WO2018090743A1 - 基于贪心算法的换电站充电方法及系统 - Google Patents

基于贪心算法的换电站充电方法及系统 Download PDF

Info

Publication number
WO2018090743A1
WO2018090743A1 PCT/CN2017/104463 CN2017104463W WO2018090743A1 WO 2018090743 A1 WO2018090743 A1 WO 2018090743A1 CN 2017104463 W CN2017104463 W CN 2017104463W WO 2018090743 A1 WO2018090743 A1 WO 2018090743A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
charged
batteries
charging
Prior art date
Application number
PCT/CN2017/104463
Other languages
English (en)
French (fr)
Inventor
陈炯
强金星
赖建文
张建兴
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Publication of WO2018090743A1 publication Critical patent/WO2018090743A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the field of charging and replacing electric vehicles, and particularly relates to a method and system for charging a power station based on a greedy algorithm.
  • An important evaluation indicator of the service capacity of an electric vehicle to change the power station is the average waiting time and total waiting time of the electric vehicle.
  • the length of the waiting time depends mainly on the replacement of the battery in the shortest time of the substation, which is related to the battery capacity, battery charging rate, charger power and grid rated power.
  • the average power distribution of the rated power of the grid can be used to charge each battery to achieve the best efficiency.
  • the actual exchange of vehicles is generally random, and there may be tidal demand, such as the need for tidal power exchange after work every day. This is because if the average allocated charging strategy is used again, the rated power of the power station itself cannot be fully utilized, and the waiting time of the vehicle will also become longer.
  • the power station is equipped with 5 batteries, each battery is 50kW, and is charged at 0.4C power.
  • the power change time is 5 minutes.
  • 5 batteries are available at a certain time, and immediately after 5 vehicles are replaced, after 5 minutes, 5 batteries are replaced.
  • the battery replaced in the first block needs to be close to 2 hours to be fully charged.
  • the internal power station has no service capacity, and if there is a change of vehicles, it can only wait.
  • the present invention provides a method and system for charging a power station based on a greedy algorithm, which realizes that the battery of the power station can be replaced at the fastest speed when the battery of the power station is to be charged, Reduce the waiting time for electric vehicles to replace batteries.
  • One aspect of the present invention provides a method for charging a power station based on a greedy algorithm, comprising the following steps:
  • Step A1 detecting the remaining power of all the batteries in the power station, screening the batteries to be charged, and sorting the batteries to be charged from high to low according to the remaining power;
  • step A2 the battery is sorted according to step A1, and the battery to be charged is charged by sequentially allocating the maximum charging rate.
  • the battery to be recharged is selected in step A1, specifically: selecting a battery that is not fully charged in all the batteries in the power station as a battery to be charged, or a battery having a remaining power less than a preset threshold K as a battery to be charged.
  • step A2 is specifically:
  • Step A21 sequentially, for each battery to be charged, sorted, whether the current grid available power Pg is greater than the product Rc of the rated battery capacity Bc and the maximum charging rate, and if so, step A22 is performed, and if not, step A23 is performed;
  • step A23 the charging magnification corresponding to the battery to be charged is set to Pg/Bc.
  • the remaining power is detected for all the batteries in the power station, and may be periodically detected by using a sampling period of period T, or after each battery replacement, or after any battery reaches a full power state. Detection.
  • step 1 the detection of the remaining power of all the batteries in the power station is detected in real time.
  • step 1 the method for detecting the remaining power of all the batteries in the power station is:
  • Step A11 initially detecting and storing the remaining power of all the batteries in the power station
  • step A12 the remaining power of the battery to be charged is detected in real time and the above stored information is updated.
  • the trigger condition for detecting the remaining power of all the batteries in the power station in step 1 is that the new battery is added to the power station charging system.
  • Step H1 the battery with the largest remaining capacity is selected from all the batteries in the power station, and it is determined whether the remaining battery capacity is greater than the set threshold Q, if yes, step H2 is performed, otherwise step H3 is performed;
  • Step H2 selecting the battery to perform a power-changing action
  • step H3 it waits and executes step H1 in accordance with the set period.
  • the initial current grid available power is the power grid rated power.
  • the preset threshold K has a value range of [80%, 98%].
