WO2018092950A1 - Optical reception module - Google Patents

Optical reception module Download PDF

Info

Publication number
WO2018092950A1
WO2018092950A1 PCT/KR2016/013357 KR2016013357W WO2018092950A1 WO 2018092950 A1 WO2018092950 A1 WO 2018092950A1 KR 2016013357 W KR2016013357 W KR 2016013357W WO 2018092950 A1 WO2018092950 A1 WO 2018092950A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pin
receiving element
light receiving
optical
Prior art date
Application number
PCT/KR2016/013357
Other languages
French (fr)
Korean (ko)
Inventor
박준희
박호산
김동후
전병중
박진우
Original Assignee
주식회사 지피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지피 filed Critical 주식회사 지피
Priority to PCT/KR2016/013357 priority Critical patent/WO2018092950A1/en
Publication of WO2018092950A1 publication Critical patent/WO2018092950A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present invention relates to an optical receiving module capable of receiving an optical signal without being limited to the type of the light receiving element.
  • optical communication system having a transmission capacity of 10 Gbps or more using a single wavelength optical signal has already been commercialized and used.
  • a transmission capacity of 40 Gbps or 100 Gbps is required for one strand of optical fiber, and multiplexed optical signals of four different wavelengths having a transmission rate of 10 Gbps or 25 Gbps in one optical fiber are used to multiplex 40 Gbps or 100 Gbps.
  • Optical communication using a wavelength division multiplexing (WDM) method for transmitting data is used.
  • WDM wavelength division multiplexing
  • the optical transmission module for wavelength division multiplexing the laser light of the four wavelengths and the optical signal transmitted through the optical path are demultiplexed into the respective wavelengths and detected by the optical detection element as an electrical signal.
  • the “wavelength division multiplexed optical reception module”, which amplifies the detected electrical signals, constitutes the most essential component of the optical communication system.
  • the wavelength multiplexing optical reception module is a demultiplexing element for demultiplexing optical signals of different wavelengths by receptacle, optical coupling lens, and optical fiber connector located at the end of the optical path. And a photodetecting device for converting light separated at each wavelength into an electrical signal (photocurrent), and an amplifying device of a transfer impedance type for amplifying these electrical signals.
  • a photodetector for converting an optical signal into an electrical signal uses a photodiode (PD) or an Alan photo diode (APD).
  • PD photodiode
  • APD Alan photo diode
  • the configuration of the photodetecting device will be different, and each of them must be designed separately.
  • the light receiving module has a problem that the manufacturing time and cost increase because the light alignment process is performed several times.
  • the present invention has been made as a result of the following research project.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a light receiving module that can be used for all of the different types of light receiving elements.
  • An optical reception module which is designed to solve the above problems, includes a receptacle unit connected to an optical fiber connector having an optical fiber as a medium of an input optical signal; A housing body having a receptacle connection portion connected to the receptacle portion; A filter unit installed at a housing of the housing main body to convert the input light signal into multi-channel split light; The light-receiving element, the first light-receiving element, and the second light-receiving element, each of which includes a first light receiving element or a second light receiving element, respectively converting the multi-channel split light into electric signals; And a first signal processing pattern portion for processing the first electrical signal from the first light receiving element and a power supply pattern portion disposed adjacent to the signal processing pattern portion, wherein the power supply pattern portion is formed from the second light receiving element. May serve as a second signal processing pattern portion for processing a second electrical signal of;
  • the light receiving module may further include a ferrule installed inside the receptacle to align the optical fiber.
  • the optical receiving module may further include a lens installed in the receptacle connecting portion concentrically with the ferrule.
  • the lens may be a spectroscopic lens.
  • the light receiving module may further include a metal optical bench installed on the bottom of the housing body.
  • the light receiving module may further include an impedance amplifier installed at the front end of the feed-through pattern portion.
  • the light receiving module may further include a mount installed on the metal optical bench and configured to supply power to the light receiving device.
  • the mount may include a first sub-mount installed in the front long side of the impedance amplifier, a second sub-mount and a third sub-mount installed in the side end of the impedance amplifier.
  • the power pattern unit may include a power pin, an RSSI pin, a ground pin, and an external resistor pin.
  • ground pins and the external resistor pins may function as signal pins when the second light receiving element is installed.
  • ground pins are formed in a "c" shape, and the power pin, an inner ground pin, the RSSI pin, and the external resistance pin of the ground pin may be located inside the power pin.
  • the number of the RSSI pins may be the same as the number of the split light and the number of the ground pins.
  • the first light receiving element may be a pin photo diode
  • the second light receiving element may be APD.
  • the APD is electrically connected to the ground pin of the power pattern part through wire bonding, and thus the ground pin may operate as a signal pin.
  • the filter unit may split the input light into at least four multi-channel split light, and the first or second light-receiving device may be configured with the same number of photodiodes as the number of multi-channel split light. Can be.
  • FIG. 1 is a cross-sectional view of an optical receiving module according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view of an optical receiving module is an embodiment of the present invention.
  • Figure 3 is a partially enlarged cross-sectional view for explaining the optical path in the optical receiving module of an embodiment of the present invention.
  • FIG. 4 is a view for explaining an optical path in the filter unit of the optical receiving module according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the feed-through pattern portion of the optical receiving module is an embodiment of the present invention.
  • the light receiving module includes a receptacle unit 1, a ferrule 11, a spectroscopic lens 22, a housing body 2, and a filter unit 3.
  • the receptacle part 1 is a structure for connecting with the optical connector (not shown) which is located in the optical fiber terminal and contains an optical fiber.
  • the inside of the cylindrical ferrule 11 is arranged to align the optical fiber, the ferrule 11 is coaxially connected to the indented lens 22 (collimator lense) described later to fasten without a separate optical alignment process Light alignment is achieved immediately.
  • the house body 2 has the overall shape of the light receiving module, and the material is made of metal or synthetic resin.
  • the house main body 2 is provided with a receiving part, and many parts mentioned later will be installed in this receiving part.
  • This spectroscopic lens 22 is provided coaxially with the ferrule 11 of the receptacle portion 1.
  • the filter part 3 is formed in the rear end of the spectroscopic lens 22.
  • the filter unit 3 functions to separate the optical signal received through the optical fiber for each wavelength and convert it into multi-channel split light.
  • the filter unit 3 is formed on a parallelogram-type glass block 3-1 and on one side of the glass block 3-1 and is a thin film filter that transmits the divided light, respectively.
  • Fields 31 to 34 which are equal to the number of split lights, and coating portions 3-21 and 3-22 formed on the other side of the glass block 3-1.
  • the filter unit 3 is first applied to the non-film coating (3-21) of a portion of one side of the glass block (3-1), which is a glass plate having a predetermined refractive index and thickness, and a reflective film coating ( 3-21), cut out to have a predetermined size, and then polish the cut glass block 3-1 at a precise angle so that its cross section is in the form of a parallelogram, and then pre-fabricate the thin film filters 31 to 34.
  • the coating part of the block 3-1 may be manufactured through a process of sequentially attaching the coating part to a predetermined position on the other side surface corresponding to the one side surface. The branching of the light of the filter unit 3 will be described in more detail with reference to FIGS. 3 and 4.
  • the array lens 9 integrates a lens for converting divergent light into focus light into one component. That is, for the four-channel optical receiving module, as shown in the figure, for making the multi-channel split light through the filter unit 3 as the focused light, respectively, four lenses or four lens regions are formed, respectively. It converts the light into focus light.
  • the light receiving element 4 is composed of as many photodiodes or APDs as the number of branched light, and converts each branched light into an electric signal, and then transmits the signal to the impedance amplifier 5 located at the rear end.
  • the light receiving element 4 can be roughly divided into a pin photodiode (or Pin-PD) and an APD (Alanche Photo diode).
  • a pin photodiode or Pin-PD
  • APD Advanced Photo diode
  • an intrinsic semiconductor i layer (i is an intrinsic) is inserted between a P-type semiconductor and an N-type semiconductor. Since the drift current is made in the depletion layer, it responds quickly according to the influence of the electric field. On the contrary, the diffusion current made outside the depletion layer has a slow response time. The wider the depletion layer, the wider the quantum efficiency. It is advantageous in terms of over frequency response speed.
  • the width of the depletion layer becomes wider as the concentration of electrons and holes in the P-type and N-type semiconductor layers becomes lower, so that the i-type semiconductor bonded between the P-type and N-type semiconductors plays a role in widening the width of the depletion layer. .
  • APD avlanche photo diode
  • the p-layer is a P-type semiconductor with a small amount of acceptor
  • the P layer is a high resistance layer.
  • a high reverse bias is applied to generate a strong electric field, so that a guide ring is set to prevent damage to the device by making the electric field uniform.
  • a pin photodiode or APD may be used as the light receiving element in some cases. That is, the signal processing pattern portion 61 of the feedthrough pattern portion 6 to be described later is for processing the signal of the pin photodiode, and the power supply pattern portion 62 is a part of the ground pin when APD is used. The role is changed to process the APD signal. That is, some of the ground pins are connected to the APD by wire bonding.
  • the light-receiving element is composed of the same number as the number of divided light, so that each of the divided light is converted into an electrical signal.
  • the impedance amplifier 5 is provided at the rear end of the light receiving element 4, and functions to amplify the electric signal converted by the light receiving element.
  • an array preamplifier 5 in which transfer amplifier type preamplification elements are integrated into one configuration can be used.
  • the metal optical bench 7 is installed at the bottom of the housing main body 2, and includes a filter unit 3, an array lens 9, a light receiving element 4, an impedance amplifier 5, and a feedthrough pattern unit 6 described later.
  • the mounting portions may be each formed to be machined so that they may be seated and aligned and fixed, respectively.
  • an alignment groove of a shape corresponding to the glass block 3-1, the array lens 9, and the light receiving element 4 of the zigzag filter unit 3 may be formed on the upper side of the metal optical bench 7. have.
  • the feed-through pattern portion 6 is formed on the metal optical bench 7 on the rear end side of the impedance amplifier 5.
  • the feed-through pattern section 6 is composed of a signal processing pattern section 61 and a power supply pattern section 62. This configuration will be described with reference to FIG. 5.
  • the mount for installing the impedance amplifier 5 is formed around the impedance amplifier 5.
  • the mount 8 includes a first sub-mount 81 provided at the front end side of the impedance amplifier 5, a second sub-mount 82 and a third sub-mount provided at the side ends of the impedance amplifier 5 ( 83).
  • Such a mount may be configured by the need for signal transmission and power supply.
  • the filter unit 3 is a demultiplexing element, and the glass block 3-1 and the one side of the glass block 3-1 in parallelogram shape are spaced at regular intervals. It may be formed to include a thin film filters 31 to 34 to pass through the optical signal of the corresponding band.
  • the coating parts 3-21 and 3-22 may be formed on the other side of the glass block 3-1 on which the thin film filters 31 to 34 are formed. The coating parts 3-21 and 3-22 are applied to the remaining areas except for the anti-reflective coating (3-21) and the non-reflective coating, which are formed in a predetermined area corresponding to the area where the optical signal is incident through the spectroscopic lens.
  • the reflective film coating (3-22) may be formed by dividing the reflective film coating (3-22) to be formed.
  • the anti-reflective coating (3-21) formed on one side of the glass block (3-1) minimizes the loss due to the reflection of the optical signal incident through the spectroscopic lens 22 to the glass block (3-1)
  • the reflective film coating 3-22 causes the optical signal returned from the first thin film filter 31 formed on the opposite side to be reflected again and then incident to the second to fourth thin film filters 32 to 34. Play a role.
  • FIG. 3 is a partially enlarged cross-sectional view for describing an optical path in an optical reception module according to an embodiment of the present invention
  • FIG. 4 is a view for explaining an optical path in a filter unit of an optical reception module according to an embodiment of the present invention.
  • the optical signal aligned in the ferrule 11 is converted into parallel light by the spectroscopic lens 22.
  • the parallel light becomes divided light having different wavelengths through the filter portion 3, and the divided light is changed into focus light in the array lens 9, so that the light receiving elements 4: the first to fourth light receiving elements ( 41 to 44), and the light receiving element 4 converts the branched light, which is this focused light, into an electric signal.
  • the filter unit 3 includes thin film filters 31 to 34 that pass only respective wavelengths as demultiplexing elements for separating the multiplexed light wavelengths into four wavelengths.
  • the optical signals (split light) of each wavelength are reflected inside the zig-zag filter, only the light of the wavelength band defined by each thin film filter passes through the thin film filters 31 to 34 to generate the split light. Done.
  • the feedthrough pattern part 6 may include a signal processing pattern part 61 and a power supply pattern part 62.
  • the signal processing pattern portion 61 functions to connect the signal to the subsequent substrate S when a pin photodiode (first light receiving element) is provided.
  • the power supply pattern portion 62 functions to supply power to the light receiving element.
  • the power supply pattern unit 62 has a power pin 622, an outer ground pin 621 and an inner ground pin 621 ', each of which simply inputs power to the pin photo diode. It functions as RSSI pin 623 and external resistance pin (R-Ext pin) for signal measurement in pin photodiode.
  • the inner ground pin 621 'and the external resistance pin 624 of the power supply pattern portion 62 function as signal pins.
  • the APD connection pin (not shown) in the light receiving element mounting module is connected to the inner ground pin 621 ′ and the external resistance pin 624 of the power supply pattern 62 through wire bonding to thereby ground the inner portion.
  • Each of the pin 621 ′ and the external resistor pin 624 acts as a signal pin of each of the light receiving elements.
  • the ground pin 621 is formed to surround the outside in a U shape. Inside thereof, an inner ground pin 621 ′, an RSSI pin 623, and an external resistance pin 624 are formed. 5 illustrates a case where the number of the divided light beams is 4, so that the light receiving elements are four (first to fourth light receiving elements 411 to 44. Accordingly, the inner ground pins 621 'and the external resistance pins 624 are formed. The sum is 4 and the number of RSSI pins 623 is 4.
  • the inner ground pins 621 function as ground pins when a pin photo diode is installed, but if APD is attached, they are signal pins ( Second to fourth light-receiving elements), and the external resistance pin 624 functions as an external resistance pin when a pin photodiode is installed, and a signal pin (of the first light-receiving element) when APD is attached.
  • the optical receiving module can be configured regardless of the type of the light receiving element.
  • optical reception module described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be selectively combined with all or some of the embodiments so that various modifications can be made. Can be configured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention relates to an optical reception module comprising: a receptacle connected to an optical fiber connector provided with optical fibers which are mediums for optical input signals; a housing main body provided with a receptacle connection part connected to the receptacle; a filter, disposed in an accommodation part of the housing main body, for converting an optical input signal into multi-channel branched beams; an optical reception element, comprising a first or second optical reception element, for converting the multi-channel branched beams into electrical signals, the first and second optical reception elements being optical reception elements of differing types; and a feed-through pattern unit comprising a first signal processing pattern unit for processing a first electrical signal from the first optical reception element, and a power pattern unit installed adjacent to the signal processing pattern unit, the power pattern unit acting as a second signal processing pattern unit for processing a second electrical signal from the second optical reception element.

