WO2018092634A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2018092634A1
WO2018092634A1 PCT/JP2017/040046 JP2017040046W WO2018092634A1 WO 2018092634 A1 WO2018092634 A1 WO 2018092634A1 JP 2017040046 W JP2017040046 W JP 2017040046W WO 2018092634 A1 WO2018092634 A1 WO 2018092634A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
voltage
saturation
value
internal combustion
Prior art date
Application number
PCT/JP2017/040046
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 亮
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2018092634A1 publication Critical patent/WO2018092634A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to a general-purpose machine such as a generator or a vehicle such as a motorcycle.
  • a temperature sensor in a fuel injection system is generally used for detecting a warm-up state of an internal combustion engine. More specifically, the fuel injection system calculates the temperature of the internal combustion engine based on the output of the temperature sensor, detects the warm-up state of the internal combustion engine based on the calculated temperature of the internal combustion engine, and determines the ignition timing. And control of fuel injection. For this reason, when adopting a fuel injection system, it is necessary to attach a temperature sensor to the internal combustion engine. Furthermore, when installing a temperature sensor in the internal combustion engine, it is necessary to install wires and couplers for wiring, and it is necessary to process the part of the internal combustion engine where the temperature sensor is installed.
  • the ratio of the cost of the fuel injection system to the sales price is higher than that of the carburetor system.
  • a temperature sensor is required to be omitted from the fuel injection system for the purpose of cost reduction.
  • Patent Document 1 relates to the control device 70 of the internal combustion engine 10, detects the resistance value of the coil of the fuel injection valve 29 (coil of the injector), and based on the resistance value thus detected, A configuration for calculating the temperature of the engine is disclosed.
  • the resistance value of the coil of the injector is an inter-terminal voltage (sometimes referred to as a drive voltage for convenience) which is a voltage generated between both terminals of the coil when energized.
  • the current flowing through the coil is specified in principle, but at the start of energization, the current flowing through the coil is not saturated to a constant current and the current flowing through the coil cannot be detected accurately.
  • the energization time needs to be set to an optimum energization time for realizing a required fuel injection amount in order to realize a target air-fuel ratio during operation of the internal combustion engine. Therefore, there may occur a situation in which this energization time cannot be set to a length longer than the time when the current flowing through the coil is saturated. That is, in such a case, the accuracy of the calculated resistance value of the coil of the injector is reduced, and a situation in which the resistance value of the injector coil that is practically usable cannot be obtained occurs. Become.
  • the basic reason that the current flowing through the coil when it is energized is not immediately saturated to a constant current (saturation current) is due to the presence of a time constant in the coil. It has been found that the time until the current flowing when the coil is energized changes depending on the voltage applied between both terminals of the coil.
  • the solenoid valve which is a ferromagnetic valve body such as ferromagnetic stainless steel, is moved by the electromagnetic force generated by the current flowing through the coil.
  • the inductance of the system composed of the coil, the coil case, the solenoid valve, etc. changes, and then the movement of the solenoid valve is completed, the inductance exhibits a constant value.
  • the resistance value of the coil of the injector needs to be obtained in consideration of the magnitude of the voltage between the terminals and the length of the energization time. Further, according to the study by the present inventor, in a vehicle such as a motorcycle, the capacity of a battery mounted thereon is smaller than that of a four-wheel vehicle or the like, and the rotation speed of a commonly used internal combustion engine is wide.
  • the present invention has been made through the above-described studies, and provides an internal combustion engine control device capable of calculating the resistance value of an injector coil of an internal combustion engine mounted on a vehicle with a practically sufficient accuracy with a simple configuration.
  • the purpose is to do.
  • the present invention provides an internal combustion engine control apparatus including a control unit that controls an operating state of the internal combustion engine based on a resistance value of a coil included in an injector mounted on a vehicle. Calculates the resistance value of the coil using the voltage value of the drive voltage applied to the coil as the fuel is injected from the injector and the current value of the current flowing through the coil as the fuel is injected. In order to do so, the degree of saturation of the current value at the end of energization of the coil is calculated from the energization time of the coil and the saturation time necessary for the current value to be saturated, and the current at the end of energization is calculated.
  • the first aspect is to correct the current value based on the degree of saturation.
  • control unit is based on a characteristic that defines a relationship between the current value of the current flowing through the coil during the fuel injection and the saturation time.
  • the calculation of the saturation time is a second aspect.
  • control unit calculates the correction coefficient based on a relationship between the degree of saturation and a correction coefficient for correcting the current value.
  • the present invention provides a first voltage detection circuit for detecting a first voltage value applied to an upstream terminal of the coil in association with the fuel injection, and accompanying the fuel injection.
  • a second voltage detection circuit that detects a second voltage value applied to a resistance element connected to a downstream terminal of the coil, and the control unit calculates the resistance value of the coil.
  • the energization time and the saturation time necessary for the second voltage value to be saturated are used to determine the second voltage value at the end of energization of the coil.
  • the second voltage value at the end of energization is corrected based on the saturation level of the second voltage value. This is the fourth aspect.
  • control unit has a characteristic defining a relationship between the first voltage value and the saturation time necessary for the second voltage value to be saturated. Based on this, a fifth aspect is to calculate the saturation time necessary for the second voltage value to be saturated.
  • the present invention provides the control unit based on a correlation between the degree of saturation of the second voltage value and a correction coefficient for correcting the second voltage value.
  • the sixth aspect is to calculate the correction coefficient of the voltage value.
  • the control unit determines the voltage value of the drive voltage applied to the coil along with the fuel injection of the injector and the current flowing through the coil along with the fuel injection.
  • the coil and the related configuration With a simple configuration that can reflect changes in the inductance of parts and changes in the ignition voltage that is the power supply voltage of the coil, the resistance value of the coil is calculated with sufficient practical accuracy. Door can be.
  • the control unit defines the relationship between the current value of the current flowing through the coil during fuel injection and the saturation time of the current value. Therefore, even if the ignition voltage, which is the coil's power supply voltage, is changed due to aging deterioration, load fluctuation, etc. The saturation time of the flowing current can be appropriately calculated, and the resistance value of the coil can be calculated with sufficient practical accuracy.
  • control unit is configured to correct the current value based on the relationship between the saturation level of the current value and the correction coefficient for correcting the current value. Therefore, the correction coefficient for correcting the current value can be appropriately calculated, and the resistance value of the injector coil can be calculated with sufficient accuracy.
  • the first voltage detection circuit that detects the first voltage value applied to the upstream terminal of the coil as the fuel is injected, and the fuel And a second voltage detection circuit for detecting a second voltage value applied to the resistance element connected to the downstream terminal side of the coil in association with the injection, and the control unit calculates the resistance value of the coil
  • the saturation degree of the second voltage value at the end of energization of the coil is calculated from the energization time and the saturation time necessary for the second voltage value to be saturated instead of the saturation degree of the current value.
  • the second voltage value at the end of energization is corrected based on the degree of saturation of the second voltage value. Calculate the resistance of the injector coil of the internal combustion engine installed in the vehicle. In this case, it is possible to reflect changes in the inductance of the coil and its related components, and changes in the ignition voltage, which is the power supply voltage of the coil, and calculate the resistance value of the coil with sufficient practical accuracy. be able to.
  • the control unit defines the relationship between the first voltage value and the saturation time necessary for the second voltage value to be saturated. Since the saturation time required for the second voltage value to saturate is calculated based on the obtained characteristics, the battery voltage changes due to deterioration over time, load fluctuation, etc., and the ignition voltage, which is the coil power supply voltage. Even in the case of a change, the saturation time of the current flowing through the coil can be appropriately calculated with a more realistic configuration, and the resistance value of the coil can be calculated with sufficient practical accuracy.
  • the control unit determines the second from the correlation between the saturation degree of the second voltage value and the correction coefficient for correcting the second voltage value. Since the correction coefficient for the voltage value of 2 is calculated, the correction coefficient for correcting the current value can be appropriately calculated with a more realistic configuration, and the resistance value of the coil can be calculated with sufficient practical accuracy. Can be calculated.
  • FIG. 1 is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the injector and the detection circuit in FIG.
  • FIG. 3 is a graph showing an example of a relationship between an ignition voltage that can be applied to the internal combustion engine control apparatus according to the present embodiment and a saturation time during which the current detection voltage is saturated.
  • FIG. 4A shows an example of the relationship between the value of the energization time / saturation time of the current detection voltage of the injector coil and the value of the current detection voltage / saturation voltage of the current detection voltage, which can be applied to the internal combustion engine control apparatus according to this embodiment. It is a graph to show.
  • FIG. 4B is a graph showing an example of the relationship between the degree of saturation of the current detection voltage and the correction coefficient that can be applied to the internal combustion engine control apparatus according to this embodiment.
  • the internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle.
  • the internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
  • FIG. 1 is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to the present embodiment
  • FIG. 2 is a schematic diagram showing a configuration of an injector and a detection circuit in FIG.
  • the internal combustion engine control apparatus 1 typically has a temperature of functional parts of an engine that is an internal combustion engine such as a gasoline engine mounted on a vehicle not shown. Controls the operating state of the engine based on the temperature obtained from the resistance value of the coil (solenoid) 7a of the injector 7 that supplies fuel to the engine, and includes an electronic control unit (ECU) 10. .
  • ECU electronice control unit
  • the ECU 10 operates by using electric power from the battery B mounted on the vehicle, and includes a waveform shaping circuit 11, a thermistor element (temperature detection element) 12, an A / D converter 13, an ignition circuit 14, and a drive circuit. 15, a detection circuit 16, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 17, a ROM (Read-Only Memory) 18, a RAM (Random Access Memory) 19, a timer 20, and a central processing unit (Cent 21). It has.
  • Each component of the ECU 10 is accommodated in a casing 10a of the ECU 10. Also, typically, the ECU 10 and the engine are in contact with the outside air, and the ECU 10 is arranged away from the engine 10 so as not to be affected by the radiant heat of the engine and the heat transfer from the engine. Is.
  • the waveform shaping circuit 11 shapes a crank pulse signal corresponding to the rotation angle of the crankshaft 3 of the engine output from the crank angle sensor 2 to generate a digital pulse signal.
  • the waveform shaping circuit 11 outputs the digital pulse signal thus generated to the CPU 21.
  • the thermistor element 12 is separated from the heat generating element that is typically the ignition circuit 14 in the casing 10a of the ECU 10, and is located on the atmosphere side of the ECU 10 (for example, a casing whose distance to the casing 10a is about several millimeters).
  • a chip thermistor disposed at a position close to the body 10a, and detects an ambient temperature (outside temperature), which is an ambient temperature outside the casing 10a of the ECU 10.
  • the thermistor element 12 exhibits an electrical resistance value corresponding to the ambient temperature, and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13.
  • the thermistor element 12 may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal.
  • the temperature detected by the thermistor element 12 is equal to the ambient temperature (outside temperature) that is the ambient temperature around the engine. Since the thermistor element 12 is arranged on a circuit board (not shown) like the other components of the ECU 10, it is not necessary to provide a separate wiring and electrically connect the thermistor element 12 via this.
  • the A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4, and an electric level indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen concentration sensor 5.
  • the signal and the electrical signal indicating the ambient temperature output from the thermistor element 12 are each converted from an analog form to a digital form.
  • the A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
  • the ignition circuit 14 includes a switching element such as a transistor that is controlled to be turned on / off in accordance with a control signal from the CPU 21. When the switching element is turned on / off, the fuel in the engine is passed through a spark plug (not shown). And the operation of the ignition coil 6 for generating a secondary voltage for igniting the air-fuel mixture.
  • the ignition circuit 14 is typically a driver IC (Integrated Circuit) that is a semiconductor element, and is a component that generates the largest amount of heat in the housing 10a.
  • the drive circuit 15 includes a switching element such as a transistor that is on / off controlled in accordance with a control signal from the CPU 21 and whose on-resistance is indicated by RON.
  • the on / off operation of the switching element causes the coil 7a of the injector 7 to be turned on. Switch between energized / non-energized state.
  • the injector 7 is attached to an intake pipe or a cylinder head (not shown) of the engine, and heat generated from the engine is transferred.
  • the equivalent circuit 7 b of the coil 7 a of the injector 7 is represented by a series circuit including an inductance component L and an electrical resistance component R.
  • the coil 7a is a component for electrically driving the solenoid valve 7c of the injector 7, and is wound around a solenoid case (not shown).