  • the set threshold Q has a value range of [80%, 98%].
  • a greedy algorithm-based substation charging system comprising a battery charging management system, the battery charging system comprising a charger flexible configuration module, the module being configured to calculate each to-be-charged according to the greedy algorithm-based power exchange charging method
  • the charging rate of the battery is flexibly configured for the output power of the charger.
  • the charging management of the battery to be recharged in the power station is charged at the maximum allowable charging rate, and the maximum service capacity of the power station is utilized, and the battery of the power station is filled with the battery at the fastest speed for electric power. Replacement of the car battery to reduce the waiting time for the replacement of the battery in the electric car; moreover, make full use of the power rating of the power station.
  • FIG. 1 is a schematic flow chart of a method for charging a substation based on a greedy algorithm according to the present invention.
  • Greedy algorithms also known as greedy algorithms
  • Greedy algorithms mean that when solving a problem, always make the best choice at the moment. That is to say, instead of considering the overall optimality, what he has done is only a local optimal solution in a certain sense.
  • the invention In the charging management of the battery to be recharged in the power station, the invention is charged at the maximum allowable charging rate, and the maximum service capacity of the power station is utilized, and a battery is filled at the fastest speed to be used for the electric vehicle battery. Replacement to reduce the waiting time for replacing batteries in electric vehicles.
  • a method for charging a power station based on a greedy algorithm according to the present invention includes the following steps:
  • Step A1 detecting the remaining power of all the batteries in the power station, screening the batteries to be charged, and sorting the batteries to be charged from high to low according to the remaining power;
  • the battery to be recharged is selected in the step, specifically: selecting a battery that is not fully charged in all the batteries in the power station as a battery to be charged, or the remaining power is less than a preset threshold K battery As a battery to be charged.
  • step A2 the battery is sorted according to step A1, and the battery to be charged is charged by sequentially allocating the maximum charging rate.
  • This step can be further refined to:
  • Step A21 sequentially, for each battery to be charged, sorted, whether the current grid available power Pg is greater than the product Rc of the rated battery capacity Bc and the maximum charging rate, and if so, step A22 is performed, and if not, step A23 is performed;
  • the initial available power of the current grid is the rated power of the power grid.
  • step A23 the charging magnification corresponding to the battery to be charged is set to Pg/Bc.
  • Step H2 selecting the battery to perform a power-changing action
  • step H3 it waits and executes step H1 in accordance with the set period.
  • the detection of the remaining power of all the batteries in the power station in step 1 is performed, and the corresponding steps of A1 and A2 are sequentially performed.
  • the sampling period T is set, and after each sampling period is entered, the remaining power of all the batteries in the power station is detected in step 1, and the corresponding steps of A1 and A2 are sequentially performed.
  • the full power state is that the remaining power is 100%, or the remaining power reaches a preset value.
  • step 1 the remaining power is detected for all the batteries in the power station, and the corresponding steps of A1 and A2 are sequentially performed.
  • the remaining power is detected and stored in all the batteries in the power station; then the remaining power of the battery to be charged is detected in real time and the above stored information is updated.
  • the remaining power is detected by all the batteries in the power station, and stored in the storage unit; then, in the real-time detection mode, the remaining power is detected in the power exchange in the power station in step 1, and is high to low. Sorting is performed, and when the sorting state of the battery to be charged changes, the corresponding step of step A2 is performed.
  • the present invention is based on the above method, and designs a power exchange charging system based on a greedy algorithm, comprising a battery charging management system, the battery charging system comprising a charger flexible configuration module, the module being configured to be based on the above-mentioned greedy algorithm based power station
  • the charging method calculates the charging magnification of each battery to be charged, and flexibly configures the output power of the charger to realize timely deployment of the charging rate of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种基于贪心算法的换电站充电方法及系统,包括步骤A1,对换电站内所有电池进行剩余电量的检测,筛选待充电池,并依据剩余电量将所述待充电池从高到低进行排序;步骤A2,依照步骤A1对所述电池的排序,顺次分配最大充电倍率对所述电池进行充电。实现了换电站电池待充状态下以最快的速度提供可供换电的电池,以减少电动汽车更换电池的等待时间。