Description

광수신 모듈Optical Receive Module
본 발명은, 수광소자의 종류에 한정되지 않고 광신호를 수신할 수 있는 광수신 모듈에 관한 것이다. The present invention relates to an optical receiving module capable of receiving an optical signal without being limited to the type of the light receiving element.
데이터의 수요가 점차 증가함에 따라 광통신의 속도와 용량 또한 가파르게 증가하는 추세에 있으며, 이미 단일 파장의 광신호를 사용하여 10Gbps 이상의 전송 용량을 갖는 광통신 시스템이 상용화되어 사용되고 있다. 그러나 최근 메트로 및 기간 전송 망에서는 광섬유 한 가닥에 40Gbps 또는 100Gbps의 전송 용량이 요구되어 있어, 하나의 광섬유에 10Gbps 또는 25Gbps의 전송 속도를 갖는 서로 다른 4개의 파장의 광신호를 다중화시켜 40Gbps 또는 100Gbps의 데이터를 전송하는 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신이 사용되고 있다.As the demand for data gradually increases, the speed and capacity of optical communication are also rapidly increasing. An optical communication system having a transmission capacity of 10 Gbps or more using a single wavelength optical signal has already been commercialized and used. However, in recent metro and periodic transmission networks, a transmission capacity of 40 Gbps or 100 Gbps is required for one strand of optical fiber, and multiplexed optical signals of four different wavelengths having a transmission rate of 10 Gbps or 25 Gbps in one optical fiber are used to multiplex 40 Gbps or 100 Gbps. Optical communication using a wavelength division multiplexing (WDM) method for transmitting data is used.
이러한 파장 분할 다중화 방식의 광통신에서는 4개의 파장의 레이저광을 파장 분할 다중화시키는 광송신 모듈과 광선로를 통하여 전송되어 온 광신호를 각각의 파장으로 역다중화시키고 이를 광검출 소자에서 전기신호로 검출하고, 검출된 전기신호를 증폭시키는 “파장 분할 다중화 광수신 모듈”이 광통신 시스템의 가장 핵심적인 부품으로써 구성된다. 이러한 파장 다중화 광수신 모듈은 광선로의 종단에 위치한 광섬유 커넥터와 광수신 모듈을 결합하는 리셉터클, 광결합렌즈, 수신된 서로 다른 파장의 광신호를 역다중화시켜 각각의 파장으로 분리해 내기 위한 역다중화 소자, 각각의 파장으로 분리된 빛들을 전기신호(광전류)로 변환시키기 위한 광검출 소자, 및 이들 전기 신호를 증폭시키기 위한 전달 임피던스 타입의 증폭 소자로 구성되어 있다.In the optical division of the wavelength division multiplexing method, the optical transmission module for wavelength division multiplexing the laser light of the four wavelengths and the optical signal transmitted through the optical path are demultiplexed into the respective wavelengths and detected by the optical detection element as an electrical signal. The “wavelength division multiplexed optical reception module”, which amplifies the detected electrical signals, constitutes the most essential component of the optical communication system. The wavelength multiplexing optical reception module is a demultiplexing element for demultiplexing optical signals of different wavelengths by receptacle, optical coupling lens, and optical fiber connector located at the end of the optical path. And a photodetecting device for converting light separated at each wavelength into an electrical signal (photocurrent), and an amplifying device of a transfer impedance type for amplifying these electrical signals.
이러한 파장 다중화 광수신 모듈에 있어서, 광신호를 전기신호로 변경하는 광검출 소자는 포토 다이오드(PD) 또는 APD(Alanche photo diode)를 이용하게 된다. 포토 다이오드를 사용하는 경우와, APD를 사용하는 경우, 광검출 소자의 구성이 달라지게 되어서 각각 별도로 설계해야 한다. In such a wavelength multiplexing optical reception module, a photodetector for converting an optical signal into an electrical signal uses a photodiode (PD) or an Alan photo diode (APD). In the case of using the photodiode and in the case of using the APD, the configuration of the photodetecting device will be different, and each of them must be designed separately.
또한 광수신 모듈에 있어서 여러번의 광정렬 공정을 진행하기 때문에 제작 시간 및 비용이 상승하는 문제점이 있었다.In addition, the light receiving module has a problem that the manufacturing time and cost increase because the light alignment process is performed several times.
이에 따른 본 발명은 다음과 같은 연구 과제의 결과로 이루어지게 되었다.Accordingly, the present invention has been made as a result of the following research project.
[부처명]              미래창조과학부&산업통상자원부[Department] Ministry of Science, ICT and Future Planning
[연구사업명]          나노융합2020사업[Research Project Name] Nano Convergence 2020 Project
[연구과제명]          Ag가 코팅된 Cu 나노분말 소재를 적용한 100Gbps 광수신기 및 광송신기 모듈[Project Name] 100Gbps Optical Receiver and Optical Transmitter Module Applying Cu Nanopowder Coated with Ag
[연구관리전문기관   (재)나노융합2020사업단[Research Management Agency 나 Nano Convergence 2020 Division
[기여율]                100%.Contribution rate: 100%.
[주관연구기관]      ㈜지피[Organized Research Institution] GPI
[연구기간]            2015.12. 01. ~ 2016. 11. 30.[Research Period] 2015.12. 01. ~ 2016. 11. 30.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 이종의 수광소자가 모두 이용될 수 있는 광수신 모듈을 제공하는 것을 목적으로 한다. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a light receiving module that can be used for all of the different types of light receiving elements.
상술한 과제를 해결하기 위하여 안출된 본 발명의 일실시예인 광수신 모듈은, 입력광 신호의 매체인 광섬유를 구비한 광섬유 커넥터와 연결되는 리셉터클부; 상기 리셉터클부와 연결되는 리셉터클 연결부를 구비하는 하우징 본체; 상기 하우징 본체의 수용부에 설치되어서, 상기 입력광 신호를 다채널 분파광으로 변환시키는 필터부; 상기 다채널 분파광을 각각 전기 신호로 변환하는, 제 1 수광소자 또는 제 2 수광소자를 포함하는 수광소자, 제 1 수광소자 및 제 2 수광소자는 그 종류가 상이함 ; 및 제 1 수광소자로부터의 제 1 전기 신호를 처리하기 위한 제 1 신호 처리 패턴부과 상기 신호 처리 패턴부에 인접 설치되는 전원 패턴부를 포함하는 피드스루 패턴부, 상기 전원 패턴부는 상기 제 2 수광소자로부터의 제 2 전기 신호를 처리하는 제 2 신호처리 패턴부로서의 역할을 함:를 포함할 수 있다.An optical reception module according to an embodiment of the present invention, which is designed to solve the above problems, includes a receptacle unit connected to an optical fiber connector having an optical fiber as a medium of an input optical signal; A housing body having a receptacle connection portion connected to the receptacle portion; A filter unit installed at a housing of the housing main body to convert the input light signal into multi-channel split light; The light-receiving element, the first light-receiving element, and the second light-receiving element, each of which includes a first light receiving element or a second light receiving element, respectively converting the multi-channel split light into electric signals; And a first signal processing pattern portion for processing the first electrical signal from the first light receiving element and a power supply pattern portion disposed adjacent to the signal processing pattern portion, wherein the power supply pattern portion is formed from the second light receiving element. May serve as a second signal processing pattern portion for processing a second electrical signal of;
여기서, 상기 광수신 모듈은, 상기 리셉터클부의 내부에 설치되어서 상기 광섬유의 정렬을 하는 페룰을 더 포함할 수있다.Here, the light receiving module may further include a ferrule installed inside the receptacle to align the optical fiber.
