JP2015177674A - Control device for stepping motor - Google Patents

Control device for stepping motor Download PDF

Info

Publication number
JP2015177674A
JP2015177674A JP2014053364A JP2014053364A JP2015177674A JP 2015177674 A JP2015177674 A JP 2015177674A JP 2014053364 A JP2014053364 A JP 2014053364A JP 2014053364 A JP2014053364 A JP 2014053364A JP 2015177674 A JP2015177674 A JP 2015177674A
Authority
JP
Japan
Prior art keywords
time
stepping motor
excitation
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014053364A
Other languages
Japanese (ja)
Other versions
JP6249226B2 (en
Inventor
喜信 角田
Yoshinobu Tsunoda
喜信 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014053364A priority Critical patent/JP6249226B2/en
Publication of JP2015177674A publication Critical patent/JP2015177674A/en
Application granted granted Critical
Publication of JP6249226B2 publication Critical patent/JP6249226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device of a stepping motor capable of reducing radiation/conduction noise of the stepping motor that is driven by a constant current control system.SOLUTION: A control device includes a driving part 9 and a control part 8. After a voltage is applied to a coil of a stepping motor 1 and a current value flowing in the coil is made achieve a reference value, ON/OFF of the voltage is repeated by the driving part 9, a constant current within a fixed range is made flow to the coil for excitation and the stepping motor 1 is driven. In accordance with an estimated time that estimates a time of achievement for the current value to achieve the reference time after the application of the voltage to the coil on the basis of a measured temperature that is measured by a temperature measuring circuit 6a and a measured voltage that is measured by a voltage measuring circuit 7a, the control part 8 sets an excitation time for excitation by constant current flow. The driving part 9 drives the stepping motor 1 by making the constant current flow for the excitation time.

Description

本発明はステッピングモーターの制御装置に関する。   The present invention relates to a control device for a stepping motor.

ステッピングモーターの駆動を制御する制御装置が特許文献1に開示される。ステッピングモーターの駆動方式としては、ステッピングモーターのコイルに電圧を加えて目標値までそのコイルに電流を流した後、加えた電圧のON−OFFのスイッチングをすることで一定の励磁電流をコイルに流して励磁する定電流駆動方式が知られる。   A control device for controlling the driving of the stepping motor is disclosed in Patent Document 1. The stepping motor is driven by applying a voltage to the coil of the stepping motor, causing the current to flow to the target value, and then switching the applied voltage on and off to allow a constant excitation current to flow to the coil. There is known a constant current drive system that excites.

特開2000−236696号公報JP 2000-236696 A

上記の定電流駆動方式は、ステッピングモーターのコイルや駆動回路の発熱を抑制できる。しかし、電圧のONとOFFを繰り返すことで放射・伝導ノイズがステッピングモーターのコイルや駆動回路に発生する。   The above constant current driving method can suppress heat generation in the coil of the stepping motor and the driving circuit. However, radiation / conduction noise is generated in the coil and drive circuit of the stepping motor by repeatedly turning on and off the voltage.

また、コイルに加える電圧値によりコイルに流れる電流が目標値に到達する時間が変化するにも関わらず、従来の定電流駆動方式では、コイルに電圧を加えて励磁が終了(1ステップ分の励磁が終了)するまでの時間が予め規定(固定)されていた。よって、高い電圧をコイルに加えた場合は、それより低い電圧を加えた場合よりも電流の立ち上がり時間が短縮され、励磁時間(電圧のON−OFFを繰り返す時間)が不要に長くなり、放射・伝導ノイズが顕著となる場合がある。   In addition, although the time for the current flowing through the coil to reach the target value varies depending on the voltage value applied to the coil, in the conventional constant current driving method, excitation is completed by applying voltage to the coil (excitation for one step). The time until (end) is defined (fixed) in advance. Therefore, when a high voltage is applied to the coil, the current rise time is shortened compared to when a lower voltage is applied, and the excitation time (the time to repeat ON / OFF of the voltage) becomes unnecessarily long. Conducted noise may be noticeable.

本発明の課題は、放電・放射ノイズを低減することができる定電流駆動方式のステッピングモーターの制御装置を提供する。   An object of the present invention is to provide a constant current drive type stepping motor control device capable of reducing discharge and radiation noise.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明のステッピングモーターの制御装置は、
ステッピングモーターのコイルに電圧を加えてコイルに流れる電流値を基準値に到達させた後、電圧のONとOFFを繰り返して一定範囲内の定電流をコイルに流して励磁し、ステッピングモーターを駆動する駆動部を有するステッピングモーターの制御装置において、
ステッピングモーターの温度を測定する温度測定部と、
電圧を測定する電圧測定部と、
温度測定部により測定された測定温度と電圧測定部により測定された測定電圧に基づきコイルに電圧を加えてから電流値が基準値に達する到達時間を推定する時間推定部と、
時間推定部により推定された推定時間に応じ、定電流を流して励磁する励磁時間を設定する時間設定部と、を備え、
駆動部は励磁時間、定電流を流してステッピングモーターを駆動することを特徴とする。
The control device of the stepping motor of the present invention is
After applying a voltage to the coil of the stepping motor and causing the current value flowing through the coil to reach the reference value, the voltage is turned ON and OFF repeatedly, and a constant current within a certain range is passed through the coil to excite it, thereby driving the stepping motor. In a control device for a stepping motor having a drive unit,
A temperature measurement unit for measuring the temperature of the stepping motor;
A voltage measuring unit for measuring the voltage;
A time estimation unit for estimating the arrival time at which the current value reaches the reference value after applying a voltage to the coil based on the measurement temperature measured by the temperature measurement unit and the measurement voltage measured by the voltage measurement unit;
In accordance with the estimated time estimated by the time estimation unit, a time setting unit for setting an excitation time for exciting by flowing a constant current, and
The driving unit drives the stepping motor by passing an excitation time and a constant current.

