WO2018090687A1 - Ka波段发射机 - Google Patents

Ka波段发射机 Download PDF

Info

Publication number
WO2018090687A1
WO2018090687A1 PCT/CN2017/097642 CN2017097642W WO2018090687A1 WO 2018090687 A1 WO2018090687 A1 WO 2018090687A1 CN 2017097642 W CN2017097642 W CN 2017097642W WO 2018090687 A1 WO2018090687 A1 WO 2018090687A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
band
multiplier
signal
frequency multiplier
Prior art date
Application number
PCT/CN2017/097642
Other languages
English (en)
French (fr)
Inventor
毕小斌
范丛明
丁庆
Original Assignee
深圳市华讯方舟卫星通信有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟卫星通信有限公司, 华讯方舟科技有限公司 filed Critical 深圳市华讯方舟卫星通信有限公司
Publication of WO2018090687A1 publication Critical patent/WO2018090687A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators

Definitions

  • the present invention relates to the field of satellite communication technologies, and more particularly to Ka-band transmitters.
  • VSAT Very Small Aperture Satellite Terminal Station
  • small station small station
  • personal earth station satellite communication technology develops rapidly, due to its flexibility, high reliability, easy to use and small station can be directly installed on the user side.
  • the VSAT user data terminal can be directly connected to the computer to complete communication tasks such as data transmission, file exchange, and image transmission, thereby getting rid of the problem of the long-distance communication ground relay station.
  • VSAT as a dedicated long-distance communication system is a good choice.
  • the VSAT satellite communication system consists of a primary station, a communication satellite transponder and a small station.
  • the small station includes a Ka-band transmitter for satellite communication. Its main function is to up-convert the L-band IF signal transmitted by the modem to the Ka-band RF signal. .
  • the traditional Ka-band transmitter uses a mixing method to upconvert the IF signal into a Ka-band RF signal.
  • a local oscillator must be used.
  • the hardware cost and debugging cost are high, and the oscillator drifts due to temperature or voltage. , frequency stability is not good.
  • a Ka-band transmitter that includes:
  • An intermediate frequency processing module configured to receive an intermediate frequency signal of an L-band transmitted by a modem, and perform filtering and amplifying processing on the intermediate frequency signal;
  • a first frequency multiplication module coupled to the intermediate frequency processing module, configured to perform N frequency processing on the intermediate frequency signal and output an N frequency multiplication signal;
  • a low noise amplifier connected to the first frequency multiplying module for amplifying the N frequency signal
  • a second frequency multiplying module coupled to the low noise amplifier, configured to perform M frequency multiplication processing on the N frequency multiplied signal, and output a preset Ka band radio frequency signal, wherein the L band intermediate frequency signal passing through N, M
  • the product multiple is amplified to be the predetermined Ka-band RF signal, and the multiplier multiple N is greater than the multiplication factor M.
  • the intermediate frequency signal outputted from the modem is processed by the N times frequency of the first frequency multiplying module and the M frequency multiplication of the second frequency multiplying module, and then the intermediate frequency signal is upconverted to a preset Ka band RF.
  • the signal omits the local oscillator and the mixer, which greatly reduces the hardware complexity and cost of the emitter, and the output of the Ka-band RF signal has high stability and simple debugging operation.
  • the first frequency multiplication module includes a first frequency multiplier and a first band pass filter, the intermediate frequency processing module, the first frequency multiplier, the first band pass filter, and the low noise amplifier. And electrically connecting in sequence; wherein the first frequency multiplier outputs higher harmonics, and the first band pass filter performs filtering processing on the higher harmonics to output an N multiplied signal.
  • the second frequency multiplication module includes a second frequency multiplier and a second band pass filter, and the low noise amplifier, the second frequency multiplier, and the second band pass filter are electrically connected in sequence;
  • the second frequency multiplier performs M multiplication processing on the N frequency multiplied signal to output N times the M frequency multiplication signal, and the second band pass filter filters the N multiplied M frequency multiplication signal. And output the preset Ka-band RF signal.
  • the first frequency multiplier is a five frequency multiplier and the second frequency multiplier is a double frequency multiplier.
  • the first frequency multiplier is a quad multiplier and the second frequency multiplier is a triple frequency multiplier.