여기서, 상기 광수신 모듈은, 상기기 페룰과 동심으로 상기 리셉터클 연결부에 설치되는 렌즈를 더 포함할 수 있다. The optical receiving module may further include a lens installed in the receptacle connecting portion concentrically with the ferrule.
여기서, 상기 렌즈는, 분광 렌즈일 수 있다.Here, the lens may be a spectroscopic lens.
여기서, 상기 광수신 모듈은, 상기 하우징 본체의 저면에 설치되는 금속 광학 벤치;를 더 포함할 수 있다.Here, the light receiving module may further include a metal optical bench installed on the bottom of the housing body.
여기서, 상기 광수신 모듈은, 상기 피드스루 패턴부의 전단에 설치되는 임피던스 증폭기를 더 포함할 수 있다.Here, the light receiving module may further include an impedance amplifier installed at the front end of the feed-through pattern portion.
여기서, 상기 광수신 모듈은, 상기 금속 광학 벤치위에 설치되어서, 상기 수광소자에 대한 전원 공급을 위해 구성되는 마운트를 더 포함할 수 있다.The light receiving module may further include a mount installed on the metal optical bench and configured to supply power to the light receiving device.
여기서, 상기 마운트는, 상기 임피던스 증폭기의 전단 장측에 설치되는 제 1 서브 마운트, 상기 임피던스 증폭기의 측단에 설치되는 제 2 서브 마운트 및 제 3 서브 마운트를 포함할 수 있다.Here, the mount may include a first sub-mount installed in the front long side of the impedance amplifier, a second sub-mount and a third sub-mount installed in the side end of the impedance amplifier.
여기서, 상기 전원 패턴부는, 전원핀, RSSI핀, 접지핀 및 외부 저항핀을 포함할 수 있다.Here, the power pattern unit may include a power pin, an RSSI pin, a ground pin, and an external resistor pin.
여기서, 상기 접지핀 중 일부와 상기 외부 저항핀은, 상기 제 2 수광소자가 설치되는 경우, 신호 핀으로 기능할 수 있다.Here, some of the ground pins and the external resistor pins may function as signal pins when the second light receiving element is installed.
여기서, 상기 접지핀 중 일부는, "ㄷ"자형으로 형성되고, 상기 전원핀, 상기 접지핀 중 내측 접지핀, 상기 RSSI핀, 및 상기 외부 저항핀은 상기 전원핀의 내측에 위치할 수 있다.Here, some of the ground pins are formed in a "c" shape, and the power pin, an inner ground pin, the RSSI pin, and the external resistance pin of the ground pin may be located inside the power pin.
여기서, 상기 RSSI핀의 수 상기 분파광의 수 및 상기 접지핀의 수 동일할 수 있다.The number of the RSSI pins may be the same as the number of the split light and the number of the ground pins.
여기서, 상기 제 1 수광소자는, 핀포토 다이오드이고, 상기 제 2 수광소자는, APD 일 수 있다.Here, the first light receiving element may be a pin photo diode, and the second light receiving element may be APD.
여기서, 상기 APD는 상기 전원 패턴부의 접지핀과 와이어 본딩을 통해 전기적으로 연결되며, 이에 따라 상기 접지핀은 신호핀으로 동작할 수 있다.Here, the APD is electrically connected to the ground pin of the power pattern part through wire bonding, and thus the ground pin may operate as a signal pin.
여기서, 상기 필터부는, 상기 입력광을 적어도 4개의 상기 다채널 분파광으로 분파시키고, 상기 제 1 수광소자 또는 상기 제 2 수광소자는, 상기 다채널 분파광의 수와 동일한 갯수의 포토 다이오드로 구성될 수 있다.The filter unit may split the input light into at least four multi-channel split light, and the first or second light-receiving device may be configured with the same number of photodiodes as the number of multi-channel split light. Can be.
상술한 구성을 가진 본 발명의 일실시예에 따르면, 수광소자의 종류에 대한 호환성이 우수한 광수신 모듈을 생산함으로써 대량 생산이 가능하고 설계 비용을 낮추워 생산성 및 경제성을 높일 수 있다.According to one embodiment of the present invention having the above-described configuration, by producing a light receiving module with excellent compatibility for the type of light receiving element, it is possible to mass production and to lower the design cost can increase productivity and economics.
또한, 본 발명의 일실시예에 따르면, 평행광을 형성하는 광학계의 구조를 개선하여 우수한 광손실특성을 가지고 간단한 공정을 제공하여 제조 공정의 수율을 향상시킬 수 있게 된다. In addition, according to one embodiment of the present invention, it is possible to improve the yield of the manufacturing process by providing a simple process with excellent light loss characteristics by improving the structure of the optical system for forming parallel light.
도 1은 본 발명의 일실시예인 광수신 모듈의 단면도.1 is a cross-sectional view of an optical receiving module according to an embodiment of the present invention.
도 2는 본 발명의 일실시예인 광수신 모듈의 분해 사시도.Figure 2 is an exploded perspective view of an optical receiving module is an embodiment of the present invention.
도 3은 본 발명의 일실시예인 광수신 모듈에서의 광로를 설명하기 위한 부분 확대 단면도.Figure 3 is a partially enlarged cross-sectional view for explaining the optical path in the optical receiving module of an embodiment of the present invention.
도 4는 본 발명의 일실시예인 광수신 모듈 중 필터부에서의 광로를 설명하기 위한 도면. 4 is a view for explaining an optical path in the filter unit of the optical receiving module according to an embodiment of the present invention.
도 5는 본 발명의 일실시예인 광수신 모듈 중 피드스루 패턴부를 설명하기 위한 도면.5 is a view for explaining the feed-through pattern portion of the optical receiving module is an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예에 따른 광수신 모듈에 대하여 첨부한 도면을 참조하여 상세히 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다.Hereinafter, a light receiving module according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the present specification, different embodiments are given the same reference numerals, and description thereof is replaced with the first description.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일실시예인 광수신 모듈은, 리셉터클부(1), 페룰(11), 분광렌즈(22), 하우징 본체(2), 필터부(3), 어레이 렌즈(9), 수광 소자(4:41~44를 포함한다), 임피던스 증폭기(5), 피드스루패턴부(6: feedthrough pattern), 금속 광학 벤치(7), 마운트(8: 81~83을 포함한다)를 포함할 수 있다.As shown in FIG. 1 and FIG. 2, the light receiving module according to the embodiment of the present invention includes a receptacle unit 1, a ferrule 11, a spectroscopic lens 22, a housing body 2, and a filter unit 3. Array lens 9, light receiving elements (including 4:41 to 44), impedance amplifier 5, feedthrough pattern portion 6: feedthrough pattern, metal optical bench 7, mounts 8: 81 to And 83).
리셉터클부(1)는, 광선로 종단에 위치하고 광섬유를 포함하는 광커넥터(미도시)와 연결하기 위한 구성이다. 그 내부에는 광섬유를 정렬하는 원통형의 페룰(11)이 설치되고, 이 페룰(11)은 후술하는 압입형 렌즈(22:분광 렌즈(collimator lense))와 동축으로 연결되어서 별도의 광정렬 공정 없이 체결 즉시 광정렬이 이루어지게 된다. The receptacle part 1 is a structure for connecting with the optical connector (not shown) which is located in the optical fiber terminal and contains an optical fiber. The inside of the cylindrical ferrule 11 is arranged to align the optical fiber, the ferrule 11 is coaxially connected to the indented lens 22 (collimator lense) described later to fasten without a separate optical alignment process Light alignment is achieved immediately.
하우스 본체(2)는 광수신 모듈의 전체적인 형상을 가지며, 그 재질은 금속재또는 합성 수지재로 이루어진다. 하우스 본체(2)는 수용부를 구비하며, 후술하는 많은 부품들이 이 수용부에 설치되게 된다.The house body 2 has the overall shape of the light receiving module, and the material is made of metal or synthetic resin. The house main body 2 is provided with a receiving part, and many parts mentioned later will be installed in this receiving part.