  • electromagnetic force acts on the solenoid valve 7c, so that the solenoid valve 7c moves in a movable range including the inner region of the coil 7a, and both terminals of the coil 7a (terminals on the battery B side (upstream) Side terminal) and the terminal far from the battery B (downstream terminal)), while opening the fuel path of the injector 7 while exhibiting a saturation phenomenon in which the inter-terminal voltage gradually increases toward the saturation voltage.
  • Fuel is ejected.
  • the solenoid valve 7c and the solenoid case are magnetic bodies, and are typically made of metal such as ferromagnetic stainless steel.
  • the detection circuit 16 includes an IGP voltage detection circuit 16a, an INJ voltage detection circuit 16b, a shunt resistance element 16c, and an amplification circuit 16d.
  • the INJ voltage detection circuit 16b is connected between the downstream terminal of the coil 7a and the drive circuit 15, and includes a shunt resistor element 16c having a resistance value R1 and an amplifier circuit 16d.
  • the voltage applied to the downstream terminal of the coil 7a is V2
  • the voltage generated between both terminals (upstream terminal and downstream terminal) of the shunt resistor element 16c is the current.
  • the amplifier circuit 16d is composed of a resistance element and an operational amplifier, amplifies the voltage V3 generated between both terminals of the shunt resistance element 16c with a predetermined gain, and outputs an electric signal indicating the voltage V3 ′ thus amplified to the CPU 21. Output to.
  • the EEPROM 17 stores data relating to various learning values such as a fuel injection amount learning value and a throttle reference position learning value. Note that the EEPROM 17 may be replaced with another storage medium such as a data flash as long as it can store data relating to such various learning values.
  • the ROM 18 is configured by a nonvolatile storage device, and details are described in a control program for coil resistance value calculation processing, which will be described later, and data used in the coil resistance value calculation processing (table data for the graphs shown in FIGS. 3 and 4, etc.) ) And other control data are stored.
  • the RAM 19 is composed of a volatile storage device and functions as a working area for the CPU 21.
  • the timer 20 performs a time measurement process according to a control signal from the CPU 21.
  • the CPU 21 controls the operation of the entire ECU10.
  • the CPU 21 calculates a resistance value of the coil 7 a of the injector 7 by executing a control program such as a coil resistance value calculation process stored in the ROM 18 and is stored in the ROM 18.
  • a control program for engine temperature calculation processing the injector temperature corresponding to the resistance value of the coil 7a of the injector 7 is calculated as the engine temperature (engine temperature), and ignition is performed based on the engine temperature thus calculated.
  • the circuit 14 and the drive circuit 15 the operating state of the engine is controlled.
  • VIGP ignition voltage
  • the temperature of the spark plug seat of the engine is measured in consideration of the fact that the temperature of the spark plug seat of the engine is close to the actual temperature inside the engine, It is simple to acquire this as the engine temperature.
  • the internal combustion engine control apparatus 1 having such a configuration calculates the resistance value of the coil 7a of the injector 7 and controls its operating state by executing the following coil resistance value calculation process.
  • the operation of the internal combustion engine control device 1 when executing the coil resistance value calculation processing in the present embodiment will be described more specifically with reference to FIGS. 3 and 4.
  • FIG. 3 shows an ignition voltage that can be applied to the internal combustion engine control apparatus 1 according to the present embodiment, and a voltage at which the current flowing through the coil 7a of the injector 7 due to the ignition voltage is applied to the shunt resistance element 16c (upstream of the shunt resistance element 16c). It is a graph which shows an example of the relationship with the saturation time when the current detection voltage ⁇ 3 detected as a voltage generated between the terminal on the side and the terminal on the downstream side is saturated.
  • FIG. 4A shows a value of the energization time / current detection voltage saturation time (value obtained by dividing the energization time divided by the saturation time) and current detection of the coil 7a of the injector 7 that can be applied to the internal combustion engine control apparatus 1 in the present embodiment.
  • FIG. 4B is a graph showing an example of the relationship between the saturation voltage value of the voltage / current detection voltage (the value obtained by dividing the ignition voltage by the saturation voltage), and FIG. 4B is a current that can be applied to the internal combustion engine controller 1 in the present embodiment. It is a graph which shows an example of the relationship between the saturation degree of a detection voltage, and a correction coefficient.
  • the CPU 21 uses the table data that exhibits the relationship shown in FIG. 3 to determine the ignition voltage applied to the upstream terminal of the coil 7a.
  • the saturation time corresponding to is calculated. Specifically, the CPU 21 calculates the required fuel injection time (the energization time of the coil 7a), applies the ignition voltage to the upstream terminal of the coil 7a during the energization time, and then the upstream side of the coil 7a.
  • An ignition voltage applied to the terminal at the end of energization of the coil 7a is calculated. Then, the CPU 21 calculates the saturation time corresponding to the ignition voltage from the current detection voltage ⁇ 3 corresponding to the current that flows when the coil 7a is energized, using the table data having the relationship shown in FIG.
  • the saturation time of the current detection voltage means a time necessary for the current detection voltage to reach (saturate) the saturation voltage having a constant value. And since the saturation time of the current detection voltage exhibits a value equal to the time required to reach (saturate) the saturation current, which is a constant value, the current flowing through the coil 7a, The saturation time corresponding to the current flowing through the coil 7a at the end of energization of the coil 7a may be handled. More directly, the saturation time corresponding to the current flowing through the coil 7a at the end of energization of the coil 7a using table data defining the relationship between the current flowing through the coil 7a and the saturation time of the current. May be calculated.
  • the current flowing through the shunt resistor element 16c is calculated from the current detection voltage generated between the two terminals of the shunt resistor element 16c when the energization of the coil 7a is completed, and this flows through the coil 7a when the energization of the coil 7a is completed. It will be used as a current.
  • the value obtained by dividing the energization time to energize the coil 7a by the saturation time of the current detection voltage (energization time / saturation time) and the current detection voltage at the end of energization are the saturation voltage of the current detection voltage.
  • the CPU 21 next determines the energization time of the coil 7a based on the table data that defines the relationship shown in FIG. 4A.
  • the degree of saturation corresponding to the value divided by the saturation time (energization time / saturation time) is calculated.
  • the degree of saturation is a value (current detection voltage / saturation voltage) obtained by dividing the current detection voltage between both terminals of the shunt resistance element 16c by the saturation voltage of the current detection voltage at the end of energization.
  • the saturation level of the current detection voltage exhibits a value equal to the saturation level of the current flowing through the coil 7a at the end of energization
  • the saturation level is converted into the current flowing through the coil 7a at the end of energization of the coil 7a. It may be handled as the corresponding saturation degree. More directly, a value obtained by dividing the energization time for energizing the coil 7a by the saturation time of the current flowing through the coil 7a (energization time / saturation time) and the current flowing through the coil 7a at the end of energization.
  • the saturation degree corresponding to (saturation time) may be calculated.
  • the degree of saturation is a value (current / saturation current) obtained by dividing the current flowing through the coil 7a at the end of energization by the saturation current of the current flowing through the coil 7a.
  • the saturation degree corresponding to the value (energization time / saturation time) obtained by dividing the energization time of the coil 7a by the saturation time of the current detection voltage is as shown in FIG. 4B.
  • a correct correction coefficient is defined in advance. Such a correction coefficient is for correcting the current detection voltage V3 applied to the shunt resistance element 16c when the coil 7a is energized.
  • Such a correction coefficient is typically a value of 1 or more, and is a constant value larger than 1 when the saturation degree is relatively small, and gradually decreases as the saturation degree increases and the saturation degree is relative. When it is large, it becomes 1 or a constant value close to 1. Therefore, in the coil resistance value calculation process of the internal combustion engine control apparatus 1 in the present embodiment, the CPU 21 next calculates a correction coefficient corresponding to the saturation degree based on the table data defining the relationship shown in FIG. 4B. To do.
  • correcting the voltage V3 applied to the shunt resistor element 16c at the end of energization of the coil 7a is equivalent to correcting the current I1 flowing through the shunt resistor element 16c at the end of energization of the coil 7a. Therefore, based on the correction coefficient for correcting the voltage V3 applied to the shunt resistance element 16c when the coil 7a is energized, the correction coefficient for correcting the current I flowing through the coil 7a when the coil 7a is energized is calculated. May be.
  • table data that defines a correction coefficient for a saturation degree corresponding to a value (energization time / saturation time) obtained by dividing the energization time for energizing the coil 7a by the saturation time of the current flowing through the coil 7a. Based on the above, a correction coefficient corresponding to the degree of saturation may be calculated.
  • the CPU 21 next multiplies the voltage V3 applied to the shunt resistor element 16c at the end of energization of the coil 7a by the correction coefficient for correction. Then, a corrected voltage (corrected voltage) V3 ′′ is calculated.
  • the CPU 21 multiplies the current I1 flowing through the shunt resistor element 16c at the end of energization of the coil 7a by a correction coefficient.
  • a completed current (corrected current) I1 ′ is calculated.
  • the corrected current I1 ′ is corrected by correcting the current flowing through the coil 7a at the end of energization. This corresponds to the finished current.
  • the CPU 21 applies the corrected voltage V3 ′′ to the upstream terminal of the coil 7a at the end of energization of the coil 7a.
  • V1 VIGP
  • the corrected voltage to be generated between both terminals of the coil 7a that is, the corrected drive voltage VINJ
  • the resistance R1 of the shunt resistance element 16c the ON resistance RON of the switching element of the drive circuit 15
  • VINJ V1 ⁇ I1′X (R1 + RON).
  • the CPU 21 corrects the drive voltage VINJ of the coil 7a using the drive voltage VINJ and the corrected voltage V3 ′′ of the coil 7a.
  • the CPU 21 uses the driving voltage VINJ of the coil 7a and the corrected current I1 ′ to change the driving voltage VINJ of the coil 7a.
  • the resistance INJR of the coil 7a is calculated using the table data of the three graphs shown in FIGS.
  • the resistance INJR of the coil 7a may be calculated using map data obtained by integrating the table data of the three graphs.
  • the CPU 21 controls the voltage value of the drive voltage applied to the coil 7a with the fuel injection of the injector 7 and the coil with the fuel injection.
  • the energization time of the coil 7a and the saturation time necessary for the current value to be saturated are determined at the end of energization of the coil 7a. Is calculated, and the current value at the end of energization is corrected based on the saturation level. Therefore, when the resistance value of the coil 7a of the injector 7 of the engine mounted on the vehicle is calculated.
  • the CPU 21 calculates the correction coefficient for the current value based on the relationship between the degree of saturation of the current value and the correction coefficient for correcting the current value.
  • the correction coefficient for correcting the current value can be appropriately calculated, and the resistance value of the coil 7a of the injector 7 can be calculated with sufficient practical accuracy.
  • the CPU 21 calculates the resistance value of the coil 7a, the coil is calculated from the energization time and the saturation time necessary for the second voltage value V3 to be saturated, instead of the degree of saturation of the current value.
  • the CPU 21 determines the second voltage value V3 from the correlation between the saturation degree of the second voltage value V3 and the correction coefficient for correcting the second voltage value V3. Therefore, the correction coefficient for correcting the current value can be appropriately calculated with a more realistic configuration, and the resistance value of the coil 7a of the injector 7 can be calculated with sufficient practical accuracy. can do.
  • the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
  • the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
  • it can be changed as appropriate without departing from the scope.
  • the present invention can provide an internal combustion engine control apparatus that can calculate the resistance value of a coil of an injector of an internal combustion engine mounted on a vehicle with a practically sufficient accuracy with a simple configuration. Therefore, it is expected to be widely applicable to general-purpose machines such as generators and internal-combustion engine control devices for vehicles such as motorcycles because of its general-purpose nature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Provided is an internal combustion engine control device, wherein, when calculating the resistance value of a coil 7a by using the voltage value of a drive voltage, which is applied to the coil 7a in conjunction with fuel injection from an injector 7, and the current value of a current flowing to the coil 7a along with the fuel injection, a CPU 21 calculates the saturation degree of the current value at the time of completing energization of the coil 7a on the basis of the energization time of the coil 7a and the saturation time required for the current value to be saturated, and corrects, on the basis of the saturation degree, the current value at the time of completing energization.

Description

内燃機関制御装置Internal combustion engine control device
 本発明は、内燃機関制御装置に関し、特に、発電機等の汎用機や自動二輪車等の車両に適用される内燃機関制御装置に関する。 The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to a general-purpose machine such as a generator or a vehicle such as a motorcycle.
