WO2018090935A1 - 一种定子、电机、电动机及控制设备、设备 - Google Patents

一种定子、电机、电动机及控制设备、设备 Download PDF

Info

Publication number
WO2018090935A1
WO2018090935A1 PCT/CN2017/111163 CN2017111163W WO2018090935A1 WO 2018090935 A1 WO2018090935 A1 WO 2018090935A1 CN 2017111163 W CN2017111163 W CN 2017111163W WO 2018090935 A1 WO2018090935 A1 WO 2018090935A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic conductive
conductive portion
mover
magnetic
stator
Prior art date
Application number
PCT/CN2017/111163
Other languages
English (en)
French (fr)
Inventor
何国斌
Original Assignee
南方电机科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电机科技有限公司 filed Critical 南方电机科技有限公司
Publication of WO2018090935A1 publication Critical patent/WO2018090935A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the technical field of electric motors, in particular to a stator, a motor, an electric motor and a control device and a device.
  • the stator adopts two sets of winding structures, and the windings on the inner and outer sides of the stator respectively control the rotation of the movers on both sides, so that the effect of forming two motors in the same motor can be realized.
  • the above motor structure can control two movers separately, windings are required on both sides of the stator of the motor, which results in a large volume and mass of the motor itself, which is disadvantageous for achieving high torque density.
  • the present invention provides a stator, a motor, a motor, and a control device and device.
  • the stator is divided into two magnetic conductive portions, and two magnetic conductive portions are respectively controlled by sharing a multi-phase winding, so that a relatively small passage can be realized.
  • the volume and mass of the stator for the purpose of flexible control of multiple movers.
  • a first aspect of the present invention provides a stator including a stator core and a multi-phase winding disposed on the stator core, the stator core including: at least one first magnetic conductive portion and at least one second magnetic conductive portion; The magnetic conductive portion and the second magnetic conductive portion are spaced apart from each other, and at least partially adjacent abutting edges of the first magnetic conductive portion and the second magnetic conductive portion are respectively provided with a common winding.
  • first magnetic conductive portion and the second magnetic conductive portion are arranged at intervals, including:
  • Each of the first magnetically permeable portions and each of the second magnetically permeable portions are spaced apart from each other; or
  • the plurality of the first magnetic conductive portions or the plurality of the second magnetic conductive portions are arranged at intervals.
  • first magnetic conductive portion and the second magnetic conductive portion are provided with a common winding, including:
  • Abutting edges of the first adjacent magnetically conductive portion and the second magnetically conductive portion are disposed in common.
  • first magnetic conductive portion and the second magnetic conductive portion being spaced apart, at least partially adjacent abutting edges of the first magnetic conductive portion and the second magnetic conductive portion are provided with a common winding And a relationship between a current passed by the actually included windings on the at least one first magnetic conductive portion and the at least one second magnetic conductive portion and a current passed by the respective multi-phase windings.
  • each of the first magnetic conductive portions and each of the second magnetic conductive portions are spaced apart from each other, and abutting edges of each of the adjacent first and second magnetic conductive portions Providing a common winding, the obtained current passing through the actually included windings on the at least one first magnetic conducting portion and the at least one second magnetic conducting portion and the relationship of the respective multi-phase winding passing currents include:
  • first magnetic conductive portion and the second magnetic conductive portion are mutually inverted first U-shaped structures and second U-shaped structures, and the first U-shaped structure and the second U-shaped structure are offset
  • the connected flange is the abutting edge.
  • a second aspect of the invention provides a motor, the motor comprising at least one stator according to any one of the first aspects, the motor further comprising: at least one first mover, at least one second mover;
  • the first mover and the second mover are respectively disposed on two sides of the stator, the first mover Corresponding to the at least one first magnetic conductive portion, the second mover corresponding to the at least one second magnetic conductive portion;
  • first mover and the second mover are connected to the same output end to increase the output torque.
  • a third aspect of the invention provides an electric motor, comprising: the stator of any one of the first aspect, the electric motor further comprising: at least one first mover, at least one second mover, At least one brake unit;
  • the first mover and the second mover are respectively disposed on two sides of the stator, the first mover corresponds to the at least one first magnetic guide portion, and the second mover corresponds to the at least one first Two magnetic conducting parts;
  • the first mover drives the brake unit to complete braking of the second mover.
  • the electric motor further includes at least one power storage device and a control unit thereof, the power storage device being electrically connected to the multi-phase winding by control of the control unit.
  • a fourth aspect of the present invention provides a motor of any one of the second aspect, or a control device for an electric motor according to any of the third aspect, comprising: a control device for controlling a current for distributing the multiphase winding, According to the manner that the first magnetic conductive portion and the second magnetic conductive portion are spaced apart, at least partially adjacent abutting edges of the first magnetic conductive portion and the second magnetic conductive portion are provided with a common winding Obtaining a relationship between a current passed by the winding actually included on the at least one first magnetic conductive portion and the at least one second magnetic conductive portion and a current passing current of the respective multi-phase windings, thereby obtaining the passage of the respective phase windings Current.
  • control device includes: a storage unit, a processor, and an input unit;
  • the storage unit is configured to store, according to the first magnetic conductive portion and the second magnetic conductive portion, at least partially adjacent to each of the first magnetic conductive portion and the second magnetic conductive portion a method of setting a common winding to obtain a relationship between a current passed by the actually included windings on the at least one first magnetic guiding portion and the at least one second magnetic conductive portion and a current passing through the respective polyphase windings ;
  • the input unit is configured to input a torque that the first mover and the second mover need to output, and send the torque to the processor;
  • the processor includes: a first calculating unit and a second calculating unit;
  • the first calculating unit is configured to calculate, according to the received torque that the first mover and the second mover need to output, the actually included on the first magnetic conductive portion and the second magnetic conductive portion a current value passed by the winding, and transmitting the current value to the second computing unit;
  • the second calculating unit is configured to: according to current values passed by the actual windings on the first magnetic conductive portion and the second magnetic conductive portion, and the at least one first magnetic conductive portion and the at least one second The current passing through the windings actually included on the magnetic conducting portion and the current passing through the respective multi-phase windings are used to obtain the currents of the respective multi-phase windings.
  • a fifth aspect of the invention also provides an apparatus comprising the electric machine according to any of the second aspects of the invention.
  • a sixth aspect of the invention provides an apparatus comprising the electric motor according to any of the third aspects of the invention, the apparatus comprising a robot directly driven by the electric motor.
  • an embodiment of the present invention provides a stator that divides a stator into two magnetic conductive portions, and respectively controls two magnetic conductive portions through a common winding.
  • the stator core includes: at least one first magnetic conductive portion and at least one second magnetic conductive portion, wherein the first magnetic conductive portion and the second magnetic conductive portion are spaced apart, at least partially adjacent to each other The abutting sides of the first magnetic conductive portion and the second magnetic conductive portion are disposed with a common winding such that at least a portion of the first magnetic conductive portion or the second magnetic conductive portion actually includes two common windings,
  • the winding is a multi-phase winding.
  • each of the first magnetic conductive portion and the second magnetic conductive portion are arranged at intervals, the winding can be saved to the utmost.
  • the first U-shaped structure and the second U-shaped structure are the first U-shaped structure and the second U-shaped structure, since the first magnetic conductive portion and the second magnetic conductive portion are mutually inverted first U-shaped structures and second U-shaped structures
  • the abutting convex edge is the abutting edge, and the first magnetic conductive portion and the second magnetic conductive portion adopting such a shape can better concentrate the magnetic lines of force passing on the magnetic conductive portion to increase the magnetic moment, and at the same time Good convenience, the first and second magnetic conductive portions form an abutting edge, Thereby, large torque asynchronous control of the first magnetic conductive portion and the second magnetic conductive portion is achieved.
  • the motor includes, in addition to the stator, at least one first mover and at least one second mover, wherein the first mover corresponds to the first magnetic guide, and the second move Sub-corresponding to the second magnetic conductive portion, the control unit is configured to distribute current of the current input terminal to the common winding to respectively control the first magnetic conductive portion and the second magnetic conductive portion, thereby respectively controlling The movement of the first mover and the second mover makes it possible to flexibly control the two movers in a relatively small volume and mass motor.
  • first magnetic conductive portion and the second magnetic conductive portion are arranged at intervals, at least partially adjacent abutting edges of the first magnetic conductive portion and the second magnetic conductive portion are disposed in common a winding, a current obtained by passing the actually included windings on the at least one first magnetically permeable portion and the at least one second magnetically permeable portion, and a relationship of currents of the respective multi-phase windings, so that each of the respective The current of the multiphase winding.
  • the current through the distribution current input to the common winding can be achieved by the method described above to control the purpose of the first magnetically permeable portion and the second magnetically permeable portion, respectively.
  • the stator can be divided into two magnetic conductive portions, and the two magnetic conductive portions are respectively controlled by the common winding, thereby respectively controlling two movers, and one of the movers is used as the brake unit.
  • the drive member makes it possible to realize the function of braking in a motor of small volume and mass.
  • the power storage device is controlled by the control unit, and the winding is connected by a wire, so that after the motor is powered off, the power storage device continues to be provided through at least the first mover of the motor. a short current supply, so that the first mover completes the braking of the second mover; when the power is turned on again, the control unit controls to first charge the power storage device, and the power storage device first distributes the current to the first mover through the control unit. , the braking of the second mover is released, and then the second mover is started.
  • control device includes a control device for distributing current of the current input terminal to the multi-phase winding
  • the control device is arranged according to the first magnetic conductive portion and the second magnetic conductive portion, at least Acquiring the at least one first magnetic conductive portion and the at least one second magnetic conductive portion in such a manner that abutting edges of the adjacent first magnetic conductive portion and the second magnetic conductive portion are disposed with a common winding
  • the current actually needs to pass the current and the relationship of the respective multi-phase windings through the current, thereby obtaining the current value passed by the multi-phase winding.
  • the motor can achieve the purpose of controlling two movers in a relatively small volume and mass motor, the use of such a motor can be applied to any device that needs to implement dual control in the same motor.
  • the motor can achieve the function of braking in a relatively small volume and mass motor, the motor is particularly suitable for use in industrial robots where the motor is directly driven.
  • FIG. 1 is a top plan view showing a simple structure of a stator used in a linear motor according to an embodiment of the present invention
  • FIG. 2 is a top plan view of three embodiments of a stator applied in a linear motor according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a stator applied to a rotating electrical machine according to an embodiment of the present invention
  • FIG. 4 shows various different shapes of the first and second magnetic conductive portions of the stator provided by the embodiment of the present invention. A simplified top view of the structure of the embodiment;
  • FIG. 5 is a schematic top plan view of a stator in a preferred linear motor according to an embodiment of the invention.
  • FIG. 6 is a top plan view of a stator of a preferred rotating electrical machine according to an embodiment of the invention.
  • FIG. 7 is a top plan view of a stator in another preferred linear motor according to an embodiment of the present invention.
  • FIG. 8 is a schematic top plan view of a stator corresponding motor according to an embodiment of the present invention.
  • FIG. 9 is a top plan view of a motor having different first and second mover structures and corresponding first and second magnetic guide portions according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a motor with a brake function according to an embodiment of the present invention.
  • 11A-11B are structural diagrams of a control device according to an embodiment of the present invention.
  • the stator is an indispensable part of the motor. Because the stator does not move relative to the mover, it is called the stator. In the motor, there is a gap between the stator and the mover to form a magnetic gap. According to the principle of electromagnetic reaction, the stator and the mover The interaction between the two moves to achieve the movement of the mover.
  • the motor of the present invention may include an electric motor that converts electrical energy into a kinetic energy output (the electric motor may include: a rotary motion rotary motor, a linear motion linear motor); and may also include a generator that converts kinetic energy into electrical energy output.
  • the two can be implemented by the same structure, and the functions of the generator or the motor are respectively realized by adopting different electrical connections and mechanical connections to the same structure.
  • the stator typically includes a stator core and a multi-phase winding disposed on the stator core.
  • the stator core can be made of various magnetic materials, such as superimposed silicon steel sheets, iron powder, and the like.
  • each phase winding may include one winding or multiple windings; taking 6 phases and 12 windings as an example (as shown in FIG. 6), each of the two opposite windings is one phase, so each The phase winding includes two windings.
  • the multi-phase winding is electrically connected to the control device, and the control device sends a control signal to distribute the current output from the current output terminal (the current output terminal may be an output of a power source, a battery, a capacitor, etc.) to each phase winding.
  • each phase winding may be coupled to a control device for control respectively; or each phase winding may be coupled to a control device, and a control device uniformly performs control distribution.
  • the stator structures currently used for realizing the multi-moving substructure are generally two types. One is that a set of windings is respectively arranged for each mover on the stator, thereby causing the volume of the motor itself, The large mass is not conducive to achieving high torque density; the other is that the multi-moving rotor shares the same multi-phase winding of the stator, but the motor can only control multiple movers uniformly, and cannot form two in the same motor. The effect of the motor.
  • the present invention provides a stator which can control two magnetism portions by sharing a multi-phase winding by dividing the stator into two magnetic conductive portions, thereby realizing a plurality of stator pairs through a relatively small volume and mass
  • the solution will be further described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a schematic top plan view showing a simple structure of a stator used in a linear motor according to an embodiment of the present invention.
  • 2 is a top plan view of four embodiments of a stator for use in a linear motor according to an embodiment of the present invention.
  • 3 is a related schematic view of a stator used in a rotating electrical machine according to an embodiment of the present invention, wherein the upper side is a top view and the lower side is a side view of two stator embodiments.
  • the stator core of the stator 10 includes at least one first magnetic conductive portion A1-An and at least one second magnetic conductive portion B1-Bm.
  • the number of the first magnetic conductive portion and the second magnetic conductive portion may be any one or more, and the number of the first magnetic conductive portion and the second magnetic conductive portion may be equal or different, in FIG. 1 In the embodiment, the number of the first magnetic conductive portions A1-An is two, and the second magnetic conductive portions B1-Bm are two.
  • the at least one first magnetic conductive portion A1-An and/or the at least one second magnetic conductive portion may include, but is not limited to, the following:
  • the spaced arrangement includes each of the first magnetic conductive portions and each of the second magnetic conductive portions being spaced apart from each other (as shown in the first and second figures of FIG. 2, wherein the first magnetic conductive portion and the first The two magnetic conducting parts are respectively three), which can save the windings to the greatest extent.