本発明のステッピングモーターの制御装置では、コイルに電圧を加えてからコイルに流れる電流値が基準値に到達するまでの到達時間を推定し、到達時間に基づき定電流により励磁する励磁時間を設定する。即ち、コイルに加わる電圧に応じて可変する到達時間に基づき励磁時間が設定されるため、電圧に応じて適切な励磁時間を設定できる。そのため、比較的高い電圧がコイルに加わる場合は、不要に長い励磁時間を短縮し、放射・伝導ノイズを低減させることができる。   In the stepping motor control device of the present invention, the arrival time from when the voltage is applied to the coil until the current value flowing through the coil reaches the reference value is estimated, and the excitation time for exciting with a constant current is set based on the arrival time. . That is, since the excitation time is set based on the arrival time that varies according to the voltage applied to the coil, an appropriate excitation time can be set according to the voltage. Therefore, when a relatively high voltage is applied to the coil, it is possible to shorten an unnecessarily long excitation time and reduce radiation / conduction noise.

本発明の実施態様では、時間設定部は推定時間に予め定められた第一定数を乗算した算出時間を励磁時間に設定する。これによれば、推定時間に対応して適切な励磁時間を設定できる。   In the embodiment of the present invention, the time setting unit sets a calculation time obtained by multiplying the estimated time by a predetermined first constant as the excitation time. According to this, it is possible to set an appropriate excitation time corresponding to the estimated time.

また、時間設定部は算出時間とステッピングモーターが脱調しないために予め定められた最低励磁時間を比較する比較部を有し、比較部の比較結果により算出時間が最低励磁時間以上の場合、算出時間を励磁時間に設定する。一方、比較部の比較結果により算出時間が最低励磁時間より短い場合、最低励磁時間を励磁時間に設定する。これによれば、励磁時間が最低励磁時間となることでステッピングモーターが脱調するのを回避できる。   In addition, the time setting unit has a comparison unit that compares the calculated time with a predetermined minimum excitation time so that the stepping motor does not step out. If the calculation time is greater than the minimum excitation time according to the comparison result of the comparison unit, the time setting unit calculates Set the time to the excitation time. On the other hand, when the calculation time is shorter than the minimum excitation time based on the comparison result of the comparison unit, the minimum excitation time is set as the excitation time. According to this, the stepping motor can be prevented from stepping out when the excitation time becomes the minimum excitation time.

更に、温度測定部は測定した温度に予め定められた第二定数を乗算する温度補正部を有し、温度補正部により補正された補正温度を測定温度とする。これによれば、駆動により上昇するステッピングモーターの上昇温度を加味した上で到達時間を推定でき、適切な励磁時間を設定できる。   Furthermore, the temperature measurement unit includes a temperature correction unit that multiplies the measured temperature by a predetermined second constant, and uses the correction temperature corrected by the temperature correction unit as the measurement temperature. According to this, the arrival time can be estimated in consideration of the rising temperature of the stepping motor that rises by driving, and an appropriate excitation time can be set.

本発明に用いるステッピングモーターの一例を示す概念図。The conceptual diagram which shows an example of the stepping motor used for this invention. 本発明の制御装置の電気的構成の概略の一例を示すブロック図。The block diagram which shows an example of the outline of the electric constitution of the control apparatus of this invention. 本発明の制御装置によりステッピングモーターのA相とB相のコイルに印加した印加電圧と印加電流の関係を示すタイムチャート。The time chart which shows the relationship between the applied voltage and the applied current which were applied to the A-phase and B-phase coils of the stepping motor by the control device of the present invention. 図2のプログラムの処理の一例を示すフローチャート。The flowchart which shows an example of a process of the program of FIG. 測定温度を補正する補正係数と励磁開始してからの時間との関係を示すグラフ。The graph which shows the relationship between the correction coefficient which correct | amends measurement temperature, and the time after an excitation start. ステッピングモーターのコイルに電圧を印加してコイルに定電流を流す場合の電流値の一連の変動を示すタイムチャート。The time chart which shows a series of fluctuation | variation of the electric current value when applying a voltage to the coil of a stepping motor and sending a constant current through a coil. 図6Aよりも高い電圧を印加した場合の図6Aに対応するタイムチャート。The time chart corresponding to FIG. 6A at the time of applying a voltage higher than FIG. 6A. 従来の制御装置により制御したステッピングモーターのA相とB相のコイルに印加した印加電圧と印加電流の関係を示す2つのタイムチャート(印加電圧以外は同じ条件)。Two time charts showing the relationship between applied voltage and applied current applied to the A-phase and B-phase coils of a stepping motor controlled by a conventional control device (same conditions except for applied voltage). 本発明の制御装置と従来の制御装置により制御したステッピングモーターのA相とB相のコイルに印加した印加電圧と印加電流の関係を示すタイムチャート。The time chart which shows the relationship between the applied voltage and the applied current which were applied to the A phase and B phase coil of the stepping motor controlled by the control device of the present invention and the conventional control device. モーター温度とバッテリー電圧により設定される推定時間の配列データの一例を説明する説明図。Explanatory drawing explaining an example of arrangement | sequence data of the estimated time set by motor temperature and battery voltage.

