WO2018090692A1 - 基于空间定位的虚拟现实防晕眩系统及方法 - Google Patents

基于空间定位的虚拟现实防晕眩系统及方法 Download PDF

Info

Publication number
WO2018090692A1
WO2018090692A1 PCT/CN2017/099558 CN2017099558W WO2018090692A1 WO 2018090692 A1 WO2018090692 A1 WO 2018090692A1 CN 2017099558 W CN2017099558 W CN 2017099558W WO 2018090692 A1 WO2018090692 A1 WO 2018090692A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
positioning
processing unit
posture data
experience
Prior art date
Application number
PCT/CN2017/099558
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
北京当红齐天国际文化发展集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京当红齐天国际文化发展集团有限公司 filed Critical 北京当红齐天国际文化发展集团有限公司
Publication of WO2018090692A1 publication Critical patent/WO2018090692A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0325Detection arrangements using opto-electronic means using a plurality of light emitters or reflectors or a plurality of detectors forming a reference frame from which to derive the orientation of the object, e.g. by triangulation or on the basis of reference deformation in the picked up image
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • VR Virtual Reality
  • sensing technology to generate realistic virtual environment, through the interactive three-dimensional dynamic view of multi-source information and system simulation of physical behavior to make users Immerse yourself in the environment.
  • the virtual reality system positioning equipment of the VR venue the following requirements should be met.
  • the most serious technical defect of the virtual reality system--delay which causes the visual landscape to be discontinuous or distorted, It will cause the visual landscape to not match its actual movement.
  • Long-term use of equipment with such defects may cause participants to develop motion sickness; secondly, it can achieve precise positioning in large-scale VR venues; The long usage time can still maintain accurate positioning; in addition, it can meet multiple participants in the same space and can simultaneously share the positioning data; in addition, the overall cost of the system should be reduced as much as possible.
  • the technologies used in the prior art for implementing position tracking generally have the following types: inertial positioning, optical positioning, Lighthouse, Visual-inertial Odometry (VIO), time-of-flight ranging (Time of Flight, referred to as TOF).
  • VIO Visual-inertial Odometry
  • TOF time-of-flight ranging
  • the present invention aims to provide a low-cost, high-performance, and practical solution, which can reduce the position tracking delay and reduce the user's use in a large-area, long-time scenario. Dizziness, while meeting the simultaneous positioning of multiple participants in the same space, and the ability to interactively share positioning data between participants.
  • An absolute positioning device includes a controller, at least one positioner, and the controller is connected to the positioner;
  • the positioning data processing unit is connected to the controller of the absolute positioning device to obtain a first position and posture data of the portable device, and the positioning data processing unit is connected to the angular positioning module of the portable device to obtain the second position and posture data of the portable device. ;
  • the positioning data processing unit corrects the data deviation in the second position and posture data by using the first position and posture data by a correction algorithm, thereby acquiring an accurate position and attitude data of the portable device;
  • the positioning data processing unit is connected to the image analysis processing unit, and sends the accurate position and posture data of the portable device to the image analysis processing unit to generate a VR experience data, where the image analysis processing unit is connected to the VR experience module.
  • the image analysis processing unit sends the VR experience data to the VR experience module, and is converted into a VR experience information by the VR experience module for presentation.
  • the spatial positioning-based virtual reality anti-stun system has a plurality of carrying devices, and further includes a system server, and each positioning device processing unit of the portable device is respectively connected to the system server for each
  • the accurate position and posture data of the portable device are respectively sent to the system server, and the system server is respectively connected to the image analysis processing unit of each portable device, and the image analysis processing unit of each portable device can acquire the accurate position of the other portable device from the system server.
  • the gesture data is used to add location information of other portable devices to the VR experience data.
  • the spatial positioning-based virtual reality anti-stun system wherein the plurality of locators are disposed in a head space of a VR scene area, the locator includes a plurality of wide-angle lens locators and a plurality of a narrow-angle lens positioner, the narrow-angle lens positioner is placed at a position, a corner of the VR scene area, a position near the obstacle, such as an obstacle, and the wide-angle lens positioner is disposed at a center of the VR scene and has a relatively wide field of view. position.
  • the spatial positioning-based virtual reality anti-stun system wherein the correction algorithm comprises the following contents:
  • the positioning data processing unit of the portable device acquires the first position and posture data of the portable device by using the positioner, and acquires the second position and posture data of the portable device by using the angle positioning module;
  • the existing compensation value is retrieved to correct the newly acquired second position posture data, and the corrected accurate position and posture data is output;
  • Step 1 acquiring, by the positioning data processing unit of each carrying device, a second position and posture data and a first position and posture data of each of the portable devices;
  • Step 2 The positioning data processing unit corrects the second position and posture data by using the first position and posture data by using a correction algorithm to obtain an accurate position and posture data;
  • Step 3 The positioning data processing unit reduces the refresh frequency of the accurate position and posture data and sends the refresh frequency to the system server.
  • Step 4 acquiring the accurate position and posture data of the portable device by using the image analysis processing unit of each portable device, and acquiring position and posture data of other portable devices that reduce the refresh frequency from the system server, and generating VR experience data;
  • Step 5 The VR experience data is sent to the VR experience module by the image analysis processing unit, and the VR experience module converts the VR experience data into a VR experience information for presentation.
  • the present invention corrects the initial rotation angle by using the correction algorithm, using the first position and posture data obtained by optical tracking (positioning) with a lower refresh frequency but an accurate initial rotation angle, to easily generate an offset error, but refreshes The second position and attitude data with higher frequency, so that the positioning data can have a higher refreshing frequency, overcoming the discontinuity or distortion of the visual landscape due to the delay; and simultaneously making the positioning data have a long time when used in a large area for a long time.
  • High accuracy ensures that the VR experience information of the VR device matches the actual motion of the user.
  • multiple angle positioning module positioning and special positioner array structure to correct positioning, the problem of position information leakage in an overly complex venue environment is overcome.
  • the system server by setting the system server to provide an interaction that does not allow the location information between the devices, and performing the data compression processing of reducing the refresh frequency of the location information of the local portable device, uploading the system server, and transmitting the data to other non-local portable devices, thereby
  • the system load is reduced as much as possible.
  • the positioner and the angle positioning module used in the invention are easy to manufacture, and have lower cost compared with other precision positioning devices of the prior art, especially when laying in a large area, having a lower cost and satisfying at the same time. Requirements for VR system experience.
  • FIG. 1 is a schematic diagram of a first embodiment of a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • FIG. 2 is a schematic diagram of a second embodiment of a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • FIG. 3 is a flowchart of a method for correcting a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • FIG. 4 is a flow chart of a method for virtual reality anti-stun based on spatial positioning according to the present invention.
