WO2018092444A1 - Spun-bonded nonwoven fabric and method for producing same - Google Patents

Spun-bonded nonwoven fabric and method for producing same Download PDF

Info

Publication number
WO2018092444A1
WO2018092444A1 PCT/JP2017/035941 JP2017035941W WO2018092444A1 WO 2018092444 A1 WO2018092444 A1 WO 2018092444A1 JP 2017035941 W JP2017035941 W JP 2017035941W WO 2018092444 A1 WO2018092444 A1 WO 2018092444A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nonwoven fabric
section
line segment
cross
Prior art date
Application number
PCT/JP2017/035941
Other languages
French (fr)
Japanese (ja)
Inventor
雅紀 遠藤
大士 勝田
拓史 小林
義嗣 船津
西村 誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017558584A priority Critical patent/JP6904260B2/en
Publication of WO2018092444A1 publication Critical patent/WO2018092444A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a spunbonded nonwoven fabric excellent in productivity and stability industrially, and particularly excellent in bulkiness at a satisfactory level when used as a sanitary material, and a method for producing the same.
  • non-woven fabrics for sanitary materials such as disposable diapers and sanitary napkins are required to have excellent bulkiness and flexibility due to the texture when worn.
  • bulkiness is required for surface members that directly touch the skin.
  • a so-called air-through nonwoven fabric in which short fibers represented by polyethylene terephthalate (PET) / polyethylene (PE) composite fibers are formed into a sheet by carding and then self-fused by hot air treatment is suitable. Is used.
  • PET polyethylene terephthalate
  • PE polyethylene
  • This air-through non-woven fabric is widely used for hygiene materials because it has the characteristics of being bulky and flexible.
  • the air-through nonwoven fabric has a problem that the manufacturing process is complicated and the production speed is slow.
  • a spunbonded nonwoven fabric using polyolefin resin fibers represented by polypropylene (hereinafter sometimes abbreviated as PP) as a raw material is characterized by high productivity and low cost.
  • PP polypropylene
  • the crimped fiber and the spunbonded nonwoven fabric which are low in cost and industrially excellent in productivity and stability, and have a satisfactory level of bulkiness when used suitably as a sanitary material, The current situation is that it has not been obtained.
  • the object of the present invention is low in cost and industrially excellent in productivity and stability, and particularly excellent in bulkiness at a satisfactory level when used suitably as a sanitary material.
  • An object of the present invention is to provide a spunbond nonwoven fabric and a method for producing the same.
  • the spunbonded nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and the line segments A1′A2 ′ that can be obtained by the following methods (1) to (4) in the cross section of the polyolefin fibers.
  • the longest line segment is drawn among the line segments connecting the two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are A and B.
  • the spunbond nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and has the maximum orientation parameter obtained by measuring from the fiber side surface using Raman spectroscopy at four points equally divided in the fiber cross-section circumferential direction.
  • the nonwoven fabric is characterized in that the difference between the value I max and the minimum value I min is 0.6 or more.
  • the polyolefin fiber is composed of a single component.
  • the above-mentioned spunbonded nonwoven fabric of the present invention is manufactured by applying cooling air from two opposite directions to the side surfaces of a fiber group in which a polyolefin resin is discharged from a dumbbell-type nozzle.
  • the spunbonded nonwoven fabric of the present invention is produced by naturally cooling a fiber group in which a polyolefin resin is discharged from a dumbbell-type nozzle.
  • the present invention it is possible to obtain a spunbonded nonwoven fabric that is low in cost, industrially excellent in productivity and stability, and particularly excellent in bulkiness when used as a sanitary material.
  • the ratio A1′A2 ′ / B1′B2 ′ value of the line segment A1′A2 ′ and the line segment B1′B2 ′ (assuming A1′A2 ′ ⁇ B1′B2 ′) of the fiber cross section. Is set to 1.05 or more, so that the crimp can be imparted to the fiber. Therefore, by controlling the value of the above A1′A2 ′ / B1′B2 ′, the degree of crimp imparted to the fiber is controlled.
  • a spunbonded nonwoven fabric that can be controlled and has bulkiness according to applications and requirements is obtained.
  • the crimp since the crimp can be imparted to the fiber by imparting a difference in the orientation parameter of the fiber cross section, it is imparted to the fiber by controlling the value of the difference in the orientation parameter of the fiber cross section.
  • the degree of crimping can also be controlled, and a spunbonded nonwoven fabric having bulkiness according to the application and requirements can be obtained.
  • FIG. 1 is a drawing-substituting photograph of a schematic cross-sectional view illustrating a cross section of a polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention.
  • FIG. 2 is a drawing-substituting photograph of a schematic cross-sectional view illustrating the cross-section of another polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention.
  • FIG. 3 is a drawing-substituting photograph of a schematic cross-sectional view illustrating a cross section of a polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention.
  • the arrow in a figure shows the example of the measurement position in the Raman spectroscopy mentioned later.
  • 3A and 3B show two examples with different orientation parameters in the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating the discharge surface of the spinneret used for producing the fiber in the present invention.
  • the spunbonded nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and the line segments A1′A2 ′ that can be obtained by the following methods (1) to (4) in the cross section of the polyolefin fibers.
  • a line segment B1′B2 ′ (A1′A2 ′ ⁇ B1′B2 ′) is a spunbonded nonwoven fabric having a ratio A1′A2 ′ / B1′B2 ′ of 1.05 or more.
  • the longest line segment is drawn among the line segments connecting the two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are A and B.
  • the spunbond nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and has the maximum orientation parameter obtained by measuring from the fiber side surface using Raman spectroscopy at four points equally divided in the fiber cross-section circumferential direction. difference between the value I max and the minimum value I min is 0.6 or more spunbond nonwoven.
  • the spunbond nonwoven fabric of the present invention is a nonwoven fabric containing polyolefin fibers.
  • the shape of the cross section of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention is not a normal round cross section but a special modified cross section structure. More specifically, it is a symmetric structure with respect to the longest line segment among the line segments connecting the two points on the outer periphery of the fiber cross section, and an asymmetric structure with respect to a line segment perpendicular thereto.
  • FIG. 1 is a drawing-substituting photograph of a schematic cross-sectional view illustrating a cross section of a polyolefin fiber constituting the spunbond nonwoven fabric of the present invention
  • FIG. 2 is a cross-section of another polyolefin fiber constituting the spunbond nonwoven fabric of the present invention. It is a drawing substitute photograph of the schematic cross-sectional view illustrating the surface.
  • the contact points between the longest line segment connecting the two points on the outer periphery of the fiber cross section and the outer periphery of the fiber cross section are A and B.
  • the length of the line segment AB is D
  • the point at a distance of D / 4 from A is A ′
  • the point at the distance of D / 4 from B is also B ′
  • each is perpendicular to the line segment AB.
  • a straight line is drawn, and the intersections with the outer circumference of the fiber cross section are set as A1 ′, A2 ′, B1 ′, and B2 ′ (A1′A2 ′ ⁇ B1′B2 ′), respectively.
  • the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention has a ratio A1′A2 ′ / B1′B2 ′ of the line segment A1′A2 ′ and line segment B1′B2 ′ of 1.05 or more. is there.
  • the ratio A1'A2 '/ B1'B2' is more preferably 1.10 or more, and further preferably 1.20 or more.
  • the upper limit of the above ratio A1'A2 '/ B1'B2' value is likely to become unstable when the fiber is spun and discharged because the structural difference of the fiber cross section increases as the ratio increases. Therefore, the upper limit of this ratio is at most about 5.0 from the stability of spinning.
  • the maximum value I max and the minimum value of the orientation parameter measured from the fiber side surface using Raman spectroscopy It is important that the difference in I min is 0.6 or more.
  • the orientation parameter in the present invention in the Raman spectrum obtained by Raman spectroscopy, for example, in the case of PP, can be determined from the intensity of the Raman bands around 810 cm -1 and 840 cm -1.
  • Raman bands near 810 cm ⁇ 1 and 840 cm ⁇ 1 exhibit strong anisotropy with respect to the polarization of incident light. These are attributed to the coupling mode of CH 2 bending vibration and CC stretching vibration and the CH 2 bending vibration mode, respectively.
  • the principal axis of the vibration mode Raman tensor is parallel to the main chain direction of the molecule, while it is orthogonal to the Raman band at 840 cm ⁇ 1 . Therefore, the molecular chain orientation is obtained from the band intensity ratio of these Raman bands to the polarization direction.
  • the orientation parameter I as used in the present invention is determined as a value of I 810 / I 840 (I 810 : Raman band intensity near 810 cm ⁇ 1 , I 840 : Raman band intensity near 840 cm ⁇ 1 ).
  • the Raman band around 1130 cm ⁇ 1 is parallel to the main chain direction of the molecular tensor in the vibration mode, and the Raman band around 1060 cm ⁇ 1 is orthogonal. Therefore, the orientation parameter I in the present invention is obtained as a value of I 1130 / I 1060 (Raman band intensity near I 1130 : 1130 cm ⁇ 1 , Raman band intensity near I 1060 : 1060 cm ⁇ 1 ).
  • the difference between the maximum value and the minimum value of the orientation parameter is at most about 0.2.
  • the difference between the maximum value and the minimum value of the orientation parameter in the case of PP-based side-by-side crimped composite fibers using different known two-component raw materials is about 0.4.
  • the difference between the maximum value and the minimum value of the orientation parameters of the fibers constituting the spunbonded nonwoven fabric of the present invention is preferably 0.6 or more, more preferably 0.8 or more, and further preferably 1.0 or more. It is. By setting the difference in the orientation parameters to 0.6 or more, it is possible to obtain a sufficient structural difference for the fibers to be crimped. In addition, the upper limit of the difference in the orientation parameters is at most about 7.0 as the limit that can be produced in the same fiber.
  • polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention examples include fibers made of resins such as polyethylene, polypropylene, and copolymers of these monomers and other ⁇ -olefins.
  • resins such as polyethylene, polypropylene, and copolymers of these monomers and other ⁇ -olefins.
  • polypropylene fibers because they are strong and difficult to break during use and are excellent in dimensional stability during production of sanitary materials.
  • the polypropylene resin may be a polymer synthesized by a general Ziegler Natta catalyst, or a polymer synthesized by a single site active catalyst typified by metallocene. Further, ethylene random copolymer polypropylene can also be used.
  • the ethylene content is preferably less than 2% by mass, more preferably less than 1% by mass.
  • ⁇ -olefins are those having 3 to 10 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, and 1-octene. Is mentioned. These can be used alone or in combination of two or more.
  • the polypropylene resin is mainly composed of homopolypropylene from the viewpoints of strength and dimensional stability, and productivity and cost.
  • the polypropylene fiber constituting the spunbonded nonwoven fabric of the present invention may be composed of a single component polymer or a composite fiber composed of two or more different polymers, but from the viewpoint of productivity and cost. It is a particularly preferred embodiment that it is composed of a single component polymer.
  • the phrase “consisting of a single component polymer” as used in the present invention means, for example, that the olefin species as the main raw material is one kind. Commonly used antioxidants, weathering stabilizers, light stabilizers, antistatic agents, antifogging agents, antiblocking agents, lubricants, nucleating agents, pigments, and other additives are not counted as polymer raw materials. That is, no matter how many kinds of these additives etc. are contained in a polymer having one kind of olefin species, the polymer is substantially a polymer composed of a single raw material.
  • blend spinning in which a plurality of raw materials are mixed in the form of chips and then spun, is treated as a single component polymer in the present invention because the interface between the raw materials cannot be confirmed.
  • “having polyolefin as a main component” means that the content of polyolefin in the fiber is 80% by mass or more. The content is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the melt flow rate of the polypropylene resin used in the present invention (hereinafter sometimes referred to as MFR; ASTM D-1238 load; 2160 g, temperature; 230 ° C.) is preferably 1 to 1000 g / 10 min. More preferably, it is ⁇ 500 g / 10 minutes, and more preferably 20 to 200 g / 10 minutes.
  • MFR melt flow rate
  • ASTM D-1238 load 2160 g, temperature; 230 ° C.
  • the melt flow rate (ASTM D-1238 load; 2160 g, temperature: 190 ° C.) of the polyethylene resin used in the present invention is preferably 1 to 1000 g / 10 minutes, more preferably 10 to 500 g / 10 minutes. More preferably 15 to 100 g / 10 min.
  • antioxidants In the polypropylene resin and polyethylene resin used in the present invention, antioxidants, weathering stabilizers, light stabilizers, antistatic agents, antifogging agents, and antiblocking agents that are usually used are within the range that does not impair the effects of the present invention. Additives such as agents, lubricants, nucleating agents and pigments or other polymers can be added as necessary.
  • nonwoven fabric production methods include needle punch nonwoven fabrics, wet nonwoven fabrics, spunlace nonwoven fabrics, spunbond nonwoven fabrics, melt blown nonwoven fabrics, resin bond nonwoven fabrics, chemical bond nonwoven fabrics, thermal bond nonwoven fabrics, tow spread nonwoven fabrics, and airlaid nonwoven fabrics.
  • Spunbond nonwoven fabrics are excellent in productivity and mechanical strength, and are made of long fibers, so that they have a feature that they are less prone to fuzzing than short fiber nonwoven fabrics.
  • the average single fiber fineness of the polyolefin fibers constituting the spunbonded nonwoven fabric of the present invention is preferably 0.5 dtex or more and 3.5 dtex or less, more preferably 0.7 dtex or more and 3.2 dtex or less, further preferably 0. .9 dtex or more and 2.8 dtex or less.
  • the average single fiber fineness is preferably 0.5 dtex or more from the viewpoint of spinning stability, and the finer the fineness, the higher the strength and flexibility of the nonwoven fabric because the number of bonding points of the yarn increases. Since the spunbond nonwoven fabric of the present invention is mainly used as a sanitary material, the average single fiber fineness is preferably 3.5 dtex or less from the viewpoint of the strength of the spunbond nonwoven fabric.
  • the average single fiber fineness can be calculated from the fiber cross-sectional area A (m 2 ) and the polymer density ⁇ (g / m 3 ) in the fiber cross-sectional photograph using the following formula.
  • Single fiber fineness (dtex) A (m 2 ) ⁇ ⁇ (g / m 3 ) ⁇ 10000 (m).
  • the spunbonded nonwoven fabric of the present invention is a preferred embodiment having a basis weight of 3 to 200 g / m 2 .
  • the basis weight is more preferably 5 to 150 g / m 2 , and further preferably 10 to 100 g / m 2 .
  • the apparent density of the spunbonded nonwoven fabric of the present invention is 0.130 g / cm 3 or less.
  • the apparent density can be calculated by dividing the basis weight by the thickness.
  • Apparent density is more preferably not more than 0.025 g / cm 3 or more 0.125 g / cm 3, more preferably not more than 0.040 g / cm 3 or more 0.100 g / cm 3.
  • the raw material resin is melted and spun from a spinneret, and then the cooled and solidified fiber group is pulled and drawn by an ejector and collected on a moving net to form a nonwoven web.
  • This is a manufacturing method that requires a heat bonding step.
  • the shape of the spinneret or the ejector various shapes such as a round shape and a rectangular shape can be adopted.
  • a combination of a rectangular die and a rectangular ejector is preferably used because the amount of compressed air used is relatively small and the fiber group is less likely to be fused or scratched.
  • the die for obtaining the cross-sectional shape of the polyolefin fiber used in the present invention has the shape of the discharge hole exemplified in FIG. 4 (in the present invention, it may be referred to as a dumbbell shape).
  • the discharge hole diameter of the dumbbell shape is a shape in which circles are arranged on both sides of the rectangle, and the hole diameters of the circles are different.
  • FIG. 4 illustrates the discharge surface of the spinneret. Here, a discharge hole (large hole diameter side) 20 and a discharge hole (small hole diameter side) 30 are shown.
  • the value of the large pore diameter area / small pore diameter area is 1.2. It is preferable that it is above, More preferably, it is 1.5 or more, More preferably, it is 2.0 or more.
  • the upper limit of the area ratio is 5.0 or less at most because the yarn bending immediately after discharge increases and spinning becomes unstable as the area ratio increases.
  • the cross section of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention can be obtained by appropriately adjusting the discharge shape of the die.
  • the line segment A1′A2 ′ and the line segment B1′B2 ′ (A1′A2 ′ ⁇ B1′B2 ′) of the fiber cross section are obtained.
  • Ratio A1′A2 ′ / B1′B2 ′ value of 1.05 or more can be obtained.
  • the spinning temperature at the time of melting and spinning is preferably 200 to 300 ° C, more preferably 210 to 280 ° C, and further preferably 220 to 260 ° C.
  • the polyolefin resin (raw material) is melted and measured by an extruder and spun from a nozzle discharge hole that is supplied to a spinneret.
  • Examples of the method for cooling the spun long fiber group include a method in which cold air is forcibly blown to the fiber group, a method of natural cooling at the ambient temperature around the fiber group, and a distance between the spinneret and the ejector. Adjustment methods and combinations thereof can be employed.
  • the cooling is applied by cooling air from two directions opposite to the fiber group or is naturally cooled.
  • asymmetric cooling in which cooling air is applied from one side, yarn breakage is likely to occur due to large fluctuations in the fiber group, and cooling unevenness occurs between the fibers.
  • the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
  • the cooled and solidified fiber group is pulled and stretched by the compressed air jetted from the ejector. After being stretched, the stretched fiber is affected by stress relaxation because it is no longer restricted by compressed air. At this time, crimp is developed in the fiber due to the difference in shrinkage caused by the structural difference in the fiber cross section.
  • the spunbonded nonwoven fabric can be obtained by collecting the long fibers on a moving net to form a nonwoven web, and integrating the obtained nonwoven web by thermal bonding.
  • a heat embossing roll in which engravings (uneven portions) are applied to a pair of upper and lower roll surfaces, a roll with one roll surface being flat (smooth) and an engraving (uneven portion on the other roll surface)
  • a heat embossing roll formed of a combination with a roll provided with a), a heat calender roll formed of a combination of a pair of upper and lower flat (smooth) rolls, and thermocompression bonding with various rolls, and ultrasonic fusion.
  • thermal bonding using an embossing roll can be preferably employed from the viewpoint of strength and wear resistance.
  • grooved part) was given to any one of the upper and lower sides since it becomes difficult to apply a pressure to the whole and the bulkiness by the crimped fiber is not impaired.
  • the embossed adhesive area ratio at the time of heat fusion is preferably 5 to 30%.
  • the embossed adhesion area ratio is preferably 5% or more, more preferably 10% or more, it is possible to obtain a strength that can be practically used as a spunbonded nonwoven fabric.
  • the embossed adhesion area ratio is 30% or less, more preferably 20% or less, the bulkiness due to the crimped fibers can be maintained.
  • the embossed adhesion area ratio here refers to the entire nonwoven fabric of the portion where the convex part of the upper roll and the convex part of the lower roll are overlapped with each other to contact the non-woven web when thermally bonded by a roll having a pair of irregularities. This is the proportion of the total.
  • corrugation means the ratio which occupies for the whole nonwoven fabric of the part which contact
  • shapes such as a circle, an ellipse, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, and a regular octagon can be used.
  • the surface temperature of the hot embossing roll is preferably ⁇ 50 to ⁇ 1 ° C. with respect to the melting point of the lowest melting point resin (hereinafter, sometimes referred to as low melting point resin) among the resins used.
  • low melting point resin the lowest melting point resin
  • the heat embossing roll can be sufficiently heat-bonded and given strength. Occurrence can be easily suppressed.
  • the surface temperature of the hot embossing roll is set to ⁇ 1 ° C. or less with respect to the melting point of the low melting point resin, it is possible to easily prevent the separation of the resins due to the melting of the fibers.
  • the linear pressure of the hot embossing roll during thermal bonding is preferably 5 to 50 kgf / cm.
  • the linear pressure is 5 kgf / cm or more, more preferably 10 kgf / cm or more, and still more preferably 15 kgf / cm or more, sufficient thermal bonding can be achieved.
  • the linear pressure is set to 50 kgf / cm or less, more preferably 40 kgf / cm or less, and even more preferably 30 kgf / cm or less, the bulkiness due to the crimped fibers is maintained by not applying excessive stress to the roll. Can do.
  • the spunbonded nonwoven fabric of the present invention is very bulky, it can be suitably used for sanitary material applications such as disposable paper diapers and napkins.
  • sanitary material applications such as disposable paper diapers and napkins.
  • hygienic materials it can be suitably used particularly for surface materials (top sheets) and the like.
  • it can be used suitably for any of various uses requiring bulkiness and flexibility, such as bandages, medical gauze, towels, and sanitary masks.
  • A The longest line segment is drawn out of the line segments connecting two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are designated as A and B.
  • B The length of the line segment AB is D, a point at a distance of D / 4 from A is A ′, and a point at a distance of B / 4 from D / 4 is also B ′.
  • C Let A1 'and A2' be the contact points of the straight line passing through the above A 'and perpendicular to the line segment AB and the fiber cross section.
  • B1 'and B2' be the contact points of the straight line passing through B 'and perpendicular to the line segment AB and the fiber cross section.
  • Raman band intensities I 1130 and I 1060 at 1130 cm ⁇ 1 and 1060 cm ⁇ 1 were calculated and calculated as the ratio I 1130 / I 1060 orientation parameter I.
  • the maximum value I max and the minimum value I min of the orientation parameters at each measurement point were determined, and the difference (I max ⁇ I min ) was calculated. It measured similarly about one fiber extract
  • FIG. 3 illustrates a cross section of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention, and shows an example of the orientation parameter measurement position 10.
  • FIGS. 3A and 3B show two different specific examples in the present invention.
  • the alignment parameter measurement position 10 shown in FIG. 3 is an example showing the positions of four points at which the alignment parameter of the present invention is measured, and the measurement position can be appropriately selected according to the form of the invention. It is important that the measurement positions indicated by the alignment parameter measurement positions 10 are four points at equal intervals on the fiber circumference. By using such measurement positions, the difference in the alignment parameters in the present invention can be calculated. It becomes.
  • the number of crimps of fiber was measured from the image of the fiber taken with a microscope. The total number of peaks and troughs of fibers per unit length was counted, the total was divided by 2, and the number per 25 mm was the number of crimps. Ten fibers were measured and the average was determined.
  • the number of crimps is 50/25 mm or more as the degree of crimp ( ⁇ )
  • the number of crimps is 25/25 mm or more and less than 50/25 mm is the degree of crimp ( ⁇ )
  • the number of crimps is 0/25 mm
  • Crimps (x) are from those not crimped) to less than 25 pieces / 25 mm. Those having a number of crimps of 25 pieces / 25 mm or more ( ⁇ and ⁇ ) were accepted.
  • Thickness of spunbond nonwoven fabric Based on JIS L 1908 (2010), the thickness of the spunbonded nonwoven fabric was measured. A presser foot having an area of 2500 mm 2 is prepared. For a test piece having a size of 1.75 times the diameter of the presser foot, a pressure of 2 kPa is applied for a certain time, and then the thickness is measured. The average value for 10 test pieces was calculated, and the value was taken as the thickness. It was evaluated that the higher this value, the better the bulkiness.
  • Example 1 A polypropylene (PP) resin having a melt flow rate (MFR) of 60 g / 10 min (load: 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. was melted with an extruder, and a spinning temperature of 235 was used. As shown in FIG. 1, a single hole discharge rate is 0.6 g / min from a spinneret (dumbbell type nozzle) having a shape with a hole diameter of ⁇ 0.38 mm and ⁇ 0.27 mm and a center distance between both holes of 0.8 mm. Long fibers with different cross-sectional shapes were spun.
  • MFR melt flow rate
  • the compressed air is injected from the ejector at an ejector pressure of 0.17 MPa through the ejector, and the fiber group is pulled and stretched. Crimp was expressed. Thereafter, the filament was collected on a moving net to form a nonwoven web. Subsequently, using an upper roll engraved with a metal polka dot pattern and a pair of upper and lower embossed rolls made of metal and a flat lower roll, a linear pressure of 20 kgf / cm and thermal bonding are used. A heat bonding treatment was performed at a temperature of 135 ° C. to obtain a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 .
  • Example 2 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a polypropylene (PP) resin having an MFR of 35 g / 10 min (load; 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. was used as a raw material. It was. The obtained evaluation results are shown in Table 1.
  • PP polypropylene
  • Example 3 Spunbond was carried out in the same manner as in Example 1 except that a copolymer polypropylene (copolymer PP) resin having an MFR of 33 g / 10 min (load; 2160 g, temperature: 230 ° C.) and a melting point of 149 ° C. was used as the raw material. A nonwoven fabric was obtained. The obtained evaluation results are shown in Table 1.
  • Example 4 A high-density polyethylene (HDPE) resin having an MFR of 18 g / 10 min (load; 2160 g, temperature: 190 ° C.) and a melting point of 130 ° C. was used as the raw material, and the heat bonding temperature of the embossing roll was set to 90 ° C. A spunbonded nonwoven fabric was obtained in the same manner as in Example 1. The obtained evaluation results are shown in Table 1.
  • HDPE high-density polyethylene
  • the first component of the raw material has an MFR of 60 g / 10 min (load; 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C.
  • the second component has an MFR of 35 g / 10 min (load; 2160 g, temperature: 230 ° C.), a polypropylene resin having a melting point of 162 ° C., melted in different extruders, weighed so that the mass ratio of each component was 50:50, and the first component was discharged
  • a spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the second component was introduced into the discharge hole diameter ⁇ 0.27 mm side and spun on the ⁇ 0.38 mm side. The obtained evaluation results are shown in Table 1.
  • Example 6 A polypropylene (PP) resin having an MFR of 60 g / 10 minutes (load; 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. is used as the first component of the raw material, and an MFR of 33 g / 10 is used as the second component.
  • a spunbonded nonwoven fabric was obtained in the same manner as in Example 5 except that a copolymer polypropylene (copolymerized PP) resin having a melting point of 149 ° C. was used for a minute (load; 2160 g, temperature: 230 ° C.). The obtained evaluation results are shown in Table 1.
  • Example 7 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the spinneret used had a discharge diameter of ⁇ 0.35 mm and ⁇ 0.32 mm, and the center distance between both holes was 0.8 mm. . The obtained results are shown in Table 1.
  • Example 8 The raw material has a MFR of 35 g / 10 min (load: 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. polypropylene (PP) resin and MFR of 25 g / 10 min (load: 2160 g, temperature: 230 ° C.).
  • a spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a mixed raw material in which a polymerized polypropylene (PP) resin was blended so that the mass ratio of each raw material was 88:12 was used. The obtained results are shown in Table 2.
  • Example 9 A spunbonded nonwoven fabric in the same manner as in Example 4 except that linear low density polyethylene (LLDPE) having an MFR of 30 g / 10 min (load; 2160 g, temperature: 190 ° C.) and a melting point of 130 ° C. was used as a raw material. Got. The results obtained are shown in Table 2.
  • LLDPE linear low density polyethylene
  • Example 10 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the cooling of the fiber group was natural cooling. The results obtained are shown in Table 2.
  • Example 1 A spunbonded nonwoven fabric was obtained in the same manner as in Example 5 except that the discharge hole diameter of the die used was changed to a conventionally known round shape (discharge hole diameter ⁇ 0.5 mm). The evaluation results obtained are shown in Table 2.
  • Example 2 A spunbonded nonwoven fabric was obtained in the same manner as in Example 6 except that the discharge hole diameter of the die used was changed to a conventionally known round shape (discharge hole diameter ⁇ 0.5 mm). The evaluation results obtained are shown in Table 2.
  • Example 3 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the discharge shape was discharged from a conventionally known V-shaped base. The evaluation results obtained are shown in Table 2.
  • the ratio A1′A2 ′ / B1′B2 ′ value is 1.05 or more even though the raw material is a single component. Due to the difference, the fibers were crimped, and the obtained spunbonded nonwoven fabric was very excellent in bulkiness and was very suitably used as a surface member of a sanitary material. In addition, the difference in the orientation parameters of the fiber cross section is 0.6 or more and a sufficient structural difference is made, and the spunbond nonwoven fabric obtained by crimping the fiber is very bulky and is a surface member of a sanitary material. It was very suitably used as.
  • Examples 5 and 6 of the present invention have a larger number of crimps due to structural differences in the fiber cross section compared to Comparative Examples 1 and 2, and the bulkiness of the spunbonded nonwoven fabric is excellent, and the hygienic material It was used very suitably as a surface member. Further, the difference in orientation parameters is large, the number of crimps is large, the bulkiness of the nonwoven fabric is excellent, and it is very suitably used as a surface member for sanitary materials.
  • Example 7 in Table 1 has a small ratio A1′A2 ′ / B1′B2 ′ value in comparison with Example 1, and the surface of the sanitary material although the number of crimps of the obtained fiber and the bulkiness of the nonwoven fabric are inferior. It was used suitably as a member. Moreover, Example 7 is suitably used as a surface member of a sanitary material, although the difference in the orientation parameter is small compared to Example 1, and the number of crimps of the obtained fiber and the bulkiness of the spunbonded nonwoven fabric are inferior. It was a thing.
  • Comparative Example 3 had a deformed cross section, there was no difference in fiber cross-sectional structure, no crimp was developed, and the bulkiness of the nonwoven fabric was inferior. Further, there was almost no difference in the orientation parameters, and no crimp was developed in the fiber, and the bulkiness of the spunbonded nonwoven fabric was inferior.
  • A, B The contact point between the longest line segment connecting the two points on the outer periphery of the fiber cross section and the outer periphery of the fiber cross section
  • D Length of the line segment AB
  • a ′ A distance from A to D / 4
  • Point B ′ Points A1 ′, A2 ′: A line passing through A ′ at a distance of D / 4 from B and straight line perpendicular to line segment AB and contact points B1 ′, B2 ′: B ′ passing through line cross section AB
  • Straight line and contact point of fiber cross section 10 Orientation parameter measurement position 20: Discharge hole (large hole diameter side) 30: Discharge hole (small hole diameter side)