図1に示す本発明に用いるステッピングモーター1の一例は、回転子2(例えば所定の磁石)と励磁電流により電磁石を磁化して回転子2を回転させる2相のコイル3(A相のコイル3aとB相のコイル3b)を有し、励磁電流を流すコイル3a、3bとコイル3a、3bに流れる励磁電流の方向を所定の順序で切り替えて回転子2を回転させるバイポーラ型のモーターである。図2に示すようにステッピングモーター1はモーター本体のモーター温度を検出(例えば、コイル3の温度を検出)するサーミスタ4が内蔵される。   An example of the stepping motor 1 used in the present invention shown in FIG. 1 includes a rotor 2 (for example, a predetermined magnet) and a two-phase coil 3 (A-phase coil 3a) that rotates the rotor 2 by magnetizing an electromagnet with an exciting current. And a B-phase coil 3b), and a bipolar motor that rotates the rotor 2 by switching the directions of the excitation currents flowing through the coils 3a and 3b and the coils 3a and 3b in a predetermined order. As shown in FIG. 2, the stepping motor 1 includes a thermistor 4 that detects the motor temperature of the motor body (for example, detects the temperature of the coil 3).

ステッピングモーター1は本発明の一例の制御装置5により制御される。制御装置5は、ステッピングモーター1の温度を測定する温度測定部6と、ステッピングモーター1を駆動するバッテリー電圧を測定する電圧測定部7と、ステッピングモーター1を制御する制御部8と、制御部8からの制御信号に従ってステッピングモーター1を駆動する駆動部9を備える。   The stepping motor 1 is controlled by the control device 5 according to an example of the present invention. The control device 5 includes a temperature measurement unit 6 that measures the temperature of the stepping motor 1, a voltage measurement unit 7 that measures the battery voltage that drives the stepping motor 1, a control unit 8 that controls the stepping motor 1, and a control unit 8. The drive part 9 which drives the stepping motor 1 according to the control signal from is provided.

温度測定部6はサーミスタ4に接続され、サーミスタ4からの電気信号によりステッピングモーター1のモーター温度(コイル3の温度)を測定する温度測定回路6aとして構成される。   The temperature measurement unit 6 is connected to the thermistor 4 and is configured as a temperature measurement circuit 6 a that measures the motor temperature of the stepping motor 1 (the temperature of the coil 3) based on an electrical signal from the thermistor 4.

電圧測定部7は、ステッピングモーター1を駆動するバッテリー10に接続され、バッテリー10のバッテリー電圧を検出する電圧測定回路7aとして構成される。   The voltage measurement unit 7 is connected to a battery 10 that drives the stepping motor 1 and is configured as a voltage measurement circuit 7 a that detects the battery voltage of the battery 10.

制御部8はCPU8a、メモリ8b、ROM8c、及びRAM8dと、これらをI/Oポート8e(入出力インターフェース)と接続するバス8fを主要部品とするマイコンとして構成され、I/Oポート8eには、温度測定回路6a、電圧測定回路7a及び駆動部9が接続される。   The control unit 8 is configured as a microcomputer including a CPU 8a, a memory 8b, a ROM 8c, a RAM 8d, and a bus 8f that connects these to an I / O port 8e (input / output interface) as main components. The I / O port 8e includes: The temperature measurement circuit 6a, the voltage measurement circuit 7a, and the drive unit 9 are connected.

CPU8aは、例えば、温度測定回路6aと電圧測定回路7aを通じて測定したモーター温度とバッテリー電圧を常時モニターしてメモリ8bに記憶し、メモリ8bには、モーター温度の温度データ及びバッテリー電圧の電圧データ等が記憶される。ROM8cには、メモリ8bに記憶された温度データと電圧データからコイル3に流れる電流が基準値に到達する到達時間を推定する時間推定プログラムP1と、その到達時間に応じてコイル3に電流を流して励磁する励磁時間を設定する時間設定プログラムP2と、その励磁時間励磁してステッピングモーター1を駆動させる駆動プログラムP3などが格納される。また、ステッピングモーター1が脱調しないために必要な最短の励磁時間(1ステップ分の励磁時間)として事前に用意した最低励磁時間データD1などの各種データも格納される。   For example, the CPU 8a constantly monitors the motor temperature and the battery voltage measured through the temperature measurement circuit 6a and the voltage measurement circuit 7a and stores them in the memory 8b. The memory 8b stores the temperature data of the motor temperature, the voltage data of the battery voltage, and the like. Is memorized. In the ROM 8c, a time estimation program P1 for estimating the arrival time for the current flowing through the coil 3 to reach the reference value from the temperature data and voltage data stored in the memory 8b, and a current through the coil 3 according to the arrival time. A time setting program P2 for setting the excitation time for excitation and a drive program P3 for exciting the excitation time and driving the stepping motor 1 are stored. Various data such as minimum excitation time data D1 prepared in advance as the shortest excitation time (excitation time for one step) necessary for the stepping motor 1 not to step out is also stored.

時間推定プログラムP1は、メモリ8bに記憶された温度データ(モーター温度)を読み出して所定温度に補正する補正プログラムと、推定した到達時間(推定時間)をもとに所定の演算をして算出する算出時間を導く算出プログラムを有する。時間設定プログラムP2は、算出時間と最低励磁時間を比較する比較プログラムを有する。   The time estimation program P1 reads and calculates temperature data (motor temperature) stored in the memory 8b and corrects it to a predetermined temperature, and performs a predetermined calculation based on the estimated arrival time (estimated time). A calculation program for deriving the calculation time; The time setting program P2 has a comparison program that compares the calculated time with the minimum excitation time.

ROM8cに格納された上記の各プログラムは、CPU8aによりRAM8dをワークエリアとして実行され、CPU8aは必要に応じてメモリ8bから温度データ及び電圧データなどを読み出す。制御部8が本発明の時間推定部及び時間設定部に相当する。   Each of the programs stored in the ROM 8c is executed by the CPU 8a using the RAM 8d as a work area, and the CPU 8a reads temperature data, voltage data, and the like from the memory 8b as necessary. The control unit 8 corresponds to a time estimation unit and a time setting unit of the present invention.