 近年、発電機等の汎用機や小型自動二輪車等の車両においては、キャブレタシステムでは今後より厳しくなる排気ガス規制に対応することが困難になるため、排気ガスの低減を目的として燃料噴射システムの採用が推進されている。しかしながら、発電機等の汎用機や小型自動二輪車等の車両の販売価格は大型自動二輪車や四輪自動車等の車両の販売と比較して安価であるために、このような販売価格を考えた場合、キャブレタシステムと比較して高コストな燃料噴射システムをそのまま発電機等の汎用機や小型自動二輪車等の車両に採用することは困難である。このため、発電機等の汎用機や小型自動二輪車等の車両においては、燃料噴射システムに関する部品、特にセンサ類については、コストの低減が求められている。 In recent years, in general-purpose machines such as generators and vehicles such as small motorcycles, it has become difficult to meet exhaust gas regulations that will become stricter in the future with carburetor systems, so a fuel injection system has been adopted to reduce exhaust gas. Is promoted. However, since the selling price of vehicles such as general-purpose machines such as generators and small motorcycles is lower than that of vehicles such as large motorcycles and four-wheeled vehicles, such selling prices are considered. It is difficult to adopt a fuel injection system that is more expensive than a carburetor system as it is for a general-purpose machine such as a generator or a vehicle such as a small motorcycle. For this reason, in general-purpose machines such as generators and vehicles such as small motorcycles, cost reduction is required for parts related to the fuel injection system, particularly sensors.
 ここで、例えば燃料噴射システムにおける温度センサは、内燃機関の暖機状態の検出のために用いられることが一般的である。具体的には、燃料噴射システムは、温度センサの出力に基づいて内燃機関の温度を算出し、このように算出した内燃機関の温度に基づいて内燃機関の暖機状態を検出して、点火時期及び燃料噴射の制御を行っている。このため、燃料噴射システムを採用する場合には、内燃機関に温度センサを装着する必要がある。更に、内燃機関に温度センサを設置する際には、配線用のワイヤやカプラを設置する必要がある上に、温度センサを設置する内燃機関の部位を加工する必要がある。この結果、販売価格における燃料噴射システムのコストの割合はキャブレタシステムのものと比較して高くなる。このため、特に発電機等の汎用機や小型自動二輪車等の車両において燃料噴射システムを制御する内燃機関制御装置においては、コストダウンを目的として燃料噴射システムから温度センサを省略することが求められている。 Here, for example, a temperature sensor in a fuel injection system is generally used for detecting a warm-up state of an internal combustion engine. More specifically, the fuel injection system calculates the temperature of the internal combustion engine based on the output of the temperature sensor, detects the warm-up state of the internal combustion engine based on the calculated temperature of the internal combustion engine, and determines the ignition timing. And control of fuel injection. For this reason, when adopting a fuel injection system, it is necessary to attach a temperature sensor to the internal combustion engine. Furthermore, when installing a temperature sensor in the internal combustion engine, it is necessary to install wires and couplers for wiring, and it is necessary to process the part of the internal combustion engine where the temperature sensor is installed. As a result, the ratio of the cost of the fuel injection system to the sales price is higher than that of the carburetor system. For this reason, in an internal combustion engine control device that controls a fuel injection system in a vehicle such as a general-purpose machine such as a generator or a small motorcycle, a temperature sensor is required to be omitted from the fuel injection system for the purpose of cost reduction. Yes.
 かかる状況下で、特許文献1は、内燃機関10の制御装置70に関し、燃料噴射弁29のコイル(インジェクタのコイル)の抵抗値を検出して、このように検出した抵抗値に基づいて、内燃機関の温度を算出する構成を開示する。 Under such circumstances, Patent Document 1 relates to the control device 70 of the internal combustion engine 10, detects the resistance value of the coil of the fuel injection valve 29 (coil of the injector), and based on the resistance value thus detected, A configuration for calculating the temperature of the engine is disclosed.
特開2016-98665号公報JP 2016-98665 A
 しかしながら、本発明者の検討によれば、特許文献1記載の構成では、インジェクタのコイルの抵抗値を検出して、このように検出した抵抗値に基づいて、内燃機関の温度を算出するものではあるが、かかる抵抗値の検出精度には向上の余地がある。 However, according to the study of the present inventor, in the configuration described in Patent Document 1, the resistance value of the coil of the injector is detected and the temperature of the internal combustion engine is calculated based on the detected resistance value. However, there is room for improvement in the detection accuracy of such resistance values.
 具体的には、本発明者の検討によれば、インジェクタのコイルの抵抗値は、通電時のコイルの両端子間に生じる電圧である端子間電圧(便宜上、駆動電圧と呼ぶことがある)とそのコイルを流れる電流とで原理的に規定されるものであるが、通電開始時には、コイルに流れるが一定電流に飽和しておらず精度よくコイルを流れる電流を検出できないので、インジェクタのコイルの抵抗値を算出するには、通電時間をコイルを流れるが飽和する時間以上の時間に設定することが望ましいことになる。 Specifically, according to the study of the present inventor, the resistance value of the coil of the injector is an inter-terminal voltage (sometimes referred to as a drive voltage for convenience) which is a voltage generated between both terminals of the coil when energized. The current flowing through the coil is specified in principle, but at the start of energization, the current flowing through the coil is not saturated to a constant current and the current flowing through the coil cannot be detected accurately. In order to calculate the value, it is desirable to set the energization time to a time longer than the time when the coil flows but saturates.
 ここで、本発明者の検討によれば、かかる通電時間は内燃機関の運転時に目標とする空燃比を実現するために所要の燃料噴射量を実現するための最適な通電時間に設定される必要があるため、この通電時間をコイルを流れる電流が飽和する時間以上の時間長さに設定できない状況が生じ得る。つまり、かかる場合には、算出されたインジェクタのコイルの抵抗値の精度が低下してしまい、実用上利用し得るに足るインジェクタのコイルの抵抗値を得ることができない事態が発生してしまうことになる。 Here, according to the study of the present inventor, the energization time needs to be set to an optimum energization time for realizing a required fuel injection amount in order to realize a target air-fuel ratio during operation of the internal combustion engine. Therefore, there may occur a situation in which this energization time cannot be set to a length longer than the time when the current flowing through the coil is saturated. That is, in such a case, the accuracy of the calculated resistance value of the coil of the injector is reduced, and a situation in which the resistance value of the injector coil that is practically usable cannot be obtained occurs. Become.
 このようにコイルの通電時にそれを流れる電流が即座に一定電流(飽和電流)に飽和しない基本的な理由は、コイルに時定数が存在することによるものであるが、本発明者は、更に、コイルの両端子間に印加される電圧に応じて、コイルの通電時に流れる電流が飽和するまでの時間が変化することを知見した。ここで、本発明者の検討によれば、コイルの通電時には、強磁性ステンレス等の強磁性体の弁体であるソレノイドバルブがコイルに流れる電流によって生じる電磁力により移動されることに起因して、コイル、コイルのケース及びソレノイドバルブ等から構成される系のインダクタンスの変化が発生し、その後、ソレノイドバルブの移動が完了すると、かかるインダクタンスは一定値を呈する。そのため、コイルの両端子間の電圧が変化するとソレノイドバルブの移動状態が変化するので、ソレノイドバルブの移動が完了するまでに要する時間が変化して、これにより、コイルに流れる電流が飽和するまでの時間が変化するものと考えられる。従って、かかる端子間電圧の大きさや通電時間の長さ等を考慮して、インジェクタのコイルの抵抗値を求めることが必要になると考えられる。また、更に、本発明者の検討によれば、自動二輪車等の車両においては、四輪車等に比べてそれに搭載されるバッテリの容量が小さく、また常用する内燃機関の回転数が広い故に回転数により変化する発電量の変動が大きいため、負荷変動等によりバッテリ電圧及びそれに依存するイグニッション電圧が変動してしまう。そのため、イグニッション電圧が変動することも考慮して、インジェクタのコイルの抵抗値を求めることが必要になると考えられる。 Thus, the basic reason that the current flowing through the coil when it is energized is not immediately saturated to a constant current (saturation current) is due to the presence of a time constant in the coil. It has been found that the time until the current flowing when the coil is energized changes depending on the voltage applied between both terminals of the coil. Here, according to the study of the present inventor, when the coil is energized, the solenoid valve, which is a ferromagnetic valve body such as ferromagnetic stainless steel, is moved by the electromagnetic force generated by the current flowing through the coil. When the inductance of the system composed of the coil, the coil case, the solenoid valve, etc. changes, and then the movement of the solenoid valve is completed, the inductance exhibits a constant value. Therefore, when the voltage between the two terminals of the coil changes, the moving state of the solenoid valve changes, so the time required to complete the movement of the solenoid valve changes, and thus the current flowing through the coil is saturated. Time is considered to change. Therefore, it is considered that the resistance value of the coil of the injector needs to be obtained in consideration of the magnitude of the voltage between the terminals and the length of the energization time. Further, according to the study by the present inventor, in a vehicle such as a motorcycle, the capacity of a battery mounted thereon is smaller than that of a four-wheel vehicle or the like, and the rotation speed of a commonly used internal combustion engine is wide. Since the amount of power generation that varies depending on the number is large, the battery voltage and the ignition voltage that depends on it vary due to load variation and the like. For this reason, it is considered that it is necessary to obtain the resistance value of the coil of the injector in consideration of the fluctuation of the ignition voltage.
 本発明は、以上の検討を経てなされたものであり、簡便な構成で、車両に搭載された内燃機関のインジェクタのコイルの抵抗値を実用上充分な精度で算出可能な内燃機関制御装置を提供することを目的とする。 The present invention has been made through the above-described studies, and provides an internal combustion engine control device capable of calculating the resistance value of an injector coil of an internal combustion engine mounted on a vehicle with a practically sufficient accuracy with a simple configuration. The purpose is to do.
 以上の目的を達成するべく、本発明は、車両に搭載されたインジェクタが有するコイルの抵抗値に基づいて前記内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、前記制御部は、前記インジェクタの燃料噴射に伴って前記コイルに印加される駆動電圧の電圧値と、前記燃料噴射に伴って前記コイルに流れる電流の電流値と、を用いて前記コイルの前記抵抗値を算出するにあたり、前記コイルの通電時間と、前記電流値が飽和するのに必要な飽和時間と、から前記コイルの通電終了時点での前記電流値の飽和度合を算出し、前記通電終了時点での前記電流値を前記飽和度合に基づいて補正することを第1の局面とする。 In order to achieve the above object, the present invention provides an internal combustion engine control apparatus including a control unit that controls an operating state of the internal combustion engine based on a resistance value of a coil included in an injector mounted on a vehicle. Calculates the resistance value of the coil using the voltage value of the drive voltage applied to the coil as the fuel is injected from the injector and the current value of the current flowing through the coil as the fuel is injected. In order to do so, the degree of saturation of the current value at the end of energization of the coil is calculated from the energization time of the coil and the saturation time necessary for the current value to be saturated, and the current at the end of energization is calculated. The first aspect is to correct the current value based on the degree of saturation.
 本発明は、第1の局面に加えて、前記制御部は、前記燃料噴射時に伴って前記コイルを流れる前記電流の前記電流値と、前記飽和時間と、の関係を規定した特性に基づいて、前記飽和時間を算出することを第2の局面とする。 According to the present invention, in addition to the first aspect, the control unit is based on a characteristic that defines a relationship between the current value of the current flowing through the coil during the fuel injection and the saturation time. The calculation of the saturation time is a second aspect.
 本発明は、第2の局面に加えて、前記制御部は、前記飽和度合と、前記電流値を補正する補正係数と、の関係に基づいて、前記補正係数を算出することを第3の局面とする。 According to the third aspect of the present invention, in addition to the second aspect, the control unit calculates the correction coefficient based on a relationship between the degree of saturation and a correction coefficient for correcting the current value. And
 本発明は、第1の局面に加えて、前記燃料噴射に伴って前記コイルの上流側端子に印加される第1の電圧値を検出する第1の電圧検出回路と、前記燃料噴射に伴って前記コイルの下流側端子に接続された抵抗素子に印加される第2の電圧値を検出する第2の電圧検出回路と、を更に備え、前記制御部は、前記コイルの前記抵抗値を算出するにあたり、前記電流値の前記飽和度合に代え、前記通電時間と、前記第2の電圧値が飽和するのに必要な飽和時間と、から前記コイルの通電終了時点での前記第2の電圧値の飽和度合を算出し、前記通電終了時点での前記電流値を補正することに代え、前記通電終了時点での前記第2の電圧値を前記第2の電圧値の前記飽和度合に基づいて補正することを第4の局面とする。 In addition to the first aspect, the present invention provides a first voltage detection circuit for detecting a first voltage value applied to an upstream terminal of the coil in association with the fuel injection, and accompanying the fuel injection. A second voltage detection circuit that detects a second voltage value applied to a resistance element connected to a downstream terminal of the coil, and the control unit calculates the resistance value of the coil. In this case, instead of the degree of saturation of the current value, the energization time and the saturation time necessary for the second voltage value to be saturated are used to determine the second voltage value at the end of energization of the coil. Instead of calculating the saturation level and correcting the current value at the end of energization, the second voltage value at the end of energization is corrected based on the saturation level of the second voltage value. This is the fourth aspect.