  • FIG. 5a is a schematic diagram of a VR scene region and a sub-interval division thereof of a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • FIG. 5b is a schematic diagram showing an arrangement of an embodiment of a sub-interval locator array in a VR scene area of a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • FIG. 5c is a schematic diagram of another embodiment of a sub-interval locator array of a VR scene area of a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • FIG. 1 is a schematic diagram of a first preferred embodiment of a virtual reality anti-stun system based on spatial positioning according to the present invention.
  • the virtual reality anti-stun system includes an absolute positioning device 1 and a carrying device 2.
  • the absolute positioning device 1 is connected to the portable device 2, and the connection manner thereof includes, but is not limited to, a wired connection, a wireless connection, and the like.
  • the carrying device 2 can be carried by a VR user.
  • the absolute positioning device 1 comprises a controller 11 and at least one positioner 12.
  • the controller 11 is connected to each locator 12, and each locator 12 can be an optical tracker capable of transmitting optical signals such as visible light, infrared light, etc. to a VR field area, the optical tracker further comprising a
  • the optical detecting device converts the optical position detection data into the first position and posture data by the optical motion capturing algorithm when the optical detecting device receives the light signal reflected by the VR user, and sends the position and posture data to the controller 11.
  • the carrying device 2 includes an angle positioning module 21, a data processing module 22, and a VR experience module 23.
  • the angle positioning module 21 can be a nine-axis positioning device, and the position and posture of the VR user is tracked by an accelerometer, a gyroscope, and a magnetometer, and the position and posture of the VR user are converted into the second position and posture data. Further preferably, the second position and attitude data may be further linearly filtered by a Kalman filter to initially filter out interference.
  • the data processing module 22 further includes a positioning data processing unit 221 and an image processor 222.
  • the positioning data processing unit 221 is respectively connected to the angle positioning module 21 and the controller 11, and the positioning data processing unit 221 can be from the angle.
  • the positioning data processing unit 221 is connected to the image analysis processing unit 222, and the positioning data processing unit 221 transmits the position and posture data of the VR user to the image analysis processing unit 222, and the image analysis processing unit 222 processes and analyzes the image data.
  • the image analysis processing unit 222 is connected to the VR experience module 23, and the image analysis processing unit 222 transmits the processed VR experience data to the VR experience module 23, and is converted into VR experience information by the VR experience module 23, including but It is not limited to content such as audio information, video information, and somatosensory information, and presents the VR experience information to the VR experience user.
  • the virtual reality anti-stun system includes an absolute positioning device 1', and a plurality of portable devices 2'.
  • System server 3 The absolute positioning device 1' is connected to each of the portable devices 2', and the portable device 2' is connected to the system server 3, respectively.
  • the connection method includes but is not limited to a wired connection, a wireless connection, and the like.
  • the carrying device 2' can be carried by a plurality of different VR users, respectively. In this embodiment, three VR users A, B, and C respectively carry three portable devices 2'A, 2'B, and 2'C as an example, but the number of carrying devices 2' in actual use is not Limited.
  • the absolute positioning device 1' includes a controller 1'1 and at least one positioner 1'2.
  • the controller 1'1 is connected to each locator 1'2, and each locator 1'2 can be an optical tracker capable of transmitting optical signals such as visible light, infrared light, etc. to a VR field area.
  • the optical tracker further includes an optical detecting device. When the optical detecting device receives the optical signal reflected by a certain VR user, the optical detecting device converts the first position and posture data by the optical motion capturing algorithm, and the position and posture data is Send back to the controller 1'1.
  • the internal structure of each of the portable devices 2'A, 2'B, and 2'C is substantially the same. The following description is made by taking 2'A as an example.
  • the portable device 2'A includes an angle positioning module 2'A1, and a data processing module 2 'A2, a VR experience module 2'A3.
  • the data processing module 2'A2 further includes a positioning data processing unit 2'A21 and an image analysis processing unit 2'A22.
  • the positioning data processing unit 2'A21 is connected to the controller 1'1 and the angle positioning module 2'A1, and the positioning data processing unit 2'A21 is capable of acquiring the first position of the VR user A from the controller 1'1.
  • the attitude data that is, the first position and posture data of the carrying device 2'A carried by the carrier device
  • the positioning data processing unit 2'A21 is also capable of acquiring the second position of the VR user A from the angle positioning module 2'A1.
  • Gesture data ie, the second positional attitude data of the carrying device 2'A carried
  • the positioning module 2'A1 can be a nine-axis sensor.
  • the second position and posture data can be further linearly filtered by a Kalman filter to initially filter out interference.
  • the positioning data processing unit 2'A21 corrects the data deviation in the second position and posture data by using the first position and posture data of the VR user A by a correction algorithm, thereby acquiring the accurate position and posture data of the VR user A (that is, carrying the same Accurate position and attitude data of the carrying device 2'A).
  • the positioning data processing unit 2'A21 is also connected to the system server 3, which reduces the accurate position and posture data of the generated user A by the refresh frequency and transmits it to the system server 3. Since the portable devices 2'B, 2'C have substantially the same structure and function, the positioning data processing units 2'B21 and 2'C21 also transmit the generated accurate position and attitude data of the users B and C which reduce the refresh frequency to System server 3.
  • the image analysis processing unit 2'A22 is connected to the positioning data processing unit 2'A21 and the system server 3, and the image analysis processing unit 2'A22 acquires the user A having a higher refresh frequency from the positioning data processing unit 2'A21.
  • the accurate position and orientation data is used to generate the VR experience data of the user A's perspective view.
  • the image analysis processing unit 2'A22 obtains the accurate position and posture data of the user B and the user C after the refresh frequency is reduced from the system server 3, The real-time position and posture of the user B and the user C are generated in the VR experience data of the user A perspective view.
  • the image analysis processing unit 2'A22 is further connected to the VR experience module 2'A3, and the image analysis processing unit 2'A22 transmits the VR experience data of the user A perspective view including the real-time position and posture of the user B and the user C to the
  • the VR experience module 2'A3 is converted into VR experience information by the VR experience module 2'A3, including but not limited to audio information, video information, somatosensory information, and the like, and the VR experience information is presented to the user A.
  • the positioning data processing unit acquires the first position and posture data of the user through the positioner, and simultaneously locates through the angle.
  • the module acquires the second position and posture data of the user.
  • the positioning data processing unit first performs zero correction on the initial rotation angle of the system, that is, the deviation between the initial rotation angle in the second position and posture data and the initial rotation angle in the first position and posture data is calculated.
  • the initial compensation value is used, and the initial compensation value is used to update the existing compensation value in the system.
  • the updated compensation value is retrieved, and the acquired second position and posture data is corrected, thereby acquiring the accurate position and posture data of the user, and outputting the corrected accurate position and posture data. Thereafter, when the new second position and posture data is acquired, it is determined whether the positioner has new first position and posture data generated at this time: if not, the existing compensation value is retrieved and the newly acquired second position and posture data is performed.