上記の各種プログラムの実行に応じて制御部8から駆動部9に制御信号が送信される。駆動部9は制御信号に従ってステッピングモーター1を駆動する。例えば、制御部8において、プログラムの実行によりコイル3に励磁電流を流して励磁する励磁時間が設定された場合は、設定された励磁時間に合わせて励磁切り替え信号が制御部8から駆動部9に送信される。   A control signal is transmitted from the control unit 8 to the drive unit 9 in accordance with the execution of the various programs. The drive unit 9 drives the stepping motor 1 according to the control signal. For example, in the control unit 8, when an excitation time for exciting the coil 3 by flowing an excitation current is set by executing a program, an excitation switching signal is sent from the control unit 8 to the drive unit 9 in accordance with the set excitation time. Sent.

駆動部9は、制御部8から送信される励磁切り替え信号に従い励磁電流を流すコイル3a、3bとコイル3a、3bに流れる励磁電流(電流の流れる方向)を制御してステッピングモーター1を駆動するドライバー回路9aとして構成される。ドライバー回路9aは、図3に示すようにコイル3a、3bにバッテリー電圧(図示V又は−V)を加えてコイル3a、3bに流れる電流値を基準値(図示I又は−I)に到達させた後、電圧のONとOFFを繰り返して一定範囲内の定電流をコイル3に流して励磁する周知の定電流回路を備える。 The drive unit 9 drives the stepping motor 1 by controlling the excitation current (current flow direction) flowing through the coils 3a and 3b and the coils 3a and 3b that flow excitation current according to the excitation switching signal transmitted from the control unit 8. The circuit 9a is configured. As shown in FIG. 3, the driver circuit 9a applies a battery voltage (V 0 or −V 0 in the drawing) to the coils 3a and 3b and sets a current value flowing through the coils 3a and 3b as a reference value (I 0 or −I 0 in the drawing). And a known constant current circuit that excites the coil 3 by passing a constant current within a certain range by repeating ON and OFF of the voltage.

ドライバー回路9aにより定電流が流れる様子を具体的に説明する。図示「励磁状態1」の区間の始まりに対応してB相のコイル3bに正の印加電圧(V)が所定期間継続して印加されることで、B相のコイル3bに流れる電流が立ち上がる。立ち上がった電流の電流値が基準値(I)になると、B相のコイル3bに印加した印加電圧(V)のON−OFFを所定周期で繰り返す(PWM制御する)ことで一定範囲内の定電流(目標とする電流値以上の定電流)をコイル3bに流し、励磁時間(T)、励磁する(図示「励磁状態1→2」)。 The manner in which the constant current flows through the driver circuit 9a will be specifically described. A positive applied voltage (V O ) is continuously applied to the B-phase coil 3b for a predetermined period corresponding to the beginning of the “excitation state 1” section shown in the figure, whereby a current flowing through the B-phase coil 3b rises. . When the current value of the rising current becomes the reference value (I O ), ON / OFF of the applied voltage (V O ) applied to the B-phase coil 3b is repeated (PWM control) within a certain range by repeating ON-OFF. A constant current (a constant current equal to or greater than the target current value) is passed through the coil 3b, and excitation is performed for the excitation time (T O ) (“excitation state 1 → 2” in the figure).

励磁時間の終了とともに図示「励磁状態3」の区間の始まりに対応して今度はB相のコイル3bに負の印加電圧(−V)が所定期間継続して印加されることで、B相のコイル3bに流れる電流が負の方向に立ち上がる。その立ち上がった電流の電流値が基準値(−I)になると、B相のコイル3bに印加した印加電圧(−V)のON−OFFを所定周期で繰り返す(PWM制御する)ことで一定範囲内の定電流をコイル3bに流し、励磁時間(T)、励磁する(図示「励磁状態3→4」)。 At the end of the excitation time, the negative applied voltage (−V O ) is continuously applied to the B-phase coil 3b for a predetermined period in response to the beginning of the “excited state 3” section shown in the figure. Current flowing in the coil 3b rises in the negative direction. When the current value of the rising current reaches the reference value (-I O ), the ON / OFF of the applied voltage (-V O ) applied to the B-phase coil 3b is repeated (PWM control) to be constant. A constant current within the range is supplied to the coil 3b, and excitation is performed for the excitation time (T O ) ("excitation state 3 → 4" in the figure).

励磁時間の終了とともに図示「励磁状態1」の区間の始まりに再び戻る。一方、A相のコイル3aは、例えば、図示「励磁状態4」の区間の始まりに対応してA相のコイル3aに正の印加電圧(V)が所定期間継続して印加した後、所定のPWM制御をすることで、励磁時間(T)、定電流をコイル3aに流して励磁する(図示「励磁状態4→1」)。その励磁時間の終了とともに、図示「励磁状態2」の区間の始まりに対応して今度は負の印加電圧(−V)が所定期間印加し、所定のPWM制御をすることで、励磁時間(T)、定電流をコイル3aに流して励磁し(図示「励磁状態2→3」)、励磁時間の終了とともに図示「励磁状態4」の区間の始まりに再び戻る。 Upon completion of the excitation time, the operation returns to the beginning of the “excitation state 1” section shown in the figure. On the other hand, the coil 3a of the phase A, for example, after the positive applied voltage (V O) is applied continuously for a predetermined time period to the coil 3a shown "excited state 4" in response to the beginning of the section of the A phase, a predetermined By performing the PWM control, excitation time (T O ) and a constant current are passed through the coil 3a for excitation (illustration “excitation state 4 → 1”). At the end of the excitation time, a negative applied voltage (−V O ) is applied for a predetermined period this time corresponding to the beginning of the section of “excitation state 2” in the figure, and the excitation time ( T O ), a constant current is passed through the coil 3a to excite it ("excitation state 2 → 3" shown in the figure), and upon completion of the excitation time, return to the beginning of the section "excitation state 4" shown.

