WO2018092186A1 - Flow path switching valve and air conditioner using same - Google Patents

Flow path switching valve and air conditioner using same Download PDF

Info

Publication number
WO2018092186A1
WO2018092186A1 PCT/JP2016/083802 JP2016083802W WO2018092186A1 WO 2018092186 A1 WO2018092186 A1 WO 2018092186A1 JP 2016083802 W JP2016083802 W JP 2016083802W WO 2018092186 A1 WO2018092186 A1 WO 2018092186A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
valve
path switching
refrigerant
pressure
Prior art date
Application number
PCT/JP2016/083802
Other languages
French (fr)
Japanese (ja)
Inventor
智一 川越
幸志 東
要平 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/083802 priority Critical patent/WO2018092186A1/en
Priority to JP2018550894A priority patent/JP6605156B2/en
Publication of WO2018092186A1 publication Critical patent/WO2018092186A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously

Definitions

  • the present invention relates to a flow path switching valve applied to an air conditioner such as a building multi-air conditioner and an air conditioner using the same.
  • the flow path switching valve described in Patent Document 1 includes an electromagnetic shut-off valve that shuts off the flow path from the indoor unit side to the low-pressure pipe side, and an electromagnetic valve that shuts off the flow path from the high-pressure gas pipe side to the indoor unit side. And a shut-off valve.
  • a thin flow path communicating from the indoor unit side to the low pressure pipe side is provided in the flow path switching valve.
  • the flow path switching valve further includes an electromagnetic cutoff valve that blocks the flow path. That is, the flow path switching valve includes three flow paths and three electromagnetic shut-off valves.
  • the flow path switching valve since the above-described flow path switching valve has three electromagnetic shut-off valves, it is necessary to install the shut-off valves at the front and rear. Also, considering the accessibility when exchanging the coil and valve for driving the shut-off valve, the flow path switching valve can be easily accessed to the shut-off valves installed both front and rear, It is necessary to arrange structures such as piping and sheet metal. For this reason, the housing size of the branch unit is increased, and it is difficult to reduce the size. Thereby, for example, when installing a branch unit on the ceiling of a building or the like, if the height of the ceiling behind is low, it becomes difficult to install the branch unit, and the area of the sheet metal that forms the outer shell increases, There is a problem that the cost increases.
  • such an electromagnetic shut-off valve generally uses an electromagnetic valve coil that is driven at a voltage of about 200 V.
  • an arc is generated in this electromagnetic valve coil, there is a risk of ignition. Therefore, it is necessary to form the outer structure of the branch unit using a material such as a sheet metal that is less likely to burn, and the drain pan or the surrounding exterior cannot be changed to a material such as foamed polystyrene having combustibility although it is inexpensive. . Thereby, dew condensation occurs due to increased airtightness, and there is a problem that the generation of drain water due to this dew condensation cannot be suppressed.
  • the present invention has been made in view of the above problems, and provides a flow path switching valve capable of improving the flexibility of installation and improving workability such as maintenance, and an air conditioner using the same.
  • the purpose is to do.
  • the flow path switching valve according to the present invention is provided between a gas pipe through which refrigerant flows in and out and a low pressure pipe through which refrigerant flows out, and a first cutoff valve that allows or blocks the flow of the refrigerant, and the gas pipe And a high pressure gas pipe into which the refrigerant flows, and is connected to at least the gas pipe, the low pressure pipe, and the first cutoff valve, which allows or blocks the flow of the refrigerant.
  • a drive circuit for switching the connection between the gas pipe, the low-pressure pipe and the first shut-off valve, and a drive circuit for driving the flow switch circuit Connects the flow path communicating with the first shut-off valve in the flow path switching circuit and the flow path communicating with the low-pressure pipe so that the refrigerant flowing into the first shut-off valve is drawn into the low-pressure pipe.
  • the air conditioner of the present invention by controlling the shutoff valve based on the operation of the flow path switching circuit, it is possible to improve the degree of freedom of installation and improve workability such as maintenance. .
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a flow path switching valve according to Embodiment 1.
  • FIG. It is the schematic which shows an example of the structure of the flow-path switching valve shown in FIG.
  • FIG. It is the schematic which shows the other example of the structure of the flow-path switching valve shown in FIG.
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of a flow path switching valve according to Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of a flow path switching valve according to Embodiment 3.
  • FIG. It is the schematic which shows an example of the structure of the flow-path switching valve shown in FIG. It is the schematic which shows the state of each flow path and cylinder in the flow path switching valve of FIG.
  • Embodiment 1 FIG.
  • the air conditioner according to Embodiment 1 is a cooling / heating simultaneous type air conditioner in which a plurality of indoor units can simultaneously perform both cooling operation and heating operation.
  • FIG. 1 is a schematic diagram illustrating an installation example of the air conditioner 1 according to the first embodiment.
  • the air conditioner 1 includes an outdoor unit 10 as a heat source unit, a plurality of indoor units 20A and 20B, and a branch unit interposed between the outdoor unit 10 and the plurality of indoor units 20A and 20B. 30.
  • the outdoor unit 10 and the branch unit 30 are connected by a high pressure pipe 40 and a low pressure pipe 50.
  • Each of the branch unit 30 and the plurality of indoor units 20A and 20B is connected by an indoor unit side gas pipe 60 and a refrigerant pipe 70. Thereby, a refrigerant circuit in which the refrigerant circulates in each pipe is formed.
  • indoor unit 20 two indoor units 20A and 20B are connected to the branch unit 30.
  • indoor unit 20 when it is not necessary to particularly distinguish the indoor units 20A and 20B, they are simply referred to as “indoor unit 20” as appropriate. Further, when referred to as “indoor unit 20”, it includes both one or a plurality.
  • the outdoor unit 10 is usually installed in a space outside the building 2 such as a building, for example, an outdoor space 3 such as a rooftop.
  • the outdoor unit 10 generates cold or warm heat, and supplies the generated cold or warm heat to the indoor unit 20 via the branch unit 30.
  • the indoor unit 20 uses cooling or heating supplied from the outdoor unit 10 via the branch unit 30 to convert cooling air or heating air into a space inside the building 2, such as a living room or a server room. It supplies to a certain indoor space 4.
  • the indoor unit 20 is installed in a space 5 such as the back of the ceiling, which is inside the building 2 but is different from the indoor space 4.
  • the indoor unit 20 can also be used, for example as floor heating which is installed under the floor and warms a floor surface with the heat supplied at the time of heating operation.
  • the branch unit 30 is configured as a housing different from the outdoor unit 10 and the indoor unit 20 so that it can be installed at a position different from the outdoor space 3 and the indoor space 4, for example, the space 5.
  • the branch unit 30 is connected to the outdoor unit 10 by a high-pressure pipe 40 and a low-pressure pipe 50, and is connected to each of the plurality of indoor units 20 by an indoor unit-side gas pipe 60 and a refrigerant pipe 70.
  • the branch unit 30 is for transmitting the cold or warm heat generated by the outdoor unit 10 to the indoor unit 20.
  • the number of indoor units 20 connected to the branch unit 30 is not limited to this example.
  • one indoor unit 20 may be connected, or three or more indoor units 20 may be connected.
  • a plurality of outdoor units 10 may be provided, and one or a plurality of indoor units 20 may be connected to the plurality of outdoor units 10. That is, the number of outdoor units 10 and indoor units 20 can be appropriately determined according to the scale of the building 2 where the air conditioner 1 is installed.
  • Non-azeotropic mixed refrigerant for example, a non-azeotropic mixed refrigerant, a pseudo-azeotropic mixed refrigerant, a single refrigerant, or the like can be used as the refrigerant circulating in the refrigerant circuit.
  • Non-azeotropic refrigerant mixtures include R-407C, which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a refrigerant having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • Examples of the pseudo azeotropic refrigerant mixture include R-410A and R-404A which are HFC refrigerants.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R-22, which is a single refrigerant.
  • Examples of the single refrigerant include R-22, which is an HCFC (hydrochlorofluorocarbon) refrigerant, and R-134a, which is an HFC refrigerant. Since this single refrigerant is not a mixture, it has the property of being easy to handle.
  • CO 2 carbon dioxide
  • propane isobutane
  • ammonia etc.
  • FIG. 2 is a schematic diagram illustrating an example of a circuit configuration of the air conditioner 1 illustrated in FIG. 1.
  • the air conditioner 1 is configured by one outdoor unit 10, one branch unit 30, and two indoor units 20A and 20B is shown.
  • the number of outdoor units 10 and indoor units 20 is not limited to this example.
  • the compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state.
  • the compressor 11 for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
  • the refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the refrigerant flow switching device 12 is not limited to the above-described four-way valve, and for example, other valves may be used in combination.
  • the heat source side heat exchanger 13 performs heat exchange between air (hereinafter referred to as “outdoor air” as appropriate) supplied by a blower such as a fan (not shown) and the refrigerant. Specifically, the heat source side heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. The heat source side heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • the check valve 15 c is provided in the second connection pipe 31 b that connects the high pressure pipe 40 and the low pressure pipe 50, and causes the refrigerant discharged from the compressor 11 to flow through the branch unit 30 during the heating operation.
  • the check valve 15d is provided in the high-pressure pipe 40 between the heat source side heat exchanger 13 and the branch unit 30, and causes the refrigerant to flow in the direction from the outdoor unit 10 to the branch unit 30 during the cooling operation.
  • the diaphragm devices 21A and 21B when it is not necessary to distinguish between the diaphragm devices 21A and 21B, they will be simply referred to as “the diaphragm device 21” as appropriate.
  • the use side heat exchangers 22A and 22B are simply referred to as “use side heat exchanger 22” as appropriate.
  • the expansion device 21” or “the use-side heat exchanger 22” each includes both one or a plurality.
  • the expansion device 21 decompresses and expands the refrigerant by adjusting the flow rate of the refrigerant.
  • the expansion device 21 is constituted by a valve capable of controlling the opening, such as an electronic expansion valve.
  • the diaphragm device 21 is not limited to this, and other diaphragm devices such as capillaries can also be used.
  • the use side heat exchanger 22 performs heat exchange between air and a refrigerant supplied by a blower such as a fan (not shown). Thereby, heating air or cooling air supplied to the indoor space 4 is generated.
  • the use-side heat exchanger 22 functions as an evaporator when the refrigerant carries cold heat during the cooling operation, and cools the air in the indoor space 4 that is the air-conditioning target space by cooling the air.
  • the use side heat exchanger 22 functions as a condenser when the refrigerant is transporting warm heat during the heating operation, and heats the air in the indoor space 4 to perform heating.
  • the gas-liquid separator 31 is connected to the high-pressure pipe 40 and to each of the inflow / outflow sides of the indoor unit 20.
  • the gas-liquid separator 31 has a function of separating the flowing refrigerant into a gas refrigerant and a liquid refrigerant.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the flow path switching valve 100 according to the first embodiment.
  • the flow path switching valve 100 includes shut-off valves 101 and 102, a flow path switching circuit 103, and a flow path switching valve drive circuit 110.
  • the flow path switching valve 100 is formed with the low-pressure pipe 50 and the high-pressure gas pipe 80 included in the constituent elements.
  • the indoor unit side gas pipe 60 is connected to the indoor unit 20.
  • low-pressure gas refrigerant flows from the indoor unit 20 into the flow path switching valve 100 via the indoor unit-side gas pipe 60.
  • a high-pressure gas refrigerant flows out from the flow path switching valve 100 to the indoor unit 20 through the indoor unit side gas pipe 60.
  • the downstream side of the low-pressure pipe 50 is connected to the outdoor unit 10, and the gas refrigerant or the two-phase refrigerant flows out from the flow path switching valve 100 to the outdoor unit 10 through the low-pressure pipe 50.
  • the upstream side of the high-pressure gas pipe 80 is connected to the gas-liquid separator 31, and high-pressure gas refrigerant flows from the gas-liquid separator 31 into the flow path switching valve 100 via the high-pressure gas pipe 80.
  • the flow path switching valve drive circuit 110 is provided to drive the cylinder in the flow path switching circuit 103, and generates a voltage for operating the cylinder.
  • the voltage output method in the flow path switching valve drive circuit 110 is not limited, but in this example, the flow path switching valve drive circuit 110 outputs a voltage of about DC 20 V, for example, which does not cause a fire.
  • the flow path switching valve drive circuit 110 may output a voltage of about AC 200 V, for example.
  • FIG. 4 is a schematic diagram showing an example of the structure of the flow path switching valve 100 shown in FIG.
  • the vertical direction when FIG. 4 is viewed from the front is referred to as the “height direction”
  • the horizontal direction is referred to as the “width direction”
  • the direction from the front to the back is referred to as the “depth method”.
  • the relationship of the size of each component may be different from the actual one.
  • Each of the shut-off valves 101 and 102 and the flow path switching circuit 103 are arranged so as to face the front.
  • the shut-off valve 101 and the flow path switching circuit 103 are arranged on the bottom side of the valve main body 120 so as to be aligned in the width direction, and the shut-off valve 102 is arranged on the upper side of the valve main body 120.
  • the low-pressure pipe 50 and the high-pressure gas pipe 80 are formed in the depth direction so as to be parallel to each other, for example. Further, the indoor unit side gas pipe 60 is formed, for example, so as to be orthogonal to the low pressure pipe 50 and the high pressure gas pipe 80 and to be horizontal with the bottom surface of the valve body 120. Thus, by forming the indoor unit side gas pipe 60 so as to be horizontal with the bottom surface of the valve body 120, the height of the flow path switching valve 100 can be suppressed.
  • the flow path switching circuit 103 is provided with a flow path switching valve coil 111.
  • the flow path switching valve coil 111 is provided to receive the voltage output from the flow path switching valve drive circuit 110 and operate the cylinder of the flow path switching circuit 103.
  • the anti-vibration springs 112 and 113 are provided in the shut-off valves 101 and 102, respectively.
  • the shut-off valves 101 and 102 when the circulation of the circulating refrigerant is small, the self-excited vibration operation of the valve may occur. Since the self-excited vibration operation of the valve generates a so-called “flickering sound”, for example, when the branch unit 30 is installed in a space such as the ceiling of a living room, there is a possibility that the resident may feel uncomfortable. Therefore, in the first embodiment, vibration preventing springs 112 and 113 are provided in order to prevent the self-excited vibration operation of the valve that occurs when the flow rate of the refrigerant flowing through the shutoff valves 101 and 102 is small. It has been.
  • the vibration preventing springs 112 and 113 need not be used. Also good.
  • FIG. 5 is a schematic view showing another example of the structure of the flow path switching valve 100 shown in FIG.
  • the direction in which the indoor unit side gas pipe 60 is formed is different from that of the flow path switching valve 100 shown in FIG.
  • Other portions are formed in the same manner as the flow path switching valve 100 shown in FIG.
  • the indoor unit side gas pipe 60 is formed to be perpendicular to the bottom surface of the valve body 120, for example.
  • the indoor unit side gas pipe 60 so as to be perpendicular to the bottom surface of the valve main body 120, the length of the flow path switching valve 100 in the width direction can be suppressed.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with the outdoor air and dissipates heat, and flows out of the heat source side heat exchanger 13 as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 13 flows out of the outdoor unit 10 via the check valve 15 d and flows into the branch unit 30.
  • the high-pressure liquid refrigerant that has flowed into the branch unit 30 flows out of the branch unit 30 via the gas-liquid separator 31 and the expansion device 32, and flows into the indoor units 20A and 20B.
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 20B is decompressed and expanded by the expansion device 21B to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22B.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use side heat exchanger 22B exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low pressure gas refrigerant. It flows out of the exchanger 22B.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 30 via the flow path switching valve 100A and flows into the outdoor unit 10.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22B flows out of the branch unit 30 through the flow path switching valve 100B, and flows out of the branch unit 30 through the flow path switching valve 100A. And flows into the outdoor unit 10.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15 c and flows into the branch unit 30.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 30 flows out of the branch unit 30 via the gas-liquid separator 31 and the flow path switching valves 100A and 100B, and flows into the indoor units 20A and 20B.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20A flows into the use-side heat exchanger 22A, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air to become a high-pressure liquid refrigerant. It flows out of the use side heat exchanger 22A.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22A is decompressed and expanded by the expansion device 21A, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20A.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air, And flows out from the use side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor units 20A and 20B flows into the branch unit 30, flows out of the branch unit via the expansion device 33, and flows into the outdoor unit 10.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the heat source side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant and flows out of the heat source side heat exchanger 13. .
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with outdoor air and dissipates heat, and then flows out of the heat source side heat exchanger 13 as a high-pressure gas-liquid two-phase refrigerant.
  • the high-pressure gas refrigerant separated by the gas-liquid separator 31 flows out from the branch unit 30 via the flow path switching valve 100B and flows into the indoor unit 20B.
  • the high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air and using it as a high-pressure liquid refrigerant. It flows out from the side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
  • the high-pressure liquid refrigerant separated by the gas-liquid separator 31 and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant flowing out of the indoor unit 20B flow out of the branch unit 30 and flow into the indoor unit 20A.
  • the high-pressure liquid refrigerant flowing into the indoor unit 20A and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant flowing out of the indoor unit 20B are depressurized and expanded by the expansion device 21A, and the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant. And flows into the use side heat exchanger 22A.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 30 via the flow path switching valve 100A and flows into the outdoor unit 10.
  • the low-pressure gas refrigerant flowing into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • Heating main operation mode Next, the operation of the refrigerant in the heating main operation mode will be described.
  • the case where the indoor unit 20A performs the cooling operation and the indoor unit 20B performs the heating operation will be described as an example, as in the cooling main operation mode.
  • the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15 c and flows into the branch unit 30.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 30 flows out of the branch unit 30 via the gas-liquid separator 31 and the flow path switching valve 100B.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the branch unit 30 flows into the indoor unit 20B.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air to become a high-pressure liquid refrigerant. It flows out from the use side heat exchanger 22B.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
  • the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor unit 20B flows into the indoor unit 20A.
  • the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A.
  • the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 30 via the flow path switching valve 100A and flows into the outdoor unit 10.
  • the low-pressure gas refrigerant flowing into the outdoor unit 10 flows into the heat source side heat exchanger 13 via the check valve 15b.
  • the low-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant that flows out of the heat source side heat exchanger 13.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
  • FIG. 6 is a schematic diagram showing the state of each flow path and cylinder in the flow path switching valve 100 of FIG.
  • cooling operation mode In the cooling operation mode, first, the state of each flow path and cylinder in the flow path switching valve 100 is set as shown in FIG. When a low-pressure gas refrigerant flows from the indoor unit side gas pipe 60 into the flow path switching valve 100, the refrigerant is drawn from the bleed port 106a into the low-pressure side intake flow path 104, and the shut-off valve 101 is in the “open” state. As a result, the refrigerant flowing from the indoor unit side gas pipe 60 passes through the shutoff valve 101 and flows out to the low pressure pipe 50.
  • the refrigerant that has flowed in from the indoor unit side gas pipe 60 also flows into the flow path 105c, and flows out to the low pressure pipe 50 via the flow path 105c and the low pressure side intake flow path 104. Then, the refrigerant that has flowed out through the two paths merges in the low-pressure pipe 50.
  • the cylinder in the flow path switching circuit 103 is first set as shown in FIG.
  • the indoor unit side gas pipe 60 and the low pressure side intake passage 104 are connected, and a path is formed in which the indoor unit side gas pipe 60 and the low pressure pipe 50 are connected.
  • the refrigerant staying in the indoor unit side gas pipe 60 flows out to the low pressure pipe 50 via the low pressure side intake passage 104.
  • the residual pressure of the indoor unit side gas pipe 60 is reduced. Therefore, it is possible to suppress the generation of flow noise due to the refrigerant that stays in the indoor unit side gas pipe 60 as described above.
  • the present invention is not limited to the above-described method, and it is conceivable to suppress the generation of a flow noise caused by the refrigerant staying in the indoor unit side gas pipe 60 using, for example, the shutoff valve 101.
  • the flow path diameter is large like the shut-off valve 101
  • the above-described gas flow noise is generated when the control for removing the refrigerant staying in the indoor unit side gas pipe 60 is performed.
  • a valve that allows a low flow rate refrigerant to flow out is required. Therefore, it is not appropriate to use the shut-off valve 101 in this way.
  • a flow path switching circuit 103 that is connected to the low-pressure pipe 50 and the shut-off valve 101 and switches the connection between the connected indoor unit side gas pipe 60, the low-pressure pipe 50, and the shut-off valve 101;
  • a flow path switching valve drive circuit 110 for driving the flow path 103, and the flow path switching valve drive circuit 110 is configured to draw the refrigerant flowing into the shutoff valve 101 into the low pressure pipe 50.
  • the flow path switching circuit 103 is driven to control the opening / closing of the shutoff valve 101. Since the voltage required to drive the flow path switching circuit 103 may be lower than the voltage required to drive the solenoid valve, for example, ignition due to the occurrence of an arc can be suppressed.
  • the drain pan or the exterior provided in the branch unit 30 including the flow path switching valve 100 can be changed to an inexpensive material such as styrene foam having combustibility.
  • the indoor unit side gas pipe 60 is formed to be parallel to the bottom surface of the valve body 120. Therefore, the height of the flow path switching valve 100 can be suppressed, and the degree of freedom of installation of the branch unit 30 provided with the flow path switching valve 100 can be improved.
  • the indoor unit side gas pipe 60 is formed to be perpendicular to the bottom surface of the valve body 120. Therefore, the length of the width direction of the flow-path switching valve 100 can be suppressed, and the freedom degree of installation of the branch unit 30 provided with this flow-path switching valve 100 can be improved.
  • Embodiment 2 an air conditioner according to Embodiment 2 will be described.
  • the air conditioner according to the second embodiment is different from the first embodiment in the configuration of the flow path switching valve 100.
  • portions common to the above-described first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the second embodiment can provide the same effects as the first embodiment. Further, the low pressure pipe 50 and the high pressure gas pipe 80 formed in the flow path switching valve 100 can be removed from the constituent elements, and the material used for the flow path switching valve 100 can be reduced, so that the cost can be suppressed.
  • Embodiment 3 FIG. Next, an air conditioner according to Embodiment 3 will be described.
  • the air conditioner according to Embodiment 3 is different from Embodiments 1 and 2 in that the shutoff valve 102 in the flow path switching valve 100 is configured by an electromagnetic valve.
  • parts common to those in the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the air conditioner 1 according to the third embodiment has the configuration shown in FIGS. 1 and 2 as in the first embodiment, the description thereof is omitted here.
  • FIG. 8 is a schematic diagram illustrating an example of the configuration of the flow path switching valve 100 according to the third embodiment.
  • the flow path switching valve 100 includes shut-off valves 101 and 102, a flow path switching circuit 103, and a flow path switching valve drive circuit 110.
  • the shut-off valve 101 is provided between the flow path 105a and the low-pressure pipe 50, and the bleed port 106a is connected, as in the first embodiment.
  • the shut-off valve 101 opens or closes according to the pressure difference between the pressure on the flow path 105a side and the pressure on the low pressure pipe 50 side, thereby permitting or blocking the refrigerant flow between the flow path 105a and the low pressure pipe 50.
  • the shutoff valve 101 enters a “closed” state when the refrigerant is drawn into the bleed port 106a and the above-described differential pressure decreases, and enters an “open” state when the differential pressure increases.
  • the shutoff valve 102 is provided between the flow path 105 b and the high-pressure gas pipe 80.
  • the shut-off valve 102 is constituted by, for example, an electromagnetic valve whose opening and closing is controlled by a flow path switching valve drive circuit 110, which will be described later, and allows or blocks the refrigerant flow between the flow path 105b and the high-pressure gas pipe 80. .
  • the flow path switching circuit 103 is connected to a low-pressure side intake flow path 104, a flow path 105c, and a bleed port 106a.
  • the flow path switching circuit 103 is provided with a cylinder in the valve.
  • the flow path switching circuit 103 can switch the flow path through which the refrigerant flows by moving the cylinder.
  • the flow path switching valve drive circuit 110 is provided to drive the cylinders in the cutoff valve 102 and the flow path switching circuit 103, and generates a voltage for operating the cutoff valve 102 and the cylinder.
  • FIG. 9 is a schematic diagram showing an example of the structure of the flow path switching valve 100 shown in FIG. In FIG. 9, detailed description of portions common to the flow path switching valve 100 in Embodiment 1 shown in FIGS. 4 and 5 is omitted.
  • the flow path switching valve 100 includes a shutoff valve 101 and 102, a flow path switching circuit 103, a low pressure pipe 50, an indoor unit side gas pipe 60, as in the first embodiment.
  • a high-pressure gas pipe 80 is provided.
  • the shutoff valves 101 and 102, the flow path switching circuit 103, the low pressure pipe 50, the indoor unit side gas pipe 60, and the high pressure gas pipe 80 are made of a valve body 120 using a flame-retardant material such as brass or aluminum. And is formed integrally.
  • the coil for operating the valve of the shutoff valve 102 and the flow path switching valve coil 111 for operating the cylinder of the flow path switching circuit 103 are provided in the right direction, that is, in the same direction. .
  • the accessibility to the coil can be improved by arranging the shutoff valve 102 and the flow path switching circuit 103 so that the coils are positioned in the same direction.
  • the indoor unit side gas pipe 60 is formed, for example, so as to be orthogonal to the low pressure pipe 50 and the high pressure gas pipe 80 and to be horizontal with the bottom surface of the valve body 120. Thereby, the height of the flow path switching valve 100 can be suppressed.
  • the indoor unit side gas piping 60 is not restricted to this example, For example, you may form so that it may become perpendicular
  • FIG. 10 is a schematic diagram showing the state of each flow path and cylinder in the flow path switching valve 100 of FIG.
  • the state of each flow path and cylinder in the flow path switching valve 100 is set as shown in FIG.
  • the refrigerant flows from the indoor unit side gas pipe 60 into the flow path switching valve 100
  • the refrigerant is drawn from the bleed port 106a into the low-pressure side intake flow path 104, and the shut-off valve 101 is in the “open” state.
  • the refrigerant flowing from the indoor unit side gas pipe 60 passes through the shutoff valve 101 and flows out to the low pressure pipe 50.
  • the refrigerant that has flowed in from the indoor unit side gas pipe 60 also flows into the flow path 105c, and flows out to the low pressure pipe 50 via the flow path 105c and the low pressure side intake flow path 104. Then, the refrigerant that has flowed out through the two paths merges in the low-pressure pipe 50.
  • the shutoff valve 102 In the heating operation mode, first, the shutoff valve 102 is set to the “open” state under the control of the flow path switching valve drive circuit 110. When high-pressure gas refrigerant flows from the high-pressure gas pipe 80 into the flow path switching valve 100, the high-pressure gas refrigerant passes through the shut-off valve 102 in the “open” state and flows out from the indoor unit side gas pipe 60 through the flow path 105b.
  • the flow path switching valve 100 can achieve the same effects as those of the first embodiment. Further, since the shutoff valve 102 is configured by an electromagnetic valve in the same manner as a conventional flow path switching valve, the flow and flow of this configuration are considered in consideration of the function and cost required of the branch unit 30 provided with the flow path switching valve 100.
  • the path switching valve 100 can be selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This flow path switching valve comprises: a first shutoff valve which is provided between a gas pipe that allows a refrigerant to flow in and out and a low-pressure pipe that allows the refrigerant to flow out, and which permits or shuts off the flow of the refrigerant; a second shutoff valve which is provided between the gas pipe and a high-pressure gas pipe that allows the refrigerant to flow in, and which permits or shuts off the flow of the refrigerant; a flow path switching circuit which is connected to at least the gas pipe, the low-pressure pipe, and the first shutoff valve, and switches the connection of the flow paths among the connected gas pipe, low-pressure pipe, and first shutoff valve; and a drive circuit which drives the flow path switching circuit. The drive circuit opens the first shutoff valve by connecting the flow path communicating with the first shutoff valve and the flow path communicating with the low-pressure pipe in the flow path switching circuit so that the refrigerant flowing into the first shutoff valve is drawn into the low-pressure pipe.