  • the first frequency multiplier and the second frequency multiplier are one of a transistor frequency multiplier, a varactor diode multiplier, and a step recovery diode frequency multiplier.
  • the first frequency multiplier is a transistor frequency multiplier
  • the first frequency multiplier comprises a first DC power source, a second DC power source, a transistor, a first capacitor, and a second capacitor;
  • the bases of the transistors are respectively connected to the first capacitor and the anode of the first DC power source, and the collectors of the transistors are respectively connected to the anodes of the second capacitor and the second DC power source; the emitter of the transistor Connected to the negative pole of the first DC power source and the cathode of the second DC power source, respectively, and grounded.
  • the intermediate frequency processing module includes a third band pass filter, an intermediate frequency amplifier, the third band pass filter performs filtering processing on the intermediate frequency signal, and the intermediate frequency amplifier is used to perform the intermediate frequency The signal is amplified.
  • a fourth band pass filter is further included, the fourth band pass filter being disposed between the low noise amplifier and the second frequency multiplying module.
  • a power amplifier is further included, and the power amplifier is connected to an output of the second frequency multiplying module for performing power amplification on the preset Ka-band radio frequency signal.
  • 1 is a structural block diagram of a Ka-band transmitter in an embodiment
  • FIG. 2 is a circuit diagram of a first frequency multiplier in an embodiment.
  • FIG. 1 shows the structural frame of the Ka-band transmitter.
  • the Ka band transmitter includes an intermediate frequency processing module 110, a first frequency multiplication module 120, a low noise amplifier 130, and a second frequency multiplication module 140.
  • the intermediate frequency processing module 110 receives the L-band intermediate frequency signal transmitted by the modem, and performs filtering and amplification processing on the intermediate frequency signal, and then outputs the result to the first frequency multiplication module 120.
  • the first frequency multiplication module 120 performs N multiplication processing on the intermediate frequency signal and outputs N. Multiplier signal.
  • the low noise amplifier 130 amplifies the N multiplied signal and outputs it to the second frequency multiplying module 140.
  • the second frequency multiplication module 140 then performs M multiplication processing on the N multiplied signal.
  • the L-band IF signal passes through N and M.
  • the product multiplier is amplified to a predetermined Ka-band RF signal, and the multiplier multiple N is greater than the multiplication factor M. That is, after the N times multiplication of the first frequency multiplication module 120 and the M frequency multiplication of the second frequency multiplication module 140, the L-band intermediate frequency signal transmitted by the modem can be up-converted into a preset Ka-band RF signal.
  • the local oscillator and mixer are omitted, which greatly reduces the hardware complexity and cost of the emitter, and the output Ka-band RF signal has high stability and simple debugging operation.
  • the intermediate frequency processing module 110 includes a third band pass filter 111 and an intermediate frequency amplifier 113, and the third band pass filter 111 performs filtering processing on the intermediate frequency signal.
  • the L-band intermediate frequency signal transmitted by the modem has a frequency range of 1 GHz to 3 GHz, and is processed by the third band pass filter 111 to output an intermediate frequency signal of 2.95 GHz to 3 GHz, which is amplified by the intermediate frequency amplifier 113 and output.
  • the first frequency multiplier module 120 includes a first frequency multiplier 121 and a first band pass filter 123.
  • the intermediate frequency processing module 110, the first frequency multiplier 121, the first band pass filter 123, and the low noise amplifier 130 are electrically connected in sequence;
  • the first frequency multiplier 121 outputs higher harmonics, and the first band pass filter 123 performs filtering processing on the higher harmonics to output an N multiplied signal.
  • the second frequency multiplying module 140 includes a second frequency multiplier 141 and a second band pass filter 143, a low noise amplifier 130, a second frequency multiplier 141, a second band pass filter 143, and electrical connections in sequence; wherein, the second The frequency multiplier 141 performs M multiplication processing on the N frequency multiplied signal to output an N*M frequency multiplication signal, and the second band pass filter 143 filters the N*M frequency multiplied signal and outputs a preset Ka band radio frequency signal.
  • the frequency range of the output intermediate frequency signal is 2.95 GHz to 3 GHz