  • Corrected and corrected The accurate position and posture data is output; if a new first position and posture data is generated, the initial rotation angle in the newly obtained second position and posture data and the newly obtained initial rotation in the first position and posture data are The deviation of the angle is calculated, the new compensation value is calculated, the existing compensation value is updated by using the newly calculated compensation value, the updated existing compensation value is retrieved, and the acquired second position and posture data is corrected, and the corrected The corrected accurate position and posture data is output. Thereafter, the correction process is repeated to achieve the purpose of performing compensation correction on the second position and posture data using the first position and posture data.
  • the initial rotation angle Azimuth 1 in the user's second position and posture data can be obtained:
  • Azimuth 1 (X 1 ' ⁇ 0) ⁇ 180-[arctan(Y 1 '/X 1 ')] ⁇ 180/ ⁇ °
  • Azimuth 1 (X 1 '>0, Y 1 ' ⁇ 0) ⁇ 360-[arctan(Y 1 '/X 1 ')] ⁇ 180/ ⁇ °
  • the positioner measures the spatial position coordinates X 2 , Y 2 , Z 2 of the user, and the inclination angle ⁇ 2 of the user relative to the horizontal position, and the rotation angle ⁇ 2 , and the horizontal displacement of the user can be obtained according to the following formula.
  • the initial rotation angle Azimuth 2 in the user's first position and posture data can be obtained:
  • Azimuth 2 (X 1 ' ⁇ 0) ⁇ 180-[arctan(Y 1 '/X 1 ')] ⁇ 180/ ⁇ °
  • the correction compensation value can be obtained by calculating the deviation of the initial rotation angle Azimuth 1 in the second position and posture data from the initial rotation angle Azimuth 2 in the first position and posture data.
  • the initial rotation angle in the second position and posture data can be further corrected by the correction compensation value, so that an accurate initial rotation angle can be obtained, and the accurate initial rotation angle can be used to locate the data processing unit to depress accurate user position information. And angle information to determine the user's accurate position and attitude data.
  • FIG. 4 is a flowchart of a method for virtual reality anti-stunning based on spatial positioning, which has at least one portable device connected to an absolute positioning device and a system server, each carrying device includes an angular positioning module and a positioning data processing. a unit, an image analysis processing unit and a VR experience module, the method comprising the following steps:
  • Step 1 acquiring, by the positioning data processing unit of each carrying device, a second position and posture data and a first position and posture data of each of the portable devices;
  • Step 2 The positioning data processing unit corrects the second position and posture data by using the first position and posture data by using a correction algorithm to obtain an accurate position and posture data;
  • Step 3 The positioning data processing unit reduces the refresh frequency of the accurate position and posture data and sends the refresh frequency to the system server.
  • Step 4 acquiring the accurate position and posture data of the portable device by using the image analysis processing unit of each portable device, and acquiring position and posture data of other portable devices that reduce the refresh frequency from the system server, and generating VR experience data;
  • Step 5 The VR experience data is sent to the VR experience module by the image analysis processing unit, and the VR experience module converts the VR experience data into a VR experience information for presentation.
  • the inertial positioning device which is far less than the nine-axis sensor, is based on the second position and attitude data acquired by the inertial positioning device positioning device, and is corrected by the first position and posture data acquired by optical tracking (positioning), so that the acquisition can be performed.
  • Tracking and positioning data is more accurate; in addition, optical tracking (positioning) is also prone to misdetection or unrecognized situations, and too complex venue environment will make the marker points more easily blocked by obstacles, resulting in missing measurement problems.
  • the loss of the location information causes the VR experience information presented to the VR user to not match the actual motion of the user itself.
  • the invention adopts a correction algorithm and uses an inertial positioning system with a high refresh frequency to separately measure the position and attitude data of each user, and solves the problem that the position information collection delay and the position information collection are missing; at the same time, the optical tracking (positioning) is accurately collected.
  • Determining the position and posture of each user is used to correct the initial position and attitude information drift and error of each inertial positioning system, so that multiple users can simultaneously obtain accurate position and attitude information continuously, and the existing VR equipment is solved in a large area.
  • the problem that the VR experience information presented to the VR user does not match the actual motion situation of the user itself when used for a long time.
  • the present invention directly generates the original position and posture data of the higher refresh frequency (greater than 500 frames per second) obtained by the local correction algorithm to ensure the VR experience information and the actuality of the user itself.
  • the motion conditions are matched; correspondingly, the refresh rate of the real-time position information of other users is only required to ensure that the motion perceived by the human eye is continuous (about 30 frames per second can achieve this purpose), therefore, the image analysis processing unit is When sending the position and attitude data for interaction to the server, the refresh frequency of the original position and posture data is reduced and then transmitted, thereby greatly reducing the data amount of communication between the modules, improving the data transmission speed, and reducing the data processing of the system.
  • the pressure ensures the smooth running of the system and reduces the cost of the system equipment.
  • the locator 12, 1'2 of the positioning module 1 and 1' of the virtual reality anti-stun system is used for a plurality of large-area scenes and has an array arrangement.
  • a VR scene area 4 the locator 12, 1'2 is disposed in the head space of the VR scene area 4, and the VR scene area 4 can be further divided into a plurality of sub-sections 4A1, 4A2, 4A3... ....
  • the VR scene area 4 and a plurality of sub-intervals are represented by squares, but in practice, they are not limited thereto, and may be circular, rectangular, irregular, or other shapes, in order to be sufficient.
  • the sub-interval can also be divided into combinations of different shapes.
  • the sub-intervals in the field are square or rectangular, and the edges of the sub-intervals of the field are round. shape.
  • FIG. 5b the arrangement structure of the locator array is illustrated by taking a subinterval 4A1 as an example.
  • the locators 12, 1'2 are disposed on the edge line of each subinterval, and the locators 12, 1' 2 According to the different viewing angles of the lens used, it can be divided into wide-angle lens positioner A and narrow-angle lens positioner B.
  • the wide-angle lens positioner A has a larger detectable range, but the detection distance is shorter, and the narrow-angle lens positioner B The detectable range is small, but the detection distance is long.
  • the narrow-angle lens positioner B is placed at a position, a corner of the scene, a position near the obstacle, such as an obstacle, preferably a set of sides in each corner of the sub-section 4A1.
  • a pair of narrow-angle lens positioners B are disposed symmetrically at least on one side of the corner; and the wide-angle lens positioner A is disposed at a position where the field of view of the scene is relatively wide, preferably, in the middle of the edge of a sub-section 4A1 At least one wide-angle lens positioner A is disposed at least, and at least a wide-angle lens positioner A is disposed at a bisector of the sub-section 4A1 at the four equal points.
  • a sub-interval 4A1 is taken as an example to illustrate the arrangement structure of the locator array. In this embodiment, a larger detection range and a longer detection can be used.
  • At least a full-angle lens C is disposed at a midpoint of the edge of the sub-section 4A1, and at least a pair of wide-angle lens positioners A are symmetrically disposed at other equal points on both sides of the full-angle lens C, in a sub-section 4A1
  • a pair of narrow-angle lens positioners B are disposed symmetrically at least on a side of each corner of the corner adjacent to the corner.
  • the position of the various lenses can be reasonably matched, so that the positioner can detect the position and posture of the user without a dead angle in a complicated venue environment.
  • the optical position tracking algorithm is used to output the position and attitude data when the user is detected by at least three locators at the same time, so as to accurately and quickly detect the user, and avoid misdetection or unrecognized situations as much as possible.
  • the preferred solution uses multiple locators to assist each other in correcting, and the precision of each locator device is more relaxed, which can reduce the laying cost of the locator array.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)
  • Image Processing (AREA)