Description

基于贪心算法的换电站充电方法及系统 技术领域
本发明涉及电动汽车充换电领域,具体涉及一种基于贪心算法的换电站充电方法及系统。
背景技术
电动汽车换电站的服务能力的一个重要评价指标是换电车辆的平均等待时间和总等待时间。等待时间的长度主要取决于换电站最短时间内能提供可供更换的电池,这与电池容量、电池充电倍率、充电机功率和电网额定功率相关。
换电车辆在时间轴上均匀分布到来时,采用平均分配电网额定功率给每块电池充电就能达到效率最优。
然而实际中换电车辆一般是随机到来的,而且可能有潮汐性需求出现,如在每天下班后出现潮汐性换电需求。这是如果再用平均分配的充电策略,换电站本身的额定功率不能得到充分利用,车辆的等待时间也会变长。
举例说明该问题:假设换电站配5块电池,每块电池50kW,以0.4C功率充电,电网额定功率为50*0.4*5=100kW。换电时间为5分钟。假设某时刻5块电池都可用,紧接有5辆换电车辆到来,则25分钟后,5块电池换完,第1块换下的电池还需要接近2个小时才能充满,这2个小时内换电站无服务能力,如果有换电车辆到来只能等待。
发明内容
为了解决现有技术中的上述问题,本发明提出了一种基于贪心算法的换电站充电方法及系统,实现了换电站电池待充状态下以最快的速度提供可供换电的电池,以减少电动汽车更换电池的等待时间。
本发明一方面提出了一种基于贪心算法的换电站充电方法,包括以下步骤:
步骤A1,对换电站内所有电池进行剩余电量的检测,筛选待充电池,并依据剩余电量将所述待充电池从高到低进行排序;
步骤A2,依照步骤A1对所述电池的排序,顺次分配最大充电倍率对所述待充电池进行充电。
优选的,步骤A1中所述筛选待充电池,具体为:选择换电站内所有电池中非满电状态的电池作为待充电池,或剩余电量小于预设阈值K电池作为待充电池。
优选的,步骤A2具体为:
步骤A21,顺次对上述排序的每块待充电池,判断当前电网可用功率Pg是否大于额定电池容量Bc与最大充电倍率的乘积Rc,若是,则执行步骤A22,若否,则执行步骤A23;
步骤A22,将对应待充电池的充电倍率设置为最大充电倍率Rc,令Pg=Pg-Rc*Bc,得到更新后的当前电网可用功率Pg,执行步骤A21;
步骤A23,将对应待充电池的充电倍率设置为Pg/Bc。
优选的,步骤1中对换电站内所有电池进行剩余电量的检测,可以采用周期为T的采样周期进行周期性检测,或每次更换电池后进行检测,或任一电池达到满电状态后进行检测。
优选的,步骤1中对换电站内所有电池进行剩余电量的检测为实时检测。
优选的,步骤1中对换电站内所有电池进行剩余电量的检测的方法为:
步骤A11,初始对换电站内所有电池进行剩余电量检测,并存储;
步骤A12,实时检测待充电池的剩余电量并更新上述存储信息。
优选的,步骤1中对换电站内所有电池进行剩余电量的检测的触发条件为新的电池加入换电站充电系统。
优选的,当检测到有换电需求的车辆停滞在换电位置时,执行以下步骤:
步骤H1,从换电站内所有电池中筛选出剩余电量最大的电池,并判断该电池的剩余电量是否大于设定阈值Q,若是则执行步骤H2,若否则执行步骤H3;
步骤H2,选择该电池进行换电动作;
步骤H3,等待并按照设定的周期执行步骤H1。
优选的,初始的当前电网可用功率为换电站电网额定功率。
优选的,预设阈值K的取值范围为[80%,98%]。
优选的,设定阈值Q的取值范围为[80%,98%]。
一种基于贪心算法的换电站充电系统,包括电池充电管理系统,所述电池充电系统包括充电机柔性配置模块,该模块被配置为依据上述基于贪心算法的换电站充电方法计算所得的各待充电池的充电倍率,对充电机输出功率进行柔性配置。
本发明对换电站中待充电池的充电管理上,均以最大允许充电倍率进行充电,发挥换电站最大服务能力,实现了换电站电池待充状态下以最快的速度充满一块电池用于电动汽车电池的更换,以减少电动汽车更换电池的等待时间;而且,充分利用换电站电网额定功率。