  • the frequency range of the preset Ka-band RF signal is 29.5 GHz to 30 GHz, that is, the intermediate frequency signal is up-converted to a frequency multiplication of the RF signal.
  • the multiple is 10.
  • the first frequency multiplier 121 may be one of a transistor frequency multiplier, a varactor diode multiplier, and a step recovery diode frequency multiplier.
  • the second frequency multiplier 141 can also be one of a transistor frequency multiplier, a varactor diode multiplier, and a step recovery diode frequency multiplier.
  • the first frequency multiplier 121 is a transistor frequency multiplier.
  • the amplified intermediate frequency signal (2.95 GHz to 3 GHz) passes through a five-folded transistor frequency multiplier, and its transistor frequency multiplier generates a higher harmonic signal.
  • the fifth frequency multiplier circuit is shown in FIG.
  • the fifth frequency multiplier includes a first DC power source DC1, a second DC power source DC2, a transistor Q1, a first capacitor C1, and a second capacitor C2; the bases of the transistors Q1 are respectively Connected to the positive pole of the first capacitor C1 and the first DC power source DC1, the collector of the transistor Q1 is respectively connected to the anode of the second capacitor C2 and the second DC power source DC2; the emitter of the transistor Q1 is respectively connected to the first DC power source DC1 The negative electrode and the negative electrode of the second DC power source DC2 are connected and grounded.
  • the voltages of the appropriate first DC power source DC1 and the second DC power source DC2 are selected to operate the transistor Q1 in the non-linear region, and the intermediate frequency signal f 0 of the input signal is nonlinearly amplified by the transistor Q1 to output a high-order harmonic signal 2f. 0 , 3f 0 , ..., nf 0 , and finally the first band pass filter 123 having a bandwidth ranging from 14.75 to 15 GHz filters and filters out other multiple harmonics, and selects the fifth frequency signal 5 f 0 .
  • the energy of the fifth-frequency signal outputted by the first frequency multiplier 121 is low, and the fifth-frequency signal is amplified by the low-noise amplifier 130, and then input to the second frequency multiplying module 140.
  • the second frequency multiplying module 140 includes a double frequency multiplier and a second band pass filter 143, and after multiplying and filtering the five frequency multiplied signal, the 10 multiplied signal, that is, the frequency range is obtained. For the signal of 29.5 GHz to 30 GHz, the RF signal of the preset Ka-band is output.
  • the first frequency multiplier 121 can be properly configured in the up-conversion process.
  • the frequency multiplier of the second frequency multiplier 141 is such that the frequency after up-conversion is in accordance with the frequency range of the Ka band.
  • the first frequency multiplier 121 is a quad multiplier and the second frequency multiplier 141 is a triple frequency multiplier.
  • the L-band IF signal can be output from 35.4 GHz to 36 GHz after being multiplied by a quad multiplier and a tripler.
  • the Ka-band RF signal can be output from 35.4 GHz to 36 GHz after being multiplied by a quad multiplier and a tripler.
  • the total frequency multiplier L of the up-converting from the intermediate frequency signal to the radio frequency signal may be calculated according to the frequency range of the L-band intermediate frequency signal output by the actual modem and the Ka-band RF signal of the target desired output. Then, the multipliers of the first multiplying module 120N and the second multiplying module 140M are appropriately set such that the product of the multiplied multiples (N*M) of the two is a total multiplier.
  • the Ka-band transmitter further includes a fourth band pass filter 150 disposed between the low noise amplifier 130 and the second frequency multiplying module 140.
  • the fifth-frequency signal amplified by the low-noise amplifier 130 is again filtered by the fourth band-pass filter 150, and its bandwidth ranges from 14.75 to 15 GHz, thereby obtaining a relatively pure 5-times frequency signal.
  • the Ka-band transmitter further includes a power amplifier 160 coupled to the output of the second frequency multiplying module 140 for a frequency range of 29.5 GHz to 30 GHz.
  • the Ka-band RF signal is amplified after power output.
  • the intermediate frequency signal outputted from the modem is processed by the N multiplication of the first frequency multiplication module 120 and the M multiplication of the second frequency multiplication module 140, and then the intermediate frequency signal can be upconverted to a preset Ka.
  • the RF signal of the band omits the local oscillator and the mixer, which greatly reduces the hardware complexity and cost of the emitter, and the output of the Ka-band RF signal has high stability and simple debugging operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Transmitters (AREA)