Description

流路切替弁およびそれを用いた空気調和機Flow path switching valve and air conditioner using the same
 本発明は、ビル用マルチエアコン等の空気調和機に適用される流路切替弁およびそれを用いた空気調和機に関するものである。 The present invention relates to a flow path switching valve applied to an air conditioner such as a building multi-air conditioner and an air conditioner using the same.
 従来から、主にビル用マルチエアコンにおける分岐ユニット内で、室内ユニットに供給する冷媒種類を切り替えて供給する流路切替弁が使用されている。このような流路切替弁は、電磁式の遮断弁を備え、室内ユニット側配管、高圧ガス配管および低圧配管を接続することにより、冷房流路または暖房流路を切り替えることができる(例えば、特許文献1参照)。 Conventionally, a flow path switching valve for switching the type of refrigerant supplied to an indoor unit is mainly used in a branch unit of a building multi-air conditioner. Such a flow path switching valve includes an electromagnetic shut-off valve, and can switch between a cooling flow path or a heating flow path by connecting an indoor unit side pipe, a high pressure gas pipe, and a low pressure pipe (for example, a patent) Reference 1).
 特許文献1に記載された流路切替弁は、室内ユニット側から低圧配管側への流路を遮断する電磁式遮断弁と、高圧ガス配管側から室内ユニット側への流路を遮断する電磁式遮断弁とを備えている。また、実際には、室内ユニット側の残圧を低下させるために、室内ユニット側から低圧配管側に連通する細い流路が流路切替弁に設けられている。流路切替弁は、この流路を遮断する電磁式遮断弁をさらに備えている。すなわち、流路切替弁は、3つの流路と3つの電磁式遮断弁とを備えている。 The flow path switching valve described in Patent Document 1 includes an electromagnetic shut-off valve that shuts off the flow path from the indoor unit side to the low-pressure pipe side, and an electromagnetic valve that shuts off the flow path from the high-pressure gas pipe side to the indoor unit side. And a shut-off valve. Actually, in order to reduce the residual pressure on the indoor unit side, a thin flow path communicating from the indoor unit side to the low pressure pipe side is provided in the flow path switching valve. The flow path switching valve further includes an electromagnetic cutoff valve that blocks the flow path. That is, the flow path switching valve includes three flow paths and three electromagnetic shut-off valves.
特開平5-322348号公報JP-A-5-322348
 ところで、上述した流路切替弁は、3つの電磁式遮断弁を有しているため、遮断弁を前後に設置する必要がある。また、遮断弁を駆動するためのコイルおよび弁を交換する際のアクセス性を考慮すると、流路切替弁は、前後両方に設置された遮断弁に対して容易にアクセスすることができるように、配管および板金等の構造物を配置する必要がある。そのため、分岐ユニットの筐体サイズが大きくなり、小型化が困難となる。これにより、例えば分岐ユニットを建物の天井裏等に設置する場合には、天井裏の高さが低いと分岐ユニットを設置することが困難となるとともに、外郭を形成する板金の面積が大きくなり、コストが増大してしまうという課題がある。 Incidentally, since the above-described flow path switching valve has three electromagnetic shut-off valves, it is necessary to install the shut-off valves at the front and rear. Also, considering the accessibility when exchanging the coil and valve for driving the shut-off valve, the flow path switching valve can be easily accessed to the shut-off valves installed both front and rear, It is necessary to arrange structures such as piping and sheet metal. For this reason, the housing size of the branch unit is increased, and it is difficult to reduce the size. Thereby, for example, when installing a branch unit on the ceiling of a building or the like, if the height of the ceiling behind is low, it becomes difficult to install the branch unit, and the area of the sheet metal that forms the outer shell increases, There is a problem that the cost increases.
 また、このような電磁式遮断弁は、一般的に、200V程度の電圧で駆動する電磁弁コイルを用いているが、この電磁弁コイルでアークが発生すると、発火する虞がある。そのため、分岐ユニットの外郭構造を板金等の燃焼の虞が少ない材料を用いて形成する必要があり、ドレンパンまたは周囲の外装を安価であるものの燃焼性を有する発泡スチロール等の材料に変更することができない。これにより、気密性が増加することによって結露が発生し、この結露によるドレン水の発生を抑制することができないという課題がある。 In addition, such an electromagnetic shut-off valve generally uses an electromagnetic valve coil that is driven at a voltage of about 200 V. However, if an arc is generated in this electromagnetic valve coil, there is a risk of ignition. Therefore, it is necessary to form the outer structure of the branch unit using a material such as a sheet metal that is less likely to burn, and the drain pan or the surrounding exterior cannot be changed to a material such as foamed polystyrene having combustibility although it is inexpensive. . Thereby, dew condensation occurs due to increased airtightness, and there is a problem that the generation of drain water due to this dew condensation cannot be suppressed.
 本発明は、上記課題に鑑みてなされたものであって、設置の自由度を向上させ、メンテナンス等の作業性を向上させることが可能な流路切替弁およびそれを用いた空気調和機を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a flow path switching valve capable of improving the flexibility of installation and improving workability such as maintenance, and an air conditioner using the same. The purpose is to do.
 本発明に係る流路切替弁は、冷媒が流入出するガス配管と冷媒が流出する低圧配管との間に設けられ、前記冷媒の流通を許容または遮断する第1の遮断弁と、前記ガス配管と冷媒が流入する高圧ガス配管との間に設けられ、前記冷媒の流通を許容または遮断する第2の遮断弁と、少なくとも前記ガス配管、前記低圧配管および前記第1の遮断弁に接続され、接続された前記ガス配管、前記低圧配管および前記第1の遮断弁との間の流路の接続を切り替える流路切替回路と、前記流路切替回路を駆動する駆動回路とを備え、前記駆動回路は、前記第1の遮断弁に流入する冷媒を前記低圧配管に引き込むように、前記流路切替回路における前記第1の遮断弁に連通する流路と前記低圧配管に連通する流路とを接続させることにより、前記第1の遮断弁を開弁させるものである。 The flow path switching valve according to the present invention is provided between a gas pipe through which refrigerant flows in and out and a low pressure pipe through which refrigerant flows out, and a first cutoff valve that allows or blocks the flow of the refrigerant, and the gas pipe And a high pressure gas pipe into which the refrigerant flows, and is connected to at least the gas pipe, the low pressure pipe, and the first cutoff valve, which allows or blocks the flow of the refrigerant. A drive circuit for switching the connection between the gas pipe, the low-pressure pipe and the first shut-off valve, and a drive circuit for driving the flow switch circuit; Connects the flow path communicating with the first shut-off valve in the flow path switching circuit and the flow path communicating with the low-pressure pipe so that the refrigerant flowing into the first shut-off valve is drawn into the low-pressure pipe. By making the first It is intended for opening the sectional valve.
 以上のように、本発明の空気調和機によれば、流路切替回路の動作に基づき遮断弁を制御することにより、設置の自由度を向上させ、メンテナンス等の作業性を向上させることができる。 As described above, according to the air conditioner of the present invention, by controlling the shutoff valve based on the operation of the flow path switching circuit, it is possible to improve the degree of freedom of installation and improve workability such as maintenance. .
実施の形態1に係る空気調和機の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioner which concerns on Embodiment 1. FIG. 図1に示す空気調和機の回路構成の一例を示す概略図である。It is the schematic which shows an example of the circuit structure of the air conditioner shown in FIG. 実施の形態1に係る流路切替弁の構成の一例を示す概略図である。3 is a schematic diagram illustrating an example of a configuration of a flow path switching valve according to Embodiment 1. FIG. 図3に示す流路切替弁の構造の一例を示す概略図である。It is the schematic which shows an example of the structure of the flow-path switching valve shown in FIG. 図3に示す流路切替弁の構造の他の例を示す概略図である。It is the schematic which shows the other example of the structure of the flow-path switching valve shown in FIG. 図3の流路切替弁における各流路およびシリンダーの状態を示す概略図である。It is the schematic which shows the state of each flow path and cylinder in the flow path switching valve of FIG. 実施の形態2に係る流路切替弁の構成の一例を示す概略図である。6 is a schematic diagram illustrating an example of a configuration of a flow path switching valve according to Embodiment 2. FIG. 実施の形態3に係る流路切替弁の構成の一例を示す概略図である。6 is a schematic diagram illustrating an example of a configuration of a flow path switching valve according to Embodiment 3. FIG. 図8に示す流路切替弁の構造の一例を示す概略図である。It is the schematic which shows an example of the structure of the flow-path switching valve shown in FIG. 図8の流路切替弁における各流路およびシリンダーの状態を示す概略図である。It is the schematic which shows the state of each flow path and cylinder in the flow path switching valve of FIG.
実施の形態1.
 以下、本実施の形態1に係る空気調和機について説明する。本実施の形態1に係る空気調和機は、複数の室内ユニットが冷房運転および暖房運転の両方を同時に行うことができる冷暖同時タイプの空気調和機である。
Embodiment 1 FIG.
Hereinafter, the air conditioner according to the first embodiment will be described. The air conditioner according to Embodiment 1 is a cooling / heating simultaneous type air conditioner in which a plurality of indoor units can simultaneously perform both cooling operation and heating operation.
[空気調和機の設置例]
 図1は、本実施の形態1に係る空気調和機1の設置例を示す概略図である。図1に示すように、空気調和機1は、熱源機としての室外ユニット10と、複数の室内ユニット20Aおよび20Bと、室外ユニット10と複数の室内ユニット20Aおよび20Bとの間に介在する分岐ユニット30とを備えている。室外ユニット10および分岐ユニット30は、高圧配管40および低圧配管50で接続されている。また、分岐ユニット30および複数の室内ユニット20Aおよび20Bのそれぞれは、室内ユニット側ガス配管60および冷媒配管70で接続されている。これにより、各配管内を冷媒が循環する冷媒回路が形成されている。
[Example of air conditioner installation]
FIG. 1 is a schematic diagram illustrating an installation example of the air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 10 as a heat source unit, a plurality of indoor units 20A and 20B, and a branch unit interposed between the outdoor unit 10 and the plurality of indoor units 20A and 20B. 30. The outdoor unit 10 and the branch unit 30 are connected by a high pressure pipe 40 and a low pressure pipe 50. Each of the branch unit 30 and the plurality of indoor units 20A and 20B is connected by an indoor unit side gas pipe 60 and a refrigerant pipe 70. Thereby, a refrigerant circuit in which the refrigerant circulates in each pipe is formed.
 この例では、分岐ユニット30に対して2台の室内ユニット20Aおよび20Bが接続されている。なお、以下の説明において、室内ユニット20Aおよび20Bを特に区別する必要がない場合には、単に「室内ユニット20」と適宜称する。また「室内ユニット20」と称した場合には、単数または複数の両方を含むものとする。 In this example, two indoor units 20A and 20B are connected to the branch unit 30. In the following description, when it is not necessary to particularly distinguish the indoor units 20A and 20B, they are simply referred to as “indoor unit 20” as appropriate. Further, when referred to as “indoor unit 20”, it includes both one or a plurality.
 室外ユニット10は、通常、ビル等の建物2の外の空間、例えば屋上等である室外空間3に設置されている。室外ユニット10は、冷熱または温熱を生成し、生成した冷熱または温熱を、分岐ユニット30を介して室内ユニット20に供給する。 The outdoor unit 10 is usually installed in a space outside the building 2 such as a building, for example, an outdoor space 3 such as a rooftop. The outdoor unit 10 generates cold or warm heat, and supplies the generated cold or warm heat to the indoor unit 20 via the branch unit 30.
 室内ユニット20は、分岐ユニット30を介して室外ユニット10から供給された冷熱または温熱により、冷房用空気または暖房用空気を、建物2の内部の空間、例えば居室やサーバルーム等の空調対象空間である室内空間4に供給する。この例において、室内ユニット20は、建物2の内部ではあるが室内空間4とは異なる空間である天井裏等の空間5に設置されている。また、室内ユニット20は、例えば床下に設置され、暖房運転時に供給される温熱により、床面を暖める床暖房として使用することもできる。 The indoor unit 20 uses cooling or heating supplied from the outdoor unit 10 via the branch unit 30 to convert cooling air or heating air into a space inside the building 2, such as a living room or a server room. It supplies to a certain indoor space 4. In this example, the indoor unit 20 is installed in a space 5 such as the back of the ceiling, which is inside the building 2 but is different from the indoor space 4. Moreover, the indoor unit 20 can also be used, for example as floor heating which is installed under the floor and warms a floor surface with the heat supplied at the time of heating operation.
 分岐ユニット30は、室外ユニット10および室内ユニット20とは異なる筐体として、室外空間3および室内空間4とは別の位置、例えば空間5等に設置できるように構成されている。分岐ユニット30は、室外ユニット10と高圧配管40および低圧配管50で接続されるとともに、複数の室内ユニット20それぞれと室内ユニット側ガス配管60および冷媒配管70で接続されている。分岐ユニット30は、室外ユニット10で生成された冷熱または温熱を、室内ユニット20に伝達するためのものである。 The branch unit 30 is configured as a housing different from the outdoor unit 10 and the indoor unit 20 so that it can be installed at a position different from the outdoor space 3 and the indoor space 4, for example, the space 5. The branch unit 30 is connected to the outdoor unit 10 by a high-pressure pipe 40 and a low-pressure pipe 50, and is connected to each of the plurality of indoor units 20 by an indoor unit-side gas pipe 60 and a refrigerant pipe 70. The branch unit 30 is for transmitting the cold or warm heat generated by the outdoor unit 10 to the indoor unit 20.
 なお、分岐ユニット30に接続される室内ユニット20の数は、この例に限られず、例えば1台の室内ユニット20が接続されてもよいし、3台以上の室内ユニット20が接続されてもよい。また、例えば、室外ユニット10を複数設け、複数の室外ユニット10に対して1または複数の室内ユニット20が接続されてもよい。すなわち、室外ユニット10、室内ユニット20の台数は、空気調和機1が設置される建物2の規模等に応じて、適宜決定することができる。 Note that the number of indoor units 20 connected to the branch unit 30 is not limited to this example. For example, one indoor unit 20 may be connected, or three or more indoor units 20 may be connected. . Further, for example, a plurality of outdoor units 10 may be provided, and one or a plurality of indoor units 20 may be connected to the plurality of outdoor units 10. That is, the number of outdoor units 10 and indoor units 20 can be appropriately determined according to the scale of the building 2 where the air conditioner 1 is installed.
 ここで、本実施の形態1の空気調和機1において、冷媒回路を循環させる冷媒として、例えば、非共沸混合冷媒、擬似共沸混合冷媒、あるいは単一冷媒等を用いることができる。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR-407C等がある。この非共沸混合冷媒は、沸点が異なる冷媒であるので、液相の冷媒と気相の冷媒との組成比率が異なるという特性を有している。擬似共沸混合冷媒には、HFC冷媒であるR-410A、またはR-404A等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性に加えて、単一冷媒であるR-22の約1.6倍の動作圧力という特性を有している。単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR-22、あるいはHFC冷媒であるR-134a等がある。この単一冷媒は、混合物ではないので、取り扱いが容易であるという特性を有している。 Here, in the air conditioner 1 of Embodiment 1, for example, a non-azeotropic mixed refrigerant, a pseudo-azeotropic mixed refrigerant, a single refrigerant, or the like can be used as the refrigerant circulating in the refrigerant circuit. Non-azeotropic refrigerant mixtures include R-407C, which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a refrigerant having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different. Examples of the pseudo azeotropic refrigerant mixture include R-410A and R-404A which are HFC refrigerants. This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R-22, which is a single refrigerant. Examples of the single refrigerant include R-22, which is an HCFC (hydrochlorofluorocarbon) refrigerant, and R-134a, which is an HFC refrigerant. Since this single refrigerant is not a mixture, it has the property of being easy to handle.
 また、これ以外にも、冷媒回路を循環させる冷媒として、自然冷媒であるCO(二酸化炭素)、プロパン、イソブタン、アンモニア等を用いることもでき、空気調和機1の用途および目的に応じて冷媒を使用することができる。 In addition, CO 2 (carbon dioxide), propane, isobutane, ammonia, etc., which are natural refrigerants, can be used as the refrigerant circulating in the refrigerant circuit, and the refrigerant depends on the use and purpose of the air conditioner 1. Can be used.
[空気調和機の回路構成]
 図2は、図1に示す空気調和機1の回路構成の一例を示す概略図である。図2の例では、空気調和機1が1台の室外ユニット10、1台の分岐ユニット30、ならびに2台の室内ユニット20Aおよび20Bで構成される場合を示す。なお、上述したように、室外ユニット10および室内ユニット20の台数は、この例に限られない。
[Circuit configuration of air conditioner]
FIG. 2 is a schematic diagram illustrating an example of a circuit configuration of the air conditioner 1 illustrated in FIG. 1. In the example of FIG. 2, the case where the air conditioner 1 is configured by one outdoor unit 10, one branch unit 30, and two indoor units 20A and 20B is shown. As described above, the number of outdoor units 10 and indoor units 20 is not limited to this example.
(室外ユニット)
 室外ユニット10は、圧縮機11、冷媒流路切替装置12、熱源側熱交換器13、アキュムレータ14、4つの逆止弁15a~15dで構成されている。
(Outdoor unit)
The outdoor unit 10 includes a compressor 11, a refrigerant flow switching device 12, a heat source side heat exchanger 13, an accumulator 14, and four check valves 15a to 15d.
