가하다가 감소할 수 있다.The protruding height of the protrusion may increase and decrease along the moving direction of the cooling material.
상기 돌출부는 수직 단면이 사각 형태이고, 상기 돌출부의 수직 단면의 면적은 상기 냉각 물질의 이동 방향을 따라 증가하다가 감소할 수 있다.The protrusion may have a vertical cross section, and the area of the vertical cross section of the protrusion may increase and decrease along a moving direction of the cooling material.
상기 돌출부의 수평 단면은 상기 하판을 향하여 볼록하게 곡률이 형성되는 형태이고, 상기 돌출부의 수평 단면의 면적은 상기 유로의 가로 폭의 중심에서 가장자리로 갈수록 감소할 수 있다.The horizontal cross section of the protrusion may have a convex curvature toward the lower plate, and the area of the horizontal cross section of the protrusion may decrease from the center of the horizontal width of the flow path toward the edge.
상기 유로의 수직 단면의 면적은 상기 냉각 물질의 이동 방향을 따라 동일할 수 있다.The area of the vertical cross section of the flow path may be the same along the direction of movement of the cooling material.
상기 복수 개의 상기 전자 부품은 복수 개의 발열 소자를 포함하고, 상기 복수 개의 상기 발열 소자는 다이오드 모듈을 포함하고, 상기 다이오드 모듈은 상기 확장부와 수직 방향으로 대응되게 배치될 수 있다.The plurality of electronic components may include a plurality of heat generating elements, the plurality of the heat generating elements may include a diode module, and the diode module may be disposed to correspond to the extension in a vertical direction.
상기 유로는 상기 냉각 물질이 순차적으로 이동하는 유입부와, 제1커브부와, 제2커브부와, 배출부를 더 포함하고, 상기 유입부와 상기 배출부는 상기 유로의 가로 폭 방향으로 이격되고, 상기 제1커브부와 상기 확장부는 상기 유로의 가로 폭 방향으로 이격될 수 있다.The flow passage further includes an inlet portion through which the cooling material moves sequentially, a first curve portion, a second curve portion, and a discharge portion, wherein the inflow portion and the discharge portion are spaced apart in the horizontal width direction of the flow passage, The first curve portion and the expansion portion may be spaced apart in the horizontal width direction of the flow path.
상기 유입부와 상기 배출부는 상호 평행하게 배치되고, 상기 제1커브부는 상기 확장부가 위치한 방향으로 볼록하게 곡률이 형성되고, 상기 제2커브부는 상기 제1커브부와 상기 확장부 사이의 공간이 위치한 방향과 반대 방향으로 볼록하게 곡률이 형성될 수 있다.The inlet portion and the discharge portion are disposed in parallel to each other, the first curve portion is formed convexly convex in the direction in which the expansion portion is located, the second curve portion is the space between the first curve portion and the expansion portion is located The curvature may be formed convexly in the opposite direction.
상기 복수 개의 전자 부품은 발열 소자를 포함하고, 상기 발열 소자는 인덕터와, 트랜스 포머와, ZVS(Zero-Voltage-Switching) 인덕터와, 스위칭 모듈과, 다이오드 모듈을 포함하고, 상기 인덕터는 상기 유입부와 수직 방향으로 대응되게 배치되고, 상기 트랜스 포머는 상기 제1커브부와 수직 방향으로 대응되게 배치되고, 상기 ZVS(Zero-Voltage-Switching) 인덕터는 상기 제2커브부의 앞단과 수직 방향으로 대응되게 배치되고, 상기 스위칭 모듈은 상기 제2커브부와 수직 방향으로 대응되게 배치되고, 상기 다이오드 모듈은 상기 확장부와 수직 방향으로 대응되게 배치될 수 있다.The plurality of electronic components includes a heating element, wherein the heating element includes an inductor, a transformer, a Zero-Voltage-Switching (ZVS) inductor, a switching module, and a diode module. The transformer is disposed to correspond to the first curve portion in a vertical direction, and the Zero-Voltage-Switching (ZVS) inductor is to correspond to the front end of the second curve portion in a vertical direction. The switching module may be disposed to correspond to the second curve portion in a vertical direction, and the diode module may be disposed to correspond to the expansion portion in a vertical direction.
상기 인덕터는 전류의 흐름을 연속적으로 제어하고, 상기 트랜스 포머는 전류의 전압을 변화시켜 전력을 제어하고, 상기 ZVS(Zero-Voltage-Switching) 인덕터는 경부하(light load, 輕負荷)를 제어하고, 상기 스위칭 모듈은 전류의 On/Off를 제어하고, 상기 다이오드 모듈은 전류의 방향을 제어할 수 있다.The inductor continuously controls the flow of current, the transformer changes the voltage of the current to control power, and the zero-voltage-switching (ZVS) inductor controls light load The switching module controls the on / off of the current, and the diode module controls the direction of the current.
상기 하우징은 상기 하판에서 위로 연장되는 측판과, 상기 측판의 위에 배치되는 상부 커버를 포함하고, 상기 복수 개의 전자 부품은 상기 하판과 상기 측판과 상기 상부 커버에 의해 형성되는 공간 내에 배치될 수 있다.The housing may include a side plate extending upward from the lower plate, and an upper cover disposed on the side plate, and the plurality of electronic components may be disposed in a space formed by the lower plate, the side plate, and the upper cover.
외부의 전자 기기와 전기적으로 연결되는 커넥터와, 상기 유로로 냉각 물질이 유입되는 유입구와, 상기 유로에서 냉각 물질이 배출되는 배출구를 더 포함하고, 상기 커넥터는 상기 측판에 배치되고, 상기 유입구와 상기 배출구는 상기 커넥터의 반대편에 위치하며 상기 측판에 배치될 수 있다.And a connector electrically connected to an external electronic device, an inlet port through which cooling material flows into the flow path, and an outlet port through which cooling material is discharged from the flow path, wherein the connector is disposed on the side plate. The outlet may be located opposite the connector and disposed on the side plate.
상기 하우징은 상기 하판에서 아래로 연장되는 제1측벽과, 상기 하판에서 아래로 연장되고 상기 제1측벽과 이격되는 제2측벽과, 상기 제1측벽과 상기 제2측벽의 아래에 배치되는 하부 커버를 포함하고, 상기 유로는 상기 하판과 상기 제1측벽과 상기 제2측벽과 상기 하부 커버에 의해 형성될 수 있다.The housing includes a first side wall extending downward from the lower plate, a second side wall extending downward from the lower plate and spaced apart from the first side wall, and a lower cover disposed below the first side wall and the second side wall. The flow path may be formed by the lower plate, the first side wall, the second side wall, and the lower cover.
상기 유로의 천장면은 상기 하판에 위치하고, 상기 유로의 바닥면은 상기 하부 커버에 위치하고, 상기 유로의 측면은 상기 제1측벽과 상기 제2측벽에 위치할 수 있다.The ceiling surface of the flow path may be located on the lower plate, the bottom surface of the flow path may be located on the lower cover, and the side surfaces of the flow path may be located on the first side wall and the second side wall.
상기 하판과 상기 하부 커버 사이의 수직 방향 최단 거리에 의해 상기 유로의 세로 폭이 정의되고, 상기 제1측벽과 상기 제2측벽 사이의 수평 방향 최단 거리에 의해 상기 유로의 가로 폭이 정의될 수 있다.The vertical width of the flow path may be defined by the vertical shortest distance between the lower plate and the lower cover, and the horizontal width of the flow path may be defined by the horizontal shortest distance between the first side wall and the second side wall. .
본 제2실시예의 DC-DC 컨버터는 1차코일; 상기 1차코일에 의해 유도 전류가 발생하는 2차코일; 상기 2차코일로부터 연장된 제1터미널과 제2터미널; 상기 제2터미널과 연결되어 전류를 정류하는 인덕터코일; 상기 인덕터코일로부터 연장된 제3터미널을 포함하고, 상기 제1터미널, 상기 1차코일, 상기 제2터미널, 상기 인덕터코일 및 상기 제3터미널은 일체로 형성될 수 있다.The DC-DC converter of the second embodiment includes a primary coil; A secondary coil in which an induced current is generated by the primary coil; A first terminal and a second terminal extending from the secondary coil; An inductor coil connected to the second terminal to rectify a current; And a third terminal extending from the inductor coil, wherein the first terminal, the primary coil, the second terminal, the inductor coil, and the third terminal may be integrally formed.
상기 2차코일은, 윗면과 아랫면을 포함하는 플레이트가 개방된 링를 형성하는 형태로, 일단은 상기 제1터미널과 연결되고, 타단은 상기 제2터미널과 연결될 수 있다.The secondary coil has a form in which a plate including an upper surface and a lower surface is formed to have an open ring, one end of which is connected to the first terminal, and the other end of which may be connected to the second terminal.
상기 인덕터코일은 윗면과 아랫면을 포함하는 플레이트가 입체나선으로 성장한 형태일 수 있다.The inductor coil may have a shape in which a plate including an upper surface and a lower surface is grown in three-dimensional spiral.
상기 인덕터코일은 복수 개의 모서리부를 포함한 각진 입체나선 형태일 수 있다.The inductor coil may have an angular solid spiral shape including a plurality of corner parts.
상기 제1터미널, 상기 제2터미널, 상기 제3터미널 중 적어도 하나 이상은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다.At least one or more of the first terminal, the second terminal, and the third terminal may include at least one of a bent portion and a curved portion.
상기 제1터미널, 상기 2차코일, 상기 제2터미널, 상기 인덕터코일 및 상기 제3터미널에는 쌍방향으로 전류가 흐를 수 있다.A current may flow in the first terminal, the secondary coil, the second terminal, the inductor coil, and the third terminal in both directions.
상기 2차코일이 배치되는 제1자기코어와, 상기 인덕터코일이 배치되는 제2자기코어를 더 포함할 수 있다.The method may further include a first magnetic core in which the secondary coil is disposed and a second magnetic core in which the inductor coil is disposed.
상기 제3터미널에서 연장된 버스 바(bus bar)를 더 포함하고, 상기 제1터미널, 상기 2차코일, 상기 제2터미널, 상기 인덕터코일, 상기 제3터미널 및 상기 버스 바(bus bar)는 일체로 형성될 수 있다.Further comprising a bus bar extending from the third terminal, wherein the first terminal, the secondary coil, the second terminal, the inductor coil, the third terminal and the bus bar (bus bar) It can be formed integrally.
본 제2실시예의 DC-DC 컨버터는 1차코일; 상기 1차코일에 의해 유도 전류가 발생하는 2차코일과 3차코일; 상기 2차코일로부터 연장된 제1터미널과 제2터미널; 상기 3차코일로부터 연장된 제3터미널과 제4터미널; 상기 제2터미널과 상기 제4터미널과 연결된 제5터미널; 상기 제5터미널로부터 연장되어 전류를 정류하는 인덕터코일; 상기 인덕터코일로부터 연장된 제6터미널; 상기 제6터미널로부터 연장된 버스바를 포함하고, 상기 2차코일과 상기 제1터미널과 상기 제2터미널은 일체로 형성되고, 상기 3차코일과 상기 제3터미널과 상기 제4터미널은 일체로 형성되고, 상기 제5터미널과 상기 인덕터코일과 상기 제6터미널과 상기 버스바는 일체로 형성될 수 있다.The DC-DC converter of the second embodiment includes a primary coil; A secondary coil and a tertiary coil in which induced current is generated by the primary coil; A first terminal and a second terminal extending from the secondary coil; A third terminal and a fourth terminal extending from the tertiary coil; A fifth terminal connected to the second terminal and the fourth terminal; An inductor coil extending from the fifth terminal to rectify current; A sixth terminal extending from the inductor coil; And a bus bar extending from the sixth terminal, wherein the secondary coil, the first terminal, and the second terminal are integrally formed, and the tertiary coil, the third terminal, and the fourth terminal are integrally formed. The fifth terminal, the inductor coil, the sixth terminal, and the bus bar may be integrally formed.
상기 2차 코일은 상기 1차 코일의 위에 배치되고, 상기 3차 코일은 상기 1차 코일의 아래에 배치되고, 상기 2차코일은 상기 제1터미널에 의해 다이오드 모듈과 전기적으로 연결되고, 상기 3차코일은 상기 제3터미널에 의해 상기 다이오드 모듈과 전기적으로 연결될 수 있다.The secondary coil is disposed above the primary coil, the tertiary coil is disposed below the primary coil, the secondary coil is electrically connected to the diode module by the first terminal, The car coil may be electrically connected to the diode module by the third terminal.
본 제3실시예의 DC-DC 컨버터는 냉각판을 포함하는 하우징; 상기 냉각판의 일면에 배치되는 냉각 유로; 상기 냉각판의 타면에 배치되는 절연층; 상기 절연층 상에 배치되는 패턴층; 상기 패턴층 상에 배치되는 전기소자; 상기 냉각판과 이격되어 상기 패턴층과 전기적으로 연결되는 기판을 포함할 수 있다.The DC-DC converter of the third embodiment includes a housing including a cooling plate; A cooling passage disposed on one surface of the cooling plate; An insulation layer disposed on the other surface of the cooling plate; A pattern layer disposed on the insulating layer; An electric element disposed on the pattern layer; The substrate may be spaced apart from the cooling plate and electrically connected to the pattern layer.
상기 전기소자는 상면과 하면을 포함하고, 상기 전기 소자의 상기 하면은 상기 패턴층에 솔더링되어 상기 냉각판과 대향할 수 있다.The electrical device may include an upper surface and a lower surface, and the lower surface of the electrical element may be soldered to the pattern layer to face the cooling plate.
상기 냉각판은 상기 하우징에 일체로 형성될 수 있따.The cooling plate may be integrally formed with the housing.
상기 냉각판의 일면에는 복수 개의 방열핀이 형성되어 있고, 상기 방열핀은 일측으로 연장된 돌기 형태일 수 있다.A plurality of heat dissipation fins are formed on one surface of the cooling plate, and the heat dissipation fins may have a protrusion shape extending to one side.
상기 제1기판과 상기 제2기판은 신호다리의 솔더링에 의하거나 프레스핏 방식에 의해 전기적으로 연결될 수 있다.The first substrate and the second substrate may be electrically connected by soldering a signal leg or by a press fit method.
상기 신호다리는, 상기 패턴층의 일부를 형성하는 제1전도부재; 상기 제1전도부재에서 만곡 또는 절곡되어 상기 기판과 전기적으로 연결되는 제2전도부재를 포함할 수 있다.The signal bridge may include a first conductive member forming part of the pattern layer; It may include a second conductive member which is bent or bent from the first conductive member and electrically connected to the substrate.
상기 신호다리는, 상기 패턴층과 전기적으로 연결되는 제1전도부재; 상기 제1전도부재에서 만곡 또는 절곡되어 상기 기판과 전기적으로 연결되는 제2전도부재를 포함할 수 있다.The signal bridge may include a first conductive member electrically connected to the pattern layer; It may include a second conductive member which is bent or bent from the first conductive member and electrically connected to the substrate.
상기 신호다리는, 상기 패턴층과 전기적으로 연결되고, 플레이트 형태의 제1전도부재; 상기 제1전도부재의 중심에서 상기 제2기판 측으로 연장되어 상기 기판과 전기적으로 연결되는 제2전도부재를 포함할 수 있다.The signal leg is electrically connected to the pattern layer and has a plate-shaped first conductive member; A second conductive member may extend from the center of the first conductive member to the second substrate and electrically connected to the substrate.
상기 신호다리는, 상기 패턴층의 일부를 형성하고, 플레이트 형태로 중앙에 홈이 형성되어 있는 제1전도부재; 상기 제1전도부재의 홈에 수용되는 돌출부가 형성되어 있고, 상기 돌출부에서 상기 기판 측으로 연장되어 상기 기판과 전기적으로 연결되는 제2전도부재를 포함할 수 있다.The signal leg may include a first conductive member which forms a part of the pattern layer and has a groove formed at the center in the form of a plate; The protrusion may be formed in the groove of the first conductive member, and may include a second conductive member extending from the protrusion toward the substrate to be electrically connected to the substrate.
상기 하우징의 일측 단부와 타측 단부는 개구되고, 상기 하우징은, 상기 일측 단부의 개구를 덮는 제1커버; 상기 타측 단부의 개구를 덮는 제2커버를 더 포함할 수 있다.One end and the other end of the housing is opened, the housing, the first cover for covering the opening of the one end; It may further include a second cover for covering the opening of the other end.
상기 절연층은 상기 냉각판의 타면에 코팅될 수 있다.The insulating layer may be coated on the other surface of the cooling plate.
본 제3실시예의 DC-DC 컨버터는 냉각유체의 유로가 형성된 제1영역과 상기 제1영역과 분리되어 전자부품이 배치되는 제2영역과 상기 제1,2영역 사이에 배치되는 냉각판을 포함하는 하우징; 상기 냉각판과 이격되어 상기 제2영역에 배치되는 메인기판; 상기 냉각판에 배치되는 절연층; 상기 절연층 상에 배치되는 패턴층; 상기 패턴층 상에 배치되는 전기소자를 포함할 수 있다.The DC-DC converter of the third embodiment includes a first region in which a flow path of a cooling fluid is formed, and a cooling region disposed between the first region and the second region in which the electronic component is disposed separately from the first region. A housing; A main substrate spaced apart from the cooling plate and disposed in the second region; An insulation layer disposed on the cooling plate; A pattern layer disposed on the insulating layer; It may include an electrical device disposed on the pattern layer.
본 제1실시예의 DC-DC 컨버터에서는 유로의 모든 부분에서 수직 단면의 면적의 차이가 10% 이내이기 때문에, 냉각 물질의 유속이 증가되고 압력 강하(pressure drop) 폭이 감소되어 냉각 효율이 향상될 수 있다. 나아가 발열량이 크고 면적이 넓은 전자 부품(일 예로, 다이오드 모듈)을 유로의 확장부(가로 폭이 크고, 세로 폭이 작은 부분)와 매칭시켜 집중적으로 냉각시킬 수 있다.In the DC-DC converter of the first embodiment, since the difference in the area of the vertical cross section in all parts of the flow path is within 10%, the flow rate of the cooling material is increased and the pressure drop width is reduced to improve the cooling efficiency. Can be. Furthermore, an electronic component (eg, a diode module) having a large amount of heat generation and a large area can be matched with an expansion part (a large width and a small vertical width) of the flow path, thereby intensively cooling.
본 제2실시예는 주조 공정에 의해 2차코일, 인덕터코일, 버스바가 일체로 형성되어 변환 효율을 높일 수 있고, 컨팩트한 구조를 가지는 경량화된 코일 모듈을 포함하는 DC-DC 컨버터를 제공한다.According to the second embodiment of the present invention, a secondary coil, an inductor coil, and a bus bar are integrally formed by a casting process to increase conversion efficiency, and provide a DC-DC converter including a lightweight coil module having a compact structure. .
본 제3실시예에 의하면 적층된 메인기판과 보조기판을 이용하여, 동일 공간에서 소자의 실장율을 높임으로써, 전자부품조립체 및 컨버터의 사이즈를 줄일 수 있다. 나아가 발열량이 높은 능동소자를 냉각판과 직접 접하는 보조기판에 실장함으로써, 냉각효율을 높일 수 있다.According to the third embodiment, the size of the electronic component assembly and the converter can be reduced by increasing the mounting rate of the devices in the same space by using the stacked main substrate and the auxiliary substrate. Furthermore, the cooling efficiency can be improved by mounting an active element having a high heat generation amount on an auxiliary substrate directly contacting the cooling plate.
도 1은 본 제1실시예의 DC-DC 컨버터를 위에서 바라본 사시도이다.1 is a perspective view from above of the DC-DC converter of the first embodiment.
도 2는 본 제1실시예의 DC-DC 컨버터에서 상부 커버를 분해한 사시도이다.2 is an exploded perspective view of the upper cover in the DC-DC converter of the first embodiment.
도 3은 본 제1실시예의 DC-DC 컨버터에서 상부 커버와 보호판을 분해한 사시도이다.3 is an exploded perspective view of the upper cover and the protective plate in the DC-DC converter of the first embodiment.
도 4는 본 제1실시예의 DC-DC 컨버터를 A-A'선을 기준으로 나타낸 단면도이다.4 is a cross-sectional view of the DC-DC converter of the first embodiment with reference to the A-A 'line.
도 5는 본 제1실시예의 DC-DC 컨버터에서 하부 커버를 제거하고 아래에서 바라본 사시도이다.5 is a perspective view from below of a lower cover removed from the DC-DC converter of the first embodiment.
도 6은 본 제1실시예의 DC-DC 컨버터에서 하판을 제거한 평면도이다.6 is a plan view of the lower plate removed in the DC-DC converter of the first embodiment.
도 7은 본 제1실시예의 DC-DC 컨버터에서 하부 커버를 제거한 평면도이다.7 is a plan view of the lower cover removed from the DC-DC converter of the first embodiment.
도 8은 본 제1실시예의 하부 커버를 나타낸 평면도와 측면도이다.8 is a plan view and a side view showing the lower cover of the first embodiment.
도 9의 (1)은 본 제1실시예의 확장부의 "수직 단면"을 나타내었고, 도 9의 (2)는 유로의 다른 부분의 "수직 단면"을 나타내었다.FIG. 9 (1) shows the "vertical cross section" of the expansion part of this 1st Example, and FIG. 9 (2) shows the "vertical cross section" of the other part of a flow path.
도 10은 본 제2실시예의 비교예의 DC-DC 컨버터를 나타낸 사시도이다.10 is a perspective view showing a DC-DC converter of a comparative example of the second embodiment.
도 11은 본 제2실시예의 DC-DC 컨버터를 나타낸 사시도이다.Fig. 11 is a perspective view showing the DC-DC converter of the second embodiment.
도 12는 본 제2실시예의 코일 모듈이 제1,2자기코어에 장착된 상태를 나타낸 사시도이다(1차 코일 생략).12 is a perspective view showing a state in which the coil module of the second embodiment is mounted on the first and second magnetic cores (primary coil omitted).
도 13은 본 제2실시예의 코일 모듈을 나타낸 사시도이다(1차 코일 생략).Fig. 13 is a perspective view showing the coil module of the second embodiment (primary coil omitted).
도 14는 본 제2실시예의 변형예의 코일 모듈이 제1,2자기코어에 장착된 상태를 나타낸 사시도이다.14 is a perspective view showing a state in which the coil module of the modification of the second embodiment is mounted on the first and second magnetic cores.
도 15는 본 제2실시예의 변형예의 코일 모듈을 나타낸 분해 사시도이다.15 is an exploded perspective view showing a coil module of a modification of the second embodiment.
도 16은 제1커버가 분리된 상태의 본 제3실시예의 DC-DC 컨버터를 나타내는 사시도이다.Fig. 16 is a perspective view showing the DC-DC converter of the third embodiment with the first cover removed.
도 17은 본 제3실시예의 DC-DC 컨버터를 나타낸 절단 사시도이다.Fig. 17 is a cutaway perspective view of the DC-DC converter of the third embodiment.
도 18은 본 제3실시예의 DC-DC 컨버터의 메인기판, 보조기판 및 냉각판을 나타낸 단면 개념도이다.18 is a cross-sectional conceptual view showing a main board, an auxiliary board, and a cooling plate of the DC-DC converter of the third embodiment.
도 19는 본 제3실시예의 DC-DC 컨버터의 신호다리를 나타낸 개념도이다.19 is a conceptual diagram showing the signal legs of the DC-DC converter of the third embodiment.