Abstract

The present invention provides a spun-bonded nonwoven fabric which is flexible, has excellent bulkiness, and which, in particular, can be suitably used as a hygienic material. The spun-bonded nonwoven fabric of the present invention is a nonwoven fabric having a polyolefin fiber as a main component, and in a cross-section of the olefin fiber, the value of the ratio, A1' A2'/B1' B2', between line segments A1' A2' and B1' B2' (where A1' A2'≧B1' B2'), which can be obtained by methods (1)-(4) below, is 1.05 or more. (1) The points of tangent at which the longest among line segments connecting two points on the circumference of a fiber cross-section meets with the circumference of the fiber cross-section are referred to as A and B. (2) The length of line segment AB is referred to as D, a point at a distance of D/4 from A is referred to as A', and likewise, a point at a distance of D/4 from B is referred to as B'. (3) The points of tangent between a straight line, which passes through A' and is perpendicular to line segment AB, and the fiber cross-section are referred to as A1' and A2'. (4) The points of tangent between a straight line, which passes through B' and is perpendicular to line segment AB, and the fiber cross-section are referred to as B1' and B2'.

Description

スパンボンド不織布およびその製造方法Spunbond nonwoven fabric and method for producing the same
 本発明は、工業的に生産性と安定性に優れた、特に衛生材料として使用する上で満足のいくレベルの嵩高性に優れたスパンボンド不織布とその製造方法に関するものである。 The present invention relates to a spunbonded nonwoven fabric excellent in productivity and stability industrially, and particularly excellent in bulkiness at a satisfactory level when used as a sanitary material, and a method for producing the same.
 一般に、紙おむつや生理用ナプキン等の衛生材料用の不織布には、着用時の風合いのため、嵩高性および柔軟性に優れているという性能が求められている。特に、肌に直接触れる表面部材においては、嵩高性が要求される。 Generally, non-woven fabrics for sanitary materials such as disposable diapers and sanitary napkins are required to have excellent bulkiness and flexibility due to the texture when worn. In particular, bulkiness is required for surface members that directly touch the skin.
 従来、衛生材料の表面部材としては、ポリエチレンテレフタレート(PET)/ポリエチレン(PE)複合繊維を代表とする短繊維をカーディングによりシート化した後、熱風処理により自己融着した、いわゆるエアスルー不織布が好適に使用されている。 Conventionally, as a surface member of a sanitary material, a so-called air-through nonwoven fabric in which short fibers represented by polyethylene terephthalate (PET) / polyethylene (PE) composite fibers are formed into a sheet by carding and then self-fused by hot air treatment is suitable. Is used.
 このエアスルー不織布は、嵩高性と柔軟性に優れているという特徴を有していることから、衛生材料用途等に幅広く採用されている。しかしながら、エアスルー不織布は製造プロセスが複雑であり、生産速度が遅いという課題がある。 This air-through non-woven fabric is widely used for hygiene materials because it has the characteristics of being bulky and flexible. However, the air-through nonwoven fabric has a problem that the manufacturing process is complicated and the production speed is slow.
 一方、ポリプロピレン(以下、PPと略記することがある。)を代表とするポリオレフィン系樹脂繊維を原料として用いたスパンボンド不織布は、そのプロセスから生産性が高く低コストであることを特徴としている。しかしながら、このスパンボンド不織布は、スパンボンド不織布を構成する長繊維が不織布の面方向に配向されている構造であることから、嵩高性に劣るという課題がある。 On the other hand, a spunbonded nonwoven fabric using polyolefin resin fibers represented by polypropylene (hereinafter sometimes abbreviated as PP) as a raw material is characterized by high productivity and low cost. However, since this spunbonded nonwoven fabric has a structure in which the long fibers constituting the spunbonded nonwoven fabric are oriented in the surface direction of the nonwoven fabric, there is a problem that the bulkiness is inferior.
 そこで、スパンボンド不織布に嵩高性を付与する手法として、不織布を構成する繊維に捲縮繊維を適用するという手法が提案されている。 Therefore, as a method for imparting bulkiness to the spunbonded nonwoven fabric, a method of applying crimped fibers to the fibers constituting the nonwoven fabric has been proposed.
 例えば、融点が10℃以上異なる2成分のポリマーから構成される捲縮複合繊維が提案されている(特許文献1参照。)。 For example, a crimped composite fiber composed of two-component polymers having different melting points of 10 ° C. or more has been proposed (see Patent Document 1).
 また、V型断面ノズルを用いた異形断面に対し、吐出後の繊維に対し片側から冷却する非対称冷却を行い、捲縮を発現させる手法が提案されている(特許文献2参照。)。 In addition, a method has been proposed in which crimping is expressed by performing asymmetric cooling on a deformed cross-section using a V-shaped cross-section nozzle from one side of the discharged fiber (see Patent Document 2).
特許第5484564号公報Japanese Patent No. 5484564 特開平11-292159号公報JP 11-292159 A
 しかしながら、特許文献1の提案の場合、異なる原料を別々の押出機によって押出し、口金から吐出する必要があるため、設備投資が高くなるという課題がある。また、特許文献1の提案では、融点が10℃以上異なる原料を選定する必要があり、通常のPP(いわゆるホモPP)と共重合PP(いわゆるランダムPP)の組み合わせが必要となる。一般的に、ランダムPPはホモPPより原料価格が高いため、コストアップとなり、さらに、得られる複合繊維の捲縮数には限度があるため、エアスルー不織布並みの嵩高性は得られていない。 However, in the case of the proposal of Patent Document 1, it is necessary to extrude different raw materials with different extruders and discharge them from the die, which causes a problem that the capital investment becomes high. In the proposal of Patent Document 1, it is necessary to select raw materials having melting points different by 10 ° C. or more, and a combination of ordinary PP (so-called homo PP) and copolymer PP (so-called random PP) is required. In general, random PP has a higher raw material price than homo PP, resulting in an increase in cost. Further, since the number of crimps of the obtained composite fiber is limited, bulkiness similar to an air-through nonwoven fabric is not obtained.
 また、特許文献2の提案の場合、原料が単成分においても捲縮が発現するという特徴はあるが、この提案の方法では、冷却風速を大きくすると、糸揺れと糸切れが起こるため、生産安定性の観点から冷却風速を小さくせざるを得なく、得られる捲縮数は小さくなり、衛生材料の表面材に適用できるほどの嵩高性は得られていないのが現状である。 Further, in the proposal of Patent Document 2, there is a feature that even if the raw material is a single component, there is a feature that crimping occurs. However, when the cooling air speed is increased in this proposed method, the yarn sway and the yarn breakage occur. From the viewpoint of safety, the cooling air speed must be reduced, the number of crimps obtained is small, and the bulkiness that can be applied to the surface material of sanitary materials has not been obtained.
 したがって、従来、低コストで、かつ工業的に生産性と安定性に優れており、衛生材料として好適に使用される上で満足のいくレベルの嵩高性に優れた捲縮繊維およびスパンボンド不織布は得られていないのが現状である。 Therefore, conventionally, the crimped fiber and the spunbonded nonwoven fabric, which are low in cost and industrially excellent in productivity and stability, and have a satisfactory level of bulkiness when used suitably as a sanitary material, The current situation is that it has not been obtained.
 そこで本発明の目的は、上記の課題に鑑み、低コストで、かつ工業的に生産性と安定性に優れた、特に衛生材料として好適に使用する上で満足のいくレベルの嵩高性に優れたスパンボンド不織布とその製造方法を提供することにある。 Therefore, in view of the above problems, the object of the present invention is low in cost and industrially excellent in productivity and stability, and particularly excellent in bulkiness at a satisfactory level when used suitably as a sanitary material. An object of the present invention is to provide a spunbond nonwoven fabric and a method for producing the same.
 本発明のスパンボンド不織布は、ポリオレフィン繊維を主成分とする不織布であって、前記のポリオレフィン繊維の横断面において、下記(1)~(4)の方法で求めることができる線分A1’A2’と線分B1’B2’(A1’A2’≧B1’B2’とする。)の比率A1’A2’/B1’B2’値が、1.05以上であることを特徴とするスパンボンド不織布である。
(1)繊維横断面外周上の2点を結ぶ線分の内、最も長い線分を引き、その線分と繊維横断面外周との接点を、AおよびBとする、
(2)線分ABの長さをDとし、AからD/4の距離にある点をA’とし、同じくBからD/4の距離にある点をB’とする、
(3)A’を通り線分ABと垂直な直線と繊維横断面の接点を、A1’およびA2’とする、
(4)B’を通り線分ABと垂直な直線と繊維横断面の接点を、B1’およびB2’とする。
The spunbonded nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and the line segments A1′A2 ′ that can be obtained by the following methods (1) to (4) in the cross section of the polyolefin fibers. A spunbonded nonwoven fabric characterized in that the ratio A1′A2 ′ / B1′B2 ′ of the line segment B1′B2 ′ (assuming A1′A2 ′ ≧ B1′B2 ′) is 1.05 or more is there.
(1) The longest line segment is drawn among the line segments connecting the two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are A and B.
(2) The length of the line segment AB is D, a point at a distance D / 4 from A is A ′, and a point at a distance D / 4 from B is B ′.
(3) Let A1 'and A2' be the contact points of the straight line passing through line A 'and perpendicular to line segment AB and the fiber cross section.
(4) Let B1 'and B2' be the contact points between the straight line passing through B 'and perpendicular to the line segment AB and the fiber cross section.
 本発明のスパンボンド不織布は、ポリオレフィン繊維を主成分とする不織布であって、繊維断面円周方向に等分割した4点において、ラマン分光を用いて繊維側面から測定して得られる配向パラメータの最大値Imaxと最小値Iminの差が0.6以上であることを特徴とする不織布である。 The spunbond nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and has the maximum orientation parameter obtained by measuring from the fiber side surface using Raman spectroscopy at four points equally divided in the fiber cross-section circumferential direction. The nonwoven fabric is characterized in that the difference between the value I max and the minimum value I min is 0.6 or more.
 本発明のスパンボンド不織布の好ましい態様によれば、前記のポリオレフィン繊維は、単一成分で構成されてなることである。 According to a preferred aspect of the spunbond nonwoven fabric of the present invention, the polyolefin fiber is composed of a single component.
 本発明の前記のスパンボンド不織布は、ポリオレフィン樹脂をダンベル型ノズルから吐出させた繊維群の側面に、相対する2方向から冷却風を当てて冷却することにより製造される。 The above-mentioned spunbonded nonwoven fabric of the present invention is manufactured by applying cooling air from two opposite directions to the side surfaces of a fiber group in which a polyolefin resin is discharged from a dumbbell-type nozzle.
 また、本発明の前記のスパンボンド不織布は、ポリオレフィン系樹脂をダンベル型ノズルから吐出させた繊維群に対し、自然冷却することにより製造される。 Further, the spunbonded nonwoven fabric of the present invention is produced by naturally cooling a fiber group in which a polyolefin resin is discharged from a dumbbell-type nozzle.
 本発明によれば、低コストで、かつ工業的に生産性と安定性に優れており、特に衛生材料として使用する上で満足のいくレベルの嵩高性に優れたスパンボンド不織布が得られる。 According to the present invention, it is possible to obtain a spunbonded nonwoven fabric that is low in cost, industrially excellent in productivity and stability, and particularly excellent in bulkiness when used as a sanitary material.
 また、本発明によれば、繊維断面の線分A1’A2’と線分B1’B2’(A1’A2’≧B1’B2’とする。)の比率A1’A2’/B1’B2’値を、1.05以上とすることにより繊維に捲縮を付与することができるため、上記のA1’A2’/B1’B2’の値をコントロールすることにより、繊維に付与する捲縮の程度を制御することができ、用途や要求に応じた嵩高性を有するスパンボンド不織布が得られる。 Further, according to the present invention, the ratio A1′A2 ′ / B1′B2 ′ value of the line segment A1′A2 ′ and the line segment B1′B2 ′ (assuming A1′A2 ′ ≧ B1′B2 ′) of the fiber cross section. Is set to 1.05 or more, so that the crimp can be imparted to the fiber. Therefore, by controlling the value of the above A1′A2 ′ / B1′B2 ′, the degree of crimp imparted to the fiber is controlled. A spunbonded nonwoven fabric that can be controlled and has bulkiness according to applications and requirements is obtained.
 一方で、本発明によれば、繊維断面の配向パラメータの差を付与することにより繊維に捲縮を付与することができるため、繊維断面の配向パラメータの差の値をコントロールすることにより繊維に付与する捲縮の程度を制御することもでき、用途や要求に応じた嵩高性を有するスパンボンド不織布が得られる。 On the other hand, according to the present invention, since the crimp can be imparted to the fiber by imparting a difference in the orientation parameter of the fiber cross section, it is imparted to the fiber by controlling the value of the difference in the orientation parameter of the fiber cross section. The degree of crimping can also be controlled, and a spunbonded nonwoven fabric having bulkiness according to the application and requirements can be obtained.
図1は、本発明のスパンボンド不織布を構成するポリオレフィン繊維の横断面を例示する模式断面図の図面代用写真である。FIG. 1 is a drawing-substituting photograph of a schematic cross-sectional view illustrating a cross section of a polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention. 図2は、本発明のスパンボンド不織布を構成する他のポリオレフィン繊維の横断面を例示する模式断面図の図面代用写真である。FIG. 2 is a drawing-substituting photograph of a schematic cross-sectional view illustrating the cross-section of another polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention. 図3は、本発明のスパンボンド不織布を構成するポリオレフィン繊維の断面を例示する模式断面図の図面代用写真である。また、図中の矢印は、後述するラマン分光法での測定位置の例を示したものである。図3(a)と(b)は、本発明における配向パラメータの異なる2つの例を示したものである。FIG. 3 is a drawing-substituting photograph of a schematic cross-sectional view illustrating a cross section of a polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention. Moreover, the arrow in a figure shows the example of the measurement position in the Raman spectroscopy mentioned later. 3A and 3B show two examples with different orientation parameters in the present invention. 図4は、本発明における繊維を製造する上で使用される紡糸口金の吐出面を例示する模式断面図である。FIG. 4 is a schematic cross-sectional view illustrating the discharge surface of the spinneret used for producing the fiber in the present invention.