 圧縮機11は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11としては、例えば、駆動周波数を任意に変化させることにより、単位時間あたりの冷媒送出量である容量を制御することが可能なインバータ圧縮機等を用いることができる。 The compressor 11 sucks a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it in a high-temperature and high-pressure state. As the compressor 11, for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12としては、上述した四方弁に限らず、例えば他の弁を組み合わせて使用してもよい。 The refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows. The refrigerant flow switching device 12 is not limited to the above-described four-way valve, and for example, other valves may be used in combination.
 熱源側熱交換器13は、図示しないファン等の送風機によって供給される空気(以下、「室外空気」と適宜称する)と冷媒との間で熱交換を行う。具体的には、熱源側熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、熱源側熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。 The heat source side heat exchanger 13 performs heat exchange between air (hereinafter referred to as “outdoor air” as appropriate) supplied by a blower such as a fan (not shown) and the refrigerant. Specifically, the heat source side heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. The heat source side heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
 アキュムレータ14は、圧縮機11の吸入側である低圧側に設けられる。アキュムレータ14は、冷房運転と暖房運転の運転状態の違いによって生じる余剰冷媒、過渡的な運転の変化に対する余剰冷媒等を貯留する。 The accumulator 14 is provided on the low pressure side that is the suction side of the compressor 11. The accumulator 14 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
 逆止弁15a~15dは、冷媒回路内を流通する冷媒の流れを予め定められた方向にのみ許容する。逆止弁15aは、分岐ユニット30と冷媒流路切替装置12との間の低圧配管50に設けられ、後述する全冷房運転および冷房主体運転を含む冷房運転時に冷媒を分岐ユニット30から室外ユニット10への方向に流通させる。逆止弁15bは、高圧配管40と低圧配管50とを接続する第1の接続配管31aに設けられ、全暖房運転および暖房主体運転を含む暖房運転時に分岐ユニット30から戻ってきた冷媒を圧縮機11の吸入側に流通させる。 The check valves 15a to 15d allow the flow of the refrigerant flowing through the refrigerant circuit only in a predetermined direction. The check valve 15a is provided in the low-pressure pipe 50 between the branch unit 30 and the refrigerant flow switching device 12, and refrigerant is supplied from the branch unit 30 to the outdoor unit 10 during the cooling operation including the cooling only operation and the cooling main operation described later. Circulate in the direction of The check valve 15b is provided in the first connection pipe 31a that connects the high-pressure pipe 40 and the low-pressure pipe 50, and the refrigerant returned from the branch unit 30 during the heating operation including the all-heating operation and the heating main operation is compressed by the compressor. 11 is distributed to the suction side.
 逆止弁15cは、高圧配管40と低圧配管50とを接続する第2の接続配管31bに設けられ、暖房運転時に圧縮機11から吐出された冷媒を分岐ユニット30に流通させる。逆止弁15dは、熱源側熱交換器13と分岐ユニット30との間の高圧配管40に設けられ、冷房運転時に冷媒を室外ユニット10から分岐ユニット30への方向に流通させる。 The check valve 15 c is provided in the second connection pipe 31 b that connects the high pressure pipe 40 and the low pressure pipe 50, and causes the refrigerant discharged from the compressor 11 to flow through the branch unit 30 during the heating operation. The check valve 15d is provided in the high-pressure pipe 40 between the heat source side heat exchanger 13 and the branch unit 30, and causes the refrigerant to flow in the direction from the outdoor unit 10 to the branch unit 30 during the cooling operation.
(室内ユニット)
 室内ユニット20Aおよび20Bは、例えば、空調対象空間の空気の冷房および暖房を行うものである。室内ユニット20Aは、絞り装置21Aおよび利用側熱交換器22Aで構成されている。室内ユニット20Bは、絞り装置21Bおよび利用側熱交換器22Bで構成されている。
(Indoor unit)
The indoor units 20A and 20B perform, for example, cooling and heating of air in an air-conditioning target space. The indoor unit 20A is composed of an expansion device 21A and a use side heat exchanger 22A. The indoor unit 20B is composed of an expansion device 21B and a use side heat exchanger 22B.
 なお、以下の説明において、絞り装置21Aおよび21Bを特に区別する必要がない場合には、単に「絞り装置21」と適宜称して説明する。また、利用側熱交換器22Aおよび22Bについても同様に、単に「利用側熱交換器22」と適宜称して説明する。「絞り装置21」または「利用側熱交換器22」と称した場合には、それぞれが単数または複数の両方を含むものとする。 In the following description, when it is not necessary to distinguish between the diaphragm devices 21A and 21B, they will be simply referred to as “the diaphragm device 21” as appropriate. Similarly, the use side heat exchangers 22A and 22B are simply referred to as “use side heat exchanger 22” as appropriate. When referred to as “the expansion device 21” or “the use-side heat exchanger 22”, each includes both one or a plurality.
 絞り装置21は、冷媒の流量を調整することによって冷媒を減圧して膨張させる。絞り装置21は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。なお、絞り装置21としては、これに限らず、例えばキャピラリ等の他の絞り装置を用いることもできる。 The expansion device 21 decompresses and expands the refrigerant by adjusting the flow rate of the refrigerant. The expansion device 21 is constituted by a valve capable of controlling the opening, such as an electronic expansion valve. The diaphragm device 21 is not limited to this, and other diaphragm devices such as capillaries can also be used.
 利用側熱交換器22は、図示しないファン等の送風機によって供給される空気と冷媒との間で熱交換を行う。これにより、室内空間4に供給される暖房用空気または冷房用空気が生成される。具体的には、利用側熱交換器22は、冷房運転の際に冷媒が冷熱を搬送している場合に蒸発器として機能し、空調対象空間である室内空間4の空気を冷却して冷房を行う。また、利用側熱交換器22は、暖房運転の際に冷媒が温熱を搬送している場合に凝縮器として機能し、室内空間4の空気を加熱して暖房を行う。 The use side heat exchanger 22 performs heat exchange between air and a refrigerant supplied by a blower such as a fan (not shown). Thereby, heating air or cooling air supplied to the indoor space 4 is generated. Specifically, the use-side heat exchanger 22 functions as an evaporator when the refrigerant carries cold heat during the cooling operation, and cools the air in the indoor space 4 that is the air-conditioning target space by cooling the air. Do. In addition, the use side heat exchanger 22 functions as a condenser when the refrigerant is transporting warm heat during the heating operation, and heats the air in the indoor space 4 to perform heating.
(分岐ユニット)
 分岐ユニット30は、室外ユニット10から供給された冷熱または温熱を、室内ユニット20に供給する機能を有している。分岐ユニット30は、気液分離器31、流路切替弁100Aおよび100B、ならびに絞り装置32および33で構成されている。なお、流路切替弁100Aおよび100Bは、分岐ユニット30に接続されている室内ユニット20の台数に対応した個数が設けられている。
(Branch unit)
The branch unit 30 has a function of supplying the cold or hot heat supplied from the outdoor unit 10 to the indoor unit 20. The branch unit 30 includes a gas-liquid separator 31, flow path switching valves 100 </ b> A and 100 </ b> B, and throttle devices 32 and 33. The number of flow path switching valves 100 </ b> A and 100 </ b> B corresponding to the number of indoor units 20 connected to the branch unit 30 is provided.
 流路切替弁100Aおよび100Bは、室内ユニット20に供給する冷媒の流れを切り替えるものである。この流路切替弁100Aおよび100Bによって冷媒流路を切り替えることで、分岐ユニット30に接続されているそれぞれの室内ユニット20Aおよび20Bが冷房運転および暖房運転を同時に実行することができる。流路切替弁100Aおよび100Bは、例えば三方弁等で構成されている。なお、流路切替弁100Aおよび100Bの詳細については、後述する。また、以下の説明において、流路切替弁100Aおよび100Bを特に区別する必要がない場合には、「流路切替弁100」と適宜称して説明する。 The flow path switching valves 100A and 100B switch the flow of the refrigerant supplied to the indoor unit 20. By switching the refrigerant flow path using the flow path switching valves 100A and 100B, each of the indoor units 20A and 20B connected to the branch unit 30 can simultaneously perform the cooling operation and the heating operation. The flow path switching valves 100A and 100B are composed of, for example, three-way valves. Details of the flow path switching valves 100A and 100B will be described later. In the following description, when it is not necessary to particularly distinguish the flow path switching valves 100A and 100B, the flow path switching valve 100 will be appropriately referred to as “flow path switching valve 100”.
 流路切替弁100Aは、一方が低圧配管50に接続され、他方が高圧ガス配管80に接続され、さらにもう他方が室内ユニット側配管60aに接続されている。また、流路切替弁100Bは、一方が低圧配管50に接続され、他方が高圧ガス配管80に接続され、さらにもう他方が室内ユニット側配管60bに接続されている。流路切替弁100Aおよび100Bは、弁の開閉が制御装置90によって制御される。 One of the flow path switching valves 100A is connected to the low pressure pipe 50, the other is connected to the high pressure gas pipe 80, and the other is connected to the indoor unit side pipe 60a. In addition, one of the flow path switching valves 100B is connected to the low pressure pipe 50, the other is connected to the high pressure gas pipe 80, and the other is connected to the indoor unit side pipe 60b. The opening and closing of the flow path switching valves 100A and 100B is controlled by the control device 90.
 気液分離器31は、高圧配管40に接続されるとともに、室内ユニット20の流出入側のそれぞれに接続される。気液分離器31は、流入した冷媒をガス冷媒と液冷媒とに分離する機能を有している。 The gas-liquid separator 31 is connected to the high-pressure pipe 40 and to each of the inflow / outflow sides of the indoor unit 20. The gas-liquid separator 31 has a function of separating the flowing refrigerant into a gas refrigerant and a liquid refrigerant.
 絞り装置32は、気液分離器31と室内ユニット20Aの絞り装置21Aおよび室内ユニット20Bの絞り装置21Bとの間に設けられ、冷媒を減圧して膨張させるものである。絞り装置33は、低圧配管50と、絞り装置32と室内ユニット20Aの絞り装置21Aおよび室内ユニット20Bの絞り装置21Bとの間における配管と、を接続した接続配管に設けられ、冷媒を減圧して膨張させるものである。絞り装置32および絞り装置33は、例えば、キャピラリまたは電子式膨張弁等の開度の制御が可能な弁等で構成される。絞り装置32および絞り装置33が膨張弁である場合には、弁開度が制御装置90によって制御される。 The expansion device 32 is provided between the gas-liquid separator 31 and the expansion device 21A of the indoor unit 20A and the expansion device 21B of the indoor unit 20B, and expands the refrigerant by decompressing it. The expansion device 33 is provided in a connection pipe that connects the low-pressure pipe 50 and the piping between the expansion device 32 and the expansion device 21A of the indoor unit 20A and the expansion device 21B of the indoor unit 20B. Inflate. The throttling device 32 and the throttling device 33 are configured by, for example, valves capable of controlling the opening degree, such as capillaries or electronic expansion valves. When the expansion device 32 and the expansion device 33 are expansion valves, the valve opening degree is controlled by the control device 90.
(制御装置)
 空気調和機1には、制御装置90が設けられている。制御装置90は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成され、この空気調和機1全体の運転を制御する。例えば、制御装置90は、利用者から指示される運転内容等に基づき、圧縮機11の圧縮機周波数、絞り装置21の弁開度、ならびに流路切替弁100Aおよび100Bの切り替え等を制御する。
(Control device)
The air conditioner 1 is provided with a control device 90. The control device 90 includes, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), hardware such as a circuit device that realizes various functions, and the like. To control. For example, the control device 90 controls the compressor frequency of the compressor 11, the valve opening degree of the expansion device 21, the switching of the flow path switching valves 100 </ b> A and 100 </ b> B, and the like based on the operation content instructed by the user.
[流路切替弁の構成]
 図3は、本実施の形態1に係る流路切替弁100の構成の一例を示す概略図である。図3に示すように、流路切替弁100は、遮断弁101および102、流路切替回路103、ならびに流路切替弁駆動回路110を備えている。また、本実施の形態1において、流路切替弁100は、低圧配管50および高圧ガス配管80も構成要素に含んだ状態で形成されている。
[Configuration of flow path switching valve]
FIG. 3 is a schematic diagram illustrating an example of the configuration of the flow path switching valve 100 according to the first embodiment. As shown in FIG. 3, the flow path switching valve 100 includes shut-off valves 101 and 102, a flow path switching circuit 103, and a flow path switching valve drive circuit 110. In the first embodiment, the flow path switching valve 100 is formed with the low-pressure pipe 50 and the high-pressure gas pipe 80 included in the constituent elements.
 遮断弁101は、室内ユニット側ガス配管60から分岐する流路105aと低圧配管50との間に設けられている。遮断弁101には、冷媒の引込管としてのブリードポート106aが接続されている。遮断弁101は、流路105a側の圧力と低圧配管50側の圧力との差圧に応じて開閉することにより、流路105aおよび低圧配管50の間での冷媒の流通を許容または遮断する。例えば、遮断弁101は、冷媒がブリードポート106aに引き込まれ、上述した差圧が小さくなると「閉」状態となり、差圧が大きくなると「開」状態となる。 The shutoff valve 101 is provided between the flow path 105 a branched from the indoor unit side gas pipe 60 and the low pressure pipe 50. The shutoff valve 101 is connected to a bleed port 106a as a refrigerant intake pipe. The shut-off valve 101 opens or closes according to the pressure difference between the pressure on the flow path 105a side and the pressure on the low pressure pipe 50 side, thereby permitting or blocking the refrigerant flow between the flow path 105a and the low pressure pipe 50. For example, the shutoff valve 101 enters a “closed” state when the refrigerant is drawn into the bleed port 106a and the above-described differential pressure decreases, and enters an “open” state when the differential pressure increases.
 遮断弁102は、室内ユニット側ガス配管60から分岐する流路105bと高圧ガス配管80との間に設けられている。遮断弁102には、冷媒の引込管としてのブリードポート106bが接続されている。遮断弁102は、流路105b側の圧力と高圧ガス配管80側の圧力との差圧に応じて開閉することにより、流路105bおよび高圧ガス配管80の間での冷媒の流通を許容または遮断する。例えば、遮断弁102は、冷媒がブリードポート106bに引き込まれ、上述した差圧が小さくなると「閉」状態となり、差圧が大きくなると「開」状態となる。 The shutoff valve 102 is provided between the flow path 105 b branched from the indoor unit side gas pipe 60 and the high pressure gas pipe 80. A bleed port 106b is connected to the shutoff valve 102 as a refrigerant intake pipe. The shutoff valve 102 opens or closes according to the pressure difference between the pressure on the flow path 105b side and the pressure on the high pressure gas pipe 80 side, thereby permitting or shutting off the refrigerant flow between the flow path 105b and the high pressure gas pipe 80. To do. For example, the shutoff valve 102 enters the “closed” state when the refrigerant is drawn into the bleed port 106b and the above-described differential pressure decreases, and enters the “open” state when the differential pressure increases.
 なお、室内ユニット側ガス配管60は、室内ユニット20に接続されるものである。冷房運転の際には、室内ユニット側ガス配管60を介して、室内ユニット20から低圧のガス冷媒が流路切替弁100に流入する。また、暖房運転の際には、室内ユニット側ガス配管60を介して、流路切替弁100から室内ユニット20に対して高圧のガス冷媒が流出する。 The indoor unit side gas pipe 60 is connected to the indoor unit 20. During the cooling operation, low-pressure gas refrigerant flows from the indoor unit 20 into the flow path switching valve 100 via the indoor unit-side gas pipe 60. Further, during the heating operation, a high-pressure gas refrigerant flows out from the flow path switching valve 100 to the indoor unit 20 through the indoor unit side gas pipe 60.
 低圧配管50は、下流側が室外ユニット10に接続され、この低圧配管50を介して、ガス冷媒または2相冷媒が流路切替弁100から室外ユニット10に対して流出する。高圧ガス配管80は、上流側が気液分離器31に接続され、この高圧ガス配管80を介して、高圧のガス冷媒が気液分離器31から流路切替弁100に流入する。 The downstream side of the low-pressure pipe 50 is connected to the outdoor unit 10, and the gas refrigerant or the two-phase refrigerant flows out from the flow path switching valve 100 to the outdoor unit 10 through the low-pressure pipe 50. The upstream side of the high-pressure gas pipe 80 is connected to the gas-liquid separator 31, and high-pressure gas refrigerant flows from the gas-liquid separator 31 into the flow path switching valve 100 via the high-pressure gas pipe 80.
 流路切替回路103には、低圧配管50に接続された低圧側引込流路104、流路105c、ならびにブリードポート106aおよび106bが接続されている。流路切替回路103は、内部が空洞とされたシリンダーが弁内に設けられている。流路切替回路103は、このシリンダーを移動させることにより、冷媒が流れる流路を切り替えることができる。 The low-pressure side lead-in flow path 104, the flow path 105c, and the bleed ports 106a and 106b connected to the low-pressure pipe 50 are connected to the flow path switching circuit 103. The flow path switching circuit 103 is provided with a cylinder having a hollow inside in the valve. The flow path switching circuit 103 can switch the flow path through which the refrigerant flows by moving the cylinder.