そのため、図3に示す例においては、B相のコイル3bに定電流(正の電流)を流して励磁(励磁状態1)→A相のコイル3aに定電流(負の電流)を流して励磁(励磁状態2)→B相のコイル3bに定電流(負の電流)を流して励磁(励磁状態3)→A相のコイル3aに定電流(正の電流)を流して励磁(励磁状態4)→B相のコイル3bに定電流(正の電流)を流して励磁(励磁状態1)、のようにA相とB相のコイル3a、3bに対して交互(一部重複する期間があるが交互)に電流を流して交互に励磁することでステッピングモーター1を駆動する。   Therefore, in the example shown in FIG. 3, a constant current (positive current) is passed through the B-phase coil 3b for excitation (excitation state 1), and a constant current (negative current) is passed through the A-phase coil 3a for excitation. (Excitation state 2) → Excitation (excitation state 3) by passing a constant current (negative current) through the B phase coil 3b → Excitation (excitation state 4) by passing a constant current (positive current) through the A phase coil 3a ) → Excitation (excitation state 1) by passing a constant current (positive current) through the B-phase coil 3b, and alternate (partially overlapping periods) for the A-phase and B-phase coils 3a and 3b. The stepping motor 1 is driven by energizing alternately by flowing current.

次に図4のフローチャートに基づき前述の各種プログラムの内容の一例を説明する。図4はA相、B相のコイル3a、3bに電流を流して励磁する励磁時間を設定する一連の処理である。図2のROM8cの時間設定プログラムP2などがRAM8dのワークメモリを作業領域としてCPU8aに読み出され、実行される一連の処理である。この処理は、例えば、ステッピングモーター1を駆動する駆動信号をCPU8aが受け取った後に、ステッピングモーター1が停止するまで繰り返し実行される。   Next, an example of the contents of the various programs will be described with reference to the flowchart of FIG. FIG. 4 shows a series of processes for setting the excitation time for exciting the A-phase and B-phase coils 3a and 3b by applying current. The time setting program P2 in the ROM 8c of FIG. 2 is a series of processes that are read and executed by the CPU 8a using the work memory of the RAM 8d as a work area. This process is repeatedly executed until the stepping motor 1 stops after the CPU 8a receives a driving signal for driving the stepping motor 1, for example.

CPU8aに駆動信号が入力されると、CPU8aが温度測定回路6aを通じてモニターした直近のモーター温度の温度データをメモリ8bから読み出してモーター温度を取得する(ステップS1)。次にステッピングモーター1の励磁(ステッピングモーター1が回転)を開始してから所定時間が経過したか否かを判断する(ステップS2)。   When the drive signal is input to the CPU 8a, the CPU 8a reads the latest motor temperature temperature data monitored through the temperature measurement circuit 6a from the memory 8b to acquire the motor temperature (step S1). Next, it is determined whether or not a predetermined time has elapsed since the start of excitation of the stepping motor 1 (rotation of the stepping motor 1) (step S2).

モーター温度は、一般的にモーターの回転(駆動)が継続するにつれて一定温度近傍まで上昇する。そこで、例えば、図5に示すようにステッピングモーター1の励磁(回転)を開始してから所定時間(T)未満なら、ステッピングモーター1の励磁開始からの経過時間に相関する正の定数(a)を乗じてモーター温度(測定温度)を補正し(ステップS2‘)、ステップS3に進む。これにより温度上昇を加味した上での制御ができる。一方、テッピングモーター1の励磁(回転)を開始してから所定時間(T)を経過した場合、ステップS3に進む。 In general, the motor temperature rises to near a certain temperature as the rotation (drive) of the motor continues. Therefore, for example, as shown in FIG. 5, if the excitation (rotation) of the stepping motor 1 is started and less than a predetermined time (T 1 ), a positive constant (a ) To correct the motor temperature (measured temperature) (step S2 ′) and proceed to step S3. As a result, it is possible to control the temperature increase. On the other hand, when a predetermined time (T 1 ) has elapsed since the excitation (rotation) of the tapping motor 1 was started, the process proceeds to step S3.

ステップS3では、モーター温度(補正していない測定温度)又は補正したモーター温度(補正温度)からコイル3a、3bの抵抗値を演算する。例えば、25℃における銅線の抵抗率と1℃当たりの銅線の抵抗温度係数からモーター温度に基づくコイル3a、3bの抵抗値を演算する。   In step S3, the resistance values of the coils 3a and 3b are calculated from the motor temperature (uncorrected measured temperature) or the corrected motor temperature (corrected temperature). For example, the resistance value of the coils 3a and 3b based on the motor temperature is calculated from the resistivity of the copper wire at 25 ° C. and the resistance temperature coefficient of the copper wire per 1 ° C.

抵抗値が演算されると、CPU8aが電圧測定回路7aを通じてモニターした直近のバッテリー電圧の電圧データをメモリ8dから読み出してバッテリー電圧を取得する(ステップS4)。   When the resistance value is calculated, the voltage data of the latest battery voltage monitored by the CPU 8a through the voltage measurement circuit 7a is read from the memory 8d to acquire the battery voltage (step S4).