도 20은 본 제3실시예의 변형예의 DC-DC 컨버터의 메인기판, 보조기판 및 냉각판을 나타낸 단면 개념도이다.20 is a cross-sectional conceptual view showing a main board, an auxiliary board, and a cooling plate of a DC-DC converter according to a modification of the third embodiment.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 설명한다. 각 도면의 구성요소들에 참조부호를 기재함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표시한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described by way of example. In describing the reference numerals in the components of each drawing, the same components are denoted by the same reference numerals as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, when it is determined that a detailed description of a related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속될 수 있지만, 그 구성 요소와 그 다른 구성요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiments of the present disclosure, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. When a component is described as being "connected", "coupled" or "connected" to another component, the component may be directly connected, coupled or connected to the other component, but the component and its other components It is to be understood that another component may be "connected", "coupled" or "connected" between the elements.
<제1실시예>First Embodiment
이하, "수직 방향"은 상측 및/또는 하측 방향을 의미할 수 있고, "수평 방향"은 "수직 방향"과 수직인 평면상의 임의의 방향 중 하나를 의미할 수 있다. 또, "수직 방향"은 유로(200)의 세로 폭 방향일 수 있고, "수평 방향"은 유로(200)의 가로 폭 방향일 수 있다. 또, "수직 단면"은 냉각 물질의 이동 방향과 수직인 단면을 의미할 수 있고, "수평 단면"은 "수직 단면"과 수직인 단면일 수 있다.Hereinafter, "vertical direction" may mean an upper direction and / or a lower direction, and "horizontal direction" may mean one of any direction on a plane perpendicular to the "vertical direction". In addition, the "vertical direction" may be the vertical width direction of the flow path 200, and the "horizontal direction" may be the horizontal width direction of the flow path 200. Further, "vertical cross section" may mean a cross section perpendicular to the moving direction of the cooling material, and "horizontal cross section" may be a cross section perpendicular to the "vertical cross section".
이하, 도면을 참조하여 본 제1실시예의 DC-DC 컨버터(1)를 설명한다. 도 1은 본 제1실시예의 DC-DC 컨버터를 위에서 바라본 사시도이고, 도 2는 본 제1실시예의 DC-DC 컨버터에서 상부 커버를 분해한 사시도이고, 도 3은 본 제1실시예의 DC-DC 컨버터에서 상부 커버와 보호판을 분해한 사시도이고, 도 4는 본 제1실시예의 DC-DC 컨버터를 A-A'선을 기준으로 나타낸 단면도이고, 도 5는 본 제1실시예의 DC-DC 컨버터에서 하부 커버를 제거하고 아래에서 바라본 사시도이고, 도 6은 본 제1실시예의 DC-DC 컨버터에서 하판을 제거한 평면도이고, 도 7은 본 제1실시예의 DC-DC 컨버터에서 하부 커버를 제거한 평면도이고, 도 8은 본 제1실시예의 하부 커버를 나타낸 평면도와 측면도이고, 도 9의 (1)은 본 제1실시예의 확장부의 "수직 단면"을 나타내었고, 도 9의 (2)는 유로의 다른 부분의 "수직 단면"을 나타내었다.Hereinafter, the DC-DC converter 1 of the first embodiment will be described with reference to the drawings. 1 is a perspective view from above of the DC-DC converter of the first embodiment, FIG. 2 is an exploded perspective view of the DC-DC converter of the first embodiment, and FIG. 3 is a DC-DC of the first embodiment. 4 is an exploded perspective view illustrating an upper cover and a protective plate of the converter, and FIG. 4 is a cross-sectional view of the DC-DC converter of the first embodiment with reference to the line A-A ', and FIG. FIG. 6 is a plan view of the lower plate removed from the DC-DC converter of the first embodiment, and FIG. 7 is a plan view from which the lower cover is removed from the DC-DC converter of the first embodiment. FIG. 8 is a plan view and a side view showing the lower cover of the first embodiment, FIG. 9 (1) shows the "vertical cross section" of the extension of the first embodiment, and FIG. 9 (2) shows another part of the flow path. The "vertical cross section" of is shown.
DC-DC 컨버터(1000)는 차량에 사용될 수 있다. 전기 자동차를 예를 들면, DC-DC 컨버터(1000)는 외부의 전원 기기(리튬이온전지 등)로부터 전류를 공급받아 전압을 승압 또는 강하시켜 외부의 전자 기기(모터 등)에 공급하여 모터 등의 회전수를 제어하는 역할을 할 수 있다.The DC-DC converter 1000 may be used in a vehicle. For example, the DC-DC converter 1000 receives an electric current from an external power supply device (such as a lithium ion battery) and boosts or lowers a voltage to supply an external electronic device (motor, etc.) to supply a motor. It can play a role to control the rotation speed.
DC-DC 컨버터(1000)는 하우징(100), 유로(200), 복수 개의 전자 부품(300), 유입구(400), 배출구(500), 단자(600) 및 1개 이상의 커넥터(700)를 포함할 수 있다.The DC-DC converter 1000 includes a housing 100, a flow path 200, a plurality of electronic components 300, an inlet 400, an outlet 500, a terminal 600, and one or more connectors 700. can do.
하우징(100)은 DC-DC 컨버터(1000)의 외장 부재일 수 있다. 하우징(100)에는 유로(200)가 형성될 수 있다. 하우징(100)의 내부에는 복수 개의 전자 부품(300)이 수용될 수 있다. 하우징(100)의 하판(110)을 사이에 두고 내부에는 복수 개의 전자 부품(300)이 배치되고, 아래에는 유로(200)가 위치할 수 있다. 유로(200)를 따라 흐르는 냉각 물질에 의해 복수 개의 전자 부품(300)은 냉각될 수 있다. 하우징(100)은 유입구(400), 배출구(500), 단자(600) 및 1개 이상의 커넥터(700)와 연결될 수 있다. 하우징(100)의 재질은 플라스틱 재질 및/또는 금속 재질을 포함할 수 있다.The housing 100 may be an exterior member of the DC-DC converter 1000. The flow path 200 may be formed in the housing 100. The plurality of electronic components 300 may be accommodated in the housing 100. A plurality of electronic components 300 may be disposed therein with the lower plate 110 of the housing 100 interposed therebetween, and a flow path 200 may be disposed below. The plurality of electronic components 300 may be cooled by the cooling material flowing along the flow path 200. The housing 100 may be connected to the inlet 400, the outlet 500, the terminal 600, and one or more connectors 700. The material of the housing 100 may include a plastic material and / or a metal material.
하우징(100)은 하판(110), 측판(120), 보호판(121), 상부 커버(130), 하부 커버(140), 제1측벽(150) 및 제2측벽(160)을 포함할 수 있다.The housing 100 may include a lower plate 110, a side plate 120, a protective plate 121, an upper cover 130, a lower cover 140, a first side wall 150, and a second side wall 160. .
하판(110)은 하우징(100)의 내부 공간의 하면을 형성할 수 있다. 하판(110)은 대략적으로 사각 플레이트 형태일 수 있다. 측판(120)은 하우징(100)의 내부 공간의 측면을 형성할 수 있다. 측판(120)은 하판(110)의 가장자리에서 상측으로 연장된 형태일 수 있다. 하우징(100)에는 하판(110)과 측판(120)에 의해 상면이 개방된 내부 공간이 마련될 수 있다. 하우징(100)의 내부 공간에는 복수 개의 전자 부품(300)이 수용될 수 있다.The lower plate 110 may form a lower surface of the inner space of the housing 100. The lower plate 110 may have a substantially rectangular plate shape. The side plate 120 may form a side surface of the inner space of the housing 100. The side plate 120 may have a form extending upward from the edge of the lower plate 110. The housing 100 may be provided with an inner space in which the upper surface is opened by the lower plate 110 and the side plate 120. A plurality of electronic components 300 may be accommodated in the internal space of the housing 100.
측판(120)의 일측에는 유입구(400), 배출구(500) 및 단자(600)가 위치할 수 있다. 측판(120)의 타측에는 1개 이상의 커넥터(700)가 위치할 수 있다. 이 경우, 유입구(400), 배출구(500) 및 단자(600)는 1개 이상의 커넥터(700)의 반대편에 위치할 수 있다.One side of the side plate 120 may be located inlet 400, outlet 500 and the terminal 600. One or more connectors 700 may be located at the other side of the side plate 120. In this case, the inlet 400, the outlet 500, and the terminal 600 may be located at opposite sides of the one or more connectors 700.
보호판(121)은 하우징(100)의 내부 공간에 위치할 수 있다. 보호판(121)은 메인 기판(310)과 위로 이격되어 배치될 수 있다. 보호판(121)은 메인 기판(310)의 적어도 일부와 수직 방향으로 오버랩될 수 있다. 즉, 메인 기판(310)의 상면 중 일부는 보호판(121)에 의해 커버될 수 있다. 보호판(121)은 메인 기판(310)에서 특정 부분을 보호하기 위한 커버 부재일 수 있다.The protection plate 121 may be located in an inner space of the housing 100. The protective plate 121 may be spaced apart from the main substrate 310 upwardly. The protection plate 121 may overlap at least a portion of the main substrate 310 in a vertical direction. That is, some of the upper surface of the main substrate 310 may be covered by the protective plate 121. The protection plate 121 may be a cover member for protecting a specific portion of the main substrate 310.
상부 커버(130)는 측판(120)의 위에 배치될 수 있다. 상부 커버(130)와 측판(120)은 스크류에 의해 체결될 수 있다. 상부 커버(130)는 대략적으로 사각 플레이트 형태일 수 있다. 상부 커버(130)는 상부 커버(130)에 의해 하우징(100)의 내부 공간은 폐쇄될 수 있다. 상부 커버(130)는 중앙에 격자 패턴으로 위로 볼록하게 돌출된 패턴부(131)를 포함할 수 있다. 패턴부(131)는 상부 커버(130)의 강도를 증가시켜, 하우징(100)의 내부 공간에 수용된 복수 개의 전자 부품(300)을 보호하는 기능을 수행할 수 있다. 상부 커버(130)는 가장자리에서 수평 방향으로 돌출되는 플랜지부(132)를 포함할 수 있다. 플랜지부(132)는 플레이트 형태로 스크류가 삽입되는 홀이 형성될 수 있다.The upper cover 130 may be disposed on the side plate 120. The upper cover 130 and the side plate 120 may be fastened by a screw. The top cover 130 may be in the form of a substantially square plate. The inner cover of the housing 100 may be closed by the upper cover 130. The upper cover 130 may include a pattern portion 131 protruding upwardly in a grid pattern in the center thereof. The pattern unit 131 may increase the strength of the upper cover 130 to perform a function of protecting the plurality of electronic components 300 accommodated in the internal space of the housing 100. The upper cover 130 may include a flange portion 132 protruding in the horizontal direction from the edge. The flange portion 132 may have a hole in which a screw is inserted in the form of a plate.
하판(110)에는 유로(200)가 형성될 수 있다. 하판(110)의 하면에는 유로(200)가 위치할 수 있다. 제1측벽(150)과 제2측벽(160)은 서로 수평 방향으로 이격되어, 하판(110)의 하면에서 아래로 연장될 수 있다. 제1측벽(150)과 제2측벽(160)은 유로(200)가 유입구(400) 및 배출구(500)와 연결되는 지점에서 서로 연결될 수도 있다. 하판(110)과 제1측벽(150)과 제2측벽(160)에 의해 하면이 개방된 유로(200)가 형성될 수 있다. 하부 커버(140)는 제1측벽(150)과 제2측벽(160)의 아래에 위치하여 개방된 하면을 폐쇄할 수 있다.The lower plate 110 may have a flow path 200 formed therein. The flow path 200 may be located on the bottom surface of the lower plate 110. The first side wall 150 and the second side wall 160 may be spaced apart from each other in the horizontal direction, and may extend downward from the bottom surface of the lower plate 110. The first side wall 150 and the second side wall 160 may be connected to each other at the point where the flow path 200 is connected to the inlet 400 and the outlet 500. A flow path 200 having a lower surface opened by the lower plate 110, the first side wall 150, and the second side wall 160 may be formed. The lower cover 140 may be disposed under the first side wall 150 and the second side wall 160 to close the opened lower surface.
즉, 하판(110)의 하면과 제1측벽(150)의 내측면과 제2측벽(160)의 내측면과 하부 커버(140)의 상면에 의해 유로(200)가 형성될 수 있다. 이 경우, 유로(200)의 천장면은 하판(110)의 하면에 위치할 수 있고, 유로(200)의 양측면은 제1측벽(150)의 내측면과 제2측벽(160)의 내측면에 각각 위치할 수 있고, 유로(200)의 바닥면은 하부 커버(140)의 상면에 위치할 수 있다.That is, the flow path 200 may be formed by the lower surface of the lower plate 110, the inner surface of the first side wall 150, the inner surface of the second side wall 160, and the upper surface of the lower cover 140. In this case, the ceiling surface of the flow path 200 may be located on the bottom surface of the lower plate 110, and both side surfaces of the flow path 200 may be formed on the inner surface of the first side wall 150 and the inner surface of the second side wall 160. Each may be positioned, and the bottom surface of the flow path 200 may be positioned on the upper surface of the lower cover 140.
유로(200)의 가로 폭(a, a')은 제1측벽(150)의 내측면과 제2측벽(160)의 내측면 사이의 "수평 방향" 최단거리일 수 있다. 유로(200)의 세로 폭(b, b')은 하판(110)의 하면과 하부 커버(140)의 상면 사이의 "수직 방향" 최단거리일 수 있다. 유로(200)의 세로 폭(a, a')과 유로(200)의 가로 폭(b, b')은 유로(200)의 "수직 단면(40, 50)"의 세로변과 가로변일 수 있다.The horizontal widths a and a 'of the flow path 200 may be the "horizontal direction" shortest distance between the inner side surface of the first side wall 150 and the inner side surface of the second side wall 160. The vertical widths b and b ′ of the flow path 200 may be the “vertical direction” shortest distance between the lower surface of the lower plate 110 and the upper surface of the lower cover 140. The vertical widths a and a 'of the flow path 200 and the horizontal widths b and b' of the flow path 200 may be the vertical and horizontal sides of the “ vertical cross-sections 40 and 50” of the flow path 200. .
유로(200)에 흐르는 냉각 물질은 복수 개의 전자 부품(300)에서 방출하는 열을 흡수할 수 있다. 이 경우, 하판(110)을 통해 열전달이 일어나며, 복수 개의 전자 부품(300)은 냉각될 수 있다.The cooling material flowing in the flow path 200 may absorb heat emitted from the plurality of electronic components 300. In this case, heat transfer occurs through the lower plate 110, and the plurality of electronic components 300 may be cooled.
하부 커버(140)는 플레이트 형태일 수 있다. 하부 커버(140)는 하판(110)에서 아래로 이격되어 위치할 수 있다. 하부 커버(140)의 상면과 하판(110)의 하면은 제1측벽(150)과 제2측벽(160)에 의해 연결될 수 있다. 하부 커버(140)는 상면에서 상측으로(하우징의 하판이 위치하는 방향) 돌출된 돌출부(141)를 포함할 수 있다. 돌출부(141)는 유로(200)의 확장부(240)와 수직 방향으로 대응되게 위치할 수 있다. 확장부(240)의 "수직 단면(40)" 상에서 가로 폭(a)이 커지지만, 세로 폭(b)은 작아질 수 있다. 따라서 확장부(240)와 확장부(240)의 앞단(상류측)과 확장부(250)의 뒷단(하류측)에서 "수직 단면(50)"의 면적은 일정하게 유지될 수 있다(10% 이내, 도 9 참조). 그 결과, 냉각 물질의 압력 차이가 커지고, 유속이 느려져 냉각효율이 떨어지는 것을 방지할 수 있다.The lower cover 140 may be in the form of a plate. The lower cover 140 may be spaced apart from the lower plate 110. The upper surface of the lower cover 140 and the lower surface of the lower plate 110 may be connected by the first side wall 150 and the second side wall 160. The lower cover 140 may include a protrusion 141 protruding upward from the upper surface (the direction in which the lower plate of the housing is located). The protrusion 141 may be positioned to correspond to the expansion part 240 of the flow path 200 in a vertical direction. Although the width a is larger on the "vertical cross-section 40" of the extension 240, the width b may be smaller. Therefore, the area of the "vertical cross section 50" at the extension 240, the front end (upstream) of the extension 240, and the rear end (downstream) of the extension 250 can be kept constant (10%). Within, see FIG. 9). As a result, it is possible to prevent the pressure difference between the cooling materials from becoming larger and the flow rate to be lowered to lower the cooling efficiency.
하부 커버(140)는 플레이트 형태일 수 있다. 하부 커버(140)는 제1실링부(142)와 제2실링부(143)를 포함할 수 있다. 제1실링부(142)와 제2실링부(143)의 재질은 고무와 같은 실링 재질을 포함할 수 있다. 제1실링부(142)와 제2실링부(143)는 하부 커버(140)의 하면에서 아래로 돌출된 형태일 수 있다. 제1실링부(142)와 제2실링부(143)는 "수평 방향"(유로의 가로 방향)으로 서로 이격되어 위치할 수 있다.The lower cover 140 may be in the form of a plate. The lower cover 140 may include a first sealing part 142 and a second sealing part 143. The material of the first sealing part 142 and the second sealing part 143 may include a sealing material such as rubber. The first sealing part 142 and the second sealing part 143 may be formed to protrude downward from the lower surface of the lower cover 140. The first sealing part 142 and the second sealing part 143 may be spaced apart from each other in the "horizontal direction" (the transverse direction of the flow path).
제1실링부(142)는 제1측벽(150)과 "수직 방향"으로 오버랩될 수 있다. 제1실링부(142)는 제1측벽(150)의 하면과 접촉할 수 있다. 제1실링부(142)는 제1측벽(150)과 대응되는 형태를 가질 수 있다.The first sealing part 142 may overlap the first side wall 150 in the "vertical direction". The first sealing part 142 may contact the bottom surface of the first side wall 150. The first sealing part 142 may have a shape corresponding to the first side wall 150.
제2실링부(143)는 제2측벽(160)과 "수직 방향"으로 오버랩될 수 있다. 제2실링부(143)는 제2측벽(160)의 하면과 접촉할 수 있다. 제2실링부(143)는 제2측벽(160)과 대응되는 형태를 가질 수 있다.The second sealing part 143 may overlap the second side wall 160 in the "vertical direction". The second sealing part 143 may contact the bottom surface of the second side wall 160. The second sealing part 143 may have a shape corresponding to the second side wall 160.
제1실링부(142)는 하부 커버(140)와 제1측벽(150) 사이의 간극을 폐쇄하는 기능을 수행할 수 있고, 제2실링부(143)는 하부 커버(140)와 제2측벽(160) 사이의 간극을 폐쇄하는 기능을 수행할 수 있다.The first sealing part 142 may function to close the gap between the lower cover 140 and the first side wall 150, and the second sealing part 143 may serve as the lower cover 140 and the second side wall. The function of closing the gap between the 160 may be performed.
제1실링부(142)와 제2실링부(143)는 제1측벽(150) 및 제2측벽(160)과 마찬가지로 유로(200)가 유입구(400) 및 배출구(500)와 연결되는 지점에서 서로 연결될 수도 있다.Like the first side wall 150 and the second side wall 160, the first sealing part 142 and the second sealing part 143 are formed at the point where the flow path 200 is connected to the inlet 400 and the outlet 500. It may be connected to each other.
하부 커버(140)는 제1측벽(150) 및 제2측벽(160)과 스크류에 의해 체결될 수 있다. 하부 커버(140)는 가이드홀(144)을 포함할 수 있다. 가이드홀(144)에는 하판(110)에서 아래로 돌출된 가이드돌기(111)가 삽입되어, 하부 커버(140)를 가이드할 수 있다. 하부 커버(140)는 플랜지부(145)를 포함할 수 있다. 하부 커버(140)의 플랜지부(145)에는 스크류가 삽입되는 홀이 형성될 수 있다.The lower cover 140 may be fastened to the first side wall 150 and the second side wall 160 by a screw. The lower cover 140 may include a guide hole 144. The guide protrusion 111 protruding downward from the lower plate 110 may be inserted into the guide hole 144 to guide the lower cover 140. The lower cover 140 may include a flange portion 145. A hole into which a screw is inserted may be formed in the flange portion 145 of the lower cover 140.
유로(200)는 하우징(100)에 형성될 수 있다. 유로(200)는 하우징(100)의 일측에 위치할 수 있다. 유로(200)는 하우징(100)의 하판(110)의 아래에 위치할 수 있다. 따라서 하우징(100)의 하판(110)은 "냉각판"일 수 있다. 유로(200)는 유입구(400)와 연결될 수 있다. 유로(200)는 배출구(500)와 연결될 수 있다. 유로(200)의 최상류는 유입구(400)와 연결되어 냉각 물질을 공급받을 수 있다. 유로(200)의 최하류는 배출구(500)와 연결되어 냉각 물질이 배출될 수 있다. 냉각 물질은 유로(200)를 따라 흐르며 복수 개의 전자 부품(300)에서 발생한 열을 냉각시킬 수 있다. 냉각 물질에는 다양한 종류의 열교환 유체(일 예로, 냉각수)가 사용될 수 있다.The flow path 200 may be formed in the housing 100. The flow path 200 may be located at one side of the housing 100. The flow path 200 may be located under the lower plate 110 of the housing 100. Therefore, the lower plate 110 of the housing 100 may be a "cooling plate". The flow path 200 may be connected to the inlet 400. The flow path 200 may be connected to the outlet 500. The most upstream of the flow path 200 may be connected to the inlet 400 to receive a cooling material. The most downstream of the flow path 200 may be connected to the outlet 500 to discharge the cooling material. The cooling material flows along the flow path 200 and cools the heat generated by the plurality of electronic components 300. Various types of heat exchange fluids (eg, cooling water) may be used for the cooling material.
유로(200)는 하판(110), 제1측벽(150), 제2측벽(160) 및 하부 커버(140)에 의해 형성될 수 있다. 유로(200)의 바닥면은 하부 커버(140)의 상면에 위치할 수 있다. 즉, 하부 커버(140)의 상면은 유로(200)의 바닥면일 수 있다. 유로(200)의 천장면은 하판(110)의 하면에 위치할 수 있다. 즉, 하판(110)의 하면은 유로(200)의 천장면일 수 있다. 유로(200)의 양측면은 제1측벽(150)과 제2측벽(160)의 내측면에 각각 위치할 수 있다. 즉, 제1측벽(150)과 제2측벽(160)의 내측면은 유로(200)의 양측면일 수 있다.The flow path 200 may be formed by the lower plate 110, the first side wall 150, the second side wall 160, and the lower cover 140. The bottom surface of the flow path 200 may be located on the top surface of the lower cover 140. That is, the upper surface of the lower cover 140 may be the bottom surface of the flow path 200. The ceiling surface of the flow path 200 may be located on the bottom surface of the lower plate 110. That is, the lower surface of the lower plate 110 may be the ceiling surface of the flow path 200. Both side surfaces of the flow path 200 may be located on inner surfaces of the first side wall 150 and the second side wall 160, respectively. That is, inner surfaces of the first side wall 150 and the second side wall 160 may be both side surfaces of the flow path 200.