 流路切替弁駆動回路110は、流路切替回路103内のシリンダーを駆動するために設けられ、シリンダーを動作させるための電圧を生成する。流路切替弁駆動回路110における電圧の出力方式は問わないが、この例において、流路切替弁駆動回路110は、例えば発火する虞がないDC20V程度の電圧を出力する。また、例えば、発火を考慮する必要がない場合には、流路切替弁駆動回路110は、例えばAC200V程度の電圧を出力するようにしてもよい。 The flow path switching valve drive circuit 110 is provided to drive the cylinder in the flow path switching circuit 103, and generates a voltage for operating the cylinder. The voltage output method in the flow path switching valve drive circuit 110 is not limited, but in this example, the flow path switching valve drive circuit 110 outputs a voltage of about DC 20 V, for example, which does not cause a fire. For example, when it is not necessary to consider ignition, the flow path switching valve drive circuit 110 may output a voltage of about AC 200 V, for example.
[流路切替弁の構造]
 図4は、図3に示す流路切替弁100の構造の一例を示す概略図である。なお、以下では、図4を正面から見た際の上下方向を「高さ方向」と称し、左右方向を「幅方向」と称し、手前から奥に向かう方向を「奥行き方法」と称して説明する。また、以下の図面では、図4を含め、各構成部材の大きさの関係が実際のものとは異なる場合がある。
[Structure of flow path switching valve]
FIG. 4 is a schematic diagram showing an example of the structure of the flow path switching valve 100 shown in FIG. In the following, the vertical direction when FIG. 4 is viewed from the front is referred to as the “height direction”, the horizontal direction is referred to as the “width direction”, and the direction from the front to the back is referred to as the “depth method”. To do. Moreover, in the following drawings, including FIG. 4, the relationship of the size of each component may be different from the actual one.
 図4に示すように、流路切替弁100は、外郭を形成する弁本体120に、遮断弁101および102、流路切替回路103、および流路切替弁駆動回路110が収容されている。また、流路切替弁100には、低圧配管50、室内ユニット側ガス配管60、ならびに高圧ガス配管80が接続されている。これらの遮断弁101および102、流路切替回路103、低圧配管50、室内ユニット側ガス配管60、ならびに高圧ガス配管80は、例えば黄銅またはアルミニウム等の難燃性を有する材料を用いて弁本体120と一体的に形成されている。 As shown in FIG. 4, in the flow path switching valve 100, shutoff valves 101 and 102, a flow path switching circuit 103, and a flow path switching valve drive circuit 110 are accommodated in a valve body 120 that forms an outer shell. Further, the low-pressure pipe 50, the indoor unit side gas pipe 60, and the high-pressure gas pipe 80 are connected to the flow path switching valve 100. The shutoff valves 101 and 102, the flow path switching circuit 103, the low pressure pipe 50, the indoor unit side gas pipe 60, and the high pressure gas pipe 80 are made of a valve body 120 using a flame-retardant material such as brass or aluminum. And is formed integrally.
 遮断弁101および102、ならびに流路切替回路103のそれぞれは、正面に面するように配置されている。この例では、遮断弁101および流路切替回路103が幅方向に並ぶようにして弁本体120の底部側に配置され、遮断弁102が弁本体120の上部側に配置されている。 Each of the shut-off valves 101 and 102 and the flow path switching circuit 103 are arranged so as to face the front. In this example, the shut-off valve 101 and the flow path switching circuit 103 are arranged on the bottom side of the valve main body 120 so as to be aligned in the width direction, and the shut-off valve 102 is arranged on the upper side of the valve main body 120.
 低圧配管50および高圧ガス配管80は、例えば、互いに平行になるようにして奥行き方向に形成されている。また、室内ユニット側ガス配管60は、例えば、低圧配管50および高圧ガス配管80に対して直交し、かつ弁本体120の底面と水平になるように形成されている。このように、室内ユニット側ガス配管60を弁本体120の底面と水平になるように形成することにより、流路切替弁100の高さを抑制することができる。 The low-pressure pipe 50 and the high-pressure gas pipe 80 are formed in the depth direction so as to be parallel to each other, for example. Further, the indoor unit side gas pipe 60 is formed, for example, so as to be orthogonal to the low pressure pipe 50 and the high pressure gas pipe 80 and to be horizontal with the bottom surface of the valve body 120. Thus, by forming the indoor unit side gas pipe 60 so as to be horizontal with the bottom surface of the valve body 120, the height of the flow path switching valve 100 can be suppressed.
 流路切替回路103には、流路切替弁コイル111が設けられている。流路切替弁コイル111は、流路切替弁駆動回路110から出力された電圧を受け取り、流路切替回路103のシリンダーを動作させるために設けられている。 The flow path switching circuit 103 is provided with a flow path switching valve coil 111. The flow path switching valve coil 111 is provided to receive the voltage output from the flow path switching valve drive circuit 110 and operate the cylinder of the flow path switching circuit 103.
 遮断弁101および102のそれぞれには、振動防止ばね112および113が設けられている。一般的に、遮断弁101および102では、流通する冷媒の流通が少ないときに、弁の自励振動動作が発生する場合がある。弁の自励振動動作は、所謂「カタカタ音」を発生させるため、例えば居室の天井裏等の空間に分岐ユニット30を設置した場合に、居住者に対して不快感を与える虞がある。そこで、本実施の形態1では、それぞれの遮断弁101および102に対して流通する冷媒の流量が少ないときに発生する弁の自励振動動作を防止するために、振動防止ばね112および113が設けられている。 The anti-vibration springs 112 and 113 are provided in the shut-off valves 101 and 102, respectively. Generally, in the shut-off valves 101 and 102, when the circulation of the circulating refrigerant is small, the self-excited vibration operation of the valve may occur. Since the self-excited vibration operation of the valve generates a so-called “flickering sound”, for example, when the branch unit 30 is installed in a space such as the ceiling of a living room, there is a possibility that the resident may feel uncomfortable. Therefore, in the first embodiment, vibration preventing springs 112 and 113 are provided in order to prevent the self-excited vibration operation of the valve that occurs when the flow rate of the refrigerant flowing through the shutoff valves 101 and 102 is small. It has been.
 なお、このような弁の自励振動動作が問題とならい場合、または自励振動動作が発生する領域で流路切替弁100を使用しない場合などでは、振動防止ばね112および113を使用しなくてもよい。 Note that when the self-excited vibration operation of such a valve is not a problem or when the flow path switching valve 100 is not used in a region where the self-excited vibration operation occurs, the vibration preventing springs 112 and 113 need not be used. Also good.
 図5は、図3に示す流路切替弁100の構造の他の例を示す概略図である。図5に示す流路切替弁100では、室内ユニット側ガス配管60が形成される方向が図4に示す流路切替弁100と相違している。それ以外の部分については、図4に示す流路切替弁100と同様に形成されている。 FIG. 5 is a schematic view showing another example of the structure of the flow path switching valve 100 shown in FIG. In the flow path switching valve 100 shown in FIG. 5, the direction in which the indoor unit side gas pipe 60 is formed is different from that of the flow path switching valve 100 shown in FIG. Other portions are formed in the same manner as the flow path switching valve 100 shown in FIG.
 室内ユニット側ガス配管60は、例えば、弁本体120の底面と垂直になるように形成されている。このように、室内ユニット側ガス配管60を弁本体120の底面と垂直になるように形成することにより、流路切替弁100の幅方向の長さを抑制することができる。 The indoor unit side gas pipe 60 is formed to be perpendicular to the bottom surface of the valve body 120, for example. Thus, by forming the indoor unit side gas pipe 60 so as to be perpendicular to the bottom surface of the valve main body 120, the length of the flow path switching valve 100 in the width direction can be suppressed.
[空気調和機の動作]
 次に、上記構成を有する空気調和機1における各種運転モードでの冷媒の動作について説明する。本実施の形態1に係る空気調和機1における運転モードとしては、室内ユニット20Aおよび20Bの両方が冷房運転を行う全冷房運転モードと、暖房運転を行う全暖房運転モードと、室内ユニット20Aおよび20Bが冷房運転および暖房運転の両方を同時に行い、いずれか一方の運転を主体的に行う冷房主体運転モードおよび暖房主体運転モードがある。
[Air conditioner operation]
Next, the operation | movement of the refrigerant | coolant in the various operation modes in the air conditioner 1 which has the said structure is demonstrated. As the operation mode in the air conditioner 1 according to Embodiment 1, the indoor unit 20A and 20B are both in the cooling operation mode in which the cooling operation is performed, the heating operation mode in which the heating operation is performed, and the indoor units 20A and 20B. However, there are a cooling main operation mode and a heating main operation mode in which both the cooling operation and the heating operation are performed at the same time, and either one of the operations is mainly performed.
(全冷房運転モード)
 まず、全冷房運転モードでの冷媒の動作について説明する。全冷房運転モードでは、室内ユニット20Aおよび20Bが共に冷房運転を行う。
(Cooling mode only)
First, the operation of the refrigerant in the cooling only operation mode will be described. In the all-cooling operation mode, both the indoor units 20A and 20B perform the cooling operation.
 全冷房運転モードでは、室外ユニット10における冷媒流路切替装置12が図2の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the cooling only operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって熱源側熱交換器13から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with the outdoor air and dissipates heat, and flows out of the heat source side heat exchanger 13 as a high-pressure liquid refrigerant.
 熱源側熱交換器13から流出した高圧の液冷媒は、逆止弁15dを介して室外ユニット10から流出し、分岐ユニット30に流入する。分岐ユニット30に流入した高圧の液冷媒は、気液分離器31および絞り装置32を介して分岐ユニット30から流出し、室内ユニット20Aおよび20Bに流入する。 The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 13 flows out of the outdoor unit 10 via the check valve 15 d and flows into the branch unit 30. The high-pressure liquid refrigerant that has flowed into the branch unit 30 flows out of the branch unit 30 via the gas-liquid separator 31 and the expansion device 32, and flows into the indoor units 20A and 20B.
 室内ユニット20Aに流入した高圧の液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Aに流入する。利用側熱交換器22Aに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Aから流出する。 The high-pressure liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A. The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A.
 また、室内ユニット20Bに流入した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Bに流入する。利用側熱交換器22Bに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Bから流出する。 Also, the high-pressure liquid refrigerant that has flowed into the indoor unit 20B is decompressed and expanded by the expansion device 21B to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22B. The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use side heat exchanger 22B exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low pressure gas refrigerant. It flows out of the exchanger 22B.
 利用側熱交換器22Aから流出した低圧のガス冷媒は、流路切替弁100Aを介して分岐ユニット30から流出し、室外ユニット10に流入する。また、利用側熱交換器22Bから流出した低圧のガス冷媒は、流路切替弁100Bを介して分岐ユニット30から流出し、流路切替弁100Aを介して分岐ユニット30から流出した低圧のガス冷媒と合流して室外ユニット10に流入する。 The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 30 via the flow path switching valve 100A and flows into the outdoor unit 10. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22B flows out of the branch unit 30 through the flow path switching valve 100B, and flows out of the branch unit 30 through the flow path switching valve 100A. And flows into the outdoor unit 10.
 室外ユニット10に流入した低圧のガス冷媒は、逆止弁15a、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-pressure gas refrigerant flowing into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
(全暖房運転モード)
 次に、全暖房運転モードでの冷媒の動作について説明する。全暖房運転モードでは、室内ユニット20Aおよび20Bが共に暖房運転を行う。
(All heating operation mode)
Next, the operation of the refrigerant in the heating only operation mode will be described. In the all heating operation mode, both the indoor units 20A and 20B perform the heating operation.
 全暖房運転モードでは、室外ユニット10における冷媒流路切替装置12が図2の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the heating only operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12および逆止弁15cを介して室外ユニット10から流出し、分岐ユニット30に流入する。分岐ユニット30に流入した高温高圧のガス冷媒は、気液分離器31、ならびに流路切替弁100Aおよび100Bを介して分岐ユニット30から流出し、室内ユニット20Aおよび20Bに流入する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15 c and flows into the branch unit 30. The high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 30 flows out of the branch unit 30 via the gas-liquid separator 31 and the flow path switching valves 100A and 100B, and flows into the indoor units 20A and 20B.
 室内ユニット20Aに流入した高温高圧のガス冷媒は、利用側熱交換器22Aに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した高圧の液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、室内ユニット20Aから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20A flows into the use-side heat exchanger 22A, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air to become a high-pressure liquid refrigerant. It flows out of the use side heat exchanger 22A. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22A is decompressed and expanded by the expansion device 21A, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20A.
 また、室内ユニット20Bに流入した高温高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、室内ユニット20Bから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air, And flows out from the use side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
 室内ユニット20Aおよび20Bから流出した低圧の気液二相冷媒または液冷媒は、分岐ユニット30に流入し、絞り装置33を介して分岐ユニットから流出し、室外ユニット10に流入する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor units 20A and 20B flows into the branch unit 30, flows out of the branch unit via the expansion device 33, and flows into the outdoor unit 10.
 室外ユニット10に流入した低圧の気液二相冷媒または液冷媒は、逆止弁15bを介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した低圧の気液二相冷媒または液冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって熱源側熱交換器13から流出する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the outdoor unit 10 flows into the heat source side heat exchanger 13 through the check valve 15b. The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the heat source side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant and flows out of the heat source side heat exchanger 13. .
 熱源側熱交換器13から流出した低温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
(冷房主体運転モード)
 次に、冷房主体運転モードでの冷媒の動作について説明する。ここでは、室内ユニット20Aが冷房運転を行い、室内ユニット20Bが暖房運転を行う場合を例にとって説明する。
(Cooling operation mode)
Next, the operation of the refrigerant in the cooling main operation mode will be described. Here, the case where the indoor unit 20A performs the cooling operation and the indoor unit 20B performs the heating operation will be described as an example.
 冷房主体運転モードでは、室外ユニット10における冷媒流路切替装置12が図2の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the cooling main operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state shown by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、高圧の気液二相冷媒となって熱源側熱交換器13から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 via the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 condenses while exchanging heat with outdoor air and dissipates heat, and then flows out of the heat source side heat exchanger 13 as a high-pressure gas-liquid two-phase refrigerant.
 熱源側熱交換器13から流出した高圧の気液二相冷媒は、逆止弁15dを介して室外ユニット10から流出し、分岐ユニット30に流入する。分岐ユニット30に流入した高圧の気液二相冷媒は、気液分離器31に流入し、高圧のガス冷媒と高圧の液冷媒とに分離される。 The high-pressure gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 13 flows out of the outdoor unit 10 through the check valve 15 d and flows into the branch unit 30. The high-pressure gas-liquid two-phase refrigerant that has flowed into the branch unit 30 flows into the gas-liquid separator 31 and is separated into a high-pressure gas refrigerant and a high-pressure liquid refrigerant.
 気液分離器31によって分離された高圧のガス冷媒は、流路切替弁100Bを介して分岐ユニット30から流出し、室内ユニット20Bに流入する。室内ユニット20Bに流入した高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて中間圧の気液二相冷媒または液冷媒となり、室内ユニット20Bから流出する。 The high-pressure gas refrigerant separated by the gas-liquid separator 31 flows out from the branch unit 30 via the flow path switching valve 100B and flows into the indoor unit 20B. The high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air and using it as a high-pressure liquid refrigerant. It flows out from the side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