次に取得したバッテリー電圧と演算したコイル3a、3bの抵抗値からコイル3a、3bに流れる電流が基準値(I)に到達するまでの到達時間を推定する。例えば、コイル3a、3bを抵抗とコイルが直列に接続された回路と仮定して、コイル3a、3bの印加電圧(V)、コイル3a、3bのインダクタンス、測定したコイル3a、3bの抵抗値、及び定常状態の電流値などから到達時間を演算する。その演算した演算結果を推定した到達時間とする(ステップS5)。なお、到達時間はコイル3毎に取得してもよいし、一方のコイル3から取得して両者に共通する到達時間としてもよい。 Next, the arrival time until the current flowing through the coils 3a and 3b reaches the reference value (I O ) is estimated from the acquired battery voltage and the calculated resistance values of the coils 3a and 3b. For example, assuming that the coils 3a and 3b are circuits in which a resistor and a coil are connected in series, the applied voltage (V O ) of the coils 3a and 3b, the inductance of the coils 3a and 3b, and the measured resistance values of the coils 3a and 3b The arrival time is calculated from the current value in the steady state. The calculated calculation result is set as the estimated arrival time (step S5). The arrival time may be acquired for each coil 3, or may be acquired from one of the coils 3 and the arrival time common to both.

到達時間を取得すると、その到達時間に予め定められた定数を乗算した算出時間を演算する。例えば、図6Aに示すように電流が基準値(I)に到達するまでの到達時間(t)と到達時間(t)に到達してから定電流を流して励磁する励磁時間(t)の電流モデルを予め用意する。その電流モデルの到達時間(t)と推定した到達時間(図6Bではtとする)の比率に基づき算出時間(t‘)を演算する(ステップS6)。よって、到達時間に対応して適切な算出時間を設定できる。 When the arrival time is acquired, a calculation time obtained by multiplying the arrival time by a predetermined constant is calculated. For example, as shown in FIG. 6A, an arrival time (t 1 ) until the current reaches the reference value (I O ), and an excitation time (t 1 ) for exciting by passing a constant current after reaching the arrival time (t 1 ) 0 ) current model is prepared in advance. The calculation time (t 0 ′) is calculated based on the ratio between the arrival time (t 1 ) of the current model and the estimated arrival time (t 2 in FIG. 6B) (step S 6). Therefore, an appropriate calculation time can be set corresponding to the arrival time.

算出時間が算出されると、ROM8cから対応する最低励磁時間データD1が読み出され、算出時間と最低励磁時間の時間の長短について比較する。算出時間が最低励磁時間以上(算出時間≧最低励磁時間)なら算出時間を励磁時間に設定し、算出時間が最低励磁時間に満たない(算出時間<最低励磁時間)なら最低励磁時間を励磁時間に設定する。そのため、少なくとも最低励磁時間は励磁され、ステッピングモーター1が脱調するのを回避できる。   When the calculation time is calculated, the corresponding minimum excitation time data D1 is read from the ROM 8c, and the lengths of the calculated time and the minimum excitation time are compared. If the calculation time is equal to or greater than the minimum excitation time (calculation time ≥ minimum excitation time), set the calculation time to the excitation time. If the calculation time is less than the minimum excitation time (calculation time <minimum excitation time), set the minimum excitation time to the excitation time. Set. Therefore, at least the minimum excitation time is excited, and the stepping motor 1 can be prevented from stepping out.

励磁時間が設定されると、その励磁時間に対応する励磁切り替え信号が制御部8から駆動部9(ドライバー回路9a)に送信され、ステッピングモーター1の駆動が制御される。以上の一連の処理が、例えば、ステッピングモーター1の回転中に繰り返し実行される。   When the excitation time is set, an excitation switching signal corresponding to the excitation time is transmitted from the control unit 8 to the drive unit 9 (driver circuit 9a), and the drive of the stepping motor 1 is controlled. The series of processes described above are repeatedly executed, for example, while the stepping motor 1 is rotating.

図7に示すように従来の制御装置におけるB相のコイルに着目すると、印加電圧がV(V>V)の場合には、図示「励磁状態1」の区間の開始に同期して印加電圧(V)が印加され、その後にPWM制御をして図示「励磁状態2」の区間の最後まで印加電圧(V)を印加する。一方、印加電圧がV(V>V)の場合には、印加電圧(V)と同じ期間だけ印加電圧(V)を印加するため、基準値(I)に到達する到達時間の差分(ΔT)だけPWM制御が余分に実行され、コイルとドライバー回路に放射・伝導ノイズが発生する。 Focusing on the B-phase coil in the conventional control device as shown in FIG. 7, when the applied voltage is V 1 (V 2 > V 1 ), it is synchronized with the start of the “excitation state 1” section shown The applied voltage (V 1 ) is applied, and then the PWM control is performed to apply the applied voltage (V 1 ) until the end of the “excited state 2” section shown in the figure. On the other hand, when the applied voltage is V 2 (V 2> V 1 ) is for applying an applied voltage (V 1) by the same period as the applied voltage (V 2), reaching to reach the reference value (I 1) Excess PWM control is executed by the time difference (ΔT), and radiation and conduction noise are generated in the coil and driver circuit.

それに対して本発明の制御装置5では、図6Bに示すように到達時間(t)に応じて算出時間(t‘)(励磁時間)を設定する。よって、図8に示すように比較的高い印加電圧(V)をコイルに加えた場合には、従来の制御装置よりも励磁時間が短く設定され、過度に長い励磁時間を短縮し、放射・伝導ノイズを低減できる。 On the other hand, the control device 5 of the present invention sets the calculation time (t 0 ′) (excitation time) according to the arrival time (t 2 ) as shown in FIG. 6B. Therefore, when a relatively high applied voltage (V 0 ) is applied to the coil as shown in FIG. 8, the excitation time is set shorter than that of the conventional control device, and the excessively long excitation time is shortened. Conductive noise can be reduced.