Abstract

本发明涉及一种Ka波段发射机。Ka波段发射机包括中频处理模块、第一倍频模块、低噪声放大器、第二倍频模块,其中,第一倍频模块对调制解调器输出的中频信号进行N倍频处理并输出N倍频信号;再由第二倍频模块对N倍频信号进行M倍频处理。其中,L波段的中频信号经N、M 的乘积倍数放大后为预设Ka波段的射频信号,且倍频倍数N大于倍频倍数M。也即,从调制解调器输出的中频信号通过第一倍频模块的N倍频和第二倍频模块的M倍频处理后,即可将中频信号上变频为预设Ka波段的射频信号,省略了本地振荡器和混频器,大大降低了发射极的硬件复杂度和成本,而且输出的Ka波段的射频信号稳定性较高、调试操作简单。

Description

Ka波段发射机
【技术领域】
本发明涉及卫星通信技术领域,特别是涉及Ka波段发射机。
【背景技术】
近年来,甚小口径卫星终端站(Very Small Aperture Terminal,VSAT)也称为卫星小数据站(小站)或个人地球站,卫星通信技术发展迅速,由于其具有灵活性强、可靠性高、使用方便及小站可直接装在用户端等特点,利用VSAT用户数据终端可直接和计算机联网,完成数据传递、文件交换、图像传输等通信任务,从而摆脱了远距离通信地面中继站的问题。使用VSAT作为专用远距离通信系统是一种很好的选择。VSAT卫星通信系统由主站、通信卫星转发器及小站组成,小站包括用于卫星通信的Ka波段发射机,其主要功能是将调制解调器发射的L波段中频信号上变频为Ka波段的射频信号。
传统的Ka波段发射机采用混频的方式将中频信号上变频为Ka波段的射频信号,必须使用一个本地振荡器,硬件成本和调试成本较高,而且由于振荡器受温度或者电压影响会发生漂移,频率稳定性不佳。
【发明内容】
基于此,有必要针对上述问题,提供一种无需本地振荡器也可将调制解调器发射的L波段中频信号上变频为Ka波段的射频信号且成本低、信号稳定的Ka波段发射机。
一种Ka波段发射机,包括:
中频处理模块,用于接收调制解调器发射的L波段的中频信号,并对所述中频信号进行滤波放大处理;
第一倍频模块,与所述中频处理模块连接,用于对所述中频信号进行N倍频处理并输出N倍频信号;
低噪声放大器,与所述第一倍频模块连接,用于对所述N倍频信号进行放大;
第二倍频模块,与所述低噪声放大器连接,用于对所述N倍频信号进行M倍频处理,并输出预设Ka波段的射频信号,其中,所述L波段的中频信号经所述N、M 的乘积倍数放大后为所述预设Ka波段的射频信号,且倍频倍数N大于倍频倍数M。
上述Ka波段的发射机,从调制解调器输出的中频信号通过第一倍频模块的N倍频和第二倍频模块的M倍频处理后,即可将中频信号上变频为预设Ka波段的射频信号,省略了本地振荡器和混频器,大大降低了发射极的硬件复杂度和成本,而且输出的Ka波段的射频信号稳定性较高、调试操作简单。
在其中一个实施例中,所述第一倍频模块包括第一倍频器和第一带通滤波器,所述中频处理模块、第一倍频器、第一带通滤波器、低噪声放大器依次电连接;其中,所述第一倍频器输出高次谐波,所述第一带通滤波器对所述高次谐波进行滤波处理,输出N倍频信号。
在其中一个实施例中,所述第二倍频模块包括第二倍频器和第二带通滤波器,所述低噪声放大器、第二倍频器、第二带通滤波器依次电连接;其中,所述第二倍频器对所述N倍频信号进行M倍频处理输出N乘以M倍频信号,所述第二带通滤波器对所述N乘以M倍频信号进行滤波并输出预设Ka波段的射频信号。
在其中一个实施例中,所述第一倍频器为五倍频器,所述第二倍频器为二倍频器。
在其中一个实施例中,所述第一倍频器为四倍频器,所述第二倍频器为三倍频器。
在其中一个实施例中,第一倍频器、第二倍频器分别为晶体管倍频器、变容二极管倍频器和阶跃恢复二极管倍频器中的一种。
在其中一个实施例中,所述第一倍频器为晶体管倍频器,所述第一倍频器包括第一直流电源、第二直流电源、晶体管、第一电容、第二电容;所述晶体管的基极分别与所述第一电容、第一直流电源的正极连接,所述晶体管的集电极分别与所述第二电容、第二直流电源的正极连接;所述晶体管的发射极分别与所述第一直流电源的负极、第二直流电源的负极连接且接地。
在其中一个实施例中,所述中频处理模块包括第三带通滤波器、中频放大器,所述第三带通滤波器对所述中频信号进行滤波处理,所述中频放大器用于对所述中频信号进行放大处理。
在其中一个实施例中,还包括第四带通滤波器,所述第四带通滤波器设置在所述低噪声放大器与第二倍频模块之间。
在其中一个实施例中,还包括功率放大器,所述功率放大器与所述第二倍频模块的输出端连接,用于所述对所述预设Ka波段的射频信号进行功率放大。