 一方、気液分離器31によって分離された高圧の液冷媒、および室内ユニット20Bから流出した中間圧の気液二相冷媒または液冷媒は、分岐ユニット30から流出し、室内ユニット20Aに流入する。室内ユニット20Aに流入した高圧の液冷媒、および室内ユニット20Bから流出した中間圧の気液二相冷媒または液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Aに流入する。 On the other hand, the high-pressure liquid refrigerant separated by the gas-liquid separator 31 and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant flowing out of the indoor unit 20B flow out of the branch unit 30 and flow into the indoor unit 20A. The high-pressure liquid refrigerant flowing into the indoor unit 20A and the intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant flowing out of the indoor unit 20B are depressurized and expanded by the expansion device 21A, and the low-pressure gas-liquid two-phase refrigerant or liquid refrigerant. And flows into the use side heat exchanger 22A.
 利用側熱交換器22Aに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した低圧のガス冷媒は、流路切替弁100Aを介して分岐ユニット30から流出し、室外ユニット10に流入する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 30 via the flow path switching valve 100A and flows into the outdoor unit 10.
 室外ユニット10に流入した低圧のガス冷媒は、逆止弁15a、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-pressure gas refrigerant flowing into the outdoor unit 10 passes through the check valve 15a, the refrigerant flow switching device 12, and the accumulator 14, and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
(暖房主体運転モード)
 次に、暖房主体運転モードでの冷媒の動作について説明する。ここでは、冷房主体運転モードと同様に、室内ユニット20Aが冷房運転を行い、室内ユニット20Bが暖房運転を行う場合を例にとって説明する。
(Heating main operation mode)
Next, the operation of the refrigerant in the heating main operation mode will be described. Here, the case where the indoor unit 20A performs the cooling operation and the indoor unit 20B performs the heating operation will be described as an example, as in the cooling main operation mode.
 暖房主体運転モードでは、室外ユニット10における冷媒流路切替装置12が図2の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。 In the heating main operation mode, the refrigerant flow switching device 12 in the outdoor unit 10 is switched to the state indicated by the dotted line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12および逆止弁15cを介して室外ユニット10から流出し、分岐ユニット30に流入する。分岐ユニット30に流入した高温高圧のガス冷媒は、気液分離器31および流路切替弁100Bを介して分岐ユニット30から流出する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 through the refrigerant flow switching device 12 and the check valve 15 c and flows into the branch unit 30. The high-temperature and high-pressure gas refrigerant that has flowed into the branch unit 30 flows out of the branch unit 30 via the gas-liquid separator 31 and the flow path switching valve 100B.
 分岐ユニット30から流出した高温高圧のガス冷媒は、室内ユニット20Bに流入する。室内ユニット20Bに流入した高温高圧のガス冷媒は、利用側熱交換器22Bに流入し、室内空気と熱交換して放熱しながら凝縮することにより室内空気を加熱し、高圧の液冷媒となって利用側熱交換器22Bから流出する。利用側熱交換器22Bから流出した高圧の液冷媒は、絞り装置21Bによって減圧および膨張されて中間圧の気液二相冷媒または液冷媒となり、室内ユニット20Bから流出する。 The high-temperature and high-pressure gas refrigerant that has flowed out of the branch unit 30 flows into the indoor unit 20B. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 20B flows into the use-side heat exchanger 22B, heats the indoor air and condenses while dissipating heat, thereby heating the indoor air to become a high-pressure liquid refrigerant. It flows out from the use side heat exchanger 22B. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 22B is decompressed and expanded by the expansion device 21B, becomes an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows out of the indoor unit 20B.
 室内ユニット20Bから流出した中間圧の気液二相冷媒または液冷媒は、室内ユニット20Aに流入する。室内ユニット20Aに流入した中間圧の気液二相冷媒または液冷媒は、絞り装置21Aによって減圧および膨張されて低圧の気液二相冷媒または液冷媒となり、利用側熱交換器22Aに流入する。 The intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed out of the indoor unit 20B flows into the indoor unit 20A. The intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the indoor unit 20A is decompressed and expanded by the expansion device 21A to become a low-pressure gas-liquid two-phase refrigerant or liquid refrigerant, and flows into the use-side heat exchanger 22A.
 利用側熱交換器22Aに流入した低圧の気液二相冷媒または液冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低圧のガス冷媒となって利用側熱交換器22Aから流出する。利用側熱交換器22Aから流出した低圧のガス冷媒は、流路切替弁100Aを介して分岐ユニット30から流出し、室外ユニット10に流入する。 The low-pressure gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the use-side heat exchanger 22A exchanges heat with the room air to absorb heat and evaporate, thereby cooling the room air and becoming a low-pressure gas refrigerant. It flows out of the exchanger 22A. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 22A flows out of the branch unit 30 via the flow path switching valve 100A and flows into the outdoor unit 10.
 室外ユニット10に流入した低圧のガス冷媒は、逆止弁15bを介して熱源側熱交換器13に流入する。熱源側熱交換器13に流入した低圧のガス冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって熱源側熱交換器13から流出する。 The low-pressure gas refrigerant flowing into the outdoor unit 10 flows into the heat source side heat exchanger 13 via the check valve 15b. The low-pressure gas refrigerant that has flowed into the heat source side heat exchanger 13 exchanges heat with outdoor air, absorbs heat and evaporates, and becomes a low-temperature and low-pressure gas refrigerant that flows out of the heat source side heat exchanger 13.
 熱源側熱交換器13から流出した低温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を通過して、圧縮機11へ吸入される。そして、以下、上述した循環が繰り返される。 The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 13 passes through the refrigerant flow switching device 12 and the accumulator 14 and is sucked into the compressor 11. Thereafter, the above-described circulation is repeated.
[流路切替弁の動作]
 次に、流路切替弁100における各種運転モード時の動作について説明する。ここでは、冷房運転モード時、暖房運転モード時、および暖房運転モードから冷房運転モードに切り替えた場合の流路切替弁100の動作について説明する。図6は、図3の流路切替弁100における各流路およびシリンダーの状態を示す概略図である。
[Operation of flow path switching valve]
Next, operations in various operation modes in the flow path switching valve 100 will be described. Here, the operation of the flow path switching valve 100 in the cooling operation mode, in the heating operation mode, and when the heating operation mode is switched to the cooling operation mode will be described. FIG. 6 is a schematic diagram showing the state of each flow path and cylinder in the flow path switching valve 100 of FIG.
(冷房運転モード時)
 冷房運転モード時においては、まず、流路切替弁100における各流路およびシリンダーの状態が図6(b)に示すように設定される。室内ユニット側ガス配管60から流路切替弁100に低圧のガス冷媒が流入すると、ブリードポート106aから低圧側引込流路104へ冷媒が引き込まれ、遮断弁101が「開」状態となる。これにより、室内ユニット側ガス配管60から流入した冷媒が遮断弁101を通過し、低圧配管50に流出する。
(In cooling operation mode)
In the cooling operation mode, first, the state of each flow path and cylinder in the flow path switching valve 100 is set as shown in FIG. When a low-pressure gas refrigerant flows from the indoor unit side gas pipe 60 into the flow path switching valve 100, the refrigerant is drawn from the bleed port 106a into the low-pressure side intake flow path 104, and the shut-off valve 101 is in the “open” state. As a result, the refrigerant flowing from the indoor unit side gas pipe 60 passes through the shutoff valve 101 and flows out to the low pressure pipe 50.
 また、室内ユニット側ガス配管60から流入した冷媒は、流路105cにも流れ込み、流路105cおよび低圧側引込流路104を経由して、低圧配管50に流出する。そして、2つの経路で流出した冷媒は、低圧配管50で合流する。 Further, the refrigerant that has flowed in from the indoor unit side gas pipe 60 also flows into the flow path 105c, and flows out to the low pressure pipe 50 via the flow path 105c and the low pressure side intake flow path 104. Then, the refrigerant that has flowed out through the two paths merges in the low-pressure pipe 50.
(暖房運転モード時)
 暖房運転モード時においては、まず、流路切替弁100における各流路およびシリンダーの状態が図6(c)に示すように設定される。高圧ガス配管80から流路切替弁100に高圧のガス冷媒が流入すると、ブリードポート106bから低圧側引込流路104へ冷媒が引き込まれ、遮断弁102が「開」状態となる。これにより、高圧ガス配管80から流入した冷媒は、遮断弁102を通過し、室内ユニット側ガス配管60から流出する。
(In heating mode)
In the heating operation mode, first, the state of each flow path and cylinder in the flow path switching valve 100 is set as shown in FIG. When a high-pressure gas refrigerant flows from the high-pressure gas pipe 80 into the flow path switching valve 100, the refrigerant is drawn from the bleed port 106b into the low-pressure side intake flow path 104, and the shutoff valve 102 is in the “open” state. Thereby, the refrigerant flowing in from the high-pressure gas pipe 80 passes through the shutoff valve 102 and flows out from the indoor unit side gas pipe 60.
(暖房運転モードから冷房運転モードへの切り替え時)
 運転モードを暖房運転モードから冷房運転モードに切り替える場合、室内ユニット側ガス配管60には、高圧の冷媒が排出されずに滞留しており、残圧が残っている。そのため、暖房運転の直後に冷房運転を実施する場合には、室内ユニット側ガス配管60に滞留する冷媒による残圧と、低圧配管50の圧力との差が大きい状態となる。したがって、運転モードを切り替えて遮断弁101を「開」状態とすると、圧力差によるガス冷媒の大きな流動音が発生する場合がある。このような流動音は、居住者に対して不快感を与えてしまう虞がある。そこで、本実施の形態1において、運転モードを暖房運転モードから冷房運転モードに切り替える場合には、流路105cを用いて室内ユニット側ガス配管60の残圧を低減するようにしている。
(When switching from heating operation mode to cooling operation mode)
When the operation mode is switched from the heating operation mode to the cooling operation mode, the high pressure refrigerant remains in the indoor unit side gas pipe 60 without being discharged, and the residual pressure remains. Therefore, when the cooling operation is performed immediately after the heating operation, the difference between the residual pressure due to the refrigerant staying in the indoor unit side gas pipe 60 and the pressure of the low pressure pipe 50 is large. Therefore, when the operation mode is switched and the shut-off valve 101 is in the “open” state, a large flow noise of the gas refrigerant due to the pressure difference may occur. Such a flowing sound may cause discomfort to the resident. Therefore, in the first embodiment, when the operation mode is switched from the heating operation mode to the cooling operation mode, the residual pressure in the indoor unit side gas pipe 60 is reduced using the flow path 105c.
 この場合、具体的には、まず流路切替回路103におけるシリンダーが図6(a)に示すように設定される。このようにシリンダーが設定されると、室内ユニット側ガス配管60と低圧側引込流路104が接続され、室内ユニット側ガス配管60と低圧配管50とが接続される経路が形成される。そして、室内ユニット側ガス配管60に滞留している冷媒は、低圧側引込流路104を介して低圧配管50に流出する。これにより、室内ユニット側ガス配管60の残圧が低減する。そのため、上述したような室内ユニット側ガス配管60に滞留する冷媒による流動音の発生を抑制することができる。 In this case, specifically, the cylinder in the flow path switching circuit 103 is first set as shown in FIG. When the cylinder is set in this way, the indoor unit side gas pipe 60 and the low pressure side intake passage 104 are connected, and a path is formed in which the indoor unit side gas pipe 60 and the low pressure pipe 50 are connected. Then, the refrigerant staying in the indoor unit side gas pipe 60 flows out to the low pressure pipe 50 via the low pressure side intake passage 104. Thereby, the residual pressure of the indoor unit side gas pipe 60 is reduced. Therefore, it is possible to suppress the generation of flow noise due to the refrigerant that stays in the indoor unit side gas pipe 60 as described above.
 なお、上述した方法に限られず、例えば遮断弁101を用いて、室内ユニット側ガス配管60に滞留する冷媒による流動音の発生を抑制することが考えられる。しかしながら、遮断弁101のように流路径が大きいと、室内ユニット側ガス配管60に滞留する冷媒を抜く制御を行った場合に、上述したガス流動音が発生してしまう。ガス流動音の発生を抑制するためには、低流量の冷媒を流出させる弁が必要となるので、このように遮断弁101を用いることは適切でない。 It should be noted that the present invention is not limited to the above-described method, and it is conceivable to suppress the generation of a flow noise caused by the refrigerant staying in the indoor unit side gas pipe 60 using, for example, the shutoff valve 101. However, when the flow path diameter is large like the shut-off valve 101, the above-described gas flow noise is generated when the control for removing the refrigerant staying in the indoor unit side gas pipe 60 is performed. In order to suppress the generation of gas flow noise, a valve that allows a low flow rate refrigerant to flow out is required. Therefore, it is not appropriate to use the shut-off valve 101 in this way.
 以上のように、本実施の形態1に係る流路切替弁100は、冷媒が流入出する室内ユニット側ガス配管60と冷媒が流出する低圧配管50との間に設けられ、冷媒の流通を許容または遮断する遮断弁101と、室内ユニット側ガス配管60と冷媒が流入する高圧ガス配管80との間に設けられ、冷媒の流通を許容または遮断する遮断弁102と、少なくとも室内ユニット側ガス配管60、低圧配管50および遮断弁101に接続され、接続された室内ユニット側ガス配管60、低圧配管50および遮断弁101との間の流路の接続を切り替える流路切替回路103と、流路切替回路103を駆動する流路切替弁駆動回路110とを備え、流路切替弁駆動回路110は、遮断弁101に流入する冷媒を低圧配管50に引き込むように、流路切替回路103における遮断弁101に連通する流路と低圧配管50に連通する流路とを接続させることにより、遮断弁101を開弁させる。 As described above, the flow path switching valve 100 according to the first embodiment is provided between the indoor unit side gas pipe 60 through which the refrigerant flows in and out and the low pressure pipe 50 through which the refrigerant flows out, and allows the refrigerant to flow. Alternatively, the shut-off valve 101 that shuts off, the shut-off valve 102 that is provided between the indoor unit side gas pipe 60 and the high-pressure gas pipe 80 into which the refrigerant flows and allows or shuts off the refrigerant flow, and at least the indoor unit side gas pipe 60. A flow path switching circuit 103 that is connected to the low-pressure pipe 50 and the shut-off valve 101 and switches the connection between the connected indoor unit side gas pipe 60, the low-pressure pipe 50, and the shut-off valve 101; A flow path switching valve drive circuit 110 for driving the flow path 103, and the flow path switching valve drive circuit 110 is configured to draw the refrigerant flowing into the shutoff valve 101 into the low pressure pipe 50. By connecting the flow path communicating with the passage and the low pressure piping 50 communicating with the shut-off valve 101 in the circuit 103, to open the shut-off valve 101.
 このように、本実施の形態1では、流路切替回路103を駆動して、遮断弁101の開閉を制御する。流路切替回路103を駆動するのに必要な電圧は、例えば電磁弁を駆動するのに必要な電圧よりも低くて済むため、アークの発生による発火を抑制することができる。 Thus, in the first embodiment, the flow path switching circuit 103 is driven to control the opening / closing of the shutoff valve 101. Since the voltage required to drive the flow path switching circuit 103 may be lower than the voltage required to drive the solenoid valve, for example, ignition due to the occurrence of an arc can be suppressed.
 また、発火を抑制できることにより、流路切替弁100を備える分岐ユニット30に設けられるドレンパンまたは外装を、燃焼性を有する発泡スチロール等の安価な材料に変更することができる。 Moreover, by suppressing ignition, the drain pan or the exterior provided in the branch unit 30 including the flow path switching valve 100 can be changed to an inexpensive material such as styrene foam having combustibility.
 また、本実施の形態1に係る流路切替弁100において、室内ユニット側ガス配管60は、弁本体120の底面に対して平行になるように形成されている。これにより、流路切替弁100の高さを抑制することができ、この流路切替弁100が設けられた分岐ユニット30の設置の自由度を向上させることができる。 Further, in the flow path switching valve 100 according to the first embodiment, the indoor unit side gas pipe 60 is formed to be parallel to the bottom surface of the valve body 120. Thereby, the height of the flow path switching valve 100 can be suppressed, and the degree of freedom of installation of the branch unit 30 provided with the flow path switching valve 100 can be improved.
 さらに、本実施の形態1に係る流路切替弁100において、室内ユニット側ガス配管60は、弁本体120の底面に対して垂直になるように形成されている。これにより、流路切替弁100の幅方向の長さを抑制することができ、この流路切替弁100が設けられた分岐ユニット30の設置の自由度を向上させることができる。 Furthermore, in the flow path switching valve 100 according to Embodiment 1, the indoor unit side gas pipe 60 is formed to be perpendicular to the bottom surface of the valve body 120. Thereby, the length of the width direction of the flow-path switching valve 100 can be suppressed, and the freedom degree of installation of the branch unit 30 provided with this flow-path switching valve 100 can be improved.
 さらにまた、本実施の形態1に係る流路切替弁100において、遮断弁101および102、ならびに流路切替回路103は、弁本体120の正面に面するように配置されている。これにより、作業者による弁および弁を駆動させるためのコイル等へのアクセス性が向上し、メンテナンス等の作業を容易に行うことができる。 Furthermore, in the flow path switching valve 100 according to the first embodiment, the shutoff valves 101 and 102 and the flow path switching circuit 103 are arranged so as to face the front surface of the valve main body 120. Thereby, the accessibility to the valve and the coil for driving the valve by the operator is improved, and work such as maintenance can be easily performed.