Abstract

一种基于空间定位的虚拟现实防晕眩系统及方法,其包括一绝对定位装置(1),至少一携带装置(2),以及一系统服务器(3),该携带装置(2)包含一角度定位模块(21),一数据处理模块(22),一VR体验模块(23),该数据处理模块(22)进一步包含一定位数据处理单元(221)以及一图像分析处理单元(222)。使用时,定位数据处理单元(221)获取用户的第二位姿数据及第一位姿数据,并通过校正算法获取准确的位姿数据;定位数据处理单元(221)将准确的位姿数据发送给系统服务器(3);图像分析处理单元(222)获取用户自己准确的位姿数据,同时从系统服务器(3)获取其它用户的位姿数据,并生成VR体验数据,经VR体验模块(23)转换为VR体验信息进而呈现给用户。该系统和方法能够满足VR系统针对多个用户在大面积长时间场景下的精确定位要求。

Description

基于空间定位的虚拟现实防晕眩系统及方法 技术领域
本发明涉及一种虚拟现实系统,特别涉及一种基于空间定位的虚拟现实防晕眩系统及方法。
背景技术
虚拟现实(Virtual Reality,下文简称VR)技术是以智能计算设备为核心,结合传感技术生成逼真的虚拟环境,通过多源信息融合的交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。
VR的沉浸式体验分为两种,一种是角度定位式的沉浸体验,其只包括360°的视野旋转,可以通过自由旋转身体或者头部来观察,比如GearVR的手机盒子;另外一种是空间定位式的沉浸体验不仅可以实现360°的视野旋转还可以在场地里自由移动,譬如HTC Vive、PSVR(PlayStation VR)等。相比之下,只有空间定位式沉浸体验才能产生身临其境的感受。
虚拟现实刮起的风暴如今已经愈演愈烈,从形形色色的头盔和眼镜,到各种奇思妙想的交互设备,再到内容制作和建立体验馆的尝试。VR体验馆的构建最重要的一环,就是廉价且灵活准确的定位方案。这里所说的定位,为了要实时更新空间定位式沉浸体验所要显示的虚拟环境信息,需要使用位置跟踪设备跟踪人体的运动姿态和位置等信息,确定体验馆中的参与者在较大面积的场馆空间中的绝对空间位置,并反馈到游戏服务器上,同时所有参与游戏的玩家的数据之间还要进行互动,进而才能执行群体游戏所必需的各种游戏逻辑。
对于VR场馆的虚拟现实系统定位设备而言,应满足如下几点要求,首先,要解决虚拟现实系统最严重的技术缺陷——延时,因延时会造成视觉景观存在不连续或者失真,进而会导致视觉景观与自身实际运动不匹配,长时间使用存在这种缺陷的设备可能会使参与者产生晕动症;其次,能够在大面积的VR场馆中实现精准的定位;再者,经过较长的使用时间仍旧能够维持精确的定位;另外,能够满足多个参与者在同一空间内同时定位,并能将定位数据进行交互共享;此外,应尽可能降低系统整体的成本。
现有技术中用于实现位置跟踪的设备所采用的技术大致有如下几类:惯性定位、光学定位、Lighthouse、视觉惯性测距(Visual-inertial Odometry,简称VIO)、飞行时间测距(Time of Flight,简称TOF)。这些技术应用于VR场馆场景存在如下问题:
惯性定位通过加速度计、陀螺仪、磁力计进行位置跟踪。由于位置姿态是通过角速度计、陀螺仪配合磁力计完成测定,而磁力计极易受到周围磁性材料(如建筑建材,尤其是部分VR场馆选址在地下室)的影响,以及诸如手机等设备发射的电磁波的干扰,从而导致磁力计测定初始数据产生误差和漂移,因此,在越大面积或越长时间的使用场景下,惯性定位越容易造成定位信息更大的偏差。而偏差将导致视觉景观失真,带来眩晕等不适感。
光学定位设备通过透视结果计算出对象相对于采集设备的旋转和位移,能够准确的测量对象定位信息。但是,光学定位通过标记点来测定对象的位置存在局限性,因为多个标记点不可能无限组合下去,且两组标记点靠得过近的话(例如背靠背作战的两位玩家),也很容易发生误测或者无法识别的情形。另外,过于复杂的场馆环境也会让标记点更容易被障碍物遮挡,从而发生漏测问题。此外,光学测量设备的刷新频率较低,容易造成位置信息延时,导致视觉景观失真,带来眩晕等不适感。
Lighthouse技术由于自身扫描周期排他性的限制,导致无法实现大面积覆盖,并且不能有过多的遮挡物导致接收不到信号,难以兼容场馆多参与者同一空间共同使用的要求。
VIO技术启动时需要附加复杂的运算设备来确认其起始位置,同时,长距离和长时间的使用,会产生累计误差导致数据漂移进而影像定位准确度,由此产生的数据偏差将导致视觉景观失真,带来眩晕等不适感。此外,VIO技术所采用的视觉传感器单个价格昂贵,采样数据信息量较大,造成较大的运算负载,对图像处理设备的性能要求较高。
TOF技术从发射器发射的脉冲是扇形区域,所以多个运动对象互相拥挤着在一起时,互相会有遮蔽,后方对象处在前方对象的“阴影区”中,导致探测不到,从而产生的数据偏差。而且脉冲测量不能识别不同对象,不满足场馆多参与者同一空间共同使用的要求。此外,如果是通过光脉冲进行测量,对元器件要求高,工作条件限制又比较苛刻,而且扫描频率越高,探测距离越远价格 也就越贵;如果是通过声脉、电磁脉冲冲进行测量,则容易受到周围环境的干扰,从而产生的数据偏差将导致视觉景观失真。
发明内容
有鉴于现有技术存在前述不足,本发明旨在提供一种低成本、高性能、实用性强的解决方案,能够降低位置跟踪延迟,减少用户在大面积、长时间的场景下使用时造成的眩晕,同时能够满足多个参与者在同一空间内同时定位,并能将定位数据在参与者之间进行交互共享的虚拟现实设备。
本发明提供一种基于空间定位的虚拟现实防晕眩系统,包含:
一绝对定位装置,包含有一控制器,至少一定位器,该控制器与所述定位器相连;
至少一携带装置,该携带装置包含一角度定位模块,一数据处理模块,一VR体验模块,该数据处理模块进一步包含一定位数据处理单元以及一图像分析处理单元;
该定位数据处理单元与该绝对定位装置的控制器相连获取该携带装置的一第一位置姿态数据,该定位数据处理单元与该携带装置的角度定位模块相连获取该携带装置的第二位置姿态数据;
该定位数据处理单元通过一校正算法使用该第一位置姿态数据对第二位置姿态数据中的数据偏差进行校正,从而获取该携带装置的一准确位置姿态数据;
该定位数据处理单元与该图像分析处理单元相连,并将该携带装置的该准确位置姿态数据发送给该图像分析处理单元,生成一VR体验数据,该图像分析处理单元与该VR体验模块相连,该图像分析处理单元将该VR体验数据发送给该VR体验模块,并经该VR体验模块转换为一VR体验信息进行呈现。
优选的,所述基于空间定位的虚拟现实防晕眩系统,其具有多个携带装置,且进一步包含一系统服务器,每一携带装置的定位数据处理单元分别与系统服务器相连,用于将每一携带装置的准确位置姿态数据分别发送给系统服务器,该系统服务器分别与每一携带装置的图像分析处理单元相连,每一携带装置的图像分析处理单元能够从该系统服务器获取其它携带装置的准确位置姿态数据,用于在该VR体验数据中添加其它携带装置的位置信息。
所述基于空间定位的虚拟现实防晕眩系统,其中,所述定位器为多个,所述定位器设置在一VR场景区的顶部空间,所述定位器包含有多个广角镜头定位器和多个窄角镜头定位器,所述窄角镜头定位器放置在该VR场景区的边缘、角落、靠近障碍物等视野受限的位置,广角镜头定位器设置在该VR场景的中央等视野较为开阔的位置。
所述的基于空间定位的虚拟现实防晕眩系统,其中,校正算法包括如下内容:
一携带装置的定位数据处理单元通过所述定位器获取该携带装置的该第一位置姿态数据,同时通过该角度定位模块获取该携带装置的该第二位置姿态数据;
该定位数据处理单元依据该第一位置姿态数据对该初始第二位置姿态数据进行归零校正,即通过取得的该第二位置姿态数据中的一初始旋转角度与该第一位置姿态数据中的另一初始旋转角度的偏差,计算出一初始补偿值,使用该初始补偿值更新现有的补偿值;
该定位数据处理单元调取该现有的补偿值,对获取的该第二位置姿态数据进行校正,进而获取该携带装置的一准确位置姿态数据,并将经校正的该准确位置姿态数据进行输出;
此后,当获取到新的第二位置姿态数据时,判断此时所述定位器是否有新的第一位置姿态数据产生:
如果没有,调取现有的补偿值对新获取的该第二位置姿态数据进行校正,并将经校正的准确位置姿态数据进行输出;
如果有新的第一位置姿态数据产生,则通过新取得的所述第二位置姿态数据中的初始旋转角度与新取得的该第一位置姿态数据中的另一初始旋转角度的偏差,计算出新的补偿值,使用该新计算的补偿值更新现有的补偿值,调取已更新的补偿值,对获取的第二位置姿态数据进行校正,并将经校正的准确位置姿态数据进行输出。
本发明还提供一种基于空间定位的虚拟现实防晕眩方法,其具有由至少一携带装置分别连接一绝对定位装置与一系统服务器,每一携带装置包括一角度定位模块、一定位数据处理单元、一图像分析处理单元及一VR体验模块,该方法包括如下步骤:
步骤一:通过每一携带装置的定位数据处理单元获取每一携带装置的一第二位置姿态数据及一第一位置姿态数据;