하우스 본체(2)에서 리셉터클부(1)와 체결되는 리셉터클 연결부(21)가 돌출되어 형성되고, 이 리셉터클 연결부(21)에 분광 렌즈(22)가 설치된다. 이 분광렌즈는(22), 리셉터클부(1)의 페룰(11)과 동축으로 설치된다. The receptacle connecting portion 21, which is fastened to the receptacle portion 1, protrudes from the house body 2, and the spectroscopic lens 22 is installed in the receptacle connecting portion 21. This spectroscopic lens 22 is provided coaxially with the ferrule 11 of the receptacle portion 1.
분광렌즈(22)의 후단에는 필터부(3)가 형성된다. 필터부(3)는 광섬유를 통해 수신되는 광신호를 각 파장별로 분리하여 다채널 분파광으로 변환하는 기능을 한다. 필터부(3)는, 도 1 및 도 2에 도시된 바와 같이, 평행사변형 타입 유리블록(3-1)과, 유리블록(3-1)의 일측에 형성되어서 각각 분파광을 투과하는 박막 필터들(31~34, 분파광의 수와 동일), 그리고, 유리블록(3-1)의 타측에 형성된 코팅부(3-21, 3-22)가 있다. 이와 같은 필터부(3)는 먼저 정해진 굴절율과 두께를 갖는 유리판인 유리블록(3-1) 일측면의 일부 영역에 무박사막 코팅(3-21)을 하고 같은 면의 또 다른 영역에는 반사막 코팅(3-21)을 한 후 정해진 크기를 갖도록 잘라낸 다음 잘라낸 유리블록(3-1)을 그 단면이 평행 사변형의 형태가 되도록 정밀한 각도로 연마한 후, 미리 제작된 박막 필터(31~34)들을 유리블록(3-1)의 코팅부가 형성된 일측면과 대응되는 타측면에 정해진 위치에 순차적으로 부착하는 공정을 통해 제작될 수 있다. 이와 같은 필터부(3)의 광의 분파에 대해서는 도 3 및 도 4를 통해 보다 상세하게 설명하도록 한다. The filter part 3 is formed in the rear end of the spectroscopic lens 22. The filter unit 3 functions to separate the optical signal received through the optical fiber for each wavelength and convert it into multi-channel split light. As shown in FIGS. 1 and 2, the filter unit 3 is formed on a parallelogram-type glass block 3-1 and on one side of the glass block 3-1 and is a thin film filter that transmits the divided light, respectively. Fields 31 to 34, which are equal to the number of split lights, and coating portions 3-21 and 3-22 formed on the other side of the glass block 3-1. The filter unit 3 is first applied to the non-film coating (3-21) of a portion of one side of the glass block (3-1), which is a glass plate having a predetermined refractive index and thickness, and a reflective film coating ( 3-21), cut out to have a predetermined size, and then polish the cut glass block 3-1 at a precise angle so that its cross section is in the form of a parallelogram, and then pre-fabricate the thin film filters 31 to 34. The coating part of the block 3-1 may be manufactured through a process of sequentially attaching the coating part to a predetermined position on the other side surface corresponding to the one side surface. The branching of the light of the filter unit 3 will be described in more detail with reference to FIGS. 3 and 4.
어레이 렌즈(9)는 발산광을 초점광으로 변환시키는 렌즈를 하나의 부품으로 집적화한 것이다. 즉, 필터부(3)를 통해 다채널 분파광을 각각 촛점광으로 만들기 위한 것으로서, 도시된 바와 같은, 4채널 광수신 모듈의 경우, 4개의 렌즈 또는 4개의 렌즈 영역이 형성되어서 각각 각 분파광을 촛점광으로 변환하는 기능을 한다. The array lens 9 integrates a lens for converting divergent light into focus light into one component. That is, for the four-channel optical receiving module, as shown in the figure, for making the multi-channel split light through the filter unit 3 as the focused light, respectively, four lenses or four lens regions are formed, respectively. It converts the light into focus light.
수광 소자(4)는 분파광의 갯수 만큼의 포토 다이오드 또는 APD로 이루어지며, 각 분파광을 전기신호로 변환한 후, 후단에 위치하는 임피던스 증폭기(5)로 신호를 전달하는 기능을 한다. The light receiving element 4 is composed of as many photodiodes or APDs as the number of branched light, and converts each branched light into an electric signal, and then transmits the signal to the impedance amplifier 5 located at the rear end.
수광 소자(4)에는, 크게, 핀 포토 다이오드(또는 Pin-PD)와 APD(Alanche Photo diode)로 나뉠 수 있다. 본 발명에 따른 광수신 모듈의 경우, Pin-PD가 장착되거나, 또는 APD가 장착되더라도 모두 동작을 하게 된다. 이에 대해서 후술하도록 한다.The light receiving element 4 can be roughly divided into a pin photodiode (or Pin-PD) and an APD (Alanche Photo diode). In the case of the optical reception module according to the present invention, both the pin-PD is mounted or the APD is operated. This will be described later.
핀 포토 다이오드는, P형 반도체와 N형 반도체 사이에 진성 반도체(intrinsic semiconductor) i층(i는 intrinsic)을 삽입한 것이다. 드리프트 전류는 공핍층에서 만들어지므로 전계의 영향에 따라 신속히 응답하나, 역으로 공핍층 밖에서 만들어진 확산전류는 응답속도가 늦다는 특징이 있고, 공핍층의 폭은 넓으면 넓을수록 양자효율(quantum efficiency)과 주파수 응답 속도면에서 유리하다. 이 공핍층의 폭은 P형, N형 반도체 층의 전자와 정공의 농도가 낮은것 일수록 넓어지므로, P형과 N형 반도체간에 접합되는 i형 반도체는, 이 공핍층의 폭을 넓히는 역할을 한다.In the pin photodiode, an intrinsic semiconductor i layer (i is an intrinsic) is inserted between a P-type semiconductor and an N-type semiconductor. Since the drift current is made in the depletion layer, it responds quickly according to the influence of the electric field. On the contrary, the diffusion current made outside the depletion layer has a slow response time. The wider the depletion layer, the wider the quantum efficiency. It is advantageous in terms of over frequency response speed. The width of the depletion layer becomes wider as the concentration of electrons and holes in the P-type and N-type semiconductor layers becomes lower, so that the i-type semiconductor bonded between the P-type and N-type semiconductors plays a role in widening the width of the depletion layer. .
APD(APD ; avlanche photo diode)의 구조는 PIN-PD와 거의 같다. 여기서 p-층은 억셉터(acceptor)를 조금 첨가한 P형 반도체, P층은 고저항층을 의미한다. 또, APD에서는 높은 역바이어스를 걸어 강전계를 발생시켜 전계를 균일하게 하여 소자의 손상을 방지하기 위하여 가이드 링(guide ring)을 설정한다. PIN-PD보다 더 높은 100∼150[V]정도의 역바이어스를 가한다. 이 전압은 거의가 P-층과 P층에 걸리나, 특히 고저항 P층 부근에서는 전계는 105[V/cm]까지 되며 만일 n층에서 광이 입사하면 PIN-PD와 같이 두꺼운 P-층에서 대부분 흡수되어, 전자와 정공의 쌍이 생성되고 전자는 에너지의 슬로프(slope)를 넘어 고전계영역에 진입한다. 전자는 이 강전계에 의해 가속되어 P층이나 P-층의 전자에 격렬하게 충돌하게 되고, 이 충돌된 전자는 에너지를 얻어 튀어 나와 새로이 전자와 정공의 한쌍이 된다. 또한, 이 전자가 가속화되어 강전계 영역에서 전자와 정공이 증가해 눈사태 효과(avalanche effect)를 일으켜 광전류가 증배된다. 따라서, PIN-PD에서는 1개 전자가 발생하는 것을 APD에서는 몇 배로 증폭할 수 있으므로 입사전력이 작은 광도 검출할 수 있어 수광감도가 향상된다.The structure of APD (APD; avlanche photo diode) is almost the same as that of PIN-PD. Here, the p-layer is a P-type semiconductor with a small amount of acceptor, and the P layer is a high resistance layer. In the APD, a high reverse bias is applied to generate a strong electric field, so that a guide ring is set to prevent damage to the device by making the electric field uniform. Apply a reverse bias of 100 to 150 [V] higher than that of the PIN-PD. Most of this voltage is applied to the P- and P layers, but especially near the high-resistance P layer, the electric field is up to 105 [V / cm]. As it is absorbed, pairs of electrons and holes are created and electrons enter the high field region beyond the slope of energy. The electrons are accelerated by the strong electric field and collide violently with the electrons of the P layer or the P-layer, and the collided electrons get energy and bounce off to form a new pair of electrons and holes. In addition, the electrons are accelerated to increase the electrons and holes in the strong electric field, causing an avalanche effect and increasing the photocurrent. Therefore, since the generation of one electron in the PIN-PD can be amplified several times in the APD, light having a small incident power can be detected, thereby improving the light receiving sensitivity.