유로(200)의 가로 폭(a, a')은 제1측벽(150)의 내측면과 제2측벽(160)의 내측면 사이의 "수평 방향" 최단 거리에 의해 정의될 수 있고, 유로(200)의 세로 폭(b, b')은 하판(110)의 하면과 하부 커버(140)의 상면 사이의 "수직 방향" 최단 거리에 의해 정의될 수 있다. 유로(200)의 가로 폭(a, a')과 유로(200)의 세로 폭(b, b')은 냉각 물질의 이동 방향을 따라 달라질 수 있다. 일 예로, 확장부(240)에서 유로(200)의 가로 폭(a)은 확장부(240)의 앞단(확장부보다 상류측) 또는 뒷단(확장부보다 하류측)의 가로 폭(a')보다 클 수 있다. 또, 확장부(240)에서 유로(200)의 세로 폭(b)은 확장부(240)의 앞단(확장부보다 상류측) 또는 뒷단(확장부보다 하류측)의 세로 폭(b')보다 작을 수 있다.The horizontal widths a and a 'of the flow path 200 may be defined by the "horizontal" shortest distance between the inner side surface of the first side wall 150 and the inner side surface of the second side wall 160. The vertical widths b and b 'of 200 may be defined by the "vertical direction" shortest distance between the lower surface of the lower plate 110 and the upper surface of the lower cover 140. The horizontal widths a and a 'of the flow path 200 and the vertical widths b and b' of the flow path 200 may vary according to the moving direction of the cooling material. For example, the horizontal width a of the flow path 200 in the expansion part 240 is the horizontal width a 'of the front end (upstream side of the extension part) or the rear end (downstream side of the extension part) of the expansion part 240. Can be greater than In addition, the vertical width b of the flow path 200 in the expansion part 240 is larger than the vertical width b 'of the front end (upstream side of the expansion part) or the rear end (downstream side of the expansion part) of the expansion part 240. Can be small.
유로(200)는 유입부(210), 제1커브부(220), 제2커브부(230), 확장부(240) 및 배출부(250)를 포함할 수 있다. 유입부(210)의 상류는 유입구(400)와 연결될 수 있다. 배출부(250)의 하류는 배출구(500)와 연결될 수 있다. 유입부(210)의 하류는 제1커브부(220)의 상류와 연결될 수 있고, 제1커브부(220)의 하류는 제2커브부(230)의 상류와 연결될 수 있고, 제2커브부(230)의 하류는 확장부(240)의 상류와 연결될 수 있고, 확장부(240)의 하류는 배출부(250)의 상류와 연결될 수 있다. 따라서 유입구(400)에서 유입된 냉각 물질은 유입부(210), 제1커브부(220), 제2커브부(230), 확장부(240) 및 배출부(250)를 순차적으로 이동한 후, 배출구(500)를 통해 배출될 수 있다.The flow path 200 may include an inlet part 210, a first curve part 220, a second curve part 230, an expansion part 240, and an outlet part 250. Upstream of the inlet 210 may be connected to the inlet 400. The downstream of the outlet 250 may be connected to the outlet 500. Downstream of the inlet 210 may be connected to the upstream of the first curve portion 220, downstream of the first curve portion 220 may be connected to the upstream of the second curve portion 230, the second curve portion Downstream of 230 may be connected upstream of extension 240, and downstream of extension 240 may be connected upstream of outlet 250. Therefore, the cooling material introduced from the inlet 400 moves sequentially through the inlet 210, the first curve 220, the second curve 230, the expansion 240 and the discharge 250. It may be discharged through the outlet 500.
유입부(210)와 배출부(250)는 이웃하여 배치될 수 있다. 유입부(210)와 배출부(250)는 상호 평행하게 배치될 수 있다. 유입부(210)와 배출부(250)는 "수평 방향"(유로의 가로 폭 방향)으로 이격될 수 있다. 제1커브부(220)와 확장부(240)는 이웃하여 배치될 수 있다. 제1커브부(220)와 확장부(240)는 "수평 방향"(유로의 가로 폭 방향)으로 이격될 수 있다. 제2커브부(230)는 유로(200)에서 냉각수의 진행 방향이 완전히 반대(turn-up 또는 U-turn)가 되는 지점일 수 있다. 제2커브부(230)는 "U자" 형태로 형성될 수 있다. 제2커브부(230)의 일단은 제1커브부(220)와 연결될 수 있다. 제2커브부(230)의 타단은 확장부(240)와 연결될 수 있다. 제2커브부(230)는 제1커브부(220)와 확장부(240)를 연결할 수 있다. 제2커브부(230)에 의해, 평행하게 배치되는 유입부(210)와 배출부(250)에서의 냉각 물질의 이동 방향은 반대가 될 수 있다.The inlet part 210 and the outlet part 250 may be disposed adjacent to each other. The inlet 210 and the outlet 250 may be arranged in parallel to each other. The inlet 210 and the outlet 250 may be spaced apart in the "horizontal direction" (the horizontal width direction of the flow path). The first curve part 220 and the expansion part 240 may be disposed adjacent to each other. The first curve portion 220 and the expansion portion 240 may be spaced apart in the "horizontal direction" (the horizontal width direction of the flow path). The second curve portion 230 may be a point at which the advancing direction of the coolant in the flow path 200 becomes completely turn-up or U-turn. The second curve part 230 may be formed in a “U” shape. One end of the second curve portion 230 may be connected to the first curve portion 220. The other end of the second curve part 230 may be connected to the expansion part 240. The second curve portion 230 may connect the first curve portion 220 and the expansion portion 240. By the second curve part 230, the moving direction of the cooling material in the inlet part 210 and the outlet part 250 arranged in parallel may be reversed.
제1커브부(220)에는 확장부(240)가 위치한 방향으로 볼록하게 곡률이 형성될 수 있다. 따라서 제1커브부(220)와 확장부(240) 사이의 최단 "수평 방향" 거리는 유입부(210)와 배출부(250) 사이의 최단 "수평 방향" 거리보다 짧을 수 있다. 제2커브부(230)는 유입부(210)와 배출부(250)가 위치한 반대 방향으로 볼록하게 곡률이 형성될 수 있다(U자 형태). 확장부(240)는 "수평 방향"으로 볼록하게 곡률이 형성될 수 있다. 따라서 확장부(240)에서의 유로(200)의 가로 폭(a)은 유로(200)의 다른 부분의 가로 폭(a')보다 클 수 있다(일 예로, 확장부(240)의 앞단이나 뒷단).A curvature may be formed in the first curve portion 220 convexly in the direction in which the expansion portion 240 is located. Therefore, the shortest "horizontal direction" distance between the first curve part 220 and the expansion part 240 may be shorter than the shortest "horizontal direction" distance between the inlet part 210 and the outlet part 250. The second curve portion 230 may have a curvature formed convexly in the opposite direction in which the inlet 210 and the outlet 250 are positioned (U-shaped). The extension 240 may have a curvature formed convexly in the "horizontal direction". Therefore, the horizontal width a of the flow path 200 in the expansion part 240 may be larger than the horizontal width a 'of another portion of the flow path 200 (for example, the front end or the rear end of the expansion part 240). ).
본 제1실시예에서 유로(200)에 유입부(210), 제1커브부(220), 제2커브부(230), 확장부(240) 및 배출부(250)를 형성한 것은 발열 소자(320)를 효율적으로 냉각하기 위함이다.In the first embodiment, the inlet part 210, the first curve part 220, the second curve part 230, the expansion part 240, and the discharge part 250 are formed in the flow path 200. This is to efficiently cool the 320.
복수 개의 발열 소자(320)는 인덕터(321), 트랜스 포머(322), ZVS(Zero-Voltage-Switching) 인덕터(323), 스위칭 모듈(324) 및 다이오드 모듈(325) 등을 포함하는데, 유입부(210)는 인덕터(210)와 수직 방향(유로의 세로 폭 방향)으로 대응되게 배치될 수 있고, 제1커브부(220)는 트랜스 포머(220)와 수직 방향으로 대응되게 배치될 수 있고, 제2커브부(230)의 앞단(제2커브부보다 상류측)은 ZVS 인덕터(323)와 수직 방향으로 대응되게 배치될 수 있고, 제2커브부(230)는 스위칭 모듈(324)과 수직 방향으로 대응되게 배치될 수 있고, 확장부(240)는 다이오드 모듈(240)과 수직 방향으로 대응되게 배치될 수 있다(도 7 참조).The plurality of heating elements 320 includes an inductor 321, a transformer 322, a zero-voltage-switching (ZVS) inductor 323, a switching module 324, a diode module 325, and the like. The 210 may be disposed to correspond to the inductor 210 in a vertical direction (the vertical width direction of the flow path), and the first curve part 220 may be disposed to correspond to the transformer 220 in a vertical direction. The front end of the second curve portion 230 (upstream of the second curve portion) may be disposed to correspond to the ZVS inductor 323 in a vertical direction, and the second curve portion 230 may be perpendicular to the switching module 324. Direction, and the extension 240 may be disposed to correspond to the diode module 240 in a vertical direction (see FIG. 7).
이 경우, 제1커브부(220)는 인덕터(321)보다 "수평 면적"이 더 넓은 트랜스 포머(322)를 효율적으로 냉각(트랜스 포머의 중심부 냉각)시키기 위해 확장부(240)가 위치한 방향으로 볼록하게 곡률이 형성된 것이다.In this case, the first curve portion 220 is positioned in the direction in which the expansion portion 240 is positioned to efficiently cool the transformer 322 having a larger "horizontal area" than the inductor 321 (cooling the center of the transformer). The convex curvature is formed.
또한, 확장부(240)는 발열량이 높은 다이오드 모듈(325)을 효율적으로 냉각시키기 위해 유로(200)의 다른 부분보다 "수평 면적"이 크다. 또, 확장부(240)는 넓은 "수평 면적"에 의해, 다이오드 모듈(325)뿐만 아니라 트랜스 포머(322)와 다이오드 모듈(325) 사이에 배치되어, 둘 사이를 전기적으로 연결하는 도전 부재(326)도 냉각시킬 수 있다. 이를 위해, 확장부(240)의 최대 "수평 면적"(10, 확장부의 수평 면적 중 가장 큰 면적)은 다이오드 모듈(325)의 최대 "수평 면적"(20, 다이오드 모듈의 수평 면적 중 가장 큰 면적)의 90% 이상일 수 있다. 또, 확장부(240)의 최대 "수평 면적"(10)에서 다이오드 모듈(325)과 "수직 방향"으로 오버랩되는 면적(30)은 30% 이상일 수 있다.In addition, the expansion unit 240 has a larger "horizontal area" than other portions of the flow path 200 in order to efficiently cool the diode module 325 having a high heat generation amount. In addition, the expansion unit 240 is disposed between the transformer 322 and the diode module 325 as well as the diode module 325 by a large "horizontal area", so that the conductive member 326 electrically connects the two. ) Can also be cooled. To this end, the maximum "horizontal area" of the extension 240 (10, the largest area of the horizontal area of the extension) is the maximum "horizontal area" of the diode module 325 (20, the largest area of the horizontal area of the diode module). 90% or more). In addition, the area 30 overlapping the diode module 325 in the "vertical direction" at the maximum "horizontal area" 10 of the expansion unit 240 may be 30% or more.
한편, 본 제1실시예의 유로(200)는 "수직 단면(50)"이 냉각 물질의 이동 방향을 따라 균등한 것을 특징으로 한다. 유로(200)의 "수직 단면(50)"의 면적이 가장 큰 부분과 가장 작은 부분의 차이는 10% 이내(이하)일 수 있다. 유로(200)의 "수직 단면(50)"의 면적은 냉각 물질의 이동 방향을 따라 동일할 수 있다. 그 결과, 냉각 물질의 유속이 증가되고 압력 강하(pressure drop) 폭이 감소되어 냉각 효율이 향상될 수 있다.On the other hand, the flow path 200 of the first embodiment is characterized in that the "vertical cross section 50" is equal along the moving direction of the cooling material. The difference between the largest area and the smallest area of the “vertical cross section 50” of the flow path 200 may be within 10% (hereinafter). The area of the "vertical cross section 50" of the flow path 200 may be the same along the direction of movement of the cooling material. As a result, the flow rate of the cooling material can be increased and the pressure drop width can be reduced to improve the cooling efficiency.
확장부(240)에서는 유로(200)의 가로 폭(a)이 커져 다이오드 모듈(325)을 효율적으로 냉각할 수 있다. 이로 인해, 확장부(240)에서 "수직 단면(40)"의 면적이 유로(200)의 다른 부분의 "수직 단면(50)"의 면적보다 커질 수 있다. 이는 유로(200)의 "수직 단면(50)"을 균등하게 하는 본 제1실시예의 취지와 배치될 수 있다.In the expansion unit 240, the width width a of the flow path 200 increases to efficiently cool the diode module 325. As a result, the area of the "vertical cross section 40" in the extension 240 may be larger than the area of the "vertical cross section 50" of the other portion of the flow path 200. This may be arranged with the intention of this first embodiment to equalize the " vertical cross section 50 "
본 제1실시예에서는 이를 해결하기 위해, 확장부(240)에서 "수직 단면(40)"의 세로 폭(b)을 유로(200)의 다른 부분(일 예로, 확장부의 앞단)의 "수직 단면(50)"의 세로 폭(b')보다 작게 하였다. 그 결과, 확장부(240)의 "수직 단면(40)"의 면적은 유로(200)의 다른 부분의 "수직 단면(50)"의 면적과 동일하거나 유사할 수 있다(도 9 참조).In order to solve this problem in the first embodiment, the vertical width b of the "vertical cross section 40" in the extension 240 is changed to the "vertical cross section of another part of the flow path 200 (for example, the front end of the extension). It was made smaller than the vertical width b 'of (50). As a result, the area of "vertical cross-section 40" of extension 240 may be the same or similar to the area of "vertical cross-section 50" of another portion of flow path 200 (see FIG. 9).
이를 위해, 확장부(240)의 바닥면에 돌출부(141)가 위치할 수 있다. 즉, 하부 커버(140)에서 확장부(240)와 "수직 방향"으로 대응되는 위치에 돌출부(141)가 위치할 수 있다. 그 결과, 제1측벽(150)과 제2측벽(160)의 높이를 유지하면서, 확장부(240)의 세로 폭(b)을 증가시킬 수 있다.To this end, the protrusion 141 may be located on the bottom surface of the extension 240. That is, the protrusion 141 may be positioned at a position corresponding to the extension 240 in the “vertical direction” of the lower cover 140. As a result, while maintaining the height of the first side wall 150 and the second side wall 160, it is possible to increase the vertical width b of the expansion part 240.
돌출부(141)는 확장부(240)의 바닥면에서 하판(110)이 위치한 방향으로 돌출될 수 있다. 돌출부(141)의 돌출 높이는 냉각 물질의 이동 방향을 따라 증가하다가 감소될 수 있다. 돌출부(141)의 "수직 단면"은 사각 형태일 수 있다(도 8의 (A) 참조). 돌출부(141)의 "수직 단면"의 면적은 냉각 물질의 이동 방향을 따라 증가하다가 감소할 수 있다. 돌출부(141)의 "수평 단면"은 하판(110)이 위치한 방향으로 볼록하게 곡률이 형성된 형태일 수 있다(도 8의 (B) 참조). 돌출부(141)의 "수평 단면"의 면적은 확장부(240)의 가로 폭(a)의 중심에서 가장자리로 갈수록 감소할 수 있다.The protrusion 141 may protrude in a direction in which the lower plate 110 is located at the bottom surface of the extension 240. The protrusion height of the protrusion 141 may increase and decrease along the moving direction of the cooling material. The “vertical cross section” of the protrusion 141 may be rectangular (see FIG. 8A). The area of the “vertical cross section” of the protrusion 141 may increase and decrease along the direction of movement of the cooling material. The “horizontal cross section” of the protrusion 141 may have a shape in which a curvature is formed convexly in the direction in which the lower plate 110 is located (see FIG. 8B). The area of the “horizontal cross section” of the protrusion 141 may decrease from the center of the horizontal width a of the extension 240 to the edge.
배출부(250)는 경사부(251)를 포함할 수 있다. 경사부(251)는 배출부(250)와 배출구(500) 사이에 위치할 수 있다. 경사부(251)는 배출부(250)의 최하류에 위치할 수 있다. 경사부(251)에서는 유로(200)의 바닥면이 하류측으로 갈수록 위로 경사지게 형성될 수 있다.The discharge part 250 may include an inclined part 251. The inclined portion 251 may be located between the discharge part 250 and the discharge port 500. The inclined portion 251 may be located at the most downstream of the discharge portion 250. In the inclined portion 251, the bottom surface of the flow path 200 may be inclined upwardly toward the downstream side.
복수 개의 전자 부품(300)은 하우징(100)의 내부 공간에 위치할 수 있다. 복수 개의 전자 부품(300)은 하판(110, 냉각판)의 위에 배치될 수 있다. 하판(110, 냉각판)의 아래에는 냉각 물질이 흐르는 유로(200)가 형성되어 복수 개의 전자 부품(300)에서 발생하는 열을 냉각시킬 수 있다.The plurality of electronic components 300 may be located in the internal space of the housing 100. The plurality of electronic components 300 may be disposed on the lower plate 110 (cooling plate). A flow path 200 through which a cooling material flows is formed under the lower plate 110 (cooling plate) to cool the heat generated by the plurality of electronic components 300.
복수 개의 전자 부품(300)은 메인 기판(310), 복수 개의 발열 소자(320), 제1보조기판(330) 및 제2보조기판(340)을 포함할 수 있다.The plurality of electronic components 300 may include a main substrate 310, a plurality of heat generating elements 320, a first auxiliary substrate 330, and a second auxiliary substrate 340.
메인 기판(320)은 하판(110)의 위에 배치될 수 있다. 메인 기판(320)은 하판(110)과 상측으로 이격될 수 있다. 메인 기판(320)에는 다양한 전자 부품 칩이 실장될 수 있다. 메인 기판(320)에는 다양한 전자 부품 칩을 연결하는 회로가 형성될 수 있다. 메인 기판(320)은 제1보조기판(330) 및 제2보조기판(340)과 전기적으로 연결될 수 있다.The main substrate 320 may be disposed on the lower plate 110. The main substrate 320 may be spaced apart from the lower plate 110. Various electronic component chips may be mounted on the main substrate 320. A circuit for connecting various electronic component chips may be formed on the main substrate 320. The main substrate 320 may be electrically connected to the first auxiliary substrate 330 and the second auxiliary substrate 340.
복수 개의 발열 소자(320) 중 하나는 확장부(240)와 "수직 방향"으로 오버랩될 수 있다. 확장부(240)의 최대 "수평 면적"(10)은 "수직 방향"으로 오버랩되는 복수 개의 발열 소자(320) 중 하나의 최대 "수평 면적"(20)의 90% 이상일 수 있다. 확장부(240)의 최대 "수평 면적"(10)에서 "수직 방향"으로 오버랩되는 복수 개의 발열 소자(320) 중 하나와 "수직 방향"으로 오버랩되는 면적(30)은 30% 이상일 수 있다. 이 경우, 복수 개의 발열 소자(320) 중 확장부(240)와 "수직 방향"으로 오버랩되는 발열 소자는 다이오드 모듈(325)일 수 있다.One of the plurality of heating elements 320 may overlap the expansion unit 240 in the "vertical direction". The maximum "horizontal area" 10 of the extension 240 may be 90% or more of the maximum "horizontal area" 20 of one of the plurality of heating elements 320 overlapping in the "vertical direction". The area 30 overlapping one of the plurality of heating elements 320 overlapping in the “vertical direction” at the maximum “horizontal area” 10 of the expansion unit 240 may be 30% or more. In this case, the heating element overlapping the expansion part 240 in the "vertical direction" of the plurality of heating elements 320 may be a diode module 325.
복수 개의 발열 소자(320)는 인덕터(321), 트랜스 포머(322), ZVS(Zero-Voltage-Switching) 인덕터(323), 스위칭 모듈(324), 다이오드 모듈(325) 및 도전 부재(326)를 포함할 수 있다.The plurality of heating elements 320 may include an inductor 321, a transformer 322, a zero-voltage-switching (ZVS) inductor 323, a switching module 324, a diode module 325, and a conductive member 326. It may include.
인덕터(321), 트랜스 포머(322) 및 ZVS(Zero-Voltage-Switching) 인덕터(323)는 하판(110)의 상면에 배치될 수 있다. 스위칭 모듈(324)은 제1보조기판(330)에 실장될 수 있다. 다이오드 모듈(325)은 제2보조기판(340)에 실장될 수 있다. 도전 부재(326)는 트랜스 포머(322)와 다이오드 모듈(325)을 전기적으로 연결하는 부재일 수 있다.The inductor 321, the transformer 322, and the zero-voltage-switching (ZVS) inductor 323 may be disposed on an upper surface of the lower plate 110. The switching module 324 may be mounted on the first auxiliary substrate 330. The diode module 325 may be mounted on the second auxiliary substrate 340. The conductive member 326 may be a member that electrically connects the transformer 322 and the diode module 325.
인덕터(321), 트랜스 포머(322) 및 ZVS(Zero-Voltage-Switching) 인덕터(323)는 도전 부재에 의해 메인 기판(320)과 전기적으로 연결될 수 있다. 하판(110)에서 인덕터(321), 트랜스 포머(322) 및 ZVS(Zero-Voltage-Switching) 인덕터(323)가 배치되는 부분에는 메인 기판(320)이 배치되지 않을 수 있다.The inductor 321, the transformer 322, and the zero-voltage-switching (ZVS) inductor 323 may be electrically connected to the main substrate 320 by a conductive member. The main substrate 320 may not be disposed in the lower plate 110 where the inductor 321, the transformer 322, and the zero-voltage-switching (ZVS) inductor 323 are disposed.
인덕터(321)는 전류의 평활과, ripple 전류를 저감하는 기능을 수행할 수 있다. 나아가 전류 흐름을 연속적으로 만들 수 있다. 즉, 인덕터(321)는 정류 기능을 수행할 수 있다. 인덕터(321)는 유로(200)의 유입부(210)와 "수직 방향"으로 대응되게 배치될 수 있다.The inductor 321 may perform a function of smoothing current and reducing ripple current. Furthermore, the current flow can be made continuously. That is, the inductor 321 may perform a rectifying function. The inductor 321 may be disposed to correspond to the inlet portion 210 of the flow path 200 in the "vertical direction".
트랜스 포머(322)는 전류를 승압시키거나 감압시키는 기능을 수행할 수 있다. 트랜스 포머(322)는 전력을 변환시키는 기능을 수행할 수 있다. 트랜스 포머(322)는 유로(200)의 제1커브부(220)와 "수직 방향"으로 대응되게 배치될 수 있다.The transformer 322 may perform a function of boosting or depressurizing a current. The transformer 322 may perform a function of converting power. The transformer 322 may be disposed to correspond to the first curve portion 220 of the flow path 200 in the "vertical direction".
ZVS(Zero-Voltage-Switching) 인덕터(323)는 경부하(light load, 輕負荷)를 제어할 수 있다. 즉, 경부하 효율 향상을 위한 보조적인 인덕터일 수 있다. ZVS(Zero-Voltage-Switching) 인덕터(323)는 제2커브부(230)의 앞단과 "수직 방향"으로 대응되게 배치될 수 있다.Zero-Voltage-Switching (ZVS) inductor 323 may control light load. That is, it may be an auxiliary inductor for improving light load efficiency. Zero-Voltage-Switching (ZVS) inductor 323 may be disposed to correspond to the front end of the second curve portion 230 in the "vertical direction".
스위칭 모듈(324)은 전류의 On/Off를 제어할 수 있다. 나아가 스위칭 모듈(324)은 트랜스 포머(322)와 통합되어 입력 DC를 감압하여 출력할 수 있다. 스위칭 모듈(324)은 제2커브부(230)와 "수직 방향"으로 대응되게 배치될 수 있다.The switching module 324 may control on / off of the current. Furthermore, the switching module 324 may be integrated with the transformer 322 to reduce and output the input DC. The switching module 324 may be disposed to correspond to the second curve portion 230 in the "vertical direction".
다이오드 모듈(325)은 전류의 방향을 제어할 수 있다. 즉, 다이오드 모듈(325)은 전류를 특정 방향으로 이동시키는 기능을 수행할 수 있다. 다이오드 모듈(325)은 확장부(240)와 "수직 방향"으로 대응되게 배치될 수 있다.The diode module 325 may control the direction of the current. That is, the diode module 325 may perform a function of moving a current in a specific direction. The diode module 325 may be disposed to correspond to the extension 240 in the "vertical direction".