步骤二:通过该定位数据处理单元通过一校正算法使用该第一位置姿态数据对该第二位置姿态数据进行校正,获取一准确位置姿态数据;
步骤三:通过该定位数据处理单元降低该准确位置姿态数据的刷新频率后发送给该系统服务器;
步骤四:通过每一携带装置的该图像分析处理单元获取该携带装置自己的该准确位置姿态数据,同时从该系统服务器获取降低刷新频率的其它携带装置的位置姿态数据,并生成VR体验数据;
步骤五:通过该图像分析处理单元将该VR体验数据发送给该VR体验模块,该VR体验模块将该VR体验数据转换为一VR体验信息进行呈现。
通过采用上述技术方案,本发明通过采用校正算法,使用刷新频率较低但是初始旋转角度定位准确的光学追踪(定位)获取的第一位置姿态数据来校正初始旋转角度容易产生偏移误差,但是刷新频率较高的第二位置姿态数据,从而使定位数据能够具有较高的刷新频率,克服因延时会造成视觉景观存在不连续或者失真;同时使定位数据在大面积长时间使用时仍具有较高的准确性,保证VR设备的VR体验信息与用户本身的实际运动情况相匹配。同时通过运用多个角度定位模块定位与特殊的定位器阵列结构矫正定位的方式克服了过于复杂的场馆环境中发生位置信息漏测问题。由于此外,通过设置系统服务器提供不容携带设备之间位置信息的交互,且对本地携带设备的位置信息进行降低刷新频率的数据压缩处理,上传系统服务器,进而传送给其他非本地携带设备,从而在保证用户体验的情况下,尽可能减轻了系统负担。同时本发明所采用的定位器、角度定位模块易于制造,相比现有技术的其他精准定位设备具有成本较低的有点,尤其是在大面积铺设时,具有较低的造价,同时又能满足VR系统体验的要求。
附图说明
图1为本发明基于空间定位的虚拟现实防晕眩系统第一实施例的示意图。
图2为本发明基于空间定位的虚拟现实防晕眩系统第二实施例的示意图。
图3为本发明基于空间定位的虚拟现实防晕眩系统校正算法的流程图。
图4为本发明基于空间定位的虚拟现实防晕眩方法的流程图。
图5a为本发明基于空间定位的虚拟现实防晕眩系统的VR场景区及其子区间划分示意图。
图5b为本发明基于空间定位的虚拟现实防晕眩系统的VR场景区一子区间定位器阵列的一实施例的排布示意图。
图5c为本发明基于空间定位的虚拟现实防晕眩系统的VR场景区一子区间定位器阵列的另一实施例的排布示意图。
具体实施方式
以下配合图式及本发明的优选实施例,进一步阐述本发明为达成预定发明目的所采取的技术手段。
如图1所示,为本发明基于空间定位的虚拟现实防晕眩系统第一优选实施例的示意图,该虚拟现实防晕眩系统包括一绝对定位装置1,一携带装置2。该绝对定位装置1与该携带装置2相连,其连接方式包括但不限于有线连接,无线连接等方式。该携带装置2可由一VR用户携带。
该绝对定位装置1包含有一控制器11,至少一定位器12。该控制器11与每一定位器12相连,每一定位器12可为一光学追踪器,该光学追踪器能够向一VR场区发射诸如可见光、红外线等光学信号,该光学追踪器进一步包含一光学侦测装置,当该光学侦测装置接收到该VR用户反射回的光信号时,会通过光学动作捕捉算法转化为第一位置姿态数据,并将该位置姿态数据发送回该控制器11。
该携带装置2包含一角度定位模块21,一数据处理模块22,一VR体验模块23。优选的,该角度定位模块21可为一九轴定位装置,通过加速度计、陀螺仪、磁力计对该VR用户进行位置姿态跟踪,并将该VR用户的位置姿态转化为第二位置姿态数据,进一步优选的,该第二位置姿态数据可进一步通过一卡尔曼滤波器进行线性滤波,以初步滤除干扰。该数据处理模块22进一步包括一定位数据处理单元221以及一图像处理器222,该定位数据处理单元221分别与该角度定位模块21以及该控制器11相连,该定位数据处理单元221能够从该角度定位模块21处获取该VR用户(亦即该携带装置2)的第二位置姿态数据,还能够从该控制器11处获取该VR用户(亦即该携带装置2)第一位置姿态数 据,并通过一校正算法使用第一位置姿态数据对第二位置姿态数据中的数据偏差进行校正,从而获取该该VR用户(亦即该携带装置2)的准确位置姿态数据。该定位数据处理单元221与该图像分析处理单元222相连,该定位数据处理单元221将该VR用户的位置姿态数据传送给图像分析处理单元222,经该图像分析处理单元222处理分析为图像数据。该图像分析处理单元222与该VR体验模块23相连,该图像分析处理单元222将处理分析的VR体验数据传送给该VR体验模块23,并经该VR体验模块23转换为VR体验信息,包括但不限于音频信息、视频信息、体感信息等内容,并将所述VR体验信息呈现给VR体验用户。
如图2所示,为本发明基于空间定位的虚拟现实防晕眩系统第二优选实施例的示意图,该虚拟现实防晕眩系统包括一绝对定位装置1’,多个携带装置2’,一系统服务器3。该绝对定位装置1’与所述每一携带装置2’相连,所述携带装置2’分别与该系统服务器3相连。其连接方式包括但不限于有线连接,无线连接等方式。所述携带装置2’可分别由多个不同的VR用户携带。本实施例以三个VR用户A、B、C分别携带3个携带装置2’A、2’B、2’C为例进行阐释,但在实际使用中携带装置2’的数量并不以此为限。
该绝对定位装置1’包含有一控制器1’1,至少一定位器1’2。该控制器1’1与每一定位器1’2相连,每一定位器1’2可为一光学追踪器,该光学追踪器能够向一VR场区发射诸如可见光、红外线等光学信号,该光学追踪器进一步包含一光学侦测装置,当该光学侦测装置接收到某一VR用户反射回的光信号时,会通过光学动作捕捉算法转化为第一位置姿态数据,并将该位置姿态数据发送回该控制器1’1。
各个携带装置2’A、2’B、2’C的内部结构基本相同,下文以2’A为例进行说明,该携带装置2’A包含一角度定位模块2’A1,一数据处理模块2’A2,一VR体验模块2’A3。该数据处理模块2’A2进一步包含一定位数据处理单元2’A21以及一图像分析处理单元2’A22。
该定位数据处理单元2’A21与该控制器1’1以及该角度定位模块2’A1相连,该定位数据处理单元2’A21能够从该控制器1’1处获取VR用户A的第一位置姿态数据(亦即其携带的携带装置2’A的第一位置姿态数据),同时,该定位数据处理单元2’A21还能够从该角度定位模块2’A1处获取VR用户A的第二位置姿态数据(亦即其携带的携带装置2’A的第二位置姿态数据),优选的,该角度 定位模块2’A1可为一九轴感测器,进一步优选的,该第二位置姿态数据可进一步通过一卡尔曼滤波器进行线性滤波,以初步滤除干扰。该定位数据处理单元2’A21通过一校正算法使用VR用户A的第一位置姿态数据对第二位置姿态数据中的数据偏差进行校正,从而获取VR用户A的准确位置姿态数据(亦即其携带的携带装置2’A的准确位置姿态数据)。该定位数据处理单元2’A21还与系统服务器3相连,其将生成的用户A的准确位置姿态数据降低刷新频率后,传送给系统服务器3。由于携带装置2’B、2’C具有基本相同的结构和功能,定位数据处理单元2’B21及2’C21也会将生成的降低刷新频率的用户B、C的准确位置姿态数据并传送给系统服务器3。
该图像分析处理单元2’A22与该定位数据处理单元2’A21以及该系统服务器3相连,该图像分析处理单元2’A22从定位数据处理单元2’A21获取具有较高刷新频率的用户A的准确位置姿态数据,用以产生用户A视角景观的VR体验数据,同时,该图像分析处理单元2’A22从系统服务器3获取降低刷新频率后的用户B及用户C的准确位置姿态数据,用以在用户A视角景观的VR体验数据中产生用户B及用户C的实时位置姿态。
该图像分析处理单元2’A22还与该VR体验模块2’A3相连,该图像分析处理单元2’A22将包含用户B及用户C的实时位置姿态的用户A视角景观的VR体验数据传送给该VR体验模块2’A3,并经该VR体验模块2’A3转换为VR体验信息,包括但不限于音频信息、视频信息、体感信息等内容,并将所述VR体验信息呈现给用户A。
图3为本发明基于空间定位的虚拟现实防晕眩系统校正算法的流程图,系统启动后,该定位数据处理单元通过所述定位器获取用户的第一位置姿态数据,同时,通过该角度定位模块获取用户的第二位置姿态数据。该定位数据处理单元首先对系统的初始旋转角度进行归零校正,即通过取得的所述第二位置姿态数据中的初始旋转角度与所述第一位置姿态数据中的初始旋转角度的偏差,计算出初始补偿值,使用该初始补偿值更新系统中现有的补偿值。调取该更新后的补偿值,对获取的第二位置姿态数据进行校正,进而获取用户的准确位置姿态数据,并将经校正的准确位置姿态数据进行输出。此后,当获取到新的第二位置姿态数据时,判断此时定位器是否有新的第一位置姿态数据产生:如果没有,调取现有的补偿值对新获取的第二位置姿态数据进行校正,并将经校正的 准确位置姿态数据进行输出;如果有新的第一位置姿态数据产生,则通过新取得的所述第二位置姿态数据中的初始旋转角度与新取得的所述第一位置姿态数据中的初始旋转角度的偏差,计算出新的补偿值,使用该新计算的补偿值更新现有的补偿值,调取已更新的现有的补偿值,对获取的第二位置姿态数据进行校正,并将经校正的准确位置姿态数据进行输出。此后,重复该校正过程,实现使用第一位置姿态数据对第二位置姿态数据进行补偿校正的目的。