  • the interval arrangement includes every other first magnetic conductive portion or a plurality of second magnetic conductive portions spaced apart from each other, for example, every second first magnetic conductive portion and one second magnetic conductive portion
  • the interval of the parts is arranged (as shown in the third and fourth figures of FIG. 2, wherein the first magnetic conductive portion is 4 and the second magnetic conductive portion are respectively 3), or every 2 first magnetic conductive portions and each
  • the interval between the two second magnetically conductive portions is arranged and the like.
  • a relatively preferred embodiment would increase the number of windings, but are within the scope of the present invention.
  • the at least one first magnetic conductive portion and the at least one second magnetic conductive portion may be preset in one body, or may be fixedly connected together by assembly.
  • At least partially adjacent abutting sides of the first magnetically permeable portion and/or the second magnetically permeable portion are provided with a common winding.
  • the manner in which the windings are disposed will be further described in detail below in accordance with two different arrangements of the first and second magnetically permeable portions described in the above paragraph.
  • the first arrangement includes that each of the first magnetic conductive portions A1-A3 and each of the second magnetic conductive portions B1-B3 are spaced apart from each other as described above.
  • the first and second magnetic conductive portions A1-A3, B1-B3 are adjacent to each other, that is, both sides of each first magnetic conductive portion respectively adjoin the second magnetic conductive portion (except for the linear motor in the end) a portion of each of the second magnetically permeable portions abutting the first magnetically permeable portion (except for the magnetically permeable portion at the end of the linear motor), preferably, each of the first magnetically permeable portions
  • the common portion and the second magnetic conductive portion are respectively provided with a common winding at a common abutting edge of the first magnetic conductive portion or the second magnetic conductive portion adjacent to both sides, so that two are disposed on each of the first and second magnetic conductive portions.
  • the common windings in addition to the common windings of the two adjacent magnetically conductive portions, further comprise a common winding of the magnetically conductive portions of the two magnetically conductive portions respectively adjacent to the other side. Since the current direction of each of the common windings is perpendicular to the plane of the paper, according to the principle of electromagnetic reaction, the magnetic fluxes on the first and second magnetic conducting portions each of the two common windings comprise two common windings. The superposition of the magnetic fields, since each common winding is a multi-phase winding, the first magnetic conducting portion and the second magnetic conducting portion can be separately controlled by controlling the currents passed by the respective multi-phase common windings.
  • each of the adjacent first and second magnetic conductive portions are disposed with each other (as shown in the first figure of FIG. 2). This can save the windings to the greatest extent; of course, it is also possible to select abutting edges of the adjacent first and second magnetically conductive portions to set a common winding (as shown in the first figure of FIG. 2), and a part of the first and second
  • the magnetically permeable portions are each provided with separate winding control, and the relatively preferred embodiment increases the number of windings, but all fall within the scope of the present invention.
  • the principle of the control, the individual windings are separately controlled, and the common windings are as described above, and the details are not repeated here.
  • the second arrangement includes that each of the plurality of first magnetic conductive portions or the plurality of second magnetic conductive portions are arranged, and the winding arrangement manner of the arrangement may also include two types. :
  • each of the first or second magnetic conducting portions is provided with a common winding as long as there are adjacent first and second magnetic conducting portions, regardless of the adjacent magnetic conducting portions. Is it the same kind, for example, the adjacent first magnetic conductive portion A1 and the first magnetic conductive portion A2 are provided with a common winding, and the adjacent first magnetic conductive portion A1 and second magnetic conductive portion B1 are also provided with a common winding.
  • the same magnetic conductive portions adjacent to each other do not adopt a common winding, for example, the first magnetic conductive portion A1 and the first magnetic conductive portion A2 are not provided with a common winding;
  • the common windings are disposed on the abutting sides of each other only when the different magnetic conductive portions are adjacent to each other, for example, the first magnetic conductive portion A1 and the second magnetic conductive portion B1 are provided with a common winding.
  • the current input by the multi-phase winding may be any value.
  • the current actually passed through the first magnetic conductive portion and the second magnetic conductive portion includes a combination of currents of the respective multi-phase windings, according to the first magnetic conductive portion and The difference in the arrangement of the second magnetically permeable portions, and the manner in which the common windings are disposed on the first and second magnetically permeable portions, may correspond to the currents and multiphases of the actual windings on the first and second magnetically permeable portions.
  • the relationship between the currents through which the windings pass, and the current actually passing through the first and second magnetic conducting portions can be known as known conditions in various ways, so that the actual current and the relationship can be used to determine the need. Large currents distributed to each multiphase winding small.
  • the control of the multiphase winding current input will be described in further detail in the fourth embodiment regarding the control device.
  • the first magnetic conductive portion and the second magnetic conductive portion may be arranged at a straight interval; as shown in FIG. 3, they may also be arranged in a circle, as long as Satisfying the above principle can be different according to the design of different motors and corresponding different movers.
  • the magnetic conductive portion of the stator core 10 is not limited to the first and second magnetic conductive portions A1-n and B1-m (shown at the lower left of FIG. 3) which are disposed at intervals, and may exceed 2
  • it may further include third and fourth magnetic conductive portions C1-n, D1-m which are disposed in the axial direction and are parallel to the first and second magnetic conductive portions A1-An, B1-B m ( As shown in the lower right of FIG. 3, or more, the structures of the third and fourth magnetic conductive portions may be the same as or different from those of the first and second magnetic conductive portions.
  • the winding may be a group of multi-phase windings, or may be a plurality of sets of multi-phase windings, for example, may further include another set of axially disposed another group that cooperates with the third conductive and fourth magnetic conductive portions.
  • Phase winding The principle of operation of more magnetic conductive portions and their windings is the same as that of the first and second magnetic conductive portions and their multi-phase windings. Therefore, the present embodiment only uses the stator core including the first and second magnetic conductive portions.
  • the multiphase windings are described in detail as an example.
  • the first and second magnetic conductive portions respectively correspond to the first and second movers, thereby achieving different effects of two motors in one motor.
  • the first and second magnetic conductive portions may also correspond to the same mover (ie, the same mover is controlled by at least two magnetic conductive portions on the stator core, and at this time, the first and second magnetic conductive portions are both Forming a magnetic line closed loop with the same mover, this method can realize the control of the mover, but when a mover is controlled, many methods and structures can be used, and the structure designed by the method is used to control one move.
  • the subroutine is only one of the more complicated methods, so the stator of the structure of the present invention is mainly applied to the structure in which each of the magnetic conductive portions corresponds to a different mover).
  • the structure in which the stator and the mover are matched will be described in further detail in the second embodiment.
  • FIG. 4 is a simplified top plan view showing the structure of various different shapes of the first and second magnetic conductive portions of the stator provided by the embodiment of the present invention.
  • first magnetic conductive portion and the second magnetic conductive portion may be designed into various shapes according to requirements and corresponding movers, and the first magnetic conductive portion A1-An and the second magnetic conductive portion B1.
  • -Bm can structure The same (as shown in the first figure in FIG. 4), the first magnetic conductive portion A1-An and the second magnetic conductive portion B1-Bm may also be inverted with each other (as shown in the second image in FIG. 4).
  • the first magnetic conductive portion A1-An and the second magnetic conductive portion B1-Bm may also have different structures (as shown in the third figure in FIG.
  • the second magnetic conductive portion has a common abutting edge, and when the magnetic flux passes through the first magnetic conductive portion and the corresponding first mover, the magnetic flux line closed loop may be formed, and the second magnetic mover corresponding to the second magnetic conductive portion has When the magnetic lines of force pass, the magnetic lines can be closed.
  • FIG. 5 is a top plan view of a stator in a preferred linear motor according to an embodiment of the present invention
  • FIG. 7 is a top plan view of a stator in another preferred linear motor according to an embodiment of the present invention.
  • a preferred structure of the first magnetic conductive portion A1-An and the second magnetic conductive portion B1-Bm of the stator core is that the first magnetic conductive portion A1-An is U-shaped, and the first The two magnetic conducting portions B1-Bm are inverted U-shaped, or the two first magnetic conducting portions A1-An are in an inverted U shape, and the second magnetic conductive portions B1-Bm are U-shaped, and the two Arranged in order from each other such that two adjacent sides of the adjacent two magnetic conductive portions abut.
  • the U-shape and the inverted U-shape may be deformed according to actual needs, as long as the magnetic guiding portion includes a bottom portion and two sides extending from the bottom portion to the same side, as shown in FIG. Shape, so that the first magnetic conductive portion and the second magnetic conductive portion are irregular U-shaped, but approximate to a trapezoid, and as shown in FIG. 7, the width of the stator at the end of the corresponding mover is increased, so that the stator can be made Cooperating with the mover can output greater torque and the like.
  • the embodiment in Figures 6 and 7 is only two of the many deformations of the U-shaped structure. It should be understood that the principle and function are U-shaped and inverted U.
  • the magnetically permeable structure i.e., the magnetically permeable portion including the bottom and the two sides extending from the bottom to the same side
  • the magnetically permeable structure are identical and similar to the scope of protection of the present invention.
  • a first stator slot is formed in the first U-shaped portion, and a second stator slot is formed in the second U-shaped portion; each of the first U-shaped portion and the second U-shaped portion abuts each other to provide the same winding.
  • the windings are wound on the abutting sides through respective stator slots, and the windings may be concentrated windings (as shown in FIG. 6), distributed windings or any other windings arranged in any form, as long as two adjacent ones are ensured.
  • the common magnetic winding may be provided while the magnetic conductive portions abut each other.
  • the first U-shaped structure and the second U-shaped structure abut each other because the first magnetic conductive portion and the second magnetic conductive portion are mutually inverted first U-shaped structures and second U-shaped structures
  • the convex edge is the abutment
  • the first magnetic conductive portion and the second magnetic conductive portion of the shape can better concentrate the magnetic lines of force passing through the magnetic conductive portion to increase the magnetic moment, and at the same time, the first and second magnetic conductive materials can be better facilitated.
  • the portion forms an abutting edge, thereby achieving high torque asynchronous control of the first magnetic conductive portion and the second magnetic conductive portion.
  • the stator and the stator may have different structural designs, such as a permanent magnet motor, which includes a plurality of permanent magnets, and the plurality of permanent magnets may be spaced apart at intervals.
  • a permanent magnet motor which includes a plurality of permanent magnets
  • the plurality of permanent magnets may be spaced apart at intervals.
  • a plurality of permanent magnets are arranged on the stator and the mover, and the magnetic flux passing through the stator core is also affected by the magnetic field generated by the permanent magnet.
  • the stator is provided with a plurality of stepping teeth and the like on the outer circumference of one side of the corresponding mover.
  • Embodiment 2 of the present invention also provides an electric machine including the stator as described in Embodiment 1.
  • FIG. 8 is a schematic top plan view of a stator-corresponding motor according to an embodiment of the present invention, wherein the left side is a linear motor and the right side is a rotating electric machine.
  • the motor includes at least one first mover 21, a second mover 22, and at least one stator 10.
  • the stator 10 is stationary relative to the first and second movers 21, 22, first and second.
  • the movers 21, 22 are movable relative to the stator 10, and there is a gap between the first and second movers 21, 22 and the stator 10, respectively, to form a magnetic gap.
  • the motor may include a stator, and may also include a plurality of stators arranged in parallel or in a radial direction.
  • the first mover and the second mover may include one or more. One. Their principle is the same. The specific embodiment is described by taking only one stator, one first and second mover as an example.
  • the stator 10 includes at least one first magnetic conductive portion A1-An, at least one second magnetic conductive portion B1-Bm, preferably the first magnetic conductive portion A1-An and the second guide.
  • the magnetic portions B1-Bm correspond to the first and second movers 21, 22, respectively.
  • the stator may further include more magnetic conductive parts, such as: third and fourth magnetic conductive parts.
  • the mover may also include a third, fourth mover, etc. corresponding thereto. Since more movers have the same principle as the first and second movers, in the specific embodiment, only the first First, the second magnetic conductive portion corresponds to the first and second movers as an example for detailed description.
  • stator For a more detailed description of the stator, refer to the specific embodiment 1, and the detailed description is not repeated here.
  • the first mover and the second mover respectively include a mover core.
  • the mover core may have different structural designs, such as: in a permanent magnet motor, possibly including setting
  • the permanent magnets on the mover core may be distributed along the circumference of the mover core at a certain distance, or may be disposed on the stator, or may be added to the rotor and the stator for increasing the torque output of the motor. magnet. Or the stepping teeth corresponding to the stator are also arranged on the mover.
  • the mover core may be made of various magnetic materials as described in the stator, such as by laminating silicon steel sheets, iron powder, and the like.
  • the first and second movers are respectively disposed on two sides of the stator.
  • the first and second movers are respectively disposed on the radial sides of the stator (radial motor) or on both axial sides of the stator (axial motor), in the linear motor,
  • the first and second movers may be respectively disposed on the left and right or the upper and lower sides of the stator.
  • the motor of the embodiment is described in detail by taking a rotating and linear permanent magnet motor as an example, but the type of the motor is not limited to the various motors mentioned in the specification, as long as the motor includes the first embodiment.
  • the structure of the stator is within the scope of protection of the present invention.
  • FIG. 9 is a top plan view of a motor having different first and second mover structures and corresponding first and second magnetic conductive portions according to an embodiment of the present invention, wherein the outer mover and the outer side of the stator form a toothed motor, The inner mover and the inner side of the stator form a surface mount type motor.
  • first mover and the second mover 21, 22 may adopt the same structure (as shown in FIGS. 5, 6, and 7), and the first mover and the second mover 21, 22 It is also possible to adopt different structures as needed (as shown in FIG. 9), and it is of course also possible to adopt the structures of the first and second magnetic conductive portions and the first and second movers different from the structure shown in FIG. 9, as long as The stator structure of the first embodiment, and the first and second magnetically permeable portions of the stator respectively cooperate with the first and second movers to form a closed loop of magnetic lines of force, which are all within the scope of the present invention.
  • the motor further includes: the first mover and the second mover are co-located Output to increase the output torque.
  • the torque density of the second mover output is 10NM/KG
  • the torque density of the first mover output is 3NM/KG.
  • stator The structure of the stator is described in the first embodiment, and details are not described herein again.
  • Embodiment 3 of the present invention also provides an electric motor including a stator structure as described in Embodiment 1 having a braking function.
  • an electric motor including a stator structure as described in Embodiment 1 having a braking function.