以上、本発明の実施の態様を説明したが、本発明はその具体的な記載に限定されることなく、例示した構成、処理等を技術的に矛盾のない範囲で適宜組み合わせて実施することも可能であるし、またある要素、処理を周知の形態に置き換えて実施することもできる。   Although the embodiment of the present invention has been described above, the present invention is not limited to the specific description, and the illustrated configuration, processing, and the like may be appropriately combined and implemented within a technically consistent range. It is possible, and certain elements and processes can be replaced with known forms.

上記実施例では算出時間を演算したが、図9に示すように測定したバッテリー電圧とモーター温度が該当する範囲(バッテリー電圧(V0〜V1、V1〜V2・・・)、モーター温度(T0〜T1、T1〜T2・・・))に対応付けて特定した算出時間(t00、t01・・・)を配列データなどでROM8cに格納し、CPU8aがメモリ8bから読み出した電圧データと温度データから算出時間を取得し、CPU8aの処理負担を低減させてもよい。 In the above embodiment, the calculation time is calculated, but as shown in FIG. 9, the measured battery voltage and the motor temperature fall within the applicable range (battery voltage (V0 to V1, V1 to V2...), Motor temperature (T0 to T1). , T1 to T2 · · ·)) in association with the identified calculated time (t 00, t 01 ···) stored such in the ROM8c sequence data, from the voltage data and temperature data CPU8a is read from the memory 8b The calculation time may be acquired to reduce the processing load on the CPU 8a.

上記実施例ではコイル3の温度をステッピングモーター1のモーター温度としたが、モーターの表面温度などコイル3以外の他の部品からモーター温度を測定してもよい。また、ステッピングモーター1がカーエアコンの冷媒流量を調整する調整弁の開閉手段として用いられる場合は、その冷媒の温度をモーター温度として測定してもよい。   In the above embodiment, the temperature of the coil 3 is the motor temperature of the stepping motor 1, but the motor temperature may be measured from other parts other than the coil 3 such as the surface temperature of the motor. In addition, when the stepping motor 1 is used as an opening / closing means for an adjustment valve that adjusts the refrigerant flow rate of the car air conditioner, the temperature of the refrigerant may be measured as the motor temperature.

なお、制御装置6を車両用として用いる場合には、オルタネーターなどの充電手段により充電可能なバッテリー10として構成することにより、ステッピングモーター1を、駆動させる毎に印加電圧(バッテリー10の電圧)が異なる場合でも、適切な励磁時間励磁できる。   When the control device 6 is used for a vehicle, it is configured as a battery 10 that can be charged by a charging means such as an alternator, so that the applied voltage (voltage of the battery 10) is different each time the stepping motor 1 is driven. Even in the case, it is possible to excite an appropriate excitation time.

以上の説明では制御部8をマイコンとして構成したが、制御部8と駆動部9をICで構成してもよい。また、コイル3の巻線として2相を例示したが、1相、3相、4相・・・でもよい。ステッピングモーター1の励磁方式としは、1相励磁、1−2相励磁、2相励磁・・・いずれの方式でもよい。更に上記ではバイポーラ方式を例示したが、ユニポーラ方式でもよい。   In the above description, the control unit 8 is configured as a microcomputer, but the control unit 8 and the drive unit 9 may be configured by an IC. Further, although two phases are exemplified as the winding of the coil 3, one phase, three phases, four phases, etc. may be used. The excitation method of the stepping motor 1 may be any method of 1-phase excitation, 1-2-phase excitation, 2-phase excitation. Furthermore, although the bipolar system was illustrated above, a unipolar system may be used.

1 ステッピングモーター 2 回転子
3 コイル(A相のコイル3a、B相のコイル3b)
4 サーミスタ 5 制御装置
6 温度測定部(温度測定回路6a)
7 電圧測定部(電圧測定回路7a)
8 制御部 9 駆動部
10 バッテリー
1 Stepping motor 2 Rotor 3 Coil (A phase coil 3a, B phase coil 3b)
4 Thermistor 5 Control Device 6 Temperature Measurement Unit (Temperature Measurement Circuit 6a)
7 Voltage measurement part (Voltage measurement circuit 7a)
8 Control unit 9 Drive unit 10 Battery

Claims (5)