该补偿值的具体计算方法如下:
通过角度定位模块测得用户的空间位置坐标X1,Y1,Z1,以及用户相对与水平位置的倾斜角θ1,和旋转角度φ1,根据下式可以求得用户的水平位移X1’,Y1’:
X1’=X1×cos(φ1)+Y1×sin(θ1)×sin(φ1)-Z1*cos(θ1)×sin(φ1)........(1)
Y1’=Y1×cos(θ1)+Z1×sin(θ1)…………………………………………(2)
根据用户的水平坐标X1’,Y1’的值结合如下算法,可以得出用户第二位置姿态数据中的初始旋转角Azimuth1
Algorithm to calculate Azimuth1=arctan(Y1’/X1’)
Azimuth1(X1’=0,Y1’<0)=90°
Azimuth1(X1’=0,Y1’>0)=270°
Azimuth1(X1’<0)={180-[arctan(Y1’/X1’)]×180/π}°
Azimuth1(X1’>0,Y1’<0)={-[arctan(Y1’/X1’)]×180/π}°
Azimuth1(X1’>0,Y1’<0)={360-[arctan(Y1’/X1’)]×180/π}°
基于类似方法,定位器测得用户的空间位置坐标X2,Y2,Z2,以及用户相对与水平位置的倾斜角θ2,和旋转角度φ2,根据下式可以求得用户的水平位移X2’,Y2’:
X2’=X2×cos(φ2)+Y2×sin(θ2)×sin(φ2)-Z2*cos(θ2)×sin(φ2)........(1)
Y2’=Y2×cos(θ2)+Z2×sin(θ2)…………………………………………(2)
根据用户的水平坐标X2’,Y2’的值结合如下算法,可以得出用户第一位置姿态数据中的初始旋转角Azimuth2
Algorithm to calculate Azimuth2=arctan(Y2’/X2’)
Azimuth2(X1’=0,Y1’<0)=90°
Azimuth2(X1’=0,Y1’>0)=270°
Azimuth2(X1’<0)={180-[arctan(Y1’/X1’)]×180/π}°
Azimuth2(X1’>0,Y1’<0)={-[arctan(Y1’/X1’)]×180/π}°
Azimuth2(X1’>0,Y1’<0)={360-[arctan(Y1’/X1’)]×180/π}°
通过计算所述第二位置姿态数据中的初始旋转角Azimuth1与所述第一位置姿态数据中的初始旋转角Azimuth2的偏差,即可得出校正补偿值。通过该校正补偿值可以进一步对第二位置姿态数据中的初始旋转角进行校正,即可得出准确的初始旋转角,通过该准确的初始旋转角可以定位数据处理单元反推出准确的用户位置信息和角度信息,进而确定用户的准确位置姿态数据。
图4为本发明基于空间定位的虚拟现实防晕眩方法的流程图,其具有至少一携带装置分别连接一绝对定位装置与一系统服务器,每一携带装置包括一角度定位模块、一定位数据处理单元、一图像分析处理单元及一VR体验模块,该方法包括如下步骤:
步骤一:通过每一携带装置的定位数据处理单元获取每一携带装置的一第二位置姿态数据及一第一位置姿态数据;
步骤二:通过该定位数据处理单元通过一校正算法使用该第一位置姿态数据对该第二位置姿态数据进行校正,获取一准确位置姿态数据;
步骤三:通过该定位数据处理单元降低该准确位置姿态数据的刷新频率后发送给该系统服务器;
步骤四:通过每一携带装置的该图像分析处理单元获取该携带装置自己的该准确位置姿态数据,同时从该系统服务器获取降低刷新频率的其它携带装置的位置姿态数据,并生成VR体验数据;
步骤五:通过该图像分析处理单元将该VR体验数据发送给该VR体验模块,该VR体验模块将该VR体验数据转换为一VR体验信息进行呈现。
由于现有技术中,惯性定位设备的磁力元件容易受到周边设施及材料的干扰,导致其初始信息旋转角度不准确,进而影响位置追踪准确度,以及磁力元件在广范围长时间(超过15分钟即有明显的初始旋转角偏差)使用时容易产生数据漂移同样导致位置追踪失准。而位置追踪失准会导致呈现给VR用户的VR体验信息与用户本身的实际运动情况不匹配,从而引发晕动症,导致眩晕等不适感;而光学追踪(定位)虽然能够准确的确定初始旋转角度,但是光学追踪(定位)采集信息的刷新频率较低,导致位置信息采集的延时,延时同样会使 呈现给VR用户的VR体验信息与用户本身的实际运动情况不匹配从而引发晕动症,带来眩晕等不适感;另外,光学追踪(定位)采集的除初始旋转角度之外的信息的精确程度远不如九轴感测器这样的惯性定位设备,以惯性定位设备定位设备获取的第二位置姿态数据为基础,使用光学追踪(定位)采集的第一位置姿态数据对其进行校正,可以使获取的追踪定位数据更为精确;此外,光学追踪(定位)也很容易发生误测或者无法识别的情形,且过于复杂的场馆环境也会让标记点更容易被障碍物遮挡,从而发生漏测问题,导致位置信息的遗失造成呈现给VR用户的VR体验信息与用户本身的实际运动情况不匹配。本发明通过采用校正算法,使用刷新频率高的惯性定位系统分别测量每个用户的位置姿态数据,解决位置信息采集延时及位置信息采集遗漏的问题;同时,通过光学追踪(定位)采集准确的确定每个用户的位置姿态,用来校正每个惯性定位系统的初始位置姿态信息漂移及误差,从而使多个用户能够同时连续的获取准确的位置姿态信息,解决了现有VR设备在大面积长时间使用时存在的呈现给VR用户的VR体验信息与用户本身的实际运动情况不匹配的问题。
在多用户协同交互方面,由于用户对自身视角的VR体验信息的要求最为敏感苛刻,而对其它用户的实时位置信息感知则较为迟钝。因此,本发明在生成用户自身视角的VR体验数据时,直接使用本地通过校正算法获取的较高刷新频率(大于500帧每秒)的原始位置姿态数据生成,保证VR体验信息与用户本身的实际运动情况相匹配;相应的,其它用户的实时位置信息的刷新频率只要保证人眼觉察到的动作是连续状态即可(大约30帧每秒即可实现这一目的),因此,图像分析处理单元在向服务器发送用于交互的位置姿态数据时,会将原始位置姿态数据的刷新频率降低后发送,这样大大减少了模块之间的通信的数据量,提高了数据传输速度,降低了系统的数据处理压力,保证了系统运行的流畅度,降低了系统设备的成本。
本发明基于空间定位的虚拟现实防晕眩系统定位模组1、1’的所述定位器12、1’2用于大面积场景使用时为多个,且呈一阵列式排布结构。如图5a所示,一VR场景区4,所述定位器12、1’2设置在该VR场景区4的顶部空间,该VR场景区4能够进一步划分为多个子区间4A1、4A2、4A3……。本实施例为了方便说明,该VR场景区4以及若干个子区间以方形为代表说明,但实际中并不以此为限,其可能为圆形、矩形、不规则图形或其它形状,为了能够充分的划分 该VR场景区4,该子区间亦可划分为不同形状的组合,如在VR场景区4为圆形时,场中的子区间为方形或矩形,而场周的子区间的边缘则为圆形。如图5b所示,以一个子区间4A1为例说明定位器阵列的排布结构,所述定位器12、1’2设置在每一子区间的边缘线上,所述定位器12、1’2根据所使用的镜头可视角度不同分为广角镜头定位器A及窄角镜头定位器B,广角镜头定位器A的可侦测范围较大,但是侦测距离较短,窄角镜头定位器B的可侦测范围较小,但是侦测距离较长。在发明的定位器排布阵列结构中,将窄角镜头定位器B放置于场景的边缘、角落、靠近障碍物等视野受限的位置,优选的在一子区间4A1每一角落的一组侧边上靠近该角落一侧设置至少对称设置一对窄角镜头定位器B;而将广角镜头定位器A设置在场景的中央等视野较为开阔的位置,优选的,在一子区间4A1的边缘中点处至少设置一广角镜头定位器A,进一优选的,可在一子区间4A1的二等分点,四等分点处至少设置一广角镜头定位器A。如图5c所示,在另一优选实施例中,以一个子区间4A1为例说明定位器阵列的排布结构,在该实施例中,可使用一兼具较大侦测范围和较长侦测距离全角镜头C,至少在一子区间4A1的边缘中点处设置一全角镜头C,在全角镜头C两侧的其它等分点处至少对称设置一对广角镜头定位器A,在一子区间4A1每一角落的一组侧边上靠近该角落一侧设置至少对称设置一对窄角镜头定位器B。
通过上述排布阵列结构,合理的搭配各种镜头的位置,使得定位器在复杂的场馆环境下也能够无死角的侦测到用户的位置和姿态,为了进一步提高准确度,优选的,可以通过采用光学位置追踪算法,使得用户在至少被三个定位器同时侦测到的情形下,才输出其位置姿态数据,实现准确快速的侦测用户,同时尽可能的避免误测或者无法识别的情形,另外此种优选方案采用多个定位器相互辅助校正,对每一个定位器设备精密度的要求更为宽松,能够降低定位器阵列的铺设成本。
以上所述仅是本发明的优选实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以优选实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (13)