【附图说明】
图1为一实施例中Ka波段发射机的结构框架图;
图2为一实施例中第一倍频器的电路图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示的为Ka波段发射机的结构框架图, Ka波段发射机包括中频处理模块110、第一倍频模块120、低噪声放大器130、第二倍频模块140。中频处理模块110接收调制解调器发射的L波段的中频信号,并对中频信号进行滤波放大处理后输出至第一倍频模块120,由第一倍频模块120对中频信号进行N倍频处理并输出N倍频信号。同时,低噪声放大器130对N倍频信号进行放大后输出至第二倍频模块140。第二倍频模块140接着对N倍频信号进行M倍频处理。其中,L波段的中频信号经N、M 的乘积倍数放大后为预设Ka波段的射频信号,且倍频倍数N大于倍频倍数M。也即,通过第一倍频模块120的N倍频和第二倍频模块140的M倍频处理后,即可将调制解调器发射的L波段的中频信号上变频为预设Ka波段的射频信号,省略了本地振荡器和混频器,大大降低了发射极的硬件复杂度和成本,而且输出的Ka波段的射频信号稳定性较高、调试操作简单。
中频处理模块110包括第三带通滤波器111、中频放大器113,第三带通滤波器111对中频信号进行滤波处理。在一实施例中,调制解调器发射的L波段的中频信号的频率范围为1GHz~3GHz,通过第三带通滤波器111的处理后,输出2.95GHz~3GHz的中频信号,经中频放大器113放大后输出至第一倍频模块120。
第一倍频模块120包括第一倍频器121和第一带通滤波器123,中频处理模块110、第一倍频器121、第一带通滤波器123、低噪声放大器130依次电连接;其中,第一倍频器121输出高次谐波,第一带通滤波器123对高次谐波进行滤波处理,输出N倍频信号。
第二倍频模块140包括第二倍频器141和第二带通滤波器143,低噪声放大器130、第二倍频器141、第二带通滤波器143、依次电连接;其中,第二倍频器141对N倍频信号进行M倍频处理输出N*M倍频信号,第二带通滤波器143对N*M倍频信号进行滤波并输出预设Ka波段的射频信号。
在一实施例中,其输出的中频信号的频率范围为2.95GHz~3GHz,预设的Ka波段的射频信号的频率范围为29.5GHz~30GHz,也即,中频信号上变频为射频信号的倍频倍数是10。当第一倍频器121为五倍频器,第二倍频器141为二倍频器时,即可满足上变频为射频信号的需求。
第一倍频器121可以为晶体管倍频器、变容二极管倍频器和阶跃恢复二极管倍频器中的一种。第二倍频器141也可以为晶体管倍频器、变容二极管倍频器和阶跃恢复二极管倍频器中的一种。
在本实施例中,第一倍频器121为晶体管倍频器。经放大处理的中频信号(2.95GHz~3GHz)经过五倍频的晶体管倍频器,其晶体管倍频器产生高次谐波信号。其中,五倍频器电路如图2所示,五倍频器包括第一直流电源DC1、第二直流电源DC2、晶体管Q1、第一电容C1、第二电容C2;晶体管Q1的基极分别与第一电容C1、第一直流电源DC1的正极连接,晶体管Q1的集电极分别与第二电容C2、第二直流电源DC2的正极连接;晶体管Q1的发射极分别与第一直流电源DC1的负极、第二直流电源DC2的负极连接且接地。选取适当的第一直流电源DC1和第二直流电源DC2的电压,使晶体管Q1在非线性区工作,输入信号的中频信号f0经过晶体管Q1非线性放大后会输出产生高次谐波信号2f0、3f0、…、nf0,最后经过带宽范围为14.75~15GHz的第一带通滤波器123滤波滤除其他多次谐波,选择出其五倍频信号5 f0
经第一倍频器121输出的五倍频信号的能量低,通过低噪声放大器130对五倍频信号进行放大后,再输入至第二倍频模块140。其中,第二倍频模块140中包括二倍频器和第二带通滤波器143,对五倍频信号进行二倍频器倍频、滤波后,即可获得10倍频信号,即频率范围为29.5GHz~30GHz的信号,也即输出预设Ka波段的射频信号。
由于Ka波段的频率范围为26.5~40GHz;其频带很宽,若对调制解调器输出的中频信号上变频为Ka波段的射频信号,其上变频过程中,可通过合理的配置第一倍频器121和第二倍频器141的倍频倍数,使其上变频后的频率符合Ka波段的频率范围。在一实施例中,第一倍频器121为四倍频器,第二倍频器141为三倍频器。L波段的中频信号经四倍频器、三倍频器的倍频处理后,可输出35.4GHz~36GHz 的Ka波段的射频信号。在其他实施例中,还可以根据实际的调制解调器输出的L波段的中频信号以及目标所需输出的Ka波段的射频信号的频率范围,计算从中频信号上变频为射频信号的总的倍频倍数L,进而合理的设置第一倍频模块120N和第二倍频模块140M的倍频倍数,使其两者的倍频倍数的乘积(N*M)为总的倍频倍数即可。