 本発明は、第4の局面に加えて、前記制御部は、前記第1の電圧値と、前記第2の電圧値が飽和するのに必要な前記飽和時間と、の関係を規定した特性に基づいて、前記第2の電圧値が飽和するのに必要な前記飽和時間を算出することを第5の局面とする。 According to the present invention, in addition to the fourth aspect, the control unit has a characteristic defining a relationship between the first voltage value and the saturation time necessary for the second voltage value to be saturated. Based on this, a fifth aspect is to calculate the saturation time necessary for the second voltage value to be saturated.
 本発明は、第5の局面に加えて、前記制御部は、前記第2の電圧値の前記飽和度合と、前記第2の電圧値を補正する補正係数と、の相関関係から前記第2の電圧値の前記補正係数を算出することを第6の局面とする。 In addition to the fifth aspect, the present invention provides the control unit based on a correlation between the degree of saturation of the second voltage value and a correction coefficient for correcting the second voltage value. The sixth aspect is to calculate the correction coefficient of the voltage value.
 本発明の第1の局面にかかる内燃機関制御装置によれば、制御部が、インジェクタの燃料噴射に伴ってコイルに印加される駆動電圧の電圧値と、燃料噴射に伴ってコイルに流れる電流の電流値と、を用いてコイルの抵抗値を算出するにあたり、コイルの通電時間と、電流値が飽和するのに必要な飽和時間と、からコイルの通電終了時点での電流値の飽和度合を算出し、通電終了時点での電流値を飽和度合に基づいて補正するものであるため、車両に搭載された内燃機関のインジェクタのコイルの抵抗値を算出する際に、かかるコイル、及びそれに関連する構成部品のインダクタンスの変化、及びコイルの電源電圧であるイグニッション電圧の変化を反映することが可能な簡便な構成で、かかるコイルの抵抗値を実用上充分な精度で算出することができる。 According to the internal combustion engine control apparatus according to the first aspect of the present invention, the control unit determines the voltage value of the drive voltage applied to the coil along with the fuel injection of the injector and the current flowing through the coil along with the fuel injection. When calculating the coil resistance value using the current value, calculate the degree of saturation of the current value at the end of coil energization from the coil energization time and the saturation time required for the current value to saturate. Since the current value at the end of energization is corrected based on the degree of saturation, when calculating the resistance value of the coil of the injector of the internal combustion engine mounted on the vehicle, the coil and the related configuration With a simple configuration that can reflect changes in the inductance of parts and changes in the ignition voltage that is the power supply voltage of the coil, the resistance value of the coil is calculated with sufficient practical accuracy. Door can be.
 また、本発明の第2の局面にかかる内燃機関制御装置によれば、制御部が、燃料噴射時に伴ってコイルを流れる電流の電流値と、電流値の飽和時間と、の関係を規定した特性に基づいて、電流値の飽和時間を算出するものであるため、経年劣化や負荷変動等によってバッテリ電圧が変化して、コイルの電源電圧であるイグニッション電圧が変化した場合であっても、コイルを流れる電流の飽和時間を適切に算出することができ、かかるコイルの抵抗値を実用上充分な精度で算出することができる。 Further, according to the internal combustion engine control apparatus according to the second aspect of the present invention, the control unit defines the relationship between the current value of the current flowing through the coil during fuel injection and the saturation time of the current value. Therefore, even if the ignition voltage, which is the coil's power supply voltage, is changed due to aging deterioration, load fluctuation, etc. The saturation time of the flowing current can be appropriately calculated, and the resistance value of the coil can be calculated with sufficient practical accuracy.
 また、本発明の第3の局面にかかる内燃機関制御装置によれば、制御部が、電流値の飽和度合と、電流値を補正する補正係数と、の関係に基づいて、電流値の補正係数を算出するものであるため、電流値を補正する補正係数を適切に算出することができ、インジェクタのコイルの抵抗値を実用上充分な精度で算出することができる。 Further, according to the internal combustion engine control apparatus according to the third aspect of the present invention, the control unit is configured to correct the current value based on the relationship between the saturation level of the current value and the correction coefficient for correcting the current value. Therefore, the correction coefficient for correcting the current value can be appropriately calculated, and the resistance value of the injector coil can be calculated with sufficient accuracy.
 また、本発明の第4の局面にかかる内燃機関制御装置によれば、燃料噴射に伴ってコイルの上流側端子に印加される第1の電圧値を検出する第1の電圧検出回路と、燃料噴射に伴ってコイルの下流側端子側に接続された抵抗素子に印加される第2の電圧値を検出する第2の電圧検出回路と、を更に備え、制御部は、コイルの抵抗値を算出するにあたり、電流値の飽和度合に代え、通電時間と、第2の電圧値が飽和するのに必要な飽和時間と、からコイルの通電終了時点での第2の電圧値の飽和度合を算出し、通電終了時点での電流値を補正することに代え、通電終了時点での第2の電圧値を第2の電圧値の飽和度合に基づいて補正するものであるため、より現実的な構成で、車両に搭載された内燃機関のインジェクタのコイルの抵抗値を算出する際に、かかるコイル、及びそれに関連する構成部品のインダクタンスの変化、及びコイルの電源電圧であるイグニッション電圧の変化を反映することができ、かかるコイルの抵抗値を実用上充分な精度で算出することができる。 Moreover, according to the internal combustion engine control apparatus according to the fourth aspect of the present invention, the first voltage detection circuit that detects the first voltage value applied to the upstream terminal of the coil as the fuel is injected, and the fuel And a second voltage detection circuit for detecting a second voltage value applied to the resistance element connected to the downstream terminal side of the coil in association with the injection, and the control unit calculates the resistance value of the coil In this case, the saturation degree of the second voltage value at the end of energization of the coil is calculated from the energization time and the saturation time necessary for the second voltage value to be saturated instead of the saturation degree of the current value. Instead of correcting the current value at the end of energization, the second voltage value at the end of energization is corrected based on the degree of saturation of the second voltage value. Calculate the resistance of the injector coil of the internal combustion engine installed in the vehicle. In this case, it is possible to reflect changes in the inductance of the coil and its related components, and changes in the ignition voltage, which is the power supply voltage of the coil, and calculate the resistance value of the coil with sufficient practical accuracy. be able to.
 また、本発明の第5の局面にかかる内燃機関制御装置によれば、制御部が、第1の電圧値と、第2の電圧値が飽和するのに必要な飽和時間と、の関係を規定した特性に基づいて、第2の電圧値が飽和するのに必要な飽和時間を算出するものであるため、経年劣化や負荷変動等によってバッテリ電圧が変化して、コイルの電源電圧であるイグニッション電圧が変化した場合であっても、より現実的な構成で、コイルを流れる電流の飽和時間を適切に算出することができ、かかるコイルの抵抗値を実用上充分な精度で算出することができる。 Further, according to the internal combustion engine control apparatus according to the fifth aspect of the present invention, the control unit defines the relationship between the first voltage value and the saturation time necessary for the second voltage value to be saturated. Since the saturation time required for the second voltage value to saturate is calculated based on the obtained characteristics, the battery voltage changes due to deterioration over time, load fluctuation, etc., and the ignition voltage, which is the coil power supply voltage. Even in the case of a change, the saturation time of the current flowing through the coil can be appropriately calculated with a more realistic configuration, and the resistance value of the coil can be calculated with sufficient practical accuracy.
 また、本発明の第6の局面にかかる内燃機関制御装置によれば、制御部が、第2の電圧値の飽和度合と、第2の電圧値を補正する補正係数と、の相関関係から第2の電圧値の補正係数を算出するものであるため、より現実的な構成で、電流値を補正する補正係数を適切に算出することができ、かかるコイルの抵抗値を実用上充分な精度で算出することができる。 Further, according to the internal combustion engine control apparatus according to the sixth aspect of the present invention, the control unit determines the second from the correlation between the saturation degree of the second voltage value and the correction coefficient for correcting the second voltage value. Since the correction coefficient for the voltage value of 2 is calculated, the correction coefficient for correcting the current value can be appropriately calculated with a more realistic configuration, and the resistance value of the coil can be calculated with sufficient practical accuracy. Can be calculated.
図1は、本発明の実施形態における内燃機関制御装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to an embodiment of the present invention. 図2は、図1中のインジェクタ及び検出回路の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the injector and the detection circuit in FIG. 図3は、本実施形態における内燃機関制御装置に適用し得るイグニッション電圧と電流検出電圧が飽和する飽和時間との関係の一例を示すグラフである。FIG. 3 is a graph showing an example of a relationship between an ignition voltage that can be applied to the internal combustion engine control apparatus according to the present embodiment and a saturation time during which the current detection voltage is saturated. 図4Aは、本実施形態における内燃機関制御装置に適用し得るインジェクタのコイルの通電時間/電流検出電圧の飽和時間の値と電流検出電圧/電流検出電圧の飽和電圧の値との関係の一例を示すグラフである。FIG. 4A shows an example of the relationship between the value of the energization time / saturation time of the current detection voltage of the injector coil and the value of the current detection voltage / saturation voltage of the current detection voltage, which can be applied to the internal combustion engine control apparatus according to this embodiment. It is a graph to show. 図4Bは、本実施形態における内燃機関制御装置に適用し得る電流検出電圧の飽和度合と補正係数との関係の一例を示すグラフである。FIG. 4B is a graph showing an example of the relationship between the degree of saturation of the current detection voltage and the correction coefficient that can be applied to the internal combustion engine control apparatus according to this embodiment.
 以下、図面を適宜参照して、本発明の実施形態における内燃機関制御装置につき、詳細に説明する。 Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 〔内燃機関制御装置の構成〕
 まず、図1及び図2を参照して、本実施形態における内燃機関制御装置の構成について説明する。本実施形態における内燃機関制御装置は、典型的には、発電機等の汎用機や自動二輪車等の車両といった内燃機関搭載体に好適に搭載されるものであるが、以下、説明の便宜上、かかる内燃機関制御装置は、自動二輪車等の車両に搭載されるものとして説明する。
[Configuration of internal combustion engine controller]
First, with reference to FIG.1 and FIG.2, the structure of the internal combustion engine control apparatus in this embodiment is demonstrated. The internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle. The internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
 図1は、本実施形態における内燃機関制御装置の構成を示す模式図であり、図2は、図1中のインジェクタ及び検出回路の構成を示す模式図である。 FIG. 1 is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to the present embodiment, and FIG. 2 is a schematic diagram showing a configuration of an injector and a detection circuit in FIG.
 図1及び図2に示すように、本実施形態における内燃機関制御装置1は、いずれも図示を省略する車両に搭載されたガソリンエンジン等の内燃機関であるエンジンの機能部品の温度、典型的にはエンジンに燃料を供給するインジェクタ7のコイル(ソレノイド)7aの抵抗値から求まる温度に基づいてエンジンの運転状態を制御するものであり、電子制御ユニット(Electronic Control Unit:ECU)10を備えている。 As shown in FIGS. 1 and 2, the internal combustion engine control apparatus 1 according to the present embodiment typically has a temperature of functional parts of an engine that is an internal combustion engine such as a gasoline engine mounted on a vehicle not shown. Controls the operating state of the engine based on the temperature obtained from the resistance value of the coil (solenoid) 7a of the injector 7 that supplies fuel to the engine, and includes an electronic control unit (ECU) 10. .
 ECU10は、車両に搭載されたバッテリBからの電力を利用して動作するものであり、波形整形回路11、サーミスタ素子(温度検出素子)12、A/D変換器13、点火回
路14、駆動回路15、検出回路16、EEPROM(Electrically Erasable Programmable Read-Only Memory)17、ROM(Read-Only Memory)18、RAM(Random Access Memory)19、タイマ20、及び中央処理ユニット(Central Processing Unit:CPU)21を備えている。かかるECU10の各構成要素は、ECU10の筐体10a内に収容される。また、典型的には、ECU10及びエンジンは、それらの周囲が外気に触れており、かつ、ECU10は、エンジンの放射熱及びエンジンからの伝熱の影響を受けないようにそれから離間して配置されるものである。
The ECU 10 operates by using electric power from the battery B mounted on the vehicle, and includes a waveform shaping circuit 11, a thermistor element (temperature detection element) 12, an A / D converter 13, an ignition circuit 14, and a drive circuit. 15, a detection circuit 16, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 17, a ROM (Read-Only Memory) 18, a RAM (Random Access Memory) 19, a timer 20, and a central processing unit (Cent 21). It has. Each component of the ECU 10 is accommodated in a casing 10a of the ECU 10. Also, typically, the ECU 10 and the engine are in contact with the outside air, and the ECU 10 is arranged away from the engine 10 so as not to be affected by the radiant heat of the engine and the heat transfer from the engine. Is.