  • the brake unit may be a temporary brake that is performed due to some unexpected conditions during the rotation of the motor. It can also mean that when the motor is powered off, its internal deceleration and braking mechanism lose its function due to loss of power, making it difficult for the machine to remain in place. For example, after the joints of the robotic arm of the robot are powered off, Since the gravity acts from the home position, the brake unit is used to prevent the motor from braking the mover after the power is turned off, and the mover is prevented from continuing to rotate due to gravity or the like after the power is turned off.
  • the motor is a rotary motor
  • the stator is circular
  • the first mover and the second mover are circles having different diameters. Shapes are respectively disposed on the inner side and the outer side of the stator.
  • the electric motor includes at least one stator 10, at least one first mover 21, at least one second mover 22, and at least one brake unit 30.
  • the stator 10 includes at least one first magnetic conductive portion A1-An and at least one second magnetic conductive portion B1-Bm, and the at least one first magnetic conductive portion A1-An and m second magnetic conductive portion B1-Bm respectively Corresponding to the first and second movers 21, 22.
  • the first mover 21 is a driving component of the brake unit 30 of the electric motor
  • the second mover 22 is a to-be-braked component of the brake unit 30, that is, the first mover 21 drives the brake unit 30 to complete the
  • the first mover (also referred to herein as an inner mover) of the rotary motor is used as the brake unit.
  • the second mover can be interchanged, That is, the second mover can be an inner mover, and the first mover is an outer mover, as long as one of the first mover and the second mover is a drive member, and the other is a member to be braked, the same
  • the positions of the first mover and the second mover are also interchangeable, not limited to the drawings in the embodiment.
  • the brake unit 30 does not Work so that the second mover 22 can rotate normally.
  • the first mover 21 is not limited to being unable to rotate at this stage. In some motor designs, it can also be rotated to complete the function of the normal motor, and can be passed when braking is required.
  • Some conversion units are converted into drive units), when the second mover needs to be braked, the first mover is rotated or rotated by controlling the current distribution to the corresponding phase windings of the first conductive magnet. And driving the brake unit to complete the braking of the second mover.
  • the stator can be divided into two magnetic guiding portions, and the two magnetic guiding portions are respectively controlled by the common winding, thereby respectively controlling the two moving parts, and since one of the moving parts serves as a driving member of the braking unit, It is thus possible to realize the function of having a brake in a motor of a small volume and mass.
  • the brake unit can perform braking of the second mover by driving of the first mover using various existing structures.
  • the brake unit may be a permanent magnet, and the output shaft of the first mover as the drive unit is connected to the permanent magnet to drive the brake unit to rotate, and stops when the permanent magnet rotates to a position abutting the second mover. Because the magnet is adsorbed, the second mover is controlled to stop moving; when the brake needs to be released, the permanent magnet is again driven to rotate against the attraction of the magnet.
  • the brake unit may also be a friction plate with a large friction coefficient, and the braking is completed by the driving of the first mover; the brake unit may further include a protrusion and a card slot, and the protrusion and the card slot are respectively disposed on the first mover and the brake On the unit, by the driving of the driving unit, the brake unit and the protrusion on the first mover are engaged with the card slot, and when the brake needs to be released, the force between the protrusion and the card slot is again overcome to make the two separate.
  • the brake unit may include various structures as long as it is a brake unit that requires drive unit drive to complete braking of the second mover.
  • the phase windings are further connected to at least one power storage device and its control unit through a wire
  • the power storage device may include: a capacitor, a battery, etc.
  • a power storage device is connected, and a power storage device can be electrically connected in common to perform split control.
  • the power storage device can continue to provide a short current supply for at least the first mover of the motor under the control of the control unit, so that the first mover completes the braking of the second mover;
  • the control unit controls to first charge the power storage device, and the power storage device first distributes the current to the first mover through the control unit, releases the braking of the second mover, and then starts the second mover rotation.
  • first magnetic conductive portion or the second magnetic conductive portion of the same stator may distribute one mover in the axial direction (as shown in FIG. 10), or may distribute a plurality of movers in the axial direction (not shown). Illustrated, that is, the same first magnetic conductive portion corresponds to a plurality of first movers in the axial direction, and the second magnetic conductive portion corresponds to a plurality of second movers in the axial direction; or the stator is divided by the first embodiment as in the first embodiment
  • the second magnetically conductive portion further includes more magnetic conductive portions.
  • the mover may include the third and fourth motions in addition to the first and second movers. child.
  • the brake unit may also include one or more.
  • a plurality of brake units may be arranged side by side in a motor including only the stator and the first and second movers, or when the motor includes more movers, such as :
  • a brake unit having the same structure as the brake unit corresponding to the first and second movers is provided.
  • the motor may be not only a rotary motor but also a linear motor, and the principle is the same and will not be repeated here.
  • stator For a description of the structure of the stator, refer to the description of the first embodiment and the second embodiment, and details are not described herein again.
  • a fourth aspect of the present invention provides the motor of the second embodiment or the control device for the motor of the third embodiment, wherein the control device is configured to distribute current of the current input terminal to the multi-phase winding, To separately control the first magnetic conductive portion and the second magnetic conductive portion.
  • the multi-phase winding is electrically connected to the output end of the power supply, and the current outputted by the current output end is distributed to the multi-phase winding by the control of the coupled control device, and the multi-phase winding is formed in the first magnetic conductive portion and the second magnetic conductive portion.
  • the control device can arbitrarily set the current distributed to the current output to the respective windings, or pre-calculate the currents distributed to the respective multi-phase windings according to the purpose of the generator or the motor in the motor.
  • 11A-11B are structural diagrams of a control device according to an embodiment of the present invention.
  • the control device 30 can be used to control the motor 40 or the motor 50, which includes a control device 31 for distributing current of the current input to the multi-phase winding, the control device 31 according to the A magnetic conductive portion and the second magnetic conductive portion are spaced apart, and at least a portion of the adjacent first magnetic conductive portion and the abutting side of the second magnetic conductive portion are provided with a common winding, and the A current passing through the actual windings on the at least one first magnetically permeable portion and the at least one second magnetically permeable portion and a current through the respective multi-phase windings to obtain a current value through which the multi-phase winding passes.
  • control device 31 includes a storage unit 311, an input unit 312, and a processor 313.
  • the storage unit 311 is configured to store, by the storage unit, the first magnetic conductive portion and the at least partially adjacently arranged according to the first magnetic conductive portion and the second magnetic conductive portion. a manner in which abutting edges of the second magnetic conductive portion are provided with a common winding, and currents obtained by the actual windings on the at least one first magnetic conductive portion and the at least one second magnetic conductive portion are required to pass Multiphase winding through current relationship;
  • the storage unit includes any device that can be used to store software or other instructions, such as, but not limited to, a hard disk, an optical disk, a floppy disk, a DVD (Digital Versatile Disc), a CD (Compact Disc), a memory stick, Flash memory, ROM (Read Only Memory), RAM (Random Access Memory), DROM (Dynamic Random Access Memory), PROM (Programmable ROM), EEPROM (Extended Erasable PROM), and/or other similar computers Read the media.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • DROM Dynamic Random Access Memory
  • PROM Programmable ROM
  • EEPROM Extended Erasable PROM
  • the input unit 312 is configured to input a torque that the first mover and the second mover need to output, and send the torque to the processor.
  • the input unit may be a button, a touch screen, or the like.
  • the processor 313 includes: a first calculating unit 3131, a second calculating unit 3132;
  • the second calculating unit 3132 is configured to: according to current values passed by the actual windings on the first magnetic conductive portion and the second magnetic conductive portion, and the at least one first magnetic conductive portion and the at least one first The currents of the actual windings on the two magnetic conducting portions and the currents of the respective multi-phase windings are used to obtain the currents of the respective multi-phase windings.
  • the processor may include but is not limited to: CPU, PLC
  • control device may further include other devices, units, circuits, components, and the like, such as the power storage described in the third embodiment.
  • the control unit of the device is not described in detail because it is not related to the inventive point of the embodiment of the present invention.
  • the current input by the multi-phase winding may be any value.
  • the current actually passed through the first magnetic conductive portion and the second magnetic conductive portion includes a combination of currents of the respective multi-phase windings, according to the first magnetic conductive portion and The difference in the arrangement of the second magnetically permeable portions, and the manner in which the common windings are disposed on the first and second magnetically permeable portions, may correspond to the currents and multiphases of the actual windings on the first and second magnetically permeable portions.
  • the relationship between the currents through which the windings pass, and the current actually passing through the first and second magnetic conducting portions can be known as known conditions in various ways, so that the actual current and the relationship can be used to determine the need.
  • the amount of current that is distributed to each multiphase winding can be known as known conditions in various ways, so that the actual current and the relationship can be used to determine the need.
  • each of the first magnetic conductive portions and each of the two magnetic conductive portions are spaced apart from each other, and abutting edges of each of the adjacent first magnetic conductive portions and second magnetic conductive portions are disposed with a common winding. Describe in detail how to distribute the current at the current output.
  • the current input to each common winding be L(1), L(2), L(3), ..., L(2K); wherein, the current for controlling the first magnetic conductive portion A1-An is U(1), U(2), U(3), ..., U(K), and the control portion is set
  • the currents of the two magnetic conducting portions B1-Bm are V(1), V(2), V(3), ..., V(M), according to the magnetic circuit relationship described in the above paragraph:
  • the first magnetic conductive portion and the second magnetic conductive portion can be separately controlled.
  • the currents V(1), V(2), V(() can be changed. 3), ..., V(K), thereby realizing control of the mover corresponding to the second magnetic conductive portion when the rotor torque corresponding to the first magnetic conductive portion is unchanged; the same
  • the external mover current U(1) can be changed without changing the internal mover currents V(1), V(2), V(3), ..., V(K).
  • U(2), U(3), ..., U(K) so as to realize the motion corresponding to the first magnetic conducting portion when the rotor torque corresponding to the second magnetic conducting portion is constant Sub-control.
  • Each of the multiphase common windings on the stator is coupled to a control device, the control device being configured to transmit a control signal to control the distribution of current output from the power supply output to the respective phase windings, thereby controlling the generation of the respective phase windings The strength of the magnetic field. Since each adjacent first and second magnetic conductive portions has a common winding of the magnetic conductive portions adjacent to the other side, in addition to the common winding of the two magnetic conductive portions, by changing the other two The magnitude of the current passed by the common windings can control the non-synchronous changes of the magnetic fluxes of the adjacent first and second magnetic conductive portions. Similarly, the magnetic fluxes of the first and second magnetic conductive portions can be controlled. Non-synchronous changes, so that the flexibility of multiple movers through a relatively small volume and mass stator can be achieved.
  • first and second magnetic conductive portions realize the common multi-phase winding and realize the respective control
  • a first magnetic conductive portion and a second magnetic conductive portion will be further described in detail below as an example.
  • FIG. 6 is a schematic top plan view of a preferred rotating electrical machine according to an embodiment of the present invention, wherein each of the first magnetic conductive portion and the second magnetic conductive portion are spaced apart from each other, and each adjacent first guide A common winding is disposed on the abutting side of the magnetic portion and the second magnetic conductive portion.
  • the first magnetic conductive portions respectively include A1-A6, which are spaced apart from the first magnetic conductive portion.
  • the second magnetic conductive portions respectively include B1-B6, and the common edges of the first magnetic conductive portion and the second magnetic conductive portion are provided with a common winding.
  • each winding is designed to be the same as its opposite winding.
  • Phase winding so the stator comprises a total of 6-phase windings L1, L2, L3, L4, L5, L6; according to the principle of electromagnetic reaction, the magnetic flux of the first magnetic conducting portion A1 includes the superposition of the magnetic fields generated by L1 and L2, so here L1+L2 is collectively referred to as a phase current U1.
  • the magnetic flux of the adjacent second magnetic conducting portion B1 includes the superposition of the magnetic fields generated by L2 and L3.
  • L2+L3 is collectively referred to as a phase current V1.
  • the respective control requirements of the motor can be realized by design, for example, designing the first magnetic conductive portion.
  • the required torque is 10 NM
  • the torque required for the second magnetic conductive portion is 5 NM.
  • the three-phase currents U1, U2, U3, respectively required for the first magnetic conductive portion and the second magnetic conductive portion The values of V1, V2, and V3.
  • the method can find the values of L1, L2, L3, L4, L5, L6 or a combination of various values.
  • Mp be the pseudo inverse matrix of M in X
  • X Mp*Y
  • Mp Mp*Y
  • X that is, values of L1, L2, L3, L4, L5, and L6 can be obtained.
  • the combined solution of the windings L1-L6 can be obtained.
  • the related method for solving the equation belongs to the prior art, and can be solved by various mathematical methods as needed, and will not be described in detail herein.
  • each of the first magnetic conductive portions and each of the two magnetic conductive portions are spaced apart from each other, and each adjacent first magnetic conductive portion and second The abutting side of the magnetic conducting portion is in the form of a common winding.
  • any of the arrangement of the first magnetically permeable portion and the second magnetically permeable portion and the manner in which the windings are disposed as described above may list the current input from the power supply output terminal to each phase winding according to the actual situation, and each of the magnetic conductive portions
  • the relationship between the currents passing through the corresponding actual windings, and the current actually passing through the first and second magnetic conducting portions can be known in various ways as known conditions, thus combining the actual current and the relationship
  • the currents that need to be allocated to the respective multi-phase windings can be calculated. Since the principles of the various calculation methods are the same, the various modes will not be described again.
  • Embodiment 4 of the present invention further provides an apparatus, where the apparatus includes the motor as described in Embodiment 2.
  • the apparatus may be various devices including the motor, as long as it is required to separately control or simultaneously increase the torque control by the multi-motion, which is within the scope of the protection of the present invention.
  • Embodiment 5 of the present invention further provides an apparatus, the apparatus comprising the electric motor as described in Embodiment 3.
  • the device may be a variety of devices including the electric motor. Since the motor of the third embodiment can be used to realize the function of braking in a motor of a small volume and mass, the motor is straight The driven robot requires a braking function on the one hand and a small volume and mass on the one hand, so that the robot directly driven by the motor is preferred in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the inner, outer, upper, and lower portions only represent relative orientations, and do not necessarily represent actual literal meanings.
  • the fixed connections described in this embodiment include, but are not limited to, fixed connections by bonding, or by detachable means such as snaps, screws, or the like.
  • stator, the motor, the motor, the control device, and the device provided by the embodiments of the present invention are described in detail above, but the description of the above embodiments is only for helping to understand the method and the core idea of the present invention, and should not be construed as being limit.
  • Those skilled in the art, in light of the spirit of the present invention, are susceptible to variations or substitutions within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