在一实施例中,Ka波段发射机还包括第四带通滤波器150,第四带通滤波器150设置在低噪声放大器130与第二倍频模块140之间。经低噪声放大器130放大后的五倍频信号再一次通过第四带通滤波器150滤波,其带宽范围为14.75~15GHz,进而获得比较纯净的5倍频信号。
在一实施例中,Ka波段发射机还包括功率放大器160,功率放大器160与第二倍频模块140的输出端连接,对频率范围为29.5GHz~30GHz 的Ka波段的射频信号功率放大后输出。
通过上述Ka波段的发射机,从调制解调器输出的中频信号通过第一倍频模块120的N倍频和第二倍频模块140的M倍频处理后,即可将中频信号上变频为预设Ka波段的射频信号,省略了本地振荡器和混频器,大大降低了发射极的硬件复杂度和成本,而且输出的Ka波段的射频信号稳定性较高、调试操作简单。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种Ka波段发射机,其特征在于,包括:
    中频处理模块,用于接收调制解调器发射的L波段的中频信号,并对所述中频信号进行滤波放大处理;
    第一倍频模块,与所述中频处理模块连接,用于对所述中频信号进行N倍频处理并输出N倍频信号;
    低噪声放大器,与所述第一倍频模块连接,用于对所述N倍频信号进行放大;
    第二倍频模块,与所述低噪声放大器连接,用于对所述N倍频信号进行M倍频处理,并输出预设Ka波段的射频信号,其中,所述L波段的中频信号经所述N、M 的乘积倍数放大后为所述预设Ka波段的射频信号,且倍频倍数N大于倍频倍数M。
  2. 根据权利要求1所述的Ka波段发射机,其特征在于,所述第一倍频模块包括第一倍频器和第一带通滤波器,所述中频处理模块、第一倍频器、第一带通滤波器、低噪声放大器依次电连接;其中,所述第一倍频器输出高次谐波,所述第一带通滤波器对所述高次谐波进行滤波处理,输出N倍频信号。
  3. 根据权利要求2所述的Ka波段发射机,其特征在于,所述第二倍频模块包括第二倍频器和第二带通滤波器,所述低噪声放大器、第二倍频器、第二带通滤波器依次电连接;其中,所述第二倍频器对所述N倍频信号进行M倍频处理输出N乘以M倍频信号,所述第二带通滤波器对所述N乘以M倍频信号进行滤波并输出预设Ka波段的射频信号。
  4. 根据权利要求3所述的Ka波段发射机,其特征在于,所述第一倍频器为五倍频器,所述第二倍频器为二倍频器。
  5. 根据权利要求3所述的Ka波段发射机,其特征在于,所述第一倍频器为四倍频器,所述第二倍频器为三倍频器。
  6. 根据权利要求3或4或5所述的Ka波段发射机,其特征在于,第一倍频器、第二倍频器分别为晶体管倍频器、变容二极管倍频器和阶跃恢复二极管倍频器中的一种。
  7. 根据权利要求6所述的Ka波段发射机,其特征在于,所述第一倍频器为晶体管倍频器,所述第一倍频器包括第一直流电源、第二直流电源、晶体管、第一电容、第二电容;所述晶体管的基极分别与所述第一电容、第一直流电源的正极连接,所述晶体管的集电极分别与所述第二电容、第二直流电源的正极连接;所述晶体管的发射极分别与所述第一直流电源的负极、第二直流电源的负极连接且接地。
  8. 根据权利要求1所述的Ka波段发射机,其特征在于,所述中频处理模块包括第三带通滤波器、中频放大器;所述第三带通滤波器对所述中频信号进行滤波处理,所述中频放大器用于对所述中频信号进行放大处理。
  9. 根据权利要求1所述的Ka波段发射机,其特征在于,还包括第四带通滤波器,所述第四带通滤波器设置在所述低噪声放大器与第二倍频模块之间。
  10. 根据权利要求1所述的Ka波段发射机,其特征在于,还包括功率放大器,所述功率放大器与所述第二倍频模块的输出端连接,用于所述对所述预设Ka波段的射频信号进行功率放大。
PCT/CN2017/097642 2016-11-16 2017-08-16 Ka波段发射机 WO2018090687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611028423.X 2016-11-16
CN201611028423.XA CN106374943B (zh) 2016-11-16 2016-11-16 Ka波段发射机