 本発明のスパンボンド不織布は、ポリオレフィン繊維を主成分とする不織布であって、前記のポリオレフィン繊維の横断面において、下記(1)~(4)の方法で求めることができる線分A1’A2’と線分B1’B2’(A1’A2’≧B1’B2’とする。)の比率A1’A2’/B1’B2’値が、1.05以上のスパンボンド不織布である。
(1)繊維横断面外周上の2点を結ぶ線分の内、最も長い線分を引き、その線分と繊維横断面外周との接点を、AおよびBとする、
(2)線分ABの長さをDとし、AからD/4の距離にある点をA’とし、同じくBからD/4の距離にある点をB’とする、
(3)A’を通り線分ABと垂直な直線と繊維横断面の接点を、A1’およびA2’とする、
(4)B’を通り線分ABと垂直な直線と繊維横断面の接点を、B1’およびB2’とする。
The spunbonded nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and the line segments A1′A2 ′ that can be obtained by the following methods (1) to (4) in the cross section of the polyolefin fibers. And a line segment B1′B2 ′ (A1′A2 ′ ≧ B1′B2 ′) is a spunbonded nonwoven fabric having a ratio A1′A2 ′ / B1′B2 ′ of 1.05 or more.
(1) The longest line segment is drawn among the line segments connecting the two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are A and B.
(2) The length of the line segment AB is D, a point at a distance D / 4 from A is A ′, and a point at a distance D / 4 from B is B ′.
(3) Let A1 'and A2' be the contact points of the straight line passing through line A 'and perpendicular to line segment AB and the fiber cross section.
(4) Let B1 'and B2' be the contact points between the straight line passing through B 'and perpendicular to the line segment AB and the fiber cross section.
 本発明のスパンボンド不織布は、ポリオレフィン繊維を主成分とする不織布であって、繊維断面円周方向に等分割した4点において、ラマン分光を用いて繊維側面から測定して得られる配向パラメータの最大値Imaxと最小値Iminの差が、0.6以上のスパンボンド不織布である。 The spunbond nonwoven fabric of the present invention is a nonwoven fabric mainly composed of polyolefin fibers, and has the maximum orientation parameter obtained by measuring from the fiber side surface using Raman spectroscopy at four points equally divided in the fiber cross-section circumferential direction. difference between the value I max and the minimum value I min is 0.6 or more spunbond nonwoven.
 本発明のスパンボンド不織布は、ポリオレフィン繊維を含有する不織布である。 The spunbond nonwoven fabric of the present invention is a nonwoven fabric containing polyolefin fibers.
 本発明のスパンボンド不織布を構成するポリオレフィン繊維の横断面の形状は、通常の丸型断面ではなく、特殊な異型断面構造である。より具体的には、繊維横断面外周上の2点を結ぶ線分の内、最も長い線分に対し対称な構造であり、それと垂直な線分に対して非対称な構造である。上記のような構造とすることにより、繊維横断面方向に冷却に差が生じることにより構造差ができるため、延伸後の応力緩和において繊維横断面方向に収縮差が生じることにより、繊維に捲縮を付与することができる。 The shape of the cross section of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention is not a normal round cross section but a special modified cross section structure. More specifically, it is a symmetric structure with respect to the longest line segment among the line segments connecting the two points on the outer periphery of the fiber cross section, and an asymmetric structure with respect to a line segment perpendicular thereto. By adopting the structure as described above, there is a structural difference due to a difference in cooling in the fiber cross-sectional direction. Therefore, in the stress relaxation after stretching, a shrinkage difference occurs in the fiber cross-sectional direction. Can be granted.
 図1は、本発明のスパンボンド不織布を構成するポリオレフィン繊維の横断面を例示する模式断面図の図面代用写真であり、図2は、本発明のスパンボンド不織布を構成する他のポリオレフィン繊維の横断面を例示する模式断面図の図面代用写真である。 FIG. 1 is a drawing-substituting photograph of a schematic cross-sectional view illustrating a cross section of a polyolefin fiber constituting the spunbond nonwoven fabric of the present invention, and FIG. 2 is a cross-section of another polyolefin fiber constituting the spunbond nonwoven fabric of the present invention. It is a drawing substitute photograph of the schematic cross-sectional view illustrating the surface.
 図1と図2において、繊維断面外周上の2点を結ぶ線分の内、最も長い線分と繊維横断面外周との接点を、AおよびBとする。 線分ABの長さをDとし、AからD/4の距離にある点をA’とし、同じくBからD/4の距離にある点をB’とし、それぞれを通り線分ABと垂直な直線を引き、繊維断面外周との交点をそれぞれ、A1’、A2’、B1’、B2’(A1’A2’≧B1’B2’)とする。 1 and 2, the contact points between the longest line segment connecting the two points on the outer periphery of the fiber cross section and the outer periphery of the fiber cross section are A and B. The length of the line segment AB is D, the point at a distance of D / 4 from A is A ′, the point at the distance of D / 4 from B is also B ′, and each is perpendicular to the line segment AB. A straight line is drawn, and the intersections with the outer circumference of the fiber cross section are set as A1 ′, A2 ′, B1 ′, and B2 ′ (A1′A2 ′ ≧ B1′B2 ′), respectively.
 本発明のスパンボンド不織布を構成するポリオレフィン繊維は、線分A1’A2’と線分B1’B2’の比率A1’A2’/B1’B2’値が、1.05以上であることが重要である。上記の比率A1’A2’/B1’B2’値は、より好ましくは1.10以上であり、更に好ましくは1.20以上である。上記の比率A1’A2’/B1’B2’値を、1.05以上とすることにより、繊維横断面方向に構造差ができるため、延伸後に捲縮が発現しやすい構造となり好ましい形態である。 It is important that the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention has a ratio A1′A2 ′ / B1′B2 ′ of the line segment A1′A2 ′ and line segment B1′B2 ′ of 1.05 or more. is there. The ratio A1'A2 '/ B1'B2' is more preferably 1.10 or more, and further preferably 1.20 or more. By setting the ratio A1′A2 ′ / B1′B2 ′ value to 1.05 or more, a structural difference can be made in the fiber cross-sectional direction, so that a structure in which crimps are easily developed after stretching is preferable.
 上記の比率A1’A2’/B1’B2’値の上限は、この比率が大きくなるにつれて繊維横断面の構造差も大きくなるため、繊維の紡糸吐出時に不安定になりやすくなる。そのため、紡糸の安定性から、この比率の上限値はせいぜい5.0程度である。 The upper limit of the above ratio A1'A2 '/ B1'B2' value is likely to become unstable when the fiber is spun and discharged because the structural difference of the fiber cross section increases as the ratio increases. Therefore, the upper limit of this ratio is at most about 5.0 from the stability of spinning.
 本発明においては、本発明のスパンボンド不織布を構成するポリオレフィン繊維の繊維断面円周方向に等分割した4点において、ラマン分光を用いて繊維側面から測定した配向パラメータの最大値Imaxと最小値Iminの差が、0.6以上であることが重要である。 In the present invention, at four points equally divided in the fiber cross-sectional circumferential direction of the polyolefin fiber constituting the spunbond nonwoven fabric of the present invention, the maximum value I max and the minimum value of the orientation parameter measured from the fiber side surface using Raman spectroscopy. It is important that the difference in I min is 0.6 or more.
 本発明でいう配向パラメータとは、ラマン分光法で得られるラマンスペクトルにおいて、例えば、PPの場合は、810cm-1と840cm-1付近のラマンバンドの強度から求めることができる。PPの場合、810cm-1と840cm-1付近のラマンバンドは入射光の偏光に対して強い異方性を示すことが知られている。これらは、CH変角振動とC-C伸縮振動のカップリングモード、CH変角振動モードにそれぞれ帰属される。これらのうち、810cm-1のラマンバンドについては、振動モードのラマンテンソルの主軸は分子の主鎖方向に対し平行であり、一方で、840cm-1のラマンバンドでは直交している。よって、これらのラマンバンドの偏光方向に対するバンド強度比から、分子鎖の配向が得られる。 The orientation parameter in the present invention, in the Raman spectrum obtained by Raman spectroscopy, for example, in the case of PP, can be determined from the intensity of the Raman bands around 810 cm -1 and 840 cm -1. In the case of PP, it is known that Raman bands near 810 cm −1 and 840 cm −1 exhibit strong anisotropy with respect to the polarization of incident light. These are attributed to the coupling mode of CH 2 bending vibration and CC stretching vibration and the CH 2 bending vibration mode, respectively. Among these, for the Raman band at 810 cm −1 , the principal axis of the vibration mode Raman tensor is parallel to the main chain direction of the molecule, while it is orthogonal to the Raman band at 840 cm −1 . Therefore, the molecular chain orientation is obtained from the band intensity ratio of these Raman bands to the polarization direction.
 本発明でいう配向パラメータIは、I810/I840(I810:810cm-1付近のラマンバンド強度、I840:840cm-1付近のラマンバンド強度)の値として求められる。 The orientation parameter I as used in the present invention is determined as a value of I 810 / I 840 (I 810 : Raman band intensity near 810 cm −1 , I 840 : Raman band intensity near 840 cm −1 ).
 また、PEの場合は、1130cm-1付近のラマンバンドが振動モードのラマンテンソルの主軸は分子の主鎖方向に対し平行であり、1060cm-1付近のラマンバンドが直交している。そのため、本発明でいう配向パラメータIは、I1130/I1060(I1130:1130cm-1付近のラマンバンド強度、I1060:1060cm-1付近のラマンバンド強度)の値として求められる。 In the case of PE, the Raman band around 1130 cm −1 is parallel to the main chain direction of the molecular tensor in the vibration mode, and the Raman band around 1060 cm −1 is orthogonal. Therefore, the orientation parameter I in the present invention is obtained as a value of I 1130 / I 1060 (Raman band intensity near I 1130 : 1130 cm −1 , Raman band intensity near I 1060 : 1060 cm −1 ).
 一般的なPP繊維の場合、配向パラメータの最大値と最小値の差は、せいぜい0.2程度である。公知の異なる2成分の原料を用いたPP系サイドバイサイド捲縮複合繊維の場合の配向パラメータの最大値と最小値の差は、0.4程度である。スパンボンド不織布を構成する繊維の配向パラメータの最大値と最小値の差を0.6以上とすることにより、捲縮が非常に発現しやすい構造とすることができる。 In the case of general PP fiber, the difference between the maximum value and the minimum value of the orientation parameter is at most about 0.2. The difference between the maximum value and the minimum value of the orientation parameter in the case of PP-based side-by-side crimped composite fibers using different known two-component raw materials is about 0.4. By setting the difference between the maximum value and the minimum value of the orientation parameters of the fibers constituting the spunbonded nonwoven fabric to be 0.6 or more, a structure in which crimps are very easily developed can be obtained.
 本発明のスパンボンド不織布を構成する繊維の配向パラメータの最大値と最小値の差は、0.6以上であることが好ましく、より好ましくは0.8以上であり、さらに好ましくは1.0以上である。配向パラメータの差を0.6以上によりとすることにより、繊維が捲縮発現する上で十分な構造差とすることができる。また、配向パラメータの差の上限は、同一繊維内に製造できる限界としては、せいぜい7.0程度である。 The difference between the maximum value and the minimum value of the orientation parameters of the fibers constituting the spunbonded nonwoven fabric of the present invention is preferably 0.6 or more, more preferably 0.8 or more, and further preferably 1.0 or more. It is. By setting the difference in the orientation parameters to 0.6 or more, it is possible to obtain a sufficient structural difference for the fibers to be crimped. In addition, the upper limit of the difference in the orientation parameters is at most about 7.0 as the limit that can be produced in the same fiber.
 本発明のスパンボンド不織布を構成するポリオレフィン繊維としては、例えば、ポリエチレン、ポリプロピレン、およびそれらのモノマーと他のα-オレフィンとの共重合体などの樹脂からなる繊維が挙げられる。なかでも、強度が強く使用時において破断し難く、かつ衛生材料の生産時における寸法安定性に優れていることから、ポリプロピレン繊維を用いることが好ましい態様である。 Examples of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention include fibers made of resins such as polyethylene, polypropylene, and copolymers of these monomers and other α-olefins. Among these, it is preferable to use polypropylene fibers because they are strong and difficult to break during use and are excellent in dimensional stability during production of sanitary materials.
 ポリプロピレン樹脂は、一般的なチーグラナッタ触媒により合成されるポリマーでもよく、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーも用いることができる。また、エチレンランダム共重合ポリプロピレンも用いることができる。エチレン含有量は、2質量%未満であることが好ましく、より好ましくは1質量%未満である。 The polypropylene resin may be a polymer synthesized by a general Ziegler Natta catalyst, or a polymer synthesized by a single site active catalyst typified by metallocene. Further, ethylene random copolymer polypropylene can also be used. The ethylene content is preferably less than 2% by mass, more preferably less than 1% by mass.
 他のα-オレフィンとしては、炭素数3~10のものであり、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキサン、4-メチル-1-ペンテン、および1-オクテンなどが挙げられる。これらは、1種類単独でも2種類以上を組み合わせて用いることができる。 Other α-olefins are those having 3 to 10 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, and 1-octene. Is mentioned. These can be used alone or in combination of two or more.
 ポリプロピレン樹脂は、強度と寸法安定性、および生産性とコストの観点から、ホモポリプロピレンを主成分とするものであることが特に好ましい態様である。 It is a particularly preferable aspect that the polypropylene resin is mainly composed of homopolypropylene from the viewpoints of strength and dimensional stability, and productivity and cost.
 本発明のスパンボンド不織布を構成するポリプロピレン繊維としては、単一成分のポリマーで構成されてもよいし、異なる2種類以上のポリマーで構成される複合繊維でもよいが、生産性とコストの観点から、単一成分のポリマーで構成することが特に好ましい態様である。本発明でいうところの単一成分のポリマーで構成するとは、例えば、主原料であるオレフィン種が1種類であることを意味する。通常用いられている酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、滑剤、核剤および顔料等の添加物等は、ポリマーの原料としてカウントしない。すなわち、オレフィン種が1種類であるポリマーが、これらの添加物等を何種類含んでいても、そのポリマーは実質的に単一原料で構成されたポリマーとなる。 The polypropylene fiber constituting the spunbonded nonwoven fabric of the present invention may be composed of a single component polymer or a composite fiber composed of two or more different polymers, but from the viewpoint of productivity and cost. It is a particularly preferred embodiment that it is composed of a single component polymer. The phrase “consisting of a single component polymer” as used in the present invention means, for example, that the olefin species as the main raw material is one kind. Commonly used antioxidants, weathering stabilizers, light stabilizers, antistatic agents, antifogging agents, antiblocking agents, lubricants, nucleating agents, pigments, and other additives are not counted as polymer raw materials. That is, no matter how many kinds of these additives etc. are contained in a polymer having one kind of olefin species, the polymer is substantially a polymer composed of a single raw material.