実施の形態2.
 次に、本実施の形態2に係る空気調和機について説明する。本実施の形態2に係る空気調和機は、流路切替弁100の構成が実施の形態1と相違する。なお、以下の説明において、上述した実施の形態1と共通する部分については、同一の符号を付し、説明を省略する。
Embodiment 2. FIG.
Next, an air conditioner according to Embodiment 2 will be described. The air conditioner according to the second embodiment is different from the first embodiment in the configuration of the flow path switching valve 100. In the following description, portions common to the above-described first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態2における空気調和機1は、実施の形態1と同様に、図1および図2の構成を有しているため、ここでは説明を省略する。 Since the air conditioner 1 according to the second embodiment has the configuration shown in FIGS. 1 and 2 as in the first embodiment, the description thereof is omitted here.
[流路切替弁の構成]
 図7は、本実施の形態2に係る流路切替弁100の構成の一例を示す概略図である。図7に示すように、流路切替弁100は、遮断弁101および102、流路切替回路103、ならびに流路切替弁駆動回路110を備えている。なお、この流路切替弁100は、実施の形態1に係る流路切替弁100と異なり、低圧配管50および高圧ガス配管80を構成要素から除いている。これにより、黄銅またはアルミ等の流路切替弁100に使用する材料を削減することができる。
[Configuration of flow path switching valve]
FIG. 7 is a schematic diagram illustrating an example of the configuration of the flow path switching valve 100 according to the second embodiment. As shown in FIG. 7, the flow path switching valve 100 includes shut-off valves 101 and 102, a flow path switching circuit 103, and a flow path switching valve drive circuit 110. Note that the flow path switching valve 100 differs from the flow path switching valve 100 according to Embodiment 1 in that the low pressure pipe 50 and the high pressure gas pipe 80 are excluded from the constituent elements. Thereby, the material used for the flow path switching valves 100 such as brass or aluminum can be reduced.
 以上のように、本実施の形態2では、実施の形態1と同様の効果を奏することができる。また、流路切替弁100に形成される低圧配管50および高圧ガス配管80を構成要素から除き、流路切替弁100に使用する材料を削減できるため、コストを抑制することができる。 As described above, the second embodiment can provide the same effects as the first embodiment. Further, the low pressure pipe 50 and the high pressure gas pipe 80 formed in the flow path switching valve 100 can be removed from the constituent elements, and the material used for the flow path switching valve 100 can be reduced, so that the cost can be suppressed.
実施の形態3.
 次に、本実施の形態3に係る空気調和機について説明する。本実施の形態3に係る空気調和機は、流路切替弁100における遮断弁102を電磁弁で構成する点で、実施の形態1および2と相違する。なお、以下の説明において、上述した実施の形態1および2と共通する部分については、同一の符号を付し、説明を省略する。
Embodiment 3 FIG.
Next, an air conditioner according to Embodiment 3 will be described. The air conditioner according to Embodiment 3 is different from Embodiments 1 and 2 in that the shutoff valve 102 in the flow path switching valve 100 is configured by an electromagnetic valve. In the following description, parts common to those in the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態3における空気調和機1は、実施の形態1と同様に、図1および図2の構成を有しているため、ここでは説明を省略する。 Since the air conditioner 1 according to the third embodiment has the configuration shown in FIGS. 1 and 2 as in the first embodiment, the description thereof is omitted here.
[流路切替弁の構成]
 図8は、本実施の形態3に係る流路切替弁100の構成の一例を示す概略図である。
 図8に示すように、流路切替弁100は、遮断弁101および102、流路切替回路103、ならびに流路切替弁駆動回路110を備えている。
[Configuration of flow path switching valve]
FIG. 8 is a schematic diagram illustrating an example of the configuration of the flow path switching valve 100 according to the third embodiment.
As shown in FIG. 8, the flow path switching valve 100 includes shut-off valves 101 and 102, a flow path switching circuit 103, and a flow path switching valve drive circuit 110.
 遮断弁101は、実施の形態1と同様に、流路105aと低圧配管50との間に設けられ、ブリードポート106aが接続されている。遮断弁101は、流路105a側の圧力と低圧配管50側の圧力との差圧に応じて開閉することにより、流路105aおよび低圧配管50の間での冷媒の流通を許容または遮断する。例えば、遮断弁101は、冷媒がブリードポート106aに引き込まれ、上述した差圧が小さくなると「閉」状態となり、差圧が大きくなると「開」状態となる。 The shut-off valve 101 is provided between the flow path 105a and the low-pressure pipe 50, and the bleed port 106a is connected, as in the first embodiment. The shut-off valve 101 opens or closes according to the pressure difference between the pressure on the flow path 105a side and the pressure on the low pressure pipe 50 side, thereby permitting or blocking the refrigerant flow between the flow path 105a and the low pressure pipe 50. For example, the shutoff valve 101 enters a “closed” state when the refrigerant is drawn into the bleed port 106a and the above-described differential pressure decreases, and enters an “open” state when the differential pressure increases.
 遮断弁102は、流路105bと高圧ガス配管80との間に設けられている。遮断弁102は、例えば、弁の開閉が後述する流路切替弁駆動回路110によって制御される電磁弁で構成され、流路105bおよび高圧ガス配管80の間での冷媒の流通を許容または遮断する。 The shutoff valve 102 is provided between the flow path 105 b and the high-pressure gas pipe 80. The shut-off valve 102 is constituted by, for example, an electromagnetic valve whose opening and closing is controlled by a flow path switching valve drive circuit 110, which will be described later, and allows or blocks the refrigerant flow between the flow path 105b and the high-pressure gas pipe 80. .
 流路切替回路103には、低圧側引込流路104、流路105c、ならびにブリードポート106aが接続されている。流路切替回路103は、シリンダーが弁内に設けられている。流路切替回路103は、このシリンダーを移動させることにより、冷媒が流れる流路を切り替えることができる。 The flow path switching circuit 103 is connected to a low-pressure side intake flow path 104, a flow path 105c, and a bleed port 106a. The flow path switching circuit 103 is provided with a cylinder in the valve. The flow path switching circuit 103 can switch the flow path through which the refrigerant flows by moving the cylinder.
 流路切替弁駆動回路110は、遮断弁102および流路切替回路103内のシリンダーを駆動するために設けられ、遮断弁102およびシリンダーを動作させるための電圧を生成する。 The flow path switching valve drive circuit 110 is provided to drive the cylinders in the cutoff valve 102 and the flow path switching circuit 103, and generates a voltage for operating the cutoff valve 102 and the cylinder.
[流路切替弁の構造]
 図9は、図8に示す流路切替弁100の構造の一例を示す概略図である。なお、図9において、図4および図5に示す実施の形態1における流路切替弁100と共通する部分ついては、詳細な説明を省略する。
[Structure of flow path switching valve]
FIG. 9 is a schematic diagram showing an example of the structure of the flow path switching valve 100 shown in FIG. In FIG. 9, detailed description of portions common to the flow path switching valve 100 in Embodiment 1 shown in FIGS. 4 and 5 is omitted.
 図9に示すように、流路切替弁100は、実施の形態1と同様に、弁本体120に、遮断弁101および102、流路切替回路103、低圧配管50、室内ユニット側ガス配管60、ならびに高圧ガス配管80が設けられている。これらの遮断弁101および102、流路切替回路103、低圧配管50、室内ユニット側ガス配管60、ならびに高圧ガス配管80は、例えば黄銅またはアルミニウム等の難燃性を有する材料を用いて弁本体120と一体的に形成されている。 As shown in FIG. 9, the flow path switching valve 100 includes a shutoff valve 101 and 102, a flow path switching circuit 103, a low pressure pipe 50, an indoor unit side gas pipe 60, as in the first embodiment. In addition, a high-pressure gas pipe 80 is provided. The shutoff valves 101 and 102, the flow path switching circuit 103, the low pressure pipe 50, the indoor unit side gas pipe 60, and the high pressure gas pipe 80 are made of a valve body 120 using a flame-retardant material such as brass or aluminum. And is formed integrally.
 遮断弁101および102、ならびに流路切替回路103のそれぞれは、正面に面するように配置されている。この例では、遮断弁101および流路切替回路103が幅方向に並ぶようにして弁本体120の底部側に配置され、遮断弁102が弁本体120の上部側に配置されている。 Each of the shut-off valves 101 and 102 and the flow path switching circuit 103 are arranged so as to face the front. In this example, the shut-off valve 101 and the flow path switching circuit 103 are arranged on the bottom side of the valve main body 120 so as to be aligned in the width direction, and the shut-off valve 102 is arranged on the upper side of the valve main body 120.
 ここで、この例では、遮断弁102の弁を動作させるコイルと、流路切替回路103のシリンダーを動作させるための流路切替弁コイル111とが互いに右側方向、すなわち同一方向に設けられている。このように、それぞれのコイルが同一方向に位置するように、遮断弁102および流路切替回路103を配置することにより、コイルに対するアクセス性を向上させることができる。 Here, in this example, the coil for operating the valve of the shutoff valve 102 and the flow path switching valve coil 111 for operating the cylinder of the flow path switching circuit 103 are provided in the right direction, that is, in the same direction. . Thus, the accessibility to the coil can be improved by arranging the shutoff valve 102 and the flow path switching circuit 103 so that the coils are positioned in the same direction.
 室内ユニット側ガス配管60は、例えば、低圧配管50および高圧ガス配管80に対して直交し、かつ弁本体120の底面と水平になるように形成されている。これにより、流路切替弁100の高さを抑制することができる。なお、室内ユニット側ガス配管60は、この例に限られず、例えば、弁本体120の底面と垂直になるように形成されていてもよい。これにより、流路切替弁100の幅方向の長さを抑制することができる。 The indoor unit side gas pipe 60 is formed, for example, so as to be orthogonal to the low pressure pipe 50 and the high pressure gas pipe 80 and to be horizontal with the bottom surface of the valve body 120. Thereby, the height of the flow path switching valve 100 can be suppressed. In addition, the indoor unit side gas piping 60 is not restricted to this example, For example, you may form so that it may become perpendicular | vertical with the bottom face of the valve main body 120. FIG. Thereby, the length of the width direction of the flow path switching valve 100 can be suppressed.
[流路切替弁の動作]
 次に、上記構成を有する流路切替弁100における各種運転モード時の動作について説明する。ここでは、冷房運転モード時、暖房運転モード時、および暖房運転モードから冷房運転モードに切り替えた場合の流路切替弁100の動作について説明する。図10は、図8の流路切替弁100における各流路およびシリンダーの状態を示す概略図である。
[Operation of flow path switching valve]
Next, the operation | movement at the time of various operation modes in the flow-path switching valve 100 which has the said structure is demonstrated. Here, the operation of the flow path switching valve 100 in the cooling operation mode, in the heating operation mode, and when the heating operation mode is switched to the cooling operation mode will be described. FIG. 10 is a schematic diagram showing the state of each flow path and cylinder in the flow path switching valve 100 of FIG.
(冷房運転モード時)
 冷房運転モード時においては、実施の形態1と同様に、まず、流路切替弁100における各流路およびシリンダーの状態が図10(b)に示すように設定される。室内ユニット側ガス配管60から流路切替弁100に低圧のガス冷媒が流入すると、ブリードポート106aから低圧側引込流路104へ冷媒が引き込まれ、遮断弁101が「開」状態となる。これにより、室内ユニット側ガス配管60から流入した冷媒が遮断弁101を通過し、低圧配管50に流出する。
(In cooling operation mode)
In the cooling operation mode, as in the first embodiment, first, the state of each flow path and cylinder in the flow path switching valve 100 is set as shown in FIG. When a low-pressure gas refrigerant flows from the indoor unit side gas pipe 60 into the flow path switching valve 100, the refrigerant is drawn from the bleed port 106a into the low-pressure side intake flow path 104, and the shut-off valve 101 is in the “open” state. As a result, the refrigerant flowing from the indoor unit side gas pipe 60 passes through the shutoff valve 101 and flows out to the low pressure pipe 50.
 また、室内ユニット側ガス配管60から流入した冷媒は、流路105cにも流れ込み、流路105cおよび低圧側引込流路104を経由して、低圧配管50に流出する。そして、2つの経路で流出した冷媒は、低圧配管50で合流する。 Further, the refrigerant that has flowed in from the indoor unit side gas pipe 60 also flows into the flow path 105c, and flows out to the low pressure pipe 50 via the flow path 105c and the low pressure side intake flow path 104. Then, the refrigerant that has flowed out through the two paths merges in the low-pressure pipe 50.
(暖房運転モード時)
 暖房運転モード時においては、まず、流路切替弁駆動回路110の制御により、遮断弁102が「開」状態とされる。高圧ガス配管80から流路切替弁100に高圧のガス冷媒が流入すると、「開」状態とされた遮断弁102を通過し、流路105bを介して室内ユニット側ガス配管60から流出する。
(In heating mode)
In the heating operation mode, first, the shutoff valve 102 is set to the “open” state under the control of the flow path switching valve drive circuit 110. When high-pressure gas refrigerant flows from the high-pressure gas pipe 80 into the flow path switching valve 100, the high-pressure gas refrigerant passes through the shut-off valve 102 in the “open” state and flows out from the indoor unit side gas pipe 60 through the flow path 105b.
(暖房運転モードから冷房運転モードへの切り替え時)
 運転モードを暖房運転モードから冷房運転モードに切り替える場合には、まず流路切替回路103におけるシリンダーが図10(a)に示すように設定される。このようにシリンダーが設定されると、室内ユニット側ガス配管60と低圧側引込流路104が接続され、室内ユニット側ガス配管60と低圧配管50とが接続される経路が形成される。そして、室内ユニット側ガス配管60に滞留している冷媒は、低圧側引込流路104を介して低圧配管50に流出する。これにより、室内ユニット側ガス配管60の残圧が低減する。そのため、上述したような室内ユニット側ガス配管60に滞留する冷媒による流動音の発生を抑制することができる。
(When switching from heating operation mode to cooling operation mode)
When the operation mode is switched from the heating operation mode to the cooling operation mode, first, the cylinder in the flow path switching circuit 103 is set as shown in FIG. When the cylinder is set in this way, the indoor unit side gas pipe 60 and the low pressure side intake passage 104 are connected, and a path is formed in which the indoor unit side gas pipe 60 and the low pressure pipe 50 are connected. Then, the refrigerant staying in the indoor unit side gas pipe 60 flows out to the low pressure pipe 50 via the low pressure side intake passage 104. Thereby, the residual pressure of the indoor unit side gas pipe 60 is reduced. Therefore, it is possible to suppress the generation of flow noise due to the refrigerant that stays in the indoor unit side gas pipe 60 as described above.
 以上のように、本実施の形態3に係る流路切替弁100では、実施の形態1と同様の効果を奏することができる。また、遮断弁102を従来の流路切替弁と同様に、電磁弁で構成するため、この流路切替弁100が設けられた分岐ユニット30の求める機能およびコストを考慮して、本構成の流路切替弁100を選択することができる。 As described above, the flow path switching valve 100 according to the third embodiment can achieve the same effects as those of the first embodiment. Further, since the shutoff valve 102 is configured by an electromagnetic valve in the same manner as a conventional flow path switching valve, the flow and flow of this configuration are considered in consideration of the function and cost required of the branch unit 30 provided with the flow path switching valve 100. The path switching valve 100 can be selected.
 以上、実施の形態1~3について説明したが、本発明は、上述した実施の形態1~3に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用ができる。 While the first to third embodiments have been described above, the present invention is not limited to the first to third embodiments described above, and various modifications and applications can be made without departing from the scope of the present invention. .
 1 空気調和機、2 建物、3 室外空間、4 室内空間、5 空間、10 室外ユニット、11 圧縮機、12 冷媒流路切替装置、13 熱源側熱交換器、14 アキュムレータ、15a、15b、15c、15d 逆止弁、20、20A、20B 室内ユニット、21、21A、21B 絞り装置、22、22A、22B 利用側熱交換器、30 分岐ユニット、31 気液分離器、32、33 絞り装置、40 高圧配管、50 低圧配管、60、60a、60b 室内ユニット側ガス配管、70 冷媒配管、80 高圧ガス配管、90 制御装置、100、100A、100B 流路切替弁、101、102 遮断弁、103 流路切替回路、104 低圧側引込流路、105a、105b、105c 流路、106a、106b ブリードポート、110 流路切替弁駆動回路、111 流路切替弁コイル、112、113 振動防止ばね、120 弁本体。 1 air conditioner, 2 building, 3 outdoor space, 4 indoor space, 5 space, 10 outdoor unit, 11 compressor, 12 refrigerant flow switching device, 13 heat source side heat exchanger, 14 accumulator, 15a, 15b, 15c, 15d check valve, 20, 20A, 20B indoor unit, 21, 21A, 21B throttle device, 22, 22A, 22B use side heat exchanger, 30 branch unit, 31 gas-liquid separator, 32, 33 throttle device, 40 high pressure Piping, 50 Low pressure piping, 60, 60a, 60b Indoor unit side gas piping, 70 Refrigerant piping, 80 High pressure gas piping, 90 Control device, 100, 100A, 100B Flow path switching valve, 101, 102 Shutoff valve, 103 Flow path switching Circuit, 104 Low-pressure side lead-in channel, 105a, 105b, 105c Channel, 106a, 106 Bleed port, 110 channel switching valve driving circuit, 111 the channel switching valve coils, 112 and 113 antivibration spring, 120 valve body.