Publications (1)

Publication Number Publication Date
WO2018090687A1 true WO2018090687A1 (zh) 2018-05-24

Family

ID=57891842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097642 WO2018090687A1 (zh) 2016-11-16 2017-08-16 Ka波段发射机

Country Status (2)

Country Link
CN (1) CN106374943B (zh)
WO (1) WO2018090687A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260714A (zh) * 2020-11-30 2021-01-22 成都泰格微电子研究所有限责任公司 一种用于卫星地面站的信号收发系统
CN114268278A (zh) * 2020-09-16 2022-04-01 南京赛格微电子科技股份有限公司 一种多路倍频模块
CN115173870A (zh) * 2022-06-27 2022-10-11 博微太赫兹信息科技有限公司 一种w波段微波收发链路
CN116996114A (zh) * 2023-09-26 2023-11-03 辰极智航(北京)科技有限公司 一种适用于宽带卫星通信的高集成度地面终端SoC芯片

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374943B (zh) * 2016-11-16 2018-06-26 深圳市华讯方舟卫星通信有限公司 Ka波段发射机
CN108736904A (zh) * 2017-04-17 2018-11-02 东莞百电子有限公司 一种新型vsat接收器及发射器
CN108896965B (zh) * 2018-04-26 2022-05-17 北京理工大学 200GHz频段信号收发测量系统
CN108988880A (zh) * 2018-10-08 2018-12-11 北京无线电测量研究所 一种超宽带Ka波段上变频系统和方法
CN111355499B (zh) * 2018-12-24 2023-12-12 深圳市华讯方舟光电技术有限公司 射频链路
CN109889215B (zh) * 2019-03-22 2023-09-26 创意银航(山东)技术有限公司 一种用于8mm波段的参数可调射频照射源
CN112332905B (zh) * 2020-11-04 2023-03-31 睿高(广州)通信技术有限公司 一种双通道Ka频段固态功放装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2265034Y (zh) * 1996-11-21 1997-10-15 北京市水利自动化研究所 无线发射模块
CN102025422A (zh) * 2010-12-04 2011-04-20 电子科技大学 一种Ka波段多路毫米波信号产生方法及系统
CN104124922A (zh) * 2014-07-31 2014-10-29 中国科学院上海微系统与信息技术研究所 3mm波段信号源及其应用
CN105974374A (zh) * 2016-06-17 2016-09-28 上海无线电设备研究所 产生Ka波段调频线性连续波的频率合成器及工作方法
CN106374943A (zh) * 2016-11-16 2017-02-01 深圳市华讯方舟卫星通信有限公司 Ka波段发射机
CN206226409U (zh) * 2016-11-16 2017-06-06 深圳市华讯方舟卫星通信有限公司 Ka波段发射机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2697952Y (zh) * 2003-11-13 2005-05-04 深圳市怡越科技有限公司 车载手机免提装置
US7460055B2 (en) * 2006-06-02 2008-12-02 Panasonic Corporation Radar apparatus
CN201571043U (zh) * 2009-12-02 2010-09-01 成都联帮微波通信工程有限公司 一种宽频带快跳频小步进频率合成器
CN204216892U (zh) * 2014-06-25 2015-03-18 北京七星华创电子股份有限公司 一种ltcc收发组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2265034Y (zh) * 1996-11-21 1997-10-15 北京市水利自动化研究所 无线发射模块
CN102025422A (zh) * 2010-12-04 2011-04-20 电子科技大学 一种Ka波段多路毫米波信号产生方法及系统