一种定子(10),包括定子芯、设置在定子芯上的多相绕组,所述定子芯包括:至少一个第一导磁部(A1-An)、至少一个第二导磁部(B1-Bn);所述至少一个第一导磁部(A1-An)和所述至少一个第二导磁部(B1-Bn)间隔排列,至少部分相邻接的所述第一导磁部(A1-An)和所述第二导磁部(B1-Bn)的抵接边分别设置共同的绕组。还提供相应的电机(40)、电动机(50)及控制设备、设备。采用上述定子(10),通过将定子(10)分成两个导磁部,通过共用多相绕组分别控制两个导磁部,可以实现通过一个相对小体积和质量的定子(10)对多个动子灵活控制的目的。

Description

一种定子、电机、电动机及控制设备、设备 技术领域
本发明涉及电机技术领域,具体涉及一种定子、电机、电动机及控制设备、设备。
背景技术
随着电机相关技术的改进和工业的发展,对电机现有的工业设计要求也越来越高,电机设备中,通常需要采用多动子结构以满足不同的需要,现有的专利文献中,如申请号:US201113306048所描述,定子采用两套绕组结构,所述定子的内外两侧的绕组分别控制两侧动子的转动,从而可以实现在同一个电机内形成两个电机的效果。但是上述电机结构,虽然可以分别控制两个动子,但是电机定子的两侧都需要设置绕组,从而造成电机自身体积、质量大,不利于实现高扭矩密度。
在另外一篇双动子结构的专利文献CN105529888中,两个动子共用定子的同一绕组,但是该电机不能实现两个动子的灵活控制,不能实现在同一个电机内形成两个电机的效果。
发明内容
本发明为解决上述问题,提供一种定子、电机、电动机及控制设备、设备,将定子分成两个导磁部,通过共用多相绕组分别控制两个导磁部,因此可以实现通过一个相对小体积和质量的定子对多个动子灵活控制的目的。
本发明第一方面提供一种定子,包括定子芯、设置在定子芯上的多相绕组,所述定子芯包括:至少一个第一导磁部、至少一个第二导磁部;所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边分别设置共同的绕组。
进一步,所述第一导磁部和所述第二导磁部间隔排列,包括:
每一个所述第一导磁部和每一个所述第二导磁部彼此间隔排列;或
每隔多个所述第一导磁部或者多个所述第二导磁部间隔排列。
进一步,所述至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组,包括:
每个相邻接的所述第一导磁部和第二导磁部的抵接边设置共同的绕组;或
部分相邻接的所述第一导磁部和第二导磁部的抵接边设置共同绕组。
进一步,根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获得的所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过的电流的关系式。
进一步,当每一个所述第一导磁部和每一个所述第二导磁部彼此间隔排列,且每个相邻接的所述第一导磁部和第二导磁部的抵接边设置共同的绕组,所述获得的所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式包括:
设各个共同绕组输入的电流为L(1),L(2),L(3)..........L(2K);控制所述第一导磁部的电流为U(1),U(2),U(3).....U(K),控制所述第二导磁部的电流为V(1),V(2),V(3).....V(K);形成如下关系式:
U(1)=L(1)+L(2),U(2)=L(3)+L(4),......,U(K)=L(2K-1)+L(2K)
V(1)=V(2)+V(3),V(2)=V(4)+V(5),......,V(K)=L(2K)+L(1)。
进一步,所述第一导磁部和所述第二导磁部为相互倒置的第一U形结构和第二U形结构,所述第一U形结构和所述第二U形结构的相抵接的凸边为所述抵接边。
本发明第二方面提供一种电机,所述电机包括至少一个如第一方面中任意一项所述的定子,所述电机还包括:至少一个第一动子、至少一个第二动子;
所述第一动子和所述第二动子分别设置在所述定子的两侧,所述第一动子 对应所述至少一个第一导磁部,所述第二动子对应所述至少一个第二导磁部;
进一步,所述第一动子和所述第二动子共接同一输出端,以增加输出的扭矩。
本发明第三方面还提供一种电动机,所述电动机包括至少一个如第一方面中任意一项所述的定子,所述电动机还包括:至少一个第一动子、至少一个第二动子、至少一个刹车单元;
所述第一动子和第二动子分别设置在所述定子的两侧,所述第一动子对应所述至少一个第一导磁部,所述第二动子对应所述至少一个第二导磁部;
所述第一动子驱动所述刹车单元完成对所述第二动子的制动。
进一步,所述电动机还包括至少一蓄电装置及其控制单元,所述蓄电装置通过所述控制单元的控制电连接所述多相绕组。
本发明第四方面提供一种如第二方面任意一项所述的电机或第三方面任意一项所述的电动机的控制设备,包括用于控制分配所述多相绕组的电流的控制装置,根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获得所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式,从而获取所述各相绕组通过的电流。
进一步,所述控制装置包括:存储单元、处理器、输入单元;
所述存储单元,用于存储根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获得的所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式;
所述输入单元,用于输入所述第一动子和所述第二动子需要输出的扭矩,发送给所述处理器;
所述处理器包括:第一计算单元、第二计算单元;
所述第一计算单元,用于根据收到的所述第一动子和所述第二动子需要输出的扭矩计算所述第一导磁部和所述第二导磁部上实际包括的绕组通过的电流值,并将所述电流值发送给所述第二计算单元;
所述第二计算单元,用于根据所述第一导磁部和所述第二导磁部上实际绕组通过的电流值,以及所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式,获取所述各个多相绕组的电流。
本发明第五方面还提供一种设备,所述设备包括如本发明第二方面中任意一项所述的电机。
本发明第六方面还提供一种设备,所述设备包括如本发明第三方面中任意一项所述的电动机,所述设备包括所述电动机直接驱动的机器人。
由上可见,本发明实施例提供一种定子,将定子分成两个导磁部,通过共用绕组分别控制两个导磁部。取得了以下技术效果:
1、由于所述定子芯包括:至少一个第一导磁部、至少一个第二导磁部,所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组,使得至少部分第一导磁部或第二导磁部上实际包括两个共同绕组,由于所述各个共同绕组为多相绕组,当对两个共同绕组分别控制时,就可以实现对第一导磁部或第二导磁部的分别控制,因此可以实现通过一个相对小体积和质量的定子对多个动子灵活控制的目的。
2、由于采用每个第一导磁部和第二导磁部间隔排列,因此可以最大程度节省绕组。
3、由于所述第一导磁部和所述第二导磁部为相互倒置的第一U形结构和第二U形结构,所述第一U形结构和所述第二U形结构的相抵接的凸边为所述抵接边,采用这种形状的第一导磁部和第二导磁部既能够更好的集中导磁部上通过的磁力线以增大磁力矩,同时能更好的方便第一和第二导磁部形成抵接边, 从而实现第一导磁部和第二导磁部的大扭矩非同步控制。
4、由于所述电机除包括所述定子外,还包括:至少一个第一动子、至少一个第二动子,所述第一动子对应所述第一导磁部,所述第二动子对应所述第二导磁部,所述控制单元被配置为分配电流输入端的电流给所述共同绕组,以分别控制所述第一导磁部和所述第二导磁部,从而分别控制第一动子和第二动子的运动,因此可以实现在一个相对小体积和质量的电机内对两个动子灵活控制的目的。
5、由于所述电机的第一动子和第二动子共接同一输出端,因此可以增加输出的扭矩。
6、由于根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组,获得的所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式,因此可以获知所述各个多相绕组的电流。
7、由于设各个共同绕组输入的电流为L(1),L(2),L(3)..........L(2K);控制所述第一导磁部的电流为U(1),U(2),U(3).....U(K),控制所述第二导磁部的电流为V(1),V(2),V(3).....V(K);形成如下关系式:
U(1)=L(1)+L(2),U(2)=L(3)+L(4),......,U(K)=L(2K-1)+L(2K)
V(1)=V(2)+V(3),V(2)=V(4)+V(5),......,V(K)=L(2K)+L(1);
根据所述第一导磁部和所述第二导磁需要产生的磁力矩计算出U(1),U(2),U(3).....U(K)和V(1),V(2),V(3).....V(K),再根据所述关系式求出L(1),L(2),L(3)..........L(2K)。
因此,通过上面所述的方法可以实现通过分配电流输入端的电流给所述共同绕组,以分别控制所述第一导磁部和所述第二导磁的目的。
8、由于采用本发明所述的电机,可以将定子分成两个导磁部,通过共用绕组分别控制两个导磁部,进而分别控制两个动子,又由于其中一个动子作为刹车单元的驱动件,因此可以实现在一个小的体积和质量的电机内实现具有刹车的功能。
9、由于所述电动机至少一蓄电装置,所述蓄电装置受所述控制单元控制,通过电线连接绕组,使得电动机断电后,蓄电装置通过可以至少为电动机的第一动子继续提供短暂的电流供应,从而使得第一动子完成对第二动子的制动;当再次通电后,控制单元控制先对蓄电装置充电,蓄电装置先通过控制单元分配电流给第一动子,解除对第二动子的制动,然后才启动第二动子转动。
10、由于所述控制设备包括用于分配电流输入端的电流给所述多相绕组的控制装置,因此所述控制装置根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获取所述至少一个第一导磁部和所述至少一个第二导磁部实际需要通过的电流和所述各个多相绕组通过电流的关系式,从而获取所述多相绕组通过的电流值。
11、由于所述电机可以实现在一个相对小体积和质量的电机内对两个动子控制的目的,因此采用这样电机可以适用于任何需要在同一电机内实现双控制的设备。
12、由于所述电动机可以实现在一个相对小体积和质量的电动机内实现刹车的功能,因此所述电动机特别适用于电动机直接驱动的工业机器人中。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种应用在直线电机中的定子的简单结构俯视示意图;
图2为本发明实施例提供的应用在直线电机中的定子的三个实施例的俯视图;
图3为本发明实施例提供的应用在旋转电机中的定子的相关示意图;
图4本发明实施例提供的定子的第一和第二导磁部的各种不同形状的实 施例的结构的简单俯视示意图;
图5为本发明实施例所述的一种优选的直线电机中定子的俯视示意图;
图6为本发明实施例所述的一种优选的旋转电机的定子的俯视示意图;
图7为本发明实施例所述的另一种优选的直线电机中定子的俯视示意图;
图8为本发明实施例提供的定子对应电机的俯视结构示意图;
图9为本发明实施例提供的第一和第二动子结构及对应的第一和第二导磁部结构不相同的电机的俯视图;
图10为本发明实施例提供的一种具有刹车功能的电动机的结构示意图;
图11A-11B为本发明实施例提供的一种控制设备的结构框图。
具体实施方式
为了使本领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都应当属于本发明保护的范围。
实施例一、
定子是电机中不可缺少的一个重要部件,由于定子相对动子不运动,故称为定子,在电机中,定子与动子之间存在间隙以形成磁隙,根据电磁反应原理,定子与动子之间相配合实现动子的运动。
本发明所述的电机即可以包括将电能转换成动能输出的电动机(电动机可以包括:旋转运动的旋转电动机、直线运动的直线电动机);也可以包括将动能转化为电能输出的发电机。二者之间在一些情况中是可以采用同一结构实现的,通过对相同的结构采用不同的电连接和机械连接的方式,从而分别实现发电机或电动机的功能。
定子通常包括:定子芯、设置在定子芯上的多相绕组。
定子芯可以采用各种磁性材料制成,比如:叠加的硅钢片、铁粉等等。
需要说明的是,每相绕组可以包括1个绕组,也可以包括多个绕组;以6相12个绕组为例(如图6所示),每2个相对的绕组为一相,因此每一相绕组内包括2个绕组。所述多相绕组电连接控制设备,通过控制设备发出控制信号,从而分配从电流输出端(所述电流输出端可以是电源、电池、电容等等的输出端)输出的电流到各相绕组。需要说明的是,可以每一相绕组分别耦合一控制设备,分别进行控制;或者各相绕组共同耦合一控制设备,由一个控制设备统一进行控制分配。
随着电机相关技术的改进和工业的发展,对电机的工业设计要求也越来越高,在某些电机设备中,通常需要在同一电机中采用多动子结构满足不同的需要。但如背景技术中所述,现有为实现多动子结构的电机所采用的定子结构通常为两种,一种是定子上对应每一个动子分别设置一组绕组,从而造成电机自身体积、质量大,不利于实现高扭矩密度;另一种是多动子共用定子的同一组多相绕组,但是该电机只能对多个动子统一进行控制,不能实现在同一个电机内形成两个电机的效果。
为解决上述问题,本发明提供一种定子,通过将定子分成两个导磁部,通过共用多相绕组分别控制两个导磁部,因此可以实现通过一个相对小体积和质量的定子对多个动子灵活控制的目的。下面结合附图对该方案进一步详细说明。
图1为本发明实施例提供的一种应用在直线电机中的定子的简单结构俯视示意图。图2为本发明实施例提供的应用在直线电机中的定子的四个实施例的俯视图。图3为本发明实施例提供的应用在旋转电机中的定子的相关示意图,其中,上方为俯视图,下方为2个定子实施例的侧视图。
如图1所示,以直线电机为例,对定子的结构进一步详细说明。所述定子10的定子芯包括:至少一个第一导磁部A1-An、至少一个第二导磁部B1-Bm。,所述第一导磁部和第二导磁部的个数可以为大于等于1的任意个,第一导磁部和第二导磁部的个数可以相等也可以不等,在图1的实施例中,第一导磁部A1-An为2个,第二导磁部B1-Bm为2个。