본 발명에서는, 수광소자로서 경우에 따라 핀포토다이오드가 사용되거나 또는 APD가 사용될 수 있다. 즉, 후술하는 피드스루패턴부(6) 중 신호 처리 패턴부(61)는, 핀포토 다이오드의 신호를 처리하기 위한 것이고, 전원 패턴부(62)는, APD가 사용되는 경우, 접지핀 중 일부가 APD 신호를 처리하기 위한 것으로 역할이 변경된다. 즉, 접지핀 중 일부는 와이어 본딩에 의해 APD에 연결된다. In the present invention, a pin photodiode or APD may be used as the light receiving element in some cases. That is, the signal processing pattern portion 61 of the feedthrough pattern portion 6 to be described later is for processing the signal of the pin photodiode, and the power supply pattern portion 62 is a part of the ground pin when APD is used. The role is changed to process the APD signal. That is, some of the ground pins are connected to the APD by wire bonding.
본 발명에서 수광소자는 분파광수와 동일한 수로 구성되어서, 각 분파광은 전기 신호로 변환하게 된다.In the present invention, the light-receiving element is composed of the same number as the number of divided light, so that each of the divided light is converted into an electrical signal.
임피던스 증폭기(5)는 수광 소자(4)의 후단에 설치되어서, 수광소자에서 변환된 전기 신호를 증폭하는 기능을 한다. 이러한 임피던스 증폭기(5)로서 전달 임피던스 타입의 전치 증폭소자들이 하나의 구성으로 집적화된 어레이 전치 증폭기(5)가 이용될 수 있다.The impedance amplifier 5 is provided at the rear end of the light receiving element 4, and functions to amplify the electric signal converted by the light receiving element. As such an impedance amplifier 5, an array preamplifier 5 in which transfer amplifier type preamplification elements are integrated into one configuration can be used.
금속 광학 벤치(7)는 하우징 본체(2)의 저면에 설치되며, 필터부(3), 어레이 렌즈(9), 수광소자(4), 임피던스 증폭기(5) 및 후술하는 피드스루패턴부(6)들이 각각 안착되어 정렬 및 고정될 수 있도록 안착부들이 각각 가공 형성될 수 있다. 구체적으로, 금속 광학 벤치(7)의 상부측에는 지그재그 필터부(3)의 유리블록(3-1), 어레이 렌즈(9) 및 수광소자(4)와 대응되는 형태의 정렬홈이 가공 형성될 수 있다. The metal optical bench 7 is installed at the bottom of the housing main body 2, and includes a filter unit 3, an array lens 9, a light receiving element 4, an impedance amplifier 5, and a feedthrough pattern unit 6 described later. The mounting portions may be each formed to be machined so that they may be seated and aligned and fixed, respectively. Specifically, an alignment groove of a shape corresponding to the glass block 3-1, the array lens 9, and the light receiving element 4 of the zigzag filter unit 3 may be formed on the upper side of the metal optical bench 7. have.
피드스루패턴부(6)는, 상기 임피던스 증폭기(5)의 후단측에 금속 광학 벤치(7)위에 형성된다. 피드스루패턴부(6)는 신호 처리 패턴부(61)와 전원 패턴부(62)로 구성된다. 이 구성에 대해서는 도 5에서 설명하도록 한다. The feed-through pattern portion 6 is formed on the metal optical bench 7 on the rear end side of the impedance amplifier 5. The feed-through pattern section 6 is composed of a signal processing pattern section 61 and a power supply pattern section 62. This configuration will be described with reference to FIG. 5.
임피던스 증폭기(5) 주변에는 임피던스 증폭기(5)를 설치하기 위한 마운트가 형성된다. 마운트(8)는 상기 임피던스 증폭기(5)의 전단 장측에 설치되는 제 1 서브 마운트(81)와, 상기 임피던스 증폭기(5)의 측단에 설치되는 제 2 서브 마운트 (82)및 제 3 서브 마운트(83)를 포함할 수 있다. 이러한 마운트는, 신호 전달 및 전력 공급의 필요에 의해 구성될 수 있다.The mount for installing the impedance amplifier 5 is formed around the impedance amplifier 5. The mount 8 includes a first sub-mount 81 provided at the front end side of the impedance amplifier 5, a second sub-mount 82 and a third sub-mount provided at the side ends of the impedance amplifier 5 ( 83). Such a mount may be configured by the need for signal transmission and power supply.
이하에서는 도 3 및 도 4를 참조하여 광신호의 전파과정 및 변환 과정에 대하여 설명하도록 한다. Hereinafter, a propagation process and a conversion process of an optical signal will be described with reference to FIGS. 3 and 4.
도 4를 참조하면, 상기 필터부(3:지그재그 필터부)는, 역다중화 소자로서, 평행사변형 형태의 유리블록(3-1)과, 유리블록(3-1)의 일측면에 일정한 간격으로 형성되어 해당되는 대역의 광신호를 통과시키는 박막 필터(31~34)를 포함하여 구성될 수 있다. 이때, 박막 필터(31~34)가 형성된 유리블록(3-1)의 타측면에는 코팅부(3-21,3-22)가 형성될 수 있다. 코팅부(3-21,3-22)는 분광 렌즈를 통해 광신호가 입사되는 영역과 대응되는 일정 영역에는 형성되는 무반사막 코팅(3-21)과, 무반사막 코팅이 형성된 영역을 제외한 나머지 영역에 형성되는 반사막 코팅(3-22)으로 구분 형성될 수 있다. 이때, 유리블록(3-1)의 일측에 형성되는 무반사막 코팅(3-21)은 분광 렌즈(22)를 통해 입사되는 광신호가 유리블록(3-1)에 반사됨에 따른 손실을 최소화시켜주는 역할을 하며, 반사막 코팅(3-22)은 반대측에 형성된 제 1 박막 필터(31)로부터 반사되어 되돌아 온 광신호가 다시 반사되어 그 다음 제 2 내지 제 4 박막 필터(32~34)로 입사되도록 하는 역할을 한다.Referring to FIG. 4, the filter unit 3: the zigzag filter unit is a demultiplexing element, and the glass block 3-1 and the one side of the glass block 3-1 in parallelogram shape are spaced at regular intervals. It may be formed to include a thin film filters 31 to 34 to pass through the optical signal of the corresponding band. In this case, the coating parts 3-21 and 3-22 may be formed on the other side of the glass block 3-1 on which the thin film filters 31 to 34 are formed. The coating parts 3-21 and 3-22 are applied to the remaining areas except for the anti-reflective coating (3-21) and the non-reflective coating, which are formed in a predetermined area corresponding to the area where the optical signal is incident through the spectroscopic lens. It may be formed by dividing the reflective film coating (3-22) to be formed. At this time, the anti-reflective coating (3-21) formed on one side of the glass block (3-1) minimizes the loss due to the reflection of the optical signal incident through the spectroscopic lens 22 to the glass block (3-1) And the reflective film coating 3-22 causes the optical signal returned from the first thin film filter 31 formed on the opposite side to be reflected again and then incident to the second to fourth thin film filters 32 to 34. Play a role.