附图说明
图1是本发明基于贪心算法的换电站充电方法流程示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明充分融入了贪心算法的设计理念。贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。本发明在对换电站中待充电池的充电管理上,均以最大允许充电倍率进行充电,发挥换电站最大服务能力,实现了待充状态下以最快的速度充满一块电池用于电动汽车电池的更换,以减少电动汽车更换电池的等待时间。
本发明的一种基于贪心算法的换电站充电方法,如图1所示,包括以下步骤:
步骤A1,对换电站内所有电池进行剩余电量的检测,筛选待充电池,并依据剩余电量将所述待充电池从高到低进行排序;
该步骤中所述筛选待充电池,具体为:选择换电站内所有电池中非满电状态的电池作为待充电池,或剩余电量小于预设阈值K电池 作为待充电池。其中预设阈值K的取值范围为[80%,98%],本实施例优选K=95%。
步骤A2,依照步骤A1对所述电池的排序,顺次分配最大充电倍率对所述待充电池进行充电。
该步骤可以进一步细化为:
步骤A21,顺次对上述排序的每块待充电池,判断当前电网可用功率Pg是否大于额定电池容量Bc与最大充电倍率的乘积Rc,若是,则执行步骤A22,若否,则执行步骤A23;其中,初始的当前电网可用功率为换电站电网额定功率。
步骤A22,将对应待充电池的充电倍率设置为最大充电倍率Rc,令Pg=Pg-Rc*Bc,得到更新后的当前电网可用功率Pg,执行步骤A21;
步骤A23,将对应待充电池的充电倍率设置为Pg/Bc。
本实施例中,当检测到有换电需求的车辆停滞在换电位置时,执行以下步骤:
步骤H1,从换电站内所有电池中筛选出剩余电量最大的电池,并判断该电池的剩余电量是否大于设定阈值Q,若是则执行步骤H2,若否则执行步骤H3;其中预设阈值Q的取值范围为[80%,98%],本实施例优选Q=95%。
步骤H2,选择该电池进行换电动作;
步骤H3,等待并按照设定的周期执行步骤H1。
本实施例中,新的电池加入换电站充电系统时,执行步骤1中对换电站内所有电池按照剩余电量的检测,并顺次执行A1、A2相应步骤。
关于步骤A1、A2的触发,有以下几种方案:
方案一:
设定采样周期T,并在进入每个采样周期后进行步骤1中对换电站内所有电池的剩余电量的检测,并顺次执行A1、A2相应步骤。
方案二:
每次更换电池后进行步骤1中对换电站内所有电池的剩余电量的检测,并顺次执行A1、A2相应步骤。
方案三:
任一电池达到满电状态后进行步骤1中对换电站内所有电池的剩余电量的检测,并顺次执行A1、A2相应步骤。所述的满电状态为剩余电量为100%,或者剩余电量达到预设值。
方案四:
通过实时检测的方式,在步骤1中对换电站内所有电池进行剩余电量的检测,并顺次执行A1、A2相应步骤。
初始对换电站内所有电池进行剩余电量检测,并存储;然后实时检测待充电池的剩余电量并更新上述存储信息。
具体为:初始对换电站内所有电池进行剩余电量检测,并存储在存储单元;然后通过实时检测的方式,在步骤1中对换电站内待充电池进行剩余电量的检测,并从高到低进行排序,当待充电池的排序状态发生变化时,执行步骤A2相应步骤。
另外,本发明基于上述方法,设计了基于贪心算法的换电站充电系统,包括电池充电管理系统,所述电池充电系统包括充电机柔性配置模块,该模块被配置为依据上述基于贪心算法的换电站充电方法计算所得的各待充电池的充电倍率,对充电机输出功率进行柔性配置,实现对电池充电倍率的及时调配。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (12)