如图2所示,所述至少一个第一导磁部A1-An和/或所述至少一个第二导磁 部B1-Bm间隔排列可以包括但不限于如下的方式:
优选的一种方式,所述间隔排列包括每个第一导磁部和每个第二导磁部彼此间隔排列(如图2第一、二幅图所示,其中第一导磁部和第二导磁部分别为3个),这样可以最大程度节省绕组。
另一种方式:所述间隔排列包括每隔多个第一导磁部或者多个第二导磁部的彼此间隔排列,比如:每隔2个第一导磁部和1个第二导磁部的间隔排列(如图2第三、四幅图所示,其中,第一导磁部为4个,第二导磁部分别为3个),或者每隔2个第一导磁部和每隔2个第二导磁部的间隔排列等等。相对优选的实施方式会增加绕组的数量,但都属于本发明的保护范围内。
需要说明的是,所述至少一个第一导磁部和所述至少一个第二导磁部可以预置成一体,也可以通过装配的方式固定连接在一起。
如图2所示,至少部分相邻接的所述第一导磁部和/或所述第二导磁部的抵接边设置共同的绕组。下面根据上段描述的第一和第二导磁部的2种不同排列方式对设置绕组的方式进一步详细说明。
如图2第一、二幅图所示,第一种排列方式包括,如上所述的每个第一导磁部A1-A3和每个第二导磁B1-B3部彼此间隔排列,当采用这种排列方式时,第一、第二导磁部A1-A3,B1-B3彼此邻接,即每个第一导磁部的两侧都分别邻接第二导磁部(除线性电机中位于端部的导磁部外),而每个第二导磁部的两侧分别邻接第一导磁部(除线性电机中位于端部的导磁部外),优选的,每个第一导磁部和第二导磁部与两侧邻接的第一导磁部或第二导磁部的共同抵接边处分别设置共同绕组,因此每个第一、第二导磁部上都设置两个共同绕组,从而相邻的两个导磁部上除二者的共同绕组外,还包括两个导磁部分别与另外一侧邻接的导磁部的共同绕组。由于所述各个共同绕组的电流方向为垂直于纸面的方向,因此根据电磁反应原理,每个设置两个共同绕组的第一、第二导磁部上的磁通都包括两个共同绕组产生的磁场的叠加作用,由于各个共同绕组是多相绕组,因此通过控制各个多相共同绕组通过的电流,就可以实现对第一导磁部和第二导磁部分别进行控制。
需要说明的是,设置绕组的方式,优选如上所述的每个相邻接的第一和第二导磁部的抵接边都彼此设置共同绕组(如图2第一幅图所示),这样可以最大程度节省绕组;当然也可以选择部分相邻接的第一和第二导磁部的抵接边设置共同绕组(如图2第一幅图所示),而一部分第一和第二导磁部分别设置单独的绕组控制,相对优选的实施方式会增加绕组的数量,但都属于本发明的保护范围内。其控制的原理,单独的绕组单独控制,共同绕组参见上面所述,在此不再重复赘述。
如图2第三、四幅图所示,第二种排列方式包括,每间隔多个第一导磁部或者多个第二导磁部排列,这种排列方式的绕组设置方式也可以包括两种:
一种方式为:如图2第三幅图所示,每个第一或者第二导磁部只要有相邻的第一、第二导磁部就设置共同绕组,不管相邻的导磁部是不是同一种类,比如:相邻的第一导磁部A1和第一导磁部A2设置共同绕组,而相邻的第一导磁部A1和第二导磁部B1也设置共同绕组。
另外一种方式为:如图2第四幅图所示,彼此相邻的相同的导磁部不采用共用绕组,比如:第一导磁部A1和第一导磁部A2不设置共同绕组;只在不同的导磁部相邻接时,才在彼此的抵接边设置共同绕组,比如,第一导磁部A1和第二导磁部B1设置共同绕组。
上述第一、第二导磁部及其绕组的工作原理参见上面实施例所述,在此不再重复赘述。
需要说明的是,所述多相绕组输入的电流可以为任意值。除此之外,优选的,通过上面所述,第一导磁部和第二导磁部上实际通过的电流包括各个多相绕组的电流的组合,根据上面所述的第一导磁部和第二导磁部排列的不同,以及第一导磁部和第二导磁部上共同绕组设置方式的不同,可以对应列出第一和第二导磁部上实际绕组通过的电流和多相绕组通过的电流的关系式,而第一导磁部和第二导磁部上实际通过的电流是可以作为已知条件通过各种方式获知的,因此结合实际电流和关系式就能求出需要分配给各个多相绕组的电流大 小。关于多相绕组电流输入的控制会在具体实施例四关于控制设备中有进一步详细的描述。
需要说明的是,如图1、图2所示,所述第一导磁部和所述第二导磁部可以直线的间隔排列;如图3所示,也可以排列成一个圆,只要是满足上述原理,可以根据不同的电机以及对应的不同的动子的设计而不同。
如图3所示,定子芯10的导磁部并不限于间隔设置的第一、第二2个导磁部A1-n、B1-m(如图3左下方所示),也可以超过2个,比如:还可以包括沿轴向设置的与第一、第二2个导磁部A1-An、B1-B m平行的第三导、第四导磁部C1-n、D1-m(如图3右下方所示),或者更多,第三、第四导磁部的结构可以与所述第一和第二导磁部的结构相同,也可以不同。所述绕组可以为一组多相绕组,也可以为多组多相绕组,比如:还可以包括沿轴向设置的另一组与第三导、第四导磁部相配合的另一组多相绕组。更多的导磁部及其绕组的工作的原理与第一、第二导磁部及其多相绕组的原理相同,因此本具体实施例只以包含第一、第二导磁部的定子芯及其多相绕组为例进行详细说明。
本具体实施例中第一、第二导磁部分别对应第一和第二动子,从而实现在一个电机内有两个电机的不同效果。除此之外,第一和第二导磁部也可以对应相同的动子(即通过定子芯上至少两个导磁部控制同1个动子,此时第一、第二导磁部都与同一个动子形成磁力线闭合回路,该种方法可以实现对动子的控制,只是对一个动子进行控制时,可以采用很多方法和结构实现,而采用本方法设计的结构去控制1个动子只是其中一种比较复杂的方法,所以本发明所述的结构的定子主要还是应用在每个导磁部对应不同的动子的结构中)。有关定子和动子相配合的结构会在实施例二中进一步详细描述。
图4本发明实施例提供的定子的第一和第二导磁部的各种不同形状的实施例的结构的简单俯视示意图。
需要进一步说明的是,所述第一导磁部和第二导磁部可以根据需要和对应的动子设计成各种形状,所述第一导磁部A1-An和第二导磁部B1-Bm可以结构 相同(如图4中的第一幅图所示),所述第一导磁部A1-An和第二导磁部B1-Bm也可以相互倒置(如图4中的第2幅图所示),所述第一导磁部A1-An和第二导磁部B1-Bm也可以结构不同(如图4中的第三幅图所示),只要保证相邻的第一导磁部与第二导磁部有共同的抵接边,且第一导磁部和对应的第一动子上当有磁力线通过时,可以构成磁力线闭合回路,第二导磁部对应的第二动子上当有磁力线通过时,可以构成磁力线闭合回路即可。
图5为本发明实施例所述的一种优选的直线电机中定子的俯视示意图;图7为本发明实施例所述的另一种优选的直线电机中定子的俯视示意图。
如图5所示,所述定子芯的第一导磁部A1-An和第二导磁部B1-Bm的优选结构为:所述第一导磁部A1-An为U形,所述第二导磁部B1-Bm为倒置的U形,或者二者互换所述第一导磁部A1-An为倒置的U形,所述第二导磁部B1-Bm为U形,二者彼此间隔依次排列,这样相邻的两个导磁部的两个相邻边相抵接。所述U形和倒置的U形可以根据实际需要做一定的变形,只要保证导磁部包括一个底部和从底部向同一侧延伸的两条边即可,如图6所示,因为定子为圆形,因此第一导磁部和第二导磁部非正规的U形,而是近似于梯形,又如图7所示,所述定子在对应动子的端部宽度增加,从而可以使得定子与动子相配合可以输出更大的扭矩等等,图6、图7中的实施例只是U形结构众多变形中的其中两种,应该理解的是,凡是原理和功能与U形和倒置U形导磁结构(即:导磁部包括底部和从底部向同一侧延伸的两条边)相同和相近似的都属于本发明的保护范围。
第一U形部内形成第一定子槽,所述第二U形部内形成第二定子槽;所述第一U形部和第二U形部的各个彼此相抵接边共同设置同一绕组,所述各绕组穿过各个定子槽缠绕在所述抵接边上,所述绕组可以是集中式绕组(如图6所示)、分布式绕组或者其它任意形式设置的绕组,只要保证相邻两个导磁部的彼此相抵接边设置共用绕组即可。
由于所述第一导磁部和所述第二导磁部为相互倒置的第一U形结构和第二U形结构,所述第一U形结构和所述第二U形结构的相抵接的凸边为所述抵接 边,采用这种形状的第一导磁部和第二导磁部既能够更好的集中导磁部上通过的磁力线以增大磁力矩,同时能更好的方便第一和第二导磁部形成抵接边,从而实现第一导磁部和第二导磁部的大扭矩非同步控制。
需要说明的是,所述定子除上述结构外,不同的电机,定子的结构设计也会略有不同,比如:永磁电机,该电机包括多个永磁体,多个永磁体有可能间隔设置在定子上,或者也可以设置在动子上,或者为增加输出的扭矩密度,在定子和动子上都设置多个永磁体,则定子芯上通过的磁通还受永磁体产生的磁场的影响。而在步进电机中,定子在对应动子的一侧的外周还设置多个步进齿等等。
实施例二、
本发明的实施例二还提供一种包括如实施例一所述的定子的电机。
图8为本发明实施例提供的定子对应电机的俯视结构示意图,其中,左侧为直线电机,右侧为旋转电机。
如图8所示,所述电机包括至少一个第一动子21、第二动子22和至少一个定子10,定子10相对第一、第二动子21、22不动,第一、第二动子21、22相对定子10可运动,第一、第二动子21、22与定子10之间分别存在间隙以形成磁隙。
需要说明的是,所述电机可以包括一个定子,也可以包括多个轴向或者径向并列设置的多个定子,同样所述第一动子、第二动子可以包括一个,也可以包括多个。他们的原理相同,本具体实施例只以一个定子、一个第一、第二动子为例进行说明。
如实施例一中所述,所述定子10包括至少一个第一导磁部A1-An、至少一个第二导磁部B1-Bm,优选所述第一导磁部A1-An和第二导磁部B1-Bm分别对应第一、第二动子21、22。
如实施例一所述,定子还可以包括更多导磁部,比如:第三、第四导磁部 时,所述动子也可以包括与之相对应的第三、第四动子等等,由于更多的动子与第一、第二动子原理相同,在本具体实施例中只以第一、第二导磁部对应所述第一、第二动子为例进行详细说明。
有关定子的更详细的描述参见具体实施例一,在此不再重复赘述。
所述第一动子和第二动子分别包括,动子芯,除此之外,根据不同的电机,动子芯还会有不同的结构设计,比如:永磁电机中,可能还包括设置在动子芯上的永磁体,所述永磁体可以沿动子芯的圆周间隔一定的距离分布,也可以设置在定子上,或者为增加电机输出的扭矩,在动子和定子上都设置永磁体。或者动子上还设置与定子相对应的步进齿。所述动子芯可以采用如定子所述的各种磁性材料制成,比如:通过叠压的硅钢片、铁粉等等。
所述第一、第二动子分别设置在定子的两侧。在旋转电机中,所述第一、第二动子分别设置在定子的径向两侧(径向电机)或者设置在定子的轴向两侧(轴向电机),在直线电机中,所述第一、第二动子可以分别设置在所述定子的左右或者上下两侧。
需要说明的是,本具体实施例的电机以旋转和直线永磁电机为例进行详细说明,但所述电机种类并不限于说明书中所提到的各种电机,只要该电机包括如实施例一所述的定子的结构都属于本发明的保护范围。
图9为本发明实施例提供的第一和第二动子结构及对应的第一和第二导磁部结构不相同的电机的俯视图,其中,外动子和定子外侧形成齿牙式电机,内动子和定子内侧对应形成表贴式电机。
需要说明的是,所述第一动子和第二动子21、22可以采用相同的结构(如图5、6、7所示),所述第一动子和第二动子21、22也可以根据需要采用不同的结构(如图9所示),当然也可以采用与图9所示结构不同的第一和第二导磁部以及第一和第二动子的结构,只要满足如实施例一所述的定子结构,且使得定子的第一和第二导磁部分别与第一和第二动子相配合能形成磁力线的闭合回路,都属于本发明的保护范围内。
在另一些实施例中,所述电机还包括,所述第一动子和第二动子共接同一 输出端,以增加输出的扭矩。比如,通过控制可以使得第二动子输出的扭矩密度为10NM/KG,而第一动子输出的扭矩密度为3NM/KG,当二者共接一输出端时,则可以输出的扭矩密度为10+3=13NM/KG,因此增加了输出的扭矩。
所述定子的结构参见具体实施例一中所述,在此不再重复赘述。
实施例三、
本发明实施例三还提供一种具有刹车功能的包括如实施例一所述的定子结构的电动机。有关电动机的定子的描述参见具体实施例一中的描述,在此不再重复赘述。
所述刹车单元可以是在电动机转动过程中因为一些意外情况进行的临时刹车。也可以是指当电动机在断电后,其内部的减速和制动机构因为失去电力而失去作用,从而使得机器设备难以保持原位,比如:机器人的机械臂的各关节在断电后,可能因为重力作用从原位掉下,而采用刹车单元正是为了防止马达在断电后制动所述动子,防止所述动子在断电后因为重力等作用继续转动。
图10为本发明实施例提供的一种具有刹车功能的电动机的结构示意图,该电动机为旋转电动机,所述定子为圆形,所述第一动子和第二动子为直径不等的圆形,分别设置在所述定子的内侧和外侧。
如图10所示,所述电动机包括:至少一个定子10、至少一个第一动子21、至少一个第二动子22、至少一个刹车单元30。
所述定子10包括至少一个第一导磁部A1-An、至少一个第二导磁部B1-Bm,所述至少一个第一导磁部A1-An和m第二导磁部B1-Bm分别对应第一、第二动子21、22。
所述第一动子21为所述电动机的刹车单元30的驱动部件,所述第二动子22为刹车单元30的待制动件,即第一动子21驱动刹车单元30完成对所述第二动子的制动,需要说明的是,本具体实施例以旋转电动机为例进行详细说明,所述旋转电动机的第一动子(在这里也可以称为内动子)作为刹车单元的驱动部件,而第二动子(在这里也可以称为外动子)作为刹车单元30的待制动件,所述第二动子用于该电动机的动力输出,所述第一动子和第二动子可以互换, 即第二动子可以为内动子,而第一动子为外动子,只要保证第一动子和第二动子其中有一个为驱动部件,另一个为待制动件即可,同理,在线性电动机中,并不限于实施例中附图所示,所述第一动子和第二动子的位置也可以互换。
当第二动子22转动时,通过调整各相绕组通过的电流,控制第一动子21受到的磁力矩的总和达到平衡不转动,从而不能实现对刹车单元30的驱动,因此刹车单元30不工作,这样第二动子22可以正常转动。(需要说明的是,所述第一动子21并不是限制在这一阶段一定不能转动,在某些电动机的设计中,其也可以转动以完成正常电动机的功能,当需要进行刹车时可以通过某些转换单元转换成驱动单元),当需要对第二动子进行制动时,通过控制分配电流给第一导磁体实际对应的各相绕组,从而使得第一动子转动或者转动一定的角度,进而驱动刹车单元完成对第二动子的制动。
通过采用上面所述的电机,可以将定子分成两个导磁部,通过共用绕组分别控制两个导磁部,进而分别控制两个动子,又由于其中一个动子作为刹车单元的驱动件,因此可以实现在一个小的体积和质量的电机内实现具有刹车的功能。