도전 부재(326)는 트랜스 포머(322)와 다이오드 모듈(325)을 전기적으로 연결할 수 있다.The conductive member 326 may electrically connect the transformer 322 and the diode module 325.
제1보조기판(330) 및 제2보조기판(340)은 메인 기판(310)의 아래에 위치할 수 있다. 제1보조기판(330) 및 제2보조기판(340)은 메인 기판(310)과 하측으로 이격될 수 있다. 제1보조기판(330) 및 제2보조기판(340)은 하판(110)과 메인 기판(310) 사이에 배치될 수 있다. 제1보조기판(330) 및 제2보조기판(340)은 별도의 도전 부재에 의해 메인 기판(310)과 전기적으로 연결될 수 있다. 제1보조기판(330)에는 스위칭 모듈(324)이 실장될 수 있다. 제2보조기판(340)에는 다이오드 모듈(325)이 실장될 수 있다.The first auxiliary substrate 330 and the second auxiliary substrate 340 may be positioned below the main substrate 310. The first auxiliary substrate 330 and the second auxiliary substrate 340 may be spaced apart from the main substrate 310. The first auxiliary substrate 330 and the second auxiliary substrate 340 may be disposed between the lower plate 110 and the main substrate 310. The first auxiliary substrate 330 and the second auxiliary substrate 340 may be electrically connected to the main substrate 310 by separate conductive members. The switching module 324 may be mounted on the first auxiliary substrate 330. The diode module 325 may be mounted on the second auxiliary substrate 340.
유입구(400) 및 배출구(500)는 하우징(100)의 측판(120)의 일측에 위치할 수 있다. 유입구(400)를 통해 외부의 냉각 물질은 유로(200)로 유입될 수 있다. 배출구(500)를 통해 냉각 물질이 유로(200)에서 배출될 수 있다.The inlet 400 and the outlet 500 may be located at one side of the side plate 120 of the housing 100. External cooling material may be introduced into the flow path 200 through the inlet 400. Cooling material may be discharged from the flow path 200 through the outlet 500.
단자(600)는 하우징(100)의 측판(120)의 일측에 위치할 수 있다. 단자(600)는 유입구(400) 및 배출구(500)의 사이에 위치할 수 있다. 단자(600)에는 외부의 전원 장치가 전기적으로 연결될 수 있다. 즉, 단자(600)를 통해 복수 개의 전자 부품(300)에 외부의 전류가 공급될 수 있다.The terminal 600 may be located at one side of the side plate 120 of the housing 100. The terminal 600 may be located between the inlet 400 and the outlet 500. An external power supply device may be electrically connected to the terminal 600. That is, external current may be supplied to the plurality of electronic components 300 through the terminal 600.
1개 이상의 커넥터(700)는 하우징(100)의 측판(120)의 타측에 위치할 수 있다. 1개 이상의 커넥터(700)는 유입구(400) 및 배출구(500)의 반대편에 위치할 수 있다. 1개 이상의 커넥터(700)에는 외부의 전자 부품(일 예로, 전동 모터)이 전기적으로 연결될 수 있다.One or more connectors 700 may be located at the other side of the side plate 120 of the housing 100. One or more connectors 700 may be located opposite the inlets 400 and outlets 500. External electronic components (eg, electric motors) may be electrically connected to one or more connectors 700.
<제2실시예>Second Embodiment
이하에서는, 도면을 참조하여 본 제2실시예의 비교예의 DC-DC 컨버터(2001)를 설명한다. 도 10은 본 제2실시예의 비교예의 DC-DC 컨버터를 나타낸 사시도이다.The DC-DC converter 2001 of the comparative example of the second embodiment will be described below with reference to the drawings. 10 is a perspective view showing a DC-DC converter of a comparative example of the second embodiment.
본 비교예의 DC-DC 컨버터(2001)는 차량에 사용되는 DC-DC 컨버터일 수 있다. 전기 자동차를 예를 들면, DC-DC 컨버터(2001)는 외부의 전원 기기(리튬이온전지 등)로부터 전류를 공급받아 전압을 승압 또는 강하시켜 외부의 전자 기기(모터 등)에 공급하여 모터 등의 회전수를 제어하는 역할을 할 수 있다. DC-DC 컨버터(2001)는 케이스(2010), 변환부(2020), 인덕터부(2030), 버스바(미도시, bus bar) 및 외부단자(2050)를 포함할 수 있다.The DC-DC converter 2001 of the present comparative example may be a DC-DC converter used in a vehicle. As an example of an electric vehicle, the DC-DC converter 2001 receives current from an external power supply device (such as a lithium ion battery) and boosts or lowers a voltage to supply an external electronic device (motor, etc.) to supply a motor. It can play a role to control the rotation speed. The DC-DC converter 2001 may include a case 2010, a converter 2020, an inductor 2030, a bus bar (not shown) and an external terminal 2050.
케이스(2010)는 DC-DC 컨버터(2001)의 외장부재일 수 있다. 케이스(2001)에는 내부공간이 형성되어 변환부(2020), 인덕터부(2030), 버스 바(미도시, bus bar)를 수용할 수 있다. 또, 케이스(2010)에는 제1,2,3,4,5케이스단자(2010a,2010b,2010c,2010d,2010e)와 외부단자(2050)가 형성될 수 있다.The case 2010 may be an exterior member of the DC-DC converter 2001. An internal space is formed in the case 2001 to accommodate the converter 2020, the inductor 2030, and a bus bar (not shown). In addition, the case 2010 may include first, second, third, fourth, and fifth case terminals 2010a, 2010b, 2010c, 2010d, and 2010e and external terminals 2050.
변환부(2020)는 1차코일(2021), 1차코일(2021)과 이격되어 배치된 2차코일(2022)을 포함할 수 있다. 1차코일(2021)은 외부의 전원 기기로부터 공급된 전류가 흐르고, 2차코일(2022)은 1차코일(2021)과 전자기적 상호작용을 하여 변환된 전류를 출력할 수 있다. 1차코일(2021)은 제1,2케이스단자(2010a,2010b)와 전기적으로 연결되어 외부의 전원 기기로부터 전류를 공급받을 수 있다. 2차코일(2022)은 제3,4,5케이스단자(2010c,2010d,2010e)와 전기적으로 연결될 수 있다. 이 경우, 제3케이스단자(2010c)와 제4케이스단자(2010d)는 다이오드 모듈과 전기적으로 연결될 수 있다. 따라서 2차 코일(2022)은 다이오드 모듈과 전기적으로 연결될 수 있다. 또, 제5케이스단자(2010e)는 인덕터부(2030)와 전기적으로 연결될 수 있다.The converter 2020 may include a primary coil 2021 and a secondary coil 2022 disposed to be spaced apart from the primary coil 2021. The primary coil 2021 may flow a current supplied from an external power supply device, and the secondary coil 2022 may output the converted current by electromagnetic interaction with the primary coil 2021. The primary coil 2021 may be electrically connected to the first and second case terminals 2010a and 2010b to receive current from an external power supply device. The secondary coil 2022 may be electrically connected to the third, fourth and fifth case terminals 2010c, 2010d and 2010e. In this case, the third case terminal 2010c and the fourth case terminal 2010d may be electrically connected to the diode module. Therefore, the secondary coil 2022 may be electrically connected to the diode module. In addition, the fifth case terminal 2010e may be electrically connected to the inductor unit 2030.
인덕터부(2030)는 인덕터코일(2031)을 포함할 수 있다. 인덕터코일(2031)은 입체나선 형태일 수 있다. 이러한 입체나선을 "스크류 나선"으로 호칭하기도 한다. 인덕터코일(2031)의 시작 부분은 제5케이스단자(2010e)와 전기적으로 연결될 수 있다. 또, 인덕터코일(2031)의 시작 부분은 제5케이스단자(2010e)에서 2차코일(2022)과 전기적으로 연결될 수 있다. 인덕터코일(2031)의 끝 부분은 버스바(미도시)를 통해 외부단자(2050)와 전기적으로 연결될 수 있다. 인덕터코일(2031)에는 2차코일(2022)로부터 출력된 변환 전류가 흐를 수 있다. 나아가 인덕터코일(2031)은 2차코일(2022)로부터 출력된 변환 전류를 정류할 수 있다. 또, 인덕터코일(2031)에서 정류된 전류는 외부단자(2050)로 공급될 수 있다.The inductor unit 2030 may include an inductor coil 2031. The inductor coil 2031 may have a three-dimensional spiral shape. Such solid spirals are sometimes referred to as "screw spirals". The start of the inductor coil 2031 may be electrically connected to the fifth case terminal 2010e. In addition, a start portion of the inductor coil 2031 may be electrically connected to the secondary coil 2022 at the fifth case terminal 2010e. An end portion of the inductor coil 2031 may be electrically connected to the external terminal 2050 through a bus bar (not shown). The converted current output from the secondary coil 2022 may flow in the inductor coil 2031. Furthermore, the inductor coil 2031 may rectify the converted current output from the secondary coil 2022. In addition, the current rectified by the inductor coil 2031 may be supplied to the external terminal 2050.
상술한 바를 종합하면, 외부 전원 기기에서 1차코일(2021)로 전류를 공급하면, 2차코일(2022)에서는 승압 또는 강하된 변환 전류가 출력될 수 있다. 2차코일(2022)에서 출력된 변환 전류는 인덕터코일(2031)에서 정류될 수 있다. 정류 전류는 외부단자(2050)를 통해 외부 전자 기기(예를 들면, 모터)로 공급될 수 있다. 이 경우, 2차코일(2022)은 제3케이스단자(2010c)를 통해 외부단자(2050)의 일측과 전기적으로 연결될 수 있다. 또, 2차코일(2022)은 제5케이스단자(2010e), 인덕터코일(2031) 및 버스바(2040)를 통해 외부단자(2050)의 타측과 전기적으로 연결될 수 있다. 따라서 2차코일(2022)에서 생성된 전류가 인덕터코일(2031)에서 정류되어 외부의 전자기기로 공급되는 회로(circuit)가 형성될 수 있다. 그 결과, 외부단자(2050)에 커넥팅된 외부 전자 기기는 2차코일(2022)에서 변환되고, 인덕터코일(2031)에서 정류된 전기를 공급받을 수 있다.In summary, when the current is supplied from the external power device to the primary coil 2021, the secondary coil 2022 may output a boosted or lowered converted current. The conversion current output from the secondary coil 2022 may be rectified in the inductor coil 2031. The rectified current may be supplied to an external electronic device (eg, a motor) through the external terminal 2050. In this case, the secondary coil 2022 may be electrically connected to one side of the external terminal 2050 through the third case terminal 2010c. In addition, the secondary coil 2022 may be electrically connected to the other side of the external terminal 2050 through the fifth case terminal 2010e, the inductor coil 2031, and the bus bar 2040. Accordingly, a circuit in which the current generated by the secondary coil 2022 is rectified by the inductor coil 2031 and supplied to an external electronic device may be formed. As a result, the external electronic device connected to the external terminal 2050 may be converted in the secondary coil 2022 and supplied with rectified electricity in the inductor coil 2031.
본 제2실시예의 비교예에서 2차코일(2022)과 인덕터코일(2031)과 버스바(미도시, bus bar)는, 서로 전기적으로 연결되지만, 각각의 단일 부재로 제작된다. 그 후, 2차코일(2022)과 인덕터코일(2031)은, 제5케이스단자(2010e)에서 볼트 체결되어 전기적으로 연결될 수 있다. 또, 인덕터코일(2031)과 버스바(미도시, bus bar)도 역시 볼트 체결되어 전기적으로 연결될 수 있다. 이러한 체결과정에서 갭(gap)이 발생할 수 있고, 이는 전기적 특성 저하뿐만 아니라 접촉저항 상승으로 이어져 DC-DC 컨버터(2001)의 변환효율을 낮출 수 있다. 또, 각각의 2차코일(2022)과 인덕터코일(2031)을 제조하기 위해서는, 시트 프레스 절단, 볼트 홀 타발, 절곡, 단조 등의 복잡한 제조 과정을 거쳐야 한다. 그 결과, 생산효율 측면에서도 좋지 않은 문제점이 있다.In the comparative example of the second embodiment, the secondary coil 2022, the inductor coil 2031, and the bus bar (not shown) are electrically connected to each other, but are made of each single member. Thereafter, the secondary coil 2022 and the inductor coil 2031 may be electrically connected by being bolted to the fifth case terminal 2010e. In addition, the inductor coil 2031 and the bus bar (not shown) may also be bolted and electrically connected. In this fastening process, a gap may occur, which may lead to an increase in contact resistance as well as a decrease in electrical characteristics, thereby lowering the conversion efficiency of the DC-DC converter 2001. In addition, in order to manufacture each of the secondary coil 2022 and the inductor coil 2031, a complicated manufacturing process such as sheet press cutting, bolt hole punching, bending, forging, or the like is required. As a result, there is a problem in terms of production efficiency.
이하에서는, 도면을 참조하여 본 제2실시예의 DC-DC 컨버터(2100)를 설명한다. 도 11은 본 제2실시예의 DC-DC 컨버터를 나타낸 사시도이고, 도 12는 본 제2실시예의 코일 모듈이 제1,2자기코어에 장착된 상태를 나타낸 사시도이고(1차 코일 생략), 도 13은 본 제2실시예의 코일 모듈을 나타낸 사시도이다(1차 코일 생략).Hereinafter, the DC-DC converter 2100 of the second embodiment will be described with reference to the drawings. FIG. 11 is a perspective view showing the DC-DC converter of the second embodiment, and FIG. 12 is a perspective view showing a state in which the coil module of the second embodiment is mounted on the first and second magnetic cores (primary coil omitted). 13 is a perspective view showing the coil module of the second embodiment (primary coil omitted).
본 제2실시예의 DC-DC 컨버터(2100)는, 케이스(2110), 변환부(2120), 인덕터부(2130), 버스바(2140, bus bar) 및 제1외부단자(2150)를 포함할 수 있다. 이 중, 변환부(2120)의 2차코일(2122), 제1,2터미널(2123,2124)과 인덕터부(2130)의 인덕터코일(2131), 제3터미널(2132)과 버스바(2140)의 결합체는 "코일 모듈"로 호칭될 수 있다. "코일 모듈" 중, 제1,2,3터미널(2123,2124,2132) 및 버스바(2140)는 전기적 연결을 위한 도전 부재로 설계적 요청에 의해 생략될 수 있다. "코일 모듈" 중, 2차코일(2122), 제1,2터미널(2123,2124), 인덕터코일(2131), 제3터미널(2132) 및 버스바(2140)는 주조에 의해 일체로 제작될 수 있다. 즉, "코일 모듈" 중, 2차코일(2122), 제1,2터미널(2123,2124), 인덕터코일(2131), 제3터미널(2132) 및 버스바(2140)는 일체로 형성될 수 있다.The DC-DC converter 2100 of the second embodiment may include a case 2110, a converter 2120, an inductor 2130, a bus bar 2140, and a first external terminal 2150. Can be. Among these, the secondary coil 2122 of the converter 2120, the first and second terminals 2123 and 2124, the inductor coil 2131 of the inductor unit 2130, the third terminal 2132, and the busbar 2140. ) May be referred to as a "coil module". Among the “coil modules”, the first, second, and third terminals 2123, 2124, and 2132 and the busbars 2140 may be omitted by design request as a conductive member for electrical connection. Among the "coil modules", the secondary coils 2122, the first and second terminals 2123 and 2124, the inductor coils 2131, the third terminal 2132 and the busbars 2140 may be integrally manufactured by casting. Can be. That is, among the “coil modules”, the secondary coils 2122, the first and second terminals 2123 and 2124, the inductor coils 2131, the third terminal 2132, and the busbars 2140 may be integrally formed. have.
상술한 바를 종합하면, 본 제2실시예의 DC-DC 컨버터(2100)는 비교예의 DC-DC 컨버터(2010)와 비교하여, 2차코일(2122)과 인덕터코일(2131)과 버스바(2140)가 "주조"에 의해 일체로 제작되는 차이점이 있을 수 있다. 즉, 2차코일(2122), 인덕터코일(2131) 및 버스바(2140)는 일체로 형성될 수 있다. 따라서 2차코일(2122)과 인덕터코일(2131)을 제조하기 위한, 시트 프레스 절단, 볼트 홀 타발, 절곡, 단조 등의 복잡한 과정을 생략할 수 있다. 또, 2차코일(2122)과 인덕터코일(2131)의 연결을 위한 볼트 체결이 생략될 수 있다. 또, 인덕터코일(2131)과 버스바(2140)의 연결을 위한 볼트 체결이 생략될 수 있다(그 결과, 볼트 체결을 위한 비교예의 제5케이스단자(2010e)도 생략될 수 있다.). 이러한 일체형 코일 모듈은, 볼트 체결이 필요 없기 때문에 볼트 체결에 의해 발생할 수 있는 갭(gap)이 존재하지 않는다. 그 결과, 상술한 볼트 체결의 문제점이 발생하지 않아, DC-DC 컨버터(2100)의 변환 효율을 높일 수 있다.In summary, the DC-DC converter 2100 of the second embodiment has a secondary coil 2122, an inductor coil 2131, and a bus bar 2140 compared with the DC-DC converter 2010 of the comparative example. There may be a difference that is integrally manufactured by "casting". That is, the secondary coil 2122, the inductor coil 2131, and the bus bar 2140 may be integrally formed. Therefore, a complicated process such as sheet press cutting, bolt hole punching, bending, forging, etc. for manufacturing the secondary coil 2122 and the inductor coil 2131 can be omitted. In addition, bolt fastening for connecting the secondary coil 2122 and the inductor coil 2131 may be omitted. In addition, bolt fastening for connecting the inductor coil 2131 and the bus bar 2140 may be omitted (as a result, the fifth case terminal 2010e of the comparative example for bolt fastening may also be omitted). Since the integrated coil module does not need bolt fastening, there is no gap that may be caused by bolt fastening. As a result, the above-described problem of bolting does not occur, and the conversion efficiency of the DC-DC converter 2100 can be improved.
케이스(2110)는 DC-DC 컨버터(2100)의 외장부재일 수 있다. 케이스(2110)에는 내부공간이 형성되어 변환부(2120), 인덕터부(2130), 버스 바(2140)를 수용할 수 있다. 또, 케이스(2110)에는 제1,2,3케이스단자(2110a,2110b,2110c)와 제1외부단자(2150)가 형성될 수 있다.The case 2110 may be an exterior member of the DC-DC converter 2100. An internal space is formed in the case 2110 to accommodate the converter 2120, the inductor 2130, and the bus bar 2140. In addition, first and second case terminals 2110a, 2110b, and 2110c and first external terminals 2150 may be formed in the case 2110.
변환부(2120)에서는 외부의 전원 기기로부터 전류를 공급받을 수 있다. 또, 변환부(2120)에서는 외부의 전류를 변환하여 출력할 수 있다. 변환부(2120)는 1차코일(2121), 2차코일(2122), 제1터미널(2123), 제2터미널(2124) 및 제1자기코어(2125)를 포함할 수 있다.The converter 2120 may receive a current from an external power device. In addition, the converter 2120 may convert an external current and output the converted current. The converter 2120 may include a primary coil 2121, a secondary coil 2122, a first terminal 2123, a second terminal 2124, and a first magnetic core 2125.
1차코일(2121)은 외부 전원 기기로부터 전류를 공급받을 수 있다. 1차코일(2121)은 입체나선 형태로, 나선 성장의 시작 부분은 제1케이스단자(2100a)와 도전 부재에 의해 전기적으로 연결될 수 있다. 1차코일(2121)의 나선 성장의 끝 부분은 제2케이스단자(2100b)와 도전라인에 의해 전기적으로 연결될 수 있다. 제1,2케이스단자(2100a,2100b)는 외부 전원 기기가 전기적으로 연결될 수 있다. 그 결과, 1차코일(2121)에는 외부 전원 기기로부터 공급받은 전류가 흐를 수 있다. 본 실시예에서는 1차코일(2121)이 곡선을 가지는 입체나선 형태인 것으로 예를 들었지만, 1차코일(2121)의 입체나선 형태는 이에 한정되지 않는다.The primary coil 2121 may receive a current from an external power device. The primary coil 2121 may have a three-dimensional spiral shape, and the start of spiral growth may be electrically connected to the first case terminal 2100a by the conductive member. The end of the spiral growth of the primary coil 2121 may be electrically connected to the second case terminal 2100b by a conductive line. External power devices may be electrically connected to the first and second case terminals 2100a and 2100b. As a result, the current supplied from the external power device may flow in the primary coil 2121. In the present exemplary embodiment, the primary coil 2121 has a three-dimensional spiral shape having a curve, but the three-dimensional spiral shape of the primary coil 2121 is not limited thereto.
2차코일(2122)은 "코일 모듈"의 구성 요소일 수 있다. 2차코일(2122)은 1차코일(2121)과 이격되어 배치될 수 있다. 2차코일(2122)은 1차코일(2121)의 상부에 배치될 수 있다. 2차코일(2122)은 1차코일(2121)과 전자기적 상호작용을 할 수 있다. 2차코일(2122)에서는 1차코일(2121)의 전류에 의해 전류가 유도되어 유도 전류가 발생할 수 있다. 2차코일(2122)에서 발생한 유도 전류는 1차코일(2121)을 흐르는 전류가 승압 또는 강압된 전류일 수 있다. Secondary coil 2122 may be a component of a "coil module". The secondary coil 2122 may be spaced apart from the primary coil 2121. The secondary coil 2122 may be disposed above the primary coil 2121. The secondary coil 2122 may have electromagnetic interaction with the primary coil 2121. In the secondary coil 2122, current may be induced by the current of the primary coil 2121 to generate an induced current. The induced current generated in the secondary coil 2122 may be a current in which the current flowing through the primary coil 2121 is stepped up or down.
2차코일(2122)은 윗면과 아랫면을 포함하는 플레이트가 개방된 링을 형성하는 형태일 수 있다. 2차코일(2122)의 시작 부분(일단)은 제1터미널(2123)로부터 연장된 형태일 수 있다. 또, 2차코일(2122)의 끝 부분(타단)은 제2터미널(2124)과 연결된 형태일 수 있다. 즉, 2차코일(2122)의 일단은 제1터미널(2123)과 전기적으로 연결될 수 있고, 2차코일(2122)의 타단은 제2터미널(2124)과 전기적으로 연결될 수 있다. 2차코일(2122) 및 제1,2터미널(2123,2124)은 일체로 형성될 수 있다. 다만, 2차코일(2122)의 형태가 상술한 링 형태로 한정되는 것은 아니다. 일 예를 들면, 2차코일(2122)은 입체나선 형태로, 1차코일(2121)과 수직 또는 수평으로 이격되어 배치될 수 있다. 또, 2차코일(2122)은 입체나선 형태로, 1차코일(2121)과 이격된 채로 인터 리빙(interleaving)될 수 있다. 이 경우, 1,2차코일(2121,2122)은 하나의 2중 입체 나선을 형성할 수 있다.The secondary coil 2122 may have a form in which a ring including an upper surface and a lower surface is opened. The beginning portion (one end) of the secondary coil 2122 may extend from the first terminal 2123. In addition, an end portion (the other end) of the secondary coil 2122 may be connected to the second terminal 2124. That is, one end of the secondary coil 2122 may be electrically connected to the first terminal 2123, and the other end of the secondary coil 2122 may be electrically connected to the second terminal 2124. The secondary coils 2122 and the first and second terminals 2123 and 2124 may be integrally formed. However, the shape of the secondary coil 2122 is not limited to the above-described ring shape. For example, the secondary coil 2122 may be disposed in a three-dimensional spiral shape and spaced vertically or horizontally from the primary coil 2121. In addition, the secondary coil 2122 may be interleaved in a three-dimensional spiral form and spaced apart from the primary coil 2121. In this case, the primary and secondary coils 2121 and 2122 may form one double solid helix.