ステッピングモーターのコイルに電圧を加えて前記コイルに流れる電流値を基準値に到達させた後、前記電圧のONとOFFを繰り返して一定範囲内の定電流を前記コイルに流して励磁し、前記ステッピングモーターを駆動する駆動部を有するステッピングモーターの制御装置において、
前記ステッピングモーターの温度を測定する温度測定部と、
前記電圧を測定する電圧測定部と、
前記温度測定部により測定された測定温度と前記電圧測定部により測定された測定電圧に基づき前記コイルに前記電圧を加えてから前記電流値が前記基準値に達する到達時間を推定する時間推定部と、
前記時間推定部により推定された推定時間に応じ、前記定電流を流して励磁する励磁時間を設定する時間設定部と、を備え、
前記駆動部は前記励磁時間、前記定電流を流して前記ステッピングモーターを駆動することを特徴とするステッピングモーターの制御装置。
After applying a voltage to the coil of the stepping motor and causing the current value flowing through the coil to reach a reference value, the voltage is turned on and off repeatedly, and a constant current within a predetermined range is passed through the coil to excite the stepping motor. In a control device for a stepping motor having a drive unit for driving a motor,
A temperature measuring unit for measuring the temperature of the stepping motor;
A voltage measuring unit for measuring the voltage;
A time estimation unit for estimating an arrival time at which the current value reaches the reference value after applying the voltage to the coil based on the measurement temperature measured by the temperature measurement unit and the measurement voltage measured by the voltage measurement unit; ,
In accordance with the estimated time estimated by the time estimation unit, a time setting unit that sets an excitation time for exciting by flowing the constant current, and
The stepping motor control apparatus, wherein the driving unit drives the stepping motor by passing the excitation time and the constant current.
前記時間設定部は、前記推定時間に予め定められた第一定数を乗算した算出時間を前記励磁時間に設定する請求項1に記載のステッピングモーターの制御装置。   The stepping motor control device according to claim 1, wherein the time setting unit sets a calculation time obtained by multiplying the estimated time by a predetermined first constant as the excitation time. 前記時間設定部は、前記算出時間と前記ステッピングモーターが脱調しないために予め定められた最低励磁時間を比較する比較部を有し、前記比較部の比較結果により前記算出時間が前記最低励磁時間以上の場合、前記算出時間を前記励磁時間に設定する請求項2に記載のステッピングモーターの制御装置。   The time setting unit includes a comparison unit that compares the calculated time with a predetermined minimum excitation time so that the stepping motor does not step out, and the calculated time is calculated based on a comparison result of the comparison unit. In the above case, the stepping motor control device according to claim 2, wherein the calculation time is set to the excitation time. 前記比較部の比較結果により前記算出時間が前記最低励磁時間より短い場合、前記最低励磁時間を前記励磁時間に設定する請求項3に記載のステッピングモーターの制御装置。   4. The stepping motor control device according to claim 3, wherein when the calculated time is shorter than the minimum excitation time based on a comparison result of the comparison unit, the minimum excitation time is set to the excitation time. 前記温度測定部は、測定した前記温度に予め定められた第二定数を乗算する温度補正部を有し、前記温度補正部により補正された補正温度を前記測定温度とする請求項1ないし4のいずれか1項に記載のステッピングモーターの制御装置。   The temperature measuring unit includes a temperature correcting unit that multiplies the measured temperature by a predetermined second constant, and uses the corrected temperature corrected by the temperature correcting unit as the measured temperature. The stepping motor control device according to any one of the preceding claims.
JP2014053364A 2014-03-17 2014-03-17 Stepping motor controller Active JP6249226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053364A JP6249226B2 (en) 2014-03-17 2014-03-17 Stepping motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053364A JP6249226B2 (en) 2014-03-17 2014-03-17 Stepping motor controller

Publications (2)

Publication Number Publication Date
JP2015177674A true JP2015177674A (en) 2015-10-05
JP6249226B2 JP6249226B2 (en) 2017-12-20

Family

ID=54256351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053364A Active JP6249226B2 (en) 2014-03-17 2014-03-17 Stepping motor controller

Country Status (1)

Country Link
JP (1) JP6249226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080651A (en) * 2016-11-17 2018-05-24 株式会社ケーヒン Internal combustion engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154099A (en) * 1986-12-17 1988-06-27 Fuji Electric Co Ltd Constant-current drive for motor
JPH03124297A (en) * 1989-10-09 1991-05-27 Oki Electric Ind Co Ltd Temperature controller for stepping motor
JPH11313500A (en) * 1998-04-27 1999-11-09 Canon Inc Stepping motor controller
JP2004350386A (en) * 2003-05-21 2004-12-09 Konica Minolta Business Technologies Inc Current control method of stepping motor, current controller of stepping motor, image forming apparatus
JP2009094993A (en) * 2007-09-20 2009-04-30 Panasonic Electric Works Co Ltd Proximity sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154099A (en) * 1986-12-17 1988-06-27 Fuji Electric Co Ltd Constant-current drive for motor
JPH03124297A (en) * 1989-10-09 1991-05-27 Oki Electric Ind Co Ltd Temperature controller for stepping motor
JPH11313500A (en) * 1998-04-27 1999-11-09 Canon Inc Stepping motor controller
JP2004350386A (en) * 2003-05-21 2004-12-09 Konica Minolta Business Technologies Inc Current control method of stepping motor, current controller of stepping motor, image forming apparatus
JP2009094993A (en) * 2007-09-20 2009-04-30 Panasonic Electric Works Co Ltd Proximity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080651A (en) * 2016-11-17 2018-05-24 株式会社ケーヒン Internal combustion engine control device
WO2018092634A1 (en) * 2016-11-17 2018-05-24 株式会社ケーヒン Internal combustion engine control device

Also Published As

Publication number Publication date
JP6249226B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP4501433B2 (en) DC motor coil temperature estimation method and apparatus
JP4215025B2 (en) Vehicle power generation control device
JP6085488B2 (en) Electric tool
CN107645264B (en) Control circuit, drive circuit and method for controlling motor of compressor
US10840842B2 (en) Motor driving device and method for measuring phase current in motor driving device
KR100851905B1 (en) Method and preheating control apparatus of compressor
US9866156B2 (en) Motor control device and motor control method
JP2016086634A (en) Torque control device and method, and motor controller
CN109983688B (en) Brushless motor control device and brushless motor control method
JP2006304504A (en) Controller of generator for vehicle
JP6249226B2 (en) Stepping motor controller
JP2008193774A (en) Device and method for estimating temperature of rotor of motor
JP2018182774A (en) Power conversion apparatus, power conversion method, and inductance estimation device
JPWO2018154736A1 (en) Electric vehicle power converter
JP2018074878A (en) Motor control apparatus
US10469010B2 (en) Motor drive controller, control method for motor drive controller, control program for motor drive controller, and method for determining number of divisions of basic step angle
JP2016187015A (en) Oil temperature estimation device
JP4209894B2 (en) Power generation control device for vehicle generator
US9762174B2 (en) Increasing PWM resolution for digitally controlled motor control applications
CN107005192B (en) Method for operating an electric machine
JP2006304503A (en) Controller of generator for vehicle
US11196378B2 (en) Motor control device
JP6361540B2 (en) Control device for rotating electrical machine
JP5518379B2 (en) Power supply
JP2020148719A (en) Current detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R151 Written notification of patent or utility model registration

Ref document number: 6249226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250