  1. 一种基于贪心算法的换电站充电方法,其特征在于,包括以下步骤:
    步骤A1,对换电站内所有电池进行剩余电量的检测,筛选待充电池,并依据剩余电量将所述待充电池从高到低进行排序;
    步骤A2,依照步骤A1对所述电池的排序,顺次分配最大充电倍率对所述待充电池进行充电。
  2. 根据权利要求1所述的方法,其特征在于,步骤A1中所述筛选待充电池,具体为:选择换电站内所有电池中非满电状态的电池作为待充电池,或剩余电量小于预设阈值K电池作为待充电池。
  3. 根据权利要求2所述的方法,其特征在于,步骤A2具体为:
    步骤A21,顺次对上述排序的每块待充电池,判断当前电网可用功率Pg是否大于额定电池容量Bc与最大充电倍率的乘积Rc,若是,则执行步骤A22,若否,则执行步骤A23;
    步骤A22,将对应待充电池的充电倍率设置为最大充电倍率Rc,令Pg=Pg-Rc*Bc,得到更新后的当前电网可用功率Pg,执行步骤A21;
    步骤A23,将对应待充电池的充电倍率设置为Pg/Bc。
  4. 根据权利要求3所述的方法,其特征在于,步骤1中对换电站内所有电池进行剩余电量的检测,可以采用周期为T的采样周期进行周期性检测,或每次更换电池后进行检测,或任一电池达到满电状态后进行检测。
  5. 根据权利要求3所述的方法,其特征在于,步骤1中对换电站内所有电池进行剩余电量的检测为实时检测。
  6. 根据权利要求5所述的方法,其特征在于,步骤1中对换电站内所有电池进行剩余电量的检测的方法为:
    步骤A11,初始对换电站内所有电池进行剩余电量检测,并存储;
    步骤A12,实时检测待充电池的剩余电量并更新上述存储信息。
  7. 根据权利要求1~6中任一项所述的方法,其特征在于,步骤1中对换电站内所有电池进行剩余电量的检测的触发条件为新的电池加入换电站充电系统。
  8. 根据权利要求7所述的方法,其特征在于,当检测到有换电需求的车辆停滞在换电位置时,执行以下步骤:
    步骤H1,从换电站内所有电池中筛选出剩余电量最大的电池,并判断该电池的剩余电量是否大于设定阈值Q,若是则执行步骤H2,若否则执行步骤H3;
    步骤H2,选择该电池进行换电动作;
    步骤H3,等待并按照设定的周期执行步骤H1。
  9. 根据权利要求8所述的方法,其特征在于,初始的当前电网可用功率为换电站电网额定功率。
  10. 根据权利要求8所述的方法,其特征在于,预设阈值K的取值范围为[80%,98%]。
  11. 根据权利要求8所述的方法,其特征在于,设定阈值Q的取值范围为[80%,98%]。
  12. 一种基于贪心算法的换电站充电系统,包括电池充电管理系统,其特征在于,所述电池充电系统包括充电机柔性配置模块,该模块被配置为依据权利要求1~6中任一项基于贪心算法的换电站充电方法计算所得的各待充电池的充电倍率,对充电机输出功率进行柔性配置。
PCT/CN2017/104463 2016-11-21 2017-09-29 基于贪心算法的换电站充电方法及系统 WO2018090743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016110489009 2016-11-21
CN201611048900.9A CN106926717B (zh) 2016-11-21 2016-11-21 基于贪心算法的换电站充电方法及系统