Claims (13)

  1.  冷媒が流入出するガス配管と冷媒が流出する低圧配管との間に設けられ、前記冷媒の流通を許容または遮断する第1の遮断弁と、
     前記ガス配管と冷媒が流入する高圧ガス配管との間に設けられ、前記冷媒の流通を許容または遮断する第2の遮断弁と、
     少なくとも前記ガス配管、前記低圧配管および前記第1の遮断弁に接続され、接続された前記ガス配管、前記低圧配管および前記第1の遮断弁との間の流路の接続を切り替える流路切替回路と、
     前記流路切替回路を駆動する駆動回路と
    を備え、
     前記駆動回路は、
     前記第1の遮断弁に流入する冷媒を前記低圧配管に引き込むように、前記流路切替回路における前記第1の遮断弁に連通する流路と前記低圧配管に連通する流路とを接続させることにより、前記第1の遮断弁を開弁させる
    流路切替弁。
    A first shut-off valve provided between a gas pipe into which the refrigerant flows in and out and a low pressure pipe from which the refrigerant flows out, and allows or blocks the flow of the refrigerant;
    A second shut-off valve provided between the gas pipe and the high-pressure gas pipe into which the refrigerant flows, and allows or blocks the flow of the refrigerant;
    A flow path switching circuit that is connected to at least the gas pipe, the low pressure pipe, and the first shut-off valve, and switches connection of the flow path between the connected gas pipe, the low-pressure pipe, and the first shut-off valve. When,
    A drive circuit for driving the flow path switching circuit,
    The drive circuit is
    The flow path communicating with the first shut-off valve in the flow path switching circuit and the flow path communicating with the low-pressure pipe are connected so that the refrigerant flowing into the first shut-off valve is drawn into the low-pressure pipe. A flow path switching valve for opening the first shut-off valve.
  2.  前記流路切替回路は、
     さらに、前記第2の遮断弁に接続され、
     前記駆動回路は、
     前記第2の遮断弁に流入する冷媒を前記低圧配管に引き込むように、前記流路切替回路における前記第2の遮断弁に連通する流路と前記低圧配管に連通する流路とを接続させることにより、前記第2の遮断弁を開弁させる
    請求項1に記載の流路切替弁。
    The flow path switching circuit is
    And is connected to the second shut-off valve,
    The drive circuit is
    The flow path communicating with the second shut-off valve in the flow path switching circuit and the flow path communicating with the low-pressure pipe are connected so that the refrigerant flowing into the second shut-off valve is drawn into the low-pressure pipe. The flow path switching valve according to claim 1, wherein the second shut-off valve is opened.
  3.  前記第2の遮断弁は、電磁弁であり、
     前記駆動回路は、前記第2の遮断弁を流通する冷媒の許容または遮断を制御する
    請求項1に記載の流路切替弁。
    The second shut-off valve is a solenoid valve;
    2. The flow path switching valve according to claim 1, wherein the drive circuit controls the allowance or blockage of the refrigerant flowing through the second shutoff valve.
  4.  前記流路切替回路は、
     内部に設けられたシリンダーの動作により、接続された配管に連通する流路の接続を切り替える
    請求項1~3のいずれか一項に記載の流路切替弁。
    The flow path switching circuit is
    The flow path switching valve according to any one of claims 1 to 3, wherein connection of a flow path communicating with a connected pipe is switched by an operation of a cylinder provided inside.
  5.  前記ガス配管、前記低圧配管、および前記高圧ガス配管のそれぞれが接続され、前記第1の遮断弁、前記第2の遮断弁、前記流路切替回路、および前記駆動回路が収容された弁本体をさらに備える
    請求項1~4のいずれか一項に記載の流路切替弁。
    A valve body in which each of the gas pipe, the low-pressure pipe, and the high-pressure gas pipe is connected, and the first shut-off valve, the second shut-off valve, the flow path switching circuit, and the drive circuit are accommodated. The flow path switching valve according to any one of claims 1 to 4, further comprising:
  6.  前記ガス配管が前記弁本体の底面に対して平行になるように、前記弁本体に接続されている
    請求項5に記載の流路切替弁。
    The flow path switching valve according to claim 5, wherein the gas pipe is connected to the valve body so that the gas pipe is parallel to the bottom surface of the valve body.
  7.  前記ガス配管が前記弁本体の底面に対して垂直になるように、前記弁本体に接続されている
    請求項5に記載の流路切替弁。
    The flow path switching valve according to claim 5, wherein the gas pipe is connected to the valve body so that the gas pipe is perpendicular to the bottom surface of the valve body.
  8.  前記第1の遮断弁、前記第2の遮断弁、および前記流路切替回路は、前記弁本体の正面に面するように配置されている
    請求項5~7のいずれか一項に記載の流路切替弁。
    The flow according to any one of claims 5 to 7, wherein the first shut-off valve, the second shut-off valve, and the flow path switching circuit are arranged so as to face a front surface of the valve body. Road switching valve.
  9.  前記第1の遮断弁、前記第2の遮断弁、および前記流路切替回路が前記弁本体と一体的に形成されている
    請求項5~8のいずれか一項に記載の流路切替弁。
    The flow path switching valve according to any one of claims 5 to 8, wherein the first cutoff valve, the second cutoff valve, and the flow path switching circuit are formed integrally with the valve body.
  10.  前記ガス配管、前記低圧配管、および前記高圧ガス配管をさらに備え、
     前記ガス配管、前記低圧配管、および前記高圧ガス配管が前記弁本体とさらに一体的に形成されている
    請求項9に記載の流路切替弁。
    The gas pipe, the low-pressure pipe, and the high-pressure gas pipe,
    The flow path switching valve according to claim 9, wherein the gas pipe, the low-pressure pipe, and the high-pressure gas pipe are further formed integrally with the valve body.
  11.  前記弁本体および前記弁本体と一体的に形成された各部は、黄銅またはアルミニウムにより形成されている
    請求項9または10に記載の流路切替弁。
    The flow path switching valve according to claim 9 or 10, wherein each of the valve body and each part formed integrally with the valve body is formed of brass or aluminum.
  12.  前記駆動回路は、直流電圧により前記流路切替回路を駆動する
    請求項1~11のいずれか一項に記載の流路切替弁。
    The flow path switching valve according to any one of claims 1 to 11, wherein the drive circuit drives the flow path switching circuit with a DC voltage.
  13.  冷熱または温熱を生成する少なくとも1台の室外ユニットと、
     前記室外ユニットで生成された冷熱または温熱で空調運転を行う複数の室内ユニットと、
     前記室外ユニットと前記室内ユニットとの間に設けられ、冷媒の流れを切り替える分岐ユニットと
    を備え、
     前記分岐ユニットは、
     請求項1~11のいずれか一項に記載の流路切替弁が前記室内ユニットの台数に対応した個数だけ設置され、
     前記ガス配管が前記室内ユニットに接続され、
     前記低圧配管が前記室外ユニットに接続されている
    空気調和機。
    At least one outdoor unit that generates cold or warm heat;
    A plurality of indoor units that perform air-conditioning operation with cold or hot heat generated by the outdoor unit;
    A branch unit that is provided between the outdoor unit and the indoor unit, and switches a refrigerant flow;
    The branch unit is
    The flow path switching valve according to any one of claims 1 to 11 is installed in a number corresponding to the number of the indoor units,
    The gas pipe is connected to the indoor unit;
    An air conditioner in which the low-pressure pipe is connected to the outdoor unit.
PCT/JP2016/083802 2016-11-15 2016-11-15 Flow path switching valve and air conditioner using same WO2018092186A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083802 WO2018092186A1 (en) 2016-11-15 2016-11-15 Flow path switching valve and air conditioner using same
JP2018550894A JP6605156B2 (en) 2016-11-15 2016-11-15 Flow path switching valve and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083802 WO2018092186A1 (en) 2016-11-15 2016-11-15 Flow path switching valve and air conditioner using same