 波形整形回路11は、クランク角センサ2から出力されたエンジンのクランクシャフト3の回転角に対応するクランクパルス信号を整形してデジタルパルス信号を生成する。波形整形回路11は、このように生成したデジタルパルス信号をCPU21に出力する。 The waveform shaping circuit 11 shapes a crank pulse signal corresponding to the rotation angle of the crankshaft 3 of the engine output from the crank angle sensor 2 to generate a digital pulse signal. The waveform shaping circuit 11 outputs the digital pulse signal thus generated to the CPU 21.
 サーミスタ素子12は、ECU10の筐体10a内において、典型的には点火回路14である発熱素子から離間してECU10の雰囲気側の位置(例えば、筐体10aへの距離が数ミリメータ程度である筐体10aに近接した位置)に配置されたチップサーミスタであり、ECU10の筐体10a外の周囲の大気温度である雰囲気温度(外気温)を検出する。具体的には、サーミスタ素子12は、その雰囲気温度に対応した電気抵抗値を呈して、その電気抵抗値に応じた電圧を示す電気信号をA/D変換器13に出力する。なお、かかる電気信号を出力可能なものであれば、サーミスタ素子12を熱電対等の他の温度センサに代替してもよい。また、サーミスタ素子12が検出する温度は、エンジンの周囲の大気温度である雰囲気温度(外気温)に等しいものである。なお、サーミスタ素子12はECU10の他の構成要素と同様に図示しない回路基板に配置されるため、別途配線を設けて、これを介してサーミスタ素子12を電気的に接続する必要がない。 The thermistor element 12 is separated from the heat generating element that is typically the ignition circuit 14 in the casing 10a of the ECU 10, and is located on the atmosphere side of the ECU 10 (for example, a casing whose distance to the casing 10a is about several millimeters). A chip thermistor disposed at a position close to the body 10a, and detects an ambient temperature (outside temperature), which is an ambient temperature outside the casing 10a of the ECU 10. Specifically, the thermistor element 12 exhibits an electrical resistance value corresponding to the ambient temperature, and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13. The thermistor element 12 may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal. The temperature detected by the thermistor element 12 is equal to the ambient temperature (outside temperature) that is the ambient temperature around the engine. Since the thermistor element 12 is arranged on a circuit board (not shown) like the other components of the ECU 10, it is not necessary to provide a separate wiring and electrically connect the thermistor element 12 via this.
 A/D変換器13は、スロットル開度センサ4から出力されたエンジンのスロットルバルブの開度を示す電気信号、酸素濃度センサ5から出力されたエンジンに吸気される大気中の酸素濃度を示す電気信号、及びサーミスタ素子12から出力された雰囲気温度を示す電気信号を、アナログ形態からデジタル形態に各々変換する。A/D変換器13は、このようにデジタル形態に変換したこれらの電気信号をCPU21に出力する。 The A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4, and an electric level indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen concentration sensor 5. The signal and the electrical signal indicating the ambient temperature output from the thermistor element 12 are each converted from an analog form to a digital form. The A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
 点火回路14は、CPU21からの制御信号に従ってオン/オフ制御されるトランジスタ等のスイッチング素子を備え、このスイッチング素子がオン/オフ動作することによって、図示を省略する点火プラグを介してエンジン内の燃料及び空気の混合気に点火するための2次電圧を発生する点火コイル6の動作を制御する。また、点火回路14は、典型的には半導体素子であるドライバIC(Integrated Circuit)であり、筐体10a内で発熱量が最も大きい構成要素である。 The ignition circuit 14 includes a switching element such as a transistor that is controlled to be turned on / off in accordance with a control signal from the CPU 21. When the switching element is turned on / off, the fuel in the engine is passed through a spark plug (not shown). And the operation of the ignition coil 6 for generating a secondary voltage for igniting the air-fuel mixture. The ignition circuit 14 is typically a driver IC (Integrated Circuit) that is a semiconductor element, and is a component that generates the largest amount of heat in the housing 10a.
 駆動回路15は、CPU21からの制御信号に従ってオン/オフ制御されると共にオン抵抗がRONで示されるトランジスタ等のスイッチング素子を備え、このスイッチング素子がオン/オフ動作することによって、インジェクタ7のコイル7aの通電/非通電状態を切り換える。ここで、インジェクタ7は、エンジンの図示を省略する吸気管やシリンダヘッドに装着され、エンジンから生じる熱が伝熱される。また、特に図2に示すように、インジェクタ7のコイル7aの等価回路7bは、インダクタンス成分Lと電気抵抗成分Rとから成る直列回路で表される。かかるコイル7aは、インジェクタ7のソレノイドバルブ7cを電気的に駆動するための構成部品であって、図示を省略するソレノイドケースに巻回されている。コイル7aの通電状態においては、ソレノイドバルブ7cに電磁力が働くことにより、ソレノイドバルブ7cがコイル7aの内部領域を含む可動域を移動して、コイル7aの両端子(バッテリB側の端子(上流側端子)及びバッテリBから遠い側の端子(下流側端子))間に生じる端子間電圧がその飽和電圧に向かって漸増する飽和現象を呈しながら、インジェクタ7の燃料経路を開放し、インジェクタ7から燃料が噴出されるものである。この際、コイル7aに流れる電流について見れば、かかる電流において、それがその飽和電流に向かって漸増する飽和現象が生じているものである。なお、ソレノイドバルブ7cやソレノイドケースは、磁性体であり、典型的には強磁性ステンレス等の金属製である。 The drive circuit 15 includes a switching element such as a transistor that is on / off controlled in accordance with a control signal from the CPU 21 and whose on-resistance is indicated by RON. The on / off operation of the switching element causes the coil 7a of the injector 7 to be turned on. Switch between energized / non-energized state. Here, the injector 7 is attached to an intake pipe or a cylinder head (not shown) of the engine, and heat generated from the engine is transferred. In particular, as shown in FIG. 2, the equivalent circuit 7 b of the coil 7 a of the injector 7 is represented by a series circuit including an inductance component L and an electrical resistance component R. The coil 7a is a component for electrically driving the solenoid valve 7c of the injector 7, and is wound around a solenoid case (not shown). In the energized state of the coil 7a, electromagnetic force acts on the solenoid valve 7c, so that the solenoid valve 7c moves in a movable range including the inner region of the coil 7a, and both terminals of the coil 7a (terminals on the battery B side (upstream) Side terminal) and the terminal far from the battery B (downstream terminal)), while opening the fuel path of the injector 7 while exhibiting a saturation phenomenon in which the inter-terminal voltage gradually increases toward the saturation voltage. Fuel is ejected. At this time, regarding the current flowing through the coil 7a, a saturation phenomenon occurs in such a current, in which the current gradually increases toward the saturation current. The solenoid valve 7c and the solenoid case are magnetic bodies, and are typically made of metal such as ferromagnetic stainless steel.
 検出回路16は、特に図2に示すように、IGP電圧検出回路16a、INJ電圧検出回路16b、シャント抵抗素子16c及び増幅回路16dを備えている。IGP電圧検出回路16aは、バッテリ電圧起源のイグニッション電圧VIGPとインジェクタ7のコイル7aの上流側端子との間に接続された分圧回路を有し、コイル7aの上流側端子に印加されるイグニッション電圧VIGP(=V1)を分圧し、このように分圧した電圧V1’を示す電気信号をCPU21に出力する。INJ電圧検出回路16bは、コイル7aの下流側端子と駆動回路15との間に接続されて、抵抗値R1のシャント抵抗素子16c及び増幅回路16dを有する。駆動回路15のスイッチング素子がオンにされると、コイル7aの上流側端子にイグニッション電圧VIGP(=V1)が印加されているため、インジェクタ7、シャント抵抗素子16c及び駆動回路15のスイッチング素子を通って接地電位に電流が流れ、この際に、コイル7aの下流側端子に印加される電圧がV2、シャント抵抗素子16cの両端子(上流側の端子及び下流側の端子)間に生じる電圧が電流検出電圧V3、シャント抵抗素子16cを流れる電流(インジェクタ7のコイル7aを流れる電流)がI1、及び駆動回路15のスイッチング素子の制御端子以外の両端子(上流側の端子及び下流側の端子)間に生じる電圧がV4で示され、コイル7aの両端子間に生じる端子間電圧(コイル7aの駆動電圧)は、V1からV2(=V3+V4)を除算した電圧となる。増幅回路16dは、抵抗素子とオペアンプとによって構成されており、シャント抵抗素子16cの両端子間に生じる電圧V3を所定のゲインで増幅し、このように増幅した電圧V3’を示す電気信号をCPU21に出力する。 As shown particularly in FIG. 2, the detection circuit 16 includes an IGP voltage detection circuit 16a, an INJ voltage detection circuit 16b, a shunt resistance element 16c, and an amplification circuit 16d. The IGP voltage detection circuit 16a has a voltage dividing circuit connected between the ignition voltage VIGP originating from the battery voltage and the upstream terminal of the coil 7a of the injector 7, and the ignition voltage applied to the upstream terminal of the coil 7a. VIGP (= V1) is divided and an electric signal indicating the divided voltage V1 ′ is output to the CPU 21. The INJ voltage detection circuit 16b is connected between the downstream terminal of the coil 7a and the drive circuit 15, and includes a shunt resistor element 16c having a resistance value R1 and an amplifier circuit 16d. When the switching element of the drive circuit 15 is turned on, the ignition voltage VIGP (= V1) is applied to the upstream terminal of the coil 7a, so that it passes through the injector 7, the shunt resistor element 16c, and the switching element of the drive circuit 15. In this case, the voltage applied to the downstream terminal of the coil 7a is V2, and the voltage generated between both terminals (upstream terminal and downstream terminal) of the shunt resistor element 16c is the current. Between detection voltage V3, current flowing through shunt resistance element 16c (current flowing through coil 7a of injector 7) I1, and both terminals (upstream terminal and downstream terminal) other than the control terminal of the switching element of drive circuit 15 Is expressed by V4, and the inter-terminal voltage generated between both terminals of the coil 7a (drive voltage of the coil 7a) is V1 to V2 ( V3 + V4) becomes a voltage obtained by dividing the. The amplifier circuit 16d is composed of a resistance element and an operational amplifier, amplifies the voltage V3 generated between both terminals of the shunt resistance element 16c with a predetermined gain, and outputs an electric signal indicating the voltage V3 ′ thus amplified to the CPU 21. Output to.
 EEPROM17は、燃料噴射量学習値やスロットル基準位置学習値といった各種学習値に関するデータ等を記憶する。なお、このような各種学習値に関するデータ等を記憶可能なものであれば、EEPROM17をデータフラッシュ等の他の記憶媒体に代替してもよい。 The EEPROM 17 stores data relating to various learning values such as a fuel injection amount learning value and a throttle reference position learning value. Note that the EEPROM 17 may be replaced with another storage medium such as a data flash as long as it can store data relating to such various learning values.
 ROM18は、不揮発性の記憶装置によって構成され、詳細は後述するコイル抵抗値算出処理用等の制御プログラム、及びコイル抵抗値算出処理で用いられるデータ(図3及び図4に示すグラフのテーブルデータ等)等の各種制御データを格納している。 The ROM 18 is configured by a nonvolatile storage device, and details are described in a control program for coil resistance value calculation processing, which will be described later, and data used in the coil resistance value calculation processing (table data for the graphs shown in FIGS. 3 and 4, etc.) ) And other control data are stored.
 RAM19は、揮発性の記憶装置によって構成され、CPU21のワーキングエリアとして機能する。 The RAM 19 is composed of a volatile storage device and functions as a working area for the CPU 21.
 タイマ20は、CPU21からの制御信号に従って計時処理を実行する。 The timer 20 performs a time measurement process according to a control signal from the CPU 21.