 また、複数の原料をチップの状態で混合した後に紡糸する、いわゆるブレンド紡糸は、原料同士の界面が確認できないことから、本発明においては単一成分のポリマーとして扱う。本発明において、ポリオレフィンを主成分とするとは、繊維中のポリオレフィンの含有率が80質量%以上であることをいう。前記の含有率は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、100質量%であることが特に好ましい。 Also, so-called blend spinning, in which a plurality of raw materials are mixed in the form of chips and then spun, is treated as a single component polymer in the present invention because the interface between the raw materials cannot be confirmed. In the present invention, “having polyolefin as a main component” means that the content of polyolefin in the fiber is 80% by mass or more. The content is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 100% by mass.
 本発明で用いられるポリプロピレン樹脂のメルトフローレート(以下、MFRと記載する場合がある;ASTM D-1238 荷重;2160g、温度;230℃)は、1~1000g/10分であることが好ましく、10~500g/10分であることがより好ましく、20~200g/10分であることがさらに好ましい態様である。メルトフローレートを1~1000g/10分の範囲とすることにより、安定した紡糸を行いやすくなり、かつ配向結晶化が進みやすくなり、高い強度の繊維が得られやすくなる。 The melt flow rate of the polypropylene resin used in the present invention (hereinafter sometimes referred to as MFR; ASTM D-1238 load; 2160 g, temperature; 230 ° C.) is preferably 1 to 1000 g / 10 min. More preferably, it is ˜500 g / 10 minutes, and more preferably 20 to 200 g / 10 minutes. By setting the melt flow rate in the range of 1 to 1000 g / 10 min, it becomes easy to perform stable spinning, and orientation crystallization easily proceeds, so that high-strength fibers can be easily obtained.
 また、本発明で用いられるポリエチレン樹脂のメルトフローレート(ASTM D-1238 荷重;2160g、温度;190℃)は、好ましくは1~1000g/10分であり、より好ましくは10~500g/10分であり、さらに好ましくは15~100g/10分である。メルトフローレートを1~1000g/10分の範囲とすることにより、安定した紡糸を行いやすくなり、かつ配向結晶化が進みやすくなり、高い強度の繊維が得られやすくなる。 The melt flow rate (ASTM D-1238 load; 2160 g, temperature: 190 ° C.) of the polyethylene resin used in the present invention is preferably 1 to 1000 g / 10 minutes, more preferably 10 to 500 g / 10 minutes. More preferably 15 to 100 g / 10 min. By setting the melt flow rate in the range of 1 to 1000 g / 10 min, it becomes easy to perform stable spinning, and orientation crystallization easily proceeds, so that high-strength fibers can be easily obtained.
 本発明で用いられるポリプロピレン樹脂およびポリエチレン樹脂には、本発明の効果を損なわない範囲で、通常用いられている酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、滑剤、核剤および顔料等の添加物あるいは他の重合体を必要に応じて添加することができる。 In the polypropylene resin and polyethylene resin used in the present invention, antioxidants, weathering stabilizers, light stabilizers, antistatic agents, antifogging agents, and antiblocking agents that are usually used are within the range that does not impair the effects of the present invention. Additives such as agents, lubricants, nucleating agents and pigments or other polymers can be added as necessary.
 一般的な不織布の製法としては、例えば、ニードルパンチ不織布、湿式不織布、スパンレース不織布、スパンボンド不織布、メルトブロー不織布、レジンボンド不織布、ケミカルボンド不織布、サーマルボンド不織布、トウ開繊式不織布、およびエアレイド不織布等の種々の製法が挙げられるが、本発明ではスパンボンド法による不織布であることが重要である。スパンボンド不織布は、生産性や機械的強度に優れ、また、長繊維からなるため、短繊維不織布に比べて毛羽立ちしにくいという特徴を有する。 Examples of general nonwoven fabric production methods include needle punch nonwoven fabrics, wet nonwoven fabrics, spunlace nonwoven fabrics, spunbond nonwoven fabrics, melt blown nonwoven fabrics, resin bond nonwoven fabrics, chemical bond nonwoven fabrics, thermal bond nonwoven fabrics, tow spread nonwoven fabrics, and airlaid nonwoven fabrics. In the present invention, it is important that the nonwoven fabric is formed by the spunbond method. Spunbond nonwoven fabrics are excellent in productivity and mechanical strength, and are made of long fibers, so that they have a feature that they are less prone to fuzzing than short fiber nonwoven fabrics.
 本発明のスパンボンド不織布を構成するポリオレフィン繊維の平均単繊維繊度は、0.5dtex以上3.5dtex以下であることが好ましく、より好ましくは0.7dtex以上3.2dtex以下であり、さらに好ましくは0.9dtex以上2.8dtex以下である。平均単繊維繊度は、紡糸安定性の観点から、0.5dtex以上であることが好ましく、繊度が細い程、不織布として糸の接着点が多くなるため強度が高く、柔軟性が良好となる。本発明のスパンボンド不織布は、主として衛生材料に使用されるため、スパンボンド不織布の強力の観点から、平均単繊維繊度は、3.5dtex以下であることが好ましい態様である。上記の平均単繊維繊度は、繊維断面写真における繊維断面積A(m)とポリマー密度ρ(g/m)より、次式を用いて算出することができる。
・単繊維繊度(dtex)=A(m)×ρ(g/m)×10000(m)。
The average single fiber fineness of the polyolefin fibers constituting the spunbonded nonwoven fabric of the present invention is preferably 0.5 dtex or more and 3.5 dtex or less, more preferably 0.7 dtex or more and 3.2 dtex or less, further preferably 0. .9 dtex or more and 2.8 dtex or less. The average single fiber fineness is preferably 0.5 dtex or more from the viewpoint of spinning stability, and the finer the fineness, the higher the strength and flexibility of the nonwoven fabric because the number of bonding points of the yarn increases. Since the spunbond nonwoven fabric of the present invention is mainly used as a sanitary material, the average single fiber fineness is preferably 3.5 dtex or less from the viewpoint of the strength of the spunbond nonwoven fabric. The average single fiber fineness can be calculated from the fiber cross-sectional area A (m 2 ) and the polymer density ρ (g / m 3 ) in the fiber cross-sectional photograph using the following formula.
Single fiber fineness (dtex) = A (m 2 ) × ρ (g / m 3 ) × 10000 (m).
 本発明のスパンボンド不織布は、目付が3~200g/mであることが好ましい態様である。前記の目付は、より好ましくは5~150g/mであり、さらに好ましくは10~100g/mである。目付を上記の範囲とすることにより、特に衛生材料用不織布として用いる場合に、十分な柔軟性を得ることができる。 The spunbonded nonwoven fabric of the present invention is a preferred embodiment having a basis weight of 3 to 200 g / m 2 . The basis weight is more preferably 5 to 150 g / m 2 , and further preferably 10 to 100 g / m 2 . By setting the basis weight within the above range, sufficient flexibility can be obtained particularly when used as a nonwoven fabric for sanitary materials.
 また、本発明のスパンボンド不織布の見掛密度は、0.130g/cm以下であることが好ましい態様である。前記の見掛密度は、目付を厚さで除することにより算出することができる。見掛密度は、より好ましくは0.025g/cm以上0.125g/cm以下であり、さらに好ましくは0.040g/cm以上0.100g/cm以下である。見掛密度を上記の範囲とすることにより、特に衛生材料用不織布として用いる場合に十分な嵩高性と物性を得ることができる。 Moreover, it is a preferable aspect that the apparent density of the spunbonded nonwoven fabric of the present invention is 0.130 g / cm 3 or less. The apparent density can be calculated by dividing the basis weight by the thickness. Apparent density is more preferably not more than 0.025 g / cm 3 or more 0.125 g / cm 3, more preferably not more than 0.040 g / cm 3 or more 0.100 g / cm 3. By setting the apparent density within the above range, sufficient bulkiness and physical properties can be obtained particularly when used as a nonwoven fabric for sanitary materials.
 次に、本発明のスパンボンド不織布を製造する方法の一例を説明する。 Next, an example of a method for producing the spunbonded nonwoven fabric of the present invention will be described.
 スパンボンド法は、原料樹脂を溶融し、紡糸口金から紡糸した後、冷却固化した繊維群に対し、エジェクターで牽引し延伸して、移動するネット上に捕集して不織ウェブ化した後、熱接着する工程を要する製造方法である。 In the spunbond method, the raw material resin is melted and spun from a spinneret, and then the cooled and solidified fiber group is pulled and drawn by an ejector and collected on a moving net to form a nonwoven web. This is a manufacturing method that requires a heat bonding step.
 紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なく、繊維群同士の融着や擦過が起こりにくい点から矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。 As the shape of the spinneret or the ejector, various shapes such as a round shape and a rectangular shape can be adopted. Among these, a combination of a rectangular die and a rectangular ejector is preferably used because the amount of compressed air used is relatively small and the fiber group is less likely to be fused or scratched.
 本発明で用いられるポリオレフィン繊維の断面形状を得る口金としては、図4に例示される吐出孔の形状(本発明においては、ダンベル形状と称することがある。)をしていることが重要である。ダンベル形状の吐出孔径は、長方形の両側にそれぞれ円が配置されている形状であり、この円の孔径に差がある形状である。図4は、紡糸口金の吐出面を例示するものであり、ここでは吐出孔(大孔径側)20と吐出孔(小孔径側)30が示されている。 It is important that the die for obtaining the cross-sectional shape of the polyolefin fiber used in the present invention has the shape of the discharge hole exemplified in FIG. 4 (in the present invention, it may be referred to as a dumbbell shape). . The discharge hole diameter of the dumbbell shape is a shape in which circles are arranged on both sides of the rectangle, and the hole diameters of the circles are different. FIG. 4 illustrates the discharge surface of the spinneret. Here, a discharge hole (large hole diameter side) 20 and a discharge hole (small hole diameter side) 30 are shown.
 本発明のスパンボンド不織布を構成するポリオレフィン繊維を得るには、2つの円の吐出孔面積に差があることが重要であり、大孔径面積/小孔径面積の値(面積比率)は1.2以上であることが好ましく、より好ましくは1.5以上であり、さらに好ましくは2.0以上である。面積比率を1.2以上とすることにより、得られる繊維に構造差を付与することができる。面積比率の上限値は、面積比率が大きくなるにつれて、吐出直後の糸曲がりが大きくなり紡糸が不安定になることから、面積比率はせいぜい5.0以下である。 In order to obtain the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention, it is important that there is a difference between the discharge hole areas of the two circles, and the value of the large pore diameter area / small pore diameter area (area ratio) is 1.2. It is preferable that it is above, More preferably, it is 1.5 or more, More preferably, it is 2.0 or more. By setting the area ratio to 1.2 or more, a structural difference can be imparted to the obtained fiber. The upper limit of the area ratio is 5.0 or less at most because the yarn bending immediately after discharge increases and spinning becomes unstable as the area ratio increases.
 本発明のスパンボンド不織布を構成するポリオレフィン繊維の断面は、上記の口金の吐出形状を適宜調整することにより得ることができる。上記の大孔径面積/小孔径面積の値を1.2以上とすることにより、繊維断面の線分A1’A2’と線分B1’B2’(A1’A2’≧B1’B2’とする。)の比率A1’A2’/B1’B2’値が1.05以上となる、本発明を構成する繊維断面を得ることができる。 The cross section of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention can be obtained by appropriately adjusting the discharge shape of the die. By setting the value of the large pore diameter area / small pore diameter area to 1.2 or more, the line segment A1′A2 ′ and the line segment B1′B2 ′ (A1′A2 ′ ≧ B1′B2 ′) of the fiber cross section are obtained. ) Ratio A1′A2 ′ / B1′B2 ′ value of 1.05 or more can be obtained.
 溶融し紡糸する際の紡糸温度は、200~300℃であることが好ましく、より好ましくは210~280℃であり、さらに好ましくは220~260℃である。紡糸温度を上記の範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 The spinning temperature at the time of melting and spinning is preferably 200 to 300 ° C, more preferably 210 to 280 ° C, and further preferably 220 to 260 ° C. By setting the spinning temperature within the above range, a stable molten state can be obtained, and excellent spinning stability can be obtained.
 ポリオレフィン樹脂(原料)は、押出機によって溶融し計量され、紡糸口金へと供給される口金吐出孔から紡出される。 The polyolefin resin (raw material) is melted and measured by an extruder and spun from a nozzle discharge hole that is supplied to a spinneret.
 紡出された長繊維の繊維群を冷却する方法としては、例えば、冷風を強制的に繊維群に吹き付ける方法、繊維群周りの雰囲気温度にて自然冷却する方法、紡糸口金とエジェクター間の距離を調整する方法、およびこれらの組み合わせを採用することができる。 Examples of the method for cooling the spun long fiber group include a method in which cold air is forcibly blown to the fiber group, a method of natural cooling at the ambient temperature around the fiber group, and a distance between the spinneret and the ejector. Adjustment methods and combinations thereof can be employed.
 また、冷却は繊維群に対し相対する2方向から冷却風を当てる、もしくは自然冷却することが好ましい。片側から冷却風を当てる、いわゆる非対称冷却の場合、繊維群のゆれが大きくなることで糸切れが発生しやすくなり、また、繊維間での冷却ムラが生じる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮し適宜調整し採用することができる。 Further, it is preferable that the cooling is applied by cooling air from two directions opposite to the fiber group or is naturally cooled. In the case of so-called asymmetric cooling, in which cooling air is applied from one side, yarn breakage is likely to occur due to large fluctuations in the fiber group, and cooling unevenness occurs between the fibers. The cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
 次に、冷却固化された繊維群は、エジェクターから噴射する圧縮エアによって牽引し延伸される。延伸された後は圧縮エアによる拘束がなくなるため、延伸繊維は応力緩和の影響を受ける。このとき、繊維横断面の構造差に起因する収縮差により、繊維に捲縮が発現する。その後、長繊維を移動するネット上に捕集して不織ウェブ化し、得られた不織ウェブを熱接着により一体化することによりスパンボンド不織布を得ることができる。 Next, the cooled and solidified fiber group is pulled and stretched by the compressed air jetted from the ejector. After being stretched, the stretched fiber is affected by stress relaxation because it is no longer restricted by compressed air. At this time, crimp is developed in the fiber due to the difference in shrinkage caused by the structural difference in the fiber cross section. Thereafter, the spunbonded nonwoven fabric can be obtained by collecting the long fibers on a moving net to form a nonwoven web, and integrating the obtained nonwoven web by thermal bonding.