도 3은 본 발명의 일실시예인 광수신 모듈에서의 광로를 설명하기 위한 부분 확대 단면도이고, 도 4는 본 발명의 일실시예인 광수신 모듈 중 필터부에서의 광로를 설명하기 위한 도면이다. 도 3 및 도 4에 도시된 바와 같이, 우선 페룰(11)에서 정렬된 광신호는 분광 렌즈(22)에 의해 평행광으로 변환된다. 이 평행광은 필터부(3)를 거쳐서 각각 상이한 파장을 갖는 분파광들이 되고, 상기 분파광은 어레이 렌즈(9)에서 촛점광으로 변경되어서, 수광 소자(4: 제 1 내지 제 4 수광 소자(41~44))에 조사되고, 수광 소자(4)는 이 촛점광인 분파광을 전기신호로 변환하게 된다. 3 is a partially enlarged cross-sectional view for describing an optical path in an optical reception module according to an embodiment of the present invention, and FIG. 4 is a view for explaining an optical path in a filter unit of an optical reception module according to an embodiment of the present invention. As shown in Figs. 3 and 4, first, the optical signal aligned in the ferrule 11 is converted into parallel light by the spectroscopic lens 22. As shown in Figs. The parallel light becomes divided light having different wavelengths through the filter portion 3, and the divided light is changed into focus light in the array lens 9, so that the light receiving elements 4: the first to fourth light receiving elements ( 41 to 44), and the light receiving element 4 converts the branched light, which is this focused light, into an electric signal.
한편, 필터부(3)는, 도 4로 도시한 바와 같이, 다중화된 빛의 파장을 4개의 파장으로 분리해 내기 위한 역다중화 소자로 각각의 파장만을 통과시키는 박막 필터(31~34)를 포함하게 되어서, 각각의 파장의 광신호(분파광)들이 지그재그필터 내부에서 반사되면서 각 박막 필터에서 정의되는 투광 파장 대역의 광만이 박막 필터(31~34)를 통과하여 빠져나가도록 하여 분파광을 생성하게 된다. Meanwhile, as shown in FIG. 4, the filter unit 3 includes thin film filters 31 to 34 that pass only respective wavelengths as demultiplexing elements for separating the multiplexed light wavelengths into four wavelengths. As the optical signals (split light) of each wavelength are reflected inside the zig-zag filter, only the light of the wavelength band defined by each thin film filter passes through the thin film filters 31 to 34 to generate the split light. Done.
이하에서는 도 5를 참조하여 금속 광학 벤치(7)에 형성된 피드스루패턴부(6)에 대하여 설명하도록 한다. Hereinafter, the feedthrough pattern part 6 formed on the metal optical bench 7 will be described with reference to FIG. 5.
도 5는 본 발명의 일실시예인 광수신 모듈 중 피드스루패턴부(6)를 설명하기 위한 도면이다. 피드스루패턴부(6)는, 신호처리 패턴부(61)와 전원 패턴부(62)를 포함하여 구성될 수 있다. 신호 처리 패턴부(61)는, 핀 포토 다이오드(제 1 수광소자)가 설치되었을 때 그 신호를 후속하는 기판(S)으로 연결하는 기능을 한다. 전원 패턴부(62)는, 수광소자에 전원을 공급하는 기능을 한다. 핀포토 다이오드가 설치된 경우에는, 전원 패턴부(62)는 단순하게 핀포토 다이오드에 전원을 입력하는 기능을 하는 전원핀(622), 외측 접지핀(621)과 내측 접지핀(621'),각 핀포토다이오드에서의 신호 측정을 위한 RSSI핀(623), 그리고 외부 저항핀(R-Ext핀)으로 기능을 한다. 그런데, 광수신 모듈의 수광소자로서 APD(제 2 수광 소자(4))가 설치되는 경우, 전원 패턴부(62)의 내측 접지핀(621')과 외부 저항핀(624)는 신호핀으로서 기능을 하게 된다. 즉, APD가 장착되는 경우 수광소자 장착모듈 중의 APD 연결핀(미도시)이 전원 패턴부(62)의 내측 접지핀(621')와 외부 저항핀(624)과 와이어 본딩을 통해 연결되어서 내측 접지핀(621') 및 외부 저항핀(624) 각각이 수광 소자들의 각각의 신호핀으로 동작하게 된다. 5 is a view for explaining the feed-through pattern unit 6 of the light receiving module according to an embodiment of the present invention. The feedthrough pattern part 6 may include a signal processing pattern part 61 and a power supply pattern part 62. The signal processing pattern portion 61 functions to connect the signal to the subsequent substrate S when a pin photodiode (first light receiving element) is provided. The power supply pattern portion 62 functions to supply power to the light receiving element. When the pin photo diode is installed, the power supply pattern unit 62 has a power pin 622, an outer ground pin 621 and an inner ground pin 621 ', each of which simply inputs power to the pin photo diode. It functions as RSSI pin 623 and external resistance pin (R-Ext pin) for signal measurement in pin photodiode. By the way, when APD (second light receiving element 4) is provided as the light receiving element of the light receiving module, the inner ground pin 621 'and the external resistance pin 624 of the power supply pattern portion 62 function as signal pins. Will be That is, when the APD is mounted, the APD connection pin (not shown) in the light receiving element mounting module is connected to the inner ground pin 621 ′ and the external resistance pin 624 of the power supply pattern 62 through wire bonding to thereby ground the inner portion. Each of the pin 621 ′ and the external resistor pin 624 acts as a signal pin of each of the light receiving elements.
보다 구체적으로 설명하면, 도 5에 도시된 바와 같이, 접지핀(621)이 ㄷ자 형태로 외곽을 둘러싸게 형성된다. 그 내측에는 내측 접지핀(621'), RSSI핀(623) 및 외부 저항핀(624)이 형성된다. 도 5의 예시는 분파광수가 4개여서 수광소자가 4개(제 1 내지 제 4 수광소자(411~44)인 경우이다. 이에 따라 내측 접지핀(621')와 외부 저항핀(624)의 합이 4이고, RSSI핀(623)의 수도 4이다. 여기서, 내측의 접지핀(621')은, 핀포토 다이오드가 설치되는 경우, 접지핀으로서 기능하지만, APD가 부착되면, 이들은 신호핀(제 2 내지 제 4 수광소자의)으로서 기능을 하게 된다. 그리고 외부 저항핀(624)은 핀포토다이오드가 설치되는 경우 외부 저항핀으로 기능하고, APD가 부착되면 신호핀(제 1 수광소자의)으로 기능하게 된다. 이와 같이 구성함으로써, 수광소자의 종류에 상관없이, 광수신 모듈을 구성할 수 있게 된다. In more detail, as shown in FIG. 5, the ground pin 621 is formed to surround the outside in a U shape. Inside thereof, an inner ground pin 621 ′, an RSSI pin 623, and an external resistance pin 624 are formed. 5 illustrates a case where the number of the divided light beams is 4, so that the light receiving elements are four (first to fourth light receiving elements 411 to 44. Accordingly, the inner ground pins 621 'and the external resistance pins 624 are formed. The sum is 4 and the number of RSSI pins 623 is 4. Here, the inner ground pins 621 'function as ground pins when a pin photo diode is installed, but if APD is attached, they are signal pins ( Second to fourth light-receiving elements), and the external resistance pin 624 functions as an external resistance pin when a pin photodiode is installed, and a signal pin (of the first light-receiving element) when APD is attached. In this way, the optical receiving module can be configured regardless of the type of the light receiving element.
상술한 구성을 가진 본 발명의 일실시예에 따르면, 수광소자의 종류에 대한 호환성이 우수한 광수신 모듈을 생산함으로써 대량 생산이 가능하고 설계 비용을 낮추워 생산성 및 경제성을 높일 수 있다.According to one embodiment of the present invention having the above-described configuration, by producing a light receiving module with excellent compatibility for the type of light receiving element, it is possible to mass production and to lower the design cost can increase productivity and economics.
또한, 본 발명의 일실시예에 따르면, 평행광을 형성하는 광학계의 구조를 개선하여 우수한 광손실특성을 가지고 간단한 공정을 제공하여 제조 공정의 수율을 향상시킬 수 있게 된다. In addition, according to one embodiment of the present invention, it is possible to improve the yield of the manufacturing process by providing a simple process with excellent light loss characteristics by improving the structure of the optical system for forming parallel light.
상기와 같이 설명된 광수신모듈은, 상기 설명된 실시예들의 구성과 방법에 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.The optical reception module described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be selectively combined with all or some of the embodiments so that various modifications can be made. Can be configured.