所述刹车单元可以采用各种现有的结构通过第一动子的驱动完成对第二动子的制动。比如刹车单元可以是一个永磁体,作为驱动单元的第一动子的输出轴连接该永磁体,驱动刹车单元转动,当永磁体转动到与第二动子相抵接的位置时停止转动,此时因为磁铁吸附作用,从而控制第二动子停止运动;当需要解除制动时,再次带动永磁体克服磁铁吸引作用而转动。刹车单元也可以是大摩擦系数的摩擦片,通过第一动子的驱动完成制动;刹车单元还可以包括凸起和卡槽,所述凸起和卡槽分别设置在第一动子和刹车单元上,通过驱动单元的驱动,使得刹车单元与第一动子上的凸起与卡槽相卡合,当需要解除制动时,再次克服凸起和卡槽之间的作用力使二者分开。所述刹车单元可以包括各种结构,只要是需要驱动单元驱动才能完成对第二动子制动的刹车单元都属于本发明的范围。
通过采用第一、第二动子共用定子的绕组的结构,且分别利用第一动子和第二动子作为电动机的刹车单元的驱动单元和待制动单元,从而可以实现在一 个小的体积和质量的电动机内实现具有刹车的功能。
在另外一些实施例中,应用在断电情况下,所述各相绕组还通过电线连接至少一蓄电装置及其控制单元,所述蓄电装置可以包括:电容、电池等等(可以分别电连接一个蓄电装置,也可以共同电连接一蓄电装置,统一进行分流控制)。使得电动机断电后,蓄电装置在控制单元的控制下可以至少为电动机的第一动子继续提供短暂的电流供应,从而使得第一动子完成对第二动子的制动;当再次通电后,控制单元控制先对蓄电装置充电,蓄电装置先通过控制单元分配电流给第一动子,解除对第二动子的制动,然后才启动第二动子转动。
需要说明的是,同一个定子的第一导磁部或者第二导磁部可以沿轴向分布一个动子(如附图10所示),也可以沿轴向分布多个动子(图未示意出),即同一第一导磁部沿轴向对应多个第一动子,而第二导磁部沿轴向对应多个第二动子;或者如实施例一所述定子除第一、第二导磁部外还包括更多导磁部,比如:第三、第四导磁部时,所述动子除第一、第二动子外也可以包括与第三、第四动子。由于更多的动子与第一、第二动子原理相同,在本具体实施例中只以定子包括第一、第二导磁部对应所述一个第一、第二动子为例进行详细说明。所述刹车单元同样可以包括一个或者是多个,比如可以在一个只包括定子和第一、第二动子的电动机中并列设置多个刹车单元,也可以在当电动机包括更多动子,比如:第三、第四动子时,设置与对应第一、第二动子的刹车单元同样结构的刹车单元。
需要说明的是,所述电动机不仅可以是旋转电动机,也可以是直线电动机,其原理相同,在此不再重复。
所述定子结构的相关描述参见具体实施例一、二中所述,在此不再重复赘述。
实施例四、
本发明第四方面提供一种如实施例二所述的电机或实施例三所述的电动机的控制设备,所述控制设备,用于分配电流输入端的电流给所述多相绕组, 以分别控制所述第一导磁部和所述第二导磁部。所述多相绕组电连接电源输出端,通过耦合的控制设备的控制,分配电流输出端输出的电流给多相绕组,又由于多相绕组包括形成在第一导磁部和第二导磁部上的多个共同绕组,因此通过控制各个多相共同绕组通过的电流,从而可以分别控制所述第一导磁部和所述第二导磁部,从而达到对两个动子分别控制的目的。所述控制设备可以任意设置分配电流输出端的电流给各个绕组,或者根据电机中的发电机或者电动机需要实现的目的,预先计算好分配给各个多相绕组的电流。
图11A-11B为本发明实施例提供的一种控制设备的结构框图。
如图11A所示,所述控制设备30可以用于控制电机40或者电动机50,其包括用于分配电流输入端的电流给所述多相绕组的控制装置31,所述控制装置31根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获取所述至少一个第一导磁部和所述至少一个第二导磁部上的实际绕组通过的电流和所述各个多相绕组通过电流的关系式,从而获取所述多相绕组通过的电流值。
如图11B所示,所述控制装置31包括:存储单元311、输入单元312、处理器313。
所述存储单元311,用于所述存储单元,用于存储根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获得的所述至少一个第一导磁部和所述至少一个第二导磁部上的实际绕组需要通过的电流和所述各个多相绕组通过电流的关系式;
需要说明的是,所述存储单元包括可以用于存储软件或者其它指令的任何装置,例如包括但不限于,硬盘、光盘、软盘、DVD(数字多功能光盘)、CD(光盘)、记忆棒、闪存、ROM(只读存储器)、RAM(随机存取存储器)、DROM(动态随机存取存储器)、PROM(可编程ROM)、EEPROM(扩展可擦除PROM),和/或其他类似的计算机可读介质。
所述输入单元312,用于输入所述第一动子和所述第二动子需要输出的扭矩,发送给所述处理器。所述输入单元可以是按键、触摸屏等等。
所述处理器313包括:第一计算单元3131、第二计算单元3132;
所述第一计算单元3131,用于根据收到的所述第一动子和所述第二动子需要输出的扭矩计算所述第一导磁部和所述第二导磁部上实际绕组通过的电流值,并将所述电流值发送给所述第二计算单元;具体可以通过现有计算方法,即公式:Tau=3/2Pn*∮f*iq(其中,Tau代表力矩,Pn代表极对数,∮f代表磁链,iq代表电流)。
所述第二计算单元3132,用于根据所述第一导磁部和所述第二导磁部上实际绕组通过的电流值,以及所述至少一个第一导磁部和所述至少一个第二导磁部上的实际绕组需要通过的电流和所述各个多相绕组通过电流的关系式,获取所述各个多相绕组的电流。
所述处理器可以包括但不限于:CPU、PLC
需要说明的是,除所述装置外,为实现所述电机或者电动机的目的,所述控制设备还可以包括其他装置、单元、电路、元件等等,比如:实施例三中所述的蓄电装置的控制单元,因为与本发明的实施例的发明点不相关,在此不详细描述。
需要说明的是,所述多相绕组输入的电流可以为任意值。除此之外,优选的,通过上面所述,第一导磁部和第二导磁部上实际通过的电流包括各个多相绕组的电流的组合,根据上面所述的第一导磁部和第二导磁部排列的不同,以及第一导磁部和第二导磁部上共同绕组设置方式的不同,可以对应列出第一和第二导磁部上实际绕组通过的电流和多相绕组通过的电流的关系式,而第一导磁部和第二导磁部上实际通过的电流是可以作为已知条件通过各种方式获知的,因此结合实际电流和关系式就能求出需要分配给各个多相绕组的电流大小。
为方便理解,下面以每个第一导磁部和每个二导磁部彼此间隔排列,且每个相邻接的第一导磁部和第二导磁部的抵接边设置共同绕组,详细说明如何分配电流输出端的电流。设各个共同绕组输入的电流为L(1),L(2),L(3),......, L(2K);其中,设控制第一导磁部A1-An的电流为U(1),U(2),U(3),......,U(K),设控制第二导磁部B1-Bm的电流为V(1),V(2),V(3),......,V(M),根据上面段所述的磁路关系可得:
U(1)=L(1)+L(2),U(2)=L(3)+L(4),U(3)=L(5)+L(6),......,U(K)=L(2K-1)+L(2K)
V(1)=V(2)+V(3),V(2)=V(4)+V(5),V(3)=V(6)+V(4),......,V(K)=L(2K)+L(1)
由上述公式可得,由于各个导磁部对应的产生磁场的电流是由不同的共同绕组通过的电流组合而成,因此可以对第一导磁部和第二导磁部分别进行控制。
或者在不改变电流U(1),U(2),U(3),......,U(K)的情况下,可改变电流V(1),V(2),V(3),......,V(K),从而实现对第一导磁部对应的动子转矩不变的情况下对第二导磁部所对应的动子的控制;同样的道理,在不改变内动子电流V(1),V(2),V(3),......,V(K)的情况下,可改变外动子电流U(1),U(2),U(3),......,U(K),从而实现第二导磁部对应的动子转矩不变的情况下对第一导磁部所对应的动子的控制。
所述定子上的各个多相共同绕组耦合控制设备,所述控制设备被配置为发射控制信号,从而控制将从电源输出端输出的电流分配给各相绕组,从而控制所述各相绕组产生的磁场的强度。由于每个相邻的第一、第二导磁部上除二者的共同绕组外,还包括两个导磁部分别与另外一侧邻接的导磁部的共同绕组,因此,通过改变另外两个共同绕组通过的电流的大小,就可以控制相邻的第一导磁部和第二导磁部的磁通非同步变化,同理,可以控制整个第一、第二导磁部的磁通非同步变化,因此可以实现通过一个相对小体积和质量的定子对多个动子灵活控制的目的。
为方便理解第一、第二导磁部如何实现共用多相绕组进而实现分别控制,下面以1个第一导磁部和1个第二导磁部为实例进一步详细说明。
图6为本发明实施例提供的一种优选的旋转电机的俯视结构示意图,其中每个第一导磁部和第二导磁部彼此间隔排列,且每个相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组。
如图6所示,所述第一导磁部分别包括A1-A6,与第一导磁部间隔设置的 第二导磁部分别包括B1-B6,所述第一导磁部和第二导磁部的共接边设置共同的绕组,在本具体实施例中,设计每个绕组与其相对的绕组为同一相绕组,因此该定子共包括6相绕组L1、L2、L3、L4、L5、L6;根据电磁反应原理,第一导磁部A1的磁通包括L1和L2产生的磁场的叠加作用,因此这里将L1+L2统称为一相电流U1,同理,相邻的第二导磁部B1的磁通包括L2和L3产生的磁场的叠加作用,这里将L2+L3统称为一相电流V1,当L1和L3通过控制设备分别控制通过不同强度的电流时,从而可以实现对第一导磁部A1与第二导磁部B1的分别控制。(同理可得:L3+L4=U2、L4+L5=V2、L5+L6=U3、L6+L1=V3);因此该电机的绕组实际上可以归结为U1、U2、U3、V1、V2、V3,其中,U1、U2、U3控制第一导磁部A1-A6,V1、V2、V3控制第二导磁部B1-B6。
通过上面的分析,由于第一导磁部对应U1、U2、U3,第二导磁部对应V1、V2、V3,可以通过设计从而实现本电机分别控制的要求,比如:设计第一导磁部需要的力矩为10NM,第二导磁部需要的力矩为5NM,根据上面所述的公式可推导出,第一导磁部和第二导磁部各需要的三相电流U1、U2、U3、V1、V2、V3的值。又由于我们知道,L1+L2=U1、L2+L3=V1、L3+L4=U2、L4+L5=V2、L5+L6=U3、L6+L1=V3,因此通过现有的各种数学计算方法可以求出L1、L2、L3、L4、L5、L6的值或者各种值的组合。
比如:如图6中所示的电机的结构,可以通过下面的矩阵方程求解。
X=[L1,L2,L3,L4,L5,L6]'
Y=[U1,V1,U2,V2,U3,V3]'
根据L1+L2=U1、L2+L3=V1、L3+L4=U2、L4+L5=V2、L5+L6=U3、L6+L1=V3,推导出6*6的矩阵M如下:
Figure PCTCN2017111163-appb-000001
设Mp为M在X中的伪逆矩阵,则得出X=Mp*Y,根据矩阵M推导出Mp如 下,进而可以求出X,即L1,L2,L3,L4,L5,L6的值。
Figure PCTCN2017111163-appb-000002
通过上面的方程求解,可以获得绕组L1-L6的组合解。相关的解方程的方法属于现有技术,可以根据需要采用各种数学方法求解,在此不再详细赘述。
需要说明的是,本发明的实施例电流分配的方式并不限于每个第一导磁部和每个二导磁部彼此间隔排列,且每个相邻接的第一导磁部和第二导磁部的抵接边设置共同绕组的形式。任何如上面所述的第一导磁部和第二导磁部的排列以及绕组设置的方式,都可以根据实际情况,列出从电源输出端输入到各相绕组的电流,与各个导磁部上对应的实际的绕组通过的电流的关系式,而第一导磁部和第二导磁部上实际通过的电流是可以作为已知条件通过各种方式获知的,因此结合实际电流和关系式,就可以计算出需要分配给各个多相绕组的电流大小,由于各种计算方法原理相同,在此不再对各种方式一一进行赘述。
实施例五、
本发明实施例四还提供一种设备,所述设备包括如实施例二所述的电机。
所述设备可以是包括所述电机的各种设备,只要是需要通过多动子分别控制或者同步增大扭矩控制的,都属于本发明保护的范围内。
所述电机结构参见具体实施例二中的描述,在此不再重复赘述。
实施例六、
本发明实施例五还提供一种设备,所述设备包括如实施例三所述的电动机。
所述设备可以是包括所述电动机的各种设备。由于采用实施例三所述的电动机可以在一个小的体积和质量的电动机内实现具有刹车的功能,而电动机直 接驱动的机器人一方面需要刹车功能,一方面需要电动机具有小的体积和质量,因此在本具体实施例中优选电动机直接驱动的机器人。
所述电动机结构参见具体实施例三中的描述,在此不再重复赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
本文术语中“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如:A和/或B,可以表示单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明的权利要求书和说明书及上述附图中的术语“第一”、“第二”、“第三”等等(如果存在)是用来区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如:包括了一系列步骤或者模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或者模块,而是包括没有清楚地列出的或对于这些过程、方法、系统、产品或设备固有的其它步骤或模块。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或者两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在上述实施例中,所述内、外、上、下只是代表相对的方位,并不一定代表实际字面上的含义。
本具体实施例中所述的固定连接包括但不限于:通过粘接,或者通过卡接、螺钉等可拆卸的方式固定连接。
需要说明的是,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的结构并不一定是本发明所必须的。
以上对本发明实施例所提供的定子、电机、电动机及控制设备、设备进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员,依据本发明的思想,在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (14)