 熱接着の方法としては、例えば、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど各種ロールによる熱圧着や、超音波による融着を適用することができる。 As a method of thermal bonding, for example, a heat embossing roll in which engravings (uneven portions) are applied to a pair of upper and lower roll surfaces, a roll with one roll surface being flat (smooth) and an engraving (uneven portion on the other roll surface) ), A heat embossing roll formed of a combination with a roll provided with a), a heat calender roll formed of a combination of a pair of upper and lower flat (smooth) rolls, and thermocompression bonding with various rolls, and ultrasonic fusion.
 中でも強度と耐摩耗性の観点から、エンボスロールを用いた熱接着を好ましく採用することができる。また、上下いずれかに彫刻(凹凸部)が施されたロールを用いることは、全体に圧力が掛かりにくくなり、捲縮繊維による嵩高性が損なわれないため好ましい態様である。 Of these, thermal bonding using an embossing roll can be preferably employed from the viewpoint of strength and wear resistance. Moreover, it is a preferable aspect to use the roll by which the engraving (uneven | corrugated | grooved part) was given to any one of the upper and lower sides, since it becomes difficult to apply a pressure to the whole and the bulkiness by the crimped fiber is not impaired.
 熱融着時のエンボス接着面積率は、5~30%であることが好ましい。エンボス接着面積率を5%以上、より好ましくは10%以上とすることにより、スパンボンド不織布として実用に供しうる強度を得ることができる。一方、エンボス接着面積率を30%以下、より好ましくは20%以下とすることにより、捲縮繊維による嵩高性を維持することができる。 The embossed adhesive area ratio at the time of heat fusion is preferably 5 to 30%. By setting the embossed adhesion area ratio to 5% or more, more preferably 10% or more, it is possible to obtain a strength that can be practically used as a spunbonded nonwoven fabric. On the other hand, when the embossed adhesion area ratio is 30% or less, more preferably 20% or less, the bulkiness due to the crimped fibers can be maintained.
 ここでいうエンボス接着面積率とは、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織ウェブに当接する部分の不織布全体に占める割合のことをいう。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織ウェブに当接する部分の不織布全体に占める割合のことをいう。 The embossed adhesion area ratio here refers to the entire nonwoven fabric of the portion where the convex part of the upper roll and the convex part of the lower roll are overlapped with each other to contact the non-woven web when thermally bonded by a roll having a pair of irregularities. This is the proportion of the total. Moreover, when heat-bonding by the roll which has an unevenness | corrugation, and the flat roll, the convex part of the roll which has an unevenness | corrugation means the ratio which occupies for the whole nonwoven fabric of the part which contact | abuts a nonwoven web.
 熱エンボスロールに施される彫刻の形状としては、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などの形状を用いることができる。 As the shape of the engraving applied to the heat embossing roll, shapes such as a circle, an ellipse, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, and a regular octagon can be used.
 熱エンボスロールの表面温度は、使用している樹脂のうち、最も低融点の樹脂(以下、低融点樹脂と称する場合がある。)の融点に対し-50~-1℃とすることが好ましい。熱エンボスロールの表面温度を、低融点樹脂の融点に対し-50℃以上、より好ましくは-30℃以上、さらに好ましくは-10℃以上とすることにより、十分に熱接着させ強度をもたせ毛羽の発生を抑えやすくすることができる。 The surface temperature of the hot embossing roll is preferably −50 to −1 ° C. with respect to the melting point of the lowest melting point resin (hereinafter, sometimes referred to as low melting point resin) among the resins used. By setting the surface temperature of the hot embossing roll to −50 ° C. or more, more preferably −30 ° C. or more, and further preferably −10 ° C. or more with respect to the melting point of the low melting point resin, the heat embossing roll can be sufficiently heat-bonded and given strength. Occurrence can be easily suppressed.
 また、熱エンボスロールの表面温度を低融点樹脂の融点に対し-1℃以下とすることにより、繊維の融解により樹脂同士の剥離が発生するのを防ぎやすくすることができる。 Further, by setting the surface temperature of the hot embossing roll to −1 ° C. or less with respect to the melting point of the low melting point resin, it is possible to easily prevent the separation of the resins due to the melting of the fibers.
 熱接着時の熱エンボスロールの線圧は、5~50kgf/cmであることが好ましい。前記線圧を5kgf/cm以上、より好ましくは10kgf/cm以上、さらに好ましくは15kgf/cm以上とすることで、十分に熱接着させることができる。一方、前記線圧を50kgf/cm以下、より好ましくは40kgf/cm以下、さらに好ましくは30kgf/cm以下とすることで、ロールの応力がかかりすぎないことによって捲縮繊維による嵩高性を維持することができる。 The linear pressure of the hot embossing roll during thermal bonding is preferably 5 to 50 kgf / cm. When the linear pressure is 5 kgf / cm or more, more preferably 10 kgf / cm or more, and still more preferably 15 kgf / cm or more, sufficient thermal bonding can be achieved. On the other hand, by setting the linear pressure to 50 kgf / cm or less, more preferably 40 kgf / cm or less, and even more preferably 30 kgf / cm or less, the bulkiness due to the crimped fibers is maintained by not applying excessive stress to the roll. Can do.
 本発明のスパンボンド不織布は、嵩高性に非常に優れていることから、使い捨て紙おむつやナプキンなどの衛生材料用途に好適に利用することができる。衛生材料のなかでも、特に表面材(トップシート)等に好適に利用することができる。また、包帯、医療用ガーゼ、タオル等の医療衛生材料、および衛生マスク等のかさ高性と柔軟性が求められる各種用途のいずれにも好適に使用することができる。 Since the spunbonded nonwoven fabric of the present invention is very bulky, it can be suitably used for sanitary material applications such as disposable paper diapers and napkins. Among hygienic materials, it can be suitably used particularly for surface materials (top sheets) and the like. Moreover, it can be used suitably for any of various uses requiring bulkiness and flexibility, such as bandages, medical gauze, towels, and sanitary masks.
 次に、実施例に基づき、本発明のスパンボンド不織布とその製造方法について、具体的に説明する。 Next, based on the examples, the spunbonded nonwoven fabric of the present invention and the production method thereof will be specifically described.
 (1)繊維横断面における比率A1’A2’/B1’B2’値の算出:
 スパンボンド不織布を構成する繊維横断面をキーエンス社製走査型電子顕微鏡(型番:VE7800)により撮影し、次の(A)~(D)の手順に従い、線分A1’A2’および線分B1’B2’の長さ(A1’A2’≧B1’B2’とする)を測定し、比率A1’A2’/B1’B2’値を算出した。この比率における各種線分の測定は、画像撮影に使用した顕微鏡ソフトウエアに付属されている計測機能を使用して算出した。不織布の異なる位置から採取した繊維3本に対して測定し、その平均を求めた。
(A)繊維横断面外周上の2点を結ぶ線分の内、最も長い線分を引き、その線分と繊維断面外周との接点をA、Bとする。
(B)線分ABの長さをDとし、AからD/4の距離にある点をA’とし、同じくBからD/4の距離にある点をB’とする。
(C)上記のA’を通り線分ABと垂直な直線と繊維横断面の接点を、A1’およびA2’とする。
(D)上記のB’を通り線分ABと垂直な直線と繊維横断面の接点を、B1’およびB2’とする。
(1) Calculation of ratio A1′A2 ′ / B1′B2 ′ value in fiber cross section:
The cross section of the fiber constituting the spunbonded nonwoven fabric was photographed with a scanning electron microscope (model number: VE7800) manufactured by Keyence Corporation, and line segments A1′A2 ′ and line segment B1 ′ were followed according to the following procedures (A) to (D). The length of B2 ′ (A1′A2 ′ ≧ B1′B2 ′) was measured, and the ratio A1′A2 ′ / B1′B2 ′ value was calculated. The measurement of various line segments at this ratio was calculated using a measurement function attached to the microscope software used for image capturing. Measurement was performed on three fibers collected from different positions of the nonwoven fabric, and the average was obtained.
(A) The longest line segment is drawn out of the line segments connecting two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are designated as A and B.
(B) The length of the line segment AB is D, a point at a distance of D / 4 from A is A ′, and a point at a distance of B / 4 from D / 4 is also B ′.
(C) Let A1 'and A2' be the contact points of the straight line passing through the above A 'and perpendicular to the line segment AB and the fiber cross section.
(D) Let B1 'and B2' be the contact points of the straight line passing through B 'and perpendicular to the line segment AB and the fiber cross section.
 (2)繊維断面における配向パラメータの差(Imax-Imin):
 測定装置には、愛宕物産製トリプルラマン分光装置T-64000を用いた。測定条件は、次のとおりで実施した。
・測定モード:顕微ラマン(偏光測定)
・対物レンズ:長焦点90倍(NA=0.90)
・ビーム径:51μm、光源:Arレーザー/514.5nm
・レーザーパワー:100mW
・回折格子:Single1800gr/mm
・スリット:100μm
・クロススリット:200μm
・検出器:CCD/Jobin Yvon 1024×256
・積算時間:120秒
 スパンボンド不織布から繊維1本を取り出し、繊維断面円周方向に等分割した4点において、繊維側面よりラマンスペクトルをそれぞれ測定した。PPの場合は、各測定点における810cm-1および840cm-1のラマンバンドの強度I810およびI840を算出し、その比率I810/I840を、配向パラメータIとして算出した。また、PEの場合は、1130cm-1および1060cm-1のラマンバンドの強度I1130およびI1060を算出し、その比率I1130/I1060配向パラメータIとして算出した。各測定点における配向パラメータの最大値Imaxと最小値Iminを求め、その差(Imax-Imin)を算出した。スパンボンド不織布の異なる位置から採取した繊維1本に対して同様に測定し、2点の平均を求め、配向パラメータの差とした。
(2) Orientation parameter difference (I max −I min ) in the fiber cross section:
As a measuring device, a triple Raman spectroscopic device T-64000 manufactured by Ehime Bussan was used. The measurement conditions were as follows.
・ Measurement mode: Micro Raman (polarization measurement)
Objective lens: Long focal length 90 times (NA = 0.90)
Beam diameter: 51 μm, light source: Ar + laser / 514.5 nm
・ Laser power: 100mW
Diffraction grating: Single 1800 gr / mm
・ Slit: 100 μm
・ Cross slit: 200μm
Detector: CCD / Jobin Yvon 1024 × 256
-Integration time: 120 seconds One fiber was taken out from the spunbond nonwoven fabric, and the Raman spectrum was measured from the fiber side surface at four points equally divided in the fiber cross-section circumferential direction. For PP, it calculates the intensity I 810 and I 840 of the Raman bands of 810 cm -1 and 840 cm -1 at each measurement point, the ratio I 810 / I 840, was calculated as the orientation parameter I. In the case of PE, Raman band intensities I 1130 and I 1060 at 1130 cm −1 and 1060 cm −1 were calculated and calculated as the ratio I 1130 / I 1060 orientation parameter I. The maximum value I max and the minimum value I min of the orientation parameters at each measurement point were determined, and the difference (I max −I min ) was calculated. It measured similarly about one fiber extract | collected from the different position of a spun bond nonwoven fabric, calculated | required the average of 2 points | pieces, and made it the difference of the orientation parameter.
 本発明における配向パラメータの測定位置について説明する。図3は、本発明のスパンボンド不織布を構成するポリオレフィン繊維の横断面を例示しており、配向パラメータ測定位置10の一例を示している。図3の(a)と(b)は本発明における異なる2つの具体的な例を示している。図3に示す配向パラメータ測定位置10は本発明の配向パラメータを測定する4点の位置を示した一例であり、発明の形態により測定位置は適宜選択することができる。配向パラメータ測定位置10で示す測定位置同士を繊維円周上の等間隔に4点とすることが重要であり、そのような測定位置とすることにより、本発明における配向パラメータの差の算出が可能となる。 The measurement position of the orientation parameter in the present invention will be described. FIG. 3 illustrates a cross section of the polyolefin fiber constituting the spunbonded nonwoven fabric of the present invention, and shows an example of the orientation parameter measurement position 10. FIGS. 3A and 3B show two different specific examples in the present invention. The alignment parameter measurement position 10 shown in FIG. 3 is an example showing the positions of four points at which the alignment parameter of the present invention is measured, and the measurement position can be appropriately selected according to the form of the invention. It is important that the measurement positions indicated by the alignment parameter measurement positions 10 are four points at equal intervals on the fiber circumference. By using such measurement positions, the difference in the alignment parameters in the present invention can be calculated. It becomes.
 (3)繊維の捲縮数:
 マイクロスコープにより撮影した繊維の画像から、繊維の捲縮数を測定した。単位長さ当たりの繊維の山と谷の数全部数え、その合計を2で割り、25mm当たりの数を捲縮数とした。繊維10本について測定し、その平均を求めた。捲縮数が50個/25mm以上を捲縮度(◎)とし、捲縮数が25個/25mm以上50個/25mm未満を捲縮度(○)とし、捲縮数が0個/25mm(捲縮しないもの)~25個/25mm未満を捲縮度(×)とした。捲縮数が25個/25mm以上のもの(◎および〇)を、合格とした。
(3) Number of crimps of fiber:
The number of crimps of the fiber was measured from the image of the fiber taken with a microscope. The total number of peaks and troughs of fibers per unit length was counted, the total was divided by 2, and the number per 25 mm was the number of crimps. Ten fibers were measured and the average was determined. The number of crimps is 50/25 mm or more as the degree of crimp (◎), the number of crimps is 25/25 mm or more and less than 50/25 mm is the degree of crimp (◯), and the number of crimps is 0/25 mm ( Crimps (x) are from those not crimped) to less than 25 pieces / 25 mm. Those having a number of crimps of 25 pieces / 25 mm or more (◎ and ○) were accepted.
 (4)スパンボンド不織布の目付:
 スパンボンド不織布の目付は、JIS L1913(2010年)の6.2「単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m当たりの質量(g/m)で表した。
(4) Fabric weight of spunbond nonwoven fabric:
Based on 6.2 "mass per unit area" of JIS L1913 (2010), three pieces of 20 cm x 25 cm test pieces were collected per 1 m width of the sample, and the basis weight of the spunbond nonwoven fabric was measured. The mass (g) was measured, and the average value was expressed in terms of mass per 1 m 2 (g / m 2 ).
 (5)スパンボンド不織布の厚さ:
 JIS L 1908(2010年)に準拠して、スパンボンド不織布の厚さを測定した。2500mmの面積を有するプレッサーフット準備する。プレッサーフットの直径の 1.75 倍以上の大きさの試験片について、一定時間2kPaの圧力を加えた後、厚さを測定する。試験片10枚分の平均値を算出して、その値を厚みとした。この数値が高いほど、嵩高性に優れると評価した。
(5) Thickness of spunbond nonwoven fabric:
Based on JIS L 1908 (2010), the thickness of the spunbonded nonwoven fabric was measured. A presser foot having an area of 2500 mm 2 is prepared. For a test piece having a size of 1.75 times the diameter of the presser foot, a pressure of 2 kPa is applied for a certain time, and then the thickness is measured. The average value for 10 test pieces was calculated, and the value was taken as the thickness. It was evaluated that the higher this value, the better the bulkiness.
 (6)スパンボンド不織布の見掛密度:
 測定した上記のスパンボンド不織布の目付と厚さから、スパンボンド不織布の見掛密度を算出した。この数値が低いほど、嵩高性に優れていると評価した。
(6) Apparent density of spunbond nonwoven fabric:
The apparent density of the spunbonded nonwoven fabric was calculated from the measured basis weight and thickness of the spunbonded nonwoven fabric. The lower this value, the better the bulkiness.
 (実施例1)
 原料に、メルトフローレート(MFR)が60g/10分(荷重;2160g、温度;230℃)で、融点が162℃のポリプロピレン(PP)樹脂を用い、これを押出機で溶融し、紡糸温度235℃で、孔径がφ0.38mmとφ0.27mmで両孔の中心距離が0.8mmの形状を有する紡糸口金(ダンベル型ノズル)から単孔吐出量0.6g/分で、図1に示された断面形状の長繊維を紡出した。
Example 1
A polypropylene (PP) resin having a melt flow rate (MFR) of 60 g / 10 min (load: 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. was melted with an extruder, and a spinning temperature of 235 was used. As shown in FIG. 1, a single hole discharge rate is 0.6 g / min from a spinneret (dumbbell type nozzle) having a shape with a hole diameter of φ0.38 mm and φ0.27 mm and a center distance between both holes of 0.8 mm. Long fibers with different cross-sectional shapes were spun.
 紡出された長繊維群の側面に、相対する2方向から冷却風を当てて冷却した後、エジェクターに通しエジェクター圧力0.17MPaでエジェクターから圧縮エアを噴射させ、繊維群を牽引し、延伸し、捲縮を発現させた。その後、移動するネット上に、糸状を捕集して不織ウェブ化した。引き続き、金属製の水玉柄の彫刻がなされた上ロール、および金属製でフラットな下ロールから構成される上下一対の接着面積10%のエンボスロールを用いて、線圧が20kgf/cm、熱接着温度135℃で熱接着処理し、目付が20g/mのスパンボンド不織布を得た。得られたスパンボンド不織布を構成する繊維断面の比率A1’A2’/B1’B2’の値、スパンボンド不織布を構成する繊維の繊維断面における配向パラメータの差(Imax-Imin)、捲縮数、不織布の目付、厚みおよび見掛密度を測定した。得られた評価結果を、表1に示す。 After cooling the sides of the spun long fiber group by applying cooling air from two opposite directions, the compressed air is injected from the ejector at an ejector pressure of 0.17 MPa through the ejector, and the fiber group is pulled and stretched. Crimp was expressed. Thereafter, the filament was collected on a moving net to form a nonwoven web. Subsequently, using an upper roll engraved with a metal polka dot pattern and a pair of upper and lower embossed rolls made of metal and a flat lower roll, a linear pressure of 20 kgf / cm and thermal bonding are used. A heat bonding treatment was performed at a temperature of 135 ° C. to obtain a spunbonded nonwoven fabric having a basis weight of 20 g / m 2 . Ratio of fiber cross-section ratio A1′A2 ′ / B1′B2 ′ constituting the obtained spunbond nonwoven fabric, difference in orientation parameters (I max −I min ) in the fiber cross-section of fibers constituting the spunbond nonwoven fabric, crimp The number, the basis weight of the nonwoven fabric, the thickness, and the apparent density were measured. The obtained evaluation results are shown in Table 1.
 (実施例2)
 原料にMFRが35g/10分(荷重;2160g、温度;230℃)で、融点が162℃であるポリプロピレン(PP)樹脂を用いたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた評価結果を、表1に示す。
(Example 2)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a polypropylene (PP) resin having an MFR of 35 g / 10 min (load; 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. was used as a raw material. It was. The obtained evaluation results are shown in Table 1.
 (実施例3)
 原料にMFRが33g/10分(荷重;2160g、温度;230℃)、融点が149℃である共重合ポリプロピレン(共重合PP)樹脂を用いたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた評価結果を、表1に示す。
(Example 3)
Spunbond was carried out in the same manner as in Example 1 except that a copolymer polypropylene (copolymer PP) resin having an MFR of 33 g / 10 min (load; 2160 g, temperature: 230 ° C.) and a melting point of 149 ° C. was used as the raw material. A nonwoven fabric was obtained. The obtained evaluation results are shown in Table 1.
 (実施例4)
 原料にMFRが18g/10分(荷重;2160g、温度;190℃)で、融点が130℃である高密度ポリエチレン(HDPE)樹脂を用い、エンボスロールの熱接着温度を90℃にしたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた評価結果を、表1に示す。
Example 4
A high-density polyethylene (HDPE) resin having an MFR of 18 g / 10 min (load; 2160 g, temperature: 190 ° C.) and a melting point of 130 ° C. was used as the raw material, and the heat bonding temperature of the embossing roll was set to 90 ° C. A spunbonded nonwoven fabric was obtained in the same manner as in Example 1. The obtained evaluation results are shown in Table 1.
 (実施例5)
 原料の第一成分にMFRが60g/10分(荷重;2160g、温度;230℃)で、融点が162℃であるポリプロピレン(PP)樹脂と、第二成分にMFRが35g/10分(荷重;2160g、温度;230℃)で、融点が162℃のポリプロピレン樹脂用い、それぞれ別の押出機で溶融し、各成分の質量比が50:50となるように計量して、第一成分を吐出孔径φ0.38mm側に、第二成分を吐出孔径φ0.27mm側に導入して紡糸したこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた評価結果を、表1に示す。
(Example 5)
The first component of the raw material has an MFR of 60 g / 10 min (load; 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C., and the second component has an MFR of 35 g / 10 min (load; 2160 g, temperature: 230 ° C.), a polypropylene resin having a melting point of 162 ° C., melted in different extruders, weighed so that the mass ratio of each component was 50:50, and the first component was discharged A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the second component was introduced into the discharge hole diameter φ0.27 mm side and spun on the φ0.38 mm side. The obtained evaluation results are shown in Table 1.
 (実施例6)
 原料の第一成分に原料にMFRが60g/10分(荷重;2160g、温度;230℃)、融点が162℃であるポリプロピレン(PP)樹脂を用い、第二成分に原料にMFRが33g/10分(荷重;2160g、温度;230℃)で、融点が149℃の共重合ポリプロピレン(共重合PP)樹脂を用いたこと以外は、実施例5と同様にしてスパンボンド不織布を得た。得られた評価結果を、表1に示す。
(Example 6)
A polypropylene (PP) resin having an MFR of 60 g / 10 minutes (load; 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. is used as the first component of the raw material, and an MFR of 33 g / 10 is used as the second component. A spunbonded nonwoven fabric was obtained in the same manner as in Example 5 except that a copolymer polypropylene (copolymerized PP) resin having a melting point of 149 ° C. was used for a minute (load; 2160 g, temperature: 230 ° C.). The obtained evaluation results are shown in Table 1.
 (実施例7)
 使用する口金を孔径がφ0.35mmとφ0.32mmで、両孔の中心距離が0.8mmの吐出形状を有する紡糸口金としたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた結果を、表1に示す。
(Example 7)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the spinneret used had a discharge diameter of φ0.35 mm and φ0.32 mm, and the center distance between both holes was 0.8 mm. . The obtained results are shown in Table 1.
 (実施例8)
 原料にMFRが35g/10分(荷重;2160g、温度;230℃)で、融点が162℃のポリプロピレン(PP)樹脂と、MFRが25g/10分(荷重;2160g、温度;230℃)の共重合ポリプロピレン(PP)樹脂を、各原原料の質量比率が88:12となるように配合した混合原料を用いたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた結果を表2に示す。
(Example 8)
The raw material has a MFR of 35 g / 10 min (load: 2160 g, temperature: 230 ° C.) and a melting point of 162 ° C. polypropylene (PP) resin and MFR of 25 g / 10 min (load: 2160 g, temperature: 230 ° C.). A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a mixed raw material in which a polymerized polypropylene (PP) resin was blended so that the mass ratio of each raw material was 88:12 was used. The obtained results are shown in Table 2.
 (実施例9)
 原料にMFRが30g/10分(荷重;2160g、温度;190℃)で、融点が130℃の線状低密度ポリエチレン(LLDPE)を用いたこと以外は、実施例4と同様にしてスパンボンド不織布を得た。得られた結果を、表2に示す。
Example 9
A spunbonded nonwoven fabric in the same manner as in Example 4 except that linear low density polyethylene (LLDPE) having an MFR of 30 g / 10 min (load; 2160 g, temperature: 190 ° C.) and a melting point of 130 ° C. was used as a raw material. Got. The results obtained are shown in Table 2.
 (実施例10)
 繊維群の冷却を自然冷却にしたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた結果を、表2に示す。
(Example 10)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the cooling of the fiber group was natural cooling. The results obtained are shown in Table 2.
 (比較例1)
 使用する口金の吐出孔径を従来公知である丸形形状(吐出孔径φ0.5mm)にしたこと以外は、実施例5と同様にしてスパンボンド不織布を得た。得られた評価結果を、表2に示す。
(Comparative Example 1)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 5 except that the discharge hole diameter of the die used was changed to a conventionally known round shape (discharge hole diameter φ0.5 mm). The evaluation results obtained are shown in Table 2.
 (比較例2)
 使用する口金の吐出孔径を、従来公知である丸形形状(吐出孔径φ0.5mm)にしたこと以外は、実施例6と同様にしてスパンボンド不織布を得た。得られた評価結果を、表2に示す。
(Comparative Example 2)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 6 except that the discharge hole diameter of the die used was changed to a conventionally known round shape (discharge hole diameter φ0.5 mm). The evaluation results obtained are shown in Table 2.
 (比較例3)
 吐出形状が従来公知であるV型の形状の口金から吐出させたこと以外は、実施例1と同様にしてスパンボンド不織布を得た。得られた評価結果を、表2に示す。
(Comparative Example 3)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the discharge shape was discharged from a conventionally known V-shaped base. The evaluation results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の実施例1~4および8~10は、原料が単一成分にもかかわらず、比率A1’A2’/B1’B2’値が1.05以上であることから、繊維横断面に構造差ができることにより繊維が捲縮しており、得られたスパンボンド不織布は嵩高性に非常に優れており、衛生材料の表面部材として非常に好適に用いられるものであった。また、繊維断面の配向パラメータの差が0.6以上と十分な構造差ができており、繊維は捲縮し得られたスパンボンド不織布は嵩高性に非常に優れており、衛生材料の表面部材として非常に好適に用いられるものであった。 In Examples 1 to 4 and 8 to 10 of the present invention, the ratio A1′A2 ′ / B1′B2 ′ value is 1.05 or more even though the raw material is a single component. Due to the difference, the fibers were crimped, and the obtained spunbonded nonwoven fabric was very excellent in bulkiness and was very suitably used as a surface member of a sanitary material. In addition, the difference in the orientation parameters of the fiber cross section is 0.6 or more and a sufficient structural difference is made, and the spunbond nonwoven fabric obtained by crimping the fiber is very bulky and is a surface member of a sanitary material. It was very suitably used as.
 また、本発明の実施例5および6は、比較例1および2に比較して、繊維横断面に構造差ができることにより捲縮数が多く、スパンボンド不織布の嵩高性に優れており衛生材料の表面部材として非常に好適に用いられるものであった。また、配向パラメータの差が大きく、捲縮数も多く、不織布の嵩高性に優れており衛生材料の表面部材として非常に好適に用いられるものであった。 In addition, Examples 5 and 6 of the present invention have a larger number of crimps due to structural differences in the fiber cross section compared to Comparative Examples 1 and 2, and the bulkiness of the spunbonded nonwoven fabric is excellent, and the hygienic material It was used very suitably as a surface member. Further, the difference in orientation parameters is large, the number of crimps is large, the bulkiness of the nonwoven fabric is excellent, and it is very suitably used as a surface member for sanitary materials.
 表1の実施例7は実施例1との比較において、比率A1’A2’/B1’B2’値が小さく、得られた繊維の捲縮数と不織布の嵩高性は劣るものの、衛生材料の表面部材として好適に用いられるものであった。また、実施例7は実施例1と対比して、配向パラメータの差が小さく、得られた繊維の捲縮数、スパンボンド不織布の嵩高性が劣るものの、衛生材料の表面部材として好適に用いられるものであった。 Example 7 in Table 1 has a small ratio A1′A2 ′ / B1′B2 ′ value in comparison with Example 1, and the surface of the sanitary material although the number of crimps of the obtained fiber and the bulkiness of the nonwoven fabric are inferior. It was used suitably as a member. Moreover, Example 7 is suitably used as a surface member of a sanitary material, although the difference in the orientation parameter is small compared to Example 1, and the number of crimps of the obtained fiber and the bulkiness of the spunbonded nonwoven fabric are inferior. It was a thing.
 これに対し、比較例3は異形断面ではあるが、繊維断面構造差はなく捲縮は発現せず、不織布の嵩高性に劣っていた。また、配向パラメータの差はほとんどなく繊維に捲縮は発現せず、スパンボンド不織布の嵩高性に劣っていた。 On the other hand, although Comparative Example 3 had a deformed cross section, there was no difference in fiber cross-sectional structure, no crimp was developed, and the bulkiness of the nonwoven fabric was inferior. Further, there was almost no difference in the orientation parameters, and no crimp was developed in the fiber, and the bulkiness of the spunbonded nonwoven fabric was inferior.
A、B:繊維断面外周上の2点を結ぶ線分の内、最も長い線分と繊維横断面外周との接点
D:線分ABの長さ
A’:AからD/4の距離にある点
B’:BからD/4の距離にある点
A1’、A2’:A’を通り線分ABと垂直な直線と繊維横断面の接点
B1’、B2’:B’を通り線分ABと垂直な直線と繊維横断面の接点
10:配向パラメータ測定位置
20:吐出孔(大孔径側)
30:吐出孔(小孔径側)
A, B: The contact point between the longest line segment connecting the two points on the outer periphery of the fiber cross section and the outer periphery of the fiber cross section D: Length of the line segment AB A ′: A distance from A to D / 4 Point B ′: Points A1 ′, A2 ′: A line passing through A ′ at a distance of D / 4 from B and straight line perpendicular to line segment AB and contact points B1 ′, B2 ′: B ′ passing through line cross section AB Straight line and contact point of fiber cross section 10: Orientation parameter measurement position 20: Discharge hole (large hole diameter side)
30: Discharge hole (small hole diameter side)