CN104124922A (zh) * 2014-07-31 2014-10-29 中国科学院上海微系统与信息技术研究所 3mm波段信号源及其应用
CN105974374A (zh) * 2016-06-17 2016-09-28 上海无线电设备研究所 产生Ka波段调频线性连续波的频率合成器及工作方法
CN106374943A (zh) * 2016-11-16 2017-02-01 深圳市华讯方舟卫星通信有限公司 Ka波段发射机
CN206226409U (zh) * 2016-11-16 2017-06-06 深圳市华讯方舟卫星通信有限公司 Ka波段发射机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114268278A (zh) * 2020-09-16 2022-04-01 南京赛格微电子科技股份有限公司 一种多路倍频模块
CN112260714A (zh) * 2020-11-30 2021-01-22 成都泰格微电子研究所有限责任公司 一种用于卫星地面站的信号收发系统
CN115173870A (zh) * 2022-06-27 2022-10-11 博微太赫兹信息科技有限公司 一种w波段微波收发链路
CN115173870B (zh) * 2022-06-27 2023-06-20 博微太赫兹信息科技有限公司 一种w波段微波收发链路
CN116996114A (zh) * 2023-09-26 2023-11-03 辰极智航(北京)科技有限公司 一种适用于宽带卫星通信的高集成度地面终端SoC芯片
CN116996114B (zh) * 2023-09-26 2023-12-26 辰极智航(北京)科技有限公司 一种适用于宽带卫星通信的高集成度地面终端SoC芯片

Also Published As

Publication number Publication date
CN106374943A (zh) 2017-02-01
CN106374943B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2018090687A1 (zh) Ka波段发射机
WO2017219954A1 (zh) 通信收发机
CN101826844B (zh) 一种功率放大器和基于功率放大器的信号放大方法
CN102111109B (zh) 一种返回式电流复用混频器
Weber et al. A W-Band $\times $12 Multiplier MMIC With Excellent Spurious Suppression
CN112564630A (zh) 一种毫米波放大电路
CN111431581A (zh) 基于抗辐照微波集成电路的射频收发星载装置
CN104092473A (zh) 3mm波段接收机及其应用
CN110350931A (zh) 一种超宽带射频前端接收电路
Zamora et al. A high efficiency 670 GHz x36 InP HEMT multiplier chain
US9330283B2 (en) High-frequency RMS-DC converter using chopper-stabilized square cells
CN206226409U (zh) Ka波段发射机
CN212785266U (zh) 一种多路倍频模块
CN115842522A (zh) 一种Doherty功率放大器
CN108449052A (zh) 一种w波段高次倍频器
CN104124922A (zh) 3mm波段信号源及其应用
CN106130486B (zh) W波段及太赫兹频率低端倍频器
GB477240A (en) Improvements in or relating to thermionic valve circuits
US2489266A (en) Cathode-coupled amplifier
CN105680804A (zh) K波段级间失配型低噪声放大器
US6861909B1 (en) High voltage-wide band amplifier
CN107547052B (zh) 嵌入式倍增器及运算放大器
He et al. Design and development of high linearity millimeter wave traveling-wave tube for satellite communications
CN212850500U (zh) 小型化抗干扰射频接收电路模块
CN209731217U (zh) 一种信号放大装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871948

Country of ref document: EP

Kind code of ref document: A1