 CPU21は、ECU10全体の動作を制御する。本実施形態では、CPU21は、ROM18内に格納されているコイル抵抗値算出処理等の制御プログラムを実行することにより、インジェクタ7のコイル7aの抵抗値を算出すると共に、ROM18内に格納されているエンジン温度算出処理用の制御プログラムを実行することにより、インジェクタ7のコイル7aの抵抗値に対応するインジェクタ温度をエンジンの温度(エンジン温度)として算出し、このように算出したエンジン温度に基づいて点火回路14及び駆動回路15を制御することによって、エンジンの運転状態を制御する。ここで、CPU21は、コイル7aの抵抗値を算出するにあたり、IGP電圧検出回路16aから入力される電気信号が呈する電圧V1’を、コイル7aの上流側端子に印加されるイグニッション電圧VIGP(=V1)に換算すると共に、増幅回路16dから入力される電気信号が呈する電圧V3’を、シャント抵抗素子16cの両端子間に生じる電圧V3に換算する。なお、インジェクタ温度が相関を有するエンジン温度を取得する際には、エンジンの点火プラグ座の温度が実際のエンジン内部の温度に近いことを考慮して、エンジンの点火プラグ座の温度を実測し、これをエンジン温度として取得することが簡便である。 CPU21 controls the operation of the entire ECU10. In the present embodiment, the CPU 21 calculates a resistance value of the coil 7 a of the injector 7 by executing a control program such as a coil resistance value calculation process stored in the ROM 18 and is stored in the ROM 18. By executing a control program for engine temperature calculation processing, the injector temperature corresponding to the resistance value of the coil 7a of the injector 7 is calculated as the engine temperature (engine temperature), and ignition is performed based on the engine temperature thus calculated. By controlling the circuit 14 and the drive circuit 15, the operating state of the engine is controlled. Here, when calculating the resistance value of the coil 7a, the CPU 21 uses the ignition voltage VIGP (= V1) applied to the upstream terminal of the coil 7a as the voltage V1 ′ exhibited by the electric signal input from the IGP voltage detection circuit 16a. ) And the voltage V3 ′ exhibited by the electric signal input from the amplifier circuit 16d is converted into a voltage V3 generated between both terminals of the shunt resistor element 16c. When obtaining the engine temperature having a correlation with the injector temperature, the temperature of the spark plug seat of the engine is measured in consideration of the fact that the temperature of the spark plug seat of the engine is close to the actual temperature inside the engine, It is simple to acquire this as the engine temperature.
 このような構成を有する内燃機関制御装置1は、以下に示すコイル抵抗値算出処理を実行することによって、インジェクタ7のコイル7aの抵抗値を算出すると共にその運転状態を制御する。以下、図3及び図4をも参照して、本実施形態におけるコイル抵抗値算出処理を実行する際の内燃機関制御装置1の動作について、より具体的に説明する。 The internal combustion engine control apparatus 1 having such a configuration calculates the resistance value of the coil 7a of the injector 7 and controls its operating state by executing the following coil resistance value calculation process. Hereinafter, the operation of the internal combustion engine control device 1 when executing the coil resistance value calculation processing in the present embodiment will be described more specifically with reference to FIGS. 3 and 4.
 〔コイル抵抗値算出処理〕
 図3は、本実施形態における内燃機関制御装置1に適用し得るイグニッション電圧と、そのイグニッション電圧によりインジェクタ7のコイル7aに流れる電流がシャント抵抗素子16cに印加される電圧(シャント抵抗素子16cの上流側の端子及び下流側の端子間に生じる電圧)として検出される電流検出電圧∨3が飽和する飽和時間との関係の一例を示すグラフである。また、図4Aは、本実施形態における内燃機関制御装置1に適用し得るインジェクタ7のコイル7aの通電時間/電流検出電圧の飽和時間の値(通電時間を飽和時間で除算した値)と電流検出電圧/電流検出電圧の飽和電圧の値(イグニッション電圧を飽和電圧で除算した値)との関係の一例を示すグラフであり、図4Bは、本実施形態における内燃機関制御装置1に適用し得る電流検出電圧の飽和度合と補正係数との関係の一例を示すグラフである。
[Coil resistance value calculation processing]
FIG. 3 shows an ignition voltage that can be applied to the internal combustion engine control apparatus 1 according to the present embodiment, and a voltage at which the current flowing through the coil 7a of the injector 7 due to the ignition voltage is applied to the shunt resistance element 16c (upstream of the shunt resistance element 16c). It is a graph which shows an example of the relationship with the saturation time when the current detection voltage ∨3 detected as a voltage generated between the terminal on the side and the terminal on the downstream side is saturated. FIG. 4A shows a value of the energization time / current detection voltage saturation time (value obtained by dividing the energization time divided by the saturation time) and current detection of the coil 7a of the injector 7 that can be applied to the internal combustion engine control apparatus 1 in the present embodiment. FIG. 4B is a graph showing an example of the relationship between the saturation voltage value of the voltage / current detection voltage (the value obtained by dividing the ignition voltage by the saturation voltage), and FIG. 4B is a current that can be applied to the internal combustion engine controller 1 in the present embodiment. It is a graph which shows an example of the relationship between the saturation degree of a detection voltage, and a correction coefficient.
 インジェクタ7のコイル7aに関し、そのコイル7aの上流側端子に印加されるイグニッション電圧と電流検出電圧の飽和時間との間には図3に示すような関係性があり、かかるイグニッション電圧の増加に伴いその飽和時間は減少する。そこで、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、まず、CPU21が、図3に示す関係性を呈するテーブルデータを用いて、コイル7aの上流側端子に印加されるイグニッション電圧に対応する飽和時間を算出する。具体的には、CPU21は、必要な燃料噴射時間(コイル7aの通電時間)を算出して、かかる通電時間の間、コイル7aの上流側端子にイグニッション電圧を印加した後、コイル7aの上流側端子に対してコイル7aの通電終了時に印加されるイグニッション電圧を算出する。そして、CPU21は、図3に示す関係性を呈するテーブルデータを用いて、コイル7a通電終了時に流れる電流に対応する電流検出電圧∨3からイグニッション電圧に対応する飽和時間を算出する。 With respect to the coil 7a of the injector 7, there is a relationship as shown in FIG. 3 between the ignition voltage applied to the upstream terminal of the coil 7a and the saturation time of the current detection voltage. As the ignition voltage increases, Its saturation time decreases. Therefore, in the coil resistance value calculation process of the internal combustion engine control apparatus 1 according to the present embodiment, first, the CPU 21 uses the table data that exhibits the relationship shown in FIG. 3 to determine the ignition voltage applied to the upstream terminal of the coil 7a. The saturation time corresponding to is calculated. Specifically, the CPU 21 calculates the required fuel injection time (the energization time of the coil 7a), applies the ignition voltage to the upstream terminal of the coil 7a during the energization time, and then the upstream side of the coil 7a. An ignition voltage applied to the terminal at the end of energization of the coil 7a is calculated. Then, the CPU 21 calculates the saturation time corresponding to the ignition voltage from the current detection voltage ∨3 corresponding to the current that flows when the coil 7a is energized, using the table data having the relationship shown in FIG.
 ここで、かかる電流検出電圧の飽和時間は、電流検出電圧が一定値である飽和電圧に到達(飽和)するために必要な時間を意味する。そして、かかる電流検出電圧の飽和時間は、コイル7aを流れる電流が一定値であるその飽和電流に到達(飽和)するために必要な時間に等しい値を呈するものであるから、かかる飽和時間を、コイル7aの通電終了時にコイル7aを流れる電流に対応する飽和時間として扱ってもよい。また、より直接的には、コイル7aを流れる電流とその電流の飽和時間との間の関係性を規定するテーブルデータを用いて、コイル7aの通電終了時にコイル7aを流れる電流に対応する飽和時間を算出してもよい。かかる場合には、コイル7aの通電終了時にシャント抵抗素子16cの両端子間に生じる電流検出電圧からシャント抵抗素子16cを流れる電流を算出することにより、これをコイル7aの通電終了時にコイル7aを流れる電流として用いることになる。 Here, the saturation time of the current detection voltage means a time necessary for the current detection voltage to reach (saturate) the saturation voltage having a constant value. And since the saturation time of the current detection voltage exhibits a value equal to the time required to reach (saturate) the saturation current, which is a constant value, the current flowing through the coil 7a, The saturation time corresponding to the current flowing through the coil 7a at the end of energization of the coil 7a may be handled. More directly, the saturation time corresponding to the current flowing through the coil 7a at the end of energization of the coil 7a using table data defining the relationship between the current flowing through the coil 7a and the saturation time of the current. May be calculated. In such a case, the current flowing through the shunt resistor element 16c is calculated from the current detection voltage generated between the two terminals of the shunt resistor element 16c when the energization of the coil 7a is completed, and this flows through the coil 7a when the energization of the coil 7a is completed. It will be used as a current.
 また、インジェクタ7のコイル7aに関し、そのコイル7aに通電する通電時間を電流検出電圧の飽和時間で除算した値(通電時間/飽和時間)と通電終了時の電流検出電圧を電流検出電圧の飽和電圧で除算した値(電流検出電圧/飽和電圧)との間には図4Aに示すような関係性がある。そこで、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、次に、CPU21が、図4Aに示す関係性を規定するテーブルデータに基づいて、コイル7aの通電時間を電流検出電圧の飽和時間で除算した値(通電時間/飽和時間)に対応する飽和度合を算出する。ここで、かかる飽和度合とは、通電終了時にシャント抵抗素子16cの両端子間の電流検出電圧を電流検出電圧の飽和電圧で除算した値(電流検出電圧/飽和電圧)である。 In addition, regarding the coil 7a of the injector 7, the value obtained by dividing the energization time to energize the coil 7a by the saturation time of the current detection voltage (energization time / saturation time) and the current detection voltage at the end of energization are the saturation voltage of the current detection voltage. There is a relationship as shown in FIG. 4A between the value divided by (current detection voltage / saturation voltage). Therefore, in the coil resistance value calculation process of the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 next determines the energization time of the coil 7a based on the table data that defines the relationship shown in FIG. 4A. The degree of saturation corresponding to the value divided by the saturation time (energization time / saturation time) is calculated. Here, the degree of saturation is a value (current detection voltage / saturation voltage) obtained by dividing the current detection voltage between both terminals of the shunt resistance element 16c by the saturation voltage of the current detection voltage at the end of energization.
 ここで、かかる電流検出電圧の飽和度合は、通電終了時にコイル7aを流れる電流の飽和度合に等しい値を呈するものであるから、かかる飽和度合を、コイル7aの通電終了時にコイル7aを流れる電流に対応する飽和度合として扱ってもよい。また、より直接的には、コイル7aに通電する通電時間をコイル7aを流れる電流の飽和時間で除算した値(通電時間/飽和時間)と通電終了時にコイル7aを流れる電流をコイル7aを流れる電流の飽和電流で除算した値(電流/飽和電流)との間の関係性を規定するテーブルデータに基づいて、コイル7aの通電時間をコイル7aを流れる電流の飽和時間で除算した値(通電時間/飽和時間)に対応する飽和度合を算出してもよい。ここで、かかる飽和度合とは、通電終了時にコイル7aを流れる電流をコイル7aを流れる電流の飽和電流で除算した値(電流/飽和電流)である。 Here, since the saturation level of the current detection voltage exhibits a value equal to the saturation level of the current flowing through the coil 7a at the end of energization, the saturation level is converted into the current flowing through the coil 7a at the end of energization of the coil 7a. It may be handled as the corresponding saturation degree. More directly, a value obtained by dividing the energization time for energizing the coil 7a by the saturation time of the current flowing through the coil 7a (energization time / saturation time) and the current flowing through the coil 7a at the end of energization. Value obtained by dividing the energization time of the coil 7a by the saturation time of the current flowing through the coil 7a based on the table data defining the relationship between the value divided by the saturation current (current / saturation current) The saturation degree corresponding to (saturation time) may be calculated. Here, the degree of saturation is a value (current / saturation current) obtained by dividing the current flowing through the coil 7a at the end of energization by the saturation current of the current flowing through the coil 7a.