제1터미널(2123)은 "코일 모듈"의 구성 요소일 수 있다. 제1터미널(2123)은 2차코일(2122)을 외부단자와 전기적으로 연결하기 위한 부재일 수 있다. 제1터미널(2123)은 플레이트 형태의 도전 부재일 수 있다. 제1터미널(2123)은 위에서 아래(수직 방향)로 연장된 형태일 수 있다. 제1터미널(2123)의 일단은 상부에 위치할 수 있다. 제1터미널(2123)의 타단은 하부에 위치할 수 있다. 제1터미널(123)의 일단은 2차코일(2122)의 시작 부분에서 수직 방향으로 만곡 또는 절곡되어 연장된 형태일 수 있다. 제1터미널(2123)의 타단은 수평 방향으로 만곡 또는 절곡되어 연장된 후, 후술하는 제1,2단자부(2123a,2123b)로 나눠질 수 있다. 상술한 바에 의하면, 제1터미널(2123)은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다. 이 경우, 절곡부 또는 만곡부의 절곡 또는 만곡된 각도는 직각일 수 있다.The first terminal 2123 may be a component of the "coil module". The first terminal 2123 may be a member for electrically connecting the secondary coil 2122 to an external terminal. The first terminal 2123 may be a conductive member in the form of a plate. The first terminal 2123 may extend from top to bottom (vertical direction). One end of the first terminal 2123 may be located above. The other end of the first terminal 2123 may be located below. One end of the first terminal 123 may be bent or bent to extend in a vertical direction at the beginning of the secondary coil 2122. The other end of the first terminal 2123 may be bent or bent to extend in the horizontal direction and then divided into first and second terminal parts 2123a and 2123b to be described later. As described above, the first terminal 2123 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
제1터미널(2123)의 일단은 2차코일(2122)의 시작 부분과 전기적으로 연결될 수 있다. 제1터미널(2123)의 타단은 제1단자부(2123a)와 제2단자부(2123b)로 나눠질 수 있다. 제1단자부(2123a)는 볼트 체결에 의해 제3케이스단자(2100c)와 전기적으로 연결될 수 있다. 따라서 제1단자부(2123a)에는 볼트 체결을 위한 홀이 형성될 수 있다. 제2단자부(2123b)는 볼트 체결에 의해 제4케이스단자(2110d)와 전기적으로 연결될 수 있다. 따라서 제2단자부(2123b)에는 볼트 체결을 위한 홀이 형성될 수 있다. 제3케이스단자(2110c)와 제4케이스단자(2100c)는 다이오드 모듈(미도시)과 전기적으로 연결될 수 있다. 따라서 2차코일(2122)은 제1터미널(2123)을 통해 다이오드 모듈과 전기적으로 연결될 수 있다.One end of the first terminal 2123 may be electrically connected to the start of the secondary coil 2122. The other end of the first terminal 2123 may be divided into a first terminal portion 2123a and a second terminal portion 2123b. The first terminal portion 2123a may be electrically connected to the third case terminal 2100c by bolting. Therefore, a hole for fastening the bolt may be formed in the first terminal portion 2123a. The second terminal portion 2123b may be electrically connected to the fourth case terminal 2110d by bolting. Therefore, a hole for fastening the bolt may be formed in the second terminal portion 2123b. The third case terminal 2110c and the fourth case terminal 2100c may be electrically connected to a diode module (not shown). Therefore, the secondary coil 2122 may be electrically connected to the diode module through the first terminal 2123.
제2터미널(2124)은 "코일 모듈"의 구성 요소일 수 있다. 제2터미널(2124)은 2차코일(2122)로부터 연장될 수 있다. 제2터미널(2124)은 2차코일(2122)과 인덕터코일(2131)을 전기적으로 연결하기 위한 부재일 수 있다. 제2터미널(2124)은 플레이트 형태의 도전 부재일 수 있다. 제2터미널(2124)은 위에서 아래(수직 방향)로 연장된 후, 인덕터코일(2131) 방향(수평 방향)으로 연장된 형태일 수 있다. 제2터미널(2124)의 일단은 2차코일(2122)의 끝 부분에서 수직 방향으로 만곡 또는 절곡되어 연장된 형태일 수 있다. 제2터미널(2124)의 중간 부분은 인덕터코일(2131) 방향(수평 방향)으로 만곡 또는 절곡되어 연장된 형태일 수 있다. 제2터미널(2124)의 타단은 인덕터코일(2131)의 시작 부분과 연결될 수 있다. 상술한 바에 의하면, 제2터미널(2124)은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다. 이 경우, 절곡부 또는 만곡부의 절곡 또는 만곡된 각도는 직각일 수 있다.The second terminal 2124 may be a component of the "coil module". The second terminal 2124 may extend from the secondary coil 2122. The second terminal 2124 may be a member for electrically connecting the secondary coil 2122 and the inductor coil 2131. The second terminal 2124 may be a conductive member in the form of a plate. The second terminal 2124 may extend from the top to the bottom (vertical direction) and then extend in the direction of the inductor coil 2131 (horizontal direction). One end of the second terminal 2124 may be bent or bent in a vertical direction to extend from the end of the secondary coil 2122. The middle portion of the second terminal 2124 may be bent or bent to extend in the inductor coil 2131 direction (horizontal direction). The other end of the second terminal 2124 may be connected to the start of the inductor coil 2131. As described above, the second terminal 2124 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
제2터미널(2124)의 일단은 2차코일(2122)의 끝 부분과 전기적으로 연결될 수 있다. 제2터미널(2124)의 타단은 인덕터코일(2131)의 시작 부분과 전기적으로 연결될 수 있다. 상술한 바를 종합하면, 2차코일(2122)에서 발생한 전류는 제2터미널(2124)을 통해 인덕터코일(2131)로 공급될 수 있다.One end of the second terminal 2124 may be electrically connected to an end of the secondary coil 2122. The other end of the second terminal 2124 may be electrically connected to the start of the inductor coil 2131. In summary, the current generated in the secondary coil 2122 may be supplied to the inductor coil 2131 through the second terminal 2124.
제1자기코어(2125)에는 1차코일(2121) 및 2차코일(2122)이 배치될 수 있다. 제1자기코어(2125)는 1차코일(2121) 및 2차코일(2122)의 자기장 선을 모아 자기장의 세기를 높이는 강자성 부재일 수 있다. 제1자기코어(2125)는 제1보빈부(2125a)와 제1지지부(2125b)를 포함할 수 있다. 제1지지부(2125b)는 중앙에 내부공간이 형성된 블럭 형태로, 내부공간에는 제1보빈부(2125a)가 형성되어 있으며, 1차코일(2121)을 지지할 수 있다. 제1보빈부(2125a)에는 1차코일(2121)과 2차코일(2122)이 감겨있을 수 있다. 제1자기코어(2125)의 외측면은 절연체에 의해 코팅되어 있을 수 있다. 제1자기코어(2125)는 설계적 요청에 의해 다양한 형태를 가질 수 있다.The primary coil 2121 and the secondary coil 2122 may be disposed on the first magnetic core 2125. The first magnetic core 2125 may be a ferromagnetic member that collects magnetic field lines of the primary coil 2121 and the secondary coil 2122 to increase the strength of the magnetic field. The first magnetic core 2125 may include a first bobbin portion 2125a and a first support portion 2125b. The first support portion 2125b has a block shape in which an inner space is formed in the center, and a first bobbin portion 2125a is formed in the inner space, and may support the primary coil 2121. The primary coil 2121 and the secondary coil 2122 may be wound around the first bobbin portion 2125a. The outer surface of the first magnetic core 2125 may be coated by an insulator. The first magnetic core 2125 may have various forms by design request.
인덕터부(2130)에서는 변환부(2120)에서 발생한 전류를 정류할 수 있다. 인덕터부(2130)는 인덕터코일(2131), 제3터미널(2132) 및 제2자기코어(2133)를 포함할 수 있다.The inductor 2130 may rectify the current generated by the converter 2120. The inductor unit 2130 may include an inductor coil 2131, a third terminal 2132, and a second magnetic core 2133.
인덕터코일(2131)은 "코일 모듈"의 구성 요소일 수 있다. 인덕터코일(2131)은 2차코일(2122)로부터 변환 전류를 공급받을 수 있다. 인덕터코일(2131)은 변환 전류를 정류할 수 있다. 인덕터코일(2131)은 제1외부단자(2150)와 연결되어 정류 전류를 공급할 수 있다. Inductor coil 2131 may be a component of a "coil module". The inductor coil 2131 may receive a conversion current from the secondary coil 2122. The inductor coil 2131 may rectify the converted current. The inductor coil 2131 may be connected to the first external terminal 2150 to supply a rectified current.
인덕터코일(2131)은 윗면과 아랫면을 포함하는 플레이트가 입체나선으로 성장한 형태일 수 있다. 즉, 인덕터코일(2131)은 입체나선 형태로, 나선 성장의 시작 부분(하부)은 2차코일(2122)과 제2터미널(2124)에 의해 전기적으로 연결될 수 있다. 즉, 인덕터코일(2131)은 제2터미널(2124)의 타단으로부터 연장될 수 있다. 인덕터코일(2131)의 나선 성장의 끝 부분(상부)은 버스 바(2140)에 의해 제1외부단자(2150)와 전기적으로 연결될 수 있다. 본 실시예에서는 인덕터코일(2131)이 곡선을 가지는 입체나선 형태인 것으로 예를 들었지만, 인덕터코일(2131)의 입체나선 형태는 이에 한정되지 않는다.The inductor coil 2131 may have a shape in which a plate including an upper surface and a lower surface is grown in three-dimensional spiral. That is, the inductor coil 2131 may have a three-dimensional spiral shape, and a start portion (lower portion) of the spiral growth may be electrically connected by the secondary coil 2122 and the second terminal 2124. That is, the inductor coil 2131 may extend from the other end of the second terminal 2124. An end portion (top) of the spiral growth of the inductor coil 2131 may be electrically connected to the first external terminal 2150 by the bus bar 2140. In the present embodiment, the inductor coil 2131 has a three-dimensional spiral shape having a curve, but the three-dimensional spiral shape of the inductor coil 2131 is not limited thereto.
제3터미널(2132)은 "코일 모듈"의 구성 요소일 수 있다. 제3터미널(2132)은 인덕터코일(2131)을 외부단자와 전기적으로 연결하기 위한 부재일 수 있다. 제3터미널(2132)은 플레이트 형태의 도전 부재일 수 있다. 제3터미널(2132)은 위에서 아래(수직 방향)로 연장된 형태일 수 있다. 제3터미널(2132)의 일단은 상부에 위치할 수 있다. 제3터미널(2132)의 타단은 하부에 위치할 수 있다. 제3터미널(2132)의 일단은 인덕터코일(2131)의 끝 부분에서 인덕터코일(2131)의 수평 방향(수평 나선 성장 방향과 반대 방향)으로 만곡 또는 절곡될 수 있다. 그 후, 제3터미널(2132)의 일단은 수직 방향(위에서 아래)으로 만곡 또는 절곡되어 연장된 형태일 수 있다. 제3터미널(2132)의 타단은 수평 방향(버스 바(2140) 방향)으로 만곡 또는 절곡되어 연장된 후, 버스 바(2140)와 연결될 수 있다. 상술한 바에 의하면, 제3터미널(2132)은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다. 이 경우, 절곡부 또는 만곡부의 절곡 또는 만곡된 각도는 직각일 수 있다.The third terminal 2132 may be a component of the "coil module". The third terminal 2132 may be a member for electrically connecting the inductor coil 2131 to an external terminal. The third terminal 2132 may be a conductive member in the form of a plate. The third terminal 2132 may extend from top to bottom (vertical direction). One end of the third terminal 2132 may be located above. The other end of the third terminal 2132 may be located below. One end of the third terminal 2132 may be bent or bent in the horizontal direction (the direction opposite to the horizontal spiral growth direction) of the inductor coil 2131 at the end of the inductor coil 2131. Thereafter, one end of the third terminal 2132 may be curved or bent to extend in a vertical direction (from top to bottom). The other end of the third terminal 2132 may be bent or bent to extend in a horizontal direction (direction of the bus bar 2140) and then be connected to the bus bar 2140. As described above, the third terminal 2132 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
제3터미널(2132)의 일단은 인덕터코일(2131)의 끝 부분과 전기적으로 연결될 수 있다. 제3터미널(2132)의 타단은 버스 바(2140)와 전기적으로 연결될 수 있다. 따라서 인덕터코일(2131)은 제3터미널(2132)을 통해 버스 바(2140)와 전기적으로 연결될 수 있다. 후술하지만, 버스 바(2140)는 외부단자(2150)와 전기적으로 연결되므로, 인덕터코일(2131)은 제3터미널(2132)과 버스 바(2140)를 통해 외부단자(2150)와 전기적으로 연결될 수 있다. One end of the third terminal 2132 may be electrically connected to an end of the inductor coil 2131. The other end of the third terminal 2132 may be electrically connected to the bus bar 2140. Therefore, the inductor coil 2131 may be electrically connected to the bus bar 2140 through the third terminal 2132. As will be described later, since the bus bar 2140 is electrically connected to the external terminal 2150, the inductor coil 2131 may be electrically connected to the external terminal 2150 through the third terminal 2132 and the bus bar 2140. have.
제2자기코어(2133)에는 인덕터코일(2131)이 배치될 수 있다. 제2자기코어(2133)는 인덕터코일(2131)의 자기장 선을 모아 자기장의 세기를 높이는 강자성 부재일 수 있다. 제2자기코어(2133)는 제2보빈부(2133a)와 제2지지부(2133b)를 포함할 수 있다. 제1지지부(2133b)는 중앙에 내부공간이 형성된 블럭 형태로, 내부공간에는 제2보빈부(2133a)가 형성되어 있으며, 인덕터코일(2131)을 지지할 수 있다. 제2보빈부(2133a)에는 인덕터코일(2131)이 감겨있을 수 있다. 제2자기코어(2133)의 외측면은 절연체에 의해 코팅되어 있을 수 있다. 제2자기코어(2133)는 설계적 요청에 의해 다양한 형태를 가질 수 있다.An inductor coil 2131 may be disposed on the second magnetic core 2133. The second magnetic core 2133 may be a ferromagnetic member that collects the magnetic field lines of the inductor coil 2131 to increase the strength of the magnetic field. The second magnetic core 2133 may include a second bobbin portion 2133a and a second support portion 2133b. The first support part 2133b has a block shape in which an internal space is formed in the center thereof, and a second bobbin part 2133a is formed in the internal space and may support the inductor coil 2131. The inductor coil 2131 may be wound around the second bobbin portion 2133a. The outer surface of the second magnetic core 2133 may be coated by an insulator. The second magnetic core 2133 may have various forms by design request.
버스 바(2140)는 "코일 모듈"의 구성 요소일 수 있다. 버스 바(2140)는 외부단자(2150) 측으로 연장된 긴 플레이트 형태일 수 있다. 버스 바(2140)의 일단은 제3터미널(2132)의 타단과 전기적으로 연결될 수 있다. 버스 바(2140)의 타단은 제1외부단자(2150)와 전기적으로 연결될 수 있다. 이 경우, 버스 바(2140)의 타단과 제1외부단자(2150)는 볼트 체결될 수 있다. 이를 위해, 버스 바(2140)의 타단에는 제3단자부(2140a)가 형성될 수 있다. 나아가 제3단자부(2140a)에는 볼트홀이 형성될 수 있다. 따라서 인덕터코일(2131)의 정류 전류는 제3터미널(2132)과 버스 바(2140)를 통해 외부단자(2150)로 공급될 수 있다.The bus bar 2140 may be a component of a "coil module". The bus bar 2140 may be in the form of an elongated plate extending toward the external terminal 2150. One end of the bus bar 2140 may be electrically connected to the other end of the third terminal 2132. The other end of the bus bar 2140 may be electrically connected to the first external terminal 2150. In this case, the other end of the bus bar 2140 and the first external terminal 2150 may be bolted. To this end, a third terminal portion 2140a may be formed at the other end of the bus bar 2140. Furthermore, a bolt hole may be formed in the third terminal portion 2140a. Therefore, the rectified current of the inductor coil 2131 may be supplied to the external terminal 2150 through the third terminal 2132 and the bus bar 2140.
외부단자(2150)는 외부 전자 기기(예를 들면, 차량용 모터)가 커넥팅될 수 있다. 외부단자(2150)에는 외부 전자 기기가 연결되어 전류를 공급받을 수 있다. 따라서 외부 전자 기기는 2차코일(2122)에서 변환되고, 인덕터코일(2131)에서 정류된 전류를 공급받을 수 있다. 즉, 외부 전자 기기에는 2차코일(2122)을 통해 정격 전압에 맞게 변환되고, 인덕터코일(2131)을 통해 노이즈(noise)가 필터링된 정류 변환 전류가 공급될 수 있다.The external terminal 2150 may be connected to an external electronic device (eg, a motor for a vehicle). An external electronic device may be connected to the external terminal 2150 to receive a current. Accordingly, the external electronic device may be converted by the secondary coil 2122 and receive the rectified current from the inductor coil 2131. That is, the rectified conversion current in which the external electronic device is converted to the rated voltage through the secondary coil 2122 and the noise is filtered through the inductor coil 2131 may be supplied.
상술한 제1터미널(2123), 2차코일(2122), 제2터미널(2124), 인덕터코일(2131), 제3터미널(2132) 및 버스 바(2140)에는 전류가 쌍방향으로 흐를 수 있다. 따라서 예를 들어, 전기 자동차가 내리막길을 주행하여 외부 전자 기기(모터)가 발전기처럼 전류를 발생하는 경우, 제1터미널(2123), 제2터미널(2124), 인덕터코일(2131), 제3터미널(2132) 및 버스 바(2140)를 통해 2차코일(122)로 공급될 수 있다. 이 경우, 1차코일(2121)에 유도 전류가 생겨 외부 전원 기기(리튬이온전지)는 충전될 수 있다.The current may flow in both directions of the first terminal 2123, the secondary coil 2122, the second terminal 2124, the inductor coil 2131, the third terminal 2132, and the bus bar 2140. Thus, for example, when an electric vehicle travels downhill and an external electronic device (motor) generates a current like a generator, the first terminal 2123, the second terminal 2124, the inductor coil 2131, and the third It may be supplied to the secondary coil 122 through the terminal 2132 and the bus bar 2140. In this case, an induction current may be generated in the primary coil 2121 to charge the external power device (lithium ion battery).
상술한 바와 같이, 본 제2실시예의 "코일 모듈"은 제1터미널(2123), 제2터미널(2124), 제3터미널(2132) 중 적어도 하나 이상은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다. "코일 모듈"이 컨팩트(compact)하고 안정적인 지지 구조를 갖기 위함이다.As described above, the "coil module" of the second embodiment includes at least one or more of the first or second terminals 2123, 2124, and 3132, which includes at least one of bends and bends. can do. The "coil module" is to have a compact and stable support structure.
한편, 차량용 "코일 모듈"을 구성하는 플레이트는 윗면과 아랫면을 포함하는 납작하고 폭이 긴 플레이트이다. 차량의 여러 전자 부품에 공급되는 전격 용량을 커버하기 위해서는 큰 저항값을 가져야 하기 때문이다. 그러나 비교예와 같이 절곡 성형하여, 절곡부 또는 만곡부를 성형하는 경우, 플레이트의 형태와 성형 공정의 특성상 필연적으로 절곡부 또는 만곡부가 마모, 망실되거나 찌그러지게 된다. 이는, "코일 모듈"의 전기적 특성 저하 및 내구성 감소로 이루어져 바람직하지 않다.On the other hand, the plate constituting the "coil module" for a vehicle is a flat and long plate including an upper surface and a lower surface. This is because it is necessary to have a large resistance value to cover the electric shock capacity supplied to various electronic components of the vehicle. However, when forming the bent portion or the bent portion by bending molding as in the comparative example, the bent portion or the curved portion is inevitably worn, lost or crushed due to the shape of the plate and the characteristics of the forming process. This is undesirable due to reduced electrical properties and reduced durability of the "coil module".
그러나 본 제2실시예의 "코일 모듈"의, 제1터미널(2123), 제2터미널(2124), 제3터미널(2132)은 "주조"에 의해 성형되므로 성형 공정의 특성상 설계 단계에서 설정된 형태의 절곡부 또는 만곡부를 형성할 수 있다. 따라서 본 제2실시예의 "코일 모듈"은 컨팩트(compact)하고 안정적인 지지 구조를 갖는 동시에 전기적 특성과 내구성이 향상될 수 있다.However, in the "coil module" of the second embodiment, the first terminal 2123, the second terminal 2124, and the third terminal 2132 are molded by "casting". The bent portion or the curved portion can be formed. Therefore, the "coil module" of the second embodiment may have a compact and stable support structure and at the same time improve electrical characteristics and durability.
이하, 도면을 참조하여 본 제2실시예의 변형예를 설명한다. 도 14는 본 제2실시예의 변형예의 코일 모듈이 제1,2자기코어에 장착된 상태를 나타낸 사시도이고, 도 15는 본 제2실시예의 변형예의 코일 모듈을 나타낸 분해 사시도이다.Hereinafter, modifications of the second embodiment will be described with reference to the drawings. FIG. 14 is a perspective view showing a state in which the coil module of the modification of the second embodiment is mounted on the first and second magnetic cores, and FIG. 15 is an exploded perspective view showing the coil module of the modification of the second embodiment.
본 제2실시예의 변형예는 "코일 모듈"에서 본 제2실시예와 차이점을 가진다. 본 제2실시예의 변형예는 상기 차이점 외에는 본 제2실시예와 실질적으로 동일한 기술적 사상을 가진다. 따라서 본 제2실시예의 변형예에는 본 제2실시예가 유추 적용될 수 있다. 이하, 본 제2실시예와 실질적으로 동일한 기술적 사상을 가지는 부분은 설명을 생략한다.The modification of the second embodiment differs from the second embodiment in the "coil module". The modification of the second embodiment has the same technical spirit as that of the second embodiment except for the above difference. Therefore, the second embodiment can be analogically applied to the modification of the second embodiment. Hereinafter, parts having the same technical spirit as those of the second embodiment will be omitted.
본 제2실시예의 변형예에서의 "코일 모듈"은 변환부와 인덕터부와 버스 바를 포함할 수 있다. 이 경우, 변환부는 1차코일(2121-1), 2차코일(2122-1), 3차코일(2122-2), 제1터미널(2123-1), 제2터미널(2124-1), 제3터미널(2124-2) 및 제4터미널(2123-2)을 포함할 수 있다. 인덕터부는 인덕터코일(2131-1), 제5터미널(2133-1), 제6터미널(2132-1)을 포함할 수 있다. 제2실시예의 변형예에서는 1차코일에 의해 유도 전류가 흐르는 코일이 2차코일 및 3차코일로 총 2개인 점이 가장 큰 특징이다.The "coil module" in the modification of the second embodiment may include a converter, an inductor, and a bus bar. In this case, the conversion unit may be a primary coil 2121-1, a secondary coil 2122-1, a tertiary coil 2122-2, a first terminal 2123-1, a second terminal 2124-1, It may include a third terminal 2124-2 and a fourth terminal 2123-2. The inductor unit may include an inductor coil 211-1-1, a fifth terminal 2133-1, and a sixth terminal 2132-1. In the modified example of the second embodiment, the biggest characteristic point is that the coil in which the induced current flows by the primary coil has two coils, a secondary coil and a tertiary coil.