  1. 一种基于空间定位的虚拟现实防晕眩系统,其特征在于,包含:
    一绝对定位装置,包含有一控制器、至少一定位器,该控制器与所述定位器相连;
    至少一携带装置,该携带装置包含一角度定位模块,一数据处理模块,一VR体验模块,该数据处理模块进一步包含一定位数据处理单元以及一图像分析处理单元;
    该定位数据处理单元与该绝对定位装置的控制器相连获取该携带装置的一第一位置姿态数据,该定位数据处理单元与该携带装置的角度定位模块相连获取该携带装置的一第二位置姿态数据;
    该定位数据处理单元通过一校正算法使用该第一位置姿态数据对第二位置姿态数据中的数据偏差进行校正,从而获取该携带装置的一准确位置姿态数据;
    该定位数据处理单元与该图像分析处理单元相连,并将该携带装置的该准确位置姿态数据发送给该图像分析处理单元,生成一VR体验数据,该图像分析处理单元与该VR体验模块相连,该图像分析处理单元将该VR体验数据发送给该VR体验模块,并经该VR体验模块转换为一VR体验信息进行呈现。
  2. 根据权利要求1所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,其具有多个携带装置,且进一步包含一系统服务器,每一携带装置的定位数据处理单元分别与该系统服务器相连,用于将每一携带装置的准确位置姿态数据分别发送给系统服务器,该系统服务器分别与每一携带装置的图像分析处理单元相连,每一携带装置的图像分析处理单元能够从该系统服务器获取其它携带装置的准确位置姿态数据,用于在该VR体验数据中添加其它携带装置的位置信息。
  3. 根据权利要求2所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,每一携带装置的定位数据处理单元将降低刷新频率后的一准确位置姿态数据发送给该系统服务器。
  4. 根据权利要求1至3中任一项所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,所述每一定位器为一光学追踪器。
  5. 根据权利要求1至3中任一项所述的基于空间定位的虚拟现实防晕眩系 统,其特征在于,所述角度定位模块为一九轴感测器。
  6. 根据权利要求5所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,该角度定位模块还包括一卡尔曼滤波器,该角度定位模块获取的该第二位置姿态数据通过该卡尔曼滤波器进行滤波后,由该定位数据处理单元获取。
  7. 根据权利要求1至3中任一项所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,所述定位器为多个,所述定位器设置在一VR场景区的顶部空间,所述定位器包含有多个广角镜头定位器和多个窄角镜头定位器,所述窄角镜头定位器放置在该VR场景区的边缘、角落、靠近障碍物等视野受限的位置,所述广角镜头定位器设置在该VR场景区的中央等视野较为开阔的位置。
  8. 根据权利要求7所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,该VR场景区可划分为多个子区间,所述定位器设置在所述子区间的边缘线上,在每一子区间每一角落的一组侧边上靠近该角落一侧设置至少对称设置一对窄角镜头定位器。
  9. 根据权利要求7所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,该VR场景区可划分为多个子区间,所述定位器设置在所述子区间的边缘线上,在每一子区间的边缘中点处至少设置一广角镜头定位器。
  10. 根据权利要求7所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,所述定位器包括一兼具较大侦测范围和较长侦测距离全角镜头,该VR场景区可划分为多个子区间,所述定位器设置在所述子区间的边缘线上,至少在每一子区间的边缘中点处设置一全角镜头,在该全角镜头两侧的其它等分点处至少对称设置一对广角镜头定位器,在每一子区间每一角落的一组侧边上靠近该角落一侧设置至少对称设置一对窄角镜头定位器。
  11. 根据权利要求1至3中任一项所述的基于空间定位的虚拟现实防晕眩系统,其特征在于:
    所述校正算法包括如下内容:
    一携带装置的定位数据处理单元通过所述定位器获取该携带装置的该第一位置姿态数据,同时通过该角度定位模块获取该携带装置的该第二位置姿态数据;
    该定位数据处理单元依据该第一位置姿态数据对该初始第二位置姿态数据进行归零校正,即通过取得的该第二位置姿态数据中的一初始旋转角度与该第 一位置姿态数据中的另一初始旋转角度的偏差,计算出一初始补偿值,使用该初始补偿值更新现有的补偿值;
    该定位数据处理单元调取该现有的补偿值,对获取的该第二位置姿态数据进行校正,进而获取该携带装置的一准确位置姿态数据,并将经校正的该准确位置姿态数据进行输出;
    此后,当获取到新的第二位置姿态数据时,判断此时所述定位器是否有新的第一位置姿态数据产生:
    如果没有,调取现有的补偿值对新获取的该第二位置姿态数据进行校正,并将经校正的准确位置姿态数据进行输出;
    如果有新的第一位置姿态数据产生,则通过新取得的所述第二位置姿态数据中的初始旋转角度与新取得的该第一位置姿态数据中的另一初始旋转角度的偏差,计算出新的补偿值,使用该新计算的补偿值更新现有的补偿值,调取已更新的补偿值,对获取的第二位置姿态数据进行校正,并将经校正的准确位置姿态数据进行输出。
  12. 根据权利要求11所述的基于空间定位的虚拟现实防晕眩系统,其特征在于,该角度定位模块获取的第二位置姿态数据通过一卡尔曼滤波器进行滤波后,由该定位数据处理单元获取。
  13. 一种基于空间定位的虚拟现实防晕眩方法,其特征在于,具有至少一携带装置分别连接一绝对定位装置与一系统服务器,每一携带装置包括一角度定位模块、一定位数据处理单元、一图像分析处理单元及一VR体验模块,该方法包括如下步骤:
    步骤一:通过每一携带装置的定位数据处理单元获取每一携带装置的一第二位置姿态数据及一第一位置姿态数据;
    步骤二:通过该定位数据处理单元通过一校正算法使用该第一位置姿态数据对该第二位置姿态数据进行校正,获取一准确位置姿态数据;
    步骤三:通过该定位数据处理单元降低该准确位置姿态数据的刷新频率后发送给该系统服务器;
    步骤四:通过每一携带装置的该图像分析处理单元获取该携带装置自己的该准确位置姿态数据,同时从该系统服务器获取降低刷新频率的其它携带装置的位置姿态数据,并生成VR体验数据;
    步骤五:通过该图像分析处理单元将该VR体验数据发送给该VR体验模块,该VR体验模块将该VR体验数据转换为一VR体验信息进行呈现。
PCT/CN2017/099558 2016-11-15 2017-08-30 基于空间定位的虚拟现实防晕眩系统及方法 WO2018090692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611005962.1A CN106383596B (zh) 2016-11-15 2016-11-15 基于空间定位的虚拟现实防晕眩系统及方法
CN201611005962.1 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018090692A1 true WO2018090692A1 (zh) 2018-05-24