 また、インジェクタ7のコイル7aに関し、そのコイル7aに通電する通電時間を電流検出電圧の飽和時間で除算した値(通電時間/飽和時間)に対応する飽和度合に対しては、図4Bに示すような補正係数が予め規定される。かかる補正係数は、コイル7aの通電終了時にシャント抵抗素子16cに印加される電流検出電圧V3を補正するためのものである。かかる補正係数は、典型的には、1以上の値であり、飽和度合が相対的にも小さいときには1よりも大きな一定値であって、飽和度合が増加するに従って漸減すると共に、飽和度合が相対的に大きいときには、1又は1に近接した一定値となる。そこで、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、次に、CPU21が、図4Bに示す関係性を規定するテーブルデータに基づいて、かかる飽和度合に対応する補正係数を算出する。 Moreover, regarding the coil 7a of the injector 7, the saturation degree corresponding to the value (energization time / saturation time) obtained by dividing the energization time of the coil 7a by the saturation time of the current detection voltage is as shown in FIG. 4B. A correct correction coefficient is defined in advance. Such a correction coefficient is for correcting the current detection voltage V3 applied to the shunt resistance element 16c when the coil 7a is energized. Such a correction coefficient is typically a value of 1 or more, and is a constant value larger than 1 when the saturation degree is relatively small, and gradually decreases as the saturation degree increases and the saturation degree is relative. When it is large, it becomes 1 or a constant value close to 1. Therefore, in the coil resistance value calculation process of the internal combustion engine control apparatus 1 in the present embodiment, the CPU 21 next calculates a correction coefficient corresponding to the saturation degree based on the table data defining the relationship shown in FIG. 4B. To do.
 ここで、コイル7aの通電終了時にシャント抵抗素子16cに印加される電圧V3を補正するということは、コイル7aの通電終了時にシャント抵抗素子16cを流れる電流I1を補正するということと等価である。よって、コイル7aの通電終了時にシャント抵抗素子16cに印加される電圧V3を補正するための補正係数に基づいて、コイル7aの通電終了時にコイル7aを流れる電流Iを補正するための補正係数を算出してもよい。また、より直接的には、コイル7aに通電する通電時間をコイル7aを流れる電流の飽和時間で除算した値(通電時間/飽和時間)に対応する飽和度合に対して補正係数を規定するテーブルデータに基づいて、かかる飽和度合に対応する補正係数を算出してもよい。 Here, correcting the voltage V3 applied to the shunt resistor element 16c at the end of energization of the coil 7a is equivalent to correcting the current I1 flowing through the shunt resistor element 16c at the end of energization of the coil 7a. Therefore, based on the correction coefficient for correcting the voltage V3 applied to the shunt resistance element 16c when the coil 7a is energized, the correction coefficient for correcting the current I flowing through the coil 7a when the coil 7a is energized is calculated. May be. More directly, table data that defines a correction coefficient for a saturation degree corresponding to a value (energization time / saturation time) obtained by dividing the energization time for energizing the coil 7a by the saturation time of the current flowing through the coil 7a. Based on the above, a correction coefficient corresponding to the degree of saturation may be calculated.
 そして、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、次に、CPU21が、コイル7aの通電終了時にシャント抵抗素子16cに印加される電圧V3にその補正用の補正係数を乗算して、補正済みの電圧(補正済み電圧)V3’’を算出する。 Then, in the coil resistance value calculation process of the internal combustion engine control apparatus 1 in the present embodiment, the CPU 21 next multiplies the voltage V3 applied to the shunt resistor element 16c at the end of energization of the coil 7a by the correction coefficient for correction. Then, a corrected voltage (corrected voltage) V3 ″ is calculated.
 ここで、コイル7aの通電終了時にシャント抵抗素子16cを流れる電流I1を補正する場合には、CPU21が、コイル7aの通電終了時にシャント抵抗素子16cを流れる電流I1に補正係数を乗算して、補正済みの電流(補正済み電流)I1’を算出する。ここで、通電終了時にシャント抵抗素子16cを流れる電流の値は、通電終了時にコイル7aを流れる電流の値に等しいから、補正済み電流I1’は、通電終了時にコイル7aを流れる電流を補正した補正済の電流に相当する。 Here, when correcting the current I1 flowing through the shunt resistor element 16c at the end of energization of the coil 7a, the CPU 21 multiplies the current I1 flowing through the shunt resistor element 16c at the end of energization of the coil 7a by a correction coefficient. A completed current (corrected current) I1 ′ is calculated. Here, since the value of the current flowing through the shunt resistor element 16c at the end of energization is equal to the value of the current flowing through the coil 7a at the end of energization, the corrected current I1 ′ is corrected by correcting the current flowing through the coil 7a at the end of energization. This corresponds to the finished current.
 そして、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、次に、CPU21が、補正済み電圧V3’’、コイル7aの通電終了時にコイル7aの上流側端子に対して印加されるイグニッション電圧V1(=VIGP)、シャント抵抗素子16cの抵抗R1及び駆動回路15のスイッチング素子のオン抵抗RONを用いて、コイル7aの両端子間に生じるべき補正済みの電圧、つまり補正済みの駆動電圧VINJを、VINJ=V1-(V3’’/R1)X(R1+RON)という数式によって算出する。 In the coil resistance value calculation process of the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 applies the corrected voltage V3 ″ to the upstream terminal of the coil 7a at the end of energization of the coil 7a. Using the ignition voltage V1 (= VIGP), the resistance R1 of the shunt resistance element 16c, and the ON resistance RON of the switching element of the drive circuit 15, a corrected voltage to be generated between both terminals of the coil 7a, that is, a corrected drive voltage VINJ is calculated by the following equation: VINJ = V1− (V3 ″ / R1) X (R1 + RON).
 ここで、コイル7aの通電終了時にシャント抵抗素子16cを流れる電流I1を補正する場合には、コイル7aの両端子間に生じるべき補正済みの電圧、つまり補正済みの駆動電圧VINJを、補正済み電流I’、コイル7aの通電終了時にコイル7aの上流側端子に対して印加されるイグニッション電圧V1(=VIGP)、シャント抵抗素子16cの抵抗R1及び駆動回路15のスイッチング素子のオン抵抗RONをも用いて、VINJ=V1-I1’X(R1+RON)という数式によって算出すればよい。 Here, when the current I1 flowing through the shunt resistance element 16c at the end of energization of the coil 7a is corrected, the corrected voltage to be generated between both terminals of the coil 7a, that is, the corrected drive voltage VINJ, is corrected. I ′, the ignition voltage V1 (= VIGP) applied to the upstream terminal of the coil 7a at the end of energization of the coil 7a, the resistance R1 of the shunt resistance element 16c, and the ON resistance RON of the switching element of the drive circuit 15 are also used. Thus, the calculation may be performed by the following equation: VINJ = V1−I1′X (R1 + RON).
 そして、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、最後に、CPU21が、コイル7aの駆動電圧VINJ及び補正済み電圧V3’’を用いて、コイル7aの駆動電圧VINJを補正済み電圧V3’’に関するV3’’/R1で除算するINJR=VINJ/(V3’’/R1)という数式でコイル7aの抵抗INJRを算出する。なお、かかる数式を変形すれば、INJR=V1/(V3’’/R1)-R1-RONという数式が得られるため、コイル7aの駆動電圧VINJを、INJR=V1/(V3’’/R1)-R1-RONという数式によって算出してもよい。 In the coil resistance value calculation process of the internal combustion engine control apparatus 1 in the present embodiment, finally, the CPU 21 corrects the drive voltage VINJ of the coil 7a using the drive voltage VINJ and the corrected voltage V3 ″ of the coil 7a. The resistance INJR of the coil 7a is calculated by the equation of INJR = VINJ / (V3 ″ / R1) divided by V3 ″ / R1 with respect to the finished voltage V3 ″. If this equation is modified, the following equation can be obtained: INJR = V1 / (V3 ″ / R1) −R1-RON. Therefore, the drive voltage VINJ of the coil 7a is set to INJR = V1 / (V3 ″ / R1). It may be calculated by the mathematical formula -R1-RON.
 ここで、コイル7aの通電終了時にシャント抵抗素子16cを流れる電流I1を補正する場合には、CPU21が、コイル7aの駆動電圧VINJ及び補正済み電流I1’を用いて、コイル7aの駆動電圧VINJを補正済み電流I1’で除算するINJR=VINJ/I1’という数式でコイル7aの抵抗INJRを算出すればよい。なお、かかる数式を変形すれば、INJR=(V1/I1’)-R1-RONという数式が得られるため、コイル7aの駆動電圧VINJを、INJR=(V1/I1’)-R1-RONという数式によって算出してもよい。 Here, when correcting the current I1 flowing through the shunt resistor element 16c at the end of energization of the coil 7a, the CPU 21 uses the driving voltage VINJ of the coil 7a and the corrected current I1 ′ to change the driving voltage VINJ of the coil 7a. What is necessary is just to calculate the resistance INJR of the coil 7a by the formula of INJR = VINJ / I1 ′ divided by the corrected current I1 ′. If this formula is modified, the formula INJR = (V1 / I1 ′) − R1-RON is obtained. Therefore, the drive voltage VINJ of the coil 7a is expressed by the formula INJR = (V1 / I1 ′) − R1-RON. You may calculate by.
 なお、本実施形態における内燃機関制御装置1のコイル抵抗値算出処理では、図3及び図4に示す3つのグラフのテーブルデータを用いてコイル7aの抵抗INJRを算出することとしたが、これらの3つのグラフのテーブルデータを統合したマップデータを用いてコイル7aの抵抗INJRを算出してもよい。 In the coil resistance value calculation process of the internal combustion engine control apparatus 1 according to the present embodiment, the resistance INJR of the coil 7a is calculated using the table data of the three graphs shown in FIGS. The resistance INJR of the coil 7a may be calculated using map data obtained by integrating the table data of the three graphs.
 以上の説明から明らかなように、本実施形態における内燃機関制御装置1では、CPU21が、インジェクタ7の燃料噴射に伴ってコイル7aに印加される駆動電圧の電圧値と、燃料噴射に伴ってコイル7aに流れる電流の電流値と、を用いてコイル7aの抵抗値を算出するにあたり、コイル7aの通電時間と、電流値が飽和するのに必要な飽和時間と、からコイル7aの通電終了時点での電流値の飽和度合を算出し、通電終了時点での電流値を飽和度合に基づいて補正するものであるため、車両に搭載されたエンジンのインジェクタ7のコイル7aの抵抗値を算出する際に、かかるコイル7a、及びそれに関連する構成部品のインダクタンスの変化、及びコイル7aの電源電圧であるイグニッション電圧VIGP(=V1)の変化を反映することが可能な簡便な構成で、かかるコイル7aの抵抗値を実用上充分な精度で算出することができる。 As is apparent from the above description, in the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 controls the voltage value of the drive voltage applied to the coil 7a with the fuel injection of the injector 7 and the coil with the fuel injection. In calculating the resistance value of the coil 7a using the current value of the current flowing through the coil 7a, the energization time of the coil 7a and the saturation time necessary for the current value to be saturated are determined at the end of energization of the coil 7a. Is calculated, and the current value at the end of energization is corrected based on the saturation level. Therefore, when the resistance value of the coil 7a of the injector 7 of the engine mounted on the vehicle is calculated. This reflects the change in inductance of the coil 7a and related components and the change in the ignition voltage VIGP (= V1) which is the power supply voltage of the coil 7a. Rukoto in capable simple construction, it is possible to calculate with a practically sufficient accuracy the resistance of such coil 7a.
 また、本実施形態における内燃機関制御装置1では、CPU21が、燃料噴射時に伴ってコイル7aを流れる電流の電流値と、電流値の飽和時間と、の関係を規定した特性に基づいて、電流値の飽和時間を算出するものであるため、経年劣化や負荷変動等によってバッテリ電圧が変化して、コイル7aの電源電圧であるイグニッション電圧VIGP(=V1)が変化した場合であっても、コイル7aを流れる電流の飽和時間を適切に算出することができ、かかるコイル7aの抵抗値を実用上充分な精度で算出することができる。 Further, in the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 determines the current value based on the characteristics that define the relationship between the current value of the current flowing through the coil 7a during fuel injection and the saturation time of the current value. Therefore, even if the ignition voltage VIGP (= V1), which is the power supply voltage of the coil 7a, changes due to aging deterioration, load fluctuation, etc., the coil 7a is calculated. The saturation time of the current flowing through the coil 7a can be calculated appropriately, and the resistance value of the coil 7a can be calculated with sufficient accuracy for practical use.
 また、本実施形態における内燃機関制御装置1では、CPU21が、電流値の飽和度合と、電流値を補正する補正係数と、の関係に基づいて、電流値の補正係数を算出するものであるため、電流値を補正する補正係数を適切に算出することができ、インジェクタ7のコイル7aの抵抗値を実用上充分な精度で算出することができる。 Further, in the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 calculates the correction coefficient for the current value based on the relationship between the degree of saturation of the current value and the correction coefficient for correcting the current value. Thus, the correction coefficient for correcting the current value can be appropriately calculated, and the resistance value of the coil 7a of the injector 7 can be calculated with sufficient practical accuracy.