1차코일(2121-1)은 외부 전원 기기로부터 전류를 공급받을 수 있다. 1차코일(2121-1)은 입체나선 형태로, 나선 성장의 시작 부분은 제1케이스단자(2100a)와 도전 부재에 의해 전기적으로 연결될 수 있다. 1차코일(2121-1)의 나선 성장의 끝 부분은 제2케이스단자(2100b)와 도전라인에 의해 전기적으로 연결될 수 있다.The primary coil 212-1 may receive current from an external power supply device. The primary coil 212-1 may have a three-dimensional spiral shape, and a start of spiral growth may be electrically connected to the first case terminal 2100a by the conductive member. The end of the spiral growth of the primary coil 212-1 may be electrically connected to the second case terminal 2100b by a conductive line.
2차코일(2122-1)은 1차코일(2121-1)과 이격되어 배치될 수 있다. 2차코일(2122-1)은 1차코일(2121-1)의 상측에 위치할 수 있다. 2차코일(2122-1)은 1차코일(2121-1)과 전자기적 상호작용을 할 수 있다. 2차코일(2122-1)에서는 1차코일(212-11)의 전류에 의해 전류가 유도되어 유도 전류가 발생할 수 있다. 2차코일(2122-1)에서 발생한 유도 전류는 1차코일(2121-1)을 흐르는 전류가 승압 또는 강압된 전류일 수 있다.The secondary coil 2122-1 may be spaced apart from the primary coil 212-1. The secondary coil 2122-1 may be positioned above the primary coil 212-1. The secondary coil 2122-1 may have electromagnetic interaction with the primary coil 212-1. In the secondary coil 2122-1, current may be induced by the current of the primary coil 212-11 to generate an induced current. The induced current generated in the secondary coil 2122-1 may be a current in which the current flowing through the primary coil 212-1 is boosted or stepped down.
2차코일(2122-1)은 윗면과 아랫면을 포함하는 플레이트가 개방된 링을 형성하는 형태일 수 있다. 2차코일(2122-1)의 시작 부분(일단)은 제1터미널(2123-1)로부터 연장된 형태일 수 있다. 또, 2차코일(2122-1)의 끝 부분(타단)은 제2터미널(2124-1)과 연결된 형태일 수 있다. 즉, 2차코일(2122-1)의 일단은 제1터미널(2123-1)과 전기적으로 연결될 수 있고, 2차코일(2122-1)의 타단은 제2터미널(2124-1)과 전기적으로 연결될 수 있다. 2차코일(2122-1) 및 제1,2터미널(2123-1,2124-1)은 일체로 형성될 수 있다. 다만, 2차코일(2122-1)의 형태가 상술한 링 형태로 한정되는 것은 아니다. 일 예를 들면, 2차코일(2122-1)은 입체나선 형태로, 1차코일(2121-1)과 수직 또는 수평으로 이격되어 배치될 수 있다. 또, 2차코일(2122-1)은 입체나선 형태로, 1차코일(2121-1)과 이격된 채로 인터 리빙(interleaving)될 수 있다. 이 경우, 1,2차코일(2121-1,2122-1)은 하나의 2중 입체 나선을 형성할 수 있다.The secondary coil 2122-1 may have a form in which a plate including an upper surface and a lower surface is opened. The beginning portion (one end) of the secondary coil 2122-1 may be extended from the first terminal 2123-1. In addition, an end portion (the other end) of the secondary coil 2122-1 may be connected to the second terminal 2124-1. That is, one end of the secondary coil 2122-1 may be electrically connected to the first terminal 2123-1, and the other end of the secondary coil 2122-1 is electrically connected to the second terminal 2124-1. Can be connected. The secondary coils 2122-1 and the first and second terminals 2123-1 and 2124-1 may be integrally formed. However, the shape of the secondary coil 2122-1 is not limited to the above-described ring shape. For example, the secondary coil 2122-1 may be disposed in a three-dimensional spiral shape and spaced vertically or horizontally from the primary coil 212-1. In addition, the secondary coil 2122-1 may be interleaved with a three-dimensional spiral shape and spaced apart from the primary coil 212-1. In this case, the primary and secondary coils 2121-1 and 2122-1 may form one double solid helix.
제1터미널(2123-1)은 2차코일(2122-1)을 단자와 전기적으로 연결하기 위한 부재일 수 있다. 제1터미널(2123-1)은 플레이트 형태의 도전 부재일 수 있다. 제1터미널(2123-1)은 위에서 아래(수직 방향)로 연장된 형태일 수 있다. 제1터미널(2123-1)의 일단은 상부에 위치할 수 있다. 제1터미널(2123-1)의 타단은 하부에 위치할 수 있다. 제1터미널(123-1)의 일단은 2차코일(2122-1)의 시작 부분에서 수직 방향으로 만곡 또는 절곡되어 연장된 형태일 수 있다. 제1터미널(2123-1)의 타단은 수평 방향으로 만곡 또는 절곡되어 연장된 후, 후술하는 제1,2단자부(2123-1a,2123-1b)로 나눠질 수 있다. 상술한 바에 의하면, 제1터미널(2123-1)은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다. 이 경우, 절곡부 또는 만곡부의 절곡 또는 만곡된 각도는 직각일 수 있다.The first terminal 2123-1 may be a member for electrically connecting the secondary coil 2122-1 to the terminal. The first terminal 2123-1 may be a conductive member having a plate shape. The first terminal 2123-1 may have a shape extending from top to bottom (vertical direction). One end of the first terminal 2123-1 may be positioned at an upper portion thereof. The other end of the first terminal 2123-1 may be located below. One end of the first terminal 123-1 may be bent or bent to extend in a vertical direction at the beginning of the secondary coil 2122-1. The other end of the first terminal 2123-1 may be bent or bent to extend in the horizontal direction and then divided into first and second terminal parts 2123-1a and 2123-1b to be described later. As described above, the first terminal 2123-1 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
제1터미널(2123-1)의 일단은 2차코일(2122-1)의 시작 부분과 전기적으로 연결될 수 있다. 제1터미널(2123-1)의 타단은 제1단자부(2123-1a)와 제2단자부(2123-1b)로 나눠질 수 있다. 제1단자부(2123-1a)는 볼트 체결에 의해 제3케이스단자(2100c)와 전기적으로 연결될 수 있다. 따라서 제1단자부(2123-1a)에는 볼트 체결을 위한 홀이 형성될 수 있다. 제2단자부(2123-1b)는 볼트 체결에 의해 제4케이스단자(2110d)와 전기적으로 연결될 수 있다. 따라서 제2단자부(2123-1b)에는 볼트 체결을 위한 홀이 형성될 수 있다. 제3케이스단자(2110c)와 제4케이스단자(2100c)는 다이오드 모듈(미도시)과 전기적으로 연결될 수 있다. 따라서 2차코일(2122-1)은 제1터미널(2123-1)을 통해 다이오드 모듈과 전기적으로 연결될 수 있다.One end of the first terminal 2123-1 may be electrically connected to a start portion of the secondary coil 2122-1. The other end of the first terminal 2123-1 may be divided into a first terminal portion 2123-1a and a second terminal portion 2123-1b. The first terminal portion 2123-1a may be electrically connected to the third case terminal 2100c by bolting. Therefore, a hole for fastening the bolt may be formed in the first terminal portion 2123-1a. The second terminal portion 2123-1b may be electrically connected to the fourth case terminal 2110d by bolting. Therefore, a hole for fastening the bolt may be formed in the second terminal portion 2123-1b. The third case terminal 2110c and the fourth case terminal 2100c may be electrically connected to a diode module (not shown). Accordingly, the secondary coil 2122-1 may be electrically connected to the diode module through the first terminal 2123-1.
제2터미널(2124-1)은 2차코일(2122-1)로부터 연장될 수 있다. 제2터미널(2124-1)은 2차코일(2122-1)과 인덕터코일(2131-1)을 전기적으로 연결하기 위한 부재일 수 있다. 제2터미널(2124-1)은 플레이트 형태의 도전 부재일 수 있다. 제2터미널(2124-1)은 위에서 아래(수직 방향)로 연장된 후, 수평 방향으로 연장된 형태일 수 있다. 제2터미널(2124-1)의 일단은 2차코일(2122-1)의 끝 부분에서 수직 방향으로 만곡 또는 절곡되어 연장된 형태일 수 있다. 제2터미널(2124-1)의 중간 부분은 아래로 연장된 형태일 수 있다. 제2터미널(2124-1)의 타단은 제2터미널(2124-1)의 중간 부분에서 수평 방향으로 절곡되거나 만곡된 플레이트 형태일 수 있다. 제2터미널(2124-1)의 타단에는 제3단자부(2124-1a)가 형성될 수 있다. 제3단자부(2124-1a)는 볼트 체결에 의해 제7단자부(2133-1a)와 전기적으로 연결될 수 있다. 제3단자부(2124-1a)에는 볼트 체결을 위한 홀이 형성될 수 있다. 이에 의해, 제2터미널(2124-1)과 제5터미널(2133-1)은 전기적으로 연결될 수 있으며, 종국적으로는 2차코일(2122-1)과 인덕터코일(2131-1)이 전기적으로 연결될 수 있다. 상술한 바에 의하면, 제2터미널(2124-1)은 절곡부 또는 만곡부 중 적어도 하나 이상을 포함할 수 있다. 이 경우, 절곡부 또는 만곡부의 절곡 또는 만곡된 각도는 직각일 수 있다.The second terminal 2124-1 may extend from the secondary coil 2122-1. The second terminal 2124-1 may be a member for electrically connecting the secondary coil 2122-1 and the inductor coil 2213-1. The second terminal 2124-1 may be a conductive member having a plate shape. The second terminal 2124-1 may extend from top to bottom (vertical direction) and then extend in a horizontal direction. One end of the second terminal 2124-1 may be bent or bent to extend in a vertical direction at the end of the secondary coil 2122-1. The middle portion of the second terminal 2124-1 may extend downward. The other end of the second terminal 2124-1 may be in the form of a plate that is bent or curved in the horizontal direction in the middle portion of the second terminal 2124-1. A third terminal portion 2124-1a may be formed at the other end of the second terminal 2124-1. The third terminal portion 2124-1a may be electrically connected to the seventh terminal portion 2133-1a by bolting. A hole for fastening the bolt may be formed in the third terminal portion 2124-1a. As a result, the second terminal 2124-1 and the fifth terminal 2133-1 may be electrically connected, and ultimately, the secondary coil 2122-1 and the inductor coil 2131-1 may be electrically connected to each other. Can be. As described above, the second terminal 2124-1 may include at least one of the bent portion and the curved portion. In this case, the bent or curved angle of the bent portion or the curved portion may be perpendicular.
3차코일(2122-2)은 1차코일(2121-1)과 이격되어 배치될 수 있다. 3차코일(2122-2)은 1차코일(2121-1)의 하측에 위치할 수 있다. 3차코일(2122-2)은 1차코일(2121-1)과 전자기적 상호작용을 할 수 있다. 3차코일(2122-2)에서는 1차코일(212-11)의 전류에 의해 전류가 유도되어 유도 전류가 발생할 수 있다. 3차코일(2122-2)에서 발생한 유도 전류는 1차코일(2121-1)을 흐르는 전류가 승압 또는 강압된 전류일 수 있다.The tertiary coil 2122-2 may be spaced apart from the primary coil 212-1. The tertiary coil 2122-2 may be located below the primary coil 212-1. The tertiary coil 2122-2 may have electromagnetic interaction with the primary coil 212-1. In the tertiary coil 2122-2, current may be induced by the current of the primary coil 212-11 to generate an induced current. The induced current generated in the tertiary coil 2122-2 may be a current in which the current flowing through the primary coil 212-1 is boosted or stepped down.
3차코일(2122-2)은 윗면과 아랫면을 포함하는 플레이트가 개방된 링을 형성하는 형태일 수 있다. 3차코일(2122-2)의 시작 부분(일단)은 제3터미널(2123-2)로부터 연장된 형태일 수 있다. 또, 3차코일(2122-2)의 끝 부분(타단)은 제4터미널(2124-2)과 연결된 형태일 수 있다. 즉, 3차코일(2122-2)의 일단은 제4터미널(2123-2)과 전기적으로 연결될 수 있고, 3차코일(2122-2)의 타단은 제3터미널(2124-2)과 전기적으로 연결될 수 있다. 3차코일(2122-2) 및 제3,4터미널(2123-2,2124-2)은 일체로 형성될 수 있다. 다만, 3차코일(2122-2)의 형태가 상술한 링 형태로 한정되는 것은 아니다. 일 예를 들면, 3차코일(2122-2)은 입체나선 형태로, 1차코일(2121-1)과 수직 또는 수평으로 이격되어 배치될 수 있다. 또, 3차코일(2122-2)은 입체나선 형태로, 1차코일(2121-1)과 이격된 채로 인터 리빙(interleaving)될 수 있다. 이 경우, 1,3차코일(2121-1,2122-2)은 하나의 2중 입체 나선을 형성할 수 있다.The tertiary coil 2122-2 may have a form in which a plate including an upper side and a lower side is opened. The start portion (one end) of the tertiary coil 2122-2 may extend from the third terminal 2123-2. In addition, an end portion (the other end) of the tertiary coil 2122-2 may be connected to the fourth terminal 2124-2. That is, one end of the tertiary coil 2122-2 may be electrically connected to the fourth terminal 2123-2, and the other end of the tertiary coil 2122-2 is electrically connected to the third terminal 2124-2. Can be connected. The tertiary coil 2122-2 and the third and fourth terminals 2123-2 and 2124-2 may be integrally formed. However, the shape of the tertiary coil 2122-2 is not limited to the above-described ring shape. For example, the tertiary coil 2122-2 may be disposed in a three-dimensional spiral form and spaced vertically or horizontally from the primary coil 212-1. In addition, the tertiary coil 2122-2 may be interleaved in a three-dimensional spiral form and spaced apart from the primary coil 212-1. In this case, the primary and secondary coils 2121-1 and 2122-2 may form one double solid helix.
제3터미널(2123-2)은 3차코일(2122-2)을 다이오드 모듈과 전기적으로 연결하기 위한 부재일 수 있다. 제3터미널(2123-2)은 플레이트 형태의 도전 부재일 수 있다. 제3터미널(2123-2)은 3차코일(2122-2)의 일단(시작 부분)에서 수평 방향으로 연장된 형태일 수 있다. 제3터미널(2123-2)의 타단은 후술하는 제4,5단자부(2123-2a,2123-2b)로 나눠질 수 있다.The third terminal 2123-2 may be a member for electrically connecting the tertiary coil 2122-2 to the diode module. The third terminal 2123-2 may be a conductive member having a plate shape. The third terminal 2123-2 may extend in a horizontal direction from one end (start portion) of the tertiary coil 2122-2. The other end of the third terminal 2123-2 may be divided into fourth and fifth terminal portions 2123-2a and 2123-2b which will be described later.
제3터미널(2123-2)의 일단은 3차코일(2122-2)의 시작 부분과 전기적으로 연결될 수 있다. 제3터미널(2123-2)의 타단은 제4단자부(2123-2a)와 제5단자부(2123-2b)로 나눠질 수 있다. 제4단자부(2123-2a)와 제5단자부(2123-2b)는 볼트 체결에 의해 다이오드 모듈과 전기적으로 연결될 수 있다. 따라서 제4단자부(2123-1a)와 제5단자부(2123-2b)에는 볼트 체결을 위한 홀이 형성될 수 있다. 따라서 3차코일(2122-2)은 제3터미널(2123-2)을 통해 다이오드 모듈과 전기적으로 연결될 수 있다.One end of the third terminal 2123-2 may be electrically connected to the start of the tertiary coil 2122-2. The other end of the third terminal 2123-2 may be divided into a fourth terminal portion 2123-2a and a fifth terminal portion 2123-2b. The fourth terminal portion 2123-2a and the fifth terminal portion 2123-2b may be electrically connected to the diode module by bolting. Accordingly, holes for fastening bolts may be formed in the fourth terminal portion 2123-1a and the fifth terminal portion 2123-2b. Accordingly, the tertiary coil 2122-2 may be electrically connected to the diode module through the third terminal 2123-2.
제4터미널(2124-2)은 3차코일(2122-2)로부터 연장될 수 있다. 제4터미널(2124-2)은 3차코일(2122-2)과 인덕터코일(2131-1)을 전기적으로 연결하기 위한 부재일 수 있다. 제4터미널(2124-2)은 플레이트 형태의 도전 부재일 수 있다. 제4터미널(2124-2)은 3차코일(2122-2)의 타단에서 수평 방향으로 연장된 형태일 수 있다. 제4터미널(2124-2)의 일단은 3차코일(2122-2)의 끝 부분에 위치할 수 있다. 제4터미널(2124-2)의 타단에는 제6단자부(2124-2a)가 형성될 수 있다. 제6단자부(2124-2a)는 볼트 체결에 의해 제7단자부(2133-1a)와 전기적으로 연결될 수 있다. 이 경우, 제3단자부(2124-1a), 제6단자부(2124-2a) 및 제7단자부(2133-1a)는 상하 방향으로 오버랩되어 위치할 수 있다. 제6단자부(2124-2a)에는 볼트 체결을 위한 홀이 형성될 수 있다. 이에 의해, 제4터미널(2124-2)과 제5터미널(2133-1)은 전기적으로 연결될 수 있으며, 종국적으로는 3차코일(2122-2)과 인덕터코일(2131-1)이 전기적으로 연결될 수 있다.The fourth terminal 2124-2 may extend from the tertiary coil 2122-2. The fourth terminal 2124-2 may be a member for electrically connecting the tertiary coil 2122-2 and the inductor coil 2213-1. The fourth terminal 2124-2 may be a conductive member having a plate shape. The fourth terminal 2124-2 may extend in the horizontal direction from the other end of the tertiary coil 2122-2. One end of the fourth terminal 2124-2 may be located at the end of the tertiary coil 2122-2. A sixth terminal portion 2124-2a may be formed at the other end of the fourth terminal 2124-2. The sixth terminal portion 2124-2a may be electrically connected to the seventh terminal portion 2133-1a by bolting. In this case, the third terminal portion 2124-1a, the sixth terminal portion 2124-2a, and the seventh terminal portion 2133-1a may overlap each other in the vertical direction. A hole for fastening the bolt may be formed in the sixth terminal portion 2124-2a. As a result, the fourth terminal 2124-2 and the fifth terminal 2133-1 may be electrically connected, and ultimately, the tertiary coil 2122-2 and the inductor coil 2131-1 may be electrically connected to each other. Can be.
인덕터코일(2131-1)은 2차코일(2122-1) 및 3차코일(2122-2)로부터 변환 전류를 공급받을 수 있다. 인덕터코일(2131-1)은 변환 전류를 정류할 수 있다. 인덕터코일(2131-1)은 외부단자(2150)와 연결되어 정류 전류를 공급할 수 있다.The inductor coil 2131-1 may receive a conversion current from the secondary coil 2122-1 and the tertiary coil 2122-2. The inductor coil 211-1 may rectify the converted current. The inductor coil 211-1 may be connected to the external terminal 2150 to supply a rectified current.
인덕터코일(2131-1)은 윗면과 아랫면을 포함하는 플레이트가 입체나선으로 성장한 형태일 수 있다. 즉, 인덕터코일(2131-1)은 입체나선 형태일 수 있다. 인덕터코일(2131-1)의 나선 성장의 시작 부분(하부)은 제5터미널(2133-1)로부터 연장될 수 있다. 인덕터코일(2131-1)의 나선 성장 끝 부분(상부)에는 제6터미널(2132-1)이 연결될 수 있다. 버스 바(2140-1)는 제6터미널(2132-1)로부터 연장될 수 있다. 인덕터코일(2131-1), 제5터미널(2133-1), 제6터미널(2132-1) 및 버스 바(2140-1)는 일체로 형성될 수 있다.The inductor coil 211-1 may have a form in which a plate including an upper surface and a lower surface is grown in three-dimensional spiral. That is, the inductor coils 211-1 may have a three-dimensional spiral shape. The start portion (lower portion) of the spiral growth of the inductor coil 2131-1 may extend from the fifth terminal 2133-1. The sixth terminal 2132-1 may be connected to the spiral growth end portion (top) of the inductor coil 211-11-1. The bus bar 2140-1 may extend from the sixth terminal 2132-1. The inductor coil 211-1-1, the fifth terminal 2133-1, the sixth terminal 2132-1, and the bus bar 2140-1 may be integrally formed.
제5터미널(2133-1)의 일단에는 제7단자부(2133-1a)가 형성될 수 있다. 상술한 바와 같이, 제7단자부(2133-1a)는 제3단자부(2124-1a)와 볼트 체결에 의해 전기적으로 연결될 수 있다. 또한, 제7단자부(2133-1a)는 제6단자부(2124-2a)와 볼트 체결에 의해 전기적으로 연결될 수 있다. 따라서 인덕터코일(2131-1)은 2차코일(2122-1) 및 3차코일(2122-2)과 전기적으로 연결될 수 있다. 2차코일(2122-1) 및 3차코일(2122-2)에서 생성된 유도 전류는 인덕터코일(2131-2)에서 정류될 수 있다. 제5터미널(2133-1)의 타단은 제5터미널(2133-1)의 일단에서 수평 방향(인덕터코일이 위치하는 방향)으로 연장되어, 인덕터코일(2131-2)의 나선 성장의 시작 부분과 연결될 수 있다.A seventh terminal portion 2133-1a may be formed at one end of the fifth terminal 2133-1. As described above, the seventh terminal portion 2133-1a may be electrically connected to the third terminal portion 2124-1a by bolting. In addition, the seventh terminal portion 2133-1a may be electrically connected to the sixth terminal portion 2124-2a by bolting. Therefore, the inductor coil 2131-1 may be electrically connected to the secondary coil 2122-1 and the tertiary coil 2122-2. Induced currents generated in the secondary coil 2122-1 and the tertiary coil 2122-2 may be rectified in the inductor coil 2131-2. The other end of the fifth terminal 2133-1 extends from one end of the fifth terminal 2133-1 in the horizontal direction (the direction in which the inductor coil is located), so as to start the spiral growth of the inductor coil 2131-2. Can be connected.
제6터미널(2132-1)의 일단은 인덕터코일(2131-2)의 나선 성장의 끝 부분과 연결될 수 있다. 제6터미널(2132-1)의 타단은 버스 바(2140-1)의 일단과 연결될 수 있다. 버스 바(2140-1)의 타단은 외부단자(2150)와 전기적으로 연결될 수 있다. 버스 바(2140-1)의 타단에는 외부단자(2150)와 전기적으로 연결되기 위한 제8단자부(2140-1a)가 형성될 수 있다. 제8단자부(2140-1a)에는 고정 및 전기적 연결을 위한 볼트 체결 홀이 형성될 수 있다. 인덕터코일(2131-2)은 버스 바(2140-1)를 통해 외부단자(2150)와 전기적으로 연결될 수 있다. 그 결과, 2차코일(2122-1) 및 3차코일(2122-2)에서 생성된 유도 전류는 인덕터코일(2131-2)에서 정류된 후 버스 바(2140-1)를 통하여 외부의 전자 기기로 전달될 수 있다.One end of the sixth terminal 2132-1 may be connected to the end of the spiral growth of the inductor coil 2131-2. The other end of the sixth terminal 2132-1 may be connected to one end of the bus bar 2140-1. The other end of the bus bar 2140-1 may be electrically connected to the external terminal 2150. At the other end of the bus bar 2140-1, an eighth terminal portion 2140-1a may be formed to be electrically connected to the external terminal 2150. Bolting holes for fixing and electrical connection may be formed in the eighth terminal portion 2140-1a. The inductor coil 2131-2 may be electrically connected to the external terminal 2150 through the bus bar 2140-1. As a result, the induced current generated in the secondary coil 2122-1 and the tertiary coil 2122-2 is rectified in the inductor coil 2131-2, and then external electronic device through the bus bar 2140-1. Can be delivered.