  1. 一种定子,包括定子芯、设置在定子芯上的多相绕组,其特征在于,所述定子芯包括:至少一个第一导磁部、至少一个第二导磁部;
    所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组。
  2. 根据权利要求1所述的定子,其特征在于,所述第一导磁部和所述第二导磁部间隔排列,包括:
    每一个所述第一导磁部和每一个所述第二导磁部彼此间隔排列;或
    每隔多个所述第一导磁部或者多个所述第二导磁部间隔排列。
  3. 根据权利要求1所述的定子,其特征在于,所述至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组,包括:
    每个相邻接的所述第一导磁部和第二导磁部的抵接边设置共同的绕组;或
    部分相邻接的所述第一导磁部和第二导磁部的抵接边设置共同的绕组。
  4. 根据权利要求1或2或3所述的定子,其特征在于,根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获得所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式。
  5. 根据权利要求4所述的定子,其特征在于,当每一个所述第一导磁部和每一个所述第二导磁部彼此间隔排列,且每个相邻接的所述第一导磁部和第二导磁部的抵接边设置共同的绕组,所述获得所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式包括:
    设各个共同绕组输入的电流为L(1),L(2),L(3)..........L(2K);控制所述第一导磁部的电流为U(1),U(2),U(3).....U(K),控制所述第二导磁部的电流为V(1),V(2),V(3).....V(K);形成如下关系式:
    U(1)=L(1)+L(2),U(2)=L(3)+L(4),......,U(K)=L(2K-1)+L(2K)
    V(1)=V(2)+V(3),V(2)=V(4)+V(5),......,V(K)=L(2K)+L(1)。
  6. 根据权利要求1或2或3所述的定子,其特征在于,所述第一导磁部和所述第二导磁部为相互倒置的第一U形结构和第二U形结构,所述第一U形结构和所述第二U形结构的相抵接的凸边为所述抵接边。
  7. 一种电机,其特征在于,包括至少一个权利要求1-6任意一项所述的定子,所述电机还包括:至少一个第一动子、至少一个第二动子;
    所述第一动子和所述第二动子分别设置在所述定子的两侧,所述第一动子对应所述至少一个第一导磁部,所述第二动子对应所述至少一个第二导磁部。
  8. 根据权利要求7所述的电机,其特征在于,所述第一动子和所述第二动子共接同一输出端,以增加输出的扭矩。
  9. 一种电动机,其特征在于:所述电动机包括至少一个权利要求1-6任意一相所述的定子,所述电动机还包括:至少一个第一动子、至少一个第二动子、至少一个刹车单元;
    所述第一动子和第二动子分别设置在所述定子的两侧,所述第一动子对应所述至少一个第一导磁部,所述第二动子对应所述至少一个第二导磁部;
    所述第一动子驱动所述刹车单元完成对所述第二动子的制动。
  10. 根据权利要求9所述的电动机,其特征在于,所述电动机还包括至少一蓄电装置及其控制单元,所述蓄电装置通过所述控制单元的控制电连接所述多相绕组。
  11. 一种权利要求7-10任意一项所述的电机或电动机的控制设备,其特征在于,包括用于控制输入所述多相绕组的电流的控制装置,根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的绕组的方式,获得的所述至少一个第一导磁部和所述至少一个第二导磁部上实际包括的绕组通过的电流和所述各个多相绕组通过电流的关系式,从而获取所述各个多相绕组的电流。
  12. 根据权利要求11所述的电机或电动机的控制设备,其特征在于,所述控制装置包括:存储单元、输入单元、处理器;
    所述存储单元,用于存储根据所述第一导磁部和所述第二导磁部间隔排列,至少部分相邻接的所述第一导磁部和所述第二导磁部的抵接边设置共同的 绕组的方式,获得的所述至少一个第一导磁部和所述至少一个第二导磁部上的实际绕组通过的电流和所述各个多相绕组通过电流的关系式;
    所述输入单元,用于输入所述第一动子和所述第二动子需要输出的扭矩,发送给所述处理器;
    所述处理器包括:第一计算单元、第二计算单元;
    所述第一计算单元,用于根据收到的所述第一动子和所述第二动子需要输出的扭矩计算所述第一导磁部和所述第二导磁部上实际绕组通过的电流值,并将所述电流值发送给所述第二计算单元;
    所述第二计算单元,用于根据所述第一导磁部和所述第二导磁部上实际绕组通过的电流值,以及所述存储单元存储的关系式,获取所述各个多相绕组的电流值。
  13. 一种设备,其特征在于,所述设备包括权利要求7或8所述的电机。
  14. 一种设备,其特征在于,所述设备包括权利要求9或10所述的电动机,所述设备包括所述电动机直接驱动的机器人。
PCT/CN2017/111163 2016-11-16 2017-11-15 一种定子、电机、电动机及控制设备、设备 WO2018090935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611008588.0A CN106887908B (zh) 2016-11-16 2016-11-16 一种定子、电机、电动机及控制设备、设备
CN201611008588.0 2016-11-16