Claims (5)

  1.  ポリオレフィン繊維を主成分とする不織布であって、前記ポリオレフィン繊維の横断面において、下記(1)~(4)の方法で求めることができる線分A1’A2’と線分B1’B2’(A1’A2’≧B1’B2’とする。)の比率A1’A2’/B1’B2’値が、1.05以上であることを特徴とするスパンボンド不織布。
    (1)繊維横断面外周上の2点を結ぶ線分の内、最も長い線分を引き、その線分と繊維横断面外周との接点を、AおよびBとする、
    (2)線分ABの長さをDとし、AからD/4の距離にある点をA’とし、同じくBからD/4の距離にある点をB’とする、
    (3)A’を通り線分ABと垂直な直線と繊維横断面の接点を、A1’およびA2’とする、
    (4)B’を通り線分ABと垂直な直線と繊維横断面の接点を、B1’およびB2’とする。
    A non-woven fabric mainly composed of polyolefin fibers, wherein a line segment A1'A2 'and a line segment B1'B2' (A1) that can be obtained by the following methods (1) to (4) in the cross section of the polyolefin fiber: The ratio A1′A2 ′ / B1′B2 ′ of “A2” ≧ B1′B2 ′) is 1.05 or more.
    (1) The longest line segment is drawn among the line segments connecting the two points on the outer periphery of the fiber cross section, and the contact points between the line segment and the outer periphery of the fiber cross section are A and B.
    (2) The length of the line segment AB is D, a point at a distance D / 4 from A is A ′, and a point at a distance D / 4 from B is B ′.
    (3) Let A1 'and A2' be the contact points of the straight line passing through line A 'and perpendicular to line segment AB and the fiber cross section.
    (4) Let B1 'and B2' be the contact points between the straight line passing through B 'and perpendicular to the line segment AB and the fiber cross section.
  2.  ポリオレフィン繊維を主成分とする不織布であって、繊維断面円周方向に等分割した4点において、ラマン分光を用いて繊維側面から測定して得られる配向パラメータの最大値Imaxと最小値Iminの差が0.6以上であることを特徴とするスパンボンド不織布。 A non-woven fabric mainly composed of polyolefin fibers, and at four points equally divided in the fiber cross-section circumferential direction, the maximum value I max and the minimum value I min of orientation parameters obtained by measuring from the fiber side surface using Raman spectroscopy A spunbonded nonwoven fabric characterized by having a difference of 0.6 or more.
  3.  ポリオレフィン繊維が単一成分で構成されてなることを特徴とする請求項1または2記載のスパンボンド不織布。 3. The spunbonded nonwoven fabric according to claim 1 or 2, wherein the polyolefin fiber is composed of a single component.
  4.  ポリオレフィン樹脂をダンベル型ノズルから吐出させた繊維群の側面に、相対する2方向から冷却風を当てて冷却することを特徴とする請求項1から3のいずれかに記載のスパンボンド不織布の製造方法。 The method for producing a spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein the side surface of the fiber group discharged from the dumbbell-shaped nozzle is cooled by applying cooling air from two opposite directions. .
  5.  ポリオレフィン樹脂をダンベル型ノズルから吐出させた繊維群に対し、自然冷却することを特徴とする請求項1から3のいずれかに記載のスパンボンド不織布の製造方法。 The method for producing a spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein the fiber group in which the polyolefin resin is discharged from the dumbbell nozzle is naturally cooled.
PCT/JP2017/035941 2016-11-17 2017-10-03 Spun-bonded nonwoven fabric and method for producing same WO2018092444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558584A JP6904260B2 (en) 2016-11-17 2017-10-03 Spunbonded non-woven fabric and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-224188 2016-11-17
JP2016-224187 2016-11-17
JP2016224188 2016-11-17
JP2016224187 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018092444A1 true WO2018092444A1 (en) 2018-05-24