<제3실시예>Third Embodiment
이하에서는, 도면을 참조하여 본 제3실시예의 DC-DC 컨버터(3001)를 설명한다. 도 16은 제1커버가 분리된 상태의 본 제3실시예의 DC-DC 컨버터를 나타내는 사시도이고, 도 17은 본 제3실시예의 DC-DC 컨버터를 나타낸 절단 사시도이고, 도 18는 본 제3실시예의 DC-DC 컨버터의 메인기판, 보조기판 및 냉각판을 나타낸 단면 개념도이고, 도 19는 본 제3실시예의 DC-DC 컨버터의 신호다리를 나타낸 개념도이다.Hereinafter, the DC-DC converter 3001 of the third embodiment will be described with reference to the drawings. FIG. 16 is a perspective view showing the DC-DC converter of the third embodiment with the first cover removed, FIG. 17 is a cutaway perspective view of the DC-DC converter of the third embodiment, and FIG. 18 is the third embodiment. Fig. 19 is a schematic cross-sectional view showing a main board, an auxiliary board, and a cooling plate of a DC-DC converter.
본 제3실시예의 DC-DC 컨버터(3001)는 차량에 사용되는 DC-DC 컨버터일 수 있다. 전기 자동차를 예를 들면, DC-DC 컨버터(3001)는 외부의 전원 기기(리튬이온전지 등)로부터 전류를 공급받아 전압을 승압 또는 강하시켜 외부의 전자 기기(모터 등)에 공급하여 모터 등의 회전수를 제어하는 역할을 할 수 있다. 도 17에서 나타내는 바와 같이, DC-DC 컨버터(3001)는 하우징(3010), 제1기판(3020), 제2기판(3030), 연결부재(3040), 코일부(3050) 및 버스바(3060)를 포함할 수 있다. DC-DC 컨버터(3001)는 "전자부품조립체"로 호칭될 수 있다. 이 경우, 코일부(3050) 및 버스바(3060) 등의 보조 구성은 생략될 수 있다. 이 경우, 본 제3실시예의 "전자부품조립체"는 DC-DC 컨버터(3001)뿐만 아니라 다양한 전자부품조립체에 권리범위가 미칠 수 있다. 또, 제1기판(3020)은 발열량이 높은 소자를 냉각시키기 위해 마련된 기판으로 "보조기판"으로 호칭될 수 있다. 제1기판(3020)은 일반적인 기판과 전혀 다른 구성(냉각판이 일반적인 기판의 베이스의 역할을 대신함)을 가지므로 기판이라는 호칭이 생략될 수 있다. 제2기판(3030)은 발열량이 낮은 소자를 냉각시키기 위해 마련된 기판으로 "메인기판"으로 호칭될 수 있다. 제1기판(3020)의 호칭을 생략하는 경우, 제2기판(3030)은 "기판"으로 호칭될 수 있다.The DC-DC converter 3001 of the third embodiment may be a DC-DC converter used in a vehicle. As an example of an electric vehicle, the DC-DC converter 3001 receives a current from an external power supply device (such as a lithium ion battery) and boosts or lowers a voltage to supply an external electronic device (motor, etc.) to supply a motor. It can play a role to control the rotation speed. As shown in FIG. 17, the DC-DC converter 3001 includes a housing 3010, a first substrate 3020, a second substrate 3030, a connection member 3040, a coil unit 3050, and a bus bar 3060. ) May be included. The DC-DC converter 3001 may be referred to as an "electronic component assembly." In this case, auxiliary components such as the coil unit 3050 and the bus bar 3060 may be omitted. In this case, the "electronic component assembly" of the third embodiment may have a range of rights not only in the DC-DC converter 3001 but also in various electronic component assemblies. In addition, the first substrate 3020 may be referred to as an "auxiliary substrate" as a substrate provided to cool an element having a high heat generation amount. Since the first substrate 3020 has a configuration completely different from that of the general substrate (the cooling plate replaces the role of the base of the general substrate), the name of the substrate may be omitted. The second substrate 3030 may be referred to as a “main substrate” as a substrate provided to cool an element having a low heat generation amount. When the name of the first substrate 3020 is omitted, the second substrate 3030 may be referred to as a "substrate".
이하, 도 16, 17을 참조하여 하우징(3010)을 설명한다. 하우징(3010)은 DC-DC 컨버터(3001)의 외장부재로 중공의 블럭 형태일 수 있다. 하우징(3010)은 본체(3011), 냉각판(3012), 제1커버(3013), 제2커버(3014), 유입구(3015), 배출구(3016), 냉각 유로 가이드(3017), 냉각 유로(3018) 및 방열핀(3019)을 포함할 수 있다. 하우징(3010)의 내부는 냉각판(3012)에 의해 하부에 위치하는 제1영역(3002)과 상부에 위치하는 제2영역(3003)으로 분리될 수 있다. 제1영역(3002)은 냉각유체가 흐르는 냉각부이고, 제2영역(3003)은 전자부품이 배치되는 전자부품부일 수 있다. 하우징(3010)의 냉각판(3012), 제1커버(3013), 제2커버(3014), 유입구(3015), 배출구(3016), 냉각 유로 가이드(3017), 냉각 유로(3018) 및 방열핀(3019)은 일체로 형성될 수 있다. 하우징(3010)의 재질은 금속(예를 들면, 알루미늄)일 수 있다.Hereinafter, the housing 3010 will be described with reference to FIGS. 16 and 17. The housing 3010 may be a hollow block shape as an exterior member of the DC-DC converter 3001. The housing 3010 includes a main body 3011, a cooling plate 3012, a first cover 3013, a second cover 3014, an inlet port 3015, an outlet port 3016, a cooling channel guide 3017, and a cooling channel ( 3018 and heat dissipation fins 3019. The interior of the housing 3010 may be separated into a first region 3002 positioned below and a second region 3003 positioned above by the cooling plate 3012. The first region 3002 may be a cooling unit through which a cooling fluid flows, and the second region 3003 may be an electronic component unit in which electronic components are disposed. Cooling plate 3012 of housing 3010, first cover 3013, second cover 3014, inlet port 3015, outlet port 3016, cooling channel guide 3017, cooling channel 3018 and heat dissipation fins ( 3019 may be integrally formed. The material of the housing 3010 may be metal (eg, aluminum).
본체(3011)는 측면에 의해 형성되고, 하측 단부와 상측 단부가 개구된 중공 형태일 수 있다. 본체(3011)의 하측 단부에는 제1커버(3013)가 배치될 수 있다. 이 경우, 제1커버(3013)는 본체(3011)의 하측 단부의 개구를 덮어 폐쇄할 수 있다. 본체(3011)의 상측 단부에는 제2커버(3014)가 배치될 수 있다. 이 경우, 제2커버(3013)는 본체(3011)의 상측 단부의 개구를 덮어 폐쇄할 수 있다. 그 결과, 하우징(3010)은 본체(3011)와 제1,2커버(3012,3013)에 의해 내부 공간이 형성될 수 있다. 나아가 본체(3011)의 내부에는 수평 격벽 형태로 냉각판(3012)이 배치될 수 있다. 즉, 냉각판(3012)은 본체(3011)의 내부의 수평 단면의 전면에 걸쳐 형성될 수 있다. 냉각판(3012)은 본체(3011)의 내부를 제1영역(3002)과 제2영역(3003)으로 구획 또는 분리할 수 있다. 이 경우, 제1영역(3002)과 제2영역(3003)은 서로 차단된 별도의 영역일 수 있다. 냉각판(3012)의 아래에는 제1영역(3002)이 배치되고, 냉각판(3012)의 위에는 제2영역(3003)이 배치될 수 있다.The main body 3011 may be formed by a side surface, and may have a hollow shape in which lower and upper ends are opened. The first cover 3013 may be disposed at the lower end of the main body 3011. In this case, the first cover 3013 may cover the opening of the lower end of the main body 3011 to close. The second cover 3014 may be disposed at an upper end of the main body 3011. In this case, the second cover 3013 may cover the opening of the upper end of the main body 3011 to close. As a result, the interior space of the housing 3010 may be formed by the main body 3011 and the first and second covers 3012 and 3013. Furthermore, the cooling plate 3012 may be disposed in the body 3011 in the form of a horizontal partition wall. That is, the cooling plate 3012 may be formed over the entire surface of the horizontal cross section of the interior of the body 3011. The cooling plate 3012 may partition or separate the inside of the main body 3011 into the first region 3002 and the second region 3003. In this case, the first area 3002 and the second area 3003 may be separate areas that are blocked from each other. The first region 3002 may be disposed below the cooling plate 3012, and the second region 3003 may be disposed above the cooling plate 3012.
본체(3011)의 측면에서 제1영역(3002)에 해당하는 부분에는 냉각유체를 유입하기 위한 유입구(3015)와 제1영역(3002)을 따라 흐른 냉각유체가 배출되는 배출구(3016)가 형성될 수 있다.An inlet 3015 for introducing a cooling fluid and an outlet 3016 for discharging the cooling fluid flowing along the first region 3002 may be formed at a portion corresponding to the first region 3002 on the side of the main body 3011. Can be.
제1영역(3002)은 냉각유체가 흐르는 영역으로 냉각 기능을 수행할 수 있다. 냉각판(3012)의 하측면에는 냉각 유로 가이드(3017)가 배치될 수 있다. 이 경우, 냉각 유로 가이드(3017)는 다양한 형태를 가질 수 있고, 냉각 유로 가이드(3017)에 의해 냉각 유로(3018)가 형성될 수 있다. 냉각 유로(3018)에는 냉각 효율을 높이기 위해, 복수 개의 방열핀(3019)이 형성될 수 있다. 이 경우, 복수 개의 방열핀(3019)은 냉각판(3012)의 아랫면에서 아래로 연장되어 형성된 돌기 형태일 수 있다.The first region 3002 may serve as a region through which a cooling fluid flows. The cooling channel guide 3017 may be disposed on the lower surface of the cooling plate 3012. In this case, the cooling flow path guide 3017 may have various shapes, and the cooling flow path 3018 may be formed by the cooling flow path guide 3017. In order to increase cooling efficiency, a plurality of heat dissipation fins 3019 may be formed in the cooling passage 3018. In this case, the plurality of heat dissipation fins 3019 may have a protrusion shape extending downward from the lower surface of the cooling plate 3012.
제2영역(3003)은 전자부품이 배치되는 곳으로 전자제어 기능을 수행할 수 있다. 이를 위해, 제2영역(3003)에는 제1기판(3020), 제2기판(3030), 연결부재(3040), 코일부(3050) 및 버스바(3060)가 배치될 수 있다.The second area 3003 is a place where the electronic component is disposed, and may perform an electronic control function. To this end, a first substrate 3020, a second substrate 3030, a connection member 3040, a coil unit 3050, and a bus bar 3060 may be disposed in the second region 3003.
이하, 도 18을 참조하여 제1기판(3020)을 설명한다. 제1기판(3020)은 열전도율이 높은 금속인쇄회로기판(MPCB, Metal Printed Circuit Board)일 수 있다. 제1기판(3020)은 발열량이 높은 소자를 실장하기 위한 기판으로 "보조기판"으로 호칭될 수 있다. 즉, 제1기판(3020)에 실장되는 소자는 후술하는 제2기판(3030)에 실장되는 소자보다 발열량이 높다. 제1기판(3020)에 실장되는 소자는 "능동소자"로도 호칭될 수 있다. 여기서 "능동소자"는 전기에너지를 발생할 수 있는 능력을 갖추고 있는 소자일 수 있다. 예를 들면, 트랜지스터, IC 컨트롤러가 이에 해당할 수 있다.Hereinafter, the first substrate 3020 will be described with reference to FIG. 18. The first substrate 3020 may be a metal printed circuit board (MPCB) having high thermal conductivity. The first substrate 3020 may be referred to as an "auxiliary substrate" as a substrate for mounting an element having a high heat generation amount. That is, the element mounted on the first substrate 3020 has a higher heat generation amount than the element mounted on the second substrate 3030 described later. The device mounted on the first substrate 3020 may also be referred to as an “active device”. Here, the "active device" may be a device having an ability to generate electrical energy. For example, the transistor and the IC controller may correspond to this.
제1기판(3020)은 냉각판(3012)의 윗면에 배치될 수 있다. 이 경우, 제1기판(3020)의 아랫면은 냉각판(3012)의 윗면과 접촉할 수 있다. 그 결과, 제1기판(3020)은 후술하는 제2기판(3030)보다 냉각효율이 높을 수 있다. 제1기판(3020)의 아랫면은 냉각판(3012)과 직접 접하므로, 제1기판(3020)의 윗면에만 소자가 실장될 수 있다. 제1기판(3020)은 제2기판(3030)과 아래로 이격되어 배치될 수 있다. 즉, 제1기판(3020)은 제2기판(3030)과 이격되어 적층될 수 있다. 그 결과, 본 제3실시예에서는 동일 공간에서 소자의 실장율을 높일 수 있다. 제1기판(3020)의 면적은 제2기판(3030)의 면적보다 작을 수 있다. 제1기판(3020)은 제2기판(3030)과 전기적으로 연결될 수 있다. 제1기판(3020)은 연결부재(3040)에 의해 제2기판(3030)과 전기적으로 연결될 수 있다.The first substrate 3020 may be disposed on an upper surface of the cooling plate 3012. In this case, the bottom surface of the first substrate 3020 may contact the top surface of the cooling plate 3012. As a result, the first substrate 3020 may have a higher cooling efficiency than the second substrate 3030 described later. Since the bottom surface of the first substrate 3020 is in direct contact with the cooling plate 3012, the device may be mounted only on the top surface of the first substrate 3020. The first substrate 3020 may be spaced apart from the second substrate 3030. That is, the first substrate 3020 may be stacked spaced apart from the second substrate 3030. As a result, in the third embodiment, the mounting rate of the device can be increased in the same space. The area of the first substrate 3020 may be smaller than the area of the second substrate 3030. The first substrate 3020 may be electrically connected to the second substrate 3030. The first substrate 3020 may be electrically connected to the second substrate 3030 by the connecting member 3040.
제1기판(3020)은 접착층(3021), 금속층(3022), 절연층(3023) 및 패턴층(3024)을 포함할 수 있다. 제1기판(3020)은 접착층(3021), 금속층(3022), 절연층(3023) 및 패턴층(3024)이 차례로 적층된 형태일 수 있다. 제1기판(3020)은 접착층(3021), 금속층(3022), 절연층(3023) 및 패턴층(3024)만으로 구성될 수 있다.The first substrate 3020 may include an adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024. The first substrate 3020 may have a form in which an adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024 are sequentially stacked. The first substrate 3020 may be composed of only an adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024.
접착층(3021)은 열전도성 접착제로 냉각판(3012)의 위에 배치될 수 있다. 이 경우, 접착층(3021)은 냉각판(3012)의 윗면에 직접 코팅될 수 있다. 즉, 접착층(3021)은 냉각판(3012)의 윗면과 접착할 수 있다. 일 예로 접착층(3021)은 열전도율이 높은 터멀그리스(thermel grease)일 수 있다. 그 결과, 제1기판(3020)에 실장되는 발열량이 높은 소자에서 발생하는 열을 효율적으로 냉각시킬 수 있다. 나아가 접착층(3021)은 금속층(3022)과 냉각판(3012)을 결합하는 기능을 수행할 수 있다.The adhesive layer 3021 may be disposed on the cooling plate 3012 with a thermally conductive adhesive. In this case, the adhesive layer 3021 may be directly coated on the upper surface of the cooling plate 3012. That is, the adhesive layer 3021 may adhere to the top surface of the cooling plate 3012. For example, the adhesive layer 3021 may be a thermal grease having high thermal conductivity. As a result, it is possible to efficiently cool the heat generated by the element having a high heat generation amount mounted on the first substrate 3020. Furthermore, the adhesive layer 3021 may perform a function of bonding the metal layer 3022 and the cooling plate 3012.
금속층(3022)은 접착층(3021) 위에 배치될 수 있다. 즉, 금속층(3022)은 접착층(3021) 상에 배치될 수 있다. 금속층(3022)은 금속 재질의 플레이트 형태일 수 있다. 금속층(3022)의 아랫면은 접착층(3021)의 윗면과 결합할 수 있다. 금속층(3022)의 재질은 열전도율이 높은 구리 또는 알루미늄을 포함할 수 있다. 금속층(3022)에 의해 제1기판(3020)은 "메탈인쇄회로기판"으로 호칭될 수 있다. 금속층(3022)에 의해 제1기판(3020)의 냉각효율은 높아질 수 있다. 또, 금속층(3022)은 제1기판(3020)에서 지지부의 역할을 수행할 수 있다. 금속층(3022)에 의해 절연층(3023)과 패턴층(3024)이 지지될 수 있다.The metal layer 3022 may be disposed on the adhesive layer 3021. That is, the metal layer 3022 may be disposed on the adhesive layer 3021. The metal layer 3022 may be in the form of a metal plate. The bottom surface of the metal layer 3022 may be combined with the top surface of the adhesive layer 3021. The material of the metal layer 3022 may include copper or aluminum having high thermal conductivity. The first substrate 3020 may be referred to as a "metal printed circuit board" by the metal layer 3022. The cooling efficiency of the first substrate 3020 may be increased by the metal layer 3022. In addition, the metal layer 3022 may serve as a support part in the first substrate 3020. The insulating layer 3023 and the pattern layer 3024 may be supported by the metal layer 3022.
절연층(3023)은 금속층(3022) 위에 배치될 수 있다. 즉, 절연층(3023)은 금속층(3022) 상에 배치될 수 있다. 절연층(3023)은 절연 재질의 플레이트 형태일 수 있다. 절연층(3023)은 패턴층(3024)을 형성하기 위한 층일 수 있다.The insulating layer 3023 may be disposed on the metal layer 3022. That is, the insulating layer 3023 may be disposed on the metal layer 3022. The insulating layer 3023 may be in the form of a plate of an insulating material. The insulating layer 3023 may be a layer for forming the pattern layer 3024.
패턴층(3024)은 절연층(3023) 위에 배치될 수 있다. 패턴층(3024)은 절연층(3023)에 코팅될 수 있다. 패턴층(3024)은 제1기판(3020)의 회로를 형성하는 층일 수 있다. 따라서 패턴층(3024)은 전기전도성 재질인 다양한 회로 패턴일 수 있다. 패턴층(3024)에는 "능동소자"가 배치될 수 있다. 이 경우, "능동소자"는 상면과 하면을 포함할 수 있다. "능동소자"의 하면은 패턴층(3024)에 솔더링될 수 있다. 따라서 "능동소자"의 하면은 냉각판(3012)과 대향할 수 있다. 또, "능동소자"는 SMT(Surface Mount Thechnology)에 의해 패턴층(3024)과 전기적으로 연결될 수 있다. 예를 들면, "능동소자"는 복수 개의 와이어에 의해 패턴층(3024)과 전기적으로 연결될 수 있다.The pattern layer 3024 may be disposed on the insulating layer 3023. The pattern layer 3024 may be coated on the insulating layer 3023. The pattern layer 3024 may be a layer forming a circuit of the first substrate 3020. Accordingly, the pattern layer 3024 may be various circuit patterns made of an electrically conductive material. An "active element" may be disposed in the pattern layer 3024. In this case, the "active element" may include an upper surface and a lower surface. The lower surface of the "active element" may be soldered to the pattern layer 3024. Accordingly, the bottom surface of the "active element" may be opposite to the cooling plate 3012. In addition, the "active element" may be electrically connected to the pattern layer 3024 by surface mount theory (SMT). For example, the "active element" may be electrically connected to the pattern layer 3024 by a plurality of wires.
상술한 바와 같이, 제1기판(3020)은 냉각판(3012)을 베이스로 냉각판(3012)위에 직접 코팅된 물질들로 구성된 다는 점에서 일반적인 기판하고 완전히 다르다. 따라서 제1기판(3020)은 호칭이 생략될 수 있다. 이 경우, 제1기판(3020)은 "접착층(3021), 금속층(3022), 절연층(3023) 및 패턴층(3024)"으로 호칭될 수 있다.As described above, the first substrate 3020 is completely different from the general substrate in that the first substrate 3020 is made of materials directly coated on the cooling plate 3012 based on the cooling plate 3012. Therefore, the first substrate 3020 may be omitted. In this case, the first substrate 3020 may be referred to as an "adhesive layer 3021, a metal layer 3022, an insulating layer 3023, and a pattern layer 3024."
이하, 도 18을 참조하여 제2기판(3030)을 설명한다. 제2기판(3030)은 인쇄회로기판(PCB, Printed Circuit Board)일 수 있다. 제2기판(3030)은 발열량이 낮은 소자를 실장하기 위한 기판으로 "메인기판"으로 호칭될 수 있다. 즉, 제2기판(3030)에 실장되는 소자는 제1기판(3020)에 실장되는 소자보다 발열량이 낮다. 제2기판(3030)에 실장되는 소자는 "수동소자"로도 호칭될 수 있다. 여기서 "수동소자"는 전기적 에너지를 전달 또는 흡수할 뿐, 전기에너지의 변환 등 능동적 기능을 가지지 않는 소자일 수 있다.Hereinafter, the second substrate 3030 will be described with reference to FIG. 18. The second substrate 3030 may be a printed circuit board (PCB). The second substrate 3030 may be referred to as a “main substrate” as a substrate for mounting a device having a low heat generation amount. That is, the element mounted on the second substrate 3030 has a lower heat generation amount than the element mounted on the first substrate 3020. The device mounted on the second substrate 3030 may also be referred to as a "passive device". Here, the "passive element" may be a device that does not have an active function, such as only to transfer or absorb electrical energy, or to convert electrical energy.
제2기판(3030)은 냉각판(3012)과 상측으로 이격되어 배치될 수 있다. 이를 위해, 본체(3011)의 제2영역(3003)의 내측면에는 제2기판(3030)을 지지하기 위한 부재(미도시)가 배치될 수 있다. 제2기판(3030)과 냉각판(3012) 사이에는 제1기판(3020)이 배치될 수 있다. 즉, 제2기판(3030)과 제1기판(3020)은 이격되어 오버랩될 수 있다. 그 결과, 제2기판(3030)은 제1기판(3020)보다 냉각효율이 낮을 수 있다. 즉, 제2기판(3030)은 제1기판(3020)과 이격되어 적층될 수 있다. 이 경우, 제2기판(3030)의 면적은 제1기판(3020)의 면적보다 클 수 있다. 제2기판(3030)은 제1기판(3020)과 전기적으로 연결될 수 있다. 제2기판(3030)은 연결부재(3040)에 의해 제1기판(3020)과 전기적으로 연결될 수 있다. 제2기판(3030)은 후술하는 코일부(3050)와 이격되어 배치될 수 있다. 이 경우, 코일부(3050)는 제1기판(3020)을 관통할 수 있다. 코일부(3050)는 냉각판(3012)에 지지되어 배치되고, 제1기판(3020)은 냉각판(3012)과 위로 이격되어 배치되므로, 제1기판(3020)과 코일부(3050)가 오버랩되는 부분에는 제1기판(3020)에 홀이 형성되어 코일부(3050)가 관통할 수 있다.(도 16 참조) 제1기판(3020)에는 윗면과 아랫면 모두에 "수동소자"가 실장될 수 있다. 그 결과, 본 제3실시예에서는 동일 공간에서 소자의 실장율을 높일 수 있다.The second substrate 3030 may be spaced apart from the cooling plate 3012 upwardly. To this end, a member (not shown) for supporting the second substrate 3030 may be disposed on an inner side surface of the second region 3003 of the main body 3011. The first substrate 3020 may be disposed between the second substrate 3030 and the cooling plate 3012. That is, the second substrate 3030 and the first substrate 3020 may be spaced apart and overlap. As a result, the second substrate 3030 may have a lower cooling efficiency than the first substrate 3020. That is, the second substrate 3030 may be stacked spaced apart from the first substrate 3020. In this case, an area of the second substrate 3030 may be larger than that of the first substrate 3020. The second substrate 3030 may be electrically connected to the first substrate 3020. The second substrate 3030 may be electrically connected to the first substrate 3020 by the connecting member 3040. The second substrate 3030 may be spaced apart from the coil unit 3050 to be described later. In this case, the coil unit 3050 may penetrate the first substrate 3020. The coil part 3050 is supported and disposed on the cooling plate 3012, and since the first substrate 3020 is disposed to be spaced apart from the cooling plate 3012, the first substrate 3020 and the coil part 3050 overlap each other. A hole may be formed in the first substrate 3020 to allow the coil unit 3050 to pass therethrough. (See FIG. 16.) The passive substrate may be mounted on both the top and bottom surfaces of the first substrate 3020. have. As a result, in the third embodiment, the mounting rate of the device can be increased in the same space.