Publications (1)

Publication Number Publication Date
WO2018090935A1 true WO2018090935A1 (zh) 2018-05-24

Family

ID=59175647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111163 WO2018090935A1 (zh) 2016-11-16 2017-11-15 一种定子、电机、电动机及控制设备、设备

Country Status (2)

Country Link
CN (1) CN106887908B (zh)
WO (1) WO2018090935A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887908B (zh) * 2016-11-16 2019-03-29 南方电机科技有限公司 一种定子、电机、电动机及控制设备、设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075043A (zh) * 2011-01-23 2011-05-25 浙江大学 多相环形绕组双转子盘式感应电机
WO2011131416A2 (en) * 2010-04-23 2011-10-27 Rolls-Royce Plc Electrical machine
CN102684375A (zh) * 2011-03-18 2012-09-19 精工爱普生株式会社 电动机、机器人及制动装置
CN203537200U (zh) * 2013-09-27 2014-04-09 江苏大学 磁路串联型双定子圆筒型直线电机
CN106887908A (zh) * 2016-11-16 2017-06-23 南方电机科技有限公司 一种定子、电机、电动机及控制设备、设备
CN206712634U (zh) * 2016-11-16 2017-12-05 南方电机科技有限公司 一种定子、电机、电动机及控制设备、机器人设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657820B2 (ja) * 2005-06-10 2011-03-23 三菱電機株式会社 環状巻線電動機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131416A2 (en) * 2010-04-23 2011-10-27 Rolls-Royce Plc Electrical machine
CN102075043A (zh) * 2011-01-23 2011-05-25 浙江大学 多相环形绕组双转子盘式感应电机
CN102684375A (zh) * 2011-03-18 2012-09-19 精工爱普生株式会社 电动机、机器人及制动装置
CN203537200U (zh) * 2013-09-27 2014-04-09 江苏大学 磁路串联型双定子圆筒型直线电机
CN106887908A (zh) * 2016-11-16 2017-06-23 南方电机科技有限公司 一种定子、电机、电动机及控制设备、设备
CN206712634U (zh) * 2016-11-16 2017-12-05 南方电机科技有限公司 一种定子、电机、电动机及控制设备、机器人设备

Also Published As

Publication number Publication date
CN106887908A (zh) 2017-06-23
CN106887908B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
JP4747184B2 (ja) 電動機
Gieras Permanent magnet motor technology: design and applications
Poovizhi et al. Investigation of mathematical modelling of brushless dc motor (BLDC) drives by using MATLAB-SIMULINK
JP5892628B2 (ja) ベアリングレスモータ
JP2007116837A (ja) 回転電機及びそれを備えるハイブリッド駆動装置
JP6664182B2 (ja) 仮想ロータを備えたリラクタンスモーター
CN109417333A (zh) 电机系统
CN108494202A (zh) 一种可磁化重构的机器人关节电机
WO2018090935A1 (zh) 一种定子、电机、电动机及控制设备、设备
JP4145181B2 (ja) 静電アクチュエータおよび変位方法
Benţia et al. On the control of a rotary-linear switched reluctance motor
Lee et al. Newly structured double excited two-degree-of-freedom motor for security camera
Tao et al. Design and analysis of a novel spherical motor based on the principle of reluctance
JP2005065467A (ja) 静電アクチュエータ及びその制御方法
RU2579443C2 (ru) Соосный магнитный редуктор-мультипликатор узякова
JP2016012950A (ja) 永久磁石同期機及びこの永久磁石同期機を用いた圧縮機及び空気調和機
CN206712634U (zh) 一种定子、电机、电动机及控制设备、机器人设备
Ozgenel Increasing power and torque capability of brushless direct current motor by employing 150-degree conduction mode controlled three-phase voltage source inverter
Sekine et al. Investigation of torque and suspension force characteristic in a reluctance type bearingless vernier motor
JPS6155708A (ja) リニアモ−タ
Challa Comparative study of axial flux permanent magnet brushless DC motor operating with the winding connected in single-phase and two-phase system
Li et al. Novel microstepping control methods for electromagnetic micromotors with star-connected winding
Li et al. Magnetic field calculation and dynamics simulation of a permanent magnetic hybrid driven 3-dof motor
RU178103U1 (ru) Бесконтактный биротативный электромеханический преобразователь
US11843293B2 (en) Multi-rotor electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870722

Country of ref document: EP

Kind code of ref document: A1