Family

ID=62145565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035941 WO2018092444A1 (en) 2016-11-17 2017-10-03 Spun-bonded nonwoven fabric and method for producing same

Country Status (3)

Country Link
JP (1) JP6904260B2 (en)
TW (1) TWI753968B (en)
WO (1) WO2018092444A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010357A1 (en) * 2019-07-16 2021-01-21 東レ株式会社 Spun-bonded nonwoven fabric and laminated nonwoven fabric
WO2021065446A1 (en) * 2019-09-30 2021-04-08 東レ株式会社 Layered stretchable nonwoven fabric, hygenic material, and layered stretchable nonwoven fabric production method
WO2022196527A1 (en) * 2021-03-18 2022-09-22 東レ株式会社 Spunbond nonwoven fabric, laminate nonwoven fabric, manufacturing method of these and sanitary material
WO2023090199A1 (en) * 2021-11-18 2023-05-25 東レ株式会社 Spun-bonded non-woven fabric

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201566A (en) * 1988-01-30 1989-08-14 Asahi Chem Ind Co Ltd Bulky spun-bond nonwoven fabric
JPH04174753A (en) * 1990-11-02 1992-06-22 Teijin Ltd Nonwoven filament cloth
JPH0531137A (en) * 1991-02-02 1993-02-09 Oji Paper Co Ltd Bulky non-woven fabric being suitable for surface material of hygienic material
JPH05156562A (en) * 1991-12-05 1993-06-22 Teijin Ltd Nonwoven fabric comprised of filaments
JPH07279028A (en) * 1994-04-01 1995-10-24 Toyobo Co Ltd Nonwoven fabric and its production
JP2007046224A (en) * 2006-10-20 2007-02-22 Mitsui Chemicals Inc Method for producing nonwoven fabric and apparatus therefor
JP2014077225A (en) * 2012-09-21 2014-05-01 Toray Ind Inc Polyphenylene sulfide fiber and nonwoven fabric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813244A (en) * 1994-06-28 1996-01-16 Teijin Ltd Polyester flat cross-section yarn having turning part and its production
JPH0978382A (en) * 1995-09-04 1997-03-25 Toyobo Co Ltd Polyester combined filament yarn
JP2001303366A (en) * 2000-04-27 2001-10-31 Teijin Ltd Polyester modified cross-section thick and thin yarn
DE102006044495A1 (en) * 2006-09-21 2008-04-17 Fiberweb Corovin Gmbh Lightweight spunbonded fabric with special barrier properties
CN201317836Y (en) * 2008-10-27 2009-09-30 中国水产科学研究院东海水产研究所 Polyolefine fiberized flat filament

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201566A (en) * 1988-01-30 1989-08-14 Asahi Chem Ind Co Ltd Bulky spun-bond nonwoven fabric
JPH04174753A (en) * 1990-11-02 1992-06-22 Teijin Ltd Nonwoven filament cloth
JPH0531137A (en) * 1991-02-02 1993-02-09 Oji Paper Co Ltd Bulky non-woven fabric being suitable for surface material of hygienic material
JPH05156562A (en) * 1991-12-05 1993-06-22 Teijin Ltd Nonwoven fabric comprised of filaments
JPH07279028A (en) * 1994-04-01 1995-10-24 Toyobo Co Ltd Nonwoven fabric and its production
JP2007046224A (en) * 2006-10-20 2007-02-22 Mitsui Chemicals Inc Method for producing nonwoven fabric and apparatus therefor
JP2014077225A (en) * 2012-09-21 2014-05-01 Toray Ind Inc Polyphenylene sulfide fiber and nonwoven fabric

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010357A1 (en) * 2019-07-16 2021-01-21 東レ株式会社 Spun-bonded nonwoven fabric and laminated nonwoven fabric
WO2021065446A1 (en) * 2019-09-30 2021-04-08 東レ株式会社 Layered stretchable nonwoven fabric, hygenic material, and layered stretchable nonwoven fabric production method
CN114450154A (en) * 2019-09-30 2022-05-06 东丽株式会社 Laminated stretchable nonwoven fabric, sanitary material, and method for producing laminated stretchable nonwoven fabric
WO2022196527A1 (en) * 2021-03-18 2022-09-22 東レ株式会社 Spunbond nonwoven fabric, laminate nonwoven fabric, manufacturing method of these and sanitary material
JP7168125B1 (en) * 2021-03-18 2022-11-09 東レ株式会社 Spunbond nonwovens and laminated nonwovens, their production methods and sanitary materials
WO2023090199A1 (en) * 2021-11-18 2023-05-25 東レ株式会社 Spun-bonded non-woven fabric
JP7409524B2 (en) 2021-11-18 2024-01-09 東レ株式会社 spunbond nonwoven fabric

Also Published As

Publication number Publication date
JP6904260B2 (en) 2021-07-14
TW201829868A (en) 2018-08-16
JPWO2018092444A1 (en) 2019-10-17
TWI753968B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP5289459B2 (en) Crimped composite fiber and nonwoven fabric made of the fiber
WO2018092444A1 (en) Spun-bonded nonwoven fabric and method for producing same
JP5484564B2 (en) Crimped composite fiber and nonwoven fabric made of the fiber
WO2012153802A1 (en) Crimped composite fiber and non-woven fabric comprising same
JP7247884B2 (en) spunbond nonwoven fabric
CN113677516A (en) Nonwoven fabric laminate and sanitary product
JP7110795B2 (en) spunbond nonwoven fabric
JP7156033B2 (en) CRIMPED FIBERS, SPUNBOND NONWOVENS AND METHOD OF MANUFACTURE THEREOF
JP2022132044A (en) Spun-bonded nonwoven fabric, and core-sheath type conjugate fiber
JP7035360B2 (en) Spunbond non-woven fabric
CN113348277B (en) Spun-bonded nonwoven fabric, method for producing spun-bonded nonwoven fabric, and embossing roll
WO2020085502A1 (en) Nonwoven cloth laminated body, stretchable nonwoven cloth laminated body, fiber product, absorbent article, and sanitary mask
JP7258866B2 (en) Nonwoven fabric and method of forming the same
JP2019026956A (en) Crimped fiber, spunbonded non-woven fabric, and method for manufacturing crimped fiber
JP7172250B2 (en) spunbond nonwoven fabric
TWI803245B (en) Spunbonded nonwoven fabrics and laminated nonwoven fabrics, processes for their manufacture and hygienic materials
JP7409524B2 (en) spunbond nonwoven fabric
JP2019094584A (en) Nonwoven fabric
WO2022181590A1 (en) Spunbond nonwoven fabric and conjugated fiber
JP6798223B2 (en) Spun bond non-woven fabric
WO2022181591A1 (en) Spun-bonded nonwoven fabric and sheath-core type composite fiber
JP2021161564A (en) Spunbonded nonwoven fabrics, sanitary materials, and method for drawing of spunbonded nonwoven fabric
JP2019007112A (en) Stretchable nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017558584

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870757

Country of ref document: EP

Kind code of ref document: A1