연결부재(3040)는 제1기판(3020)과 제2기판(3030)을 전기적으로 연결할 수 있다. 연결부재(3040)는 프레스 핏 방식에 의한 체결부재일 수 있다. 또, 연결부재(3040)는 신호다리일 수 있다. 또, 연결부재(3040)는 연성인쇄회로기판(FPCB, Flexible Printed Circuit Board)일 수 있다. 즉, 연결부재(3040)는 다양한 형태일 수 있다. 이하, 연결부재(3040)가 신호다리인 경우를 도 20을 참조하여 설명한다.The connection member 3040 may electrically connect the first substrate 3020 and the second substrate 3030. The connection member 3040 may be a fastening member by a press fit method. In addition, the connection member 3040 may be a signal leg. In addition, the connection member 3040 may be a flexible printed circuit board (FPCB). That is, the connection member 3040 may have various forms. Hereinafter, a case in which the connecting member 3040 is a signal leg will be described with reference to FIG. 20.
도 19의 (a)에서 나타내는 바와 같이, 연결부재(3040)는 패턴층(3024)의 일부를 형성하는 제1전도부재(3041)와 제1전도부재(3041)에서 만곡 또는 절곡되어 제2기판(3030)과 전기적으로 연결되는 제2전도부재(3042)를 포함할 수 있다. 이 경우, 제1전도부재(3041)는 패턴층(3024)의 패턴일 수 있다. 또, 제2전도부재(3042)는 제1전도부재(3041)에서 상측으로 연장되어 제2기판(3030)과 전기적으로 연결될 수 있다. 이 경우, 제2전도부재(3042)의 상측 단부는 제2기판(3030)에 솔더링되거나 핀 접합 등에 의해 결합할 수 있다.As shown in FIG. 19A, the connection member 3040 is bent or bent by the first conductive member 3041 and the first conductive member 3041 to form part of the pattern layer 3024 to form a second substrate. The second conductive member 3052 may be electrically connected to the 3030. In this case, the first conductive member 3041 may be a pattern of the pattern layer 3024. In addition, the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030. In this case, the upper end of the second conductive member 3042 may be soldered to the second substrate 3030, or may be joined by pin bonding or the like.
도 19의 (b)에서 나타내는 바와 같이, 연결부재(3040)는 패턴층(3024)과 전기적으로 연결되는 제1전도부재(3041)와 제1전도부재(3041)에서 만곡 또는 절곡되어 제2기판(3030)과 전기적으로 연결되는 제2전도부재(3042)를 포함할 수 있다. 이 경우, 제1전도부재(3041)의 아랫면은 패턴층(3024)과 전기적으로 연결될 수 있다. 제1전도부재(3041)의 아랫면은 패턴층(3024)에 솔더링되거나 핀 접합 등에 의해 결합할 수 있다. 또, 제2전도부재(3042)는 제1전도부재(3041)에서 상측으로 연장되어 제2기판(3030)과 전기적으로 연결될 수 있다. 제2전도부재(3042)의 상측 단부는 제2기판(3030)에 솔더링되거나 핀 접합 등에 의해 결합할 수 있다.As shown in FIG. 19B, the connection member 3040 is bent or bent from the first conductive member 3041 and the first conductive member 3041 to be electrically connected to the pattern layer 3024 to form a second substrate. The second conductive member 3052 may be electrically connected to the 3030. In this case, the bottom surface of the first conductive member 3041 may be electrically connected to the pattern layer 3024. The bottom surface of the first conductive member 3041 may be soldered to the pattern layer 3024 or may be bonded by pin bonding or the like. In addition, the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030. The upper end of the second conductive member 3042 may be soldered to the second substrate 3030 or may be coupled by pin bonding or the like.
도 19의 (c)에서 나타내는 바와 같이, 연결부재(3040)는 패턴층(3024)과 전기적으로 연결되고, 플레이트 형태의 제1전도부재(3041)와 제1전도부재(3041)의 중심에서 제2기판(3030) 측으로 연장되어 제2기판(3030)과 전기적으로 연결되는 제2전도부재(3042)를 포함할 수 있다. 이 경우, 제1전도부재(3041)의 아랫면은 패턴층(3024)과 전기적으로 연결될 수 있다. 제1전도부재(3041)의 아랫면은 패턴층(3024)에 솔더링되거나 핀 접합 등에 의해 결합할 수 있다. 또, 제2전도부재(3042)는 제1전도부재(3041)에서 상측으로 연장되어 제2기판(3030)과 전기적으로 연결될 수 있다. 제2전도부재(3042)의 상측 단부는 제2기판(3030)에 솔더링되거나 핀 접합 등에 의해 결합할 수 있다.As shown in FIG. 19C, the connection member 3040 is electrically connected to the pattern layer 3024, and is formed at the center of the plate-shaped first conductive member 3041 and the first conductive member 3041. It may include a second conductive member (3042) extending toward the second substrate 3030 and electrically connected to the second substrate (3030). In this case, the bottom surface of the first conductive member 3041 may be electrically connected to the pattern layer 3024. The bottom surface of the first conductive member 3041 may be soldered to the pattern layer 3024 or may be bonded by pin bonding or the like. In addition, the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030. The upper end of the second conductive member 3042 may be soldered to the second substrate 3030 or may be coupled by pin bonding or the like.
도 19의 (d)에서 나타내는 바와 같이, 연결부재(3040)는 패턴층(3024)의 일부를 형성하고, 플레이트 형태로 중앙에 홈이 형성되어 있는 제1전도부재(3041)와 제1전도부재(3041)의 홈에 수용되는 돌출부가 형성되어 있고, 돌출부에서 제2기판(3030) 측으로 연장되어 제2기판(3030)과 전기적으로 연결되는 제2전도부재(3042)를 포함할 수 있다. 이 경우 제1전도부재(3041)는 패턴층(3024)의 패턴일 수 있다. 또, 제2전도부재(3042)의 하단부에는 제1전도부재(3041)의 홈에 대응하는 돌출부가 형성되어 솔더링될 수 있다. 그 결과, 제2전도부재(3042)는 제1전도부재(3041)와 전기적으로 연결됨과 동시에 제1전도부재(3041)에 의해 지지될 수 있다. 또, 제2전도부재(3042)는 제1전도부재(3041)에서 상측으로 연장되어 제2기판(3030)과 전기적으로 연결될 수 있다. 제2전도부재(3042)의 상측 단부는 제2기판(3030)에 솔더링되거나 핀 접합 등에 의해 결합할 수 있다.As shown in FIG. 19D, the connecting member 3040 forms part of the pattern layer 3024 and has a first conductive member 3041 and a first conductive member having a groove formed at the center in the form of a plate. A protrusion accommodated in the groove of the 3041 is formed, and may include a second conductive member 3042 extending from the protrusion toward the second substrate 3030 and electrically connected to the second substrate 3030. In this case, the first conductive member 3041 may be a pattern of the pattern layer 3024. In addition, a protrusion corresponding to the groove of the first conductive member 3041 may be formed at the lower end of the second conductive member 3042 to be soldered. As a result, the second conductive member 3042 can be electrically connected to the first conductive member 3041 and supported by the first conductive member 3041 at the same time. In addition, the second conductive member 3042 may extend upward from the first conductive member 3041 to be electrically connected to the second substrate 3030. The upper end of the second conductive member 3042 may be soldered to the second substrate 3030 or may be coupled by pin bonding or the like.
이상, 제1기판(3020)에는 "능동 소자"가 배치되고, 제2기판(3030)에는 "수동 소자"가 배치되는 것으로 설명하였다. 다만, 본 제3실시예가 이에 한정되는 것이 아니다. "능동 소자"와 "수동 소자"를 합쳐 "전자 소자"로 호칭할 수 있으며, "전자 소자"는 "능동 소자"와 수동 소자"의 구분 없이 제1기판(3020)과 제2기판(3030)에 배치될 수도 있다.As described above, the "active element" is disposed on the first substrate 3020 and the "passive element" is disposed on the second substrate 3030. However, the third embodiment is not limited thereto. The "active element" and the "passive element" may be collectively referred to as an "electronic element", and the "electronic element" may be a first substrate 3020 and a second substrate 3030 without being divided into "active element" and a passive element. It may be arranged in.
이하, 도 16을 참조하여 코일부(3050)와 버스바(3060)를 설명한다. 코일부(3050)는 냉각판(3012)에 지지될 수 있다. 이 경우, 코일부(3050)의 하부는 냉각판(3012)의 윗면과 결합할 수 있다. 또, 코일부(3050)는 제2기판(3030)과 이격되어 배치될 수 있다. 또, 코일부(3050)는 제2기판(3030)과 오버랩되어 배치될 수 있다. 이 경우, 코일부(3050)는 제2기판(3030)을 관통할 수 있다. 코일부(3050)는 복수 개일 수 있다. 코일부(3050)는 트랜스코일부 또는 인덕터코일부일 수 있다. 코일부(3050)가 트랜스코일부인 경우, 코일부(3050)는 외부로부터 공급받은 전원의 전압을 변환시킬 수 있다. 코일부(3050)가 인덕터코일부인 경우, 코일부(3050)는 변환된 전원을 정류할 수 있다. 버스바(3050)는 코일부(3050)와 전기적으로 연결되어 변환 및/또는 정류된 전원을 외부로 출력할 수 있다.Hereinafter, the coil unit 3050 and the bus bar 3060 will be described with reference to FIG. 16. The coil unit 3050 may be supported by the cooling plate 3012. In this case, the lower portion of the coil unit 3050 may be coupled to the upper surface of the cooling plate 3012. In addition, the coil unit 3050 may be spaced apart from the second substrate 3030. In addition, the coil unit 3050 may be disposed to overlap the second substrate 3030. In this case, the coil unit 3050 may pass through the second substrate 3030. There may be a plurality of coil units 3050. The coil unit 3050 may be a transcoil unit or an inductor coil unit. When the coil unit 3050 is a transcoil unit, the coil unit 3050 may convert the voltage of the power supplied from the outside. When the coil unit 3050 is an inductor coil unit, the coil unit 3050 may rectify the converted power. The bus bar 3050 may be electrically connected to the coil unit 3050 to output the converted and / or rectified power to the outside.
이하에서는, 도면을 참조하여 본 제3실시예의 변형예의 DC-DC 컨버터(1)를 설명한다. 도 20은 본 제3실시예의 변형예의 DC-DC 컨버터의 메인기판, 보조기판 및 냉각판을 나타낸 단면 개념도이다. 본 제3실시예의 변형예는 제1기판(3020)을 제외하고는, 본 제3실시예와 동일한 기술적 사상을 가진다. 이하, 본 제3실시예와 실질적으로 동일한 기술적 사상에 대한 설명을 생략한다.The DC-DC converter 1 of the modification of the third embodiment will be described below with reference to the drawings. 20 is a cross-sectional conceptual view showing a main board, an auxiliary board, and a cooling plate of a DC-DC converter according to a modification of the third embodiment. The modification of the third embodiment has the same technical spirit as the third embodiment except for the first substrate 3020. Hereinafter, the description of the technical idea that is substantially the same as in the third embodiment will be omitted.
본 제3실시예의 변형예의 제1기판은 절연층(3023) 및 패턴층(3024)을 포함할 수 있다. 제1기판은 절연층(3023) 및 패턴층(3024)이 차례로 적층된 형태일 수 있다. 제1기판은 절연층(3023) 및 패턴층(3024)만으로 구성될 수 있다.The first substrate of the modification of the third embodiment may include an insulating layer 3023 and a pattern layer 3024. The first substrate may have a form in which the insulating layer 3023 and the pattern layer 3024 are sequentially stacked. The first substrate may be composed of only the insulating layer 3023 and the pattern layer 3024.
즉, 본 제3실시예의 변형예에서는 접착층(3021) 및 금속층(3022)이 생략될 수 있다. 대신, 냉각판(3012)이 금속층(3022)의 기능을 수행할 수 있다. 따라서 금속층(3022)과 냉각판(3012)을 접착하기 위한 접착층(3021)도 생략될 수 있다.That is, in the modification of the third embodiment, the adhesive layer 3021 and the metal layer 3022 may be omitted. Instead, the cold plate 3012 may perform the function of the metal layer 3022. Therefore, the adhesive layer 3021 for bonding the metal layer 3022 and the cooling plate 3012 may also be omitted.
좀 더 상세하게, 제1기판의 절연층(3023)은 냉각판(3012)의 윗면에 직접적으로 코팅될 수 있다. 즉, 절연층(3023)과 냉각판(3012)의 윗면은 접촉할 수 있다. 이 경우, 냉각판(3012)은 금속 재질로 본 제3실시예의 금속층(3022)의 지지기능을 수행할 수 있다. 즉, 제3실시예의 변형예의 제1기판은 제3실시예의 제1기판(3020)과 비교하여 동일한 효과를 낼 수 있다. 이와 동시에 접착층(3021)과 금속층(3022)이 제거됨으로써, 냉각효율이 증가할 수 있고, 상하 방향으로 크기가 줄어들어 제2기판(3030)의 아랫면에 소자를 실장함으로써 발생하는 상하 방향의 공간 확보 문제도 해결할 수 있고, 부재의 간소화로 인해 제조공정 및 비용면에서 장점이 있다.More specifically, the insulating layer 3023 of the first substrate may be directly coated on the upper surface of the cooling plate 3012. That is, the insulating layer 3023 and the upper surface of the cooling plate 3012 may contact. In this case, the cooling plate 3012 may be a metal material to perform the supporting function of the metal layer 3022 of the third embodiment. That is, the first substrate of the modified example of the third embodiment may have the same effect as compared with the first substrate 3020 of the third embodiment. At the same time, by removing the adhesive layer 3021 and the metal layer 3022, the cooling efficiency can be increased, the size is reduced in the vertical direction to secure the space in the vertical direction caused by mounting the element on the lower surface of the second substrate 3030 It can also be solved, there is an advantage in the manufacturing process and cost due to the simplification of the member.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In the above description, all elements constituting the embodiments of the present invention are described as being combined or operating in combination, but the present invention is not necessarily limited to the embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms used generally, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (10)

  1. 하우징;housing;
    상기 하우징 내에 배치되는 복수 개의 전자 부품; 및A plurality of electronic components disposed in the housing; And
    상기 하우징의 하판에 배치되는 유로를 포함하고,It includes a flow path disposed on the lower plate of the housing,
    상기 유로는 확장부를 포함하고, 상기 확장부의 가로 폭은 상기 확장부의 앞단의 유로의 가로 폭보다 크고, 상기 확장부의 세로 폭은 상기 확장부의 앞단의 유로의 세로 폭보다 작고, 상기 유로의 수직 단면의 면적이 가장 큰 부분과 가장 작은 부분의 차이는 10% 이내인 직류-직류 컨버터.The flow path includes an extension, wherein the width of the extension is greater than the width of the flow path of the front end of the extension, the vertical width of the extension is less than the length of the flow path of the front end of the expansion, the vertical cross section of the flow path The difference between the largest area and the smallest area is within 10%.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수 개의 전자 부품은 복수 개의 발열 소자를 포함하고, 상기 복수 개의 상기 발열 소자 중 하나는 상기 확장부와 대응되게 배치되는 직류-직류 컨버터.The plurality of electronic components includes a plurality of heat generating elements, and one of the plurality of heat generating elements is disposed to correspond to the extension part.
  3. 제2항에 있어서,The method of claim 2,
    상기 복수 개의 상기 발열 소자 중 상기 하나는 상기 확장부와 수직 방향으로 오버랩되는 직류-직류 컨버터.And one of the plurality of heat generating elements overlaps the extension part in a vertical direction.
  4. 제3항에 있어서,The method of claim 3,
    상기 확장부의 최대 수평 단면에서 상기 복수 개의 상기 발열 소자 중 상기 하나와 수직 방향으로 오버랩되는 면적은 30% 이상인 직류-직류 컨버터.DC-DC converter in the maximum horizontal cross-sectional area of the expansion portion overlapping with the one of the plurality of heat generating element in the vertical direction is 30% or more.
  5. 제2항에 있어서,The method of claim 2,
    상기 확장부의 최대 수평 단면은 상기 복수 개의 상기 발열 소자 중 상기 하나의 최대 수평 단면의 90% 이상인 직류-직류 컨버터.And the maximum horizontal cross section of the extension is 90% or more of the maximum horizontal cross section of the one of the plurality of heat generating elements.
  6. 제1항에 있어서,The method of claim 1,
    상기 확장부의 바닥면에는 상기 하판 방향으로 돌출된 돌출부가 위치하는 직류-직류 컨버터.DC-DC converter is located on the bottom surface of the expansion portion protruding portion protruding in the lower plate direction.
  7. 제6항에 있어서,The method of claim 6,
    상기 돌출부의 돌출 높이는 상기 냉각 물질의 이동 방향을 따라 증가하다가 감소하는 직류-직류 컨버터.The protrusion height of the protrusion increases and decreases along the direction of movement of the cooling material.
  8. 제6항에 있어서,The method of claim 6,
    상기 돌출부는 수직 단면이 사각 형태이고, 상기 돌출부의 수직 단면의 면적은 상기 냉각 물질의 이동 방향을 따라 증가하다가 감소하는 직류-직류 컨버터.The protrusion has a vertical cross section and the area of the vertical cross section of the protrusion increases and decreases along the direction of movement of the cooling material.
  9. 제6항에 있어서,The method of claim 6,
    상기 돌출부의 수평 단면은 상기 하판을 향하여 볼록하게 곡률이 형성되는 형태이고, 상기 돌출부의 수평 단면의 면적은 상기 유로의 가로 폭의 중심에서 가장자리로 갈수록 감소하는 직류-직류 컨버터.The horizontal cross section of the protrusion has a form in which the curvature is formed convexly toward the lower plate, and the area of the horizontal cross section of the protrusion decreases from the center of the horizontal width of the flow path toward the edge.
  10. 제1항에 있어서,The method of claim 1,
    상기 유로의 수직 단면의 면적은 상기 냉각 물질의 이동 방향을 따라 동일한 직류-직류 컨버터.DC-DC converter, the area of the vertical cross section of the flow path is the same along the direction of movement of the cooling material.
PCT/KR2017/013090 2016-11-17 2017-11-17 Dc-dc converter WO2018093195A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17870977.0A EP3544396B1 (en) 2016-11-17 2017-11-17 Dc-dc converter
CN202110908075.XA CN113645776B (en) 2016-11-17 2017-11-17 DC-DC converter
US16/343,963 US11251694B2 (en) 2016-11-17 2017-11-17 DC-DC converter
JP2019521115A JP7055800B2 (en) 2016-11-17 2017-11-17 DC-DC converter
CN201780070562.5A CN109964548B (en) 2016-11-17 2017-11-17 DC-DC converter
US17/575,992 US11575313B2 (en) 2016-11-17 2022-01-14 DC-DC converter

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20160153088 2016-11-17
KR10-2016-0153088 2016-11-17
KR20160180862 2016-12-28
KR10-2016-0180862 2016-12-28
KR10-2017-0148773 2017-11-09
KR1020170148773A KR102458279B1 (en) 2017-11-09 2017-11-09 Dc-dc converter
KR10-2017-0152771 2017-11-16
KR10-2017-0152770 2017-11-16
KR1020170152771A KR102536990B1 (en) 2016-12-28 2017-11-16 Dc-dc converter
KR1020170152770A KR102417581B1 (en) 2016-11-17 2017-11-16 Dc-dc converter

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/343,963 A-371-Of-International US11251694B2 (en) 2016-11-17 2017-11-17 DC-DC converter
US17/575,992 Continuation US11575313B2 (en) 2016-11-17 2022-01-14 DC-DC converter

Publications (1)

Publication Number Publication Date
WO2018093195A1 true WO2018093195A1 (en) 2018-05-24

Family

ID=62145665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013090 WO2018093195A1 (en) 2016-11-17 2017-11-17 Dc-dc converter

Country Status (1)

Country Link
WO (1) WO2018093195A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154648A1 (en) * 2019-01-24 2020-07-30 Magna International Inc. Power converter with integrated multi-layer cooling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234589A (en) * 2002-02-12 2003-08-22 Toyota Industries Corp Cooling device
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device
JP2012146759A (en) * 2011-01-10 2012-08-02 Toyota Motor Corp Cooler and electric power conversion apparatus using the same
KR101367071B1 (en) * 2011-12-12 2014-02-25 삼성전기주식회사 Heat sink
JP2014045547A (en) * 2012-08-24 2014-03-13 Hitachi Automotive Systems Ltd Dc-dc converter device and electric power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234589A (en) * 2002-02-12 2003-08-22 Toyota Industries Corp Cooling device
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device
JP2012146759A (en) * 2011-01-10 2012-08-02 Toyota Motor Corp Cooler and electric power conversion apparatus using the same
KR101367071B1 (en) * 2011-12-12 2014-02-25 삼성전기주식회사 Heat sink
JP2014045547A (en) * 2012-08-24 2014-03-13 Hitachi Automotive Systems Ltd Dc-dc converter device and electric power conversion device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3544396A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020154648A1 (en) * 2019-01-24 2020-07-30 Magna International Inc. Power converter with integrated multi-layer cooling
CN113396310A (en) * 2019-01-24 2021-09-14 麦格纳国际公司 Power converter with integrated multi-layer cooling
US11903175B2 (en) 2019-01-24 2024-02-13 Magna International Inc. Power converter with integrated multi-layer cooling

Similar Documents

Publication Publication Date Title
WO2018124494A2 (en) Bus bar assembly and frame assembly
WO2018174470A1 (en) Heat dissipating device for power converting module, and power converting module comprising same
WO2019088424A1 (en) Bus bar and motor comprising same
WO2016195148A1 (en) Case for electric motor and manufacturing method therefor, electric motor with case for electric motor
WO2017069555A1 (en) Power supply device and power supply system including the same
WO2019066234A1 (en) Controller and motor assembly comprising same
WO2021145663A1 (en) Cooling apparatus for electronic element
WO2022060026A1 (en) Thermoelectric module and power generation device including same
WO2019139305A1 (en) Converter
WO2019098709A1 (en) Photovoltaic module
WO2018093195A1 (en) Dc-dc converter
WO2019194595A1 (en) Heat converter
WO2020076040A1 (en) Receptacle connector
WO2022005099A1 (en) Power module, and method for manufacturing same
WO2022035015A1 (en) Fan motor
WO2021167408A1 (en) Antenna structure and plasma generating device using same
WO2013176520A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2020076010A1 (en) Transformer, and power conversion device or solar module including same
WO2015060644A1 (en) Zvzcs switching converter using single winding transformer
WO2019066233A1 (en) Controller and motor assembly comprising same
WO2019245233A1 (en) Transformer
WO2022092807A1 (en) Direct-current converter and method for manufacturing same
WO2021118176A1 (en) Printed circuit board module
WO2022065824A1 (en) Thermoelectric module and power generator comprising same
WO2022015073A1 (en) Transformer and flat panel display device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017870977

Country of ref document: EP

Effective date: 20190617