Claims (15)

  1. 입력광 신호의 매체인 광섬유를 구비한 광섬유 커넥터와 연결되는 리셉터클부;A receptacle portion connected to an optical fiber connector having an optical fiber as a medium of an input optical signal;
    상기 리셉터클부와 연결되는 리셉터클 연결부를 구비하는 하우징 본체;A housing body having a receptacle connection portion connected to the receptacle portion;
    상기 하우징 본체의 수용부에 설치되어서, 상기 입력광 신호를 다채널 분파광으로 변환시키는 필터부;A filter unit installed at a housing of the housing main body to convert the input light signal into multi-channel split light;
    상기 다채널 분파광을 각각 전기 신호로 변환하는, 제 1 수광소자 또는 제 2 수광소자를 포함하는 수광소자, 제 1 수광소자 및 제 2 수광소자는 그 종류가 상이함 ; 및 The light-receiving element, the first light-receiving element, and the second light-receiving element, each of which includes a first light receiving element or a second light receiving element, respectively converting the multi-channel split light into electric signals; And
    제 1 수광소자로부터의 제 1 전기 신호를 처리하기 위한 제 1 신호 처리 패턴부과 상기 신호 처리 패턴부에 인접 설치되는 전원 패턴부를 포함하는 피드스루 패턴부, 상기 전원 패턴부는 상기 제 2 수광소자로부터의 제 2 전기 신호를 처리하는 제 2 신호처리 패턴부로서의 역할을 함:를 포함하는, 광수신 모듈.A feed-through pattern portion including a first signal processing pattern portion for processing the first electrical signal from the first light receiving element and a power supply pattern portion disposed adjacent to the signal processing pattern portion, the power supply pattern portion from the second light receiving element And acting as a second signal processing pattern portion for processing the second electrical signal.
  2. 제 1 항에 있어서The method of claim 1
    상기 리셉터클부의 내부에 설치되어서 상기 광섬유의 정렬을 하는 페룰을 더 포함하는, 광수신 모듈.And a ferrule installed inside the receptacle to align the optical fiber.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 페룰과 동심으로 상기 리셉터클 연결부에 설치되는 렌즈를 더 포함하는, 광수신 모듈.And a lens installed in the receptacle connecting portion concentrically with the ferrule.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 렌즈는, 분광 렌즈인, 광수신 모듈. The lens is a light receiving module, the spectroscopic lens.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 하우징 본체의 저면에 설치되는 금속 광학 벤치;를 더 포함하는, 광수신 모듈.And a metal optical bench installed at the bottom of the housing body.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 피드스루 패턴부의 전단에 설치되는 임피던스 증폭기를 더 포함하는, 광수신 모듈.And an impedance amplifier installed in front of the feed-through pattern portion.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 금속 광학 벤치위에 설치되어서, 상기 수광소자에 대한 전원 공급을 위해 구성되는 마운트를 더 포함하는, 광수신 모듈.And a mount mounted on the metal optical bench, the mount configured to supply power to the light receiving element.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 마운트는,The mount is,
    상기 임피던스 증폭기의 전단 장측에 설치되는 제 1 서브 마운트, 상기 임피던스 증폭기의 측단에 설치되는 제 2 서브 마운트 및 제 3 서브 마운트를 포함하는, 광수신 모듈.And a second sub-mount installed at a front end side of the impedance amplifier, a second sub-mount mounted at a side end of the impedance amplifier, and a third sub-mount.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 전원 패턴부는, The power supply pattern unit,
    전원핀, RSSI핀, 접지핀, 및 외부 저항핀을 포함하는, 광수신 모듈.A light receiving module comprising a power pin, RSSI pin, ground pin, and external resistor pin.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 접지핀 중 일부와 상기 외부 저항핀은, 상기 제 2 수광소자가 설치되는 경우, 신호 핀으로 기능하는, 광수신 모듈.Some of the ground pins and the external resistance pins function as signal pins when the second light receiving element is installed.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 접지핀 중 일부는,Some of the ground pins,
    "ㄷ"자형으로 형성되는 외측 접지핀이고, ,The outer ground pin is formed in the "c" shape,
    상기 전원핀, 상기 접지핀의 나머지인 내측 접지핀, 상기 RSSI핀은 상기 전원핀의 내측에 위치하는, 광수신 모듈.The power pin, the inner ground pin that is the remainder of the ground pin, the RSSI pin is located inside the power pin, the optical receiving module.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 접지핀의 수, 상기 RSSI핀의 수 및 상기 분파광의 수는 동일한, 광수신 모듈.And the number of ground pins, the number of RSSI pins, and the number of split light are the same.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 수광소자는, 핀포토 다이오드이고, 상기 제 2 수광소자는, APD 인, 광수신 모듈.The first light receiving element is a pin photo diode, and the second light receiving element is an APD.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 APD는 상기 전원 패턴부의 접지핀과 와이어 본딩을 통해 전기적으로 연결되며, 이에 따라 상기 접지핀은 신호핀으로 동작하는, 광수신 모듈.The APD is electrically connected to the ground pin of the power pattern portion through wire bonding, and thus the ground pin operates as a signal pin.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 필터부는, The filter unit,
    상기 입력광을 적어도 4개의 상기 다채널 분파광으로 분파시키고,Split the input light into at least four multi-channel split light,
    상기 제 1 수광소자 또는 상기 제 2 수광소자는,The first light receiving element or the second light receiving element,
    상기 다채널 분파광의 수와 동일한 갯수의 포토 다이오드로 구성되는, 광수신 모듈.And a photodiode of the same number as the number of the multi-channel split light.
PCT/KR2016/013357 2016-11-18 2016-11-18 Optical reception module WO2018092950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/013357 WO2018092950A1 (en) 2016-11-18 2016-11-18 Optical reception module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/013357 WO2018092950A1 (en) 2016-11-18 2016-11-18 Optical reception module