Publications (1)

Publication Number Publication Date
WO2018092186A1 true WO2018092186A1 (en) 2018-05-24

Family

ID=62146372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083802 WO2018092186A1 (en) 2016-11-15 2016-11-15 Flow path switching valve and air conditioner using same

Country Status (2)

Country Link
JP (1) JP6605156B2 (en)
WO (1) WO2018092186A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220486A1 (en) * 2020-04-30 2021-11-04
WO2022215218A1 (en) * 2021-04-08 2022-10-13 三菱電機株式会社 Open/close valve unit and refrigeration device using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0132389B2 (en) * 1981-09-09 1989-06-30 Hitachi Ltd
JPH04258585A (en) * 1991-02-13 1992-09-14 Mitsubishi Electric Corp Electromagnetic valve
JPH05322348A (en) * 1992-05-19 1993-12-07 Mitsubishi Electric Corp Air conditioner
JP2004347164A (en) * 2003-05-20 2004-12-09 Samsung Electronics Co Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0132389B2 (en) * 1981-09-09 1989-06-30 Hitachi Ltd
JPH04258585A (en) * 1991-02-13 1992-09-14 Mitsubishi Electric Corp Electromagnetic valve
JPH05322348A (en) * 1992-05-19 1993-12-07 Mitsubishi Electric Corp Air conditioner
JP2004347164A (en) * 2003-05-20 2004-12-09 Samsung Electronics Co Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220486A1 (en) * 2020-04-30 2021-11-04
WO2021220486A1 (en) * 2020-04-30 2021-11-04 三菱電機株式会社 Refrigeration cycle device
EP4145028A4 (en) * 2020-04-30 2023-06-21 Mitsubishi Electric Corporation Refrigeration cycle device
JP7317224B2 (en) 2020-04-30 2023-07-28 三菱電機株式会社 refrigeration cycle equipment
WO2022215218A1 (en) * 2021-04-08 2022-10-13 三菱電機株式会社 Open/close valve unit and refrigeration device using same
JP7442733B2 (en) 2021-04-08 2024-03-04 三菱電機株式会社 Open/close valve unit and refrigeration equipment using it
EP4321822A4 (en) * 2021-04-08 2024-05-22 Mitsubishi Electric Corp Open/close valve unit and refrigeration device using same

Also Published As

Publication number Publication date
JPWO2018092186A1 (en) 2019-03-22
JP6605156B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP5188571B2 (en) Air conditioner
JP6701337B2 (en) Air conditioner
JP5306449B2 (en) Air conditioner
JP5452629B2 (en) Air conditioner
JP5236080B2 (en) Air conditioner
JP5933031B2 (en) Air conditioner
JP5377653B2 (en) Air conditioner
WO2010050006A1 (en) Air conditioner
WO2014097869A1 (en) Air-conditioning device
WO2011064827A1 (en) Air-conditioning device
WO2014097870A1 (en) Air-conditioning device
JP2007240025A (en) Refrigerating device
JP2013178075A (en) Refrigeration device
JP5875710B2 (en) Air conditioner
WO2014132378A1 (en) Air conditioning device
WO2015140887A1 (en) Refrigeration cycle apparatus
JP6120943B2 (en) Air conditioner
WO2011064830A1 (en) Air-conditioning device
JP6605156B2 (en) Flow path switching valve and air conditioner using the same
JP5312681B2 (en) Air conditioner
WO2016038659A1 (en) Refrigeration cycle apparatus
WO2014106901A1 (en) Air conditioner device
WO2023007803A1 (en) Air-conditioning device
WO2021065677A1 (en) Air conditioner
US20230056663A1 (en) Refrigeration cycle system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550894

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921504

Country of ref document: EP

Kind code of ref document: A1