Family

ID=57958608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099558 WO2018090692A1 (zh) 2016-11-15 2017-08-30 基于空间定位的虚拟现实防晕眩系统及方法

Country Status (2)

Country Link
CN (1) CN106383596B (zh)
WO (1) WO2018090692A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369619A (zh) * 2020-02-28 2020-07-03 神华铁路装备有限责任公司 Vr视角修正方法、装置、系统和存储介质
CN112656404A (zh) * 2020-12-30 2021-04-16 浙江凡聚科技有限公司 一种基于图像处理的虚拟现实眩晕程度测量系统及方法
CN113419471A (zh) * 2021-07-19 2021-09-21 歌尔光学科技有限公司 移动控制装置及移动控制方法
CN113670232A (zh) * 2021-08-18 2021-11-19 歌尔光学科技有限公司 虚拟现实设备偏心标样及标样偏心值测量方法
CN115442581A (zh) * 2021-12-29 2022-12-06 北京罗克维尔斯科技有限公司 车载vr眼镜控制方法、装置及计算机设备
WO2024108394A1 (zh) * 2022-11-22 2024-05-30 北京小米移动软件有限公司 姿态获取方法和装置、虚拟现实设备、可读存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106383596B (zh) * 2016-11-15 2023-08-29 北京当红齐天国际文化科技发展集团有限公司 基于空间定位的虚拟现实防晕眩系统及方法
US10713848B2 (en) 2017-04-06 2020-07-14 Htc Corporation System and method for providing simulated environment
CN109426332B (zh) * 2017-08-23 2023-02-28 中兴通讯股份有限公司 一种信息处理方法、装置及虚拟现实设备
CN107490866B (zh) * 2017-09-20 2019-11-29 中国航空工业集团公司洛阳电光设备研究所 一种飞行员可穿戴显示系统及其定位头部姿态的方法
CN108011884B (zh) * 2017-12-07 2022-07-01 指挥家(厦门)科技有限公司 一种姿态数据传输优化方法及装置
US11932263B2 (en) * 2018-03-14 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Travel sickness estimation system, moving vehicle, travel sickness estimation method, and travel sickness estimation program
WO2020078354A1 (zh) * 2018-10-16 2020-04-23 北京凌宇智控科技有限公司 视频串流系统、视频串流方法及装置
CN110427104B (zh) * 2019-07-11 2022-11-04 成都思悟革科技有限公司 一种手指运动轨迹校准系统及方法
CN110519247B (zh) * 2019-08-16 2022-01-21 上海乐相科技有限公司 一种一对多虚拟现实展示方法及装置
CN115209178A (zh) * 2021-04-14 2022-10-18 华为技术有限公司 一种信息处理方法、装置及系统
CN114998556B (zh) * 2022-05-18 2024-07-05 北京航空航天大学江西研究院 面向混合现实飞行仿真系统的虚实融合方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034309A (zh) * 2007-04-10 2007-09-12 南京航空航天大学 基于多加速度传感器的虚拟现实头盔防眩晕系统及方法
CN102192727A (zh) * 2010-03-19 2011-09-21 阿尔卡特朗讯 移动手持设备和方法
EP3067783A1 (en) * 2015-03-11 2016-09-14 ETH Zurich Method and system to track human locomotion by relative positional tracking of body parts of the human
CN106383596A (zh) * 2016-11-15 2017-02-08 北京当红齐天国际文化发展集团有限公司 基于空间定位的虚拟现实防晕眩系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060050070A1 (en) * 2004-09-07 2006-03-09 Canon Kabushiki Kaisha Information processing apparatus and method for presenting image combined with virtual image
CN105843397A (zh) * 2016-04-12 2016-08-10 公安部上海消防研究所 基于瞳孔追踪技术的虚拟现实互动系统
CN106095113B (zh) * 2016-06-27 2019-02-12 南京睿悦信息技术有限公司 一种九轴传感器融合的用户姿态测算和虚拟现实随动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034309A (zh) * 2007-04-10 2007-09-12 南京航空航天大学 基于多加速度传感器的虚拟现实头盔防眩晕系统及方法
CN102192727A (zh) * 2010-03-19 2011-09-21 阿尔卡特朗讯 移动手持设备和方法
EP3067783A1 (en) * 2015-03-11 2016-09-14 ETH Zurich Method and system to track human locomotion by relative positional tracking of body parts of the human
CN106383596A (zh) * 2016-11-15 2017-02-08 北京当红齐天国际文化发展集团有限公司 基于空间定位的虚拟现实防晕眩系统及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111369619A (zh) * 2020-02-28 2020-07-03 神华铁路装备有限责任公司 Vr视角修正方法、装置、系统和存储介质
CN111369619B (zh) * 2020-02-28 2023-04-07 神华铁路装备有限责任公司 Vr视角修正方法、装置、系统和存储介质
CN112656404A (zh) * 2020-12-30 2021-04-16 浙江凡聚科技有限公司 一种基于图像处理的虚拟现实眩晕程度测量系统及方法
CN112656404B (zh) * 2020-12-30 2023-05-02 浙江凡聚科技有限公司 一种基于图像处理的虚拟现实眩晕程度测量系统及方法
CN113419471A (zh) * 2021-07-19 2021-09-21 歌尔光学科技有限公司 移动控制装置及移动控制方法
CN113670232A (zh) * 2021-08-18 2021-11-19 歌尔光学科技有限公司 虚拟现实设备偏心标样及标样偏心值测量方法
CN115442581A (zh) * 2021-12-29 2022-12-06 北京罗克维尔斯科技有限公司 车载vr眼镜控制方法、装置及计算机设备
CN115442581B (zh) * 2021-12-29 2024-01-16 北京罗克维尔斯科技有限公司 车载vr眼镜控制方法、装置及计算机设备
WO2024108394A1 (zh) * 2022-11-22 2024-05-30 北京小米移动软件有限公司 姿态获取方法和装置、虚拟现实设备、可读存储介质

Also Published As

Publication number Publication date
CN106383596B (zh) 2023-08-29
CN106383596A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2018090692A1 (zh) 基于空间定位的虚拟现实防晕眩系统及方法
JP7530415B2 (ja) 建物情報モデルの仮想画像の表示
CN106774844B (zh) 一种用于虚拟定位的方法及设备
KR102133105B1 (ko) 3차원 공간 검출 시스템, 측위 방법 및 시스템
US20110046915A1 (en) Use of positioning aiding system for inertial motion capture
US10677887B2 (en) Apparatus and method for automatically orienting a camera at a target
US10802606B2 (en) Method and device for aligning coordinate of controller or headset with coordinate of binocular system
CN103673990B (zh) 获取摄像机姿态数据的装置及其方法
US10481680B2 (en) Systems and methods to provide a shared augmented reality experience
CN103090845B (zh) 一种基于多影像的远程测距方法
CN106767775B (zh) 一种基于图像传感器和惯导传感器的定位方法
CN202427156U (zh) 一种具有姿态感测的多用途游戏控制器及系统
CN105783920A (zh) 一种室内外定位方法及定位系统、定位用脚环
CN104330075B (zh) 栅格化极坐标系目标定位方法
CN110044357A (zh) 一种室内高精度三维无线定位方法
CN103472434A (zh) 一种机器人声音定位方法
CN206601680U (zh) 基于空间定位的虚拟现实防晕眩系统
CN105183142B (zh) 一种利用空间位置装订的数字信息复现方法
CN107229055B (zh) 移动设备定位方法和移动设备定位装置
US20200159339A1 (en) Desktop spatial stereoscopic interaction system
US20230135277A1 (en) Hybrid indoor positioning system
TWI760128B (zh) 深度圖像之生成方法、系統以及應用該方法之定位系統
WO2022228461A1 (zh) 一种基于激光雷达的三维超声成像方法和系统
TWI632339B (zh) 座標感測裝置及感測方法
CN205808423U (zh) 一种定位用脚环及室内外定位系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871634

Country of ref document: EP

Kind code of ref document: A1