Publications (1)

Publication Number Publication Date
WO2018090743A1 true WO2018090743A1 (zh) 2018-05-24

Family

ID=59443955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104463 WO2018090743A1 (zh) 2016-11-21 2017-09-29 基于贪心算法的换电站充电方法及系统

Country Status (2)

Country Link
CN (1) CN106926717B (zh)
WO (1) WO2018090743A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106926717B (zh) * 2016-11-21 2019-09-24 蔚来汽车有限公司 基于贪心算法的换电站充电方法及系统
CN107341582A (zh) * 2017-08-09 2017-11-10 上海蔚来汽车有限公司 换电站服务能力预测方法及系统
CN109670661B (zh) * 2017-10-17 2023-08-04 蔚来(安徽)控股有限公司 用于确定换电站内的欠电电池的充电策略的方法和装置
CN110350609B (zh) * 2018-04-08 2021-05-25 北京京东乾石科技有限公司 Agv的充电管理方法及系统、设备和存储介质
CN109066752A (zh) * 2018-09-19 2018-12-21 四川大学 基于改进grasp算法的电动汽车有序充电调度方法及系统
CN109353242B (zh) * 2018-11-13 2021-11-09 国网电动汽车(山西)服务有限公司 一种智能充电桩系统实现双向有序充放电的充电算法
CN109861316B (zh) * 2018-11-27 2023-08-08 东君新能源有限公司 一种充电方法、充电模块及充电装置
CN109649349A (zh) * 2018-12-27 2019-04-19 广西特斯途汽车科技有限公司 一种电池共享系统
CN111231734B (zh) * 2020-01-16 2023-05-02 上海振华重工(集团)股份有限公司 一种agv换电控制方法及系统
CN111806284B (zh) * 2020-07-21 2021-12-07 博众精工科技股份有限公司 充换电站的智能充电方法及装置
CN112848964A (zh) * 2021-04-01 2021-05-28 焱牛科技(江苏)有限公司 一种智能化换电站的换电方法及其系统
CN113085650A (zh) * 2021-04-15 2021-07-09 深圳市万为物联科技有限公司 充换电柜峰谷电价下有序充电控制方法
CN113471559B (zh) * 2021-05-21 2023-01-06 蓝谷智慧(北京)能源科技有限公司 换电站及电池充电方法、控制装置、介质与设备
CN113422419B (zh) * 2021-08-24 2022-02-08 中国华能集团清洁能源技术研究院有限公司 换电站
CN114228556B (zh) * 2021-12-06 2023-10-03 北京海博思创科技股份有限公司 重卡的换电调度方法、装置、设备、系统及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120051459A (ko) * 2010-11-12 2012-05-22 서울메트로 교류 전력을 이용한 전기차량 충전시스템
WO2012154451A2 (en) * 2011-05-06 2012-11-15 Qualcomm Incorporated Electricity demand prediction
CN103368192A (zh) * 2012-03-30 2013-10-23 中国电力科学研究院 基于贪心策略的电池储能电站功率控制方法及其系统
CN103915869A (zh) * 2014-03-10 2014-07-09 贾英昊 一种基于移动设备的电动汽车智能充电系统及方法
CN105480110A (zh) * 2016-01-12 2016-04-13 沈阳工业大学 智能充电桩及智能充电方法
CN106033901A (zh) * 2015-03-17 2016-10-19 上海槿天新能源科技有限公司 一种移动式电动汽车充电管理系统及方法
CN106427654A (zh) * 2016-11-30 2017-02-22 郑州天迈科技股份有限公司 公交新能源纯电车充电功率动态分配方法
CN106926717A (zh) * 2016-11-21 2017-07-07 蔚来汽车有限公司 基于贪心算法的换电站充电方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005208B1 (fr) * 2013-04-30 2015-04-24 Renault Sa Procede de gestion de la temperature d'une batterie de vehicule electrique ou hybride.
KR102338460B1 (ko) * 2015-01-22 2021-12-13 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120051459A (ko) * 2010-11-12 2012-05-22 서울메트로 교류 전력을 이용한 전기차량 충전시스템
WO2012154451A2 (en) * 2011-05-06 2012-11-15 Qualcomm Incorporated Electricity demand prediction
CN103368192A (zh) * 2012-03-30 2013-10-23 中国电力科学研究院 基于贪心策略的电池储能电站功率控制方法及其系统
CN103915869A (zh) * 2014-03-10 2014-07-09 贾英昊 一种基于移动设备的电动汽车智能充电系统及方法
CN106033901A (zh) * 2015-03-17 2016-10-19 上海槿天新能源科技有限公司 一种移动式电动汽车充电管理系统及方法
CN105480110A (zh) * 2016-01-12 2016-04-13 沈阳工业大学 智能充电桩及智能充电方法
CN106926717A (zh) * 2016-11-21 2017-07-07 蔚来汽车有限公司 基于贪心算法的换电站充电方法及系统
CN106427654A (zh) * 2016-11-30 2017-02-22 郑州天迈科技股份有限公司 公交新能源纯电车充电功率动态分配方法

Also Published As

Publication number Publication date
CN106926717B (zh) 2019-09-24
CN106926717A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2018090743A1 (zh) 基于贪心算法的换电站充电方法及系统
US10048322B2 (en) Method of measuring battery pack current and correcting offsets of a current sensor
AU2018355632B2 (en) Method for charging or discharging an energy store
US9859751B2 (en) Switchable uninterruptible power supply system and battery charging method thereof
JP6157880B2 (ja) 複数電池を有する二次電池システム及び充放電電力等の配分方法
EP2629388A1 (en) Power management system
CN109416390A (zh) 电池管理装置及其方法
EP2341597A1 (en) Failure diagnosis circuit, power supply device, and failure diagnosis method
EP3532337B1 (en) System and method for a station providing grid support
CN102445665A (zh) 蓄电池组容量学习算法
JP5809934B2 (ja) 蓄電装置及び電源システム
JP2015080334A (ja) 蓄電システム
WO2014178994A2 (en) Battery state-of-charge aggregation method
JPWO2017130258A1 (ja) 管理装置、及び蓄電システム
US10300806B2 (en) Vehicle and method for controlling a battery in a vehicle
JP2010273519A (ja) 充放電制御方法
US9148025B2 (en) System and method for a rechargeable battery
JP5314626B2 (ja) 電源システム、放電制御方法および放電制御プログラム
CN105337364A (zh) 一种电动船用电源管理系统及其管理方法
US11563249B2 (en) Battery pack system including multi-battery
CN107342606B (zh) 电池组充电的控制系统和方法
CN108512262B (zh) 储能电池管理系统的均衡方法、装置、储能电池管理系统
JP2015070782A (ja) 蓄電システム
CN110323802B (zh) 一种储能系统的充电均衡装置和方法
CN110867883B (zh) 一种适应分布式储能大规模应用的配电网运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17871653

Country of ref document: EP

Kind code of ref document: A1