 また、本実施形態における内燃機関制御装置1では、燃料噴射に伴ってコイル7aの上流側端子に印加される第1の電圧値V1(=VIGP)を検出する第1の電圧検出回路(IGP電圧検出回路)16aと、燃料噴射に伴ってコイル7aの下流側端子に接続された抵抗素子16cに印加される第2の電圧値V3を検出する第2の電圧検出回路(INJ電圧検出回路)16bと、を更に備え、CPU21が、コイル7aの抵抗値を算出するにあたり、電流値の飽和度合に代え、通電時間と、第2の電圧値V3が飽和するのに必要な飽和時間と、からコイル7aの通電終了時点での第2の電圧値V3の飽和度合を算出し、通電終了時点での電流値を補正することに代え、通電終了時点での第2の電圧値V3を第2の電圧値V3の飽和度合に基づいて補正するものであるため、より現実的な構成で、車両に搭載されたエンジンのインジェクタ7のコイル7aの抵抗値を算出する際に、かかるコイル7a、及びそれに関連する構成部品のインダクタンスの変化、及びコイル7aの電源電圧であるイグニッション電圧VIGP(=V1)の変化を反映することができ、かかるコイル7aの抵抗値を実用上充分な精度で算出することができる。 Further, in the internal combustion engine control apparatus 1 in the present embodiment, a first voltage detection circuit (IGP voltage) that detects a first voltage value V1 (= VIGP) applied to the upstream terminal of the coil 7a in accordance with fuel injection. Detection circuit) 16a and a second voltage detection circuit (INJ voltage detection circuit) 16b for detecting a second voltage value V3 applied to the resistance element 16c connected to the downstream terminal of the coil 7a as the fuel is injected. When the CPU 21 calculates the resistance value of the coil 7a, the coil is calculated from the energization time and the saturation time necessary for the second voltage value V3 to be saturated, instead of the degree of saturation of the current value. Instead of calculating the degree of saturation of the second voltage value V3 at the end of energization 7a and correcting the current value at the end of energization, the second voltage value V3 at the end of energization is changed to the second voltage. Based on the saturation of value V3 Therefore, when calculating the resistance value of the coil 7a of the injector 7 of the engine 7 mounted on the vehicle with a more realistic configuration, the change in inductance of the coil 7a and related components is calculated. And the change of the ignition voltage VIGP (= V1) which is the power supply voltage of the coil 7a can be reflected, and the resistance value of the coil 7a can be calculated with sufficient practical accuracy.
 また、本実施形態における内燃機関制御装置1では、CPU21が、第1の電圧値V1(=VIGP)と、第2の電圧値V3が飽和するのに必要な飽和時間と、の関係を規定した特性に基づいて、第2の電圧値V3が飽和するのに必要な飽和時間を算出するものであるため、経年劣化や負荷変動等によってバッテリ電圧が変化して、コイル7aの電源電圧であるイグニッション電圧VIGP(=V1)が変化した場合であっても、より現実的な構成で、コイル7aを流れる電流の飽和時間を適切に算出することができ、かかるコイル7aの抵抗値を実用上充分な精度で算出することができる。 Further, in the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 defines the relationship between the first voltage value V1 (= VIGP) and the saturation time required for the second voltage value V3 to be saturated. Since the saturation time necessary for the second voltage value V3 to saturate is calculated based on the characteristics, the battery voltage changes due to deterioration over time, load fluctuation, etc., and an ignition that is the power supply voltage of the coil 7a. Even when the voltage VIGP (= V1) changes, the saturation time of the current flowing through the coil 7a can be appropriately calculated with a more realistic configuration, and the resistance value of the coil 7a is practically sufficient. It can be calculated with accuracy.
 また、本実施形態における内燃機関制御装置1では、CPU21が、第2の電圧値V3の飽和度合と、第2の電圧値V3を補正する補正係数と、の相関関係から第2の電圧値V3の補正係数を算出するものであるため、より現実的な構成で、電流値を補正する補正係数を適切に算出することができ、インジェクタ7のコイル7aの抵抗値を実用上充分な精度で算出することができる。 In the internal combustion engine control apparatus 1 according to the present embodiment, the CPU 21 determines the second voltage value V3 from the correlation between the saturation degree of the second voltage value V3 and the correction coefficient for correcting the second voltage value V3. Therefore, the correction coefficient for correcting the current value can be appropriately calculated with a more realistic configuration, and the resistance value of the coil 7a of the injector 7 can be calculated with sufficient practical accuracy. can do.
 なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 In the present invention, the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects. Of course, it can be changed as appropriate without departing from the scope.
 以上のように、本発明は、簡便な構成で、車両に搭載された内燃機関のインジェクタのコイルの抵抗値を実用上充分な精度で算出可能な内燃機関制御装置を提供することができるものであり、その汎用普遍的な性格から発電機等の汎用機や自動二輪車等の車両の内燃機関制御装置に広く適用され得るものと期待される。 As described above, the present invention can provide an internal combustion engine control apparatus that can calculate the resistance value of a coil of an injector of an internal combustion engine mounted on a vehicle with a practically sufficient accuracy with a simple configuration. Therefore, it is expected to be widely applicable to general-purpose machines such as generators and internal-combustion engine control devices for vehicles such as motorcycles because of its general-purpose nature.

Claims (6)

  1.  車両に搭載されたインジェクタが有するコイルの抵抗値に基づいて前記内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、
     前記制御部は、
     前記インジェクタの燃料噴射に伴って前記コイルに印加される駆動電圧の電圧値と、前記燃料噴射に伴って前記コイルに流れる電流の電流値と、を用いて前記コイルの前記抵抗値を算出するにあたり、
     前記コイルの通電時間と、前記電流値が飽和するのに必要な飽和時間と、から前記コイルの通電終了時点での前記電流値の飽和度合を算出し、
     前記通電終了時点での前記電流値を前記飽和度合に基づいて補正することを特徴とする内燃機関制御装置。
    In the internal combustion engine control device including a control unit that controls the operating state of the internal combustion engine based on a resistance value of a coil included in an injector mounted on the vehicle,
    The controller is
    In calculating the resistance value of the coil using the voltage value of the drive voltage applied to the coil accompanying the fuel injection of the injector and the current value of the current flowing through the coil accompanying the fuel injection. ,
    From the energization time of the coil and the saturation time required for the current value to be saturated, the degree of saturation of the current value at the end of energization of the coil is calculated,
    An internal combustion engine control device that corrects the current value at the end of energization based on the degree of saturation.
  2.  前記制御部は、前記燃料噴射時に伴って前記コイルを流れる前記電流の前記電流値と、前記飽和時間と、の関係を規定した特性に基づいて、前記飽和時間を算出することを特徴とする請求項1に記載の内燃機関制御装置。 The said control part calculates the said saturation time based on the characteristic which prescribed | regulated the relationship between the said electric current value of the said electric current which flows through the said coil at the time of the said fuel injection, and the said saturation time. Item 6. The internal combustion engine control device according to Item 1.
  3.  前記制御部は、前記飽和度合と、前記電流値を補正する補正係数と、の関係に基づいて、前記補正係数を算出することを特徴とする請求項2に記載の内燃機関制御装置。 3. The internal combustion engine control device according to claim 2, wherein the control unit calculates the correction coefficient based on a relationship between the saturation degree and a correction coefficient for correcting the current value.
  4.  前記燃料噴射に伴って前記コイルの上流側端子に印加される第1の電圧値を検出する第1の電圧検出回路と、
     前記燃料噴射に伴って前記コイルの下流側端子に接続された抵抗素子に印加される第2の電圧値を検出する第2の電圧検出回路と、を更に備え、
     前記制御部は、前記コイルの前記抵抗値を算出するにあたり、
     前記電流値の前記飽和度合に代え、前記通電時間と、前記第2の電圧値が飽和するのに必要な飽和時間と、から前記コイルの通電終了時点での前記第1の電圧値の飽和度合を算出し、
     前記通電終了時点での前記電流値を補正することに代え、前記通電終了時点での前記第2の電圧値を前記第2の電圧値の前記飽和度合に基づいて補正することを特徴とする請求項1の内燃機関制御装置。
    A first voltage detection circuit for detecting a first voltage value applied to the upstream terminal of the coil in association with the fuel injection;
    A second voltage detection circuit for detecting a second voltage value applied to the resistance element connected to the downstream terminal of the coil in association with the fuel injection,
    The controller, when calculating the resistance value of the coil,
    Instead of the degree of saturation of the current value, the degree of saturation of the first voltage value at the end of energization of the coil from the energization time and the saturation time required for the second voltage value to be saturated. To calculate
    Instead of correcting the current value at the end of energization, the second voltage value at the end of energization is corrected based on the degree of saturation of the second voltage value. Item 6. An internal combustion engine control device according to Item 1.
  5.  前記制御部は、前記第1の電圧値と、前記第2の電圧値が飽和するのに必要な前記飽和時間と、の関係を規定した特性に基づいて、前記第2の電圧値が飽和するのに必要な前記飽和時間を算出することを特徴とする請求項4に記載の内燃機関制御装置。 The control unit saturates the second voltage value based on a characteristic that defines a relationship between the first voltage value and the saturation time required for the second voltage value to be saturated. The internal combustion engine control device according to claim 4, wherein the saturation time required for the calculation is calculated.
  6.  前記制御部は、前記第2の電圧値の前記飽和度合と、前記第2の電圧値を補正する補正係数と、の相関関係から前記第2の電圧値の前記補正係数を算出することを特徴とする請求項5に記載の内燃機関制御装置。 The control unit calculates the correction coefficient of the second voltage value from a correlation between the degree of saturation of the second voltage value and a correction coefficient for correcting the second voltage value. An internal combustion engine control device according to claim 5.
PCT/JP2017/040046 2016-11-17 2017-11-07 Internal combustion engine control device WO2018092634A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-223985 2016-11-17
JP2016223985A JP6378738B2 (en) 2016-11-17 2016-11-17 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
WO2018092634A1 true WO2018092634A1 (en) 2018-05-24

Family

ID=62146400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040046 WO2018092634A1 (en) 2016-11-17 2017-11-07 Internal combustion engine control device

Country Status (2)

Country Link
JP (1) JP6378738B2 (en)
WO (1) WO2018092634A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046409A1 (en) * 2010-10-08 2012-04-12 パナソニック株式会社 Motor constant calculating method for pm motor, and motor constant calculating device
JP2014169652A (en) * 2013-03-01 2014-09-18 Denso Corp Electromagnetic valve driving device
JP2015177674A (en) * 2014-03-17 2015-10-05 株式会社デンソー Control device for stepping motor
JP2016098665A (en) * 2014-11-19 2016-05-30 株式会社ケーヒン Fuel injection control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046409A1 (en) * 2010-10-08 2012-04-12 パナソニック株式会社 Motor constant calculating method for pm motor, and motor constant calculating device
JP2014169652A (en) * 2013-03-01 2014-09-18 Denso Corp Electromagnetic valve driving device
JP2015177674A (en) * 2014-03-17 2015-10-05 株式会社デンソー Control device for stepping motor
JP2016098665A (en) * 2014-11-19 2016-05-30 株式会社ケーヒン Fuel injection control device

Also Published As

Publication number Publication date
JP6378738B2 (en) 2018-08-22
JP2018080651A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
CN106795826B (en) The control device of internal combustion engine
WO2017051707A1 (en) Fuel injection control device for internal combustion engine
JP2008128206A (en) Injector drive method and drive device
JP2016098665A (en) Fuel injection control device
JP6378738B2 (en) Internal combustion engine control device
KR20170136622A (en) How to increase the pressure detection accuracy without using a sensor
CN110446843B (en) Control device for internal combustion engine
JP6020259B2 (en) Solenoid valve drive
JP6739317B2 (en) Internal combustion engine controller
CN108474318B (en) Control device for internal combustion engine
CN110582629B (en) Control device for internal combustion engine
US10519922B2 (en) Method and system for ignition coil control
JP6625889B2 (en) Internal combustion engine control device
WO2018061468A1 (en) Internal combustion engine control device
JP4877291B2 (en) Heater deterioration detector
JP2018162749A (en) Internal combustion engine control device
WO2018180468A1 (en) Internal combustion engine control device
JP6762219B2 (en) Internal combustion engine controller
JP2018071361A (en) Internal combustion engine control device
JP2019132600A (en) Air flow rate measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871802

Country of ref document: EP

Kind code of ref document: A1