Publications (1)

Publication Number Publication Date
WO2018092950A1 true WO2018092950A1 (en) 2018-05-24

Family

ID=62145166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013357 WO2018092950A1 (en) 2016-11-18 2016-11-18 Optical reception module

Country Status (1)

Country Link
WO (1) WO2018092950A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100004205U (en) * 2008-10-14 2010-04-22 (주)휴먼라이트 Optical module
JP2010534970A (en) * 2007-07-27 2010-11-11 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Free space WDM signal detector
KR20120030265A (en) * 2010-09-20 2012-03-28 옵티시스 주식회사 Wavelengh division multiplexer and demultiplexer
JP2016033601A (en) * 2014-07-31 2016-03-10 住友電気工業株式会社 Optical receiver module
JP2016170363A (en) * 2015-03-16 2016-09-23 住友電気工業株式会社 Optical receiver module and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534970A (en) * 2007-07-27 2010-11-11 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Free space WDM signal detector
KR20100004205U (en) * 2008-10-14 2010-04-22 (주)휴먼라이트 Optical module
KR20120030265A (en) * 2010-09-20 2012-03-28 옵티시스 주식회사 Wavelengh division multiplexer and demultiplexer
JP2016033601A (en) * 2014-07-31 2016-03-10 住友電気工業株式会社 Optical receiver module
JP2016170363A (en) * 2015-03-16 2016-09-23 住友電気工業株式会社 Optical receiver module and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2016199984A1 (en) Wavelength multiplexing optical receiver modules
US9372315B2 (en) Micro bi-directional optical sub-assembly
USRE48029E1 (en) WDM multiplexing/de-multiplexing system and the manufacturing method thereof
CN109792300B (en) Techniques for reducing electrical interconnection losses between tosa and associated driver circuits and optical transceiver systems using same
US7139452B2 (en) Apparatus and methods for using fiber optic arrays in optical communication systems
WO2021115129A1 (en) Optical module
US9703054B2 (en) Aligning and directly optically coupling photodetectors to optical demultiplexer outputs in a multichannel receiver optical subassembly
WO2012039542A2 (en) Apparatus for wavelength-division multiplexing and demultiplexing
CN107479144B (en) Optical transmitter or transceiver having a Transmitter Optical Subassembly (TOSA) module directly aligned with an input of an optical multiplexer
WO2012067366A1 (en) Optical communication module
KR102659998B1 (en) Optical rotary electrical connection
KR101864708B1 (en) Multi-channel Receiver Optical Sub Assembly
US9847434B2 (en) Multichannel receiver optical subassembly with improved sensitivity
KR20140079540A (en) Optical receiver module using wavelength division multiplexing type
CN210864119U (en) Multichannel parallel optical module
CN107592160A (en) For the method and system of parallel optical fibre and wavelength-division multiplex operation to may be selected
WO2018074705A1 (en) Wavelength multiplexing optical receiver module
CN111628828A (en) High-sensitivity light receiving device
WO2016199985A1 (en) Multichannel optical receiver module and optical alignment method of multichannel optical receiver module
CN111869136B (en) Optical receiving, combined transmitting and receiving assembly, combined optical module, OLT and PON system
US9360641B2 (en) Multi-wavelength optical signal receiving apparatus and method
CN108693607A (en) Optic communication module and bidirectional optical module
US8748797B1 (en) Two wavelength range photodiode demultiplexer and methods for using the same
CN109254365A (en) Light-receiving mould group and preparation method thereof, light receiving element
KR20210024169A (en) Receiver optical subassembly, combo transceiver subassembly, combo optical module, communication device and PON system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921629

Country of ref document: EP

Kind code of ref document: A1